1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/CallingConv.h"
58 #include "llvm/IR/Constant.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/Intrinsics.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/MC/MCExpr.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Support/AtomicOrdering.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CodeGen.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/Format.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstdint>
92 #include <iterator>
93 #include <list>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 
99 #define DEBUG_TYPE "ppc-lowering"
100 
101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
103 
104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
106 
107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisableSCO("disable-ppc-sco",
111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
112 
113 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
114 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
115 
116 STATISTIC(NumTailCalls, "Number of tail calls");
117 STATISTIC(NumSiblingCalls, "Number of sibling calls");
118 
119 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
120 
121 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
122 
123 // FIXME: Remove this once the bug has been fixed!
124 extern cl::opt<bool> ANDIGlueBug;
125 
126 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
127                                      const PPCSubtarget &STI)
128     : TargetLowering(TM), Subtarget(STI) {
129   // Use _setjmp/_longjmp instead of setjmp/longjmp.
130   setUseUnderscoreSetJmp(true);
131   setUseUnderscoreLongJmp(true);
132 
133   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
134   // arguments are at least 4/8 bytes aligned.
135   bool isPPC64 = Subtarget.isPPC64();
136   setMinStackArgumentAlignment(isPPC64 ? 8:4);
137 
138   // Set up the register classes.
139   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
140   if (!useSoftFloat()) {
141     if (hasSPE()) {
142       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
143       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
144     } else {
145       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
146       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
147     }
148   }
149 
150   // Match BITREVERSE to customized fast code sequence in the td file.
151   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
152   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
153 
154   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
155   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
156 
157   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
158   for (MVT VT : MVT::integer_valuetypes()) {
159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
160     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
161   }
162 
163   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
164 
165   // PowerPC has pre-inc load and store's.
166   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
167   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
168   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
169   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
170   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
171   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
172   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
173   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
174   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
175   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
176   if (!Subtarget.hasSPE()) {
177     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
178     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
179     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
180     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
181   }
182 
183   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
184   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
185   for (MVT VT : ScalarIntVTs) {
186     setOperationAction(ISD::ADDC, VT, Legal);
187     setOperationAction(ISD::ADDE, VT, Legal);
188     setOperationAction(ISD::SUBC, VT, Legal);
189     setOperationAction(ISD::SUBE, VT, Legal);
190   }
191 
192   if (Subtarget.useCRBits()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
194 
195     if (isPPC64 || Subtarget.hasFPCVT()) {
196       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
197       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
198                          isPPC64 ? MVT::i64 : MVT::i32);
199       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
200       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
201                         isPPC64 ? MVT::i64 : MVT::i32);
202     } else {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
204       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
205     }
206 
207     // PowerPC does not support direct load/store of condition registers.
208     setOperationAction(ISD::LOAD, MVT::i1, Custom);
209     setOperationAction(ISD::STORE, MVT::i1, Custom);
210 
211     // FIXME: Remove this once the ANDI glue bug is fixed:
212     if (ANDIGlueBug)
213       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
214 
215     for (MVT VT : MVT::integer_valuetypes()) {
216       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
217       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
218       setTruncStoreAction(VT, MVT::i1, Expand);
219     }
220 
221     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
222   }
223 
224   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
225   // PPC (the libcall is not available).
226   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
227   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
228 
229   // We do not currently implement these libm ops for PowerPC.
230   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
231   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
232   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
233   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
234   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
235   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
236 
237   // PowerPC has no SREM/UREM instructions unless we are on P9
238   // On P9 we may use a hardware instruction to compute the remainder.
239   // The instructions are not legalized directly because in the cases where the
240   // result of both the remainder and the division is required it is more
241   // efficient to compute the remainder from the result of the division rather
242   // than use the remainder instruction.
243   if (Subtarget.isISA3_0()) {
244     setOperationAction(ISD::SREM, MVT::i32, Custom);
245     setOperationAction(ISD::UREM, MVT::i32, Custom);
246     setOperationAction(ISD::SREM, MVT::i64, Custom);
247     setOperationAction(ISD::UREM, MVT::i64, Custom);
248   } else {
249     setOperationAction(ISD::SREM, MVT::i32, Expand);
250     setOperationAction(ISD::UREM, MVT::i32, Expand);
251     setOperationAction(ISD::SREM, MVT::i64, Expand);
252     setOperationAction(ISD::UREM, MVT::i64, Expand);
253   }
254 
255   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
256   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
257   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
258   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
259   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
260   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
261   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
262   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
263   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
264 
265   // We don't support sin/cos/sqrt/fmod/pow
266   setOperationAction(ISD::FSIN , MVT::f64, Expand);
267   setOperationAction(ISD::FCOS , MVT::f64, Expand);
268   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
269   setOperationAction(ISD::FREM , MVT::f64, Expand);
270   setOperationAction(ISD::FPOW , MVT::f64, Expand);
271   setOperationAction(ISD::FSIN , MVT::f32, Expand);
272   setOperationAction(ISD::FCOS , MVT::f32, Expand);
273   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
274   setOperationAction(ISD::FREM , MVT::f32, Expand);
275   setOperationAction(ISD::FPOW , MVT::f32, Expand);
276   if (Subtarget.hasSPE()) {
277     setOperationAction(ISD::FMA  , MVT::f64, Expand);
278     setOperationAction(ISD::FMA  , MVT::f32, Expand);
279   } else {
280     setOperationAction(ISD::FMA  , MVT::f64, Legal);
281     setOperationAction(ISD::FMA  , MVT::f32, Legal);
282   }
283 
284   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
285 
286   // If we're enabling GP optimizations, use hardware square root
287   if (!Subtarget.hasFSQRT() &&
288       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
289         Subtarget.hasFRE()))
290     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
291 
292   if (!Subtarget.hasFSQRT() &&
293       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
294         Subtarget.hasFRES()))
295     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
296 
297   if (Subtarget.hasFCPSGN()) {
298     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
299     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
300   } else {
301     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
302     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
303   }
304 
305   if (Subtarget.hasFPRND()) {
306     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
307     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
308     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
309     setOperationAction(ISD::FROUND, MVT::f64, Legal);
310 
311     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
312     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
313     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
314     setOperationAction(ISD::FROUND, MVT::f32, Legal);
315   }
316 
317   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
318   // to speed up scalar BSWAP64.
319   // CTPOP or CTTZ were introduced in P8/P9 respectively
320   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
321   if (Subtarget.hasP9Vector())
322     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
323   else
324     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
325   if (Subtarget.isISA3_0()) {
326     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
327     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
328   } else {
329     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
330     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
331   }
332 
333   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
334     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
335     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
336   } else {
337     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
338     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
339   }
340 
341   // PowerPC does not have ROTR
342   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
343   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
344 
345   if (!Subtarget.useCRBits()) {
346     // PowerPC does not have Select
347     setOperationAction(ISD::SELECT, MVT::i32, Expand);
348     setOperationAction(ISD::SELECT, MVT::i64, Expand);
349     setOperationAction(ISD::SELECT, MVT::f32, Expand);
350     setOperationAction(ISD::SELECT, MVT::f64, Expand);
351   }
352 
353   // PowerPC wants to turn select_cc of FP into fsel when possible.
354   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
355   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
356 
357   // PowerPC wants to optimize integer setcc a bit
358   if (!Subtarget.useCRBits())
359     setOperationAction(ISD::SETCC, MVT::i32, Custom);
360 
361   // PowerPC does not have BRCOND which requires SetCC
362   if (!Subtarget.useCRBits())
363     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
364 
365   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
366 
367   if (Subtarget.hasSPE()) {
368     // SPE has built-in conversions
369     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
370     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
371     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
372   } else {
373     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
374     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
375 
376     // PowerPC does not have [U|S]INT_TO_FP
377     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
378     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
379   }
380 
381   if (Subtarget.hasDirectMove() && isPPC64) {
382     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
383     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
384     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
385     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
386   } else {
387     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
388     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
389     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
390     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
391   }
392 
393   // We cannot sextinreg(i1).  Expand to shifts.
394   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
395 
396   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
397   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
398   // support continuation, user-level threading, and etc.. As a result, no
399   // other SjLj exception interfaces are implemented and please don't build
400   // your own exception handling based on them.
401   // LLVM/Clang supports zero-cost DWARF exception handling.
402   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
403   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
404 
405   // We want to legalize GlobalAddress and ConstantPool nodes into the
406   // appropriate instructions to materialize the address.
407   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
408   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
409   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
410   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
411   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
412   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
413   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
414   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
415   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
416   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
417 
418   // TRAP is legal.
419   setOperationAction(ISD::TRAP, MVT::Other, Legal);
420 
421   // TRAMPOLINE is custom lowered.
422   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
423   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
424 
425   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
426   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
427 
428   if (Subtarget.isSVR4ABI()) {
429     if (isPPC64) {
430       // VAARG always uses double-word chunks, so promote anything smaller.
431       setOperationAction(ISD::VAARG, MVT::i1, Promote);
432       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
433       setOperationAction(ISD::VAARG, MVT::i8, Promote);
434       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
435       setOperationAction(ISD::VAARG, MVT::i16, Promote);
436       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
437       setOperationAction(ISD::VAARG, MVT::i32, Promote);
438       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
439       setOperationAction(ISD::VAARG, MVT::Other, Expand);
440     } else {
441       // VAARG is custom lowered with the 32-bit SVR4 ABI.
442       setOperationAction(ISD::VAARG, MVT::Other, Custom);
443       setOperationAction(ISD::VAARG, MVT::i64, Custom);
444     }
445   } else
446     setOperationAction(ISD::VAARG, MVT::Other, Expand);
447 
448   if (Subtarget.isSVR4ABI() && !isPPC64)
449     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
450     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
451   else
452     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
453 
454   // Use the default implementation.
455   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
456   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
457   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
458   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
459   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
460   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
461   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
462   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
463   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
464 
465   // We want to custom lower some of our intrinsics.
466   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
467 
468   // To handle counter-based loop conditions.
469   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
470 
471   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
472   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
473   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
474   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
475 
476   // Comparisons that require checking two conditions.
477   if (Subtarget.hasSPE()) {
478     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
479     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
480     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
481     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
482   }
483   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
484   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
485   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
486   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
487   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
488   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
489   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
490   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
491   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
492   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
493   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
494   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
495 
496   if (Subtarget.has64BitSupport()) {
497     // They also have instructions for converting between i64 and fp.
498     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
499     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
500     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
501     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
502     // This is just the low 32 bits of a (signed) fp->i64 conversion.
503     // We cannot do this with Promote because i64 is not a legal type.
504     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
505 
506     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
507       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
508   } else {
509     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
510     if (Subtarget.hasSPE())
511       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
512     else
513       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
514   }
515 
516   // With the instructions enabled under FPCVT, we can do everything.
517   if (Subtarget.hasFPCVT()) {
518     if (Subtarget.has64BitSupport()) {
519       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
520       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
521       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
522       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
523     }
524 
525     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
526     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
527     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
528     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
529   }
530 
531   if (Subtarget.use64BitRegs()) {
532     // 64-bit PowerPC implementations can support i64 types directly
533     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
534     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
535     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
536     // 64-bit PowerPC wants to expand i128 shifts itself.
537     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
538     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
539     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
540   } else {
541     // 32-bit PowerPC wants to expand i64 shifts itself.
542     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
543     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
544     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
545   }
546 
547   if (Subtarget.hasAltivec()) {
548     // First set operation action for all vector types to expand. Then we
549     // will selectively turn on ones that can be effectively codegen'd.
550     for (MVT VT : MVT::vector_valuetypes()) {
551       // add/sub are legal for all supported vector VT's.
552       setOperationAction(ISD::ADD, VT, Legal);
553       setOperationAction(ISD::SUB, VT, Legal);
554 
555       // Vector instructions introduced in P8
556       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
557         setOperationAction(ISD::CTPOP, VT, Legal);
558         setOperationAction(ISD::CTLZ, VT, Legal);
559       }
560       else {
561         setOperationAction(ISD::CTPOP, VT, Expand);
562         setOperationAction(ISD::CTLZ, VT, Expand);
563       }
564 
565       // Vector instructions introduced in P9
566       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
567         setOperationAction(ISD::CTTZ, VT, Legal);
568       else
569         setOperationAction(ISD::CTTZ, VT, Expand);
570 
571       // We promote all shuffles to v16i8.
572       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
573       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
574 
575       // We promote all non-typed operations to v4i32.
576       setOperationAction(ISD::AND   , VT, Promote);
577       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
578       setOperationAction(ISD::OR    , VT, Promote);
579       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
580       setOperationAction(ISD::XOR   , VT, Promote);
581       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
582       setOperationAction(ISD::LOAD  , VT, Promote);
583       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
584       setOperationAction(ISD::SELECT, VT, Promote);
585       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
586       setOperationAction(ISD::VSELECT, VT, Legal);
587       setOperationAction(ISD::SELECT_CC, VT, Promote);
588       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
589       setOperationAction(ISD::STORE, VT, Promote);
590       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
591 
592       // No other operations are legal.
593       setOperationAction(ISD::MUL , VT, Expand);
594       setOperationAction(ISD::SDIV, VT, Expand);
595       setOperationAction(ISD::SREM, VT, Expand);
596       setOperationAction(ISD::UDIV, VT, Expand);
597       setOperationAction(ISD::UREM, VT, Expand);
598       setOperationAction(ISD::FDIV, VT, Expand);
599       setOperationAction(ISD::FREM, VT, Expand);
600       setOperationAction(ISD::FNEG, VT, Expand);
601       setOperationAction(ISD::FSQRT, VT, Expand);
602       setOperationAction(ISD::FLOG, VT, Expand);
603       setOperationAction(ISD::FLOG10, VT, Expand);
604       setOperationAction(ISD::FLOG2, VT, Expand);
605       setOperationAction(ISD::FEXP, VT, Expand);
606       setOperationAction(ISD::FEXP2, VT, Expand);
607       setOperationAction(ISD::FSIN, VT, Expand);
608       setOperationAction(ISD::FCOS, VT, Expand);
609       setOperationAction(ISD::FABS, VT, Expand);
610       setOperationAction(ISD::FFLOOR, VT, Expand);
611       setOperationAction(ISD::FCEIL,  VT, Expand);
612       setOperationAction(ISD::FTRUNC, VT, Expand);
613       setOperationAction(ISD::FRINT,  VT, Expand);
614       setOperationAction(ISD::FNEARBYINT, VT, Expand);
615       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
616       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
617       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
618       setOperationAction(ISD::MULHU, VT, Expand);
619       setOperationAction(ISD::MULHS, VT, Expand);
620       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
621       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
622       setOperationAction(ISD::UDIVREM, VT, Expand);
623       setOperationAction(ISD::SDIVREM, VT, Expand);
624       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
625       setOperationAction(ISD::FPOW, VT, Expand);
626       setOperationAction(ISD::BSWAP, VT, Expand);
627       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
628       setOperationAction(ISD::ROTL, VT, Expand);
629       setOperationAction(ISD::ROTR, VT, Expand);
630 
631       for (MVT InnerVT : MVT::vector_valuetypes()) {
632         setTruncStoreAction(VT, InnerVT, Expand);
633         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
634         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
635         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
636       }
637     }
638 
639     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
640       setOperationAction(ISD::ABS, VT, Custom);
641 
642     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
643     // with merges, splats, etc.
644     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
645 
646     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
647     // are cheap, so handle them before they get expanded to scalar.
648     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
649     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
650     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
651     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
652     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
653 
654     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
655     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
656     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
657     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
658     setOperationAction(ISD::SELECT, MVT::v4i32,
659                        Subtarget.useCRBits() ? Legal : Expand);
660     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
661     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
662     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
663     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
664     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
665     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
666     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
667     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
668     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
669 
670     // Without hasP8Altivec set, v2i64 SMAX isn't available.
671     // But ABS custom lowering requires SMAX support.
672     if (!Subtarget.hasP8Altivec())
673       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
674 
675     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
676     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
677     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
678     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
679 
680     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
681     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
682 
683     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
684       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
685       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
686     }
687 
688     if (Subtarget.hasP8Altivec())
689       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
690     else
691       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
692 
693     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
694     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
695 
696     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
697     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
698 
699     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
700     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
701     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
702     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
703 
704     // Altivec does not contain unordered floating-point compare instructions
705     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
706     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
707     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
708     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
709 
710     if (Subtarget.hasVSX()) {
711       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
712       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
713       if (Subtarget.hasP8Vector()) {
714         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
715         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
716       }
717       if (Subtarget.hasDirectMove() && isPPC64) {
718         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
719         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
720         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
721         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
722         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
723         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
724         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
725         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
726       }
727       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
728 
729       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
730       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
731       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
732       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
733       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
734 
735       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
736 
737       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
738       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
739 
740       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
741       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
742 
743       // Share the Altivec comparison restrictions.
744       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
745       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
746       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
747       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
748 
749       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
750       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
751 
752       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
753 
754       if (Subtarget.hasP8Vector())
755         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
756 
757       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
758 
759       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
760       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
761       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
762 
763       if (Subtarget.hasP8Altivec()) {
764         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
765         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
766         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
767 
768         // 128 bit shifts can be accomplished via 3 instructions for SHL and
769         // SRL, but not for SRA because of the instructions available:
770         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
771         // doing
772         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
773         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
774         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
775 
776         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
777       }
778       else {
779         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
780         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
781         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
782 
783         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
784 
785         // VSX v2i64 only supports non-arithmetic operations.
786         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
787         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
788       }
789 
790       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
791       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
792       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
793       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
794 
795       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
796 
797       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
798       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
799       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
800       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
801 
802       // Custom handling for partial vectors of integers converted to
803       // floating point. We already have optimal handling for v2i32 through
804       // the DAG combine, so those aren't necessary.
805       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
806       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
807       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
808       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
809       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
810       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
811       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
812       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
813 
814       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
815       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
816       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
817       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
818 
819       if (Subtarget.hasDirectMove())
820         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
821       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
822 
823       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
824     }
825 
826     if (Subtarget.hasP8Altivec()) {
827       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
828       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
829     }
830 
831     if (Subtarget.hasP9Vector()) {
832       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
833       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
834 
835       // 128 bit shifts can be accomplished via 3 instructions for SHL and
836       // SRL, but not for SRA because of the instructions available:
837       // VS{RL} and VS{RL}O.
838       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
839       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
840       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
841 
842       if (EnableQuadPrecision) {
843         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
844         setOperationAction(ISD::FADD, MVT::f128, Legal);
845         setOperationAction(ISD::FSUB, MVT::f128, Legal);
846         setOperationAction(ISD::FDIV, MVT::f128, Legal);
847         setOperationAction(ISD::FMUL, MVT::f128, Legal);
848         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
849         // No extending loads to f128 on PPC.
850         for (MVT FPT : MVT::fp_valuetypes())
851           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
852         setOperationAction(ISD::FMA, MVT::f128, Legal);
853         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
854         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
855         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
856         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
857         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
858         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
859 
860         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
861         setOperationAction(ISD::FRINT, MVT::f128, Legal);
862         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
863         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
864         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
865         setOperationAction(ISD::FROUND, MVT::f128, Legal);
866 
867         setOperationAction(ISD::SELECT, MVT::f128, Expand);
868         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
869         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
870         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
871         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
872         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
873         // No implementation for these ops for PowerPC.
874         setOperationAction(ISD::FSIN , MVT::f128, Expand);
875         setOperationAction(ISD::FCOS , MVT::f128, Expand);
876         setOperationAction(ISD::FPOW, MVT::f128, Expand);
877         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
878         setOperationAction(ISD::FREM, MVT::f128, Expand);
879       }
880 
881     }
882 
883     if (Subtarget.hasP9Altivec()) {
884       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
885       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
886     }
887   }
888 
889   if (Subtarget.hasQPX()) {
890     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
891     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
892     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
893     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
894 
895     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
896     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
897 
898     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
899     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
900 
901     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
902     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
903 
904     if (!Subtarget.useCRBits())
905       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
906     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
907 
908     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
909     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
910     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
911     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
912     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
913     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
914     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
915 
916     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
917     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
918 
919     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
920     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
921     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
922 
923     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
924     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
925     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
926     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
927     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
928     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
929     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
930     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
931     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
932     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
933 
934     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
935     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
936 
937     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
938     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
939 
940     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
941 
942     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
943     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
944     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
945     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
946 
947     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
948     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
949 
950     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
951     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
952 
953     if (!Subtarget.useCRBits())
954       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
955     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
956 
957     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
958     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
959     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
960     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
961     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
962     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
963     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
964 
965     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
966     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
967 
968     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
969     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
970     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
971     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
972     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
973     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
974     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
975     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
976     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
977     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
978 
979     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
980     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
981 
982     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
983     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
984 
985     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
986 
987     setOperationAction(ISD::AND , MVT::v4i1, Legal);
988     setOperationAction(ISD::OR , MVT::v4i1, Legal);
989     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
990 
991     if (!Subtarget.useCRBits())
992       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
993     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
994 
995     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
996     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
997 
998     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
999     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1000     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1001     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1002     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1003     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1004     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1005 
1006     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1007     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1008 
1009     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1010 
1011     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1012     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1013     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1014     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1015 
1016     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1017     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1018     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1019     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1020 
1021     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1022     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1023 
1024     // These need to set FE_INEXACT, and so cannot be vectorized here.
1025     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1026     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1027 
1028     if (TM.Options.UnsafeFPMath) {
1029       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1030       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1031 
1032       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1033       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1034     } else {
1035       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1036       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1037 
1038       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1039       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1040     }
1041   }
1042 
1043   if (Subtarget.has64BitSupport())
1044     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1045 
1046   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1047 
1048   if (!isPPC64) {
1049     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1050     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1051   }
1052 
1053   setBooleanContents(ZeroOrOneBooleanContent);
1054 
1055   if (Subtarget.hasAltivec()) {
1056     // Altivec instructions set fields to all zeros or all ones.
1057     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1058   }
1059 
1060   if (!isPPC64) {
1061     // These libcalls are not available in 32-bit.
1062     setLibcallName(RTLIB::SHL_I128, nullptr);
1063     setLibcallName(RTLIB::SRL_I128, nullptr);
1064     setLibcallName(RTLIB::SRA_I128, nullptr);
1065   }
1066 
1067   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1068 
1069   // We have target-specific dag combine patterns for the following nodes:
1070   setTargetDAGCombine(ISD::ADD);
1071   setTargetDAGCombine(ISD::SHL);
1072   setTargetDAGCombine(ISD::SRA);
1073   setTargetDAGCombine(ISD::SRL);
1074   setTargetDAGCombine(ISD::MUL);
1075   setTargetDAGCombine(ISD::SINT_TO_FP);
1076   setTargetDAGCombine(ISD::BUILD_VECTOR);
1077   if (Subtarget.hasFPCVT())
1078     setTargetDAGCombine(ISD::UINT_TO_FP);
1079   setTargetDAGCombine(ISD::LOAD);
1080   setTargetDAGCombine(ISD::STORE);
1081   setTargetDAGCombine(ISD::BR_CC);
1082   if (Subtarget.useCRBits())
1083     setTargetDAGCombine(ISD::BRCOND);
1084   setTargetDAGCombine(ISD::BSWAP);
1085   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1086   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1087   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1088 
1089   setTargetDAGCombine(ISD::SIGN_EXTEND);
1090   setTargetDAGCombine(ISD::ZERO_EXTEND);
1091   setTargetDAGCombine(ISD::ANY_EXTEND);
1092 
1093   setTargetDAGCombine(ISD::TRUNCATE);
1094 
1095   if (Subtarget.useCRBits()) {
1096     setTargetDAGCombine(ISD::TRUNCATE);
1097     setTargetDAGCombine(ISD::SETCC);
1098     setTargetDAGCombine(ISD::SELECT_CC);
1099   }
1100 
1101   // Use reciprocal estimates.
1102   if (TM.Options.UnsafeFPMath) {
1103     setTargetDAGCombine(ISD::FDIV);
1104     setTargetDAGCombine(ISD::FSQRT);
1105   }
1106 
1107   if (Subtarget.hasP9Altivec()) {
1108     setTargetDAGCombine(ISD::ABS);
1109     setTargetDAGCombine(ISD::VSELECT);
1110   }
1111 
1112   // Darwin long double math library functions have $LDBL128 appended.
1113   if (Subtarget.isDarwin()) {
1114     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1115     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1116     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1117     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1118     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1119     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1120     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1121     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1122     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1123     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1124   }
1125 
1126   if (EnableQuadPrecision) {
1127     setLibcallName(RTLIB::LOG_F128, "logf128");
1128     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1129     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1130     setLibcallName(RTLIB::EXP_F128, "expf128");
1131     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1132     setLibcallName(RTLIB::SIN_F128, "sinf128");
1133     setLibcallName(RTLIB::COS_F128, "cosf128");
1134     setLibcallName(RTLIB::POW_F128, "powf128");
1135     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1136     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1137     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1138     setLibcallName(RTLIB::REM_F128, "fmodf128");
1139   }
1140 
1141   // With 32 condition bits, we don't need to sink (and duplicate) compares
1142   // aggressively in CodeGenPrep.
1143   if (Subtarget.useCRBits()) {
1144     setHasMultipleConditionRegisters();
1145     setJumpIsExpensive();
1146   }
1147 
1148   setMinFunctionAlignment(2);
1149   if (Subtarget.isDarwin())
1150     setPrefFunctionAlignment(4);
1151 
1152   switch (Subtarget.getDarwinDirective()) {
1153   default: break;
1154   case PPC::DIR_970:
1155   case PPC::DIR_A2:
1156   case PPC::DIR_E500:
1157   case PPC::DIR_E500mc:
1158   case PPC::DIR_E5500:
1159   case PPC::DIR_PWR4:
1160   case PPC::DIR_PWR5:
1161   case PPC::DIR_PWR5X:
1162   case PPC::DIR_PWR6:
1163   case PPC::DIR_PWR6X:
1164   case PPC::DIR_PWR7:
1165   case PPC::DIR_PWR8:
1166   case PPC::DIR_PWR9:
1167     setPrefFunctionAlignment(4);
1168     setPrefLoopAlignment(4);
1169     break;
1170   }
1171 
1172   if (Subtarget.enableMachineScheduler())
1173     setSchedulingPreference(Sched::Source);
1174   else
1175     setSchedulingPreference(Sched::Hybrid);
1176 
1177   computeRegisterProperties(STI.getRegisterInfo());
1178 
1179   // The Freescale cores do better with aggressive inlining of memcpy and
1180   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1181   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1182       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1183     MaxStoresPerMemset = 32;
1184     MaxStoresPerMemsetOptSize = 16;
1185     MaxStoresPerMemcpy = 32;
1186     MaxStoresPerMemcpyOptSize = 8;
1187     MaxStoresPerMemmove = 32;
1188     MaxStoresPerMemmoveOptSize = 8;
1189   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1190     // The A2 also benefits from (very) aggressive inlining of memcpy and
1191     // friends. The overhead of a the function call, even when warm, can be
1192     // over one hundred cycles.
1193     MaxStoresPerMemset = 128;
1194     MaxStoresPerMemcpy = 128;
1195     MaxStoresPerMemmove = 128;
1196     MaxLoadsPerMemcmp = 128;
1197   } else {
1198     MaxLoadsPerMemcmp = 8;
1199     MaxLoadsPerMemcmpOptSize = 4;
1200   }
1201 }
1202 
1203 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1204 /// the desired ByVal argument alignment.
1205 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1206                              unsigned MaxMaxAlign) {
1207   if (MaxAlign == MaxMaxAlign)
1208     return;
1209   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1210     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1211       MaxAlign = 32;
1212     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1213       MaxAlign = 16;
1214   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1215     unsigned EltAlign = 0;
1216     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1217     if (EltAlign > MaxAlign)
1218       MaxAlign = EltAlign;
1219   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1220     for (auto *EltTy : STy->elements()) {
1221       unsigned EltAlign = 0;
1222       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1223       if (EltAlign > MaxAlign)
1224         MaxAlign = EltAlign;
1225       if (MaxAlign == MaxMaxAlign)
1226         break;
1227     }
1228   }
1229 }
1230 
1231 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1232 /// function arguments in the caller parameter area.
1233 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1234                                                   const DataLayout &DL) const {
1235   // Darwin passes everything on 4 byte boundary.
1236   if (Subtarget.isDarwin())
1237     return 4;
1238 
1239   // 16byte and wider vectors are passed on 16byte boundary.
1240   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1241   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1242   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1243     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1244   return Align;
1245 }
1246 
1247 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1248                                                           CallingConv:: ID CC,
1249                                                           EVT VT) const {
1250   if (Subtarget.hasSPE() && VT == MVT::f64)
1251     return 2;
1252   return PPCTargetLowering::getNumRegisters(Context, VT);
1253 }
1254 
1255 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1256                                                      CallingConv:: ID CC,
1257                                                      EVT VT) const {
1258   if (Subtarget.hasSPE() && VT == MVT::f64)
1259     return MVT::i32;
1260   return PPCTargetLowering::getRegisterType(Context, VT);
1261 }
1262 
1263 bool PPCTargetLowering::useSoftFloat() const {
1264   return Subtarget.useSoftFloat();
1265 }
1266 
1267 bool PPCTargetLowering::hasSPE() const {
1268   return Subtarget.hasSPE();
1269 }
1270 
1271 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1272   switch ((PPCISD::NodeType)Opcode) {
1273   case PPCISD::FIRST_NUMBER:    break;
1274   case PPCISD::FSEL:            return "PPCISD::FSEL";
1275   case PPCISD::FCFID:           return "PPCISD::FCFID";
1276   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1277   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1278   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1279   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1280   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1281   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1282   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1283   case PPCISD::FP_TO_UINT_IN_VSR:
1284                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1285   case PPCISD::FP_TO_SINT_IN_VSR:
1286                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1287   case PPCISD::FRE:             return "PPCISD::FRE";
1288   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1289   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1290   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1291   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1292   case PPCISD::VPERM:           return "PPCISD::VPERM";
1293   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1294   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1295   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1296   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1297   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1298   case PPCISD::CMPB:            return "PPCISD::CMPB";
1299   case PPCISD::Hi:              return "PPCISD::Hi";
1300   case PPCISD::Lo:              return "PPCISD::Lo";
1301   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1302   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1303   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1304   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1305   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1306   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1307   case PPCISD::SRL:             return "PPCISD::SRL";
1308   case PPCISD::SRA:             return "PPCISD::SRA";
1309   case PPCISD::SHL:             return "PPCISD::SHL";
1310   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1311   case PPCISD::CALL:            return "PPCISD::CALL";
1312   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1313   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1314   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1315   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1316   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1317   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1318   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1319   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1320   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1321   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1322   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1323   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1324   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1325   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1326   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1327   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1328   case PPCISD::VCMP:            return "PPCISD::VCMP";
1329   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1330   case PPCISD::LBRX:            return "PPCISD::LBRX";
1331   case PPCISD::STBRX:           return "PPCISD::STBRX";
1332   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1333   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1334   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1335   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1336   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1337   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1338   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1339   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1340   case PPCISD::ST_VSR_SCAL_INT:
1341                                 return "PPCISD::ST_VSR_SCAL_INT";
1342   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1343   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1344   case PPCISD::BDZ:             return "PPCISD::BDZ";
1345   case PPCISD::MFFS:            return "PPCISD::MFFS";
1346   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1347   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1348   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1349   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1350   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1351   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1352   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1353   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1354   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1355   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1356   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1357   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1358   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1359   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1360   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1361   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1362   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1363   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1364   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1365   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1366   case PPCISD::SC:              return "PPCISD::SC";
1367   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1368   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1369   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1370   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1371   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1372   case PPCISD::VABSD:           return "PPCISD::VABSD";
1373   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1374   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1375   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1376   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1377   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1378   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1379   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1380   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1381   }
1382   return nullptr;
1383 }
1384 
1385 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1386                                           EVT VT) const {
1387   if (!VT.isVector())
1388     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1389 
1390   if (Subtarget.hasQPX())
1391     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1392 
1393   return VT.changeVectorElementTypeToInteger();
1394 }
1395 
1396 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1397   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1398   return true;
1399 }
1400 
1401 //===----------------------------------------------------------------------===//
1402 // Node matching predicates, for use by the tblgen matching code.
1403 //===----------------------------------------------------------------------===//
1404 
1405 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1406 static bool isFloatingPointZero(SDValue Op) {
1407   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1408     return CFP->getValueAPF().isZero();
1409   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1410     // Maybe this has already been legalized into the constant pool?
1411     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1412       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1413         return CFP->getValueAPF().isZero();
1414   }
1415   return false;
1416 }
1417 
1418 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1419 /// true if Op is undef or if it matches the specified value.
1420 static bool isConstantOrUndef(int Op, int Val) {
1421   return Op < 0 || Op == Val;
1422 }
1423 
1424 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1425 /// VPKUHUM instruction.
1426 /// The ShuffleKind distinguishes between big-endian operations with
1427 /// two different inputs (0), either-endian operations with two identical
1428 /// inputs (1), and little-endian operations with two different inputs (2).
1429 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1430 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1431                                SelectionDAG &DAG) {
1432   bool IsLE = DAG.getDataLayout().isLittleEndian();
1433   if (ShuffleKind == 0) {
1434     if (IsLE)
1435       return false;
1436     for (unsigned i = 0; i != 16; ++i)
1437       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1438         return false;
1439   } else if (ShuffleKind == 2) {
1440     if (!IsLE)
1441       return false;
1442     for (unsigned i = 0; i != 16; ++i)
1443       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1444         return false;
1445   } else if (ShuffleKind == 1) {
1446     unsigned j = IsLE ? 0 : 1;
1447     for (unsigned i = 0; i != 8; ++i)
1448       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1449           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1450         return false;
1451   }
1452   return true;
1453 }
1454 
1455 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1456 /// VPKUWUM instruction.
1457 /// The ShuffleKind distinguishes between big-endian operations with
1458 /// two different inputs (0), either-endian operations with two identical
1459 /// inputs (1), and little-endian operations with two different inputs (2).
1460 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1461 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1462                                SelectionDAG &DAG) {
1463   bool IsLE = DAG.getDataLayout().isLittleEndian();
1464   if (ShuffleKind == 0) {
1465     if (IsLE)
1466       return false;
1467     for (unsigned i = 0; i != 16; i += 2)
1468       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1469           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1470         return false;
1471   } else if (ShuffleKind == 2) {
1472     if (!IsLE)
1473       return false;
1474     for (unsigned i = 0; i != 16; i += 2)
1475       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1476           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1477         return false;
1478   } else if (ShuffleKind == 1) {
1479     unsigned j = IsLE ? 0 : 2;
1480     for (unsigned i = 0; i != 8; i += 2)
1481       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1482           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1483           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1484           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1485         return false;
1486   }
1487   return true;
1488 }
1489 
1490 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1491 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1492 /// current subtarget.
1493 ///
1494 /// The ShuffleKind distinguishes between big-endian operations with
1495 /// two different inputs (0), either-endian operations with two identical
1496 /// inputs (1), and little-endian operations with two different inputs (2).
1497 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1498 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1499                                SelectionDAG &DAG) {
1500   const PPCSubtarget& Subtarget =
1501     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1502   if (!Subtarget.hasP8Vector())
1503     return false;
1504 
1505   bool IsLE = DAG.getDataLayout().isLittleEndian();
1506   if (ShuffleKind == 0) {
1507     if (IsLE)
1508       return false;
1509     for (unsigned i = 0; i != 16; i += 4)
1510       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1511           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1512           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1513           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1514         return false;
1515   } else if (ShuffleKind == 2) {
1516     if (!IsLE)
1517       return false;
1518     for (unsigned i = 0; i != 16; i += 4)
1519       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1520           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1521           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1522           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1523         return false;
1524   } else if (ShuffleKind == 1) {
1525     unsigned j = IsLE ? 0 : 4;
1526     for (unsigned i = 0; i != 8; i += 4)
1527       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1528           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1529           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1530           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1531           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1532           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1533           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1534           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1535         return false;
1536   }
1537   return true;
1538 }
1539 
1540 /// isVMerge - Common function, used to match vmrg* shuffles.
1541 ///
1542 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1543                      unsigned LHSStart, unsigned RHSStart) {
1544   if (N->getValueType(0) != MVT::v16i8)
1545     return false;
1546   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1547          "Unsupported merge size!");
1548 
1549   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1550     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1551       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1552                              LHSStart+j+i*UnitSize) ||
1553           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1554                              RHSStart+j+i*UnitSize))
1555         return false;
1556     }
1557   return true;
1558 }
1559 
1560 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1561 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1562 /// The ShuffleKind distinguishes between big-endian merges with two
1563 /// different inputs (0), either-endian merges with two identical inputs (1),
1564 /// and little-endian merges with two different inputs (2).  For the latter,
1565 /// the input operands are swapped (see PPCInstrAltivec.td).
1566 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1567                              unsigned ShuffleKind, SelectionDAG &DAG) {
1568   if (DAG.getDataLayout().isLittleEndian()) {
1569     if (ShuffleKind == 1) // unary
1570       return isVMerge(N, UnitSize, 0, 0);
1571     else if (ShuffleKind == 2) // swapped
1572       return isVMerge(N, UnitSize, 0, 16);
1573     else
1574       return false;
1575   } else {
1576     if (ShuffleKind == 1) // unary
1577       return isVMerge(N, UnitSize, 8, 8);
1578     else if (ShuffleKind == 0) // normal
1579       return isVMerge(N, UnitSize, 8, 24);
1580     else
1581       return false;
1582   }
1583 }
1584 
1585 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1586 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1587 /// The ShuffleKind distinguishes between big-endian merges with two
1588 /// different inputs (0), either-endian merges with two identical inputs (1),
1589 /// and little-endian merges with two different inputs (2).  For the latter,
1590 /// the input operands are swapped (see PPCInstrAltivec.td).
1591 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1592                              unsigned ShuffleKind, SelectionDAG &DAG) {
1593   if (DAG.getDataLayout().isLittleEndian()) {
1594     if (ShuffleKind == 1) // unary
1595       return isVMerge(N, UnitSize, 8, 8);
1596     else if (ShuffleKind == 2) // swapped
1597       return isVMerge(N, UnitSize, 8, 24);
1598     else
1599       return false;
1600   } else {
1601     if (ShuffleKind == 1) // unary
1602       return isVMerge(N, UnitSize, 0, 0);
1603     else if (ShuffleKind == 0) // normal
1604       return isVMerge(N, UnitSize, 0, 16);
1605     else
1606       return false;
1607   }
1608 }
1609 
1610 /**
1611  * Common function used to match vmrgew and vmrgow shuffles
1612  *
1613  * The indexOffset determines whether to look for even or odd words in
1614  * the shuffle mask. This is based on the of the endianness of the target
1615  * machine.
1616  *   - Little Endian:
1617  *     - Use offset of 0 to check for odd elements
1618  *     - Use offset of 4 to check for even elements
1619  *   - Big Endian:
1620  *     - Use offset of 0 to check for even elements
1621  *     - Use offset of 4 to check for odd elements
1622  * A detailed description of the vector element ordering for little endian and
1623  * big endian can be found at
1624  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1625  * Targeting your applications - what little endian and big endian IBM XL C/C++
1626  * compiler differences mean to you
1627  *
1628  * The mask to the shuffle vector instruction specifies the indices of the
1629  * elements from the two input vectors to place in the result. The elements are
1630  * numbered in array-access order, starting with the first vector. These vectors
1631  * are always of type v16i8, thus each vector will contain 16 elements of size
1632  * 8. More info on the shuffle vector can be found in the
1633  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1634  * Language Reference.
1635  *
1636  * The RHSStartValue indicates whether the same input vectors are used (unary)
1637  * or two different input vectors are used, based on the following:
1638  *   - If the instruction uses the same vector for both inputs, the range of the
1639  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1640  *     be 0.
1641  *   - If the instruction has two different vectors then the range of the
1642  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1643  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1644  *     to 31 specify elements in the second vector).
1645  *
1646  * \param[in] N The shuffle vector SD Node to analyze
1647  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1648  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1649  * vector to the shuffle_vector instruction
1650  * \return true iff this shuffle vector represents an even or odd word merge
1651  */
1652 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1653                      unsigned RHSStartValue) {
1654   if (N->getValueType(0) != MVT::v16i8)
1655     return false;
1656 
1657   for (unsigned i = 0; i < 2; ++i)
1658     for (unsigned j = 0; j < 4; ++j)
1659       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1660                              i*RHSStartValue+j+IndexOffset) ||
1661           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1662                              i*RHSStartValue+j+IndexOffset+8))
1663         return false;
1664   return true;
1665 }
1666 
1667 /**
1668  * Determine if the specified shuffle mask is suitable for the vmrgew or
1669  * vmrgow instructions.
1670  *
1671  * \param[in] N The shuffle vector SD Node to analyze
1672  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1673  * \param[in] ShuffleKind Identify the type of merge:
1674  *   - 0 = big-endian merge with two different inputs;
1675  *   - 1 = either-endian merge with two identical inputs;
1676  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1677  *     little-endian merges).
1678  * \param[in] DAG The current SelectionDAG
1679  * \return true iff this shuffle mask
1680  */
1681 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1682                               unsigned ShuffleKind, SelectionDAG &DAG) {
1683   if (DAG.getDataLayout().isLittleEndian()) {
1684     unsigned indexOffset = CheckEven ? 4 : 0;
1685     if (ShuffleKind == 1) // Unary
1686       return isVMerge(N, indexOffset, 0);
1687     else if (ShuffleKind == 2) // swapped
1688       return isVMerge(N, indexOffset, 16);
1689     else
1690       return false;
1691   }
1692   else {
1693     unsigned indexOffset = CheckEven ? 0 : 4;
1694     if (ShuffleKind == 1) // Unary
1695       return isVMerge(N, indexOffset, 0);
1696     else if (ShuffleKind == 0) // Normal
1697       return isVMerge(N, indexOffset, 16);
1698     else
1699       return false;
1700   }
1701   return false;
1702 }
1703 
1704 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1705 /// amount, otherwise return -1.
1706 /// The ShuffleKind distinguishes between big-endian operations with two
1707 /// different inputs (0), either-endian operations with two identical inputs
1708 /// (1), and little-endian operations with two different inputs (2).  For the
1709 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1710 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1711                              SelectionDAG &DAG) {
1712   if (N->getValueType(0) != MVT::v16i8)
1713     return -1;
1714 
1715   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1716 
1717   // Find the first non-undef value in the shuffle mask.
1718   unsigned i;
1719   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1720     /*search*/;
1721 
1722   if (i == 16) return -1;  // all undef.
1723 
1724   // Otherwise, check to see if the rest of the elements are consecutively
1725   // numbered from this value.
1726   unsigned ShiftAmt = SVOp->getMaskElt(i);
1727   if (ShiftAmt < i) return -1;
1728 
1729   ShiftAmt -= i;
1730   bool isLE = DAG.getDataLayout().isLittleEndian();
1731 
1732   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1733     // Check the rest of the elements to see if they are consecutive.
1734     for (++i; i != 16; ++i)
1735       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1736         return -1;
1737   } else if (ShuffleKind == 1) {
1738     // Check the rest of the elements to see if they are consecutive.
1739     for (++i; i != 16; ++i)
1740       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1741         return -1;
1742   } else
1743     return -1;
1744 
1745   if (isLE)
1746     ShiftAmt = 16 - ShiftAmt;
1747 
1748   return ShiftAmt;
1749 }
1750 
1751 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1752 /// specifies a splat of a single element that is suitable for input to
1753 /// VSPLTB/VSPLTH/VSPLTW.
1754 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1755   assert(N->getValueType(0) == MVT::v16i8 &&
1756          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1757 
1758   // The consecutive indices need to specify an element, not part of two
1759   // different elements.  So abandon ship early if this isn't the case.
1760   if (N->getMaskElt(0) % EltSize != 0)
1761     return false;
1762 
1763   // This is a splat operation if each element of the permute is the same, and
1764   // if the value doesn't reference the second vector.
1765   unsigned ElementBase = N->getMaskElt(0);
1766 
1767   // FIXME: Handle UNDEF elements too!
1768   if (ElementBase >= 16)
1769     return false;
1770 
1771   // Check that the indices are consecutive, in the case of a multi-byte element
1772   // splatted with a v16i8 mask.
1773   for (unsigned i = 1; i != EltSize; ++i)
1774     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1775       return false;
1776 
1777   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1778     if (N->getMaskElt(i) < 0) continue;
1779     for (unsigned j = 0; j != EltSize; ++j)
1780       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1781         return false;
1782   }
1783   return true;
1784 }
1785 
1786 /// Check that the mask is shuffling N byte elements. Within each N byte
1787 /// element of the mask, the indices could be either in increasing or
1788 /// decreasing order as long as they are consecutive.
1789 /// \param[in] N the shuffle vector SD Node to analyze
1790 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1791 /// Word/DoubleWord/QuadWord).
1792 /// \param[in] StepLen the delta indices number among the N byte element, if
1793 /// the mask is in increasing/decreasing order then it is 1/-1.
1794 /// \return true iff the mask is shuffling N byte elements.
1795 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1796                                    int StepLen) {
1797   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1798          "Unexpected element width.");
1799   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1800 
1801   unsigned NumOfElem = 16 / Width;
1802   unsigned MaskVal[16]; //  Width is never greater than 16
1803   for (unsigned i = 0; i < NumOfElem; ++i) {
1804     MaskVal[0] = N->getMaskElt(i * Width);
1805     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1806       return false;
1807     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1808       return false;
1809     }
1810 
1811     for (unsigned int j = 1; j < Width; ++j) {
1812       MaskVal[j] = N->getMaskElt(i * Width + j);
1813       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1814         return false;
1815       }
1816     }
1817   }
1818 
1819   return true;
1820 }
1821 
1822 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1823                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1824   if (!isNByteElemShuffleMask(N, 4, 1))
1825     return false;
1826 
1827   // Now we look at mask elements 0,4,8,12
1828   unsigned M0 = N->getMaskElt(0) / 4;
1829   unsigned M1 = N->getMaskElt(4) / 4;
1830   unsigned M2 = N->getMaskElt(8) / 4;
1831   unsigned M3 = N->getMaskElt(12) / 4;
1832   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1833   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1834 
1835   // Below, let H and L be arbitrary elements of the shuffle mask
1836   // where H is in the range [4,7] and L is in the range [0,3].
1837   // H, 1, 2, 3 or L, 5, 6, 7
1838   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1839       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1840     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1841     InsertAtByte = IsLE ? 12 : 0;
1842     Swap = M0 < 4;
1843     return true;
1844   }
1845   // 0, H, 2, 3 or 4, L, 6, 7
1846   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1847       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1848     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1849     InsertAtByte = IsLE ? 8 : 4;
1850     Swap = M1 < 4;
1851     return true;
1852   }
1853   // 0, 1, H, 3 or 4, 5, L, 7
1854   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1855       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1856     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1857     InsertAtByte = IsLE ? 4 : 8;
1858     Swap = M2 < 4;
1859     return true;
1860   }
1861   // 0, 1, 2, H or 4, 5, 6, L
1862   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1863       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1864     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1865     InsertAtByte = IsLE ? 0 : 12;
1866     Swap = M3 < 4;
1867     return true;
1868   }
1869 
1870   // If both vector operands for the shuffle are the same vector, the mask will
1871   // contain only elements from the first one and the second one will be undef.
1872   if (N->getOperand(1).isUndef()) {
1873     ShiftElts = 0;
1874     Swap = true;
1875     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1876     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1877       InsertAtByte = IsLE ? 12 : 0;
1878       return true;
1879     }
1880     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1881       InsertAtByte = IsLE ? 8 : 4;
1882       return true;
1883     }
1884     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1885       InsertAtByte = IsLE ? 4 : 8;
1886       return true;
1887     }
1888     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1889       InsertAtByte = IsLE ? 0 : 12;
1890       return true;
1891     }
1892   }
1893 
1894   return false;
1895 }
1896 
1897 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1898                                bool &Swap, bool IsLE) {
1899   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1900   // Ensure each byte index of the word is consecutive.
1901   if (!isNByteElemShuffleMask(N, 4, 1))
1902     return false;
1903 
1904   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1905   unsigned M0 = N->getMaskElt(0) / 4;
1906   unsigned M1 = N->getMaskElt(4) / 4;
1907   unsigned M2 = N->getMaskElt(8) / 4;
1908   unsigned M3 = N->getMaskElt(12) / 4;
1909 
1910   // If both vector operands for the shuffle are the same vector, the mask will
1911   // contain only elements from the first one and the second one will be undef.
1912   if (N->getOperand(1).isUndef()) {
1913     assert(M0 < 4 && "Indexing into an undef vector?");
1914     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1915       return false;
1916 
1917     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1918     Swap = false;
1919     return true;
1920   }
1921 
1922   // Ensure each word index of the ShuffleVector Mask is consecutive.
1923   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1924     return false;
1925 
1926   if (IsLE) {
1927     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1928       // Input vectors don't need to be swapped if the leading element
1929       // of the result is one of the 3 left elements of the second vector
1930       // (or if there is no shift to be done at all).
1931       Swap = false;
1932       ShiftElts = (8 - M0) % 8;
1933     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1934       // Input vectors need to be swapped if the leading element
1935       // of the result is one of the 3 left elements of the first vector
1936       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1937       Swap = true;
1938       ShiftElts = (4 - M0) % 4;
1939     }
1940 
1941     return true;
1942   } else {                                          // BE
1943     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1944       // Input vectors don't need to be swapped if the leading element
1945       // of the result is one of the 4 elements of the first vector.
1946       Swap = false;
1947       ShiftElts = M0;
1948     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1949       // Input vectors need to be swapped if the leading element
1950       // of the result is one of the 4 elements of the right vector.
1951       Swap = true;
1952       ShiftElts = M0 - 4;
1953     }
1954 
1955     return true;
1956   }
1957 }
1958 
1959 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1960   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1961 
1962   if (!isNByteElemShuffleMask(N, Width, -1))
1963     return false;
1964 
1965   for (int i = 0; i < 16; i += Width)
1966     if (N->getMaskElt(i) != i + Width - 1)
1967       return false;
1968 
1969   return true;
1970 }
1971 
1972 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1973   return isXXBRShuffleMaskHelper(N, 2);
1974 }
1975 
1976 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1977   return isXXBRShuffleMaskHelper(N, 4);
1978 }
1979 
1980 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1981   return isXXBRShuffleMaskHelper(N, 8);
1982 }
1983 
1984 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1985   return isXXBRShuffleMaskHelper(N, 16);
1986 }
1987 
1988 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1989 /// if the inputs to the instruction should be swapped and set \p DM to the
1990 /// value for the immediate.
1991 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1992 /// AND element 0 of the result comes from the first input (LE) or second input
1993 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1994 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1995 /// mask.
1996 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1997                                bool &Swap, bool IsLE) {
1998   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1999 
2000   // Ensure each byte index of the double word is consecutive.
2001   if (!isNByteElemShuffleMask(N, 8, 1))
2002     return false;
2003 
2004   unsigned M0 = N->getMaskElt(0) / 8;
2005   unsigned M1 = N->getMaskElt(8) / 8;
2006   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2007 
2008   // If both vector operands for the shuffle are the same vector, the mask will
2009   // contain only elements from the first one and the second one will be undef.
2010   if (N->getOperand(1).isUndef()) {
2011     if ((M0 | M1) < 2) {
2012       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2013       Swap = false;
2014       return true;
2015     } else
2016       return false;
2017   }
2018 
2019   if (IsLE) {
2020     if (M0 > 1 && M1 < 2) {
2021       Swap = false;
2022     } else if (M0 < 2 && M1 > 1) {
2023       M0 = (M0 + 2) % 4;
2024       M1 = (M1 + 2) % 4;
2025       Swap = true;
2026     } else
2027       return false;
2028 
2029     // Note: if control flow comes here that means Swap is already set above
2030     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2031     return true;
2032   } else { // BE
2033     if (M0 < 2 && M1 > 1) {
2034       Swap = false;
2035     } else if (M0 > 1 && M1 < 2) {
2036       M0 = (M0 + 2) % 4;
2037       M1 = (M1 + 2) % 4;
2038       Swap = true;
2039     } else
2040       return false;
2041 
2042     // Note: if control flow comes here that means Swap is already set above
2043     DM = (M0 << 1) + (M1 & 1);
2044     return true;
2045   }
2046 }
2047 
2048 
2049 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2050 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2051 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2052                                 SelectionDAG &DAG) {
2053   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2054   assert(isSplatShuffleMask(SVOp, EltSize));
2055   if (DAG.getDataLayout().isLittleEndian())
2056     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2057   else
2058     return SVOp->getMaskElt(0) / EltSize;
2059 }
2060 
2061 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2062 /// by using a vspltis[bhw] instruction of the specified element size, return
2063 /// the constant being splatted.  The ByteSize field indicates the number of
2064 /// bytes of each element [124] -> [bhw].
2065 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2066   SDValue OpVal(nullptr, 0);
2067 
2068   // If ByteSize of the splat is bigger than the element size of the
2069   // build_vector, then we have a case where we are checking for a splat where
2070   // multiple elements of the buildvector are folded together into a single
2071   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2072   unsigned EltSize = 16/N->getNumOperands();
2073   if (EltSize < ByteSize) {
2074     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2075     SDValue UniquedVals[4];
2076     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2077 
2078     // See if all of the elements in the buildvector agree across.
2079     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2080       if (N->getOperand(i).isUndef()) continue;
2081       // If the element isn't a constant, bail fully out.
2082       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2083 
2084       if (!UniquedVals[i&(Multiple-1)].getNode())
2085         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2086       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2087         return SDValue();  // no match.
2088     }
2089 
2090     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2091     // either constant or undef values that are identical for each chunk.  See
2092     // if these chunks can form into a larger vspltis*.
2093 
2094     // Check to see if all of the leading entries are either 0 or -1.  If
2095     // neither, then this won't fit into the immediate field.
2096     bool LeadingZero = true;
2097     bool LeadingOnes = true;
2098     for (unsigned i = 0; i != Multiple-1; ++i) {
2099       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2100 
2101       LeadingZero &= isNullConstant(UniquedVals[i]);
2102       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2103     }
2104     // Finally, check the least significant entry.
2105     if (LeadingZero) {
2106       if (!UniquedVals[Multiple-1].getNode())
2107         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2108       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2109       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2110         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2111     }
2112     if (LeadingOnes) {
2113       if (!UniquedVals[Multiple-1].getNode())
2114         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2115       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2116       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2117         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2118     }
2119 
2120     return SDValue();
2121   }
2122 
2123   // Check to see if this buildvec has a single non-undef value in its elements.
2124   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2125     if (N->getOperand(i).isUndef()) continue;
2126     if (!OpVal.getNode())
2127       OpVal = N->getOperand(i);
2128     else if (OpVal != N->getOperand(i))
2129       return SDValue();
2130   }
2131 
2132   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2133 
2134   unsigned ValSizeInBytes = EltSize;
2135   uint64_t Value = 0;
2136   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2137     Value = CN->getZExtValue();
2138   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2139     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2140     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2141   }
2142 
2143   // If the splat value is larger than the element value, then we can never do
2144   // this splat.  The only case that we could fit the replicated bits into our
2145   // immediate field for would be zero, and we prefer to use vxor for it.
2146   if (ValSizeInBytes < ByteSize) return SDValue();
2147 
2148   // If the element value is larger than the splat value, check if it consists
2149   // of a repeated bit pattern of size ByteSize.
2150   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2151     return SDValue();
2152 
2153   // Properly sign extend the value.
2154   int MaskVal = SignExtend32(Value, ByteSize * 8);
2155 
2156   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2157   if (MaskVal == 0) return SDValue();
2158 
2159   // Finally, if this value fits in a 5 bit sext field, return it
2160   if (SignExtend32<5>(MaskVal) == MaskVal)
2161     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2162   return SDValue();
2163 }
2164 
2165 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2166 /// amount, otherwise return -1.
2167 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2168   EVT VT = N->getValueType(0);
2169   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2170     return -1;
2171 
2172   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2173 
2174   // Find the first non-undef value in the shuffle mask.
2175   unsigned i;
2176   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2177     /*search*/;
2178 
2179   if (i == 4) return -1;  // all undef.
2180 
2181   // Otherwise, check to see if the rest of the elements are consecutively
2182   // numbered from this value.
2183   unsigned ShiftAmt = SVOp->getMaskElt(i);
2184   if (ShiftAmt < i) return -1;
2185   ShiftAmt -= i;
2186 
2187   // Check the rest of the elements to see if they are consecutive.
2188   for (++i; i != 4; ++i)
2189     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2190       return -1;
2191 
2192   return ShiftAmt;
2193 }
2194 
2195 //===----------------------------------------------------------------------===//
2196 //  Addressing Mode Selection
2197 //===----------------------------------------------------------------------===//
2198 
2199 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2200 /// or 64-bit immediate, and if the value can be accurately represented as a
2201 /// sign extension from a 16-bit value.  If so, this returns true and the
2202 /// immediate.
2203 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2204   if (!isa<ConstantSDNode>(N))
2205     return false;
2206 
2207   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2208   if (N->getValueType(0) == MVT::i32)
2209     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2210   else
2211     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2212 }
2213 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2214   return isIntS16Immediate(Op.getNode(), Imm);
2215 }
2216 
2217 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2218 /// can be represented as an indexed [r+r] operation.  Returns false if it
2219 /// can be more efficiently represented with [r+imm].
2220 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2221                                             SDValue &Index,
2222                                             SelectionDAG &DAG) const {
2223   int16_t imm = 0;
2224   if (N.getOpcode() == ISD::ADD) {
2225     if (isIntS16Immediate(N.getOperand(1), imm))
2226       return false;    // r+i
2227     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2228       return false;    // r+i
2229 
2230     Base = N.getOperand(0);
2231     Index = N.getOperand(1);
2232     return true;
2233   } else if (N.getOpcode() == ISD::OR) {
2234     if (isIntS16Immediate(N.getOperand(1), imm))
2235       return false;    // r+i can fold it if we can.
2236 
2237     // If this is an or of disjoint bitfields, we can codegen this as an add
2238     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2239     // disjoint.
2240     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2241 
2242     if (LHSKnown.Zero.getBoolValue()) {
2243       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2244       // If all of the bits are known zero on the LHS or RHS, the add won't
2245       // carry.
2246       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2247         Base = N.getOperand(0);
2248         Index = N.getOperand(1);
2249         return true;
2250       }
2251     }
2252   }
2253 
2254   return false;
2255 }
2256 
2257 // If we happen to be doing an i64 load or store into a stack slot that has
2258 // less than a 4-byte alignment, then the frame-index elimination may need to
2259 // use an indexed load or store instruction (because the offset may not be a
2260 // multiple of 4). The extra register needed to hold the offset comes from the
2261 // register scavenger, and it is possible that the scavenger will need to use
2262 // an emergency spill slot. As a result, we need to make sure that a spill slot
2263 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2264 // stack slot.
2265 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2266   // FIXME: This does not handle the LWA case.
2267   if (VT != MVT::i64)
2268     return;
2269 
2270   // NOTE: We'll exclude negative FIs here, which come from argument
2271   // lowering, because there are no known test cases triggering this problem
2272   // using packed structures (or similar). We can remove this exclusion if
2273   // we find such a test case. The reason why this is so test-case driven is
2274   // because this entire 'fixup' is only to prevent crashes (from the
2275   // register scavenger) on not-really-valid inputs. For example, if we have:
2276   //   %a = alloca i1
2277   //   %b = bitcast i1* %a to i64*
2278   //   store i64* a, i64 b
2279   // then the store should really be marked as 'align 1', but is not. If it
2280   // were marked as 'align 1' then the indexed form would have been
2281   // instruction-selected initially, and the problem this 'fixup' is preventing
2282   // won't happen regardless.
2283   if (FrameIdx < 0)
2284     return;
2285 
2286   MachineFunction &MF = DAG.getMachineFunction();
2287   MachineFrameInfo &MFI = MF.getFrameInfo();
2288 
2289   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2290   if (Align >= 4)
2291     return;
2292 
2293   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2294   FuncInfo->setHasNonRISpills();
2295 }
2296 
2297 /// Returns true if the address N can be represented by a base register plus
2298 /// a signed 16-bit displacement [r+imm], and if it is not better
2299 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2300 /// displacements that are multiples of that value.
2301 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2302                                             SDValue &Base,
2303                                             SelectionDAG &DAG,
2304                                             unsigned Alignment) const {
2305   // FIXME dl should come from parent load or store, not from address
2306   SDLoc dl(N);
2307   // If this can be more profitably realized as r+r, fail.
2308   if (SelectAddressRegReg(N, Disp, Base, DAG))
2309     return false;
2310 
2311   if (N.getOpcode() == ISD::ADD) {
2312     int16_t imm = 0;
2313     if (isIntS16Immediate(N.getOperand(1), imm) &&
2314         (!Alignment || (imm % Alignment) == 0)) {
2315       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2316       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2317         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2318         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2319       } else {
2320         Base = N.getOperand(0);
2321       }
2322       return true; // [r+i]
2323     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2324       // Match LOAD (ADD (X, Lo(G))).
2325       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2326              && "Cannot handle constant offsets yet!");
2327       Disp = N.getOperand(1).getOperand(0);  // The global address.
2328       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2329              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2330              Disp.getOpcode() == ISD::TargetConstantPool ||
2331              Disp.getOpcode() == ISD::TargetJumpTable);
2332       Base = N.getOperand(0);
2333       return true;  // [&g+r]
2334     }
2335   } else if (N.getOpcode() == ISD::OR) {
2336     int16_t imm = 0;
2337     if (isIntS16Immediate(N.getOperand(1), imm) &&
2338         (!Alignment || (imm % Alignment) == 0)) {
2339       // If this is an or of disjoint bitfields, we can codegen this as an add
2340       // (for better address arithmetic) if the LHS and RHS of the OR are
2341       // provably disjoint.
2342       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2343 
2344       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2345         // If all of the bits are known zero on the LHS or RHS, the add won't
2346         // carry.
2347         if (FrameIndexSDNode *FI =
2348               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2349           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2350           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2351         } else {
2352           Base = N.getOperand(0);
2353         }
2354         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2355         return true;
2356       }
2357     }
2358   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2359     // Loading from a constant address.
2360 
2361     // If this address fits entirely in a 16-bit sext immediate field, codegen
2362     // this as "d, 0"
2363     int16_t Imm;
2364     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2365       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2366       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2367                              CN->getValueType(0));
2368       return true;
2369     }
2370 
2371     // Handle 32-bit sext immediates with LIS + addr mode.
2372     if ((CN->getValueType(0) == MVT::i32 ||
2373          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2374         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2375       int Addr = (int)CN->getZExtValue();
2376 
2377       // Otherwise, break this down into an LIS + disp.
2378       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2379 
2380       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2381                                    MVT::i32);
2382       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2383       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2384       return true;
2385     }
2386   }
2387 
2388   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2389   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2390     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2391     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2392   } else
2393     Base = N;
2394   return true;      // [r+0]
2395 }
2396 
2397 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2398 /// represented as an indexed [r+r] operation.
2399 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2400                                                 SDValue &Index,
2401                                                 SelectionDAG &DAG) const {
2402   // Check to see if we can easily represent this as an [r+r] address.  This
2403   // will fail if it thinks that the address is more profitably represented as
2404   // reg+imm, e.g. where imm = 0.
2405   if (SelectAddressRegReg(N, Base, Index, DAG))
2406     return true;
2407 
2408   // If the address is the result of an add, we will utilize the fact that the
2409   // address calculation includes an implicit add.  However, we can reduce
2410   // register pressure if we do not materialize a constant just for use as the
2411   // index register.  We only get rid of the add if it is not an add of a
2412   // value and a 16-bit signed constant and both have a single use.
2413   int16_t imm = 0;
2414   if (N.getOpcode() == ISD::ADD &&
2415       (!isIntS16Immediate(N.getOperand(1), imm) ||
2416        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2417     Base = N.getOperand(0);
2418     Index = N.getOperand(1);
2419     return true;
2420   }
2421 
2422   // Otherwise, do it the hard way, using R0 as the base register.
2423   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2424                          N.getValueType());
2425   Index = N;
2426   return true;
2427 }
2428 
2429 /// Returns true if we should use a direct load into vector instruction
2430 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2431 static bool usePartialVectorLoads(SDNode *N) {
2432   if (!N->hasOneUse())
2433     return false;
2434 
2435   // If there are any other uses other than scalar to vector, then we should
2436   // keep it as a scalar load -> direct move pattern to prevent multiple
2437   // loads.  Currently, only check for i64 since we have lxsd/lfd to do this
2438   // efficiently, but no update equivalent.
2439   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2440     EVT MemVT = LD->getMemoryVT();
2441     if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
2442       SDNode *User = *(LD->use_begin());
2443       if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
2444         return true;
2445     }
2446   }
2447 
2448   return false;
2449 }
2450 
2451 /// getPreIndexedAddressParts - returns true by value, base pointer and
2452 /// offset pointer and addressing mode by reference if the node's address
2453 /// can be legally represented as pre-indexed load / store address.
2454 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2455                                                   SDValue &Offset,
2456                                                   ISD::MemIndexedMode &AM,
2457                                                   SelectionDAG &DAG) const {
2458   if (DisablePPCPreinc) return false;
2459 
2460   bool isLoad = true;
2461   SDValue Ptr;
2462   EVT VT;
2463   unsigned Alignment;
2464   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2465     Ptr = LD->getBasePtr();
2466     VT = LD->getMemoryVT();
2467     Alignment = LD->getAlignment();
2468   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2469     Ptr = ST->getBasePtr();
2470     VT  = ST->getMemoryVT();
2471     Alignment = ST->getAlignment();
2472     isLoad = false;
2473   } else
2474     return false;
2475 
2476   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2477   // instructions because we can fold these into a more efficient instruction
2478   // instead, (such as LXSD).
2479   if (isLoad && usePartialVectorLoads(N)) {
2480     return false;
2481   }
2482 
2483   // PowerPC doesn't have preinc load/store instructions for vectors (except
2484   // for QPX, which does have preinc r+r forms).
2485   if (VT.isVector()) {
2486     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2487       return false;
2488     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2489       AM = ISD::PRE_INC;
2490       return true;
2491     }
2492   }
2493 
2494   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2495     // Common code will reject creating a pre-inc form if the base pointer
2496     // is a frame index, or if N is a store and the base pointer is either
2497     // the same as or a predecessor of the value being stored.  Check for
2498     // those situations here, and try with swapped Base/Offset instead.
2499     bool Swap = false;
2500 
2501     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2502       Swap = true;
2503     else if (!isLoad) {
2504       SDValue Val = cast<StoreSDNode>(N)->getValue();
2505       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2506         Swap = true;
2507     }
2508 
2509     if (Swap)
2510       std::swap(Base, Offset);
2511 
2512     AM = ISD::PRE_INC;
2513     return true;
2514   }
2515 
2516   // LDU/STU can only handle immediates that are a multiple of 4.
2517   if (VT != MVT::i64) {
2518     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2519       return false;
2520   } else {
2521     // LDU/STU need an address with at least 4-byte alignment.
2522     if (Alignment < 4)
2523       return false;
2524 
2525     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2526       return false;
2527   }
2528 
2529   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2530     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2531     // sext i32 to i64 when addr mode is r+i.
2532     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2533         LD->getExtensionType() == ISD::SEXTLOAD &&
2534         isa<ConstantSDNode>(Offset))
2535       return false;
2536   }
2537 
2538   AM = ISD::PRE_INC;
2539   return true;
2540 }
2541 
2542 //===----------------------------------------------------------------------===//
2543 //  LowerOperation implementation
2544 //===----------------------------------------------------------------------===//
2545 
2546 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2547 /// and LoOpFlags to the target MO flags.
2548 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2549                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2550                                const GlobalValue *GV = nullptr) {
2551   HiOpFlags = PPCII::MO_HA;
2552   LoOpFlags = PPCII::MO_LO;
2553 
2554   // Don't use the pic base if not in PIC relocation model.
2555   if (IsPIC) {
2556     HiOpFlags |= PPCII::MO_PIC_FLAG;
2557     LoOpFlags |= PPCII::MO_PIC_FLAG;
2558   }
2559 
2560   // If this is a reference to a global value that requires a non-lazy-ptr, make
2561   // sure that instruction lowering adds it.
2562   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2563     HiOpFlags |= PPCII::MO_NLP_FLAG;
2564     LoOpFlags |= PPCII::MO_NLP_FLAG;
2565 
2566     if (GV->hasHiddenVisibility()) {
2567       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2568       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2569     }
2570   }
2571 }
2572 
2573 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2574                              SelectionDAG &DAG) {
2575   SDLoc DL(HiPart);
2576   EVT PtrVT = HiPart.getValueType();
2577   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2578 
2579   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2580   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2581 
2582   // With PIC, the first instruction is actually "GR+hi(&G)".
2583   if (isPIC)
2584     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2585                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2586 
2587   // Generate non-pic code that has direct accesses to the constant pool.
2588   // The address of the global is just (hi(&g)+lo(&g)).
2589   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2590 }
2591 
2592 static void setUsesTOCBasePtr(MachineFunction &MF) {
2593   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2594   FuncInfo->setUsesTOCBasePtr();
2595 }
2596 
2597 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2598   setUsesTOCBasePtr(DAG.getMachineFunction());
2599 }
2600 
2601 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2602                            SDValue GA) {
2603   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2604   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2605                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2606 
2607   SDValue Ops[] = { GA, Reg };
2608   return DAG.getMemIntrinsicNode(
2609       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2610       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2611       MachineMemOperand::MOLoad);
2612 }
2613 
2614 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2615                                              SelectionDAG &DAG) const {
2616   EVT PtrVT = Op.getValueType();
2617   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2618   const Constant *C = CP->getConstVal();
2619 
2620   // 64-bit SVR4 ABI code is always position-independent.
2621   // The actual address of the GlobalValue is stored in the TOC.
2622   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2623     setUsesTOCBasePtr(DAG);
2624     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2625     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2626   }
2627 
2628   unsigned MOHiFlag, MOLoFlag;
2629   bool IsPIC = isPositionIndependent();
2630   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2631 
2632   if (IsPIC && Subtarget.isSVR4ABI()) {
2633     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2634                                            PPCII::MO_PIC_FLAG);
2635     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2636   }
2637 
2638   SDValue CPIHi =
2639     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2640   SDValue CPILo =
2641     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2642   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2643 }
2644 
2645 // For 64-bit PowerPC, prefer the more compact relative encodings.
2646 // This trades 32 bits per jump table entry for one or two instructions
2647 // on the jump site.
2648 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2649   if (isJumpTableRelative())
2650     return MachineJumpTableInfo::EK_LabelDifference32;
2651 
2652   return TargetLowering::getJumpTableEncoding();
2653 }
2654 
2655 bool PPCTargetLowering::isJumpTableRelative() const {
2656   if (Subtarget.isPPC64())
2657     return true;
2658   return TargetLowering::isJumpTableRelative();
2659 }
2660 
2661 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2662                                                     SelectionDAG &DAG) const {
2663   if (!Subtarget.isPPC64())
2664     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2665 
2666   switch (getTargetMachine().getCodeModel()) {
2667   case CodeModel::Small:
2668   case CodeModel::Medium:
2669     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2670   default:
2671     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2672                        getPointerTy(DAG.getDataLayout()));
2673   }
2674 }
2675 
2676 const MCExpr *
2677 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2678                                                 unsigned JTI,
2679                                                 MCContext &Ctx) const {
2680   if (!Subtarget.isPPC64())
2681     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2682 
2683   switch (getTargetMachine().getCodeModel()) {
2684   case CodeModel::Small:
2685   case CodeModel::Medium:
2686     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2687   default:
2688     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2689   }
2690 }
2691 
2692 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2693   EVT PtrVT = Op.getValueType();
2694   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2695 
2696   // 64-bit SVR4 ABI code is always position-independent.
2697   // The actual address of the GlobalValue is stored in the TOC.
2698   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2699     setUsesTOCBasePtr(DAG);
2700     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2701     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2702   }
2703 
2704   unsigned MOHiFlag, MOLoFlag;
2705   bool IsPIC = isPositionIndependent();
2706   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2707 
2708   if (IsPIC && Subtarget.isSVR4ABI()) {
2709     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2710                                         PPCII::MO_PIC_FLAG);
2711     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2712   }
2713 
2714   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2715   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2716   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2717 }
2718 
2719 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2720                                              SelectionDAG &DAG) const {
2721   EVT PtrVT = Op.getValueType();
2722   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2723   const BlockAddress *BA = BASDN->getBlockAddress();
2724 
2725   // 64-bit SVR4 ABI code is always position-independent.
2726   // The actual BlockAddress is stored in the TOC.
2727   if (Subtarget.isSVR4ABI() &&
2728       (Subtarget.isPPC64() || isPositionIndependent())) {
2729     if (Subtarget.isPPC64())
2730       setUsesTOCBasePtr(DAG);
2731     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2732     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2733   }
2734 
2735   unsigned MOHiFlag, MOLoFlag;
2736   bool IsPIC = isPositionIndependent();
2737   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2738   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2739   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2740   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2741 }
2742 
2743 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2744                                               SelectionDAG &DAG) const {
2745   // FIXME: TLS addresses currently use medium model code sequences,
2746   // which is the most useful form.  Eventually support for small and
2747   // large models could be added if users need it, at the cost of
2748   // additional complexity.
2749   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2750   if (DAG.getTarget().useEmulatedTLS())
2751     return LowerToTLSEmulatedModel(GA, DAG);
2752 
2753   SDLoc dl(GA);
2754   const GlobalValue *GV = GA->getGlobal();
2755   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2756   bool is64bit = Subtarget.isPPC64();
2757   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2758   PICLevel::Level picLevel = M->getPICLevel();
2759 
2760   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2761 
2762   if (Model == TLSModel::LocalExec) {
2763     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2764                                                PPCII::MO_TPREL_HA);
2765     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2766                                                PPCII::MO_TPREL_LO);
2767     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2768                              : DAG.getRegister(PPC::R2, MVT::i32);
2769 
2770     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2771     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2772   }
2773 
2774   if (Model == TLSModel::InitialExec) {
2775     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2776     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2777                                                 PPCII::MO_TLS);
2778     SDValue GOTPtr;
2779     if (is64bit) {
2780       setUsesTOCBasePtr(DAG);
2781       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2782       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2783                            PtrVT, GOTReg, TGA);
2784     } else
2785       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2786     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2787                                    PtrVT, TGA, GOTPtr);
2788     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2789   }
2790 
2791   if (Model == TLSModel::GeneralDynamic) {
2792     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2793     SDValue GOTPtr;
2794     if (is64bit) {
2795       setUsesTOCBasePtr(DAG);
2796       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2797       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2798                                    GOTReg, TGA);
2799     } else {
2800       if (picLevel == PICLevel::SmallPIC)
2801         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2802       else
2803         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2804     }
2805     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2806                        GOTPtr, TGA, TGA);
2807   }
2808 
2809   if (Model == TLSModel::LocalDynamic) {
2810     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2811     SDValue GOTPtr;
2812     if (is64bit) {
2813       setUsesTOCBasePtr(DAG);
2814       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2815       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2816                            GOTReg, TGA);
2817     } else {
2818       if (picLevel == PICLevel::SmallPIC)
2819         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2820       else
2821         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2822     }
2823     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2824                                   PtrVT, GOTPtr, TGA, TGA);
2825     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2826                                       PtrVT, TLSAddr, TGA);
2827     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2828   }
2829 
2830   llvm_unreachable("Unknown TLS model!");
2831 }
2832 
2833 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2834                                               SelectionDAG &DAG) const {
2835   EVT PtrVT = Op.getValueType();
2836   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2837   SDLoc DL(GSDN);
2838   const GlobalValue *GV = GSDN->getGlobal();
2839 
2840   // 64-bit SVR4 ABI code is always position-independent.
2841   // The actual address of the GlobalValue is stored in the TOC.
2842   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2843     setUsesTOCBasePtr(DAG);
2844     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2845     return getTOCEntry(DAG, DL, true, GA);
2846   }
2847 
2848   unsigned MOHiFlag, MOLoFlag;
2849   bool IsPIC = isPositionIndependent();
2850   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2851 
2852   if (IsPIC && Subtarget.isSVR4ABI()) {
2853     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2854                                             GSDN->getOffset(),
2855                                             PPCII::MO_PIC_FLAG);
2856     return getTOCEntry(DAG, DL, false, GA);
2857   }
2858 
2859   SDValue GAHi =
2860     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2861   SDValue GALo =
2862     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2863 
2864   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2865 
2866   // If the global reference is actually to a non-lazy-pointer, we have to do an
2867   // extra load to get the address of the global.
2868   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2869     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2870   return Ptr;
2871 }
2872 
2873 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2874   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2875   SDLoc dl(Op);
2876 
2877   if (Op.getValueType() == MVT::v2i64) {
2878     // When the operands themselves are v2i64 values, we need to do something
2879     // special because VSX has no underlying comparison operations for these.
2880     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2881       // Equality can be handled by casting to the legal type for Altivec
2882       // comparisons, everything else needs to be expanded.
2883       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2884         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2885                  DAG.getSetCC(dl, MVT::v4i32,
2886                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2887                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2888                    CC));
2889       }
2890 
2891       return SDValue();
2892     }
2893 
2894     // We handle most of these in the usual way.
2895     return Op;
2896   }
2897 
2898   // If we're comparing for equality to zero, expose the fact that this is
2899   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2900   // fold the new nodes.
2901   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2902     return V;
2903 
2904   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2905     // Leave comparisons against 0 and -1 alone for now, since they're usually
2906     // optimized.  FIXME: revisit this when we can custom lower all setcc
2907     // optimizations.
2908     if (C->isAllOnesValue() || C->isNullValue())
2909       return SDValue();
2910   }
2911 
2912   // If we have an integer seteq/setne, turn it into a compare against zero
2913   // by xor'ing the rhs with the lhs, which is faster than setting a
2914   // condition register, reading it back out, and masking the correct bit.  The
2915   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2916   // the result to other bit-twiddling opportunities.
2917   EVT LHSVT = Op.getOperand(0).getValueType();
2918   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2919     EVT VT = Op.getValueType();
2920     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2921                                 Op.getOperand(1));
2922     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2923   }
2924   return SDValue();
2925 }
2926 
2927 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2928   SDNode *Node = Op.getNode();
2929   EVT VT = Node->getValueType(0);
2930   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2931   SDValue InChain = Node->getOperand(0);
2932   SDValue VAListPtr = Node->getOperand(1);
2933   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2934   SDLoc dl(Node);
2935 
2936   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2937 
2938   // gpr_index
2939   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2940                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2941   InChain = GprIndex.getValue(1);
2942 
2943   if (VT == MVT::i64) {
2944     // Check if GprIndex is even
2945     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2946                                  DAG.getConstant(1, dl, MVT::i32));
2947     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2948                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2949     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2950                                           DAG.getConstant(1, dl, MVT::i32));
2951     // Align GprIndex to be even if it isn't
2952     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2953                            GprIndex);
2954   }
2955 
2956   // fpr index is 1 byte after gpr
2957   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2958                                DAG.getConstant(1, dl, MVT::i32));
2959 
2960   // fpr
2961   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2962                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2963   InChain = FprIndex.getValue(1);
2964 
2965   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2966                                        DAG.getConstant(8, dl, MVT::i32));
2967 
2968   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2969                                         DAG.getConstant(4, dl, MVT::i32));
2970 
2971   // areas
2972   SDValue OverflowArea =
2973       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2974   InChain = OverflowArea.getValue(1);
2975 
2976   SDValue RegSaveArea =
2977       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2978   InChain = RegSaveArea.getValue(1);
2979 
2980   // select overflow_area if index > 8
2981   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2982                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2983 
2984   // adjustment constant gpr_index * 4/8
2985   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2986                                     VT.isInteger() ? GprIndex : FprIndex,
2987                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2988                                                     MVT::i32));
2989 
2990   // OurReg = RegSaveArea + RegConstant
2991   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2992                                RegConstant);
2993 
2994   // Floating types are 32 bytes into RegSaveArea
2995   if (VT.isFloatingPoint())
2996     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2997                          DAG.getConstant(32, dl, MVT::i32));
2998 
2999   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3000   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3001                                    VT.isInteger() ? GprIndex : FprIndex,
3002                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3003                                                    MVT::i32));
3004 
3005   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3006                               VT.isInteger() ? VAListPtr : FprPtr,
3007                               MachinePointerInfo(SV), MVT::i8);
3008 
3009   // determine if we should load from reg_save_area or overflow_area
3010   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3011 
3012   // increase overflow_area by 4/8 if gpr/fpr > 8
3013   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3014                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3015                                           dl, MVT::i32));
3016 
3017   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3018                              OverflowAreaPlusN);
3019 
3020   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3021                               MachinePointerInfo(), MVT::i32);
3022 
3023   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3024 }
3025 
3026 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3027   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3028 
3029   // We have to copy the entire va_list struct:
3030   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3031   return DAG.getMemcpy(Op.getOperand(0), Op,
3032                        Op.getOperand(1), Op.getOperand(2),
3033                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3034                        false, MachinePointerInfo(), MachinePointerInfo());
3035 }
3036 
3037 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3038                                                   SelectionDAG &DAG) const {
3039   return Op.getOperand(0);
3040 }
3041 
3042 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3043                                                 SelectionDAG &DAG) const {
3044   SDValue Chain = Op.getOperand(0);
3045   SDValue Trmp = Op.getOperand(1); // trampoline
3046   SDValue FPtr = Op.getOperand(2); // nested function
3047   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3048   SDLoc dl(Op);
3049 
3050   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3051   bool isPPC64 = (PtrVT == MVT::i64);
3052   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3053 
3054   TargetLowering::ArgListTy Args;
3055   TargetLowering::ArgListEntry Entry;
3056 
3057   Entry.Ty = IntPtrTy;
3058   Entry.Node = Trmp; Args.push_back(Entry);
3059 
3060   // TrampSize == (isPPC64 ? 48 : 40);
3061   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3062                                isPPC64 ? MVT::i64 : MVT::i32);
3063   Args.push_back(Entry);
3064 
3065   Entry.Node = FPtr; Args.push_back(Entry);
3066   Entry.Node = Nest; Args.push_back(Entry);
3067 
3068   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3069   TargetLowering::CallLoweringInfo CLI(DAG);
3070   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3071       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3072       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3073 
3074   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3075   return CallResult.second;
3076 }
3077 
3078 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3079   MachineFunction &MF = DAG.getMachineFunction();
3080   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3081   EVT PtrVT = getPointerTy(MF.getDataLayout());
3082 
3083   SDLoc dl(Op);
3084 
3085   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3086     // vastart just stores the address of the VarArgsFrameIndex slot into the
3087     // memory location argument.
3088     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3089     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3090     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3091                         MachinePointerInfo(SV));
3092   }
3093 
3094   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3095   // We suppose the given va_list is already allocated.
3096   //
3097   // typedef struct {
3098   //  char gpr;     /* index into the array of 8 GPRs
3099   //                 * stored in the register save area
3100   //                 * gpr=0 corresponds to r3,
3101   //                 * gpr=1 to r4, etc.
3102   //                 */
3103   //  char fpr;     /* index into the array of 8 FPRs
3104   //                 * stored in the register save area
3105   //                 * fpr=0 corresponds to f1,
3106   //                 * fpr=1 to f2, etc.
3107   //                 */
3108   //  char *overflow_arg_area;
3109   //                /* location on stack that holds
3110   //                 * the next overflow argument
3111   //                 */
3112   //  char *reg_save_area;
3113   //               /* where r3:r10 and f1:f8 (if saved)
3114   //                * are stored
3115   //                */
3116   // } va_list[1];
3117 
3118   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3119   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3120   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3121                                             PtrVT);
3122   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3123                                  PtrVT);
3124 
3125   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3126   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3127 
3128   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3129   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3130 
3131   uint64_t FPROffset = 1;
3132   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3133 
3134   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3135 
3136   // Store first byte : number of int regs
3137   SDValue firstStore =
3138       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3139                         MachinePointerInfo(SV), MVT::i8);
3140   uint64_t nextOffset = FPROffset;
3141   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3142                                   ConstFPROffset);
3143 
3144   // Store second byte : number of float regs
3145   SDValue secondStore =
3146       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3147                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3148   nextOffset += StackOffset;
3149   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3150 
3151   // Store second word : arguments given on stack
3152   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3153                                     MachinePointerInfo(SV, nextOffset));
3154   nextOffset += FrameOffset;
3155   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3156 
3157   // Store third word : arguments given in registers
3158   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3159                       MachinePointerInfo(SV, nextOffset));
3160 }
3161 
3162 /// FPR - The set of FP registers that should be allocated for arguments,
3163 /// on Darwin.
3164 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3165                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3166                                 PPC::F11, PPC::F12, PPC::F13};
3167 
3168 /// QFPR - The set of QPX registers that should be allocated for arguments.
3169 static const MCPhysReg QFPR[] = {
3170     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3171     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3172 
3173 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3174 /// the stack.
3175 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3176                                        unsigned PtrByteSize) {
3177   unsigned ArgSize = ArgVT.getStoreSize();
3178   if (Flags.isByVal())
3179     ArgSize = Flags.getByValSize();
3180 
3181   // Round up to multiples of the pointer size, except for array members,
3182   // which are always packed.
3183   if (!Flags.isInConsecutiveRegs())
3184     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3185 
3186   return ArgSize;
3187 }
3188 
3189 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3190 /// on the stack.
3191 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3192                                             ISD::ArgFlagsTy Flags,
3193                                             unsigned PtrByteSize) {
3194   unsigned Align = PtrByteSize;
3195 
3196   // Altivec parameters are padded to a 16 byte boundary.
3197   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3198       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3199       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3200       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3201     Align = 16;
3202   // QPX vector types stored in double-precision are padded to a 32 byte
3203   // boundary.
3204   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3205     Align = 32;
3206 
3207   // ByVal parameters are aligned as requested.
3208   if (Flags.isByVal()) {
3209     unsigned BVAlign = Flags.getByValAlign();
3210     if (BVAlign > PtrByteSize) {
3211       if (BVAlign % PtrByteSize != 0)
3212           llvm_unreachable(
3213             "ByVal alignment is not a multiple of the pointer size");
3214 
3215       Align = BVAlign;
3216     }
3217   }
3218 
3219   // Array members are always packed to their original alignment.
3220   if (Flags.isInConsecutiveRegs()) {
3221     // If the array member was split into multiple registers, the first
3222     // needs to be aligned to the size of the full type.  (Except for
3223     // ppcf128, which is only aligned as its f64 components.)
3224     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3225       Align = OrigVT.getStoreSize();
3226     else
3227       Align = ArgVT.getStoreSize();
3228   }
3229 
3230   return Align;
3231 }
3232 
3233 /// CalculateStackSlotUsed - Return whether this argument will use its
3234 /// stack slot (instead of being passed in registers).  ArgOffset,
3235 /// AvailableFPRs, and AvailableVRs must hold the current argument
3236 /// position, and will be updated to account for this argument.
3237 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3238                                    ISD::ArgFlagsTy Flags,
3239                                    unsigned PtrByteSize,
3240                                    unsigned LinkageSize,
3241                                    unsigned ParamAreaSize,
3242                                    unsigned &ArgOffset,
3243                                    unsigned &AvailableFPRs,
3244                                    unsigned &AvailableVRs, bool HasQPX) {
3245   bool UseMemory = false;
3246 
3247   // Respect alignment of argument on the stack.
3248   unsigned Align =
3249     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3250   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3251   // If there's no space left in the argument save area, we must
3252   // use memory (this check also catches zero-sized arguments).
3253   if (ArgOffset >= LinkageSize + ParamAreaSize)
3254     UseMemory = true;
3255 
3256   // Allocate argument on the stack.
3257   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3258   if (Flags.isInConsecutiveRegsLast())
3259     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3260   // If we overran the argument save area, we must use memory
3261   // (this check catches arguments passed partially in memory)
3262   if (ArgOffset > LinkageSize + ParamAreaSize)
3263     UseMemory = true;
3264 
3265   // However, if the argument is actually passed in an FPR or a VR,
3266   // we don't use memory after all.
3267   if (!Flags.isByVal()) {
3268     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3269         // QPX registers overlap with the scalar FP registers.
3270         (HasQPX && (ArgVT == MVT::v4f32 ||
3271                     ArgVT == MVT::v4f64 ||
3272                     ArgVT == MVT::v4i1)))
3273       if (AvailableFPRs > 0) {
3274         --AvailableFPRs;
3275         return false;
3276       }
3277     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3278         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3279         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3280         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3281       if (AvailableVRs > 0) {
3282         --AvailableVRs;
3283         return false;
3284       }
3285   }
3286 
3287   return UseMemory;
3288 }
3289 
3290 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3291 /// ensure minimum alignment required for target.
3292 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3293                                      unsigned NumBytes) {
3294   unsigned TargetAlign = Lowering->getStackAlignment();
3295   unsigned AlignMask = TargetAlign - 1;
3296   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3297   return NumBytes;
3298 }
3299 
3300 SDValue PPCTargetLowering::LowerFormalArguments(
3301     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3302     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3303     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3304   if (Subtarget.isSVR4ABI()) {
3305     if (Subtarget.isPPC64())
3306       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3307                                          dl, DAG, InVals);
3308     else
3309       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3310                                          dl, DAG, InVals);
3311   } else {
3312     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3313                                        dl, DAG, InVals);
3314   }
3315 }
3316 
3317 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3318     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3319     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3320     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3321 
3322   // 32-bit SVR4 ABI Stack Frame Layout:
3323   //              +-----------------------------------+
3324   //        +-->  |            Back chain             |
3325   //        |     +-----------------------------------+
3326   //        |     | Floating-point register save area |
3327   //        |     +-----------------------------------+
3328   //        |     |    General register save area     |
3329   //        |     +-----------------------------------+
3330   //        |     |          CR save word             |
3331   //        |     +-----------------------------------+
3332   //        |     |         VRSAVE save word          |
3333   //        |     +-----------------------------------+
3334   //        |     |         Alignment padding         |
3335   //        |     +-----------------------------------+
3336   //        |     |     Vector register save area     |
3337   //        |     +-----------------------------------+
3338   //        |     |       Local variable space        |
3339   //        |     +-----------------------------------+
3340   //        |     |        Parameter list area        |
3341   //        |     +-----------------------------------+
3342   //        |     |           LR save word            |
3343   //        |     +-----------------------------------+
3344   // SP-->  +---  |            Back chain             |
3345   //              +-----------------------------------+
3346   //
3347   // Specifications:
3348   //   System V Application Binary Interface PowerPC Processor Supplement
3349   //   AltiVec Technology Programming Interface Manual
3350 
3351   MachineFunction &MF = DAG.getMachineFunction();
3352   MachineFrameInfo &MFI = MF.getFrameInfo();
3353   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3354 
3355   EVT PtrVT = getPointerTy(MF.getDataLayout());
3356   // Potential tail calls could cause overwriting of argument stack slots.
3357   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3358                        (CallConv == CallingConv::Fast));
3359   unsigned PtrByteSize = 4;
3360 
3361   // Assign locations to all of the incoming arguments.
3362   SmallVector<CCValAssign, 16> ArgLocs;
3363   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3364                  *DAG.getContext());
3365 
3366   // Reserve space for the linkage area on the stack.
3367   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3368   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3369   if (useSoftFloat() || hasSPE())
3370     CCInfo.PreAnalyzeFormalArguments(Ins);
3371 
3372   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3373   CCInfo.clearWasPPCF128();
3374 
3375   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3376     CCValAssign &VA = ArgLocs[i];
3377 
3378     // Arguments stored in registers.
3379     if (VA.isRegLoc()) {
3380       const TargetRegisterClass *RC;
3381       EVT ValVT = VA.getValVT();
3382 
3383       switch (ValVT.getSimpleVT().SimpleTy) {
3384         default:
3385           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3386         case MVT::i1:
3387         case MVT::i32:
3388           RC = &PPC::GPRCRegClass;
3389           break;
3390         case MVT::f32:
3391           if (Subtarget.hasP8Vector())
3392             RC = &PPC::VSSRCRegClass;
3393           else if (Subtarget.hasSPE())
3394             RC = &PPC::SPE4RCRegClass;
3395           else
3396             RC = &PPC::F4RCRegClass;
3397           break;
3398         case MVT::f64:
3399           if (Subtarget.hasVSX())
3400             RC = &PPC::VSFRCRegClass;
3401           else if (Subtarget.hasSPE())
3402             RC = &PPC::SPERCRegClass;
3403           else
3404             RC = &PPC::F8RCRegClass;
3405           break;
3406         case MVT::v16i8:
3407         case MVT::v8i16:
3408         case MVT::v4i32:
3409           RC = &PPC::VRRCRegClass;
3410           break;
3411         case MVT::v4f32:
3412           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3413           break;
3414         case MVT::v2f64:
3415         case MVT::v2i64:
3416           RC = &PPC::VRRCRegClass;
3417           break;
3418         case MVT::v4f64:
3419           RC = &PPC::QFRCRegClass;
3420           break;
3421         case MVT::v4i1:
3422           RC = &PPC::QBRCRegClass;
3423           break;
3424       }
3425 
3426       // Transform the arguments stored in physical registers into virtual ones.
3427       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3428       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3429                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3430 
3431       if (ValVT == MVT::i1)
3432         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3433 
3434       InVals.push_back(ArgValue);
3435     } else {
3436       // Argument stored in memory.
3437       assert(VA.isMemLoc());
3438 
3439       // Get the extended size of the argument type in stack
3440       unsigned ArgSize = VA.getLocVT().getStoreSize();
3441       // Get the actual size of the argument type
3442       unsigned ObjSize = VA.getValVT().getStoreSize();
3443       unsigned ArgOffset = VA.getLocMemOffset();
3444       // Stack objects in PPC32 are right justified.
3445       ArgOffset += ArgSize - ObjSize;
3446       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3447 
3448       // Create load nodes to retrieve arguments from the stack.
3449       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3450       InVals.push_back(
3451           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3452     }
3453   }
3454 
3455   // Assign locations to all of the incoming aggregate by value arguments.
3456   // Aggregates passed by value are stored in the local variable space of the
3457   // caller's stack frame, right above the parameter list area.
3458   SmallVector<CCValAssign, 16> ByValArgLocs;
3459   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3460                       ByValArgLocs, *DAG.getContext());
3461 
3462   // Reserve stack space for the allocations in CCInfo.
3463   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3464 
3465   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3466 
3467   // Area that is at least reserved in the caller of this function.
3468   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3469   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3470 
3471   // Set the size that is at least reserved in caller of this function.  Tail
3472   // call optimized function's reserved stack space needs to be aligned so that
3473   // taking the difference between two stack areas will result in an aligned
3474   // stack.
3475   MinReservedArea =
3476       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3477   FuncInfo->setMinReservedArea(MinReservedArea);
3478 
3479   SmallVector<SDValue, 8> MemOps;
3480 
3481   // If the function takes variable number of arguments, make a frame index for
3482   // the start of the first vararg value... for expansion of llvm.va_start.
3483   if (isVarArg) {
3484     static const MCPhysReg GPArgRegs[] = {
3485       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3486       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3487     };
3488     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3489 
3490     static const MCPhysReg FPArgRegs[] = {
3491       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3492       PPC::F8
3493     };
3494     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3495 
3496     if (useSoftFloat() || hasSPE())
3497        NumFPArgRegs = 0;
3498 
3499     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3500     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3501 
3502     // Make room for NumGPArgRegs and NumFPArgRegs.
3503     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3504                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3505 
3506     FuncInfo->setVarArgsStackOffset(
3507       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3508                             CCInfo.getNextStackOffset(), true));
3509 
3510     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3511     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3512 
3513     // The fixed integer arguments of a variadic function are stored to the
3514     // VarArgsFrameIndex on the stack so that they may be loaded by
3515     // dereferencing the result of va_next.
3516     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3517       // Get an existing live-in vreg, or add a new one.
3518       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3519       if (!VReg)
3520         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3521 
3522       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3523       SDValue Store =
3524           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3525       MemOps.push_back(Store);
3526       // Increment the address by four for the next argument to store
3527       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3528       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3529     }
3530 
3531     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3532     // is set.
3533     // The double arguments are stored to the VarArgsFrameIndex
3534     // on the stack.
3535     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3536       // Get an existing live-in vreg, or add a new one.
3537       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3538       if (!VReg)
3539         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3540 
3541       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3542       SDValue Store =
3543           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3544       MemOps.push_back(Store);
3545       // Increment the address by eight for the next argument to store
3546       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3547                                          PtrVT);
3548       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3549     }
3550   }
3551 
3552   if (!MemOps.empty())
3553     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3554 
3555   return Chain;
3556 }
3557 
3558 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3559 // value to MVT::i64 and then truncate to the correct register size.
3560 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3561                                              EVT ObjectVT, SelectionDAG &DAG,
3562                                              SDValue ArgVal,
3563                                              const SDLoc &dl) const {
3564   if (Flags.isSExt())
3565     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3566                          DAG.getValueType(ObjectVT));
3567   else if (Flags.isZExt())
3568     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3569                          DAG.getValueType(ObjectVT));
3570 
3571   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3572 }
3573 
3574 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3575     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3576     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3577     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3578   // TODO: add description of PPC stack frame format, or at least some docs.
3579   //
3580   bool isELFv2ABI = Subtarget.isELFv2ABI();
3581   bool isLittleEndian = Subtarget.isLittleEndian();
3582   MachineFunction &MF = DAG.getMachineFunction();
3583   MachineFrameInfo &MFI = MF.getFrameInfo();
3584   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3585 
3586   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3587          "fastcc not supported on varargs functions");
3588 
3589   EVT PtrVT = getPointerTy(MF.getDataLayout());
3590   // Potential tail calls could cause overwriting of argument stack slots.
3591   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3592                        (CallConv == CallingConv::Fast));
3593   unsigned PtrByteSize = 8;
3594   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3595 
3596   static const MCPhysReg GPR[] = {
3597     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3598     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3599   };
3600   static const MCPhysReg VR[] = {
3601     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3602     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3603   };
3604 
3605   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3606   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3607   const unsigned Num_VR_Regs  = array_lengthof(VR);
3608   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3609 
3610   // Do a first pass over the arguments to determine whether the ABI
3611   // guarantees that our caller has allocated the parameter save area
3612   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3613   // in the ELFv2 ABI, it is true if this is a vararg function or if
3614   // any parameter is located in a stack slot.
3615 
3616   bool HasParameterArea = !isELFv2ABI || isVarArg;
3617   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3618   unsigned NumBytes = LinkageSize;
3619   unsigned AvailableFPRs = Num_FPR_Regs;
3620   unsigned AvailableVRs = Num_VR_Regs;
3621   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3622     if (Ins[i].Flags.isNest())
3623       continue;
3624 
3625     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3626                                PtrByteSize, LinkageSize, ParamAreaSize,
3627                                NumBytes, AvailableFPRs, AvailableVRs,
3628                                Subtarget.hasQPX()))
3629       HasParameterArea = true;
3630   }
3631 
3632   // Add DAG nodes to load the arguments or copy them out of registers.  On
3633   // entry to a function on PPC, the arguments start after the linkage area,
3634   // although the first ones are often in registers.
3635 
3636   unsigned ArgOffset = LinkageSize;
3637   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3638   unsigned &QFPR_idx = FPR_idx;
3639   SmallVector<SDValue, 8> MemOps;
3640   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3641   unsigned CurArgIdx = 0;
3642   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3643     SDValue ArgVal;
3644     bool needsLoad = false;
3645     EVT ObjectVT = Ins[ArgNo].VT;
3646     EVT OrigVT = Ins[ArgNo].ArgVT;
3647     unsigned ObjSize = ObjectVT.getStoreSize();
3648     unsigned ArgSize = ObjSize;
3649     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3650     if (Ins[ArgNo].isOrigArg()) {
3651       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3652       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3653     }
3654     // We re-align the argument offset for each argument, except when using the
3655     // fast calling convention, when we need to make sure we do that only when
3656     // we'll actually use a stack slot.
3657     unsigned CurArgOffset, Align;
3658     auto ComputeArgOffset = [&]() {
3659       /* Respect alignment of argument on the stack.  */
3660       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3661       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3662       CurArgOffset = ArgOffset;
3663     };
3664 
3665     if (CallConv != CallingConv::Fast) {
3666       ComputeArgOffset();
3667 
3668       /* Compute GPR index associated with argument offset.  */
3669       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3670       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3671     }
3672 
3673     // FIXME the codegen can be much improved in some cases.
3674     // We do not have to keep everything in memory.
3675     if (Flags.isByVal()) {
3676       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3677 
3678       if (CallConv == CallingConv::Fast)
3679         ComputeArgOffset();
3680 
3681       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3682       ObjSize = Flags.getByValSize();
3683       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3684       // Empty aggregate parameters do not take up registers.  Examples:
3685       //   struct { } a;
3686       //   union  { } b;
3687       //   int c[0];
3688       // etc.  However, we have to provide a place-holder in InVals, so
3689       // pretend we have an 8-byte item at the current address for that
3690       // purpose.
3691       if (!ObjSize) {
3692         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3693         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3694         InVals.push_back(FIN);
3695         continue;
3696       }
3697 
3698       // Create a stack object covering all stack doublewords occupied
3699       // by the argument.  If the argument is (fully or partially) on
3700       // the stack, or if the argument is fully in registers but the
3701       // caller has allocated the parameter save anyway, we can refer
3702       // directly to the caller's stack frame.  Otherwise, create a
3703       // local copy in our own frame.
3704       int FI;
3705       if (HasParameterArea ||
3706           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3707         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3708       else
3709         FI = MFI.CreateStackObject(ArgSize, Align, false);
3710       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3711 
3712       // Handle aggregates smaller than 8 bytes.
3713       if (ObjSize < PtrByteSize) {
3714         // The value of the object is its address, which differs from the
3715         // address of the enclosing doubleword on big-endian systems.
3716         SDValue Arg = FIN;
3717         if (!isLittleEndian) {
3718           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3719           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3720         }
3721         InVals.push_back(Arg);
3722 
3723         if (GPR_idx != Num_GPR_Regs) {
3724           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3725           FuncInfo->addLiveInAttr(VReg, Flags);
3726           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3727           SDValue Store;
3728 
3729           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3730             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3731                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3732             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3733                                       MachinePointerInfo(&*FuncArg), ObjType);
3734           } else {
3735             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3736             // store the whole register as-is to the parameter save area
3737             // slot.
3738             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3739                                  MachinePointerInfo(&*FuncArg));
3740           }
3741 
3742           MemOps.push_back(Store);
3743         }
3744         // Whether we copied from a register or not, advance the offset
3745         // into the parameter save area by a full doubleword.
3746         ArgOffset += PtrByteSize;
3747         continue;
3748       }
3749 
3750       // The value of the object is its address, which is the address of
3751       // its first stack doubleword.
3752       InVals.push_back(FIN);
3753 
3754       // Store whatever pieces of the object are in registers to memory.
3755       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3756         if (GPR_idx == Num_GPR_Regs)
3757           break;
3758 
3759         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3760         FuncInfo->addLiveInAttr(VReg, Flags);
3761         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3762         SDValue Addr = FIN;
3763         if (j) {
3764           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3765           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3766         }
3767         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3768                                      MachinePointerInfo(&*FuncArg, j));
3769         MemOps.push_back(Store);
3770         ++GPR_idx;
3771       }
3772       ArgOffset += ArgSize;
3773       continue;
3774     }
3775 
3776     switch (ObjectVT.getSimpleVT().SimpleTy) {
3777     default: llvm_unreachable("Unhandled argument type!");
3778     case MVT::i1:
3779     case MVT::i32:
3780     case MVT::i64:
3781       if (Flags.isNest()) {
3782         // The 'nest' parameter, if any, is passed in R11.
3783         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3784         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3785 
3786         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3787           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3788 
3789         break;
3790       }
3791 
3792       // These can be scalar arguments or elements of an integer array type
3793       // passed directly.  Clang may use those instead of "byval" aggregate
3794       // types to avoid forcing arguments to memory unnecessarily.
3795       if (GPR_idx != Num_GPR_Regs) {
3796         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3797         FuncInfo->addLiveInAttr(VReg, Flags);
3798         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3799 
3800         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3801           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3802           // value to MVT::i64 and then truncate to the correct register size.
3803           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3804       } else {
3805         if (CallConv == CallingConv::Fast)
3806           ComputeArgOffset();
3807 
3808         needsLoad = true;
3809         ArgSize = PtrByteSize;
3810       }
3811       if (CallConv != CallingConv::Fast || needsLoad)
3812         ArgOffset += 8;
3813       break;
3814 
3815     case MVT::f32:
3816     case MVT::f64:
3817       // These can be scalar arguments or elements of a float array type
3818       // passed directly.  The latter are used to implement ELFv2 homogenous
3819       // float aggregates.
3820       if (FPR_idx != Num_FPR_Regs) {
3821         unsigned VReg;
3822 
3823         if (ObjectVT == MVT::f32)
3824           VReg = MF.addLiveIn(FPR[FPR_idx],
3825                               Subtarget.hasP8Vector()
3826                                   ? &PPC::VSSRCRegClass
3827                                   : &PPC::F4RCRegClass);
3828         else
3829           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3830                                                 ? &PPC::VSFRCRegClass
3831                                                 : &PPC::F8RCRegClass);
3832 
3833         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3834         ++FPR_idx;
3835       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3836         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3837         // once we support fp <-> gpr moves.
3838 
3839         // This can only ever happen in the presence of f32 array types,
3840         // since otherwise we never run out of FPRs before running out
3841         // of GPRs.
3842         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3843         FuncInfo->addLiveInAttr(VReg, Flags);
3844         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3845 
3846         if (ObjectVT == MVT::f32) {
3847           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3848             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3849                                  DAG.getConstant(32, dl, MVT::i32));
3850           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3851         }
3852 
3853         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3854       } else {
3855         if (CallConv == CallingConv::Fast)
3856           ComputeArgOffset();
3857 
3858         needsLoad = true;
3859       }
3860 
3861       // When passing an array of floats, the array occupies consecutive
3862       // space in the argument area; only round up to the next doubleword
3863       // at the end of the array.  Otherwise, each float takes 8 bytes.
3864       if (CallConv != CallingConv::Fast || needsLoad) {
3865         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3866         ArgOffset += ArgSize;
3867         if (Flags.isInConsecutiveRegsLast())
3868           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3869       }
3870       break;
3871     case MVT::v4f32:
3872     case MVT::v4i32:
3873     case MVT::v8i16:
3874     case MVT::v16i8:
3875     case MVT::v2f64:
3876     case MVT::v2i64:
3877     case MVT::v1i128:
3878     case MVT::f128:
3879       if (!Subtarget.hasQPX()) {
3880         // These can be scalar arguments or elements of a vector array type
3881         // passed directly.  The latter are used to implement ELFv2 homogenous
3882         // vector aggregates.
3883         if (VR_idx != Num_VR_Regs) {
3884           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3885           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3886           ++VR_idx;
3887         } else {
3888           if (CallConv == CallingConv::Fast)
3889             ComputeArgOffset();
3890           needsLoad = true;
3891         }
3892         if (CallConv != CallingConv::Fast || needsLoad)
3893           ArgOffset += 16;
3894         break;
3895       } // not QPX
3896 
3897       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3898              "Invalid QPX parameter type");
3899       LLVM_FALLTHROUGH;
3900 
3901     case MVT::v4f64:
3902     case MVT::v4i1:
3903       // QPX vectors are treated like their scalar floating-point subregisters
3904       // (except that they're larger).
3905       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3906       if (QFPR_idx != Num_QFPR_Regs) {
3907         const TargetRegisterClass *RC;
3908         switch (ObjectVT.getSimpleVT().SimpleTy) {
3909         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3910         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3911         default:         RC = &PPC::QBRCRegClass; break;
3912         }
3913 
3914         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3915         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3916         ++QFPR_idx;
3917       } else {
3918         if (CallConv == CallingConv::Fast)
3919           ComputeArgOffset();
3920         needsLoad = true;
3921       }
3922       if (CallConv != CallingConv::Fast || needsLoad)
3923         ArgOffset += Sz;
3924       break;
3925     }
3926 
3927     // We need to load the argument to a virtual register if we determined
3928     // above that we ran out of physical registers of the appropriate type.
3929     if (needsLoad) {
3930       if (ObjSize < ArgSize && !isLittleEndian)
3931         CurArgOffset += ArgSize - ObjSize;
3932       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3933       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3934       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3935     }
3936 
3937     InVals.push_back(ArgVal);
3938   }
3939 
3940   // Area that is at least reserved in the caller of this function.
3941   unsigned MinReservedArea;
3942   if (HasParameterArea)
3943     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3944   else
3945     MinReservedArea = LinkageSize;
3946 
3947   // Set the size that is at least reserved in caller of this function.  Tail
3948   // call optimized functions' reserved stack space needs to be aligned so that
3949   // taking the difference between two stack areas will result in an aligned
3950   // stack.
3951   MinReservedArea =
3952       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3953   FuncInfo->setMinReservedArea(MinReservedArea);
3954 
3955   // If the function takes variable number of arguments, make a frame index for
3956   // the start of the first vararg value... for expansion of llvm.va_start.
3957   if (isVarArg) {
3958     int Depth = ArgOffset;
3959 
3960     FuncInfo->setVarArgsFrameIndex(
3961       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3962     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3963 
3964     // If this function is vararg, store any remaining integer argument regs
3965     // to their spots on the stack so that they may be loaded by dereferencing
3966     // the result of va_next.
3967     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3968          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3969       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3970       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3971       SDValue Store =
3972           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3973       MemOps.push_back(Store);
3974       // Increment the address by four for the next argument to store
3975       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3976       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3977     }
3978   }
3979 
3980   if (!MemOps.empty())
3981     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3982 
3983   return Chain;
3984 }
3985 
3986 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3987     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3988     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3989     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3990   // TODO: add description of PPC stack frame format, or at least some docs.
3991   //
3992   MachineFunction &MF = DAG.getMachineFunction();
3993   MachineFrameInfo &MFI = MF.getFrameInfo();
3994   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3995 
3996   EVT PtrVT = getPointerTy(MF.getDataLayout());
3997   bool isPPC64 = PtrVT == MVT::i64;
3998   // Potential tail calls could cause overwriting of argument stack slots.
3999   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4000                        (CallConv == CallingConv::Fast));
4001   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4002   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4003   unsigned ArgOffset = LinkageSize;
4004   // Area that is at least reserved in caller of this function.
4005   unsigned MinReservedArea = ArgOffset;
4006 
4007   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4008     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4009     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4010   };
4011   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4012     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4013     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4014   };
4015   static const MCPhysReg VR[] = {
4016     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4017     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4018   };
4019 
4020   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4021   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4022   const unsigned Num_VR_Regs  = array_lengthof( VR);
4023 
4024   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4025 
4026   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4027 
4028   // In 32-bit non-varargs functions, the stack space for vectors is after the
4029   // stack space for non-vectors.  We do not use this space unless we have
4030   // too many vectors to fit in registers, something that only occurs in
4031   // constructed examples:), but we have to walk the arglist to figure
4032   // that out...for the pathological case, compute VecArgOffset as the
4033   // start of the vector parameter area.  Computing VecArgOffset is the
4034   // entire point of the following loop.
4035   unsigned VecArgOffset = ArgOffset;
4036   if (!isVarArg && !isPPC64) {
4037     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4038          ++ArgNo) {
4039       EVT ObjectVT = Ins[ArgNo].VT;
4040       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4041 
4042       if (Flags.isByVal()) {
4043         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4044         unsigned ObjSize = Flags.getByValSize();
4045         unsigned ArgSize =
4046                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4047         VecArgOffset += ArgSize;
4048         continue;
4049       }
4050 
4051       switch(ObjectVT.getSimpleVT().SimpleTy) {
4052       default: llvm_unreachable("Unhandled argument type!");
4053       case MVT::i1:
4054       case MVT::i32:
4055       case MVT::f32:
4056         VecArgOffset += 4;
4057         break;
4058       case MVT::i64:  // PPC64
4059       case MVT::f64:
4060         // FIXME: We are guaranteed to be !isPPC64 at this point.
4061         // Does MVT::i64 apply?
4062         VecArgOffset += 8;
4063         break;
4064       case MVT::v4f32:
4065       case MVT::v4i32:
4066       case MVT::v8i16:
4067       case MVT::v16i8:
4068         // Nothing to do, we're only looking at Nonvector args here.
4069         break;
4070       }
4071     }
4072   }
4073   // We've found where the vector parameter area in memory is.  Skip the
4074   // first 12 parameters; these don't use that memory.
4075   VecArgOffset = ((VecArgOffset+15)/16)*16;
4076   VecArgOffset += 12*16;
4077 
4078   // Add DAG nodes to load the arguments or copy them out of registers.  On
4079   // entry to a function on PPC, the arguments start after the linkage area,
4080   // although the first ones are often in registers.
4081 
4082   SmallVector<SDValue, 8> MemOps;
4083   unsigned nAltivecParamsAtEnd = 0;
4084   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4085   unsigned CurArgIdx = 0;
4086   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4087     SDValue ArgVal;
4088     bool needsLoad = false;
4089     EVT ObjectVT = Ins[ArgNo].VT;
4090     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4091     unsigned ArgSize = ObjSize;
4092     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4093     if (Ins[ArgNo].isOrigArg()) {
4094       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4095       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4096     }
4097     unsigned CurArgOffset = ArgOffset;
4098 
4099     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4100     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4101         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4102       if (isVarArg || isPPC64) {
4103         MinReservedArea = ((MinReservedArea+15)/16)*16;
4104         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4105                                                   Flags,
4106                                                   PtrByteSize);
4107       } else  nAltivecParamsAtEnd++;
4108     } else
4109       // Calculate min reserved area.
4110       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4111                                                 Flags,
4112                                                 PtrByteSize);
4113 
4114     // FIXME the codegen can be much improved in some cases.
4115     // We do not have to keep everything in memory.
4116     if (Flags.isByVal()) {
4117       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4118 
4119       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4120       ObjSize = Flags.getByValSize();
4121       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4122       // Objects of size 1 and 2 are right justified, everything else is
4123       // left justified.  This means the memory address is adjusted forwards.
4124       if (ObjSize==1 || ObjSize==2) {
4125         CurArgOffset = CurArgOffset + (4 - ObjSize);
4126       }
4127       // The value of the object is its address.
4128       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4129       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4130       InVals.push_back(FIN);
4131       if (ObjSize==1 || ObjSize==2) {
4132         if (GPR_idx != Num_GPR_Regs) {
4133           unsigned VReg;
4134           if (isPPC64)
4135             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4136           else
4137             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4138           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4139           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4140           SDValue Store =
4141               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4142                                 MachinePointerInfo(&*FuncArg), ObjType);
4143           MemOps.push_back(Store);
4144           ++GPR_idx;
4145         }
4146 
4147         ArgOffset += PtrByteSize;
4148 
4149         continue;
4150       }
4151       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4152         // Store whatever pieces of the object are in registers
4153         // to memory.  ArgOffset will be the address of the beginning
4154         // of the object.
4155         if (GPR_idx != Num_GPR_Regs) {
4156           unsigned VReg;
4157           if (isPPC64)
4158             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4159           else
4160             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4161           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4162           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4163           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4164           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4165                                        MachinePointerInfo(&*FuncArg, j));
4166           MemOps.push_back(Store);
4167           ++GPR_idx;
4168           ArgOffset += PtrByteSize;
4169         } else {
4170           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4171           break;
4172         }
4173       }
4174       continue;
4175     }
4176 
4177     switch (ObjectVT.getSimpleVT().SimpleTy) {
4178     default: llvm_unreachable("Unhandled argument type!");
4179     case MVT::i1:
4180     case MVT::i32:
4181       if (!isPPC64) {
4182         if (GPR_idx != Num_GPR_Regs) {
4183           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4184           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4185 
4186           if (ObjectVT == MVT::i1)
4187             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4188 
4189           ++GPR_idx;
4190         } else {
4191           needsLoad = true;
4192           ArgSize = PtrByteSize;
4193         }
4194         // All int arguments reserve stack space in the Darwin ABI.
4195         ArgOffset += PtrByteSize;
4196         break;
4197       }
4198       LLVM_FALLTHROUGH;
4199     case MVT::i64:  // PPC64
4200       if (GPR_idx != Num_GPR_Regs) {
4201         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4202         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4203 
4204         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4205           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4206           // value to MVT::i64 and then truncate to the correct register size.
4207           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4208 
4209         ++GPR_idx;
4210       } else {
4211         needsLoad = true;
4212         ArgSize = PtrByteSize;
4213       }
4214       // All int arguments reserve stack space in the Darwin ABI.
4215       ArgOffset += 8;
4216       break;
4217 
4218     case MVT::f32:
4219     case MVT::f64:
4220       // Every 4 bytes of argument space consumes one of the GPRs available for
4221       // argument passing.
4222       if (GPR_idx != Num_GPR_Regs) {
4223         ++GPR_idx;
4224         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4225           ++GPR_idx;
4226       }
4227       if (FPR_idx != Num_FPR_Regs) {
4228         unsigned VReg;
4229 
4230         if (ObjectVT == MVT::f32)
4231           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4232         else
4233           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4234 
4235         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4236         ++FPR_idx;
4237       } else {
4238         needsLoad = true;
4239       }
4240 
4241       // All FP arguments reserve stack space in the Darwin ABI.
4242       ArgOffset += isPPC64 ? 8 : ObjSize;
4243       break;
4244     case MVT::v4f32:
4245     case MVT::v4i32:
4246     case MVT::v8i16:
4247     case MVT::v16i8:
4248       // Note that vector arguments in registers don't reserve stack space,
4249       // except in varargs functions.
4250       if (VR_idx != Num_VR_Regs) {
4251         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4252         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4253         if (isVarArg) {
4254           while ((ArgOffset % 16) != 0) {
4255             ArgOffset += PtrByteSize;
4256             if (GPR_idx != Num_GPR_Regs)
4257               GPR_idx++;
4258           }
4259           ArgOffset += 16;
4260           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4261         }
4262         ++VR_idx;
4263       } else {
4264         if (!isVarArg && !isPPC64) {
4265           // Vectors go after all the nonvectors.
4266           CurArgOffset = VecArgOffset;
4267           VecArgOffset += 16;
4268         } else {
4269           // Vectors are aligned.
4270           ArgOffset = ((ArgOffset+15)/16)*16;
4271           CurArgOffset = ArgOffset;
4272           ArgOffset += 16;
4273         }
4274         needsLoad = true;
4275       }
4276       break;
4277     }
4278 
4279     // We need to load the argument to a virtual register if we determined above
4280     // that we ran out of physical registers of the appropriate type.
4281     if (needsLoad) {
4282       int FI = MFI.CreateFixedObject(ObjSize,
4283                                      CurArgOffset + (ArgSize - ObjSize),
4284                                      isImmutable);
4285       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4286       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4287     }
4288 
4289     InVals.push_back(ArgVal);
4290   }
4291 
4292   // Allow for Altivec parameters at the end, if needed.
4293   if (nAltivecParamsAtEnd) {
4294     MinReservedArea = ((MinReservedArea+15)/16)*16;
4295     MinReservedArea += 16*nAltivecParamsAtEnd;
4296   }
4297 
4298   // Area that is at least reserved in the caller of this function.
4299   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4300 
4301   // Set the size that is at least reserved in caller of this function.  Tail
4302   // call optimized functions' reserved stack space needs to be aligned so that
4303   // taking the difference between two stack areas will result in an aligned
4304   // stack.
4305   MinReservedArea =
4306       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4307   FuncInfo->setMinReservedArea(MinReservedArea);
4308 
4309   // If the function takes variable number of arguments, make a frame index for
4310   // the start of the first vararg value... for expansion of llvm.va_start.
4311   if (isVarArg) {
4312     int Depth = ArgOffset;
4313 
4314     FuncInfo->setVarArgsFrameIndex(
4315       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4316                             Depth, true));
4317     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4318 
4319     // If this function is vararg, store any remaining integer argument regs
4320     // to their spots on the stack so that they may be loaded by dereferencing
4321     // the result of va_next.
4322     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4323       unsigned VReg;
4324 
4325       if (isPPC64)
4326         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4327       else
4328         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4329 
4330       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4331       SDValue Store =
4332           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4333       MemOps.push_back(Store);
4334       // Increment the address by four for the next argument to store
4335       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4336       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4337     }
4338   }
4339 
4340   if (!MemOps.empty())
4341     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4342 
4343   return Chain;
4344 }
4345 
4346 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4347 /// adjusted to accommodate the arguments for the tailcall.
4348 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4349                                    unsigned ParamSize) {
4350 
4351   if (!isTailCall) return 0;
4352 
4353   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4354   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4355   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4356   // Remember only if the new adjustment is bigger.
4357   if (SPDiff < FI->getTailCallSPDelta())
4358     FI->setTailCallSPDelta(SPDiff);
4359 
4360   return SPDiff;
4361 }
4362 
4363 static bool isFunctionGlobalAddress(SDValue Callee);
4364 
4365 static bool
4366 callsShareTOCBase(const Function *Caller, SDValue Callee,
4367                     const TargetMachine &TM) {
4368   // If !G, Callee can be an external symbol.
4369   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4370   if (!G)
4371     return false;
4372 
4373   // The medium and large code models are expected to provide a sufficiently
4374   // large TOC to provide all data addressing needs of a module with a
4375   // single TOC. Since each module will be addressed with a single TOC then we
4376   // only need to check that caller and callee don't cross dso boundaries.
4377   if (CodeModel::Medium == TM.getCodeModel() ||
4378       CodeModel::Large == TM.getCodeModel())
4379     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4380 
4381   // Otherwise we need to ensure callee and caller are in the same section,
4382   // since the linker may allocate multiple TOCs, and we don't know which
4383   // sections will belong to the same TOC base.
4384 
4385   const GlobalValue *GV = G->getGlobal();
4386   if (!GV->isStrongDefinitionForLinker())
4387     return false;
4388 
4389   // Any explicitly-specified sections and section prefixes must also match.
4390   // Also, if we're using -ffunction-sections, then each function is always in
4391   // a different section (the same is true for COMDAT functions).
4392   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4393       GV->getSection() != Caller->getSection())
4394     return false;
4395   if (const auto *F = dyn_cast<Function>(GV)) {
4396     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4397       return false;
4398   }
4399 
4400   // If the callee might be interposed, then we can't assume the ultimate call
4401   // target will be in the same section. Even in cases where we can assume that
4402   // interposition won't happen, in any case where the linker might insert a
4403   // stub to allow for interposition, we must generate code as though
4404   // interposition might occur. To understand why this matters, consider a
4405   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4406   // in the same section, but a is in a different module (i.e. has a different
4407   // TOC base pointer). If the linker allows for interposition between b and c,
4408   // then it will generate a stub for the call edge between b and c which will
4409   // save the TOC pointer into the designated stack slot allocated by b. If we
4410   // return true here, and therefore allow a tail call between b and c, that
4411   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4412   // pointer into the stack slot allocated by a (where the a -> b stub saved
4413   // a's TOC base pointer). If we're not considering a tail call, but rather,
4414   // whether a nop is needed after the call instruction in b, because the linker
4415   // will insert a stub, it might complain about a missing nop if we omit it
4416   // (although many don't complain in this case).
4417   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4418     return false;
4419 
4420   return true;
4421 }
4422 
4423 static bool
4424 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4425                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4426   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4427 
4428   const unsigned PtrByteSize = 8;
4429   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4430 
4431   static const MCPhysReg GPR[] = {
4432     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4433     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4434   };
4435   static const MCPhysReg VR[] = {
4436     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4437     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4438   };
4439 
4440   const unsigned NumGPRs = array_lengthof(GPR);
4441   const unsigned NumFPRs = 13;
4442   const unsigned NumVRs = array_lengthof(VR);
4443   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4444 
4445   unsigned NumBytes = LinkageSize;
4446   unsigned AvailableFPRs = NumFPRs;
4447   unsigned AvailableVRs = NumVRs;
4448 
4449   for (const ISD::OutputArg& Param : Outs) {
4450     if (Param.Flags.isNest()) continue;
4451 
4452     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4453                                PtrByteSize, LinkageSize, ParamAreaSize,
4454                                NumBytes, AvailableFPRs, AvailableVRs,
4455                                Subtarget.hasQPX()))
4456       return true;
4457   }
4458   return false;
4459 }
4460 
4461 static bool
4462 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4463   if (CS.arg_size() != CallerFn->arg_size())
4464     return false;
4465 
4466   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4467   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4468   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4469 
4470   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4471     const Value* CalleeArg = *CalleeArgIter;
4472     const Value* CallerArg = &(*CallerArgIter);
4473     if (CalleeArg == CallerArg)
4474       continue;
4475 
4476     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4477     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4478     //      }
4479     // 1st argument of callee is undef and has the same type as caller.
4480     if (CalleeArg->getType() == CallerArg->getType() &&
4481         isa<UndefValue>(CalleeArg))
4482       continue;
4483 
4484     return false;
4485   }
4486 
4487   return true;
4488 }
4489 
4490 // Returns true if TCO is possible between the callers and callees
4491 // calling conventions.
4492 static bool
4493 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4494                                     CallingConv::ID CalleeCC) {
4495   // Tail calls are possible with fastcc and ccc.
4496   auto isTailCallableCC  = [] (CallingConv::ID CC){
4497       return  CC == CallingConv::C || CC == CallingConv::Fast;
4498   };
4499   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4500     return false;
4501 
4502   // We can safely tail call both fastcc and ccc callees from a c calling
4503   // convention caller. If the caller is fastcc, we may have less stack space
4504   // than a non-fastcc caller with the same signature so disable tail-calls in
4505   // that case.
4506   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4507 }
4508 
4509 bool
4510 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4511                                     SDValue Callee,
4512                                     CallingConv::ID CalleeCC,
4513                                     ImmutableCallSite CS,
4514                                     bool isVarArg,
4515                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4516                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4517                                     SelectionDAG& DAG) const {
4518   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4519 
4520   if (DisableSCO && !TailCallOpt) return false;
4521 
4522   // Variadic argument functions are not supported.
4523   if (isVarArg) return false;
4524 
4525   auto &Caller = DAG.getMachineFunction().getFunction();
4526   // Check that the calling conventions are compatible for tco.
4527   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4528     return false;
4529 
4530   // Caller contains any byval parameter is not supported.
4531   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4532     return false;
4533 
4534   // Callee contains any byval parameter is not supported, too.
4535   // Note: This is a quick work around, because in some cases, e.g.
4536   // caller's stack size > callee's stack size, we are still able to apply
4537   // sibling call optimization. For example, gcc is able to do SCO for caller1
4538   // in the following example, but not for caller2.
4539   //   struct test {
4540   //     long int a;
4541   //     char ary[56];
4542   //   } gTest;
4543   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4544   //     b->a = v.a;
4545   //     return 0;
4546   //   }
4547   //   void caller1(struct test a, struct test c, struct test *b) {
4548   //     callee(gTest, b); }
4549   //   void caller2(struct test *b) { callee(gTest, b); }
4550   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4551     return false;
4552 
4553   // If callee and caller use different calling conventions, we cannot pass
4554   // parameters on stack since offsets for the parameter area may be different.
4555   if (Caller.getCallingConv() != CalleeCC &&
4556       needStackSlotPassParameters(Subtarget, Outs))
4557     return false;
4558 
4559   // No TCO/SCO on indirect call because Caller have to restore its TOC
4560   if (!isFunctionGlobalAddress(Callee) &&
4561       !isa<ExternalSymbolSDNode>(Callee))
4562     return false;
4563 
4564   // If the caller and callee potentially have different TOC bases then we
4565   // cannot tail call since we need to restore the TOC pointer after the call.
4566   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4567   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4568     return false;
4569 
4570   // TCO allows altering callee ABI, so we don't have to check further.
4571   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4572     return true;
4573 
4574   if (DisableSCO) return false;
4575 
4576   // If callee use the same argument list that caller is using, then we can
4577   // apply SCO on this case. If it is not, then we need to check if callee needs
4578   // stack for passing arguments.
4579   if (!hasSameArgumentList(&Caller, CS) &&
4580       needStackSlotPassParameters(Subtarget, Outs)) {
4581     return false;
4582   }
4583 
4584   return true;
4585 }
4586 
4587 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4588 /// for tail call optimization. Targets which want to do tail call
4589 /// optimization should implement this function.
4590 bool
4591 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4592                                                      CallingConv::ID CalleeCC,
4593                                                      bool isVarArg,
4594                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4595                                                      SelectionDAG& DAG) const {
4596   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4597     return false;
4598 
4599   // Variable argument functions are not supported.
4600   if (isVarArg)
4601     return false;
4602 
4603   MachineFunction &MF = DAG.getMachineFunction();
4604   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4605   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4606     // Functions containing by val parameters are not supported.
4607     for (unsigned i = 0; i != Ins.size(); i++) {
4608        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4609        if (Flags.isByVal()) return false;
4610     }
4611 
4612     // Non-PIC/GOT tail calls are supported.
4613     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4614       return true;
4615 
4616     // At the moment we can only do local tail calls (in same module, hidden
4617     // or protected) if we are generating PIC.
4618     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4619       return G->getGlobal()->hasHiddenVisibility()
4620           || G->getGlobal()->hasProtectedVisibility();
4621   }
4622 
4623   return false;
4624 }
4625 
4626 /// isCallCompatibleAddress - Return the immediate to use if the specified
4627 /// 32-bit value is representable in the immediate field of a BxA instruction.
4628 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4629   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4630   if (!C) return nullptr;
4631 
4632   int Addr = C->getZExtValue();
4633   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4634       SignExtend32<26>(Addr) != Addr)
4635     return nullptr;  // Top 6 bits have to be sext of immediate.
4636 
4637   return DAG
4638       .getConstant(
4639           (int)C->getZExtValue() >> 2, SDLoc(Op),
4640           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4641       .getNode();
4642 }
4643 
4644 namespace {
4645 
4646 struct TailCallArgumentInfo {
4647   SDValue Arg;
4648   SDValue FrameIdxOp;
4649   int FrameIdx = 0;
4650 
4651   TailCallArgumentInfo() = default;
4652 };
4653 
4654 } // end anonymous namespace
4655 
4656 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4657 static void StoreTailCallArgumentsToStackSlot(
4658     SelectionDAG &DAG, SDValue Chain,
4659     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4660     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4661   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4662     SDValue Arg = TailCallArgs[i].Arg;
4663     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4664     int FI = TailCallArgs[i].FrameIdx;
4665     // Store relative to framepointer.
4666     MemOpChains.push_back(DAG.getStore(
4667         Chain, dl, Arg, FIN,
4668         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4669   }
4670 }
4671 
4672 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4673 /// the appropriate stack slot for the tail call optimized function call.
4674 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4675                                              SDValue OldRetAddr, SDValue OldFP,
4676                                              int SPDiff, const SDLoc &dl) {
4677   if (SPDiff) {
4678     // Calculate the new stack slot for the return address.
4679     MachineFunction &MF = DAG.getMachineFunction();
4680     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4681     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4682     bool isPPC64 = Subtarget.isPPC64();
4683     int SlotSize = isPPC64 ? 8 : 4;
4684     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4685     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4686                                                          NewRetAddrLoc, true);
4687     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4688     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4689     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4690                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4691 
4692     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4693     // slot as the FP is never overwritten.
4694     if (Subtarget.isDarwinABI()) {
4695       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4696       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4697                                                          true);
4698       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4699       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4700                            MachinePointerInfo::getFixedStack(
4701                                DAG.getMachineFunction(), NewFPIdx));
4702     }
4703   }
4704   return Chain;
4705 }
4706 
4707 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4708 /// the position of the argument.
4709 static void
4710 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4711                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4712                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4713   int Offset = ArgOffset + SPDiff;
4714   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4715   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4716   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4717   SDValue FIN = DAG.getFrameIndex(FI, VT);
4718   TailCallArgumentInfo Info;
4719   Info.Arg = Arg;
4720   Info.FrameIdxOp = FIN;
4721   Info.FrameIdx = FI;
4722   TailCallArguments.push_back(Info);
4723 }
4724 
4725 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4726 /// stack slot. Returns the chain as result and the loaded frame pointers in
4727 /// LROpOut/FPOpout. Used when tail calling.
4728 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4729     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4730     SDValue &FPOpOut, const SDLoc &dl) const {
4731   if (SPDiff) {
4732     // Load the LR and FP stack slot for later adjusting.
4733     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4734     LROpOut = getReturnAddrFrameIndex(DAG);
4735     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4736     Chain = SDValue(LROpOut.getNode(), 1);
4737 
4738     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4739     // slot as the FP is never overwritten.
4740     if (Subtarget.isDarwinABI()) {
4741       FPOpOut = getFramePointerFrameIndex(DAG);
4742       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4743       Chain = SDValue(FPOpOut.getNode(), 1);
4744     }
4745   }
4746   return Chain;
4747 }
4748 
4749 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4750 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4751 /// specified by the specific parameter attribute. The copy will be passed as
4752 /// a byval function parameter.
4753 /// Sometimes what we are copying is the end of a larger object, the part that
4754 /// does not fit in registers.
4755 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4756                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4757                                          SelectionDAG &DAG, const SDLoc &dl) {
4758   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4759   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4760                        false, false, false, MachinePointerInfo(),
4761                        MachinePointerInfo());
4762 }
4763 
4764 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4765 /// tail calls.
4766 static void LowerMemOpCallTo(
4767     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4768     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4769     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4770     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4771   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4772   if (!isTailCall) {
4773     if (isVector) {
4774       SDValue StackPtr;
4775       if (isPPC64)
4776         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4777       else
4778         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4779       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4780                            DAG.getConstant(ArgOffset, dl, PtrVT));
4781     }
4782     MemOpChains.push_back(
4783         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4784     // Calculate and remember argument location.
4785   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4786                                   TailCallArguments);
4787 }
4788 
4789 static void
4790 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4791                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4792                 SDValue FPOp,
4793                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4794   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4795   // might overwrite each other in case of tail call optimization.
4796   SmallVector<SDValue, 8> MemOpChains2;
4797   // Do not flag preceding copytoreg stuff together with the following stuff.
4798   InFlag = SDValue();
4799   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4800                                     MemOpChains2, dl);
4801   if (!MemOpChains2.empty())
4802     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4803 
4804   // Store the return address to the appropriate stack slot.
4805   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4806 
4807   // Emit callseq_end just before tailcall node.
4808   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4809                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4810   InFlag = Chain.getValue(1);
4811 }
4812 
4813 // Is this global address that of a function that can be called by name? (as
4814 // opposed to something that must hold a descriptor for an indirect call).
4815 static bool isFunctionGlobalAddress(SDValue Callee) {
4816   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4817     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4818         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4819       return false;
4820 
4821     return G->getGlobal()->getValueType()->isFunctionTy();
4822   }
4823 
4824   return false;
4825 }
4826 
4827 static unsigned
4828 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4829             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4830             bool isPatchPoint, bool hasNest,
4831             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4832             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4833             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4834   bool isPPC64 = Subtarget.isPPC64();
4835   bool isSVR4ABI = Subtarget.isSVR4ABI();
4836   bool isELFv2ABI = Subtarget.isELFv2ABI();
4837 
4838   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4839   NodeTys.push_back(MVT::Other);   // Returns a chain
4840   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4841 
4842   unsigned CallOpc = PPCISD::CALL;
4843 
4844   bool needIndirectCall = true;
4845   if (!isSVR4ABI || !isPPC64)
4846     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4847       // If this is an absolute destination address, use the munged value.
4848       Callee = SDValue(Dest, 0);
4849       needIndirectCall = false;
4850     }
4851 
4852   // PC-relative references to external symbols should go through $stub, unless
4853   // we're building with the leopard linker or later, which automatically
4854   // synthesizes these stubs.
4855   const TargetMachine &TM = DAG.getTarget();
4856   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4857   const GlobalValue *GV = nullptr;
4858   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4859     GV = G->getGlobal();
4860   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4861   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4862 
4863   if (isFunctionGlobalAddress(Callee)) {
4864     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4865     // A call to a TLS address is actually an indirect call to a
4866     // thread-specific pointer.
4867     unsigned OpFlags = 0;
4868     if (UsePlt)
4869       OpFlags = PPCII::MO_PLT;
4870 
4871     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4872     // every direct call is) turn it into a TargetGlobalAddress /
4873     // TargetExternalSymbol node so that legalize doesn't hack it.
4874     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4875                                         Callee.getValueType(), 0, OpFlags);
4876     needIndirectCall = false;
4877   }
4878 
4879   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4880     unsigned char OpFlags = 0;
4881 
4882     if (UsePlt)
4883       OpFlags = PPCII::MO_PLT;
4884 
4885     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4886                                          OpFlags);
4887     needIndirectCall = false;
4888   }
4889 
4890   if (isPatchPoint) {
4891     // We'll form an invalid direct call when lowering a patchpoint; the full
4892     // sequence for an indirect call is complicated, and many of the
4893     // instructions introduced might have side effects (and, thus, can't be
4894     // removed later). The call itself will be removed as soon as the
4895     // argument/return lowering is complete, so the fact that it has the wrong
4896     // kind of operands should not really matter.
4897     needIndirectCall = false;
4898   }
4899 
4900   if (needIndirectCall) {
4901     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4902     // to do the call, we can't use PPCISD::CALL.
4903     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4904 
4905     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4906       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4907       // entry point, but to the function descriptor (the function entry point
4908       // address is part of the function descriptor though).
4909       // The function descriptor is a three doubleword structure with the
4910       // following fields: function entry point, TOC base address and
4911       // environment pointer.
4912       // Thus for a call through a function pointer, the following actions need
4913       // to be performed:
4914       //   1. Save the TOC of the caller in the TOC save area of its stack
4915       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4916       //   2. Load the address of the function entry point from the function
4917       //      descriptor.
4918       //   3. Load the TOC of the callee from the function descriptor into r2.
4919       //   4. Load the environment pointer from the function descriptor into
4920       //      r11.
4921       //   5. Branch to the function entry point address.
4922       //   6. On return of the callee, the TOC of the caller needs to be
4923       //      restored (this is done in FinishCall()).
4924       //
4925       // The loads are scheduled at the beginning of the call sequence, and the
4926       // register copies are flagged together to ensure that no other
4927       // operations can be scheduled in between. E.g. without flagging the
4928       // copies together, a TOC access in the caller could be scheduled between
4929       // the assignment of the callee TOC and the branch to the callee, which
4930       // results in the TOC access going through the TOC of the callee instead
4931       // of going through the TOC of the caller, which leads to incorrect code.
4932 
4933       // Load the address of the function entry point from the function
4934       // descriptor.
4935       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4936       if (LDChain.getValueType() == MVT::Glue)
4937         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4938 
4939       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4940                           ? (MachineMemOperand::MODereferenceable |
4941                              MachineMemOperand::MOInvariant)
4942                           : MachineMemOperand::MONone;
4943 
4944       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4945       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4946                                         /* Alignment = */ 8, MMOFlags);
4947 
4948       // Load environment pointer into r11.
4949       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4950       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4951       SDValue LoadEnvPtr =
4952           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4953                       /* Alignment = */ 8, MMOFlags);
4954 
4955       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4956       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4957       SDValue TOCPtr =
4958           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4959                       /* Alignment = */ 8, MMOFlags);
4960 
4961       setUsesTOCBasePtr(DAG);
4962       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4963                                         InFlag);
4964       Chain = TOCVal.getValue(0);
4965       InFlag = TOCVal.getValue(1);
4966 
4967       // If the function call has an explicit 'nest' parameter, it takes the
4968       // place of the environment pointer.
4969       if (!hasNest) {
4970         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4971                                           InFlag);
4972 
4973         Chain = EnvVal.getValue(0);
4974         InFlag = EnvVal.getValue(1);
4975       }
4976 
4977       MTCTROps[0] = Chain;
4978       MTCTROps[1] = LoadFuncPtr;
4979       MTCTROps[2] = InFlag;
4980     }
4981 
4982     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4983                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4984     InFlag = Chain.getValue(1);
4985 
4986     NodeTys.clear();
4987     NodeTys.push_back(MVT::Other);
4988     NodeTys.push_back(MVT::Glue);
4989     Ops.push_back(Chain);
4990     CallOpc = PPCISD::BCTRL;
4991     Callee.setNode(nullptr);
4992     // Add use of X11 (holding environment pointer)
4993     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4994       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4995     // Add CTR register as callee so a bctr can be emitted later.
4996     if (isTailCall)
4997       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4998   }
4999 
5000   // If this is a direct call, pass the chain and the callee.
5001   if (Callee.getNode()) {
5002     Ops.push_back(Chain);
5003     Ops.push_back(Callee);
5004   }
5005   // If this is a tail call add stack pointer delta.
5006   if (isTailCall)
5007     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5008 
5009   // Add argument registers to the end of the list so that they are known live
5010   // into the call.
5011   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5012     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5013                                   RegsToPass[i].second.getValueType()));
5014 
5015   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5016   // into the call.
5017   // We do need to reserve X2 to appease the verifier for the PATCHPOINT.
5018   if (isSVR4ABI && isPPC64) {
5019     setUsesTOCBasePtr(DAG);
5020 
5021     // We cannot add X2 as an operand here for PATCHPOINT, because there is no
5022     // way to mark dependencies as implicit here. We will add the X2 dependency
5023     // in EmitInstrWithCustomInserter.
5024     if (!isPatchPoint)
5025       Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5026   }
5027 
5028   return CallOpc;
5029 }
5030 
5031 SDValue PPCTargetLowering::LowerCallResult(
5032     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5033     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5034     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5035   SmallVector<CCValAssign, 16> RVLocs;
5036   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5037                     *DAG.getContext());
5038 
5039   CCRetInfo.AnalyzeCallResult(
5040       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5041                ? RetCC_PPC_Cold
5042                : RetCC_PPC);
5043 
5044   // Copy all of the result registers out of their specified physreg.
5045   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5046     CCValAssign &VA = RVLocs[i];
5047     assert(VA.isRegLoc() && "Can only return in registers!");
5048 
5049     SDValue Val = DAG.getCopyFromReg(Chain, dl,
5050                                      VA.getLocReg(), VA.getLocVT(), InFlag);
5051     Chain = Val.getValue(1);
5052     InFlag = Val.getValue(2);
5053 
5054     switch (VA.getLocInfo()) {
5055     default: llvm_unreachable("Unknown loc info!");
5056     case CCValAssign::Full: break;
5057     case CCValAssign::AExt:
5058       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5059       break;
5060     case CCValAssign::ZExt:
5061       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5062                         DAG.getValueType(VA.getValVT()));
5063       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5064       break;
5065     case CCValAssign::SExt:
5066       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5067                         DAG.getValueType(VA.getValVT()));
5068       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5069       break;
5070     }
5071 
5072     InVals.push_back(Val);
5073   }
5074 
5075   return Chain;
5076 }
5077 
5078 SDValue PPCTargetLowering::FinishCall(
5079     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5080     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5081     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5082     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5083     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5084     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5085   std::vector<EVT> NodeTys;
5086   SmallVector<SDValue, 8> Ops;
5087   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5088                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5089                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5090 
5091   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5092   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5093     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5094 
5095   // When performing tail call optimization the callee pops its arguments off
5096   // the stack. Account for this here so these bytes can be pushed back on in
5097   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5098   int BytesCalleePops =
5099     (CallConv == CallingConv::Fast &&
5100      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5101 
5102   // Add a register mask operand representing the call-preserved registers.
5103   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5104   const uint32_t *Mask =
5105       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5106   assert(Mask && "Missing call preserved mask for calling convention");
5107   Ops.push_back(DAG.getRegisterMask(Mask));
5108 
5109   if (InFlag.getNode())
5110     Ops.push_back(InFlag);
5111 
5112   // Emit tail call.
5113   if (isTailCall) {
5114     assert(((Callee.getOpcode() == ISD::Register &&
5115              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5116             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5117             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5118             isa<ConstantSDNode>(Callee)) &&
5119     "Expecting an global address, external symbol, absolute value or register");
5120 
5121     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5122     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5123   }
5124 
5125   // Add a NOP immediately after the branch instruction when using the 64-bit
5126   // SVR4 ABI. At link time, if caller and callee are in a different module and
5127   // thus have a different TOC, the call will be replaced with a call to a stub
5128   // function which saves the current TOC, loads the TOC of the callee and
5129   // branches to the callee. The NOP will be replaced with a load instruction
5130   // which restores the TOC of the caller from the TOC save slot of the current
5131   // stack frame. If caller and callee belong to the same module (and have the
5132   // same TOC), the NOP will remain unchanged.
5133 
5134   MachineFunction &MF = DAG.getMachineFunction();
5135   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5136       !isPatchPoint) {
5137     if (CallOpc == PPCISD::BCTRL) {
5138       // This is a call through a function pointer.
5139       // Restore the caller TOC from the save area into R2.
5140       // See PrepareCall() for more information about calls through function
5141       // pointers in the 64-bit SVR4 ABI.
5142       // We are using a target-specific load with r2 hard coded, because the
5143       // result of a target-independent load would never go directly into r2,
5144       // since r2 is a reserved register (which prevents the register allocator
5145       // from allocating it), resulting in an additional register being
5146       // allocated and an unnecessary move instruction being generated.
5147       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5148 
5149       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5150       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5151       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5152       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5153       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5154 
5155       // The address needs to go after the chain input but before the flag (or
5156       // any other variadic arguments).
5157       Ops.insert(std::next(Ops.begin()), AddTOC);
5158     } else if (CallOpc == PPCISD::CALL &&
5159       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5160       // Otherwise insert NOP for non-local calls.
5161       CallOpc = PPCISD::CALL_NOP;
5162     }
5163   }
5164 
5165   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5166   InFlag = Chain.getValue(1);
5167 
5168   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5169                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5170                              InFlag, dl);
5171   if (!Ins.empty())
5172     InFlag = Chain.getValue(1);
5173 
5174   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5175                          Ins, dl, DAG, InVals);
5176 }
5177 
5178 SDValue
5179 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5180                              SmallVectorImpl<SDValue> &InVals) const {
5181   SelectionDAG &DAG                     = CLI.DAG;
5182   SDLoc &dl                             = CLI.DL;
5183   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5184   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5185   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5186   SDValue Chain                         = CLI.Chain;
5187   SDValue Callee                        = CLI.Callee;
5188   bool &isTailCall                      = CLI.IsTailCall;
5189   CallingConv::ID CallConv              = CLI.CallConv;
5190   bool isVarArg                         = CLI.IsVarArg;
5191   bool isPatchPoint                     = CLI.IsPatchPoint;
5192   ImmutableCallSite CS                  = CLI.CS;
5193 
5194   if (isTailCall) {
5195     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5196       isTailCall = false;
5197     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5198       isTailCall =
5199         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5200                                                  isVarArg, Outs, Ins, DAG);
5201     else
5202       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5203                                                      Ins, DAG);
5204     if (isTailCall) {
5205       ++NumTailCalls;
5206       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5207         ++NumSiblingCalls;
5208 
5209       assert(isa<GlobalAddressSDNode>(Callee) &&
5210              "Callee should be an llvm::Function object.");
5211       LLVM_DEBUG(
5212           const GlobalValue *GV =
5213               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5214           const unsigned Width =
5215               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5216           dbgs() << "TCO caller: "
5217                  << left_justify(DAG.getMachineFunction().getName(), Width)
5218                  << ", callee linkage: " << GV->getVisibility() << ", "
5219                  << GV->getLinkage() << "\n");
5220     }
5221   }
5222 
5223   if (!isTailCall && CS && CS.isMustTailCall())
5224     report_fatal_error("failed to perform tail call elimination on a call "
5225                        "site marked musttail");
5226 
5227   // When long calls (i.e. indirect calls) are always used, calls are always
5228   // made via function pointer. If we have a function name, first translate it
5229   // into a pointer.
5230   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5231       !isTailCall)
5232     Callee = LowerGlobalAddress(Callee, DAG);
5233 
5234   if (Subtarget.isSVR4ABI()) {
5235     if (Subtarget.isPPC64())
5236       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5237                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5238                               dl, DAG, InVals, CS);
5239     else
5240       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5241                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5242                               dl, DAG, InVals, CS);
5243   }
5244 
5245   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5246                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5247                           dl, DAG, InVals, CS);
5248 }
5249 
5250 SDValue PPCTargetLowering::LowerCall_32SVR4(
5251     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5252     bool isTailCall, bool isPatchPoint,
5253     const SmallVectorImpl<ISD::OutputArg> &Outs,
5254     const SmallVectorImpl<SDValue> &OutVals,
5255     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5256     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5257     ImmutableCallSite CS) const {
5258   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5259   // of the 32-bit SVR4 ABI stack frame layout.
5260 
5261   assert((CallConv == CallingConv::C ||
5262           CallConv == CallingConv::Cold ||
5263           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5264 
5265   unsigned PtrByteSize = 4;
5266 
5267   MachineFunction &MF = DAG.getMachineFunction();
5268 
5269   // Mark this function as potentially containing a function that contains a
5270   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5271   // and restoring the callers stack pointer in this functions epilog. This is
5272   // done because by tail calling the called function might overwrite the value
5273   // in this function's (MF) stack pointer stack slot 0(SP).
5274   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5275       CallConv == CallingConv::Fast)
5276     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5277 
5278   // Count how many bytes are to be pushed on the stack, including the linkage
5279   // area, parameter list area and the part of the local variable space which
5280   // contains copies of aggregates which are passed by value.
5281 
5282   // Assign locations to all of the outgoing arguments.
5283   SmallVector<CCValAssign, 16> ArgLocs;
5284   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5285 
5286   // Reserve space for the linkage area on the stack.
5287   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5288                        PtrByteSize);
5289   if (useSoftFloat())
5290     CCInfo.PreAnalyzeCallOperands(Outs);
5291 
5292   if (isVarArg) {
5293     // Handle fixed and variable vector arguments differently.
5294     // Fixed vector arguments go into registers as long as registers are
5295     // available. Variable vector arguments always go into memory.
5296     unsigned NumArgs = Outs.size();
5297 
5298     for (unsigned i = 0; i != NumArgs; ++i) {
5299       MVT ArgVT = Outs[i].VT;
5300       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5301       bool Result;
5302 
5303       if (Outs[i].IsFixed) {
5304         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5305                                CCInfo);
5306       } else {
5307         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5308                                       ArgFlags, CCInfo);
5309       }
5310 
5311       if (Result) {
5312 #ifndef NDEBUG
5313         errs() << "Call operand #" << i << " has unhandled type "
5314              << EVT(ArgVT).getEVTString() << "\n";
5315 #endif
5316         llvm_unreachable(nullptr);
5317       }
5318     }
5319   } else {
5320     // All arguments are treated the same.
5321     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5322   }
5323   CCInfo.clearWasPPCF128();
5324 
5325   // Assign locations to all of the outgoing aggregate by value arguments.
5326   SmallVector<CCValAssign, 16> ByValArgLocs;
5327   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5328 
5329   // Reserve stack space for the allocations in CCInfo.
5330   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5331 
5332   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5333 
5334   // Size of the linkage area, parameter list area and the part of the local
5335   // space variable where copies of aggregates which are passed by value are
5336   // stored.
5337   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5338 
5339   // Calculate by how many bytes the stack has to be adjusted in case of tail
5340   // call optimization.
5341   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5342 
5343   // Adjust the stack pointer for the new arguments...
5344   // These operations are automatically eliminated by the prolog/epilog pass
5345   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5346   SDValue CallSeqStart = Chain;
5347 
5348   // Load the return address and frame pointer so it can be moved somewhere else
5349   // later.
5350   SDValue LROp, FPOp;
5351   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5352 
5353   // Set up a copy of the stack pointer for use loading and storing any
5354   // arguments that may not fit in the registers available for argument
5355   // passing.
5356   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5357 
5358   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5359   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5360   SmallVector<SDValue, 8> MemOpChains;
5361 
5362   bool seenFloatArg = false;
5363   // Walk the register/memloc assignments, inserting copies/loads.
5364   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5365        i != e;
5366        ++i) {
5367     CCValAssign &VA = ArgLocs[i];
5368     SDValue Arg = OutVals[i];
5369     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5370 
5371     if (Flags.isByVal()) {
5372       // Argument is an aggregate which is passed by value, thus we need to
5373       // create a copy of it in the local variable space of the current stack
5374       // frame (which is the stack frame of the caller) and pass the address of
5375       // this copy to the callee.
5376       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5377       CCValAssign &ByValVA = ByValArgLocs[j++];
5378       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5379 
5380       // Memory reserved in the local variable space of the callers stack frame.
5381       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5382 
5383       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5384       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5385                            StackPtr, PtrOff);
5386 
5387       // Create a copy of the argument in the local area of the current
5388       // stack frame.
5389       SDValue MemcpyCall =
5390         CreateCopyOfByValArgument(Arg, PtrOff,
5391                                   CallSeqStart.getNode()->getOperand(0),
5392                                   Flags, DAG, dl);
5393 
5394       // This must go outside the CALLSEQ_START..END.
5395       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5396                                                      SDLoc(MemcpyCall));
5397       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5398                              NewCallSeqStart.getNode());
5399       Chain = CallSeqStart = NewCallSeqStart;
5400 
5401       // Pass the address of the aggregate copy on the stack either in a
5402       // physical register or in the parameter list area of the current stack
5403       // frame to the callee.
5404       Arg = PtrOff;
5405     }
5406 
5407     // When useCRBits() is true, there can be i1 arguments.
5408     // It is because getRegisterType(MVT::i1) => MVT::i1,
5409     // and for other integer types getRegisterType() => MVT::i32.
5410     // Extend i1 and ensure callee will get i32.
5411     if (Arg.getValueType() == MVT::i1)
5412       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5413                         dl, MVT::i32, Arg);
5414 
5415     if (VA.isRegLoc()) {
5416       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5417       // Put argument in a physical register.
5418       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5419     } else {
5420       // Put argument in the parameter list area of the current stack frame.
5421       assert(VA.isMemLoc());
5422       unsigned LocMemOffset = VA.getLocMemOffset();
5423 
5424       if (!isTailCall) {
5425         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5426         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5427                              StackPtr, PtrOff);
5428 
5429         MemOpChains.push_back(
5430             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5431       } else {
5432         // Calculate and remember argument location.
5433         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5434                                  TailCallArguments);
5435       }
5436     }
5437   }
5438 
5439   if (!MemOpChains.empty())
5440     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5441 
5442   // Build a sequence of copy-to-reg nodes chained together with token chain
5443   // and flag operands which copy the outgoing args into the appropriate regs.
5444   SDValue InFlag;
5445   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5446     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5447                              RegsToPass[i].second, InFlag);
5448     InFlag = Chain.getValue(1);
5449   }
5450 
5451   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5452   // registers.
5453   if (isVarArg) {
5454     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5455     SDValue Ops[] = { Chain, InFlag };
5456 
5457     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5458                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5459 
5460     InFlag = Chain.getValue(1);
5461   }
5462 
5463   if (isTailCall)
5464     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5465                     TailCallArguments);
5466 
5467   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5468                     /* unused except on PPC64 ELFv1 */ false, DAG,
5469                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5470                     NumBytes, Ins, InVals, CS);
5471 }
5472 
5473 // Copy an argument into memory, being careful to do this outside the
5474 // call sequence for the call to which the argument belongs.
5475 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5476     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5477     SelectionDAG &DAG, const SDLoc &dl) const {
5478   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5479                         CallSeqStart.getNode()->getOperand(0),
5480                         Flags, DAG, dl);
5481   // The MEMCPY must go outside the CALLSEQ_START..END.
5482   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5483   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5484                                                  SDLoc(MemcpyCall));
5485   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5486                          NewCallSeqStart.getNode());
5487   return NewCallSeqStart;
5488 }
5489 
5490 SDValue PPCTargetLowering::LowerCall_64SVR4(
5491     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5492     bool isTailCall, bool isPatchPoint,
5493     const SmallVectorImpl<ISD::OutputArg> &Outs,
5494     const SmallVectorImpl<SDValue> &OutVals,
5495     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5496     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5497     ImmutableCallSite CS) const {
5498   bool isELFv2ABI = Subtarget.isELFv2ABI();
5499   bool isLittleEndian = Subtarget.isLittleEndian();
5500   unsigned NumOps = Outs.size();
5501   bool hasNest = false;
5502   bool IsSibCall = false;
5503 
5504   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5505   unsigned PtrByteSize = 8;
5506 
5507   MachineFunction &MF = DAG.getMachineFunction();
5508 
5509   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5510     IsSibCall = true;
5511 
5512   // Mark this function as potentially containing a function that contains a
5513   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5514   // and restoring the callers stack pointer in this functions epilog. This is
5515   // done because by tail calling the called function might overwrite the value
5516   // in this function's (MF) stack pointer stack slot 0(SP).
5517   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5518       CallConv == CallingConv::Fast)
5519     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5520 
5521   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5522          "fastcc not supported on varargs functions");
5523 
5524   // Count how many bytes are to be pushed on the stack, including the linkage
5525   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5526   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5527   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5528   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5529   unsigned NumBytes = LinkageSize;
5530   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5531   unsigned &QFPR_idx = FPR_idx;
5532 
5533   static const MCPhysReg GPR[] = {
5534     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5535     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5536   };
5537   static const MCPhysReg VR[] = {
5538     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5539     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5540   };
5541 
5542   const unsigned NumGPRs = array_lengthof(GPR);
5543   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5544   const unsigned NumVRs  = array_lengthof(VR);
5545   const unsigned NumQFPRs = NumFPRs;
5546 
5547   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5548   // can be passed to the callee in registers.
5549   // For the fast calling convention, there is another check below.
5550   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5551   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5552   if (!HasParameterArea) {
5553     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5554     unsigned AvailableFPRs = NumFPRs;
5555     unsigned AvailableVRs = NumVRs;
5556     unsigned NumBytesTmp = NumBytes;
5557     for (unsigned i = 0; i != NumOps; ++i) {
5558       if (Outs[i].Flags.isNest()) continue;
5559       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5560                                 PtrByteSize, LinkageSize, ParamAreaSize,
5561                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5562                                 Subtarget.hasQPX()))
5563         HasParameterArea = true;
5564     }
5565   }
5566 
5567   // When using the fast calling convention, we don't provide backing for
5568   // arguments that will be in registers.
5569   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5570 
5571   // Avoid allocating parameter area for fastcc functions if all the arguments
5572   // can be passed in the registers.
5573   if (CallConv == CallingConv::Fast)
5574     HasParameterArea = false;
5575 
5576   // Add up all the space actually used.
5577   for (unsigned i = 0; i != NumOps; ++i) {
5578     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5579     EVT ArgVT = Outs[i].VT;
5580     EVT OrigVT = Outs[i].ArgVT;
5581 
5582     if (Flags.isNest())
5583       continue;
5584 
5585     if (CallConv == CallingConv::Fast) {
5586       if (Flags.isByVal()) {
5587         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5588         if (NumGPRsUsed > NumGPRs)
5589           HasParameterArea = true;
5590       } else {
5591         switch (ArgVT.getSimpleVT().SimpleTy) {
5592         default: llvm_unreachable("Unexpected ValueType for argument!");
5593         case MVT::i1:
5594         case MVT::i32:
5595         case MVT::i64:
5596           if (++NumGPRsUsed <= NumGPRs)
5597             continue;
5598           break;
5599         case MVT::v4i32:
5600         case MVT::v8i16:
5601         case MVT::v16i8:
5602         case MVT::v2f64:
5603         case MVT::v2i64:
5604         case MVT::v1i128:
5605         case MVT::f128:
5606           if (++NumVRsUsed <= NumVRs)
5607             continue;
5608           break;
5609         case MVT::v4f32:
5610           // When using QPX, this is handled like a FP register, otherwise, it
5611           // is an Altivec register.
5612           if (Subtarget.hasQPX()) {
5613             if (++NumFPRsUsed <= NumFPRs)
5614               continue;
5615           } else {
5616             if (++NumVRsUsed <= NumVRs)
5617               continue;
5618           }
5619           break;
5620         case MVT::f32:
5621         case MVT::f64:
5622         case MVT::v4f64: // QPX
5623         case MVT::v4i1:  // QPX
5624           if (++NumFPRsUsed <= NumFPRs)
5625             continue;
5626           break;
5627         }
5628         HasParameterArea = true;
5629       }
5630     }
5631 
5632     /* Respect alignment of argument on the stack.  */
5633     unsigned Align =
5634       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5635     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5636 
5637     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5638     if (Flags.isInConsecutiveRegsLast())
5639       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5640   }
5641 
5642   unsigned NumBytesActuallyUsed = NumBytes;
5643 
5644   // In the old ELFv1 ABI,
5645   // the prolog code of the callee may store up to 8 GPR argument registers to
5646   // the stack, allowing va_start to index over them in memory if its varargs.
5647   // Because we cannot tell if this is needed on the caller side, we have to
5648   // conservatively assume that it is needed.  As such, make sure we have at
5649   // least enough stack space for the caller to store the 8 GPRs.
5650   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5651   // really requires memory operands, e.g. a vararg function.
5652   if (HasParameterArea)
5653     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5654   else
5655     NumBytes = LinkageSize;
5656 
5657   // Tail call needs the stack to be aligned.
5658   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5659       CallConv == CallingConv::Fast)
5660     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5661 
5662   int SPDiff = 0;
5663 
5664   // Calculate by how many bytes the stack has to be adjusted in case of tail
5665   // call optimization.
5666   if (!IsSibCall)
5667     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5668 
5669   // To protect arguments on the stack from being clobbered in a tail call,
5670   // force all the loads to happen before doing any other lowering.
5671   if (isTailCall)
5672     Chain = DAG.getStackArgumentTokenFactor(Chain);
5673 
5674   // Adjust the stack pointer for the new arguments...
5675   // These operations are automatically eliminated by the prolog/epilog pass
5676   if (!IsSibCall)
5677     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5678   SDValue CallSeqStart = Chain;
5679 
5680   // Load the return address and frame pointer so it can be move somewhere else
5681   // later.
5682   SDValue LROp, FPOp;
5683   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5684 
5685   // Set up a copy of the stack pointer for use loading and storing any
5686   // arguments that may not fit in the registers available for argument
5687   // passing.
5688   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5689 
5690   // Figure out which arguments are going to go in registers, and which in
5691   // memory.  Also, if this is a vararg function, floating point operations
5692   // must be stored to our stack, and loaded into integer regs as well, if
5693   // any integer regs are available for argument passing.
5694   unsigned ArgOffset = LinkageSize;
5695 
5696   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5697   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5698 
5699   SmallVector<SDValue, 8> MemOpChains;
5700   for (unsigned i = 0; i != NumOps; ++i) {
5701     SDValue Arg = OutVals[i];
5702     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5703     EVT ArgVT = Outs[i].VT;
5704     EVT OrigVT = Outs[i].ArgVT;
5705 
5706     // PtrOff will be used to store the current argument to the stack if a
5707     // register cannot be found for it.
5708     SDValue PtrOff;
5709 
5710     // We re-align the argument offset for each argument, except when using the
5711     // fast calling convention, when we need to make sure we do that only when
5712     // we'll actually use a stack slot.
5713     auto ComputePtrOff = [&]() {
5714       /* Respect alignment of argument on the stack.  */
5715       unsigned Align =
5716         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5717       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5718 
5719       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5720 
5721       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5722     };
5723 
5724     if (CallConv != CallingConv::Fast) {
5725       ComputePtrOff();
5726 
5727       /* Compute GPR index associated with argument offset.  */
5728       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5729       GPR_idx = std::min(GPR_idx, NumGPRs);
5730     }
5731 
5732     // Promote integers to 64-bit values.
5733     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5734       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5735       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5736       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5737     }
5738 
5739     // FIXME memcpy is used way more than necessary.  Correctness first.
5740     // Note: "by value" is code for passing a structure by value, not
5741     // basic types.
5742     if (Flags.isByVal()) {
5743       // Note: Size includes alignment padding, so
5744       //   struct x { short a; char b; }
5745       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5746       // These are the proper values we need for right-justifying the
5747       // aggregate in a parameter register.
5748       unsigned Size = Flags.getByValSize();
5749 
5750       // An empty aggregate parameter takes up no storage and no
5751       // registers.
5752       if (Size == 0)
5753         continue;
5754 
5755       if (CallConv == CallingConv::Fast)
5756         ComputePtrOff();
5757 
5758       // All aggregates smaller than 8 bytes must be passed right-justified.
5759       if (Size==1 || Size==2 || Size==4) {
5760         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5761         if (GPR_idx != NumGPRs) {
5762           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5763                                         MachinePointerInfo(), VT);
5764           MemOpChains.push_back(Load.getValue(1));
5765           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5766 
5767           ArgOffset += PtrByteSize;
5768           continue;
5769         }
5770       }
5771 
5772       if (GPR_idx == NumGPRs && Size < 8) {
5773         SDValue AddPtr = PtrOff;
5774         if (!isLittleEndian) {
5775           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5776                                           PtrOff.getValueType());
5777           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5778         }
5779         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5780                                                           CallSeqStart,
5781                                                           Flags, DAG, dl);
5782         ArgOffset += PtrByteSize;
5783         continue;
5784       }
5785       // Copy entire object into memory.  There are cases where gcc-generated
5786       // code assumes it is there, even if it could be put entirely into
5787       // registers.  (This is not what the doc says.)
5788 
5789       // FIXME: The above statement is likely due to a misunderstanding of the
5790       // documents.  All arguments must be copied into the parameter area BY
5791       // THE CALLEE in the event that the callee takes the address of any
5792       // formal argument.  That has not yet been implemented.  However, it is
5793       // reasonable to use the stack area as a staging area for the register
5794       // load.
5795 
5796       // Skip this for small aggregates, as we will use the same slot for a
5797       // right-justified copy, below.
5798       if (Size >= 8)
5799         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5800                                                           CallSeqStart,
5801                                                           Flags, DAG, dl);
5802 
5803       // When a register is available, pass a small aggregate right-justified.
5804       if (Size < 8 && GPR_idx != NumGPRs) {
5805         // The easiest way to get this right-justified in a register
5806         // is to copy the structure into the rightmost portion of a
5807         // local variable slot, then load the whole slot into the
5808         // register.
5809         // FIXME: The memcpy seems to produce pretty awful code for
5810         // small aggregates, particularly for packed ones.
5811         // FIXME: It would be preferable to use the slot in the
5812         // parameter save area instead of a new local variable.
5813         SDValue AddPtr = PtrOff;
5814         if (!isLittleEndian) {
5815           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5816           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5817         }
5818         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5819                                                           CallSeqStart,
5820                                                           Flags, DAG, dl);
5821 
5822         // Load the slot into the register.
5823         SDValue Load =
5824             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5825         MemOpChains.push_back(Load.getValue(1));
5826         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5827 
5828         // Done with this argument.
5829         ArgOffset += PtrByteSize;
5830         continue;
5831       }
5832 
5833       // For aggregates larger than PtrByteSize, copy the pieces of the
5834       // object that fit into registers from the parameter save area.
5835       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5836         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5837         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5838         if (GPR_idx != NumGPRs) {
5839           SDValue Load =
5840               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5841           MemOpChains.push_back(Load.getValue(1));
5842           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5843           ArgOffset += PtrByteSize;
5844         } else {
5845           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5846           break;
5847         }
5848       }
5849       continue;
5850     }
5851 
5852     switch (Arg.getSimpleValueType().SimpleTy) {
5853     default: llvm_unreachable("Unexpected ValueType for argument!");
5854     case MVT::i1:
5855     case MVT::i32:
5856     case MVT::i64:
5857       if (Flags.isNest()) {
5858         // The 'nest' parameter, if any, is passed in R11.
5859         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5860         hasNest = true;
5861         break;
5862       }
5863 
5864       // These can be scalar arguments or elements of an integer array type
5865       // passed directly.  Clang may use those instead of "byval" aggregate
5866       // types to avoid forcing arguments to memory unnecessarily.
5867       if (GPR_idx != NumGPRs) {
5868         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5869       } else {
5870         if (CallConv == CallingConv::Fast)
5871           ComputePtrOff();
5872 
5873         assert(HasParameterArea &&
5874                "Parameter area must exist to pass an argument in memory.");
5875         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5876                          true, isTailCall, false, MemOpChains,
5877                          TailCallArguments, dl);
5878         if (CallConv == CallingConv::Fast)
5879           ArgOffset += PtrByteSize;
5880       }
5881       if (CallConv != CallingConv::Fast)
5882         ArgOffset += PtrByteSize;
5883       break;
5884     case MVT::f32:
5885     case MVT::f64: {
5886       // These can be scalar arguments or elements of a float array type
5887       // passed directly.  The latter are used to implement ELFv2 homogenous
5888       // float aggregates.
5889 
5890       // Named arguments go into FPRs first, and once they overflow, the
5891       // remaining arguments go into GPRs and then the parameter save area.
5892       // Unnamed arguments for vararg functions always go to GPRs and
5893       // then the parameter save area.  For now, put all arguments to vararg
5894       // routines always in both locations (FPR *and* GPR or stack slot).
5895       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5896       bool NeededLoad = false;
5897 
5898       // First load the argument into the next available FPR.
5899       if (FPR_idx != NumFPRs)
5900         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5901 
5902       // Next, load the argument into GPR or stack slot if needed.
5903       if (!NeedGPROrStack)
5904         ;
5905       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5906         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5907         // once we support fp <-> gpr moves.
5908 
5909         // In the non-vararg case, this can only ever happen in the
5910         // presence of f32 array types, since otherwise we never run
5911         // out of FPRs before running out of GPRs.
5912         SDValue ArgVal;
5913 
5914         // Double values are always passed in a single GPR.
5915         if (Arg.getValueType() != MVT::f32) {
5916           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5917 
5918         // Non-array float values are extended and passed in a GPR.
5919         } else if (!Flags.isInConsecutiveRegs()) {
5920           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5921           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5922 
5923         // If we have an array of floats, we collect every odd element
5924         // together with its predecessor into one GPR.
5925         } else if (ArgOffset % PtrByteSize != 0) {
5926           SDValue Lo, Hi;
5927           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5928           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5929           if (!isLittleEndian)
5930             std::swap(Lo, Hi);
5931           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5932 
5933         // The final element, if even, goes into the first half of a GPR.
5934         } else if (Flags.isInConsecutiveRegsLast()) {
5935           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5936           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5937           if (!isLittleEndian)
5938             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5939                                  DAG.getConstant(32, dl, MVT::i32));
5940 
5941         // Non-final even elements are skipped; they will be handled
5942         // together the with subsequent argument on the next go-around.
5943         } else
5944           ArgVal = SDValue();
5945 
5946         if (ArgVal.getNode())
5947           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5948       } else {
5949         if (CallConv == CallingConv::Fast)
5950           ComputePtrOff();
5951 
5952         // Single-precision floating-point values are mapped to the
5953         // second (rightmost) word of the stack doubleword.
5954         if (Arg.getValueType() == MVT::f32 &&
5955             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5956           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5957           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5958         }
5959 
5960         assert(HasParameterArea &&
5961                "Parameter area must exist to pass an argument in memory.");
5962         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5963                          true, isTailCall, false, MemOpChains,
5964                          TailCallArguments, dl);
5965 
5966         NeededLoad = true;
5967       }
5968       // When passing an array of floats, the array occupies consecutive
5969       // space in the argument area; only round up to the next doubleword
5970       // at the end of the array.  Otherwise, each float takes 8 bytes.
5971       if (CallConv != CallingConv::Fast || NeededLoad) {
5972         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5973                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5974         if (Flags.isInConsecutiveRegsLast())
5975           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5976       }
5977       break;
5978     }
5979     case MVT::v4f32:
5980     case MVT::v4i32:
5981     case MVT::v8i16:
5982     case MVT::v16i8:
5983     case MVT::v2f64:
5984     case MVT::v2i64:
5985     case MVT::v1i128:
5986     case MVT::f128:
5987       if (!Subtarget.hasQPX()) {
5988       // These can be scalar arguments or elements of a vector array type
5989       // passed directly.  The latter are used to implement ELFv2 homogenous
5990       // vector aggregates.
5991 
5992       // For a varargs call, named arguments go into VRs or on the stack as
5993       // usual; unnamed arguments always go to the stack or the corresponding
5994       // GPRs when within range.  For now, we always put the value in both
5995       // locations (or even all three).
5996       if (isVarArg) {
5997         assert(HasParameterArea &&
5998                "Parameter area must exist if we have a varargs call.");
5999         // We could elide this store in the case where the object fits
6000         // entirely in R registers.  Maybe later.
6001         SDValue Store =
6002             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6003         MemOpChains.push_back(Store);
6004         if (VR_idx != NumVRs) {
6005           SDValue Load =
6006               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6007           MemOpChains.push_back(Load.getValue(1));
6008           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6009         }
6010         ArgOffset += 16;
6011         for (unsigned i=0; i<16; i+=PtrByteSize) {
6012           if (GPR_idx == NumGPRs)
6013             break;
6014           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6015                                    DAG.getConstant(i, dl, PtrVT));
6016           SDValue Load =
6017               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6018           MemOpChains.push_back(Load.getValue(1));
6019           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6020         }
6021         break;
6022       }
6023 
6024       // Non-varargs Altivec params go into VRs or on the stack.
6025       if (VR_idx != NumVRs) {
6026         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6027       } else {
6028         if (CallConv == CallingConv::Fast)
6029           ComputePtrOff();
6030 
6031         assert(HasParameterArea &&
6032                "Parameter area must exist to pass an argument in memory.");
6033         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6034                          true, isTailCall, true, MemOpChains,
6035                          TailCallArguments, dl);
6036         if (CallConv == CallingConv::Fast)
6037           ArgOffset += 16;
6038       }
6039 
6040       if (CallConv != CallingConv::Fast)
6041         ArgOffset += 16;
6042       break;
6043       } // not QPX
6044 
6045       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6046              "Invalid QPX parameter type");
6047 
6048       LLVM_FALLTHROUGH;
6049     case MVT::v4f64:
6050     case MVT::v4i1: {
6051       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6052       if (isVarArg) {
6053         assert(HasParameterArea &&
6054                "Parameter area must exist if we have a varargs call.");
6055         // We could elide this store in the case where the object fits
6056         // entirely in R registers.  Maybe later.
6057         SDValue Store =
6058             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6059         MemOpChains.push_back(Store);
6060         if (QFPR_idx != NumQFPRs) {
6061           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6062                                      PtrOff, MachinePointerInfo());
6063           MemOpChains.push_back(Load.getValue(1));
6064           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6065         }
6066         ArgOffset += (IsF32 ? 16 : 32);
6067         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6068           if (GPR_idx == NumGPRs)
6069             break;
6070           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6071                                    DAG.getConstant(i, dl, PtrVT));
6072           SDValue Load =
6073               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6074           MemOpChains.push_back(Load.getValue(1));
6075           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6076         }
6077         break;
6078       }
6079 
6080       // Non-varargs QPX params go into registers or on the stack.
6081       if (QFPR_idx != NumQFPRs) {
6082         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6083       } else {
6084         if (CallConv == CallingConv::Fast)
6085           ComputePtrOff();
6086 
6087         assert(HasParameterArea &&
6088                "Parameter area must exist to pass an argument in memory.");
6089         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6090                          true, isTailCall, true, MemOpChains,
6091                          TailCallArguments, dl);
6092         if (CallConv == CallingConv::Fast)
6093           ArgOffset += (IsF32 ? 16 : 32);
6094       }
6095 
6096       if (CallConv != CallingConv::Fast)
6097         ArgOffset += (IsF32 ? 16 : 32);
6098       break;
6099       }
6100     }
6101   }
6102 
6103   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6104          "mismatch in size of parameter area");
6105   (void)NumBytesActuallyUsed;
6106 
6107   if (!MemOpChains.empty())
6108     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6109 
6110   // Check if this is an indirect call (MTCTR/BCTRL).
6111   // See PrepareCall() for more information about calls through function
6112   // pointers in the 64-bit SVR4 ABI.
6113   if (!isTailCall && !isPatchPoint &&
6114       !isFunctionGlobalAddress(Callee) &&
6115       !isa<ExternalSymbolSDNode>(Callee)) {
6116     // Load r2 into a virtual register and store it to the TOC save area.
6117     setUsesTOCBasePtr(DAG);
6118     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6119     // TOC save area offset.
6120     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6121     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6122     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6123     Chain = DAG.getStore(
6124         Val.getValue(1), dl, Val, AddPtr,
6125         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6126     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6127     // This does not mean the MTCTR instruction must use R12; it's easier
6128     // to model this as an extra parameter, so do that.
6129     if (isELFv2ABI && !isPatchPoint)
6130       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6131   }
6132 
6133   // Build a sequence of copy-to-reg nodes chained together with token chain
6134   // and flag operands which copy the outgoing args into the appropriate regs.
6135   SDValue InFlag;
6136   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6137     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6138                              RegsToPass[i].second, InFlag);
6139     InFlag = Chain.getValue(1);
6140   }
6141 
6142   if (isTailCall && !IsSibCall)
6143     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6144                     TailCallArguments);
6145 
6146   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6147                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6148                     SPDiff, NumBytes, Ins, InVals, CS);
6149 }
6150 
6151 SDValue PPCTargetLowering::LowerCall_Darwin(
6152     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6153     bool isTailCall, bool isPatchPoint,
6154     const SmallVectorImpl<ISD::OutputArg> &Outs,
6155     const SmallVectorImpl<SDValue> &OutVals,
6156     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6157     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6158     ImmutableCallSite CS) const {
6159   unsigned NumOps = Outs.size();
6160 
6161   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6162   bool isPPC64 = PtrVT == MVT::i64;
6163   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6164 
6165   MachineFunction &MF = DAG.getMachineFunction();
6166 
6167   // Mark this function as potentially containing a function that contains a
6168   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6169   // and restoring the callers stack pointer in this functions epilog. This is
6170   // done because by tail calling the called function might overwrite the value
6171   // in this function's (MF) stack pointer stack slot 0(SP).
6172   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6173       CallConv == CallingConv::Fast)
6174     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6175 
6176   // Count how many bytes are to be pushed on the stack, including the linkage
6177   // area, and parameter passing area.  We start with 24/48 bytes, which is
6178   // prereserved space for [SP][CR][LR][3 x unused].
6179   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6180   unsigned NumBytes = LinkageSize;
6181 
6182   // Add up all the space actually used.
6183   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6184   // they all go in registers, but we must reserve stack space for them for
6185   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6186   // assigned stack space in order, with padding so Altivec parameters are
6187   // 16-byte aligned.
6188   unsigned nAltivecParamsAtEnd = 0;
6189   for (unsigned i = 0; i != NumOps; ++i) {
6190     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6191     EVT ArgVT = Outs[i].VT;
6192     // Varargs Altivec parameters are padded to a 16 byte boundary.
6193     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6194         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6195         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6196       if (!isVarArg && !isPPC64) {
6197         // Non-varargs Altivec parameters go after all the non-Altivec
6198         // parameters; handle those later so we know how much padding we need.
6199         nAltivecParamsAtEnd++;
6200         continue;
6201       }
6202       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6203       NumBytes = ((NumBytes+15)/16)*16;
6204     }
6205     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6206   }
6207 
6208   // Allow for Altivec parameters at the end, if needed.
6209   if (nAltivecParamsAtEnd) {
6210     NumBytes = ((NumBytes+15)/16)*16;
6211     NumBytes += 16*nAltivecParamsAtEnd;
6212   }
6213 
6214   // The prolog code of the callee may store up to 8 GPR argument registers to
6215   // the stack, allowing va_start to index over them in memory if its varargs.
6216   // Because we cannot tell if this is needed on the caller side, we have to
6217   // conservatively assume that it is needed.  As such, make sure we have at
6218   // least enough stack space for the caller to store the 8 GPRs.
6219   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6220 
6221   // Tail call needs the stack to be aligned.
6222   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6223       CallConv == CallingConv::Fast)
6224     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6225 
6226   // Calculate by how many bytes the stack has to be adjusted in case of tail
6227   // call optimization.
6228   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6229 
6230   // To protect arguments on the stack from being clobbered in a tail call,
6231   // force all the loads to happen before doing any other lowering.
6232   if (isTailCall)
6233     Chain = DAG.getStackArgumentTokenFactor(Chain);
6234 
6235   // Adjust the stack pointer for the new arguments...
6236   // These operations are automatically eliminated by the prolog/epilog pass
6237   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6238   SDValue CallSeqStart = Chain;
6239 
6240   // Load the return address and frame pointer so it can be move somewhere else
6241   // later.
6242   SDValue LROp, FPOp;
6243   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6244 
6245   // Set up a copy of the stack pointer for use loading and storing any
6246   // arguments that may not fit in the registers available for argument
6247   // passing.
6248   SDValue StackPtr;
6249   if (isPPC64)
6250     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6251   else
6252     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6253 
6254   // Figure out which arguments are going to go in registers, and which in
6255   // memory.  Also, if this is a vararg function, floating point operations
6256   // must be stored to our stack, and loaded into integer regs as well, if
6257   // any integer regs are available for argument passing.
6258   unsigned ArgOffset = LinkageSize;
6259   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6260 
6261   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6262     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6263     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6264   };
6265   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6266     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6267     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6268   };
6269   static const MCPhysReg VR[] = {
6270     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6271     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6272   };
6273   const unsigned NumGPRs = array_lengthof(GPR_32);
6274   const unsigned NumFPRs = 13;
6275   const unsigned NumVRs  = array_lengthof(VR);
6276 
6277   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6278 
6279   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6280   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6281 
6282   SmallVector<SDValue, 8> MemOpChains;
6283   for (unsigned i = 0; i != NumOps; ++i) {
6284     SDValue Arg = OutVals[i];
6285     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6286 
6287     // PtrOff will be used to store the current argument to the stack if a
6288     // register cannot be found for it.
6289     SDValue PtrOff;
6290 
6291     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6292 
6293     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6294 
6295     // On PPC64, promote integers to 64-bit values.
6296     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6297       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6298       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6299       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6300     }
6301 
6302     // FIXME memcpy is used way more than necessary.  Correctness first.
6303     // Note: "by value" is code for passing a structure by value, not
6304     // basic types.
6305     if (Flags.isByVal()) {
6306       unsigned Size = Flags.getByValSize();
6307       // Very small objects are passed right-justified.  Everything else is
6308       // passed left-justified.
6309       if (Size==1 || Size==2) {
6310         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6311         if (GPR_idx != NumGPRs) {
6312           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6313                                         MachinePointerInfo(), VT);
6314           MemOpChains.push_back(Load.getValue(1));
6315           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6316 
6317           ArgOffset += PtrByteSize;
6318         } else {
6319           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6320                                           PtrOff.getValueType());
6321           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6322           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6323                                                             CallSeqStart,
6324                                                             Flags, DAG, dl);
6325           ArgOffset += PtrByteSize;
6326         }
6327         continue;
6328       }
6329       // Copy entire object into memory.  There are cases where gcc-generated
6330       // code assumes it is there, even if it could be put entirely into
6331       // registers.  (This is not what the doc says.)
6332       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6333                                                         CallSeqStart,
6334                                                         Flags, DAG, dl);
6335 
6336       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6337       // copy the pieces of the object that fit into registers from the
6338       // parameter save area.
6339       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6340         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6341         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6342         if (GPR_idx != NumGPRs) {
6343           SDValue Load =
6344               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6345           MemOpChains.push_back(Load.getValue(1));
6346           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6347           ArgOffset += PtrByteSize;
6348         } else {
6349           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6350           break;
6351         }
6352       }
6353       continue;
6354     }
6355 
6356     switch (Arg.getSimpleValueType().SimpleTy) {
6357     default: llvm_unreachable("Unexpected ValueType for argument!");
6358     case MVT::i1:
6359     case MVT::i32:
6360     case MVT::i64:
6361       if (GPR_idx != NumGPRs) {
6362         if (Arg.getValueType() == MVT::i1)
6363           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6364 
6365         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6366       } else {
6367         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6368                          isPPC64, isTailCall, false, MemOpChains,
6369                          TailCallArguments, dl);
6370       }
6371       ArgOffset += PtrByteSize;
6372       break;
6373     case MVT::f32:
6374     case MVT::f64:
6375       if (FPR_idx != NumFPRs) {
6376         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6377 
6378         if (isVarArg) {
6379           SDValue Store =
6380               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6381           MemOpChains.push_back(Store);
6382 
6383           // Float varargs are always shadowed in available integer registers
6384           if (GPR_idx != NumGPRs) {
6385             SDValue Load =
6386                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6387             MemOpChains.push_back(Load.getValue(1));
6388             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6389           }
6390           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6391             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6392             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6393             SDValue Load =
6394                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6395             MemOpChains.push_back(Load.getValue(1));
6396             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6397           }
6398         } else {
6399           // If we have any FPRs remaining, we may also have GPRs remaining.
6400           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6401           // GPRs.
6402           if (GPR_idx != NumGPRs)
6403             ++GPR_idx;
6404           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6405               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6406             ++GPR_idx;
6407         }
6408       } else
6409         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6410                          isPPC64, isTailCall, false, MemOpChains,
6411                          TailCallArguments, dl);
6412       if (isPPC64)
6413         ArgOffset += 8;
6414       else
6415         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6416       break;
6417     case MVT::v4f32:
6418     case MVT::v4i32:
6419     case MVT::v8i16:
6420     case MVT::v16i8:
6421       if (isVarArg) {
6422         // These go aligned on the stack, or in the corresponding R registers
6423         // when within range.  The Darwin PPC ABI doc claims they also go in
6424         // V registers; in fact gcc does this only for arguments that are
6425         // prototyped, not for those that match the ...  We do it for all
6426         // arguments, seems to work.
6427         while (ArgOffset % 16 !=0) {
6428           ArgOffset += PtrByteSize;
6429           if (GPR_idx != NumGPRs)
6430             GPR_idx++;
6431         }
6432         // We could elide this store in the case where the object fits
6433         // entirely in R registers.  Maybe later.
6434         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6435                              DAG.getConstant(ArgOffset, dl, PtrVT));
6436         SDValue Store =
6437             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6438         MemOpChains.push_back(Store);
6439         if (VR_idx != NumVRs) {
6440           SDValue Load =
6441               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6442           MemOpChains.push_back(Load.getValue(1));
6443           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6444         }
6445         ArgOffset += 16;
6446         for (unsigned i=0; i<16; i+=PtrByteSize) {
6447           if (GPR_idx == NumGPRs)
6448             break;
6449           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6450                                    DAG.getConstant(i, dl, PtrVT));
6451           SDValue Load =
6452               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6453           MemOpChains.push_back(Load.getValue(1));
6454           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6455         }
6456         break;
6457       }
6458 
6459       // Non-varargs Altivec params generally go in registers, but have
6460       // stack space allocated at the end.
6461       if (VR_idx != NumVRs) {
6462         // Doesn't have GPR space allocated.
6463         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6464       } else if (nAltivecParamsAtEnd==0) {
6465         // We are emitting Altivec params in order.
6466         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6467                          isPPC64, isTailCall, true, MemOpChains,
6468                          TailCallArguments, dl);
6469         ArgOffset += 16;
6470       }
6471       break;
6472     }
6473   }
6474   // If all Altivec parameters fit in registers, as they usually do,
6475   // they get stack space following the non-Altivec parameters.  We
6476   // don't track this here because nobody below needs it.
6477   // If there are more Altivec parameters than fit in registers emit
6478   // the stores here.
6479   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6480     unsigned j = 0;
6481     // Offset is aligned; skip 1st 12 params which go in V registers.
6482     ArgOffset = ((ArgOffset+15)/16)*16;
6483     ArgOffset += 12*16;
6484     for (unsigned i = 0; i != NumOps; ++i) {
6485       SDValue Arg = OutVals[i];
6486       EVT ArgType = Outs[i].VT;
6487       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6488           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6489         if (++j > NumVRs) {
6490           SDValue PtrOff;
6491           // We are emitting Altivec params in order.
6492           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6493                            isPPC64, isTailCall, true, MemOpChains,
6494                            TailCallArguments, dl);
6495           ArgOffset += 16;
6496         }
6497       }
6498     }
6499   }
6500 
6501   if (!MemOpChains.empty())
6502     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6503 
6504   // On Darwin, R12 must contain the address of an indirect callee.  This does
6505   // not mean the MTCTR instruction must use R12; it's easier to model this as
6506   // an extra parameter, so do that.
6507   if (!isTailCall &&
6508       !isFunctionGlobalAddress(Callee) &&
6509       !isa<ExternalSymbolSDNode>(Callee) &&
6510       !isBLACompatibleAddress(Callee, DAG))
6511     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6512                                                    PPC::R12), Callee));
6513 
6514   // Build a sequence of copy-to-reg nodes chained together with token chain
6515   // and flag operands which copy the outgoing args into the appropriate regs.
6516   SDValue InFlag;
6517   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6518     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6519                              RegsToPass[i].second, InFlag);
6520     InFlag = Chain.getValue(1);
6521   }
6522 
6523   if (isTailCall)
6524     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6525                     TailCallArguments);
6526 
6527   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6528                     /* unused except on PPC64 ELFv1 */ false, DAG,
6529                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6530                     NumBytes, Ins, InVals, CS);
6531 }
6532 
6533 bool
6534 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6535                                   MachineFunction &MF, bool isVarArg,
6536                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6537                                   LLVMContext &Context) const {
6538   SmallVector<CCValAssign, 16> RVLocs;
6539   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6540   return CCInfo.CheckReturn(
6541       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6542                 ? RetCC_PPC_Cold
6543                 : RetCC_PPC);
6544 }
6545 
6546 SDValue
6547 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6548                                bool isVarArg,
6549                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6550                                const SmallVectorImpl<SDValue> &OutVals,
6551                                const SDLoc &dl, SelectionDAG &DAG) const {
6552   SmallVector<CCValAssign, 16> RVLocs;
6553   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6554                  *DAG.getContext());
6555   CCInfo.AnalyzeReturn(Outs,
6556                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6557                            ? RetCC_PPC_Cold
6558                            : RetCC_PPC);
6559 
6560   SDValue Flag;
6561   SmallVector<SDValue, 4> RetOps(1, Chain);
6562 
6563   // Copy the result values into the output registers.
6564   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6565     CCValAssign &VA = RVLocs[i];
6566     assert(VA.isRegLoc() && "Can only return in registers!");
6567 
6568     SDValue Arg = OutVals[i];
6569 
6570     switch (VA.getLocInfo()) {
6571     default: llvm_unreachable("Unknown loc info!");
6572     case CCValAssign::Full: break;
6573     case CCValAssign::AExt:
6574       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6575       break;
6576     case CCValAssign::ZExt:
6577       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6578       break;
6579     case CCValAssign::SExt:
6580       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6581       break;
6582     }
6583 
6584     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6585     Flag = Chain.getValue(1);
6586     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6587   }
6588 
6589   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6590   const MCPhysReg *I =
6591     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6592   if (I) {
6593     for (; *I; ++I) {
6594 
6595       if (PPC::G8RCRegClass.contains(*I))
6596         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6597       else if (PPC::F8RCRegClass.contains(*I))
6598         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6599       else if (PPC::CRRCRegClass.contains(*I))
6600         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6601       else if (PPC::VRRCRegClass.contains(*I))
6602         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6603       else
6604         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6605     }
6606   }
6607 
6608   RetOps[0] = Chain;  // Update chain.
6609 
6610   // Add the flag if we have it.
6611   if (Flag.getNode())
6612     RetOps.push_back(Flag);
6613 
6614   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6615 }
6616 
6617 SDValue
6618 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6619                                                 SelectionDAG &DAG) const {
6620   SDLoc dl(Op);
6621 
6622   // Get the correct type for integers.
6623   EVT IntVT = Op.getValueType();
6624 
6625   // Get the inputs.
6626   SDValue Chain = Op.getOperand(0);
6627   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6628   // Build a DYNAREAOFFSET node.
6629   SDValue Ops[2] = {Chain, FPSIdx};
6630   SDVTList VTs = DAG.getVTList(IntVT);
6631   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6632 }
6633 
6634 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6635                                              SelectionDAG &DAG) const {
6636   // When we pop the dynamic allocation we need to restore the SP link.
6637   SDLoc dl(Op);
6638 
6639   // Get the correct type for pointers.
6640   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6641 
6642   // Construct the stack pointer operand.
6643   bool isPPC64 = Subtarget.isPPC64();
6644   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6645   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6646 
6647   // Get the operands for the STACKRESTORE.
6648   SDValue Chain = Op.getOperand(0);
6649   SDValue SaveSP = Op.getOperand(1);
6650 
6651   // Load the old link SP.
6652   SDValue LoadLinkSP =
6653       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6654 
6655   // Restore the stack pointer.
6656   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6657 
6658   // Store the old link SP.
6659   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6660 }
6661 
6662 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6663   MachineFunction &MF = DAG.getMachineFunction();
6664   bool isPPC64 = Subtarget.isPPC64();
6665   EVT PtrVT = getPointerTy(MF.getDataLayout());
6666 
6667   // Get current frame pointer save index.  The users of this index will be
6668   // primarily DYNALLOC instructions.
6669   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6670   int RASI = FI->getReturnAddrSaveIndex();
6671 
6672   // If the frame pointer save index hasn't been defined yet.
6673   if (!RASI) {
6674     // Find out what the fix offset of the frame pointer save area.
6675     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6676     // Allocate the frame index for frame pointer save area.
6677     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6678     // Save the result.
6679     FI->setReturnAddrSaveIndex(RASI);
6680   }
6681   return DAG.getFrameIndex(RASI, PtrVT);
6682 }
6683 
6684 SDValue
6685 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6686   MachineFunction &MF = DAG.getMachineFunction();
6687   bool isPPC64 = Subtarget.isPPC64();
6688   EVT PtrVT = getPointerTy(MF.getDataLayout());
6689 
6690   // Get current frame pointer save index.  The users of this index will be
6691   // primarily DYNALLOC instructions.
6692   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6693   int FPSI = FI->getFramePointerSaveIndex();
6694 
6695   // If the frame pointer save index hasn't been defined yet.
6696   if (!FPSI) {
6697     // Find out what the fix offset of the frame pointer save area.
6698     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6699     // Allocate the frame index for frame pointer save area.
6700     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6701     // Save the result.
6702     FI->setFramePointerSaveIndex(FPSI);
6703   }
6704   return DAG.getFrameIndex(FPSI, PtrVT);
6705 }
6706 
6707 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6708                                                    SelectionDAG &DAG) const {
6709   // Get the inputs.
6710   SDValue Chain = Op.getOperand(0);
6711   SDValue Size  = Op.getOperand(1);
6712   SDLoc dl(Op);
6713 
6714   // Get the correct type for pointers.
6715   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6716   // Negate the size.
6717   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6718                                 DAG.getConstant(0, dl, PtrVT), Size);
6719   // Construct a node for the frame pointer save index.
6720   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6721   // Build a DYNALLOC node.
6722   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6723   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6724   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6725 }
6726 
6727 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6728                                                      SelectionDAG &DAG) const {
6729   MachineFunction &MF = DAG.getMachineFunction();
6730 
6731   bool isPPC64 = Subtarget.isPPC64();
6732   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6733 
6734   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6735   return DAG.getFrameIndex(FI, PtrVT);
6736 }
6737 
6738 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6739                                                SelectionDAG &DAG) const {
6740   SDLoc DL(Op);
6741   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6742                      DAG.getVTList(MVT::i32, MVT::Other),
6743                      Op.getOperand(0), Op.getOperand(1));
6744 }
6745 
6746 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6747                                                 SelectionDAG &DAG) const {
6748   SDLoc DL(Op);
6749   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6750                      Op.getOperand(0), Op.getOperand(1));
6751 }
6752 
6753 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6754   if (Op.getValueType().isVector())
6755     return LowerVectorLoad(Op, DAG);
6756 
6757   assert(Op.getValueType() == MVT::i1 &&
6758          "Custom lowering only for i1 loads");
6759 
6760   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6761 
6762   SDLoc dl(Op);
6763   LoadSDNode *LD = cast<LoadSDNode>(Op);
6764 
6765   SDValue Chain = LD->getChain();
6766   SDValue BasePtr = LD->getBasePtr();
6767   MachineMemOperand *MMO = LD->getMemOperand();
6768 
6769   SDValue NewLD =
6770       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6771                      BasePtr, MVT::i8, MMO);
6772   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6773 
6774   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6775   return DAG.getMergeValues(Ops, dl);
6776 }
6777 
6778 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6779   if (Op.getOperand(1).getValueType().isVector())
6780     return LowerVectorStore(Op, DAG);
6781 
6782   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6783          "Custom lowering only for i1 stores");
6784 
6785   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6786 
6787   SDLoc dl(Op);
6788   StoreSDNode *ST = cast<StoreSDNode>(Op);
6789 
6790   SDValue Chain = ST->getChain();
6791   SDValue BasePtr = ST->getBasePtr();
6792   SDValue Value = ST->getValue();
6793   MachineMemOperand *MMO = ST->getMemOperand();
6794 
6795   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6796                       Value);
6797   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6798 }
6799 
6800 // FIXME: Remove this once the ANDI glue bug is fixed:
6801 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6802   assert(Op.getValueType() == MVT::i1 &&
6803          "Custom lowering only for i1 results");
6804 
6805   SDLoc DL(Op);
6806   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6807                      Op.getOperand(0));
6808 }
6809 
6810 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
6811                                                SelectionDAG &DAG) const {
6812 
6813   // Implements a vector truncate that fits in a vector register as a shuffle.
6814   // We want to legalize vector truncates down to where the source fits in
6815   // a vector register (and target is therefore smaller than vector register
6816   // size).  At that point legalization will try to custom lower the sub-legal
6817   // result and get here - where we can contain the truncate as a single target
6818   // operation.
6819 
6820   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
6821   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
6822   //
6823   // We will implement it for big-endian ordering as this (where x denotes
6824   // undefined):
6825   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
6826   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
6827   //
6828   // The same operation in little-endian ordering will be:
6829   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
6830   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
6831 
6832   assert(Op.getValueType().isVector() && "Vector type expected.");
6833 
6834   SDLoc DL(Op);
6835   SDValue N1 = Op.getOperand(0);
6836   unsigned SrcSize = N1.getValueType().getSizeInBits();
6837   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
6838   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
6839 
6840   EVT TrgVT = Op.getValueType();
6841   unsigned TrgNumElts = TrgVT.getVectorNumElements();
6842   EVT EltVT = TrgVT.getVectorElementType();
6843   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
6844   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
6845 
6846   // First list the elements we want to keep.
6847   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
6848   SmallVector<int, 16> ShuffV;
6849   if (Subtarget.isLittleEndian())
6850     for (unsigned i = 0; i < TrgNumElts; ++i)
6851       ShuffV.push_back(i * SizeMult);
6852   else
6853     for (unsigned i = 1; i <= TrgNumElts; ++i)
6854       ShuffV.push_back(i * SizeMult - 1);
6855 
6856   // Populate the remaining elements with undefs.
6857   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
6858     // ShuffV.push_back(i + WideNumElts);
6859     ShuffV.push_back(WideNumElts + 1);
6860 
6861   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
6862   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
6863 }
6864 
6865 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6866 /// possible.
6867 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6868   // Not FP? Not a fsel.
6869   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6870       !Op.getOperand(2).getValueType().isFloatingPoint())
6871     return Op;
6872 
6873   // We might be able to do better than this under some circumstances, but in
6874   // general, fsel-based lowering of select is a finite-math-only optimization.
6875   // For more information, see section F.3 of the 2.06 ISA specification.
6876   if (!DAG.getTarget().Options.NoInfsFPMath ||
6877       !DAG.getTarget().Options.NoNaNsFPMath)
6878     return Op;
6879   // TODO: Propagate flags from the select rather than global settings.
6880   SDNodeFlags Flags;
6881   Flags.setNoInfs(true);
6882   Flags.setNoNaNs(true);
6883 
6884   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6885 
6886   EVT ResVT = Op.getValueType();
6887   EVT CmpVT = Op.getOperand(0).getValueType();
6888   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6889   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6890   SDLoc dl(Op);
6891 
6892   // If the RHS of the comparison is a 0.0, we don't need to do the
6893   // subtraction at all.
6894   SDValue Sel1;
6895   if (isFloatingPointZero(RHS))
6896     switch (CC) {
6897     default: break;       // SETUO etc aren't handled by fsel.
6898     case ISD::SETNE:
6899       std::swap(TV, FV);
6900       LLVM_FALLTHROUGH;
6901     case ISD::SETEQ:
6902       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6903         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6904       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6905       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6906         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6907       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6908                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6909     case ISD::SETULT:
6910     case ISD::SETLT:
6911       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6912       LLVM_FALLTHROUGH;
6913     case ISD::SETOGE:
6914     case ISD::SETGE:
6915       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6916         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6917       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6918     case ISD::SETUGT:
6919     case ISD::SETGT:
6920       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6921       LLVM_FALLTHROUGH;
6922     case ISD::SETOLE:
6923     case ISD::SETLE:
6924       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6925         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6926       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6927                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6928     }
6929 
6930   SDValue Cmp;
6931   switch (CC) {
6932   default: break;       // SETUO etc aren't handled by fsel.
6933   case ISD::SETNE:
6934     std::swap(TV, FV);
6935     LLVM_FALLTHROUGH;
6936   case ISD::SETEQ:
6937     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6938     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6939       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6940     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6941     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6942       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6943     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6944                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6945   case ISD::SETULT:
6946   case ISD::SETLT:
6947     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6948     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6949       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6950     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6951   case ISD::SETOGE:
6952   case ISD::SETGE:
6953     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6954     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6955       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6956     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6957   case ISD::SETUGT:
6958   case ISD::SETGT:
6959     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6960     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6961       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6962     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6963   case ISD::SETOLE:
6964   case ISD::SETLE:
6965     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6966     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6967       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6968     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6969   }
6970   return Op;
6971 }
6972 
6973 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6974                                                SelectionDAG &DAG,
6975                                                const SDLoc &dl) const {
6976   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6977   SDValue Src = Op.getOperand(0);
6978   if (Src.getValueType() == MVT::f32)
6979     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6980 
6981   SDValue Tmp;
6982   switch (Op.getSimpleValueType().SimpleTy) {
6983   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6984   case MVT::i32:
6985     Tmp = DAG.getNode(
6986         Op.getOpcode() == ISD::FP_TO_SINT
6987             ? PPCISD::FCTIWZ
6988             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6989         dl, MVT::f64, Src);
6990     break;
6991   case MVT::i64:
6992     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6993            "i64 FP_TO_UINT is supported only with FPCVT");
6994     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6995                                                         PPCISD::FCTIDUZ,
6996                       dl, MVT::f64, Src);
6997     break;
6998   }
6999 
7000   // Convert the FP value to an int value through memory.
7001   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7002     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7003   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7004   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7005   MachinePointerInfo MPI =
7006       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7007 
7008   // Emit a store to the stack slot.
7009   SDValue Chain;
7010   if (i32Stack) {
7011     MachineFunction &MF = DAG.getMachineFunction();
7012     MachineMemOperand *MMO =
7013       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7014     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7015     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7016               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7017   } else
7018     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7019 
7020   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7021   // add in a bias on big endian.
7022   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7023     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7024                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7025     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7026   }
7027 
7028   RLI.Chain = Chain;
7029   RLI.Ptr = FIPtr;
7030   RLI.MPI = MPI;
7031 }
7032 
7033 /// Custom lowers floating point to integer conversions to use
7034 /// the direct move instructions available in ISA 2.07 to avoid the
7035 /// need for load/store combinations.
7036 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7037                                                     SelectionDAG &DAG,
7038                                                     const SDLoc &dl) const {
7039   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7040   SDValue Src = Op.getOperand(0);
7041 
7042   if (Src.getValueType() == MVT::f32)
7043     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7044 
7045   SDValue Tmp;
7046   switch (Op.getSimpleValueType().SimpleTy) {
7047   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7048   case MVT::i32:
7049     Tmp = DAG.getNode(
7050         Op.getOpcode() == ISD::FP_TO_SINT
7051             ? PPCISD::FCTIWZ
7052             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7053         dl, MVT::f64, Src);
7054     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7055     break;
7056   case MVT::i64:
7057     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7058            "i64 FP_TO_UINT is supported only with FPCVT");
7059     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7060                                                         PPCISD::FCTIDUZ,
7061                       dl, MVT::f64, Src);
7062     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7063     break;
7064   }
7065   return Tmp;
7066 }
7067 
7068 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7069                                           const SDLoc &dl) const {
7070 
7071   // FP to INT conversions are legal for f128.
7072   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7073     return Op;
7074 
7075   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7076   // PPC (the libcall is not available).
7077   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7078     if (Op.getValueType() == MVT::i32) {
7079       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7080         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7081                                  MVT::f64, Op.getOperand(0),
7082                                  DAG.getIntPtrConstant(0, dl));
7083         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7084                                  MVT::f64, Op.getOperand(0),
7085                                  DAG.getIntPtrConstant(1, dl));
7086 
7087         // Add the two halves of the long double in round-to-zero mode.
7088         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7089 
7090         // Now use a smaller FP_TO_SINT.
7091         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7092       }
7093       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7094         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7095         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7096         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7097         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7098         // FIXME: generated code sucks.
7099         // TODO: Are there fast-math-flags to propagate to this FSUB?
7100         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7101                                    Op.getOperand(0), Tmp);
7102         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7103         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7104                            DAG.getConstant(0x80000000, dl, MVT::i32));
7105         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7106                                     Op.getOperand(0));
7107         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7108                                ISD::SETGE);
7109       }
7110     }
7111 
7112     return SDValue();
7113   }
7114 
7115   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7116     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7117 
7118   ReuseLoadInfo RLI;
7119   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7120 
7121   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7122                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7123 }
7124 
7125 // We're trying to insert a regular store, S, and then a load, L. If the
7126 // incoming value, O, is a load, we might just be able to have our load use the
7127 // address used by O. However, we don't know if anything else will store to
7128 // that address before we can load from it. To prevent this situation, we need
7129 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7130 // the same chain operand as O, we create a token factor from the chain results
7131 // of O and L, and we replace all uses of O's chain result with that token
7132 // factor (see spliceIntoChain below for this last part).
7133 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7134                                             ReuseLoadInfo &RLI,
7135                                             SelectionDAG &DAG,
7136                                             ISD::LoadExtType ET) const {
7137   SDLoc dl(Op);
7138   if (ET == ISD::NON_EXTLOAD &&
7139       (Op.getOpcode() == ISD::FP_TO_UINT ||
7140        Op.getOpcode() == ISD::FP_TO_SINT) &&
7141       isOperationLegalOrCustom(Op.getOpcode(),
7142                                Op.getOperand(0).getValueType())) {
7143 
7144     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7145     return true;
7146   }
7147 
7148   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7149   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7150       LD->isNonTemporal())
7151     return false;
7152   if (LD->getMemoryVT() != MemVT)
7153     return false;
7154 
7155   RLI.Ptr = LD->getBasePtr();
7156   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7157     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7158            "Non-pre-inc AM on PPC?");
7159     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7160                           LD->getOffset());
7161   }
7162 
7163   RLI.Chain = LD->getChain();
7164   RLI.MPI = LD->getPointerInfo();
7165   RLI.IsDereferenceable = LD->isDereferenceable();
7166   RLI.IsInvariant = LD->isInvariant();
7167   RLI.Alignment = LD->getAlignment();
7168   RLI.AAInfo = LD->getAAInfo();
7169   RLI.Ranges = LD->getRanges();
7170 
7171   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7172   return true;
7173 }
7174 
7175 // Given the head of the old chain, ResChain, insert a token factor containing
7176 // it and NewResChain, and make users of ResChain now be users of that token
7177 // factor.
7178 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7179 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7180                                         SDValue NewResChain,
7181                                         SelectionDAG &DAG) const {
7182   if (!ResChain)
7183     return;
7184 
7185   SDLoc dl(NewResChain);
7186 
7187   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7188                            NewResChain, DAG.getUNDEF(MVT::Other));
7189   assert(TF.getNode() != NewResChain.getNode() &&
7190          "A new TF really is required here");
7191 
7192   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7193   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7194 }
7195 
7196 /// Analyze profitability of direct move
7197 /// prefer float load to int load plus direct move
7198 /// when there is no integer use of int load
7199 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7200   SDNode *Origin = Op.getOperand(0).getNode();
7201   if (Origin->getOpcode() != ISD::LOAD)
7202     return true;
7203 
7204   // If there is no LXSIBZX/LXSIHZX, like Power8,
7205   // prefer direct move if the memory size is 1 or 2 bytes.
7206   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7207   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7208     return true;
7209 
7210   for (SDNode::use_iterator UI = Origin->use_begin(),
7211                             UE = Origin->use_end();
7212        UI != UE; ++UI) {
7213 
7214     // Only look at the users of the loaded value.
7215     if (UI.getUse().get().getResNo() != 0)
7216       continue;
7217 
7218     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7219         UI->getOpcode() != ISD::UINT_TO_FP)
7220       return true;
7221   }
7222 
7223   return false;
7224 }
7225 
7226 /// Custom lowers integer to floating point conversions to use
7227 /// the direct move instructions available in ISA 2.07 to avoid the
7228 /// need for load/store combinations.
7229 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7230                                                     SelectionDAG &DAG,
7231                                                     const SDLoc &dl) const {
7232   assert((Op.getValueType() == MVT::f32 ||
7233           Op.getValueType() == MVT::f64) &&
7234          "Invalid floating point type as target of conversion");
7235   assert(Subtarget.hasFPCVT() &&
7236          "Int to FP conversions with direct moves require FPCVT");
7237   SDValue FP;
7238   SDValue Src = Op.getOperand(0);
7239   bool SinglePrec = Op.getValueType() == MVT::f32;
7240   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7241   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7242   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7243                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7244 
7245   if (WordInt) {
7246     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7247                      dl, MVT::f64, Src);
7248     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7249   }
7250   else {
7251     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7252     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7253   }
7254 
7255   return FP;
7256 }
7257 
7258 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7259 
7260   EVT VecVT = Vec.getValueType();
7261   assert(VecVT.isVector() && "Expected a vector type.");
7262   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7263 
7264   EVT EltVT = VecVT.getVectorElementType();
7265   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7266   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7267 
7268   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7269   SmallVector<SDValue, 16> Ops(NumConcat);
7270   Ops[0] = Vec;
7271   SDValue UndefVec = DAG.getUNDEF(VecVT);
7272   for (unsigned i = 1; i < NumConcat; ++i)
7273     Ops[i] = UndefVec;
7274 
7275   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7276 }
7277 
7278 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7279                                                 const SDLoc &dl) const {
7280 
7281   unsigned Opc = Op.getOpcode();
7282   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7283          "Unexpected conversion type");
7284   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7285          "Supports conversions to v2f64/v4f32 only.");
7286 
7287   bool SignedConv = Opc == ISD::SINT_TO_FP;
7288   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7289 
7290   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7291   EVT WideVT = Wide.getValueType();
7292   unsigned WideNumElts = WideVT.getVectorNumElements();
7293   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7294 
7295   SmallVector<int, 16> ShuffV;
7296   for (unsigned i = 0; i < WideNumElts; ++i)
7297     ShuffV.push_back(i + WideNumElts);
7298 
7299   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7300   int SaveElts = FourEltRes ? 4 : 2;
7301   if (Subtarget.isLittleEndian())
7302     for (int i = 0; i < SaveElts; i++)
7303       ShuffV[i * Stride] = i;
7304   else
7305     for (int i = 1; i <= SaveElts; i++)
7306       ShuffV[i * Stride - 1] = i - 1;
7307 
7308   SDValue ShuffleSrc2 =
7309       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7310   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7311   unsigned ExtendOp =
7312       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7313 
7314   SDValue Extend;
7315   if (!Subtarget.hasP9Altivec() && SignedConv) {
7316     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7317     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7318                          DAG.getValueType(Op.getOperand(0).getValueType()));
7319   } else
7320     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7321 
7322   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7323 }
7324 
7325 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7326                                           SelectionDAG &DAG) const {
7327   SDLoc dl(Op);
7328 
7329   EVT InVT = Op.getOperand(0).getValueType();
7330   EVT OutVT = Op.getValueType();
7331   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7332       isOperationCustom(Op.getOpcode(), InVT))
7333     return LowerINT_TO_FPVector(Op, DAG, dl);
7334 
7335   // Conversions to f128 are legal.
7336   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7337     return Op;
7338 
7339   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7340     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7341       return SDValue();
7342 
7343     SDValue Value = Op.getOperand(0);
7344     // The values are now known to be -1 (false) or 1 (true). To convert this
7345     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7346     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7347     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7348 
7349     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7350 
7351     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7352 
7353     if (Op.getValueType() != MVT::v4f64)
7354       Value = DAG.getNode(ISD::FP_ROUND, dl,
7355                           Op.getValueType(), Value,
7356                           DAG.getIntPtrConstant(1, dl));
7357     return Value;
7358   }
7359 
7360   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7361   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7362     return SDValue();
7363 
7364   if (Op.getOperand(0).getValueType() == MVT::i1)
7365     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7366                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7367                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7368 
7369   // If we have direct moves, we can do all the conversion, skip the store/load
7370   // however, without FPCVT we can't do most conversions.
7371   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7372       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7373     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7374 
7375   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7376          "UINT_TO_FP is supported only with FPCVT");
7377 
7378   // If we have FCFIDS, then use it when converting to single-precision.
7379   // Otherwise, convert to double-precision and then round.
7380   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7381                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7382                                                             : PPCISD::FCFIDS)
7383                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7384                                                             : PPCISD::FCFID);
7385   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7386                   ? MVT::f32
7387                   : MVT::f64;
7388 
7389   if (Op.getOperand(0).getValueType() == MVT::i64) {
7390     SDValue SINT = Op.getOperand(0);
7391     // When converting to single-precision, we actually need to convert
7392     // to double-precision first and then round to single-precision.
7393     // To avoid double-rounding effects during that operation, we have
7394     // to prepare the input operand.  Bits that might be truncated when
7395     // converting to double-precision are replaced by a bit that won't
7396     // be lost at this stage, but is below the single-precision rounding
7397     // position.
7398     //
7399     // However, if -enable-unsafe-fp-math is in effect, accept double
7400     // rounding to avoid the extra overhead.
7401     if (Op.getValueType() == MVT::f32 &&
7402         !Subtarget.hasFPCVT() &&
7403         !DAG.getTarget().Options.UnsafeFPMath) {
7404 
7405       // Twiddle input to make sure the low 11 bits are zero.  (If this
7406       // is the case, we are guaranteed the value will fit into the 53 bit
7407       // mantissa of an IEEE double-precision value without rounding.)
7408       // If any of those low 11 bits were not zero originally, make sure
7409       // bit 12 (value 2048) is set instead, so that the final rounding
7410       // to single-precision gets the correct result.
7411       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7412                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7413       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7414                           Round, DAG.getConstant(2047, dl, MVT::i64));
7415       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7416       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7417                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7418 
7419       // However, we cannot use that value unconditionally: if the magnitude
7420       // of the input value is small, the bit-twiddling we did above might
7421       // end up visibly changing the output.  Fortunately, in that case, we
7422       // don't need to twiddle bits since the original input will convert
7423       // exactly to double-precision floating-point already.  Therefore,
7424       // construct a conditional to use the original value if the top 11
7425       // bits are all sign-bit copies, and use the rounded value computed
7426       // above otherwise.
7427       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7428                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7429       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7430                          Cond, DAG.getConstant(1, dl, MVT::i64));
7431       Cond = DAG.getSetCC(dl, MVT::i32,
7432                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7433 
7434       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7435     }
7436 
7437     ReuseLoadInfo RLI;
7438     SDValue Bits;
7439 
7440     MachineFunction &MF = DAG.getMachineFunction();
7441     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7442       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7443                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7444       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7445     } else if (Subtarget.hasLFIWAX() &&
7446                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7447       MachineMemOperand *MMO =
7448         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7449                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7450       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7451       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7452                                      DAG.getVTList(MVT::f64, MVT::Other),
7453                                      Ops, MVT::i32, MMO);
7454       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7455     } else if (Subtarget.hasFPCVT() &&
7456                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7457       MachineMemOperand *MMO =
7458         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7459                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7460       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7461       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7462                                      DAG.getVTList(MVT::f64, MVT::Other),
7463                                      Ops, MVT::i32, MMO);
7464       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7465     } else if (((Subtarget.hasLFIWAX() &&
7466                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7467                 (Subtarget.hasFPCVT() &&
7468                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7469                SINT.getOperand(0).getValueType() == MVT::i32) {
7470       MachineFrameInfo &MFI = MF.getFrameInfo();
7471       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7472 
7473       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7474       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7475 
7476       SDValue Store =
7477           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7478                        MachinePointerInfo::getFixedStack(
7479                            DAG.getMachineFunction(), FrameIdx));
7480 
7481       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7482              "Expected an i32 store");
7483 
7484       RLI.Ptr = FIdx;
7485       RLI.Chain = Store;
7486       RLI.MPI =
7487           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7488       RLI.Alignment = 4;
7489 
7490       MachineMemOperand *MMO =
7491         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7492                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7493       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7494       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7495                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7496                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7497                                      Ops, MVT::i32, MMO);
7498     } else
7499       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7500 
7501     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7502 
7503     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7504       FP = DAG.getNode(ISD::FP_ROUND, dl,
7505                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7506     return FP;
7507   }
7508 
7509   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7510          "Unhandled INT_TO_FP type in custom expander!");
7511   // Since we only generate this in 64-bit mode, we can take advantage of
7512   // 64-bit registers.  In particular, sign extend the input value into the
7513   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7514   // then lfd it and fcfid it.
7515   MachineFunction &MF = DAG.getMachineFunction();
7516   MachineFrameInfo &MFI = MF.getFrameInfo();
7517   EVT PtrVT = getPointerTy(MF.getDataLayout());
7518 
7519   SDValue Ld;
7520   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7521     ReuseLoadInfo RLI;
7522     bool ReusingLoad;
7523     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7524                                             DAG))) {
7525       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7526       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7527 
7528       SDValue Store =
7529           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7530                        MachinePointerInfo::getFixedStack(
7531                            DAG.getMachineFunction(), FrameIdx));
7532 
7533       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7534              "Expected an i32 store");
7535 
7536       RLI.Ptr = FIdx;
7537       RLI.Chain = Store;
7538       RLI.MPI =
7539           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7540       RLI.Alignment = 4;
7541     }
7542 
7543     MachineMemOperand *MMO =
7544       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7545                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7546     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7547     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7548                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7549                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7550                                  Ops, MVT::i32, MMO);
7551     if (ReusingLoad)
7552       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7553   } else {
7554     assert(Subtarget.isPPC64() &&
7555            "i32->FP without LFIWAX supported only on PPC64");
7556 
7557     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7558     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7559 
7560     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7561                                 Op.getOperand(0));
7562 
7563     // STD the extended value into the stack slot.
7564     SDValue Store = DAG.getStore(
7565         DAG.getEntryNode(), dl, Ext64, FIdx,
7566         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7567 
7568     // Load the value as a double.
7569     Ld = DAG.getLoad(
7570         MVT::f64, dl, Store, FIdx,
7571         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7572   }
7573 
7574   // FCFID it and return it.
7575   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7576   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7577     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7578                      DAG.getIntPtrConstant(0, dl));
7579   return FP;
7580 }
7581 
7582 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7583                                             SelectionDAG &DAG) const {
7584   SDLoc dl(Op);
7585   /*
7586    The rounding mode is in bits 30:31 of FPSR, and has the following
7587    settings:
7588      00 Round to nearest
7589      01 Round to 0
7590      10 Round to +inf
7591      11 Round to -inf
7592 
7593   FLT_ROUNDS, on the other hand, expects the following:
7594     -1 Undefined
7595      0 Round to 0
7596      1 Round to nearest
7597      2 Round to +inf
7598      3 Round to -inf
7599 
7600   To perform the conversion, we do:
7601     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7602   */
7603 
7604   MachineFunction &MF = DAG.getMachineFunction();
7605   EVT VT = Op.getValueType();
7606   EVT PtrVT = getPointerTy(MF.getDataLayout());
7607 
7608   // Save FP Control Word to register
7609   EVT NodeTys[] = {
7610     MVT::f64,    // return register
7611     MVT::Glue    // unused in this context
7612   };
7613   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7614 
7615   // Save FP register to stack slot
7616   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7617   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7618   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7619                                MachinePointerInfo());
7620 
7621   // Load FP Control Word from low 32 bits of stack slot.
7622   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7623   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7624   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7625 
7626   // Transform as necessary
7627   SDValue CWD1 =
7628     DAG.getNode(ISD::AND, dl, MVT::i32,
7629                 CWD, DAG.getConstant(3, dl, MVT::i32));
7630   SDValue CWD2 =
7631     DAG.getNode(ISD::SRL, dl, MVT::i32,
7632                 DAG.getNode(ISD::AND, dl, MVT::i32,
7633                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7634                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7635                             DAG.getConstant(3, dl, MVT::i32)),
7636                 DAG.getConstant(1, dl, MVT::i32));
7637 
7638   SDValue RetVal =
7639     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7640 
7641   return DAG.getNode((VT.getSizeInBits() < 16 ?
7642                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7643 }
7644 
7645 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7646   EVT VT = Op.getValueType();
7647   unsigned BitWidth = VT.getSizeInBits();
7648   SDLoc dl(Op);
7649   assert(Op.getNumOperands() == 3 &&
7650          VT == Op.getOperand(1).getValueType() &&
7651          "Unexpected SHL!");
7652 
7653   // Expand into a bunch of logical ops.  Note that these ops
7654   // depend on the PPC behavior for oversized shift amounts.
7655   SDValue Lo = Op.getOperand(0);
7656   SDValue Hi = Op.getOperand(1);
7657   SDValue Amt = Op.getOperand(2);
7658   EVT AmtVT = Amt.getValueType();
7659 
7660   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7661                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7662   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7663   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7664   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7665   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7666                              DAG.getConstant(-BitWidth, dl, AmtVT));
7667   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7668   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7669   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7670   SDValue OutOps[] = { OutLo, OutHi };
7671   return DAG.getMergeValues(OutOps, dl);
7672 }
7673 
7674 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7675   EVT VT = Op.getValueType();
7676   SDLoc dl(Op);
7677   unsigned BitWidth = VT.getSizeInBits();
7678   assert(Op.getNumOperands() == 3 &&
7679          VT == Op.getOperand(1).getValueType() &&
7680          "Unexpected SRL!");
7681 
7682   // Expand into a bunch of logical ops.  Note that these ops
7683   // depend on the PPC behavior for oversized shift amounts.
7684   SDValue Lo = Op.getOperand(0);
7685   SDValue Hi = Op.getOperand(1);
7686   SDValue Amt = Op.getOperand(2);
7687   EVT AmtVT = Amt.getValueType();
7688 
7689   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7690                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7691   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7692   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7693   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7694   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7695                              DAG.getConstant(-BitWidth, dl, AmtVT));
7696   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7697   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7698   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7699   SDValue OutOps[] = { OutLo, OutHi };
7700   return DAG.getMergeValues(OutOps, dl);
7701 }
7702 
7703 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7704   SDLoc dl(Op);
7705   EVT VT = Op.getValueType();
7706   unsigned BitWidth = VT.getSizeInBits();
7707   assert(Op.getNumOperands() == 3 &&
7708          VT == Op.getOperand(1).getValueType() &&
7709          "Unexpected SRA!");
7710 
7711   // Expand into a bunch of logical ops, followed by a select_cc.
7712   SDValue Lo = Op.getOperand(0);
7713   SDValue Hi = Op.getOperand(1);
7714   SDValue Amt = Op.getOperand(2);
7715   EVT AmtVT = Amt.getValueType();
7716 
7717   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7718                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7719   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7720   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7721   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7722   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7723                              DAG.getConstant(-BitWidth, dl, AmtVT));
7724   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7725   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7726   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7727                                   Tmp4, Tmp6, ISD::SETLE);
7728   SDValue OutOps[] = { OutLo, OutHi };
7729   return DAG.getMergeValues(OutOps, dl);
7730 }
7731 
7732 //===----------------------------------------------------------------------===//
7733 // Vector related lowering.
7734 //
7735 
7736 /// BuildSplatI - Build a canonical splati of Val with an element size of
7737 /// SplatSize.  Cast the result to VT.
7738 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7739                            SelectionDAG &DAG, const SDLoc &dl) {
7740   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7741 
7742   static const MVT VTys[] = { // canonical VT to use for each size.
7743     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7744   };
7745 
7746   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7747 
7748   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7749   if (Val == -1)
7750     SplatSize = 1;
7751 
7752   EVT CanonicalVT = VTys[SplatSize-1];
7753 
7754   // Build a canonical splat for this value.
7755   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7756 }
7757 
7758 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7759 /// specified intrinsic ID.
7760 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7761                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7762   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7763   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7764                      DAG.getConstant(IID, dl, MVT::i32), Op);
7765 }
7766 
7767 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7768 /// specified intrinsic ID.
7769 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7770                                 SelectionDAG &DAG, const SDLoc &dl,
7771                                 EVT DestVT = MVT::Other) {
7772   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7773   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7774                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7775 }
7776 
7777 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7778 /// specified intrinsic ID.
7779 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7780                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7781                                 EVT DestVT = MVT::Other) {
7782   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7783   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7784                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7785 }
7786 
7787 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7788 /// amount.  The result has the specified value type.
7789 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7790                            SelectionDAG &DAG, const SDLoc &dl) {
7791   // Force LHS/RHS to be the right type.
7792   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7793   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7794 
7795   int Ops[16];
7796   for (unsigned i = 0; i != 16; ++i)
7797     Ops[i] = i + Amt;
7798   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7799   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7800 }
7801 
7802 /// Do we have an efficient pattern in a .td file for this node?
7803 ///
7804 /// \param V - pointer to the BuildVectorSDNode being matched
7805 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7806 ///
7807 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7808 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7809 /// the opposite is true (expansion is beneficial) are:
7810 /// - The node builds a vector out of integers that are not 32 or 64-bits
7811 /// - The node builds a vector out of constants
7812 /// - The node is a "load-and-splat"
7813 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7814 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7815                                             bool HasDirectMove,
7816                                             bool HasP8Vector) {
7817   EVT VecVT = V->getValueType(0);
7818   bool RightType = VecVT == MVT::v2f64 ||
7819     (HasP8Vector && VecVT == MVT::v4f32) ||
7820     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7821   if (!RightType)
7822     return false;
7823 
7824   bool IsSplat = true;
7825   bool IsLoad = false;
7826   SDValue Op0 = V->getOperand(0);
7827 
7828   // This function is called in a block that confirms the node is not a constant
7829   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7830   // different constants.
7831   if (V->isConstant())
7832     return false;
7833   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7834     if (V->getOperand(i).isUndef())
7835       return false;
7836     // We want to expand nodes that represent load-and-splat even if the
7837     // loaded value is a floating point truncation or conversion to int.
7838     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7839         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7840          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7841         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7842          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7843         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7844          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7845       IsLoad = true;
7846     // If the operands are different or the input is not a load and has more
7847     // uses than just this BV node, then it isn't a splat.
7848     if (V->getOperand(i) != Op0 ||
7849         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7850       IsSplat = false;
7851   }
7852   return !(IsSplat && IsLoad);
7853 }
7854 
7855 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
7856 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7857 
7858   SDLoc dl(Op);
7859   SDValue Op0 = Op->getOperand(0);
7860 
7861   if (!EnableQuadPrecision ||
7862       (Op.getValueType() != MVT::f128 ) ||
7863       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7864       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
7865       (Op0.getOperand(1).getValueType() != MVT::i64))
7866     return SDValue();
7867 
7868   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7869                      Op0.getOperand(1));
7870 }
7871 
7872 // If this is a case we can't handle, return null and let the default
7873 // expansion code take care of it.  If we CAN select this case, and if it
7874 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7875 // this case more efficiently than a constant pool load, lower it to the
7876 // sequence of ops that should be used.
7877 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7878                                              SelectionDAG &DAG) const {
7879   SDLoc dl(Op);
7880   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7881   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7882 
7883   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7884     // We first build an i32 vector, load it into a QPX register,
7885     // then convert it to a floating-point vector and compare it
7886     // to a zero vector to get the boolean result.
7887     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7888     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7889     MachinePointerInfo PtrInfo =
7890         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7891     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7892     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7893 
7894     assert(BVN->getNumOperands() == 4 &&
7895       "BUILD_VECTOR for v4i1 does not have 4 operands");
7896 
7897     bool IsConst = true;
7898     for (unsigned i = 0; i < 4; ++i) {
7899       if (BVN->getOperand(i).isUndef()) continue;
7900       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7901         IsConst = false;
7902         break;
7903       }
7904     }
7905 
7906     if (IsConst) {
7907       Constant *One =
7908         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7909       Constant *NegOne =
7910         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7911 
7912       Constant *CV[4];
7913       for (unsigned i = 0; i < 4; ++i) {
7914         if (BVN->getOperand(i).isUndef())
7915           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7916         else if (isNullConstant(BVN->getOperand(i)))
7917           CV[i] = NegOne;
7918         else
7919           CV[i] = One;
7920       }
7921 
7922       Constant *CP = ConstantVector::get(CV);
7923       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7924                                           16 /* alignment */);
7925 
7926       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7927       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7928       return DAG.getMemIntrinsicNode(
7929           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7930           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7931     }
7932 
7933     SmallVector<SDValue, 4> Stores;
7934     for (unsigned i = 0; i < 4; ++i) {
7935       if (BVN->getOperand(i).isUndef()) continue;
7936 
7937       unsigned Offset = 4*i;
7938       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7939       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7940 
7941       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7942       if (StoreSize > 4) {
7943         Stores.push_back(
7944             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7945                               PtrInfo.getWithOffset(Offset), MVT::i32));
7946       } else {
7947         SDValue StoreValue = BVN->getOperand(i);
7948         if (StoreSize < 4)
7949           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7950 
7951         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7952                                       PtrInfo.getWithOffset(Offset)));
7953       }
7954     }
7955 
7956     SDValue StoreChain;
7957     if (!Stores.empty())
7958       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7959     else
7960       StoreChain = DAG.getEntryNode();
7961 
7962     // Now load from v4i32 into the QPX register; this will extend it to
7963     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7964     // is typed as v4f64 because the QPX register integer states are not
7965     // explicitly represented.
7966 
7967     SDValue Ops[] = {StoreChain,
7968                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7969                      FIdx};
7970     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7971 
7972     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7973       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7974     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7975       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7976       LoadedVect);
7977 
7978     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7979 
7980     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7981   }
7982 
7983   // All other QPX vectors are handled by generic code.
7984   if (Subtarget.hasQPX())
7985     return SDValue();
7986 
7987   // Check if this is a splat of a constant value.
7988   APInt APSplatBits, APSplatUndef;
7989   unsigned SplatBitSize;
7990   bool HasAnyUndefs;
7991   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7992                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7993       SplatBitSize > 32) {
7994     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7995     // lowered to VSX instructions under certain conditions.
7996     // Without VSX, there is no pattern more efficient than expanding the node.
7997     if (Subtarget.hasVSX() &&
7998         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7999                                         Subtarget.hasP8Vector()))
8000       return Op;
8001     return SDValue();
8002   }
8003 
8004   unsigned SplatBits = APSplatBits.getZExtValue();
8005   unsigned SplatUndef = APSplatUndef.getZExtValue();
8006   unsigned SplatSize = SplatBitSize / 8;
8007 
8008   // First, handle single instruction cases.
8009 
8010   // All zeros?
8011   if (SplatBits == 0) {
8012     // Canonicalize all zero vectors to be v4i32.
8013     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8014       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8015       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8016     }
8017     return Op;
8018   }
8019 
8020   // We have XXSPLTIB for constant splats one byte wide
8021   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8022     // This is a splat of 1-byte elements with some elements potentially undef.
8023     // Rather than trying to match undef in the SDAG patterns, ensure that all
8024     // elements are the same constant.
8025     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8026       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8027                                                        dl, MVT::i32));
8028       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8029       if (Op.getValueType() != MVT::v16i8)
8030         return DAG.getBitcast(Op.getValueType(), NewBV);
8031       return NewBV;
8032     }
8033 
8034     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8035     // detect that constant splats like v8i16: 0xABAB are really just splats
8036     // of a 1-byte constant. In this case, we need to convert the node to a
8037     // splat of v16i8 and a bitcast.
8038     if (Op.getValueType() != MVT::v16i8)
8039       return DAG.getBitcast(Op.getValueType(),
8040                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8041 
8042     return Op;
8043   }
8044 
8045   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8046   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8047                     (32-SplatBitSize));
8048   if (SextVal >= -16 && SextVal <= 15)
8049     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8050 
8051   // Two instruction sequences.
8052 
8053   // If this value is in the range [-32,30] and is even, use:
8054   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8055   // If this value is in the range [17,31] and is odd, use:
8056   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8057   // If this value is in the range [-31,-17] and is odd, use:
8058   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8059   // Note the last two are three-instruction sequences.
8060   if (SextVal >= -32 && SextVal <= 31) {
8061     // To avoid having these optimizations undone by constant folding,
8062     // we convert to a pseudo that will be expanded later into one of
8063     // the above forms.
8064     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8065     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8066               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8067     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8068     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8069     if (VT == Op.getValueType())
8070       return RetVal;
8071     else
8072       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8073   }
8074 
8075   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8076   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8077   // for fneg/fabs.
8078   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8079     // Make -1 and vspltisw -1:
8080     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8081 
8082     // Make the VSLW intrinsic, computing 0x8000_0000.
8083     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8084                                    OnesV, DAG, dl);
8085 
8086     // xor by OnesV to invert it.
8087     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8088     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8089   }
8090 
8091   // Check to see if this is a wide variety of vsplti*, binop self cases.
8092   static const signed char SplatCsts[] = {
8093     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8094     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8095   };
8096 
8097   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8098     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8099     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8100     int i = SplatCsts[idx];
8101 
8102     // Figure out what shift amount will be used by altivec if shifted by i in
8103     // this splat size.
8104     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8105 
8106     // vsplti + shl self.
8107     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8108       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8109       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8110         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8111         Intrinsic::ppc_altivec_vslw
8112       };
8113       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8114       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8115     }
8116 
8117     // vsplti + srl self.
8118     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8119       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8120       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8121         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8122         Intrinsic::ppc_altivec_vsrw
8123       };
8124       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8125       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8126     }
8127 
8128     // vsplti + sra self.
8129     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8130       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8131       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8132         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8133         Intrinsic::ppc_altivec_vsraw
8134       };
8135       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8136       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8137     }
8138 
8139     // vsplti + rol self.
8140     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8141                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8142       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8143       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8144         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8145         Intrinsic::ppc_altivec_vrlw
8146       };
8147       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8148       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8149     }
8150 
8151     // t = vsplti c, result = vsldoi t, t, 1
8152     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8153       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8154       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8155       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8156     }
8157     // t = vsplti c, result = vsldoi t, t, 2
8158     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8159       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8160       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8161       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8162     }
8163     // t = vsplti c, result = vsldoi t, t, 3
8164     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8165       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8166       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8167       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8168     }
8169   }
8170 
8171   return SDValue();
8172 }
8173 
8174 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8175 /// the specified operations to build the shuffle.
8176 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8177                                       SDValue RHS, SelectionDAG &DAG,
8178                                       const SDLoc &dl) {
8179   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8180   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8181   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8182 
8183   enum {
8184     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8185     OP_VMRGHW,
8186     OP_VMRGLW,
8187     OP_VSPLTISW0,
8188     OP_VSPLTISW1,
8189     OP_VSPLTISW2,
8190     OP_VSPLTISW3,
8191     OP_VSLDOI4,
8192     OP_VSLDOI8,
8193     OP_VSLDOI12
8194   };
8195 
8196   if (OpNum == OP_COPY) {
8197     if (LHSID == (1*9+2)*9+3) return LHS;
8198     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8199     return RHS;
8200   }
8201 
8202   SDValue OpLHS, OpRHS;
8203   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8204   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8205 
8206   int ShufIdxs[16];
8207   switch (OpNum) {
8208   default: llvm_unreachable("Unknown i32 permute!");
8209   case OP_VMRGHW:
8210     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8211     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8212     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8213     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8214     break;
8215   case OP_VMRGLW:
8216     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8217     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8218     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8219     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8220     break;
8221   case OP_VSPLTISW0:
8222     for (unsigned i = 0; i != 16; ++i)
8223       ShufIdxs[i] = (i&3)+0;
8224     break;
8225   case OP_VSPLTISW1:
8226     for (unsigned i = 0; i != 16; ++i)
8227       ShufIdxs[i] = (i&3)+4;
8228     break;
8229   case OP_VSPLTISW2:
8230     for (unsigned i = 0; i != 16; ++i)
8231       ShufIdxs[i] = (i&3)+8;
8232     break;
8233   case OP_VSPLTISW3:
8234     for (unsigned i = 0; i != 16; ++i)
8235       ShufIdxs[i] = (i&3)+12;
8236     break;
8237   case OP_VSLDOI4:
8238     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8239   case OP_VSLDOI8:
8240     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8241   case OP_VSLDOI12:
8242     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8243   }
8244   EVT VT = OpLHS.getValueType();
8245   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8246   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8247   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8248   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8249 }
8250 
8251 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8252 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8253 /// SDValue.
8254 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8255                                            SelectionDAG &DAG) const {
8256   const unsigned BytesInVector = 16;
8257   bool IsLE = Subtarget.isLittleEndian();
8258   SDLoc dl(N);
8259   SDValue V1 = N->getOperand(0);
8260   SDValue V2 = N->getOperand(1);
8261   unsigned ShiftElts = 0, InsertAtByte = 0;
8262   bool Swap = false;
8263 
8264   // Shifts required to get the byte we want at element 7.
8265   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8266                                    0, 15, 14, 13, 12, 11, 10, 9};
8267   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8268                                 1, 2,  3,  4,  5,  6,  7,  8};
8269 
8270   ArrayRef<int> Mask = N->getMask();
8271   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8272 
8273   // For each mask element, find out if we're just inserting something
8274   // from V2 into V1 or vice versa.
8275   // Possible permutations inserting an element from V2 into V1:
8276   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8277   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8278   //   ...
8279   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8280   // Inserting from V1 into V2 will be similar, except mask range will be
8281   // [16,31].
8282 
8283   bool FoundCandidate = false;
8284   // If both vector operands for the shuffle are the same vector, the mask
8285   // will contain only elements from the first one and the second one will be
8286   // undef.
8287   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8288   // Go through the mask of half-words to find an element that's being moved
8289   // from one vector to the other.
8290   for (unsigned i = 0; i < BytesInVector; ++i) {
8291     unsigned CurrentElement = Mask[i];
8292     // If 2nd operand is undefined, we should only look for element 7 in the
8293     // Mask.
8294     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8295       continue;
8296 
8297     bool OtherElementsInOrder = true;
8298     // Examine the other elements in the Mask to see if they're in original
8299     // order.
8300     for (unsigned j = 0; j < BytesInVector; ++j) {
8301       if (j == i)
8302         continue;
8303       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8304       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8305       // in which we always assume we're always picking from the 1st operand.
8306       int MaskOffset =
8307           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8308       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8309         OtherElementsInOrder = false;
8310         break;
8311       }
8312     }
8313     // If other elements are in original order, we record the number of shifts
8314     // we need to get the element we want into element 7. Also record which byte
8315     // in the vector we should insert into.
8316     if (OtherElementsInOrder) {
8317       // If 2nd operand is undefined, we assume no shifts and no swapping.
8318       if (V2.isUndef()) {
8319         ShiftElts = 0;
8320         Swap = false;
8321       } else {
8322         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8323         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8324                          : BigEndianShifts[CurrentElement & 0xF];
8325         Swap = CurrentElement < BytesInVector;
8326       }
8327       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8328       FoundCandidate = true;
8329       break;
8330     }
8331   }
8332 
8333   if (!FoundCandidate)
8334     return SDValue();
8335 
8336   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8337   // optionally with VECSHL if shift is required.
8338   if (Swap)
8339     std::swap(V1, V2);
8340   if (V2.isUndef())
8341     V2 = V1;
8342   if (ShiftElts) {
8343     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8344                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8345     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8346                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8347   }
8348   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8349                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8350 }
8351 
8352 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8353 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8354 /// SDValue.
8355 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8356                                            SelectionDAG &DAG) const {
8357   const unsigned NumHalfWords = 8;
8358   const unsigned BytesInVector = NumHalfWords * 2;
8359   // Check that the shuffle is on half-words.
8360   if (!isNByteElemShuffleMask(N, 2, 1))
8361     return SDValue();
8362 
8363   bool IsLE = Subtarget.isLittleEndian();
8364   SDLoc dl(N);
8365   SDValue V1 = N->getOperand(0);
8366   SDValue V2 = N->getOperand(1);
8367   unsigned ShiftElts = 0, InsertAtByte = 0;
8368   bool Swap = false;
8369 
8370   // Shifts required to get the half-word we want at element 3.
8371   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8372   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8373 
8374   uint32_t Mask = 0;
8375   uint32_t OriginalOrderLow = 0x1234567;
8376   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8377   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8378   // 32-bit space, only need 4-bit nibbles per element.
8379   for (unsigned i = 0; i < NumHalfWords; ++i) {
8380     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8381     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8382   }
8383 
8384   // For each mask element, find out if we're just inserting something
8385   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8386   // from V2 into V1:
8387   //   X, 1, 2, 3, 4, 5, 6, 7
8388   //   0, X, 2, 3, 4, 5, 6, 7
8389   //   0, 1, X, 3, 4, 5, 6, 7
8390   //   0, 1, 2, X, 4, 5, 6, 7
8391   //   0, 1, 2, 3, X, 5, 6, 7
8392   //   0, 1, 2, 3, 4, X, 6, 7
8393   //   0, 1, 2, 3, 4, 5, X, 7
8394   //   0, 1, 2, 3, 4, 5, 6, X
8395   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8396 
8397   bool FoundCandidate = false;
8398   // Go through the mask of half-words to find an element that's being moved
8399   // from one vector to the other.
8400   for (unsigned i = 0; i < NumHalfWords; ++i) {
8401     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8402     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8403     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8404     uint32_t TargetOrder = 0x0;
8405 
8406     // If both vector operands for the shuffle are the same vector, the mask
8407     // will contain only elements from the first one and the second one will be
8408     // undef.
8409     if (V2.isUndef()) {
8410       ShiftElts = 0;
8411       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8412       TargetOrder = OriginalOrderLow;
8413       Swap = false;
8414       // Skip if not the correct element or mask of other elements don't equal
8415       // to our expected order.
8416       if (MaskOneElt == VINSERTHSrcElem &&
8417           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8418         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8419         FoundCandidate = true;
8420         break;
8421       }
8422     } else { // If both operands are defined.
8423       // Target order is [8,15] if the current mask is between [0,7].
8424       TargetOrder =
8425           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8426       // Skip if mask of other elements don't equal our expected order.
8427       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8428         // We only need the last 3 bits for the number of shifts.
8429         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8430                          : BigEndianShifts[MaskOneElt & 0x7];
8431         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8432         Swap = MaskOneElt < NumHalfWords;
8433         FoundCandidate = true;
8434         break;
8435       }
8436     }
8437   }
8438 
8439   if (!FoundCandidate)
8440     return SDValue();
8441 
8442   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8443   // optionally with VECSHL if shift is required.
8444   if (Swap)
8445     std::swap(V1, V2);
8446   if (V2.isUndef())
8447     V2 = V1;
8448   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8449   if (ShiftElts) {
8450     // Double ShiftElts because we're left shifting on v16i8 type.
8451     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8452                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8453     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8454     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8455                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8456     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8457   }
8458   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8459   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8460                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8461   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8462 }
8463 
8464 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8465 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8466 /// return the code it can be lowered into.  Worst case, it can always be
8467 /// lowered into a vperm.
8468 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8469                                                SelectionDAG &DAG) const {
8470   SDLoc dl(Op);
8471   SDValue V1 = Op.getOperand(0);
8472   SDValue V2 = Op.getOperand(1);
8473   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8474   EVT VT = Op.getValueType();
8475   bool isLittleEndian = Subtarget.isLittleEndian();
8476 
8477   unsigned ShiftElts, InsertAtByte;
8478   bool Swap = false;
8479   if (Subtarget.hasP9Vector() &&
8480       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8481                            isLittleEndian)) {
8482     if (Swap)
8483       std::swap(V1, V2);
8484     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8485     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8486     if (ShiftElts) {
8487       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8488                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8489       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8490                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8491       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8492     }
8493     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8494                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8495     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8496   }
8497 
8498   if (Subtarget.hasP9Altivec()) {
8499     SDValue NewISDNode;
8500     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8501       return NewISDNode;
8502 
8503     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8504       return NewISDNode;
8505   }
8506 
8507   if (Subtarget.hasVSX() &&
8508       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8509     if (Swap)
8510       std::swap(V1, V2);
8511     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8512     SDValue Conv2 =
8513         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8514 
8515     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8516                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8517     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8518   }
8519 
8520   if (Subtarget.hasVSX() &&
8521     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8522     if (Swap)
8523       std::swap(V1, V2);
8524     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8525     SDValue Conv2 =
8526         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8527 
8528     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8529                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8530     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8531   }
8532 
8533   if (Subtarget.hasP9Vector()) {
8534      if (PPC::isXXBRHShuffleMask(SVOp)) {
8535       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8536       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8537       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8538     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8539       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8540       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8541       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8542     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8543       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8544       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8545       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8546     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8547       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8548       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8549       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8550     }
8551   }
8552 
8553   if (Subtarget.hasVSX()) {
8554     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8555       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8556 
8557       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8558       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8559                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8560       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8561     }
8562 
8563     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8564     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8565       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8566       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8567       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8568     }
8569   }
8570 
8571   if (Subtarget.hasQPX()) {
8572     if (VT.getVectorNumElements() != 4)
8573       return SDValue();
8574 
8575     if (V2.isUndef()) V2 = V1;
8576 
8577     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8578     if (AlignIdx != -1) {
8579       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8580                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8581     } else if (SVOp->isSplat()) {
8582       int SplatIdx = SVOp->getSplatIndex();
8583       if (SplatIdx >= 4) {
8584         std::swap(V1, V2);
8585         SplatIdx -= 4;
8586       }
8587 
8588       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8589                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8590     }
8591 
8592     // Lower this into a qvgpci/qvfperm pair.
8593 
8594     // Compute the qvgpci literal
8595     unsigned idx = 0;
8596     for (unsigned i = 0; i < 4; ++i) {
8597       int m = SVOp->getMaskElt(i);
8598       unsigned mm = m >= 0 ? (unsigned) m : i;
8599       idx |= mm << (3-i)*3;
8600     }
8601 
8602     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8603                              DAG.getConstant(idx, dl, MVT::i32));
8604     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8605   }
8606 
8607   // Cases that are handled by instructions that take permute immediates
8608   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8609   // selected by the instruction selector.
8610   if (V2.isUndef()) {
8611     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8612         PPC::isSplatShuffleMask(SVOp, 2) ||
8613         PPC::isSplatShuffleMask(SVOp, 4) ||
8614         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8615         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8616         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8617         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8618         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8619         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8620         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8621         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8622         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8623         (Subtarget.hasP8Altivec() && (
8624          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8625          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8626          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8627       return Op;
8628     }
8629   }
8630 
8631   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8632   // and produce a fixed permutation.  If any of these match, do not lower to
8633   // VPERM.
8634   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8635   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8636       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8637       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8638       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8639       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8640       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8641       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8642       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8643       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8644       (Subtarget.hasP8Altivec() && (
8645        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8646        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8647        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8648     return Op;
8649 
8650   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8651   // perfect shuffle table to emit an optimal matching sequence.
8652   ArrayRef<int> PermMask = SVOp->getMask();
8653 
8654   unsigned PFIndexes[4];
8655   bool isFourElementShuffle = true;
8656   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8657     unsigned EltNo = 8;   // Start out undef.
8658     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8659       if (PermMask[i*4+j] < 0)
8660         continue;   // Undef, ignore it.
8661 
8662       unsigned ByteSource = PermMask[i*4+j];
8663       if ((ByteSource & 3) != j) {
8664         isFourElementShuffle = false;
8665         break;
8666       }
8667 
8668       if (EltNo == 8) {
8669         EltNo = ByteSource/4;
8670       } else if (EltNo != ByteSource/4) {
8671         isFourElementShuffle = false;
8672         break;
8673       }
8674     }
8675     PFIndexes[i] = EltNo;
8676   }
8677 
8678   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8679   // perfect shuffle vector to determine if it is cost effective to do this as
8680   // discrete instructions, or whether we should use a vperm.
8681   // For now, we skip this for little endian until such time as we have a
8682   // little-endian perfect shuffle table.
8683   if (isFourElementShuffle && !isLittleEndian) {
8684     // Compute the index in the perfect shuffle table.
8685     unsigned PFTableIndex =
8686       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8687 
8688     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8689     unsigned Cost  = (PFEntry >> 30);
8690 
8691     // Determining when to avoid vperm is tricky.  Many things affect the cost
8692     // of vperm, particularly how many times the perm mask needs to be computed.
8693     // For example, if the perm mask can be hoisted out of a loop or is already
8694     // used (perhaps because there are multiple permutes with the same shuffle
8695     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8696     // the loop requires an extra register.
8697     //
8698     // As a compromise, we only emit discrete instructions if the shuffle can be
8699     // generated in 3 or fewer operations.  When we have loop information
8700     // available, if this block is within a loop, we should avoid using vperm
8701     // for 3-operation perms and use a constant pool load instead.
8702     if (Cost < 3)
8703       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8704   }
8705 
8706   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8707   // vector that will get spilled to the constant pool.
8708   if (V2.isUndef()) V2 = V1;
8709 
8710   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8711   // that it is in input element units, not in bytes.  Convert now.
8712 
8713   // For little endian, the order of the input vectors is reversed, and
8714   // the permutation mask is complemented with respect to 31.  This is
8715   // necessary to produce proper semantics with the big-endian-biased vperm
8716   // instruction.
8717   EVT EltVT = V1.getValueType().getVectorElementType();
8718   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8719 
8720   SmallVector<SDValue, 16> ResultMask;
8721   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8722     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8723 
8724     for (unsigned j = 0; j != BytesPerElement; ++j)
8725       if (isLittleEndian)
8726         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8727                                              dl, MVT::i32));
8728       else
8729         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8730                                              MVT::i32));
8731   }
8732 
8733   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8734   if (isLittleEndian)
8735     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8736                        V2, V1, VPermMask);
8737   else
8738     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8739                        V1, V2, VPermMask);
8740 }
8741 
8742 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8743 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8744 /// information about the intrinsic.
8745 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8746                                  bool &isDot, const PPCSubtarget &Subtarget) {
8747   unsigned IntrinsicID =
8748       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8749   CompareOpc = -1;
8750   isDot = false;
8751   switch (IntrinsicID) {
8752   default:
8753     return false;
8754   // Comparison predicates.
8755   case Intrinsic::ppc_altivec_vcmpbfp_p:
8756     CompareOpc = 966;
8757     isDot = true;
8758     break;
8759   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8760     CompareOpc = 198;
8761     isDot = true;
8762     break;
8763   case Intrinsic::ppc_altivec_vcmpequb_p:
8764     CompareOpc = 6;
8765     isDot = true;
8766     break;
8767   case Intrinsic::ppc_altivec_vcmpequh_p:
8768     CompareOpc = 70;
8769     isDot = true;
8770     break;
8771   case Intrinsic::ppc_altivec_vcmpequw_p:
8772     CompareOpc = 134;
8773     isDot = true;
8774     break;
8775   case Intrinsic::ppc_altivec_vcmpequd_p:
8776     if (Subtarget.hasP8Altivec()) {
8777       CompareOpc = 199;
8778       isDot = true;
8779     } else
8780       return false;
8781     break;
8782   case Intrinsic::ppc_altivec_vcmpneb_p:
8783   case Intrinsic::ppc_altivec_vcmpneh_p:
8784   case Intrinsic::ppc_altivec_vcmpnew_p:
8785   case Intrinsic::ppc_altivec_vcmpnezb_p:
8786   case Intrinsic::ppc_altivec_vcmpnezh_p:
8787   case Intrinsic::ppc_altivec_vcmpnezw_p:
8788     if (Subtarget.hasP9Altivec()) {
8789       switch (IntrinsicID) {
8790       default:
8791         llvm_unreachable("Unknown comparison intrinsic.");
8792       case Intrinsic::ppc_altivec_vcmpneb_p:
8793         CompareOpc = 7;
8794         break;
8795       case Intrinsic::ppc_altivec_vcmpneh_p:
8796         CompareOpc = 71;
8797         break;
8798       case Intrinsic::ppc_altivec_vcmpnew_p:
8799         CompareOpc = 135;
8800         break;
8801       case Intrinsic::ppc_altivec_vcmpnezb_p:
8802         CompareOpc = 263;
8803         break;
8804       case Intrinsic::ppc_altivec_vcmpnezh_p:
8805         CompareOpc = 327;
8806         break;
8807       case Intrinsic::ppc_altivec_vcmpnezw_p:
8808         CompareOpc = 391;
8809         break;
8810       }
8811       isDot = true;
8812     } else
8813       return false;
8814     break;
8815   case Intrinsic::ppc_altivec_vcmpgefp_p:
8816     CompareOpc = 454;
8817     isDot = true;
8818     break;
8819   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8820     CompareOpc = 710;
8821     isDot = true;
8822     break;
8823   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8824     CompareOpc = 774;
8825     isDot = true;
8826     break;
8827   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8828     CompareOpc = 838;
8829     isDot = true;
8830     break;
8831   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8832     CompareOpc = 902;
8833     isDot = true;
8834     break;
8835   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8836     if (Subtarget.hasP8Altivec()) {
8837       CompareOpc = 967;
8838       isDot = true;
8839     } else
8840       return false;
8841     break;
8842   case Intrinsic::ppc_altivec_vcmpgtub_p:
8843     CompareOpc = 518;
8844     isDot = true;
8845     break;
8846   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8847     CompareOpc = 582;
8848     isDot = true;
8849     break;
8850   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8851     CompareOpc = 646;
8852     isDot = true;
8853     break;
8854   case Intrinsic::ppc_altivec_vcmpgtud_p:
8855     if (Subtarget.hasP8Altivec()) {
8856       CompareOpc = 711;
8857       isDot = true;
8858     } else
8859       return false;
8860     break;
8861 
8862   // VSX predicate comparisons use the same infrastructure
8863   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8864   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8865   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8866   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8867   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8868   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8869     if (Subtarget.hasVSX()) {
8870       switch (IntrinsicID) {
8871       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8872         CompareOpc = 99;
8873         break;
8874       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8875         CompareOpc = 115;
8876         break;
8877       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8878         CompareOpc = 107;
8879         break;
8880       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8881         CompareOpc = 67;
8882         break;
8883       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8884         CompareOpc = 83;
8885         break;
8886       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8887         CompareOpc = 75;
8888         break;
8889       }
8890       isDot = true;
8891     } else
8892       return false;
8893     break;
8894 
8895   // Normal Comparisons.
8896   case Intrinsic::ppc_altivec_vcmpbfp:
8897     CompareOpc = 966;
8898     break;
8899   case Intrinsic::ppc_altivec_vcmpeqfp:
8900     CompareOpc = 198;
8901     break;
8902   case Intrinsic::ppc_altivec_vcmpequb:
8903     CompareOpc = 6;
8904     break;
8905   case Intrinsic::ppc_altivec_vcmpequh:
8906     CompareOpc = 70;
8907     break;
8908   case Intrinsic::ppc_altivec_vcmpequw:
8909     CompareOpc = 134;
8910     break;
8911   case Intrinsic::ppc_altivec_vcmpequd:
8912     if (Subtarget.hasP8Altivec())
8913       CompareOpc = 199;
8914     else
8915       return false;
8916     break;
8917   case Intrinsic::ppc_altivec_vcmpneb:
8918   case Intrinsic::ppc_altivec_vcmpneh:
8919   case Intrinsic::ppc_altivec_vcmpnew:
8920   case Intrinsic::ppc_altivec_vcmpnezb:
8921   case Intrinsic::ppc_altivec_vcmpnezh:
8922   case Intrinsic::ppc_altivec_vcmpnezw:
8923     if (Subtarget.hasP9Altivec())
8924       switch (IntrinsicID) {
8925       default:
8926         llvm_unreachable("Unknown comparison intrinsic.");
8927       case Intrinsic::ppc_altivec_vcmpneb:
8928         CompareOpc = 7;
8929         break;
8930       case Intrinsic::ppc_altivec_vcmpneh:
8931         CompareOpc = 71;
8932         break;
8933       case Intrinsic::ppc_altivec_vcmpnew:
8934         CompareOpc = 135;
8935         break;
8936       case Intrinsic::ppc_altivec_vcmpnezb:
8937         CompareOpc = 263;
8938         break;
8939       case Intrinsic::ppc_altivec_vcmpnezh:
8940         CompareOpc = 327;
8941         break;
8942       case Intrinsic::ppc_altivec_vcmpnezw:
8943         CompareOpc = 391;
8944         break;
8945       }
8946     else
8947       return false;
8948     break;
8949   case Intrinsic::ppc_altivec_vcmpgefp:
8950     CompareOpc = 454;
8951     break;
8952   case Intrinsic::ppc_altivec_vcmpgtfp:
8953     CompareOpc = 710;
8954     break;
8955   case Intrinsic::ppc_altivec_vcmpgtsb:
8956     CompareOpc = 774;
8957     break;
8958   case Intrinsic::ppc_altivec_vcmpgtsh:
8959     CompareOpc = 838;
8960     break;
8961   case Intrinsic::ppc_altivec_vcmpgtsw:
8962     CompareOpc = 902;
8963     break;
8964   case Intrinsic::ppc_altivec_vcmpgtsd:
8965     if (Subtarget.hasP8Altivec())
8966       CompareOpc = 967;
8967     else
8968       return false;
8969     break;
8970   case Intrinsic::ppc_altivec_vcmpgtub:
8971     CompareOpc = 518;
8972     break;
8973   case Intrinsic::ppc_altivec_vcmpgtuh:
8974     CompareOpc = 582;
8975     break;
8976   case Intrinsic::ppc_altivec_vcmpgtuw:
8977     CompareOpc = 646;
8978     break;
8979   case Intrinsic::ppc_altivec_vcmpgtud:
8980     if (Subtarget.hasP8Altivec())
8981       CompareOpc = 711;
8982     else
8983       return false;
8984     break;
8985   }
8986   return true;
8987 }
8988 
8989 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8990 /// lower, do it, otherwise return null.
8991 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8992                                                    SelectionDAG &DAG) const {
8993   unsigned IntrinsicID =
8994     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8995 
8996   SDLoc dl(Op);
8997 
8998   if (IntrinsicID == Intrinsic::thread_pointer) {
8999     // Reads the thread pointer register, used for __builtin_thread_pointer.
9000     if (Subtarget.isPPC64())
9001       return DAG.getRegister(PPC::X13, MVT::i64);
9002     return DAG.getRegister(PPC::R2, MVT::i32);
9003   }
9004 
9005   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9006   // opcode number of the comparison.
9007   int CompareOpc;
9008   bool isDot;
9009   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9010     return SDValue();    // Don't custom lower most intrinsics.
9011 
9012   // If this is a non-dot comparison, make the VCMP node and we are done.
9013   if (!isDot) {
9014     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9015                               Op.getOperand(1), Op.getOperand(2),
9016                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9017     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9018   }
9019 
9020   // Create the PPCISD altivec 'dot' comparison node.
9021   SDValue Ops[] = {
9022     Op.getOperand(2),  // LHS
9023     Op.getOperand(3),  // RHS
9024     DAG.getConstant(CompareOpc, dl, MVT::i32)
9025   };
9026   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9027   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9028 
9029   // Now that we have the comparison, emit a copy from the CR to a GPR.
9030   // This is flagged to the above dot comparison.
9031   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9032                                 DAG.getRegister(PPC::CR6, MVT::i32),
9033                                 CompNode.getValue(1));
9034 
9035   // Unpack the result based on how the target uses it.
9036   unsigned BitNo;   // Bit # of CR6.
9037   bool InvertBit;   // Invert result?
9038   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9039   default:  // Can't happen, don't crash on invalid number though.
9040   case 0:   // Return the value of the EQ bit of CR6.
9041     BitNo = 0; InvertBit = false;
9042     break;
9043   case 1:   // Return the inverted value of the EQ bit of CR6.
9044     BitNo = 0; InvertBit = true;
9045     break;
9046   case 2:   // Return the value of the LT bit of CR6.
9047     BitNo = 2; InvertBit = false;
9048     break;
9049   case 3:   // Return the inverted value of the LT bit of CR6.
9050     BitNo = 2; InvertBit = true;
9051     break;
9052   }
9053 
9054   // Shift the bit into the low position.
9055   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9056                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9057   // Isolate the bit.
9058   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9059                       DAG.getConstant(1, dl, MVT::i32));
9060 
9061   // If we are supposed to, toggle the bit.
9062   if (InvertBit)
9063     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9064                         DAG.getConstant(1, dl, MVT::i32));
9065   return Flags;
9066 }
9067 
9068 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9069                                                SelectionDAG &DAG) const {
9070   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9071   // the beginning of the argument list.
9072   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9073   SDLoc DL(Op);
9074   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9075   case Intrinsic::ppc_cfence: {
9076     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9077     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9078     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9079                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9080                                                   Op.getOperand(ArgStart + 1)),
9081                                       Op.getOperand(0)),
9082                    0);
9083   }
9084   default:
9085     break;
9086   }
9087   return SDValue();
9088 }
9089 
9090 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9091   // Check for a DIV with the same operands as this REM.
9092   for (auto UI : Op.getOperand(1)->uses()) {
9093     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9094         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9095       if (UI->getOperand(0) == Op.getOperand(0) &&
9096           UI->getOperand(1) == Op.getOperand(1))
9097         return SDValue();
9098   }
9099   return Op;
9100 }
9101 
9102 // Lower scalar BSWAP64 to xxbrd.
9103 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9104   SDLoc dl(Op);
9105   // MTVSRDD
9106   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9107                    Op.getOperand(0));
9108   // XXBRD
9109   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9110   // MFVSRD
9111   int VectorIndex = 0;
9112   if (Subtarget.isLittleEndian())
9113     VectorIndex = 1;
9114   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9115                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9116   return Op;
9117 }
9118 
9119 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9120 // compared to a value that is atomically loaded (atomic loads zero-extend).
9121 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9122                                                 SelectionDAG &DAG) const {
9123   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9124          "Expecting an atomic compare-and-swap here.");
9125   SDLoc dl(Op);
9126   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9127   EVT MemVT = AtomicNode->getMemoryVT();
9128   if (MemVT.getSizeInBits() >= 32)
9129     return Op;
9130 
9131   SDValue CmpOp = Op.getOperand(2);
9132   // If this is already correctly zero-extended, leave it alone.
9133   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9134   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9135     return Op;
9136 
9137   // Clear the high bits of the compare operand.
9138   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9139   SDValue NewCmpOp =
9140     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9141                 DAG.getConstant(MaskVal, dl, MVT::i32));
9142 
9143   // Replace the existing compare operand with the properly zero-extended one.
9144   SmallVector<SDValue, 4> Ops;
9145   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9146     Ops.push_back(AtomicNode->getOperand(i));
9147   Ops[2] = NewCmpOp;
9148   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9149   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9150   auto NodeTy =
9151     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9152   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9153 }
9154 
9155 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9156                                                  SelectionDAG &DAG) const {
9157   SDLoc dl(Op);
9158   // Create a stack slot that is 16-byte aligned.
9159   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9160   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9161   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9162   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9163 
9164   // Store the input value into Value#0 of the stack slot.
9165   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9166                                MachinePointerInfo());
9167   // Load it out.
9168   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9169 }
9170 
9171 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9172                                                   SelectionDAG &DAG) const {
9173   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9174          "Should only be called for ISD::INSERT_VECTOR_ELT");
9175 
9176   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9177   // We have legal lowering for constant indices but not for variable ones.
9178   if (!C)
9179     return SDValue();
9180 
9181   EVT VT = Op.getValueType();
9182   SDLoc dl(Op);
9183   SDValue V1 = Op.getOperand(0);
9184   SDValue V2 = Op.getOperand(1);
9185   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9186   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9187     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9188     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9189     unsigned InsertAtElement = C->getZExtValue();
9190     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9191     if (Subtarget.isLittleEndian()) {
9192       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9193     }
9194     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9195                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9196   }
9197   return Op;
9198 }
9199 
9200 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9201                                                    SelectionDAG &DAG) const {
9202   SDLoc dl(Op);
9203   SDNode *N = Op.getNode();
9204 
9205   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9206          "Unknown extract_vector_elt type");
9207 
9208   SDValue Value = N->getOperand(0);
9209 
9210   // The first part of this is like the store lowering except that we don't
9211   // need to track the chain.
9212 
9213   // The values are now known to be -1 (false) or 1 (true). To convert this
9214   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9215   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9216   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9217 
9218   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9219   // understand how to form the extending load.
9220   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9221 
9222   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9223 
9224   // Now convert to an integer and store.
9225   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9226     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9227     Value);
9228 
9229   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9230   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9231   MachinePointerInfo PtrInfo =
9232       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9233   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9234   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9235 
9236   SDValue StoreChain = DAG.getEntryNode();
9237   SDValue Ops[] = {StoreChain,
9238                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9239                    Value, FIdx};
9240   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9241 
9242   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9243     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9244 
9245   // Extract the value requested.
9246   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9247   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9248   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9249 
9250   SDValue IntVal =
9251       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9252 
9253   if (!Subtarget.useCRBits())
9254     return IntVal;
9255 
9256   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9257 }
9258 
9259 /// Lowering for QPX v4i1 loads
9260 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9261                                            SelectionDAG &DAG) const {
9262   SDLoc dl(Op);
9263   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9264   SDValue LoadChain = LN->getChain();
9265   SDValue BasePtr = LN->getBasePtr();
9266 
9267   if (Op.getValueType() == MVT::v4f64 ||
9268       Op.getValueType() == MVT::v4f32) {
9269     EVT MemVT = LN->getMemoryVT();
9270     unsigned Alignment = LN->getAlignment();
9271 
9272     // If this load is properly aligned, then it is legal.
9273     if (Alignment >= MemVT.getStoreSize())
9274       return Op;
9275 
9276     EVT ScalarVT = Op.getValueType().getScalarType(),
9277         ScalarMemVT = MemVT.getScalarType();
9278     unsigned Stride = ScalarMemVT.getStoreSize();
9279 
9280     SDValue Vals[4], LoadChains[4];
9281     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9282       SDValue Load;
9283       if (ScalarVT != ScalarMemVT)
9284         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9285                               BasePtr,
9286                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9287                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9288                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9289       else
9290         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9291                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9292                            MinAlign(Alignment, Idx * Stride),
9293                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9294 
9295       if (Idx == 0 && LN->isIndexed()) {
9296         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9297                "Unknown addressing mode on vector load");
9298         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9299                                   LN->getAddressingMode());
9300       }
9301 
9302       Vals[Idx] = Load;
9303       LoadChains[Idx] = Load.getValue(1);
9304 
9305       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9306                             DAG.getConstant(Stride, dl,
9307                                             BasePtr.getValueType()));
9308     }
9309 
9310     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9311     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9312 
9313     if (LN->isIndexed()) {
9314       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9315       return DAG.getMergeValues(RetOps, dl);
9316     }
9317 
9318     SDValue RetOps[] = { Value, TF };
9319     return DAG.getMergeValues(RetOps, dl);
9320   }
9321 
9322   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9323   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9324 
9325   // To lower v4i1 from a byte array, we load the byte elements of the
9326   // vector and then reuse the BUILD_VECTOR logic.
9327 
9328   SDValue VectElmts[4], VectElmtChains[4];
9329   for (unsigned i = 0; i < 4; ++i) {
9330     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9331     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9332 
9333     VectElmts[i] = DAG.getExtLoad(
9334         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9335         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9336         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9337     VectElmtChains[i] = VectElmts[i].getValue(1);
9338   }
9339 
9340   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9341   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9342 
9343   SDValue RVals[] = { Value, LoadChain };
9344   return DAG.getMergeValues(RVals, dl);
9345 }
9346 
9347 /// Lowering for QPX v4i1 stores
9348 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9349                                             SelectionDAG &DAG) const {
9350   SDLoc dl(Op);
9351   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9352   SDValue StoreChain = SN->getChain();
9353   SDValue BasePtr = SN->getBasePtr();
9354   SDValue Value = SN->getValue();
9355 
9356   if (Value.getValueType() == MVT::v4f64 ||
9357       Value.getValueType() == MVT::v4f32) {
9358     EVT MemVT = SN->getMemoryVT();
9359     unsigned Alignment = SN->getAlignment();
9360 
9361     // If this store is properly aligned, then it is legal.
9362     if (Alignment >= MemVT.getStoreSize())
9363       return Op;
9364 
9365     EVT ScalarVT = Value.getValueType().getScalarType(),
9366         ScalarMemVT = MemVT.getScalarType();
9367     unsigned Stride = ScalarMemVT.getStoreSize();
9368 
9369     SDValue Stores[4];
9370     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9371       SDValue Ex = DAG.getNode(
9372           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9373           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9374       SDValue Store;
9375       if (ScalarVT != ScalarMemVT)
9376         Store =
9377             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9378                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9379                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9380                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9381       else
9382         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9383                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9384                              MinAlign(Alignment, Idx * Stride),
9385                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9386 
9387       if (Idx == 0 && SN->isIndexed()) {
9388         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9389                "Unknown addressing mode on vector store");
9390         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9391                                     SN->getAddressingMode());
9392       }
9393 
9394       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9395                             DAG.getConstant(Stride, dl,
9396                                             BasePtr.getValueType()));
9397       Stores[Idx] = Store;
9398     }
9399 
9400     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9401 
9402     if (SN->isIndexed()) {
9403       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9404       return DAG.getMergeValues(RetOps, dl);
9405     }
9406 
9407     return TF;
9408   }
9409 
9410   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9411   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9412 
9413   // The values are now known to be -1 (false) or 1 (true). To convert this
9414   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9415   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9416   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9417 
9418   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9419   // understand how to form the extending load.
9420   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9421 
9422   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9423 
9424   // Now convert to an integer and store.
9425   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9426     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9427     Value);
9428 
9429   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9430   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9431   MachinePointerInfo PtrInfo =
9432       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9433   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9434   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9435 
9436   SDValue Ops[] = {StoreChain,
9437                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9438                    Value, FIdx};
9439   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9440 
9441   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9442     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9443 
9444   // Move data into the byte array.
9445   SDValue Loads[4], LoadChains[4];
9446   for (unsigned i = 0; i < 4; ++i) {
9447     unsigned Offset = 4*i;
9448     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9449     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9450 
9451     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9452                            PtrInfo.getWithOffset(Offset));
9453     LoadChains[i] = Loads[i].getValue(1);
9454   }
9455 
9456   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9457 
9458   SDValue Stores[4];
9459   for (unsigned i = 0; i < 4; ++i) {
9460     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9461     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9462 
9463     Stores[i] = DAG.getTruncStore(
9464         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9465         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9466         SN->getAAInfo());
9467   }
9468 
9469   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9470 
9471   return StoreChain;
9472 }
9473 
9474 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9475   SDLoc dl(Op);
9476   if (Op.getValueType() == MVT::v4i32) {
9477     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9478 
9479     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9480     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9481 
9482     SDValue RHSSwap =   // = vrlw RHS, 16
9483       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9484 
9485     // Shrinkify inputs to v8i16.
9486     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9487     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9488     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9489 
9490     // Low parts multiplied together, generating 32-bit results (we ignore the
9491     // top parts).
9492     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9493                                         LHS, RHS, DAG, dl, MVT::v4i32);
9494 
9495     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9496                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9497     // Shift the high parts up 16 bits.
9498     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9499                               Neg16, DAG, dl);
9500     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9501   } else if (Op.getValueType() == MVT::v8i16) {
9502     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9503 
9504     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9505 
9506     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9507                             LHS, RHS, Zero, DAG, dl);
9508   } else if (Op.getValueType() == MVT::v16i8) {
9509     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9510     bool isLittleEndian = Subtarget.isLittleEndian();
9511 
9512     // Multiply the even 8-bit parts, producing 16-bit sums.
9513     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9514                                            LHS, RHS, DAG, dl, MVT::v8i16);
9515     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9516 
9517     // Multiply the odd 8-bit parts, producing 16-bit sums.
9518     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9519                                           LHS, RHS, DAG, dl, MVT::v8i16);
9520     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9521 
9522     // Merge the results together.  Because vmuleub and vmuloub are
9523     // instructions with a big-endian bias, we must reverse the
9524     // element numbering and reverse the meaning of "odd" and "even"
9525     // when generating little endian code.
9526     int Ops[16];
9527     for (unsigned i = 0; i != 8; ++i) {
9528       if (isLittleEndian) {
9529         Ops[i*2  ] = 2*i;
9530         Ops[i*2+1] = 2*i+16;
9531       } else {
9532         Ops[i*2  ] = 2*i+1;
9533         Ops[i*2+1] = 2*i+1+16;
9534       }
9535     }
9536     if (isLittleEndian)
9537       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9538     else
9539       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9540   } else {
9541     llvm_unreachable("Unknown mul to lower!");
9542   }
9543 }
9544 
9545 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9546 
9547   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9548 
9549   EVT VT = Op.getValueType();
9550   assert(VT.isVector() &&
9551          "Only set vector abs as custom, scalar abs shouldn't reach here!");
9552   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
9553           VT == MVT::v16i8) &&
9554          "Unexpected vector element type!");
9555   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
9556          "Current subtarget doesn't support smax v2i64!");
9557 
9558   // For vector abs, it can be lowered to:
9559   // abs x
9560   // ==>
9561   // y = -x
9562   // smax(x, y)
9563 
9564   SDLoc dl(Op);
9565   SDValue X = Op.getOperand(0);
9566   SDValue Zero = DAG.getConstant(0, dl, VT);
9567   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
9568 
9569   // SMAX patch https://reviews.llvm.org/D47332
9570   // hasn't landed yet, so use intrinsic first here.
9571   // TODO: Should use SMAX directly once SMAX patch landed
9572   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
9573   if (VT == MVT::v2i64)
9574     BifID = Intrinsic::ppc_altivec_vmaxsd;
9575   else if (VT == MVT::v8i16)
9576     BifID = Intrinsic::ppc_altivec_vmaxsh;
9577   else if (VT == MVT::v16i8)
9578     BifID = Intrinsic::ppc_altivec_vmaxsb;
9579 
9580   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
9581 }
9582 
9583 /// LowerOperation - Provide custom lowering hooks for some operations.
9584 ///
9585 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9586   switch (Op.getOpcode()) {
9587   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9588   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9589   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9590   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9591   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9592   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9593   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9594   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9595   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9596 
9597   // Variable argument lowering.
9598   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9599   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9600   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9601 
9602   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9603   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9604   case ISD::GET_DYNAMIC_AREA_OFFSET:
9605     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9606 
9607   // Exception handling lowering.
9608   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9609   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9610   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9611 
9612   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9613   case ISD::STORE:              return LowerSTORE(Op, DAG);
9614   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9615   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9616   case ISD::FP_TO_UINT:
9617   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9618   case ISD::UINT_TO_FP:
9619   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9620   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9621 
9622   // Lower 64-bit shifts.
9623   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9624   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9625   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9626 
9627   // Vector-related lowering.
9628   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9629   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9630   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9631   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9632   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9633   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9634   case ISD::MUL:                return LowerMUL(Op, DAG);
9635   case ISD::ABS:                return LowerABS(Op, DAG);
9636 
9637   // For counter-based loop handling.
9638   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9639 
9640   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9641 
9642   // Frame & Return address.
9643   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9644   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9645 
9646   case ISD::INTRINSIC_VOID:
9647     return LowerINTRINSIC_VOID(Op, DAG);
9648   case ISD::SREM:
9649   case ISD::UREM:
9650     return LowerREM(Op, DAG);
9651   case ISD::BSWAP:
9652     return LowerBSWAP(Op, DAG);
9653   case ISD::ATOMIC_CMP_SWAP:
9654     return LowerATOMIC_CMP_SWAP(Op, DAG);
9655   }
9656 }
9657 
9658 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9659                                            SmallVectorImpl<SDValue>&Results,
9660                                            SelectionDAG &DAG) const {
9661   SDLoc dl(N);
9662   switch (N->getOpcode()) {
9663   default:
9664     llvm_unreachable("Do not know how to custom type legalize this operation!");
9665   case ISD::READCYCLECOUNTER: {
9666     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9667     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9668 
9669     Results.push_back(RTB);
9670     Results.push_back(RTB.getValue(1));
9671     Results.push_back(RTB.getValue(2));
9672     break;
9673   }
9674   case ISD::INTRINSIC_W_CHAIN: {
9675     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9676         Intrinsic::ppc_is_decremented_ctr_nonzero)
9677       break;
9678 
9679     assert(N->getValueType(0) == MVT::i1 &&
9680            "Unexpected result type for CTR decrement intrinsic");
9681     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9682                                  N->getValueType(0));
9683     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9684     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9685                                  N->getOperand(1));
9686 
9687     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9688     Results.push_back(NewInt.getValue(1));
9689     break;
9690   }
9691   case ISD::VAARG: {
9692     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9693       return;
9694 
9695     EVT VT = N->getValueType(0);
9696 
9697     if (VT == MVT::i64) {
9698       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9699 
9700       Results.push_back(NewNode);
9701       Results.push_back(NewNode.getValue(1));
9702     }
9703     return;
9704   }
9705   case ISD::FP_TO_SINT:
9706   case ISD::FP_TO_UINT:
9707     // LowerFP_TO_INT() can only handle f32 and f64.
9708     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9709       return;
9710     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9711     return;
9712   case ISD::TRUNCATE: {
9713     EVT TrgVT = N->getValueType(0);
9714     if (TrgVT.isVector() &&
9715         isOperationCustom(N->getOpcode(), TrgVT) &&
9716         N->getOperand(0).getValueType().getSizeInBits() <= 128)
9717       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
9718     return;
9719   }
9720   case ISD::BITCAST:
9721     // Don't handle bitcast here.
9722     return;
9723   }
9724 }
9725 
9726 //===----------------------------------------------------------------------===//
9727 //  Other Lowering Code
9728 //===----------------------------------------------------------------------===//
9729 
9730 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9731   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9732   Function *Func = Intrinsic::getDeclaration(M, Id);
9733   return Builder.CreateCall(Func, {});
9734 }
9735 
9736 // The mappings for emitLeading/TrailingFence is taken from
9737 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9738 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9739                                                  Instruction *Inst,
9740                                                  AtomicOrdering Ord) const {
9741   if (Ord == AtomicOrdering::SequentiallyConsistent)
9742     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9743   if (isReleaseOrStronger(Ord))
9744     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9745   return nullptr;
9746 }
9747 
9748 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9749                                                   Instruction *Inst,
9750                                                   AtomicOrdering Ord) const {
9751   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9752     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9753     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9754     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9755     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9756       return Builder.CreateCall(
9757           Intrinsic::getDeclaration(
9758               Builder.GetInsertBlock()->getParent()->getParent(),
9759               Intrinsic::ppc_cfence, {Inst->getType()}),
9760           {Inst});
9761     // FIXME: Can use isync for rmw operation.
9762     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9763   }
9764   return nullptr;
9765 }
9766 
9767 MachineBasicBlock *
9768 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9769                                     unsigned AtomicSize,
9770                                     unsigned BinOpcode,
9771                                     unsigned CmpOpcode,
9772                                     unsigned CmpPred) const {
9773   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9774   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9775 
9776   auto LoadMnemonic = PPC::LDARX;
9777   auto StoreMnemonic = PPC::STDCX;
9778   switch (AtomicSize) {
9779   default:
9780     llvm_unreachable("Unexpected size of atomic entity");
9781   case 1:
9782     LoadMnemonic = PPC::LBARX;
9783     StoreMnemonic = PPC::STBCX;
9784     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9785     break;
9786   case 2:
9787     LoadMnemonic = PPC::LHARX;
9788     StoreMnemonic = PPC::STHCX;
9789     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9790     break;
9791   case 4:
9792     LoadMnemonic = PPC::LWARX;
9793     StoreMnemonic = PPC::STWCX;
9794     break;
9795   case 8:
9796     LoadMnemonic = PPC::LDARX;
9797     StoreMnemonic = PPC::STDCX;
9798     break;
9799   }
9800 
9801   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9802   MachineFunction *F = BB->getParent();
9803   MachineFunction::iterator It = ++BB->getIterator();
9804 
9805   unsigned dest = MI.getOperand(0).getReg();
9806   unsigned ptrA = MI.getOperand(1).getReg();
9807   unsigned ptrB = MI.getOperand(2).getReg();
9808   unsigned incr = MI.getOperand(3).getReg();
9809   DebugLoc dl = MI.getDebugLoc();
9810 
9811   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9812   MachineBasicBlock *loop2MBB =
9813     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9814   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9815   F->insert(It, loopMBB);
9816   if (CmpOpcode)
9817     F->insert(It, loop2MBB);
9818   F->insert(It, exitMBB);
9819   exitMBB->splice(exitMBB->begin(), BB,
9820                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9821   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9822 
9823   MachineRegisterInfo &RegInfo = F->getRegInfo();
9824   unsigned TmpReg = (!BinOpcode) ? incr :
9825     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9826                                            : &PPC::GPRCRegClass);
9827 
9828   //  thisMBB:
9829   //   ...
9830   //   fallthrough --> loopMBB
9831   BB->addSuccessor(loopMBB);
9832 
9833   //  loopMBB:
9834   //   l[wd]arx dest, ptr
9835   //   add r0, dest, incr
9836   //   st[wd]cx. r0, ptr
9837   //   bne- loopMBB
9838   //   fallthrough --> exitMBB
9839 
9840   // For max/min...
9841   //  loopMBB:
9842   //   l[wd]arx dest, ptr
9843   //   cmpl?[wd] incr, dest
9844   //   bgt exitMBB
9845   //  loop2MBB:
9846   //   st[wd]cx. dest, ptr
9847   //   bne- loopMBB
9848   //   fallthrough --> exitMBB
9849 
9850   BB = loopMBB;
9851   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9852     .addReg(ptrA).addReg(ptrB);
9853   if (BinOpcode)
9854     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9855   if (CmpOpcode) {
9856     // Signed comparisons of byte or halfword values must be sign-extended.
9857     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9858       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9859       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9860               ExtReg).addReg(dest);
9861       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9862         .addReg(incr).addReg(ExtReg);
9863     } else
9864       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9865         .addReg(incr).addReg(dest);
9866 
9867     BuildMI(BB, dl, TII->get(PPC::BCC))
9868       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9869     BB->addSuccessor(loop2MBB);
9870     BB->addSuccessor(exitMBB);
9871     BB = loop2MBB;
9872   }
9873   BuildMI(BB, dl, TII->get(StoreMnemonic))
9874     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9875   BuildMI(BB, dl, TII->get(PPC::BCC))
9876     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9877   BB->addSuccessor(loopMBB);
9878   BB->addSuccessor(exitMBB);
9879 
9880   //  exitMBB:
9881   //   ...
9882   BB = exitMBB;
9883   return BB;
9884 }
9885 
9886 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
9887     MachineInstr &MI, MachineBasicBlock *BB,
9888     bool is8bit, // operation
9889     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
9890   // If we support part-word atomic mnemonics, just use them
9891   if (Subtarget.hasPartwordAtomics())
9892     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
9893                             CmpPred);
9894 
9895   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9896   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9897   // In 64 bit mode we have to use 64 bits for addresses, even though the
9898   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9899   // registers without caring whether they're 32 or 64, but here we're
9900   // doing actual arithmetic on the addresses.
9901   bool is64bit = Subtarget.isPPC64();
9902   bool isLittleEndian = Subtarget.isLittleEndian();
9903   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9904 
9905   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9906   MachineFunction *F = BB->getParent();
9907   MachineFunction::iterator It = ++BB->getIterator();
9908 
9909   unsigned dest = MI.getOperand(0).getReg();
9910   unsigned ptrA = MI.getOperand(1).getReg();
9911   unsigned ptrB = MI.getOperand(2).getReg();
9912   unsigned incr = MI.getOperand(3).getReg();
9913   DebugLoc dl = MI.getDebugLoc();
9914 
9915   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9916   MachineBasicBlock *loop2MBB =
9917       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9918   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9919   F->insert(It, loopMBB);
9920   if (CmpOpcode)
9921     F->insert(It, loop2MBB);
9922   F->insert(It, exitMBB);
9923   exitMBB->splice(exitMBB->begin(), BB,
9924                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9925   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9926 
9927   MachineRegisterInfo &RegInfo = F->getRegInfo();
9928   const TargetRegisterClass *RC =
9929       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9930   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
9931 
9932   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9933   unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
9934   unsigned ShiftReg =
9935       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
9936   unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC);
9937   unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
9938   unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
9939   unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
9940   unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
9941   unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
9942   unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
9943   unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
9944   unsigned Ptr1Reg;
9945   unsigned TmpReg =
9946       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
9947 
9948   //  thisMBB:
9949   //   ...
9950   //   fallthrough --> loopMBB
9951   BB->addSuccessor(loopMBB);
9952 
9953   // The 4-byte load must be aligned, while a char or short may be
9954   // anywhere in the word.  Hence all this nasty bookkeeping code.
9955   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9956   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9957   //   xori shift, shift1, 24 [16]
9958   //   rlwinm ptr, ptr1, 0, 0, 29
9959   //   slw incr2, incr, shift
9960   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9961   //   slw mask, mask2, shift
9962   //  loopMBB:
9963   //   lwarx tmpDest, ptr
9964   //   add tmp, tmpDest, incr2
9965   //   andc tmp2, tmpDest, mask
9966   //   and tmp3, tmp, mask
9967   //   or tmp4, tmp3, tmp2
9968   //   stwcx. tmp4, ptr
9969   //   bne- loopMBB
9970   //   fallthrough --> exitMBB
9971   //   srw dest, tmpDest, shift
9972   if (ptrA != ZeroReg) {
9973     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9974     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9975         .addReg(ptrA)
9976         .addReg(ptrB);
9977   } else {
9978     Ptr1Reg = ptrB;
9979   }
9980   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
9981   // mode.
9982   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
9983       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
9984       .addImm(3)
9985       .addImm(27)
9986       .addImm(is8bit ? 28 : 27);
9987   if (!isLittleEndian)
9988     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
9989         .addReg(Shift1Reg)
9990         .addImm(is8bit ? 24 : 16);
9991   if (is64bit)
9992     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9993         .addReg(Ptr1Reg)
9994         .addImm(0)
9995         .addImm(61);
9996   else
9997     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9998         .addReg(Ptr1Reg)
9999         .addImm(0)
10000         .addImm(0)
10001         .addImm(29);
10002   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10003   if (is8bit)
10004     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10005   else {
10006     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10007     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10008         .addReg(Mask3Reg)
10009         .addImm(65535);
10010   }
10011   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10012       .addReg(Mask2Reg)
10013       .addReg(ShiftReg);
10014 
10015   BB = loopMBB;
10016   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10017       .addReg(ZeroReg)
10018       .addReg(PtrReg);
10019   if (BinOpcode)
10020     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10021         .addReg(Incr2Reg)
10022         .addReg(TmpDestReg);
10023   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10024       .addReg(TmpDestReg)
10025       .addReg(MaskReg);
10026   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10027   if (CmpOpcode) {
10028     // For unsigned comparisons, we can directly compare the shifted values.
10029     // For signed comparisons we shift and sign extend.
10030     unsigned SReg = RegInfo.createVirtualRegister(GPRC);
10031     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10032         .addReg(TmpDestReg)
10033         .addReg(MaskReg);
10034     unsigned ValueReg = SReg;
10035     unsigned CmpReg = Incr2Reg;
10036     if (CmpOpcode == PPC::CMPW) {
10037       ValueReg = RegInfo.createVirtualRegister(GPRC);
10038       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10039           .addReg(SReg)
10040           .addReg(ShiftReg);
10041       unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
10042       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10043           .addReg(ValueReg);
10044       ValueReg = ValueSReg;
10045       CmpReg = incr;
10046     }
10047     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10048         .addReg(CmpReg)
10049         .addReg(ValueReg);
10050     BuildMI(BB, dl, TII->get(PPC::BCC))
10051         .addImm(CmpPred)
10052         .addReg(PPC::CR0)
10053         .addMBB(exitMBB);
10054     BB->addSuccessor(loop2MBB);
10055     BB->addSuccessor(exitMBB);
10056     BB = loop2MBB;
10057   }
10058   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10059   BuildMI(BB, dl, TII->get(PPC::STWCX))
10060       .addReg(Tmp4Reg)
10061       .addReg(ZeroReg)
10062       .addReg(PtrReg);
10063   BuildMI(BB, dl, TII->get(PPC::BCC))
10064       .addImm(PPC::PRED_NE)
10065       .addReg(PPC::CR0)
10066       .addMBB(loopMBB);
10067   BB->addSuccessor(loopMBB);
10068   BB->addSuccessor(exitMBB);
10069 
10070   //  exitMBB:
10071   //   ...
10072   BB = exitMBB;
10073   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10074       .addReg(TmpDestReg)
10075       .addReg(ShiftReg);
10076   return BB;
10077 }
10078 
10079 llvm::MachineBasicBlock *
10080 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10081                                     MachineBasicBlock *MBB) const {
10082   DebugLoc DL = MI.getDebugLoc();
10083   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10084   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10085 
10086   MachineFunction *MF = MBB->getParent();
10087   MachineRegisterInfo &MRI = MF->getRegInfo();
10088 
10089   const BasicBlock *BB = MBB->getBasicBlock();
10090   MachineFunction::iterator I = ++MBB->getIterator();
10091 
10092   unsigned DstReg = MI.getOperand(0).getReg();
10093   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10094   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10095   unsigned mainDstReg = MRI.createVirtualRegister(RC);
10096   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10097 
10098   MVT PVT = getPointerTy(MF->getDataLayout());
10099   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10100          "Invalid Pointer Size!");
10101   // For v = setjmp(buf), we generate
10102   //
10103   // thisMBB:
10104   //  SjLjSetup mainMBB
10105   //  bl mainMBB
10106   //  v_restore = 1
10107   //  b sinkMBB
10108   //
10109   // mainMBB:
10110   //  buf[LabelOffset] = LR
10111   //  v_main = 0
10112   //
10113   // sinkMBB:
10114   //  v = phi(main, restore)
10115   //
10116 
10117   MachineBasicBlock *thisMBB = MBB;
10118   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10119   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10120   MF->insert(I, mainMBB);
10121   MF->insert(I, sinkMBB);
10122 
10123   MachineInstrBuilder MIB;
10124 
10125   // Transfer the remainder of BB and its successor edges to sinkMBB.
10126   sinkMBB->splice(sinkMBB->begin(), MBB,
10127                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10128   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10129 
10130   // Note that the structure of the jmp_buf used here is not compatible
10131   // with that used by libc, and is not designed to be. Specifically, it
10132   // stores only those 'reserved' registers that LLVM does not otherwise
10133   // understand how to spill. Also, by convention, by the time this
10134   // intrinsic is called, Clang has already stored the frame address in the
10135   // first slot of the buffer and stack address in the third. Following the
10136   // X86 target code, we'll store the jump address in the second slot. We also
10137   // need to save the TOC pointer (R2) to handle jumps between shared
10138   // libraries, and that will be stored in the fourth slot. The thread
10139   // identifier (R13) is not affected.
10140 
10141   // thisMBB:
10142   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10143   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10144   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10145 
10146   // Prepare IP either in reg.
10147   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10148   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10149   unsigned BufReg = MI.getOperand(1).getReg();
10150 
10151   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10152     setUsesTOCBasePtr(*MBB->getParent());
10153     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10154               .addReg(PPC::X2)
10155               .addImm(TOCOffset)
10156               .addReg(BufReg)
10157               .cloneMemRefs(MI);
10158   }
10159 
10160   // Naked functions never have a base pointer, and so we use r1. For all
10161   // other functions, this decision must be delayed until during PEI.
10162   unsigned BaseReg;
10163   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10164     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10165   else
10166     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10167 
10168   MIB = BuildMI(*thisMBB, MI, DL,
10169                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10170             .addReg(BaseReg)
10171             .addImm(BPOffset)
10172             .addReg(BufReg)
10173             .cloneMemRefs(MI);
10174 
10175   // Setup
10176   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10177   MIB.addRegMask(TRI->getNoPreservedMask());
10178 
10179   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10180 
10181   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10182           .addMBB(mainMBB);
10183   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10184 
10185   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10186   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10187 
10188   // mainMBB:
10189   //  mainDstReg = 0
10190   MIB =
10191       BuildMI(mainMBB, DL,
10192               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10193 
10194   // Store IP
10195   if (Subtarget.isPPC64()) {
10196     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10197             .addReg(LabelReg)
10198             .addImm(LabelOffset)
10199             .addReg(BufReg);
10200   } else {
10201     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10202             .addReg(LabelReg)
10203             .addImm(LabelOffset)
10204             .addReg(BufReg);
10205   }
10206   MIB.cloneMemRefs(MI);
10207 
10208   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10209   mainMBB->addSuccessor(sinkMBB);
10210 
10211   // sinkMBB:
10212   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10213           TII->get(PPC::PHI), DstReg)
10214     .addReg(mainDstReg).addMBB(mainMBB)
10215     .addReg(restoreDstReg).addMBB(thisMBB);
10216 
10217   MI.eraseFromParent();
10218   return sinkMBB;
10219 }
10220 
10221 MachineBasicBlock *
10222 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10223                                      MachineBasicBlock *MBB) const {
10224   DebugLoc DL = MI.getDebugLoc();
10225   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10226 
10227   MachineFunction *MF = MBB->getParent();
10228   MachineRegisterInfo &MRI = MF->getRegInfo();
10229 
10230   MVT PVT = getPointerTy(MF->getDataLayout());
10231   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10232          "Invalid Pointer Size!");
10233 
10234   const TargetRegisterClass *RC =
10235     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10236   unsigned Tmp = MRI.createVirtualRegister(RC);
10237   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10238   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10239   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10240   unsigned BP =
10241       (PVT == MVT::i64)
10242           ? PPC::X30
10243           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10244                                                               : PPC::R30);
10245 
10246   MachineInstrBuilder MIB;
10247 
10248   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10249   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10250   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10251   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10252 
10253   unsigned BufReg = MI.getOperand(0).getReg();
10254 
10255   // Reload FP (the jumped-to function may not have had a
10256   // frame pointer, and if so, then its r31 will be restored
10257   // as necessary).
10258   if (PVT == MVT::i64) {
10259     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10260             .addImm(0)
10261             .addReg(BufReg);
10262   } else {
10263     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10264             .addImm(0)
10265             .addReg(BufReg);
10266   }
10267   MIB.cloneMemRefs(MI);
10268 
10269   // Reload IP
10270   if (PVT == MVT::i64) {
10271     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10272             .addImm(LabelOffset)
10273             .addReg(BufReg);
10274   } else {
10275     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10276             .addImm(LabelOffset)
10277             .addReg(BufReg);
10278   }
10279   MIB.cloneMemRefs(MI);
10280 
10281   // Reload SP
10282   if (PVT == MVT::i64) {
10283     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10284             .addImm(SPOffset)
10285             .addReg(BufReg);
10286   } else {
10287     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10288             .addImm(SPOffset)
10289             .addReg(BufReg);
10290   }
10291   MIB.cloneMemRefs(MI);
10292 
10293   // Reload BP
10294   if (PVT == MVT::i64) {
10295     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10296             .addImm(BPOffset)
10297             .addReg(BufReg);
10298   } else {
10299     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10300             .addImm(BPOffset)
10301             .addReg(BufReg);
10302   }
10303   MIB.cloneMemRefs(MI);
10304 
10305   // Reload TOC
10306   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10307     setUsesTOCBasePtr(*MBB->getParent());
10308     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10309               .addImm(TOCOffset)
10310               .addReg(BufReg)
10311               .cloneMemRefs(MI);
10312   }
10313 
10314   // Jump
10315   BuildMI(*MBB, MI, DL,
10316           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10317   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10318 
10319   MI.eraseFromParent();
10320   return MBB;
10321 }
10322 
10323 MachineBasicBlock *
10324 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10325                                                MachineBasicBlock *BB) const {
10326   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10327       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10328     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10329         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10330       // Call lowering should have added an r2 operand to indicate a dependence
10331       // on the TOC base pointer value. It can't however, because there is no
10332       // way to mark the dependence as implicit there, and so the stackmap code
10333       // will confuse it with a regular operand. Instead, add the dependence
10334       // here.
10335       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10336     }
10337 
10338     return emitPatchPoint(MI, BB);
10339   }
10340 
10341   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10342       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10343     return emitEHSjLjSetJmp(MI, BB);
10344   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10345              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10346     return emitEHSjLjLongJmp(MI, BB);
10347   }
10348 
10349   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10350 
10351   // To "insert" these instructions we actually have to insert their
10352   // control-flow patterns.
10353   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10354   MachineFunction::iterator It = ++BB->getIterator();
10355 
10356   MachineFunction *F = BB->getParent();
10357 
10358   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10359       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10360       MI.getOpcode() == PPC::SELECT_I8) {
10361     SmallVector<MachineOperand, 2> Cond;
10362     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10363         MI.getOpcode() == PPC::SELECT_CC_I8)
10364       Cond.push_back(MI.getOperand(4));
10365     else
10366       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10367     Cond.push_back(MI.getOperand(1));
10368 
10369     DebugLoc dl = MI.getDebugLoc();
10370     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10371                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10372   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10373              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10374              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10375              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10376              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10377              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10378              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10379              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10380              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10381              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10382              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10383              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10384              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10385              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10386              MI.getOpcode() == PPC::SELECT_I4 ||
10387              MI.getOpcode() == PPC::SELECT_I8 ||
10388              MI.getOpcode() == PPC::SELECT_F4 ||
10389              MI.getOpcode() == PPC::SELECT_F8 ||
10390              MI.getOpcode() == PPC::SELECT_F16 ||
10391              MI.getOpcode() == PPC::SELECT_QFRC ||
10392              MI.getOpcode() == PPC::SELECT_QSRC ||
10393              MI.getOpcode() == PPC::SELECT_QBRC ||
10394              MI.getOpcode() == PPC::SELECT_SPE ||
10395              MI.getOpcode() == PPC::SELECT_SPE4 ||
10396              MI.getOpcode() == PPC::SELECT_VRRC ||
10397              MI.getOpcode() == PPC::SELECT_VSFRC ||
10398              MI.getOpcode() == PPC::SELECT_VSSRC ||
10399              MI.getOpcode() == PPC::SELECT_VSRC) {
10400     // The incoming instruction knows the destination vreg to set, the
10401     // condition code register to branch on, the true/false values to
10402     // select between, and a branch opcode to use.
10403 
10404     //  thisMBB:
10405     //  ...
10406     //   TrueVal = ...
10407     //   cmpTY ccX, r1, r2
10408     //   bCC copy1MBB
10409     //   fallthrough --> copy0MBB
10410     MachineBasicBlock *thisMBB = BB;
10411     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10412     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10413     DebugLoc dl = MI.getDebugLoc();
10414     F->insert(It, copy0MBB);
10415     F->insert(It, sinkMBB);
10416 
10417     // Transfer the remainder of BB and its successor edges to sinkMBB.
10418     sinkMBB->splice(sinkMBB->begin(), BB,
10419                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10420     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10421 
10422     // Next, add the true and fallthrough blocks as its successors.
10423     BB->addSuccessor(copy0MBB);
10424     BB->addSuccessor(sinkMBB);
10425 
10426     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10427         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10428         MI.getOpcode() == PPC::SELECT_F16 ||
10429         MI.getOpcode() == PPC::SELECT_SPE4 ||
10430         MI.getOpcode() == PPC::SELECT_SPE ||
10431         MI.getOpcode() == PPC::SELECT_QFRC ||
10432         MI.getOpcode() == PPC::SELECT_QSRC ||
10433         MI.getOpcode() == PPC::SELECT_QBRC ||
10434         MI.getOpcode() == PPC::SELECT_VRRC ||
10435         MI.getOpcode() == PPC::SELECT_VSFRC ||
10436         MI.getOpcode() == PPC::SELECT_VSSRC ||
10437         MI.getOpcode() == PPC::SELECT_VSRC) {
10438       BuildMI(BB, dl, TII->get(PPC::BC))
10439           .addReg(MI.getOperand(1).getReg())
10440           .addMBB(sinkMBB);
10441     } else {
10442       unsigned SelectPred = MI.getOperand(4).getImm();
10443       BuildMI(BB, dl, TII->get(PPC::BCC))
10444           .addImm(SelectPred)
10445           .addReg(MI.getOperand(1).getReg())
10446           .addMBB(sinkMBB);
10447     }
10448 
10449     //  copy0MBB:
10450     //   %FalseValue = ...
10451     //   # fallthrough to sinkMBB
10452     BB = copy0MBB;
10453 
10454     // Update machine-CFG edges
10455     BB->addSuccessor(sinkMBB);
10456 
10457     //  sinkMBB:
10458     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10459     //  ...
10460     BB = sinkMBB;
10461     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10462         .addReg(MI.getOperand(3).getReg())
10463         .addMBB(copy0MBB)
10464         .addReg(MI.getOperand(2).getReg())
10465         .addMBB(thisMBB);
10466   } else if (MI.getOpcode() == PPC::ReadTB) {
10467     // To read the 64-bit time-base register on a 32-bit target, we read the
10468     // two halves. Should the counter have wrapped while it was being read, we
10469     // need to try again.
10470     // ...
10471     // readLoop:
10472     // mfspr Rx,TBU # load from TBU
10473     // mfspr Ry,TB  # load from TB
10474     // mfspr Rz,TBU # load from TBU
10475     // cmpw crX,Rx,Rz # check if 'old'='new'
10476     // bne readLoop   # branch if they're not equal
10477     // ...
10478 
10479     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10480     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10481     DebugLoc dl = MI.getDebugLoc();
10482     F->insert(It, readMBB);
10483     F->insert(It, sinkMBB);
10484 
10485     // Transfer the remainder of BB and its successor edges to sinkMBB.
10486     sinkMBB->splice(sinkMBB->begin(), BB,
10487                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10488     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10489 
10490     BB->addSuccessor(readMBB);
10491     BB = readMBB;
10492 
10493     MachineRegisterInfo &RegInfo = F->getRegInfo();
10494     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10495     unsigned LoReg = MI.getOperand(0).getReg();
10496     unsigned HiReg = MI.getOperand(1).getReg();
10497 
10498     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10499     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10500     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10501 
10502     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10503 
10504     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10505         .addReg(HiReg)
10506         .addReg(ReadAgainReg);
10507     BuildMI(BB, dl, TII->get(PPC::BCC))
10508         .addImm(PPC::PRED_NE)
10509         .addReg(CmpReg)
10510         .addMBB(readMBB);
10511 
10512     BB->addSuccessor(readMBB);
10513     BB->addSuccessor(sinkMBB);
10514   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10515     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10516   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10517     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10518   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10519     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10520   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10521     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10522 
10523   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10524     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10525   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10526     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10527   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10528     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10529   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10530     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10531 
10532   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10533     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10534   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10535     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10536   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10537     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10538   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10539     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10540 
10541   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10542     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10543   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10544     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10545   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10546     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10547   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10548     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10549 
10550   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10551     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10552   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10553     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10554   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10555     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10556   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10557     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10558 
10559   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10560     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10561   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10562     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10563   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10564     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10565   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10566     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10567 
10568   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10569     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10570   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10571     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10572   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10573     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10574   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10575     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10576 
10577   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10578     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10579   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10580     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10581   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10582     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10583   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10584     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10585 
10586   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10587     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10588   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10589     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10590   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10591     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10592   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10593     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10594 
10595   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10596     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10597   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10598     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10599   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10600     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10601   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10602     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10603 
10604   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10605     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10606   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10607     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10608   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10609     BB = EmitAtomicBinary(MI, BB, 4, 0);
10610   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10611     BB = EmitAtomicBinary(MI, BB, 8, 0);
10612   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10613            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10614            (Subtarget.hasPartwordAtomics() &&
10615             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10616            (Subtarget.hasPartwordAtomics() &&
10617             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10618     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10619 
10620     auto LoadMnemonic = PPC::LDARX;
10621     auto StoreMnemonic = PPC::STDCX;
10622     switch (MI.getOpcode()) {
10623     default:
10624       llvm_unreachable("Compare and swap of unknown size");
10625     case PPC::ATOMIC_CMP_SWAP_I8:
10626       LoadMnemonic = PPC::LBARX;
10627       StoreMnemonic = PPC::STBCX;
10628       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10629       break;
10630     case PPC::ATOMIC_CMP_SWAP_I16:
10631       LoadMnemonic = PPC::LHARX;
10632       StoreMnemonic = PPC::STHCX;
10633       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10634       break;
10635     case PPC::ATOMIC_CMP_SWAP_I32:
10636       LoadMnemonic = PPC::LWARX;
10637       StoreMnemonic = PPC::STWCX;
10638       break;
10639     case PPC::ATOMIC_CMP_SWAP_I64:
10640       LoadMnemonic = PPC::LDARX;
10641       StoreMnemonic = PPC::STDCX;
10642       break;
10643     }
10644     unsigned dest = MI.getOperand(0).getReg();
10645     unsigned ptrA = MI.getOperand(1).getReg();
10646     unsigned ptrB = MI.getOperand(2).getReg();
10647     unsigned oldval = MI.getOperand(3).getReg();
10648     unsigned newval = MI.getOperand(4).getReg();
10649     DebugLoc dl = MI.getDebugLoc();
10650 
10651     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10652     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10653     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10654     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10655     F->insert(It, loop1MBB);
10656     F->insert(It, loop2MBB);
10657     F->insert(It, midMBB);
10658     F->insert(It, exitMBB);
10659     exitMBB->splice(exitMBB->begin(), BB,
10660                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10661     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10662 
10663     //  thisMBB:
10664     //   ...
10665     //   fallthrough --> loopMBB
10666     BB->addSuccessor(loop1MBB);
10667 
10668     // loop1MBB:
10669     //   l[bhwd]arx dest, ptr
10670     //   cmp[wd] dest, oldval
10671     //   bne- midMBB
10672     // loop2MBB:
10673     //   st[bhwd]cx. newval, ptr
10674     //   bne- loopMBB
10675     //   b exitBB
10676     // midMBB:
10677     //   st[bhwd]cx. dest, ptr
10678     // exitBB:
10679     BB = loop1MBB;
10680     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
10681     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10682         .addReg(oldval)
10683         .addReg(dest);
10684     BuildMI(BB, dl, TII->get(PPC::BCC))
10685         .addImm(PPC::PRED_NE)
10686         .addReg(PPC::CR0)
10687         .addMBB(midMBB);
10688     BB->addSuccessor(loop2MBB);
10689     BB->addSuccessor(midMBB);
10690 
10691     BB = loop2MBB;
10692     BuildMI(BB, dl, TII->get(StoreMnemonic))
10693         .addReg(newval)
10694         .addReg(ptrA)
10695         .addReg(ptrB);
10696     BuildMI(BB, dl, TII->get(PPC::BCC))
10697         .addImm(PPC::PRED_NE)
10698         .addReg(PPC::CR0)
10699         .addMBB(loop1MBB);
10700     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10701     BB->addSuccessor(loop1MBB);
10702     BB->addSuccessor(exitMBB);
10703 
10704     BB = midMBB;
10705     BuildMI(BB, dl, TII->get(StoreMnemonic))
10706         .addReg(dest)
10707         .addReg(ptrA)
10708         .addReg(ptrB);
10709     BB->addSuccessor(exitMBB);
10710 
10711     //  exitMBB:
10712     //   ...
10713     BB = exitMBB;
10714   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10715              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10716     // We must use 64-bit registers for addresses when targeting 64-bit,
10717     // since we're actually doing arithmetic on them.  Other registers
10718     // can be 32-bit.
10719     bool is64bit = Subtarget.isPPC64();
10720     bool isLittleEndian = Subtarget.isLittleEndian();
10721     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10722 
10723     unsigned dest = MI.getOperand(0).getReg();
10724     unsigned ptrA = MI.getOperand(1).getReg();
10725     unsigned ptrB = MI.getOperand(2).getReg();
10726     unsigned oldval = MI.getOperand(3).getReg();
10727     unsigned newval = MI.getOperand(4).getReg();
10728     DebugLoc dl = MI.getDebugLoc();
10729 
10730     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10731     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10732     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10733     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10734     F->insert(It, loop1MBB);
10735     F->insert(It, loop2MBB);
10736     F->insert(It, midMBB);
10737     F->insert(It, exitMBB);
10738     exitMBB->splice(exitMBB->begin(), BB,
10739                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10740     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10741 
10742     MachineRegisterInfo &RegInfo = F->getRegInfo();
10743     const TargetRegisterClass *RC =
10744         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10745     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10746 
10747     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10748     unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10749     unsigned ShiftReg =
10750         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10751     unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
10752     unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
10753     unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
10754     unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
10755     unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
10756     unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10757     unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10758     unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10759     unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10760     unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10761     unsigned Ptr1Reg;
10762     unsigned TmpReg = RegInfo.createVirtualRegister(GPRC);
10763     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10764     //  thisMBB:
10765     //   ...
10766     //   fallthrough --> loopMBB
10767     BB->addSuccessor(loop1MBB);
10768 
10769     // The 4-byte load must be aligned, while a char or short may be
10770     // anywhere in the word.  Hence all this nasty bookkeeping code.
10771     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10772     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10773     //   xori shift, shift1, 24 [16]
10774     //   rlwinm ptr, ptr1, 0, 0, 29
10775     //   slw newval2, newval, shift
10776     //   slw oldval2, oldval,shift
10777     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10778     //   slw mask, mask2, shift
10779     //   and newval3, newval2, mask
10780     //   and oldval3, oldval2, mask
10781     // loop1MBB:
10782     //   lwarx tmpDest, ptr
10783     //   and tmp, tmpDest, mask
10784     //   cmpw tmp, oldval3
10785     //   bne- midMBB
10786     // loop2MBB:
10787     //   andc tmp2, tmpDest, mask
10788     //   or tmp4, tmp2, newval3
10789     //   stwcx. tmp4, ptr
10790     //   bne- loop1MBB
10791     //   b exitBB
10792     // midMBB:
10793     //   stwcx. tmpDest, ptr
10794     // exitBB:
10795     //   srw dest, tmpDest, shift
10796     if (ptrA != ZeroReg) {
10797       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10798       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10799           .addReg(ptrA)
10800           .addReg(ptrB);
10801     } else {
10802       Ptr1Reg = ptrB;
10803     }
10804 
10805     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10806     // mode.
10807     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10808         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10809         .addImm(3)
10810         .addImm(27)
10811         .addImm(is8bit ? 28 : 27);
10812     if (!isLittleEndian)
10813       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10814           .addReg(Shift1Reg)
10815           .addImm(is8bit ? 24 : 16);
10816     if (is64bit)
10817       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10818           .addReg(Ptr1Reg)
10819           .addImm(0)
10820           .addImm(61);
10821     else
10822       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10823           .addReg(Ptr1Reg)
10824           .addImm(0)
10825           .addImm(0)
10826           .addImm(29);
10827     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10828         .addReg(newval)
10829         .addReg(ShiftReg);
10830     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10831         .addReg(oldval)
10832         .addReg(ShiftReg);
10833     if (is8bit)
10834       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10835     else {
10836       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10837       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10838           .addReg(Mask3Reg)
10839           .addImm(65535);
10840     }
10841     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10842         .addReg(Mask2Reg)
10843         .addReg(ShiftReg);
10844     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10845         .addReg(NewVal2Reg)
10846         .addReg(MaskReg);
10847     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10848         .addReg(OldVal2Reg)
10849         .addReg(MaskReg);
10850 
10851     BB = loop1MBB;
10852     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10853         .addReg(ZeroReg)
10854         .addReg(PtrReg);
10855     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
10856         .addReg(TmpDestReg)
10857         .addReg(MaskReg);
10858     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10859         .addReg(TmpReg)
10860         .addReg(OldVal3Reg);
10861     BuildMI(BB, dl, TII->get(PPC::BCC))
10862         .addImm(PPC::PRED_NE)
10863         .addReg(PPC::CR0)
10864         .addMBB(midMBB);
10865     BB->addSuccessor(loop2MBB);
10866     BB->addSuccessor(midMBB);
10867 
10868     BB = loop2MBB;
10869     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10870         .addReg(TmpDestReg)
10871         .addReg(MaskReg);
10872     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
10873         .addReg(Tmp2Reg)
10874         .addReg(NewVal3Reg);
10875     BuildMI(BB, dl, TII->get(PPC::STWCX))
10876         .addReg(Tmp4Reg)
10877         .addReg(ZeroReg)
10878         .addReg(PtrReg);
10879     BuildMI(BB, dl, TII->get(PPC::BCC))
10880         .addImm(PPC::PRED_NE)
10881         .addReg(PPC::CR0)
10882         .addMBB(loop1MBB);
10883     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10884     BB->addSuccessor(loop1MBB);
10885     BB->addSuccessor(exitMBB);
10886 
10887     BB = midMBB;
10888     BuildMI(BB, dl, TII->get(PPC::STWCX))
10889         .addReg(TmpDestReg)
10890         .addReg(ZeroReg)
10891         .addReg(PtrReg);
10892     BB->addSuccessor(exitMBB);
10893 
10894     //  exitMBB:
10895     //   ...
10896     BB = exitMBB;
10897     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10898         .addReg(TmpReg)
10899         .addReg(ShiftReg);
10900   } else if (MI.getOpcode() == PPC::FADDrtz) {
10901     // This pseudo performs an FADD with rounding mode temporarily forced
10902     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10903     // is not modeled at the SelectionDAG level.
10904     unsigned Dest = MI.getOperand(0).getReg();
10905     unsigned Src1 = MI.getOperand(1).getReg();
10906     unsigned Src2 = MI.getOperand(2).getReg();
10907     DebugLoc dl = MI.getDebugLoc();
10908 
10909     MachineRegisterInfo &RegInfo = F->getRegInfo();
10910     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10911 
10912     // Save FPSCR value.
10913     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10914 
10915     // Set rounding mode to round-to-zero.
10916     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10917     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10918 
10919     // Perform addition.
10920     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10921 
10922     // Restore FPSCR value.
10923     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10924   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10925              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10926              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10927              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10928     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10929                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10930                           ? PPC::ANDIo8
10931                           : PPC::ANDIo;
10932     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10933                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10934 
10935     MachineRegisterInfo &RegInfo = F->getRegInfo();
10936     unsigned Dest = RegInfo.createVirtualRegister(
10937         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
10938 
10939     DebugLoc dl = MI.getDebugLoc();
10940     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10941         .addReg(MI.getOperand(1).getReg())
10942         .addImm(1);
10943     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10944             MI.getOperand(0).getReg())
10945         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10946   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10947     DebugLoc Dl = MI.getDebugLoc();
10948     MachineRegisterInfo &RegInfo = F->getRegInfo();
10949     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10950     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10951     return BB;
10952   } else if (MI.getOpcode() == PPC::SETRNDi) {
10953     DebugLoc dl = MI.getDebugLoc();
10954     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
10955 
10956     // Save FPSCR value.
10957     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
10958 
10959     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
10960     // the following settings:
10961     //   00 Round to nearest
10962     //   01 Round to 0
10963     //   10 Round to +inf
10964     //   11 Round to -inf
10965 
10966     // When the operand is immediate, using the two least significant bits of
10967     // the immediate to set the bits 62:63 of FPSCR.
10968     unsigned Mode = MI.getOperand(1).getImm();
10969     BuildMI(*BB, MI, dl, TII->get(Mode & 1 ? PPC::MTFSB1 : PPC::MTFSB0))
10970       .addImm(31);
10971 
10972     BuildMI(*BB, MI, dl, TII->get(Mode & 2 ? PPC::MTFSB1 : PPC::MTFSB0))
10973       .addImm(30);
10974   } else if (MI.getOpcode() == PPC::SETRND) {
10975     DebugLoc dl = MI.getDebugLoc();
10976 
10977     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
10978     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
10979     // If the target doesn't have DirectMove, we should use stack to do the
10980     // conversion, because the target doesn't have the instructions like mtvsrd
10981     // or mfvsrd to do this conversion directly.
10982     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
10983       if (Subtarget.hasDirectMove()) {
10984         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
10985           .addReg(SrcReg);
10986       } else {
10987         // Use stack to do the register copy.
10988         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
10989         MachineRegisterInfo &RegInfo = F->getRegInfo();
10990         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
10991         if (RC == &PPC::F8RCRegClass) {
10992           // Copy register from F8RCRegClass to G8RCRegclass.
10993           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
10994                  "Unsupported RegClass.");
10995 
10996           StoreOp = PPC::STFD;
10997           LoadOp = PPC::LD;
10998         } else {
10999           // Copy register from G8RCRegClass to F8RCRegclass.
11000           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11001                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11002                  "Unsupported RegClass.");
11003         }
11004 
11005         MachineFrameInfo &MFI = F->getFrameInfo();
11006         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11007 
11008         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11009           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11010           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11011           MFI.getObjectAlignment(FrameIdx));
11012 
11013         // Store the SrcReg into the stack.
11014         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11015           .addReg(SrcReg)
11016           .addImm(0)
11017           .addFrameIndex(FrameIdx)
11018           .addMemOperand(MMOStore);
11019 
11020         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11021           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11022           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11023           MFI.getObjectAlignment(FrameIdx));
11024 
11025         // Load from the stack where SrcReg is stored, and save to DestReg,
11026         // so we have done the RegClass conversion from RegClass::SrcReg to
11027         // RegClass::DestReg.
11028         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11029           .addImm(0)
11030           .addFrameIndex(FrameIdx)
11031           .addMemOperand(MMOLoad);
11032       }
11033     };
11034 
11035     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
11036 
11037     // Save FPSCR value.
11038     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11039 
11040     // When the operand is gprc register, use two least significant bits of the
11041     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11042     //
11043     // copy OldFPSCRTmpReg, OldFPSCRReg
11044     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11045     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11046     // copy NewFPSCRReg, NewFPSCRTmpReg
11047     // mtfsf 255, NewFPSCRReg
11048     MachineOperand SrcOp = MI.getOperand(1);
11049     MachineRegisterInfo &RegInfo = F->getRegInfo();
11050     unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11051 
11052     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11053 
11054     unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11055     unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11056 
11057     // The first operand of INSERT_SUBREG should be a register which has
11058     // subregisters, we only care about its RegClass, so we should use an
11059     // IMPLICIT_DEF register.
11060     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11061     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11062       .addReg(ImDefReg)
11063       .add(SrcOp)
11064       .addImm(1);
11065 
11066     unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11067     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11068       .addReg(OldFPSCRTmpReg)
11069       .addReg(ExtSrcReg)
11070       .addImm(0)
11071       .addImm(62);
11072 
11073     unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11074     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11075 
11076     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11077     // bits of FPSCR.
11078     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11079       .addImm(255)
11080       .addReg(NewFPSCRReg)
11081       .addImm(0)
11082       .addImm(0);
11083   } else {
11084     llvm_unreachable("Unexpected instr type to insert");
11085   }
11086 
11087   MI.eraseFromParent(); // The pseudo instruction is gone now.
11088   return BB;
11089 }
11090 
11091 //===----------------------------------------------------------------------===//
11092 // Target Optimization Hooks
11093 //===----------------------------------------------------------------------===//
11094 
11095 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11096   // For the estimates, convergence is quadratic, so we essentially double the
11097   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11098   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11099   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11100   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11101   if (VT.getScalarType() == MVT::f64)
11102     RefinementSteps++;
11103   return RefinementSteps;
11104 }
11105 
11106 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11107                                            int Enabled, int &RefinementSteps,
11108                                            bool &UseOneConstNR,
11109                                            bool Reciprocal) const {
11110   EVT VT = Operand.getValueType();
11111   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11112       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11113       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11114       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11115       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11116       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11117     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11118       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11119 
11120     UseOneConstNR = true;
11121     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11122   }
11123   return SDValue();
11124 }
11125 
11126 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11127                                             int Enabled,
11128                                             int &RefinementSteps) const {
11129   EVT VT = Operand.getValueType();
11130   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11131       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11132       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11133       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11134       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11135       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11136     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11137       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11138     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11139   }
11140   return SDValue();
11141 }
11142 
11143 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11144   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11145   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11146   // enabled for division), this functionality is redundant with the default
11147   // combiner logic (once the division -> reciprocal/multiply transformation
11148   // has taken place). As a result, this matters more for older cores than for
11149   // newer ones.
11150 
11151   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11152   // reciprocal if there are two or more FDIVs (for embedded cores with only
11153   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11154   switch (Subtarget.getDarwinDirective()) {
11155   default:
11156     return 3;
11157   case PPC::DIR_440:
11158   case PPC::DIR_A2:
11159   case PPC::DIR_E500:
11160   case PPC::DIR_E500mc:
11161   case PPC::DIR_E5500:
11162     return 2;
11163   }
11164 }
11165 
11166 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11167 // collapsed, and so we need to look through chains of them.
11168 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11169                                      int64_t& Offset, SelectionDAG &DAG) {
11170   if (DAG.isBaseWithConstantOffset(Loc)) {
11171     Base = Loc.getOperand(0);
11172     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11173 
11174     // The base might itself be a base plus an offset, and if so, accumulate
11175     // that as well.
11176     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11177   }
11178 }
11179 
11180 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11181                             unsigned Bytes, int Dist,
11182                             SelectionDAG &DAG) {
11183   if (VT.getSizeInBits() / 8 != Bytes)
11184     return false;
11185 
11186   SDValue BaseLoc = Base->getBasePtr();
11187   if (Loc.getOpcode() == ISD::FrameIndex) {
11188     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11189       return false;
11190     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11191     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11192     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11193     int FS  = MFI.getObjectSize(FI);
11194     int BFS = MFI.getObjectSize(BFI);
11195     if (FS != BFS || FS != (int)Bytes) return false;
11196     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11197   }
11198 
11199   SDValue Base1 = Loc, Base2 = BaseLoc;
11200   int64_t Offset1 = 0, Offset2 = 0;
11201   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11202   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11203   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11204     return true;
11205 
11206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11207   const GlobalValue *GV1 = nullptr;
11208   const GlobalValue *GV2 = nullptr;
11209   Offset1 = 0;
11210   Offset2 = 0;
11211   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11212   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11213   if (isGA1 && isGA2 && GV1 == GV2)
11214     return Offset1 == (Offset2 + Dist*Bytes);
11215   return false;
11216 }
11217 
11218 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11219 // not enforce equality of the chain operands.
11220 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11221                             unsigned Bytes, int Dist,
11222                             SelectionDAG &DAG) {
11223   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11224     EVT VT = LS->getMemoryVT();
11225     SDValue Loc = LS->getBasePtr();
11226     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11227   }
11228 
11229   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11230     EVT VT;
11231     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11232     default: return false;
11233     case Intrinsic::ppc_qpx_qvlfd:
11234     case Intrinsic::ppc_qpx_qvlfda:
11235       VT = MVT::v4f64;
11236       break;
11237     case Intrinsic::ppc_qpx_qvlfs:
11238     case Intrinsic::ppc_qpx_qvlfsa:
11239       VT = MVT::v4f32;
11240       break;
11241     case Intrinsic::ppc_qpx_qvlfcd:
11242     case Intrinsic::ppc_qpx_qvlfcda:
11243       VT = MVT::v2f64;
11244       break;
11245     case Intrinsic::ppc_qpx_qvlfcs:
11246     case Intrinsic::ppc_qpx_qvlfcsa:
11247       VT = MVT::v2f32;
11248       break;
11249     case Intrinsic::ppc_qpx_qvlfiwa:
11250     case Intrinsic::ppc_qpx_qvlfiwz:
11251     case Intrinsic::ppc_altivec_lvx:
11252     case Intrinsic::ppc_altivec_lvxl:
11253     case Intrinsic::ppc_vsx_lxvw4x:
11254     case Intrinsic::ppc_vsx_lxvw4x_be:
11255       VT = MVT::v4i32;
11256       break;
11257     case Intrinsic::ppc_vsx_lxvd2x:
11258     case Intrinsic::ppc_vsx_lxvd2x_be:
11259       VT = MVT::v2f64;
11260       break;
11261     case Intrinsic::ppc_altivec_lvebx:
11262       VT = MVT::i8;
11263       break;
11264     case Intrinsic::ppc_altivec_lvehx:
11265       VT = MVT::i16;
11266       break;
11267     case Intrinsic::ppc_altivec_lvewx:
11268       VT = MVT::i32;
11269       break;
11270     }
11271 
11272     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11273   }
11274 
11275   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11276     EVT VT;
11277     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11278     default: return false;
11279     case Intrinsic::ppc_qpx_qvstfd:
11280     case Intrinsic::ppc_qpx_qvstfda:
11281       VT = MVT::v4f64;
11282       break;
11283     case Intrinsic::ppc_qpx_qvstfs:
11284     case Intrinsic::ppc_qpx_qvstfsa:
11285       VT = MVT::v4f32;
11286       break;
11287     case Intrinsic::ppc_qpx_qvstfcd:
11288     case Intrinsic::ppc_qpx_qvstfcda:
11289       VT = MVT::v2f64;
11290       break;
11291     case Intrinsic::ppc_qpx_qvstfcs:
11292     case Intrinsic::ppc_qpx_qvstfcsa:
11293       VT = MVT::v2f32;
11294       break;
11295     case Intrinsic::ppc_qpx_qvstfiw:
11296     case Intrinsic::ppc_qpx_qvstfiwa:
11297     case Intrinsic::ppc_altivec_stvx:
11298     case Intrinsic::ppc_altivec_stvxl:
11299     case Intrinsic::ppc_vsx_stxvw4x:
11300       VT = MVT::v4i32;
11301       break;
11302     case Intrinsic::ppc_vsx_stxvd2x:
11303       VT = MVT::v2f64;
11304       break;
11305     case Intrinsic::ppc_vsx_stxvw4x_be:
11306       VT = MVT::v4i32;
11307       break;
11308     case Intrinsic::ppc_vsx_stxvd2x_be:
11309       VT = MVT::v2f64;
11310       break;
11311     case Intrinsic::ppc_altivec_stvebx:
11312       VT = MVT::i8;
11313       break;
11314     case Intrinsic::ppc_altivec_stvehx:
11315       VT = MVT::i16;
11316       break;
11317     case Intrinsic::ppc_altivec_stvewx:
11318       VT = MVT::i32;
11319       break;
11320     }
11321 
11322     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11323   }
11324 
11325   return false;
11326 }
11327 
11328 // Return true is there is a nearyby consecutive load to the one provided
11329 // (regardless of alignment). We search up and down the chain, looking though
11330 // token factors and other loads (but nothing else). As a result, a true result
11331 // indicates that it is safe to create a new consecutive load adjacent to the
11332 // load provided.
11333 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11334   SDValue Chain = LD->getChain();
11335   EVT VT = LD->getMemoryVT();
11336 
11337   SmallSet<SDNode *, 16> LoadRoots;
11338   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11339   SmallSet<SDNode *, 16> Visited;
11340 
11341   // First, search up the chain, branching to follow all token-factor operands.
11342   // If we find a consecutive load, then we're done, otherwise, record all
11343   // nodes just above the top-level loads and token factors.
11344   while (!Queue.empty()) {
11345     SDNode *ChainNext = Queue.pop_back_val();
11346     if (!Visited.insert(ChainNext).second)
11347       continue;
11348 
11349     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11350       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11351         return true;
11352 
11353       if (!Visited.count(ChainLD->getChain().getNode()))
11354         Queue.push_back(ChainLD->getChain().getNode());
11355     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11356       for (const SDUse &O : ChainNext->ops())
11357         if (!Visited.count(O.getNode()))
11358           Queue.push_back(O.getNode());
11359     } else
11360       LoadRoots.insert(ChainNext);
11361   }
11362 
11363   // Second, search down the chain, starting from the top-level nodes recorded
11364   // in the first phase. These top-level nodes are the nodes just above all
11365   // loads and token factors. Starting with their uses, recursively look though
11366   // all loads (just the chain uses) and token factors to find a consecutive
11367   // load.
11368   Visited.clear();
11369   Queue.clear();
11370 
11371   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11372        IE = LoadRoots.end(); I != IE; ++I) {
11373     Queue.push_back(*I);
11374 
11375     while (!Queue.empty()) {
11376       SDNode *LoadRoot = Queue.pop_back_val();
11377       if (!Visited.insert(LoadRoot).second)
11378         continue;
11379 
11380       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11381         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11382           return true;
11383 
11384       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11385            UE = LoadRoot->use_end(); UI != UE; ++UI)
11386         if (((isa<MemSDNode>(*UI) &&
11387             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11388             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11389           Queue.push_back(*UI);
11390     }
11391   }
11392 
11393   return false;
11394 }
11395 
11396 /// This function is called when we have proved that a SETCC node can be replaced
11397 /// by subtraction (and other supporting instructions) so that the result of
11398 /// comparison is kept in a GPR instead of CR. This function is purely for
11399 /// codegen purposes and has some flags to guide the codegen process.
11400 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11401                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11402   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11403 
11404   // Zero extend the operands to the largest legal integer. Originally, they
11405   // must be of a strictly smaller size.
11406   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11407                          DAG.getConstant(Size, DL, MVT::i32));
11408   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11409                          DAG.getConstant(Size, DL, MVT::i32));
11410 
11411   // Swap if needed. Depends on the condition code.
11412   if (Swap)
11413     std::swap(Op0, Op1);
11414 
11415   // Subtract extended integers.
11416   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11417 
11418   // Move the sign bit to the least significant position and zero out the rest.
11419   // Now the least significant bit carries the result of original comparison.
11420   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11421                              DAG.getConstant(Size - 1, DL, MVT::i32));
11422   auto Final = Shifted;
11423 
11424   // Complement the result if needed. Based on the condition code.
11425   if (Complement)
11426     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11427                         DAG.getConstant(1, DL, MVT::i64));
11428 
11429   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11430 }
11431 
11432 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11433                                                   DAGCombinerInfo &DCI) const {
11434   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11435 
11436   SelectionDAG &DAG = DCI.DAG;
11437   SDLoc DL(N);
11438 
11439   // Size of integers being compared has a critical role in the following
11440   // analysis, so we prefer to do this when all types are legal.
11441   if (!DCI.isAfterLegalizeDAG())
11442     return SDValue();
11443 
11444   // If all users of SETCC extend its value to a legal integer type
11445   // then we replace SETCC with a subtraction
11446   for (SDNode::use_iterator UI = N->use_begin(),
11447        UE = N->use_end(); UI != UE; ++UI) {
11448     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11449       return SDValue();
11450   }
11451 
11452   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11453   auto OpSize = N->getOperand(0).getValueSizeInBits();
11454 
11455   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11456 
11457   if (OpSize < Size) {
11458     switch (CC) {
11459     default: break;
11460     case ISD::SETULT:
11461       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11462     case ISD::SETULE:
11463       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11464     case ISD::SETUGT:
11465       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11466     case ISD::SETUGE:
11467       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11468     }
11469   }
11470 
11471   return SDValue();
11472 }
11473 
11474 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11475                                                   DAGCombinerInfo &DCI) const {
11476   SelectionDAG &DAG = DCI.DAG;
11477   SDLoc dl(N);
11478 
11479   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11480   // If we're tracking CR bits, we need to be careful that we don't have:
11481   //   trunc(binary-ops(zext(x), zext(y)))
11482   // or
11483   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11484   // such that we're unnecessarily moving things into GPRs when it would be
11485   // better to keep them in CR bits.
11486 
11487   // Note that trunc here can be an actual i1 trunc, or can be the effective
11488   // truncation that comes from a setcc or select_cc.
11489   if (N->getOpcode() == ISD::TRUNCATE &&
11490       N->getValueType(0) != MVT::i1)
11491     return SDValue();
11492 
11493   if (N->getOperand(0).getValueType() != MVT::i32 &&
11494       N->getOperand(0).getValueType() != MVT::i64)
11495     return SDValue();
11496 
11497   if (N->getOpcode() == ISD::SETCC ||
11498       N->getOpcode() == ISD::SELECT_CC) {
11499     // If we're looking at a comparison, then we need to make sure that the
11500     // high bits (all except for the first) don't matter the result.
11501     ISD::CondCode CC =
11502       cast<CondCodeSDNode>(N->getOperand(
11503         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11504     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11505 
11506     if (ISD::isSignedIntSetCC(CC)) {
11507       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11508           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11509         return SDValue();
11510     } else if (ISD::isUnsignedIntSetCC(CC)) {
11511       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11512                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11513           !DAG.MaskedValueIsZero(N->getOperand(1),
11514                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11515         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11516                                              : SDValue());
11517     } else {
11518       // This is neither a signed nor an unsigned comparison, just make sure
11519       // that the high bits are equal.
11520       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
11521       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
11522 
11523       // We don't really care about what is known about the first bit (if
11524       // anything), so clear it in all masks prior to comparing them.
11525       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11526       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11527 
11528       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11529         return SDValue();
11530     }
11531   }
11532 
11533   // We now know that the higher-order bits are irrelevant, we just need to
11534   // make sure that all of the intermediate operations are bit operations, and
11535   // all inputs are extensions.
11536   if (N->getOperand(0).getOpcode() != ISD::AND &&
11537       N->getOperand(0).getOpcode() != ISD::OR  &&
11538       N->getOperand(0).getOpcode() != ISD::XOR &&
11539       N->getOperand(0).getOpcode() != ISD::SELECT &&
11540       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11541       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11542       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11543       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11544       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11545     return SDValue();
11546 
11547   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11548       N->getOperand(1).getOpcode() != ISD::AND &&
11549       N->getOperand(1).getOpcode() != ISD::OR  &&
11550       N->getOperand(1).getOpcode() != ISD::XOR &&
11551       N->getOperand(1).getOpcode() != ISD::SELECT &&
11552       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11553       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11554       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11555       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11556       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11557     return SDValue();
11558 
11559   SmallVector<SDValue, 4> Inputs;
11560   SmallVector<SDValue, 8> BinOps, PromOps;
11561   SmallPtrSet<SDNode *, 16> Visited;
11562 
11563   for (unsigned i = 0; i < 2; ++i) {
11564     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11565           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11566           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11567           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11568         isa<ConstantSDNode>(N->getOperand(i)))
11569       Inputs.push_back(N->getOperand(i));
11570     else
11571       BinOps.push_back(N->getOperand(i));
11572 
11573     if (N->getOpcode() == ISD::TRUNCATE)
11574       break;
11575   }
11576 
11577   // Visit all inputs, collect all binary operations (and, or, xor and
11578   // select) that are all fed by extensions.
11579   while (!BinOps.empty()) {
11580     SDValue BinOp = BinOps.back();
11581     BinOps.pop_back();
11582 
11583     if (!Visited.insert(BinOp.getNode()).second)
11584       continue;
11585 
11586     PromOps.push_back(BinOp);
11587 
11588     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11589       // The condition of the select is not promoted.
11590       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11591         continue;
11592       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11593         continue;
11594 
11595       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11596             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11597             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11598            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11599           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11600         Inputs.push_back(BinOp.getOperand(i));
11601       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11602                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11603                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11604                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11605                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11606                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11607                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11608                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11609                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11610         BinOps.push_back(BinOp.getOperand(i));
11611       } else {
11612         // We have an input that is not an extension or another binary
11613         // operation; we'll abort this transformation.
11614         return SDValue();
11615       }
11616     }
11617   }
11618 
11619   // Make sure that this is a self-contained cluster of operations (which
11620   // is not quite the same thing as saying that everything has only one
11621   // use).
11622   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11623     if (isa<ConstantSDNode>(Inputs[i]))
11624       continue;
11625 
11626     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11627                               UE = Inputs[i].getNode()->use_end();
11628          UI != UE; ++UI) {
11629       SDNode *User = *UI;
11630       if (User != N && !Visited.count(User))
11631         return SDValue();
11632 
11633       // Make sure that we're not going to promote the non-output-value
11634       // operand(s) or SELECT or SELECT_CC.
11635       // FIXME: Although we could sometimes handle this, and it does occur in
11636       // practice that one of the condition inputs to the select is also one of
11637       // the outputs, we currently can't deal with this.
11638       if (User->getOpcode() == ISD::SELECT) {
11639         if (User->getOperand(0) == Inputs[i])
11640           return SDValue();
11641       } else if (User->getOpcode() == ISD::SELECT_CC) {
11642         if (User->getOperand(0) == Inputs[i] ||
11643             User->getOperand(1) == Inputs[i])
11644           return SDValue();
11645       }
11646     }
11647   }
11648 
11649   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11650     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11651                               UE = PromOps[i].getNode()->use_end();
11652          UI != UE; ++UI) {
11653       SDNode *User = *UI;
11654       if (User != N && !Visited.count(User))
11655         return SDValue();
11656 
11657       // Make sure that we're not going to promote the non-output-value
11658       // operand(s) or SELECT or SELECT_CC.
11659       // FIXME: Although we could sometimes handle this, and it does occur in
11660       // practice that one of the condition inputs to the select is also one of
11661       // the outputs, we currently can't deal with this.
11662       if (User->getOpcode() == ISD::SELECT) {
11663         if (User->getOperand(0) == PromOps[i])
11664           return SDValue();
11665       } else if (User->getOpcode() == ISD::SELECT_CC) {
11666         if (User->getOperand(0) == PromOps[i] ||
11667             User->getOperand(1) == PromOps[i])
11668           return SDValue();
11669       }
11670     }
11671   }
11672 
11673   // Replace all inputs with the extension operand.
11674   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11675     // Constants may have users outside the cluster of to-be-promoted nodes,
11676     // and so we need to replace those as we do the promotions.
11677     if (isa<ConstantSDNode>(Inputs[i]))
11678       continue;
11679     else
11680       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11681   }
11682 
11683   std::list<HandleSDNode> PromOpHandles;
11684   for (auto &PromOp : PromOps)
11685     PromOpHandles.emplace_back(PromOp);
11686 
11687   // Replace all operations (these are all the same, but have a different
11688   // (i1) return type). DAG.getNode will validate that the types of
11689   // a binary operator match, so go through the list in reverse so that
11690   // we've likely promoted both operands first. Any intermediate truncations or
11691   // extensions disappear.
11692   while (!PromOpHandles.empty()) {
11693     SDValue PromOp = PromOpHandles.back().getValue();
11694     PromOpHandles.pop_back();
11695 
11696     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11697         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11698         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11699         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11700       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11701           PromOp.getOperand(0).getValueType() != MVT::i1) {
11702         // The operand is not yet ready (see comment below).
11703         PromOpHandles.emplace_front(PromOp);
11704         continue;
11705       }
11706 
11707       SDValue RepValue = PromOp.getOperand(0);
11708       if (isa<ConstantSDNode>(RepValue))
11709         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11710 
11711       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11712       continue;
11713     }
11714 
11715     unsigned C;
11716     switch (PromOp.getOpcode()) {
11717     default:             C = 0; break;
11718     case ISD::SELECT:    C = 1; break;
11719     case ISD::SELECT_CC: C = 2; break;
11720     }
11721 
11722     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11723          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11724         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11725          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11726       // The to-be-promoted operands of this node have not yet been
11727       // promoted (this should be rare because we're going through the
11728       // list backward, but if one of the operands has several users in
11729       // this cluster of to-be-promoted nodes, it is possible).
11730       PromOpHandles.emplace_front(PromOp);
11731       continue;
11732     }
11733 
11734     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11735                                 PromOp.getNode()->op_end());
11736 
11737     // If there are any constant inputs, make sure they're replaced now.
11738     for (unsigned i = 0; i < 2; ++i)
11739       if (isa<ConstantSDNode>(Ops[C+i]))
11740         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11741 
11742     DAG.ReplaceAllUsesOfValueWith(PromOp,
11743       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11744   }
11745 
11746   // Now we're left with the initial truncation itself.
11747   if (N->getOpcode() == ISD::TRUNCATE)
11748     return N->getOperand(0);
11749 
11750   // Otherwise, this is a comparison. The operands to be compared have just
11751   // changed type (to i1), but everything else is the same.
11752   return SDValue(N, 0);
11753 }
11754 
11755 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11756                                                   DAGCombinerInfo &DCI) const {
11757   SelectionDAG &DAG = DCI.DAG;
11758   SDLoc dl(N);
11759 
11760   // If we're tracking CR bits, we need to be careful that we don't have:
11761   //   zext(binary-ops(trunc(x), trunc(y)))
11762   // or
11763   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11764   // such that we're unnecessarily moving things into CR bits that can more
11765   // efficiently stay in GPRs. Note that if we're not certain that the high
11766   // bits are set as required by the final extension, we still may need to do
11767   // some masking to get the proper behavior.
11768 
11769   // This same functionality is important on PPC64 when dealing with
11770   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11771   // the return values of functions. Because it is so similar, it is handled
11772   // here as well.
11773 
11774   if (N->getValueType(0) != MVT::i32 &&
11775       N->getValueType(0) != MVT::i64)
11776     return SDValue();
11777 
11778   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11779         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11780     return SDValue();
11781 
11782   if (N->getOperand(0).getOpcode() != ISD::AND &&
11783       N->getOperand(0).getOpcode() != ISD::OR  &&
11784       N->getOperand(0).getOpcode() != ISD::XOR &&
11785       N->getOperand(0).getOpcode() != ISD::SELECT &&
11786       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11787     return SDValue();
11788 
11789   SmallVector<SDValue, 4> Inputs;
11790   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11791   SmallPtrSet<SDNode *, 16> Visited;
11792 
11793   // Visit all inputs, collect all binary operations (and, or, xor and
11794   // select) that are all fed by truncations.
11795   while (!BinOps.empty()) {
11796     SDValue BinOp = BinOps.back();
11797     BinOps.pop_back();
11798 
11799     if (!Visited.insert(BinOp.getNode()).second)
11800       continue;
11801 
11802     PromOps.push_back(BinOp);
11803 
11804     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11805       // The condition of the select is not promoted.
11806       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11807         continue;
11808       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11809         continue;
11810 
11811       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11812           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11813         Inputs.push_back(BinOp.getOperand(i));
11814       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11815                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11816                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11817                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11818                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11819         BinOps.push_back(BinOp.getOperand(i));
11820       } else {
11821         // We have an input that is not a truncation or another binary
11822         // operation; we'll abort this transformation.
11823         return SDValue();
11824       }
11825     }
11826   }
11827 
11828   // The operands of a select that must be truncated when the select is
11829   // promoted because the operand is actually part of the to-be-promoted set.
11830   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11831 
11832   // Make sure that this is a self-contained cluster of operations (which
11833   // is not quite the same thing as saying that everything has only one
11834   // use).
11835   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11836     if (isa<ConstantSDNode>(Inputs[i]))
11837       continue;
11838 
11839     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11840                               UE = Inputs[i].getNode()->use_end();
11841          UI != UE; ++UI) {
11842       SDNode *User = *UI;
11843       if (User != N && !Visited.count(User))
11844         return SDValue();
11845 
11846       // If we're going to promote the non-output-value operand(s) or SELECT or
11847       // SELECT_CC, record them for truncation.
11848       if (User->getOpcode() == ISD::SELECT) {
11849         if (User->getOperand(0) == Inputs[i])
11850           SelectTruncOp[0].insert(std::make_pair(User,
11851                                     User->getOperand(0).getValueType()));
11852       } else if (User->getOpcode() == ISD::SELECT_CC) {
11853         if (User->getOperand(0) == Inputs[i])
11854           SelectTruncOp[0].insert(std::make_pair(User,
11855                                     User->getOperand(0).getValueType()));
11856         if (User->getOperand(1) == Inputs[i])
11857           SelectTruncOp[1].insert(std::make_pair(User,
11858                                     User->getOperand(1).getValueType()));
11859       }
11860     }
11861   }
11862 
11863   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11864     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11865                               UE = PromOps[i].getNode()->use_end();
11866          UI != UE; ++UI) {
11867       SDNode *User = *UI;
11868       if (User != N && !Visited.count(User))
11869         return SDValue();
11870 
11871       // If we're going to promote the non-output-value operand(s) or SELECT or
11872       // SELECT_CC, record them for truncation.
11873       if (User->getOpcode() == ISD::SELECT) {
11874         if (User->getOperand(0) == PromOps[i])
11875           SelectTruncOp[0].insert(std::make_pair(User,
11876                                     User->getOperand(0).getValueType()));
11877       } else if (User->getOpcode() == ISD::SELECT_CC) {
11878         if (User->getOperand(0) == PromOps[i])
11879           SelectTruncOp[0].insert(std::make_pair(User,
11880                                     User->getOperand(0).getValueType()));
11881         if (User->getOperand(1) == PromOps[i])
11882           SelectTruncOp[1].insert(std::make_pair(User,
11883                                     User->getOperand(1).getValueType()));
11884       }
11885     }
11886   }
11887 
11888   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11889   bool ReallyNeedsExt = false;
11890   if (N->getOpcode() != ISD::ANY_EXTEND) {
11891     // If all of the inputs are not already sign/zero extended, then
11892     // we'll still need to do that at the end.
11893     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11894       if (isa<ConstantSDNode>(Inputs[i]))
11895         continue;
11896 
11897       unsigned OpBits =
11898         Inputs[i].getOperand(0).getValueSizeInBits();
11899       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11900 
11901       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11902            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11903                                   APInt::getHighBitsSet(OpBits,
11904                                                         OpBits-PromBits))) ||
11905           (N->getOpcode() == ISD::SIGN_EXTEND &&
11906            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11907              (OpBits-(PromBits-1)))) {
11908         ReallyNeedsExt = true;
11909         break;
11910       }
11911     }
11912   }
11913 
11914   // Replace all inputs, either with the truncation operand, or a
11915   // truncation or extension to the final output type.
11916   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11917     // Constant inputs need to be replaced with the to-be-promoted nodes that
11918     // use them because they might have users outside of the cluster of
11919     // promoted nodes.
11920     if (isa<ConstantSDNode>(Inputs[i]))
11921       continue;
11922 
11923     SDValue InSrc = Inputs[i].getOperand(0);
11924     if (Inputs[i].getValueType() == N->getValueType(0))
11925       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11926     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11927       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11928         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11929     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11930       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11931         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11932     else
11933       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11934         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11935   }
11936 
11937   std::list<HandleSDNode> PromOpHandles;
11938   for (auto &PromOp : PromOps)
11939     PromOpHandles.emplace_back(PromOp);
11940 
11941   // Replace all operations (these are all the same, but have a different
11942   // (promoted) return type). DAG.getNode will validate that the types of
11943   // a binary operator match, so go through the list in reverse so that
11944   // we've likely promoted both operands first.
11945   while (!PromOpHandles.empty()) {
11946     SDValue PromOp = PromOpHandles.back().getValue();
11947     PromOpHandles.pop_back();
11948 
11949     unsigned C;
11950     switch (PromOp.getOpcode()) {
11951     default:             C = 0; break;
11952     case ISD::SELECT:    C = 1; break;
11953     case ISD::SELECT_CC: C = 2; break;
11954     }
11955 
11956     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11957          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11958         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11959          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11960       // The to-be-promoted operands of this node have not yet been
11961       // promoted (this should be rare because we're going through the
11962       // list backward, but if one of the operands has several users in
11963       // this cluster of to-be-promoted nodes, it is possible).
11964       PromOpHandles.emplace_front(PromOp);
11965       continue;
11966     }
11967 
11968     // For SELECT and SELECT_CC nodes, we do a similar check for any
11969     // to-be-promoted comparison inputs.
11970     if (PromOp.getOpcode() == ISD::SELECT ||
11971         PromOp.getOpcode() == ISD::SELECT_CC) {
11972       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11973            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11974           (SelectTruncOp[1].count(PromOp.getNode()) &&
11975            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11976         PromOpHandles.emplace_front(PromOp);
11977         continue;
11978       }
11979     }
11980 
11981     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11982                                 PromOp.getNode()->op_end());
11983 
11984     // If this node has constant inputs, then they'll need to be promoted here.
11985     for (unsigned i = 0; i < 2; ++i) {
11986       if (!isa<ConstantSDNode>(Ops[C+i]))
11987         continue;
11988       if (Ops[C+i].getValueType() == N->getValueType(0))
11989         continue;
11990 
11991       if (N->getOpcode() == ISD::SIGN_EXTEND)
11992         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11993       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11994         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11995       else
11996         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11997     }
11998 
11999     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12000     // truncate them again to the original value type.
12001     if (PromOp.getOpcode() == ISD::SELECT ||
12002         PromOp.getOpcode() == ISD::SELECT_CC) {
12003       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12004       if (SI0 != SelectTruncOp[0].end())
12005         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12006       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12007       if (SI1 != SelectTruncOp[1].end())
12008         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12009     }
12010 
12011     DAG.ReplaceAllUsesOfValueWith(PromOp,
12012       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12013   }
12014 
12015   // Now we're left with the initial extension itself.
12016   if (!ReallyNeedsExt)
12017     return N->getOperand(0);
12018 
12019   // To zero extend, just mask off everything except for the first bit (in the
12020   // i1 case).
12021   if (N->getOpcode() == ISD::ZERO_EXTEND)
12022     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12023                        DAG.getConstant(APInt::getLowBitsSet(
12024                                          N->getValueSizeInBits(0), PromBits),
12025                                        dl, N->getValueType(0)));
12026 
12027   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12028          "Invalid extension type");
12029   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12030   SDValue ShiftCst =
12031       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12032   return DAG.getNode(
12033       ISD::SRA, dl, N->getValueType(0),
12034       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12035       ShiftCst);
12036 }
12037 
12038 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12039                                         DAGCombinerInfo &DCI) const {
12040   assert(N->getOpcode() == ISD::SETCC &&
12041          "Should be called with a SETCC node");
12042 
12043   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12044   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12045     SDValue LHS = N->getOperand(0);
12046     SDValue RHS = N->getOperand(1);
12047 
12048     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12049     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12050         LHS.hasOneUse())
12051       std::swap(LHS, RHS);
12052 
12053     // x == 0-y --> x+y == 0
12054     // x != 0-y --> x+y != 0
12055     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12056         RHS.hasOneUse()) {
12057       SDLoc DL(N);
12058       SelectionDAG &DAG = DCI.DAG;
12059       EVT VT = N->getValueType(0);
12060       EVT OpVT = LHS.getValueType();
12061       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12062       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12063     }
12064   }
12065 
12066   return DAGCombineTruncBoolExt(N, DCI);
12067 }
12068 
12069 // Is this an extending load from an f32 to an f64?
12070 static bool isFPExtLoad(SDValue Op) {
12071   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12072     return LD->getExtensionType() == ISD::EXTLOAD &&
12073       Op.getValueType() == MVT::f64;
12074   return false;
12075 }
12076 
12077 /// Reduces the number of fp-to-int conversion when building a vector.
12078 ///
12079 /// If this vector is built out of floating to integer conversions,
12080 /// transform it to a vector built out of floating point values followed by a
12081 /// single floating to integer conversion of the vector.
12082 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12083 /// becomes (fptosi (build_vector ($A, $B, ...)))
12084 SDValue PPCTargetLowering::
12085 combineElementTruncationToVectorTruncation(SDNode *N,
12086                                            DAGCombinerInfo &DCI) const {
12087   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12088          "Should be called with a BUILD_VECTOR node");
12089 
12090   SelectionDAG &DAG = DCI.DAG;
12091   SDLoc dl(N);
12092 
12093   SDValue FirstInput = N->getOperand(0);
12094   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12095          "The input operand must be an fp-to-int conversion.");
12096 
12097   // This combine happens after legalization so the fp_to_[su]i nodes are
12098   // already converted to PPCSISD nodes.
12099   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12100   if (FirstConversion == PPCISD::FCTIDZ ||
12101       FirstConversion == PPCISD::FCTIDUZ ||
12102       FirstConversion == PPCISD::FCTIWZ ||
12103       FirstConversion == PPCISD::FCTIWUZ) {
12104     bool IsSplat = true;
12105     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12106       FirstConversion == PPCISD::FCTIWUZ;
12107     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12108     SmallVector<SDValue, 4> Ops;
12109     EVT TargetVT = N->getValueType(0);
12110     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12111       SDValue NextOp = N->getOperand(i);
12112       if (NextOp.getOpcode() != PPCISD::MFVSR)
12113         return SDValue();
12114       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12115       if (NextConversion != FirstConversion)
12116         return SDValue();
12117       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12118       // This is not valid if the input was originally double precision. It is
12119       // also not profitable to do unless this is an extending load in which
12120       // case doing this combine will allow us to combine consecutive loads.
12121       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12122         return SDValue();
12123       if (N->getOperand(i) != FirstInput)
12124         IsSplat = false;
12125     }
12126 
12127     // If this is a splat, we leave it as-is since there will be only a single
12128     // fp-to-int conversion followed by a splat of the integer. This is better
12129     // for 32-bit and smaller ints and neutral for 64-bit ints.
12130     if (IsSplat)
12131       return SDValue();
12132 
12133     // Now that we know we have the right type of node, get its operands
12134     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12135       SDValue In = N->getOperand(i).getOperand(0);
12136       if (Is32Bit) {
12137         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12138         // here, we know that all inputs are extending loads so this is safe).
12139         if (In.isUndef())
12140           Ops.push_back(DAG.getUNDEF(SrcVT));
12141         else {
12142           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12143                                       MVT::f32, In.getOperand(0),
12144                                       DAG.getIntPtrConstant(1, dl));
12145           Ops.push_back(Trunc);
12146         }
12147       } else
12148         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12149     }
12150 
12151     unsigned Opcode;
12152     if (FirstConversion == PPCISD::FCTIDZ ||
12153         FirstConversion == PPCISD::FCTIWZ)
12154       Opcode = ISD::FP_TO_SINT;
12155     else
12156       Opcode = ISD::FP_TO_UINT;
12157 
12158     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12159     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12160     return DAG.getNode(Opcode, dl, TargetVT, BV);
12161   }
12162   return SDValue();
12163 }
12164 
12165 /// Reduce the number of loads when building a vector.
12166 ///
12167 /// Building a vector out of multiple loads can be converted to a load
12168 /// of the vector type if the loads are consecutive. If the loads are
12169 /// consecutive but in descending order, a shuffle is added at the end
12170 /// to reorder the vector.
12171 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12172   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12173          "Should be called with a BUILD_VECTOR node");
12174 
12175   SDLoc dl(N);
12176   bool InputsAreConsecutiveLoads = true;
12177   bool InputsAreReverseConsecutive = true;
12178   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
12179   SDValue FirstInput = N->getOperand(0);
12180   bool IsRoundOfExtLoad = false;
12181 
12182   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12183       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12184     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12185     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12186   }
12187   // Not a build vector of (possibly fp_rounded) loads.
12188   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12189       N->getNumOperands() == 1)
12190     return SDValue();
12191 
12192   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12193     // If any inputs are fp_round(extload), they all must be.
12194     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12195       return SDValue();
12196 
12197     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12198       N->getOperand(i);
12199     if (NextInput.getOpcode() != ISD::LOAD)
12200       return SDValue();
12201 
12202     SDValue PreviousInput =
12203       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12204     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12205     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12206 
12207     // If any inputs are fp_round(extload), they all must be.
12208     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12209       return SDValue();
12210 
12211     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12212       InputsAreConsecutiveLoads = false;
12213     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12214       InputsAreReverseConsecutive = false;
12215 
12216     // Exit early if the loads are neither consecutive nor reverse consecutive.
12217     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12218       return SDValue();
12219   }
12220 
12221   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12222          "The loads cannot be both consecutive and reverse consecutive.");
12223 
12224   SDValue FirstLoadOp =
12225     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12226   SDValue LastLoadOp =
12227     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12228                        N->getOperand(N->getNumOperands()-1);
12229 
12230   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12231   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12232   if (InputsAreConsecutiveLoads) {
12233     assert(LD1 && "Input needs to be a LoadSDNode.");
12234     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12235                        LD1->getBasePtr(), LD1->getPointerInfo(),
12236                        LD1->getAlignment());
12237   }
12238   if (InputsAreReverseConsecutive) {
12239     assert(LDL && "Input needs to be a LoadSDNode.");
12240     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12241                                LDL->getBasePtr(), LDL->getPointerInfo(),
12242                                LDL->getAlignment());
12243     SmallVector<int, 16> Ops;
12244     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12245       Ops.push_back(i);
12246 
12247     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12248                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12249   }
12250   return SDValue();
12251 }
12252 
12253 // This function adds the required vector_shuffle needed to get
12254 // the elements of the vector extract in the correct position
12255 // as specified by the CorrectElems encoding.
12256 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12257                                       SDValue Input, uint64_t Elems,
12258                                       uint64_t CorrectElems) {
12259   SDLoc dl(N);
12260 
12261   unsigned NumElems = Input.getValueType().getVectorNumElements();
12262   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12263 
12264   // Knowing the element indices being extracted from the original
12265   // vector and the order in which they're being inserted, just put
12266   // them at element indices required for the instruction.
12267   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12268     if (DAG.getDataLayout().isLittleEndian())
12269       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12270     else
12271       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12272     CorrectElems = CorrectElems >> 8;
12273     Elems = Elems >> 8;
12274   }
12275 
12276   SDValue Shuffle =
12277       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12278                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12279 
12280   EVT Ty = N->getValueType(0);
12281   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12282   return BV;
12283 }
12284 
12285 // Look for build vector patterns where input operands come from sign
12286 // extended vector_extract elements of specific indices. If the correct indices
12287 // aren't used, add a vector shuffle to fix up the indices and create a new
12288 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12289 // during instruction selection.
12290 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12291   // This array encodes the indices that the vector sign extend instructions
12292   // extract from when extending from one type to another for both BE and LE.
12293   // The right nibble of each byte corresponds to the LE incides.
12294   // and the left nibble of each byte corresponds to the BE incides.
12295   // For example: 0x3074B8FC  byte->word
12296   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12297   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12298   // For example: 0x000070F8  byte->double word
12299   // For LE: the allowed indices are: 0x0,0x8
12300   // For BE: the allowed indices are: 0x7,0xF
12301   uint64_t TargetElems[] = {
12302       0x3074B8FC, // b->w
12303       0x000070F8, // b->d
12304       0x10325476, // h->w
12305       0x00003074, // h->d
12306       0x00001032, // w->d
12307   };
12308 
12309   uint64_t Elems = 0;
12310   int Index;
12311   SDValue Input;
12312 
12313   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12314     if (!Op)
12315       return false;
12316     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12317         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12318       return false;
12319 
12320     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12321     // of the right width.
12322     SDValue Extract = Op.getOperand(0);
12323     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12324       Extract = Extract.getOperand(0);
12325     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12326       return false;
12327 
12328     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12329     if (!ExtOp)
12330       return false;
12331 
12332     Index = ExtOp->getZExtValue();
12333     if (Input && Input != Extract.getOperand(0))
12334       return false;
12335 
12336     if (!Input)
12337       Input = Extract.getOperand(0);
12338 
12339     Elems = Elems << 8;
12340     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12341     Elems |= Index;
12342 
12343     return true;
12344   };
12345 
12346   // If the build vector operands aren't sign extended vector extracts,
12347   // of the same input vector, then return.
12348   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12349     if (!isSExtOfVecExtract(N->getOperand(i))) {
12350       return SDValue();
12351     }
12352   }
12353 
12354   // If the vector extract indicies are not correct, add the appropriate
12355   // vector_shuffle.
12356   int TgtElemArrayIdx;
12357   int InputSize = Input.getValueType().getScalarSizeInBits();
12358   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12359   if (InputSize + OutputSize == 40)
12360     TgtElemArrayIdx = 0;
12361   else if (InputSize + OutputSize == 72)
12362     TgtElemArrayIdx = 1;
12363   else if (InputSize + OutputSize == 48)
12364     TgtElemArrayIdx = 2;
12365   else if (InputSize + OutputSize == 80)
12366     TgtElemArrayIdx = 3;
12367   else if (InputSize + OutputSize == 96)
12368     TgtElemArrayIdx = 4;
12369   else
12370     return SDValue();
12371 
12372   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12373   CorrectElems = DAG.getDataLayout().isLittleEndian()
12374                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12375                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12376   if (Elems != CorrectElems) {
12377     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12378   }
12379 
12380   // Regular lowering will catch cases where a shuffle is not needed.
12381   return SDValue();
12382 }
12383 
12384 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12385                                                  DAGCombinerInfo &DCI) const {
12386   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12387          "Should be called with a BUILD_VECTOR node");
12388 
12389   SelectionDAG &DAG = DCI.DAG;
12390   SDLoc dl(N);
12391 
12392   if (!Subtarget.hasVSX())
12393     return SDValue();
12394 
12395   // The target independent DAG combiner will leave a build_vector of
12396   // float-to-int conversions intact. We can generate MUCH better code for
12397   // a float-to-int conversion of a vector of floats.
12398   SDValue FirstInput = N->getOperand(0);
12399   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12400     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12401     if (Reduced)
12402       return Reduced;
12403   }
12404 
12405   // If we're building a vector out of consecutive loads, just load that
12406   // vector type.
12407   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12408   if (Reduced)
12409     return Reduced;
12410 
12411   // If we're building a vector out of extended elements from another vector
12412   // we have P9 vector integer extend instructions. The code assumes legal
12413   // input types (i.e. it can't handle things like v4i16) so do not run before
12414   // legalization.
12415   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12416     Reduced = combineBVOfVecSExt(N, DAG);
12417     if (Reduced)
12418       return Reduced;
12419   }
12420 
12421 
12422   if (N->getValueType(0) != MVT::v2f64)
12423     return SDValue();
12424 
12425   // Looking for:
12426   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12427   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12428       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12429     return SDValue();
12430   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12431       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12432     return SDValue();
12433   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12434     return SDValue();
12435 
12436   SDValue Ext1 = FirstInput.getOperand(0);
12437   SDValue Ext2 = N->getOperand(1).getOperand(0);
12438   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12439      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12440     return SDValue();
12441 
12442   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12443   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12444   if (!Ext1Op || !Ext2Op)
12445     return SDValue();
12446   if (Ext1.getValueType() != MVT::i32 ||
12447       Ext2.getValueType() != MVT::i32)
12448   if (Ext1.getOperand(0) != Ext2.getOperand(0))
12449     return SDValue();
12450 
12451   int FirstElem = Ext1Op->getZExtValue();
12452   int SecondElem = Ext2Op->getZExtValue();
12453   int SubvecIdx;
12454   if (FirstElem == 0 && SecondElem == 1)
12455     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12456   else if (FirstElem == 2 && SecondElem == 3)
12457     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12458   else
12459     return SDValue();
12460 
12461   SDValue SrcVec = Ext1.getOperand(0);
12462   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12463     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12464   return DAG.getNode(NodeType, dl, MVT::v2f64,
12465                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12466 }
12467 
12468 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12469                                               DAGCombinerInfo &DCI) const {
12470   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12471           N->getOpcode() == ISD::UINT_TO_FP) &&
12472          "Need an int -> FP conversion node here");
12473 
12474   if (useSoftFloat() || !Subtarget.has64BitSupport())
12475     return SDValue();
12476 
12477   SelectionDAG &DAG = DCI.DAG;
12478   SDLoc dl(N);
12479   SDValue Op(N, 0);
12480 
12481   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12482   // from the hardware.
12483   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12484     return SDValue();
12485   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12486       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12487     return SDValue();
12488 
12489   SDValue FirstOperand(Op.getOperand(0));
12490   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12491     (FirstOperand.getValueType() == MVT::i8 ||
12492      FirstOperand.getValueType() == MVT::i16);
12493   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12494     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12495     bool DstDouble = Op.getValueType() == MVT::f64;
12496     unsigned ConvOp = Signed ?
12497       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12498       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12499     SDValue WidthConst =
12500       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12501                             dl, false);
12502     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12503     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12504     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12505                                          DAG.getVTList(MVT::f64, MVT::Other),
12506                                          Ops, MVT::i8, LDN->getMemOperand());
12507 
12508     // For signed conversion, we need to sign-extend the value in the VSR
12509     if (Signed) {
12510       SDValue ExtOps[] = { Ld, WidthConst };
12511       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12512       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12513     } else
12514       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12515   }
12516 
12517 
12518   // For i32 intermediate values, unfortunately, the conversion functions
12519   // leave the upper 32 bits of the value are undefined. Within the set of
12520   // scalar instructions, we have no method for zero- or sign-extending the
12521   // value. Thus, we cannot handle i32 intermediate values here.
12522   if (Op.getOperand(0).getValueType() == MVT::i32)
12523     return SDValue();
12524 
12525   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12526          "UINT_TO_FP is supported only with FPCVT");
12527 
12528   // If we have FCFIDS, then use it when converting to single-precision.
12529   // Otherwise, convert to double-precision and then round.
12530   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12531                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12532                                                             : PPCISD::FCFIDS)
12533                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12534                                                             : PPCISD::FCFID);
12535   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12536                   ? MVT::f32
12537                   : MVT::f64;
12538 
12539   // If we're converting from a float, to an int, and back to a float again,
12540   // then we don't need the store/load pair at all.
12541   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12542        Subtarget.hasFPCVT()) ||
12543       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12544     SDValue Src = Op.getOperand(0).getOperand(0);
12545     if (Src.getValueType() == MVT::f32) {
12546       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12547       DCI.AddToWorklist(Src.getNode());
12548     } else if (Src.getValueType() != MVT::f64) {
12549       // Make sure that we don't pick up a ppc_fp128 source value.
12550       return SDValue();
12551     }
12552 
12553     unsigned FCTOp =
12554       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12555                                                         PPCISD::FCTIDUZ;
12556 
12557     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12558     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12559 
12560     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12561       FP = DAG.getNode(ISD::FP_ROUND, dl,
12562                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12563       DCI.AddToWorklist(FP.getNode());
12564     }
12565 
12566     return FP;
12567   }
12568 
12569   return SDValue();
12570 }
12571 
12572 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12573 // builtins) into loads with swaps.
12574 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12575                                               DAGCombinerInfo &DCI) const {
12576   SelectionDAG &DAG = DCI.DAG;
12577   SDLoc dl(N);
12578   SDValue Chain;
12579   SDValue Base;
12580   MachineMemOperand *MMO;
12581 
12582   switch (N->getOpcode()) {
12583   default:
12584     llvm_unreachable("Unexpected opcode for little endian VSX load");
12585   case ISD::LOAD: {
12586     LoadSDNode *LD = cast<LoadSDNode>(N);
12587     Chain = LD->getChain();
12588     Base = LD->getBasePtr();
12589     MMO = LD->getMemOperand();
12590     // If the MMO suggests this isn't a load of a full vector, leave
12591     // things alone.  For a built-in, we have to make the change for
12592     // correctness, so if there is a size problem that will be a bug.
12593     if (MMO->getSize() < 16)
12594       return SDValue();
12595     break;
12596   }
12597   case ISD::INTRINSIC_W_CHAIN: {
12598     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12599     Chain = Intrin->getChain();
12600     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12601     // us what we want. Get operand 2 instead.
12602     Base = Intrin->getOperand(2);
12603     MMO = Intrin->getMemOperand();
12604     break;
12605   }
12606   }
12607 
12608   MVT VecTy = N->getValueType(0).getSimpleVT();
12609 
12610   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12611   // aligned and the type is a vector with elements up to 4 bytes
12612   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12613       && VecTy.getScalarSizeInBits() <= 32 ) {
12614     return SDValue();
12615   }
12616 
12617   SDValue LoadOps[] = { Chain, Base };
12618   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12619                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12620                                          LoadOps, MVT::v2f64, MMO);
12621 
12622   DCI.AddToWorklist(Load.getNode());
12623   Chain = Load.getValue(1);
12624   SDValue Swap = DAG.getNode(
12625       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12626   DCI.AddToWorklist(Swap.getNode());
12627 
12628   // Add a bitcast if the resulting load type doesn't match v2f64.
12629   if (VecTy != MVT::v2f64) {
12630     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12631     DCI.AddToWorklist(N.getNode());
12632     // Package {bitcast value, swap's chain} to match Load's shape.
12633     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12634                        N, Swap.getValue(1));
12635   }
12636 
12637   return Swap;
12638 }
12639 
12640 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12641 // builtins) into stores with swaps.
12642 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12643                                                DAGCombinerInfo &DCI) const {
12644   SelectionDAG &DAG = DCI.DAG;
12645   SDLoc dl(N);
12646   SDValue Chain;
12647   SDValue Base;
12648   unsigned SrcOpnd;
12649   MachineMemOperand *MMO;
12650 
12651   switch (N->getOpcode()) {
12652   default:
12653     llvm_unreachable("Unexpected opcode for little endian VSX store");
12654   case ISD::STORE: {
12655     StoreSDNode *ST = cast<StoreSDNode>(N);
12656     Chain = ST->getChain();
12657     Base = ST->getBasePtr();
12658     MMO = ST->getMemOperand();
12659     SrcOpnd = 1;
12660     // If the MMO suggests this isn't a store of a full vector, leave
12661     // things alone.  For a built-in, we have to make the change for
12662     // correctness, so if there is a size problem that will be a bug.
12663     if (MMO->getSize() < 16)
12664       return SDValue();
12665     break;
12666   }
12667   case ISD::INTRINSIC_VOID: {
12668     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12669     Chain = Intrin->getChain();
12670     // Intrin->getBasePtr() oddly does not get what we want.
12671     Base = Intrin->getOperand(3);
12672     MMO = Intrin->getMemOperand();
12673     SrcOpnd = 2;
12674     break;
12675   }
12676   }
12677 
12678   SDValue Src = N->getOperand(SrcOpnd);
12679   MVT VecTy = Src.getValueType().getSimpleVT();
12680 
12681   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12682   // aligned and the type is a vector with elements up to 4 bytes
12683   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12684       && VecTy.getScalarSizeInBits() <= 32 ) {
12685     return SDValue();
12686   }
12687 
12688   // All stores are done as v2f64 and possible bit cast.
12689   if (VecTy != MVT::v2f64) {
12690     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12691     DCI.AddToWorklist(Src.getNode());
12692   }
12693 
12694   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12695                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12696   DCI.AddToWorklist(Swap.getNode());
12697   Chain = Swap.getValue(1);
12698   SDValue StoreOps[] = { Chain, Swap, Base };
12699   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12700                                           DAG.getVTList(MVT::Other),
12701                                           StoreOps, VecTy, MMO);
12702   DCI.AddToWorklist(Store.getNode());
12703   return Store;
12704 }
12705 
12706 // Handle DAG combine for STORE (FP_TO_INT F).
12707 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12708                                                DAGCombinerInfo &DCI) const {
12709 
12710   SelectionDAG &DAG = DCI.DAG;
12711   SDLoc dl(N);
12712   unsigned Opcode = N->getOperand(1).getOpcode();
12713 
12714   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12715          && "Not a FP_TO_INT Instruction!");
12716 
12717   SDValue Val = N->getOperand(1).getOperand(0);
12718   EVT Op1VT = N->getOperand(1).getValueType();
12719   EVT ResVT = Val.getValueType();
12720 
12721   // Floating point types smaller than 32 bits are not legal on Power.
12722   if (ResVT.getScalarSizeInBits() < 32)
12723     return SDValue();
12724 
12725   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12726   bool ValidTypeForStoreFltAsInt =
12727         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12728          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12729 
12730   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12731       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12732     return SDValue();
12733 
12734   // Extend f32 values to f64
12735   if (ResVT.getScalarSizeInBits() == 32) {
12736     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12737     DCI.AddToWorklist(Val.getNode());
12738   }
12739 
12740   // Set signed or unsigned conversion opcode.
12741   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12742                           PPCISD::FP_TO_SINT_IN_VSR :
12743                           PPCISD::FP_TO_UINT_IN_VSR;
12744 
12745   Val = DAG.getNode(ConvOpcode,
12746                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12747   DCI.AddToWorklist(Val.getNode());
12748 
12749   // Set number of bytes being converted.
12750   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12751   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12752                     DAG.getIntPtrConstant(ByteSize, dl, false),
12753                     DAG.getValueType(Op1VT) };
12754 
12755   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12756           DAG.getVTList(MVT::Other), Ops,
12757           cast<StoreSDNode>(N)->getMemoryVT(),
12758           cast<StoreSDNode>(N)->getMemOperand());
12759 
12760   DCI.AddToWorklist(Val.getNode());
12761   return Val;
12762 }
12763 
12764 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12765                                              DAGCombinerInfo &DCI) const {
12766   SelectionDAG &DAG = DCI.DAG;
12767   SDLoc dl(N);
12768   switch (N->getOpcode()) {
12769   default: break;
12770   case ISD::ADD:
12771     return combineADD(N, DCI);
12772   case ISD::SHL:
12773     return combineSHL(N, DCI);
12774   case ISD::SRA:
12775     return combineSRA(N, DCI);
12776   case ISD::SRL:
12777     return combineSRL(N, DCI);
12778   case ISD::MUL:
12779     return combineMUL(N, DCI);
12780   case PPCISD::SHL:
12781     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12782         return N->getOperand(0);
12783     break;
12784   case PPCISD::SRL:
12785     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12786         return N->getOperand(0);
12787     break;
12788   case PPCISD::SRA:
12789     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12790       if (C->isNullValue() ||   //  0 >>s V -> 0.
12791           C->isAllOnesValue())    // -1 >>s V -> -1.
12792         return N->getOperand(0);
12793     }
12794     break;
12795   case ISD::SIGN_EXTEND:
12796   case ISD::ZERO_EXTEND:
12797   case ISD::ANY_EXTEND:
12798     return DAGCombineExtBoolTrunc(N, DCI);
12799   case ISD::TRUNCATE:
12800     return combineTRUNCATE(N, DCI);
12801   case ISD::SETCC:
12802     if (SDValue CSCC = combineSetCC(N, DCI))
12803       return CSCC;
12804     LLVM_FALLTHROUGH;
12805   case ISD::SELECT_CC:
12806     return DAGCombineTruncBoolExt(N, DCI);
12807   case ISD::SINT_TO_FP:
12808   case ISD::UINT_TO_FP:
12809     return combineFPToIntToFP(N, DCI);
12810   case ISD::STORE: {
12811 
12812     EVT Op1VT = N->getOperand(1).getValueType();
12813     unsigned Opcode = N->getOperand(1).getOpcode();
12814 
12815     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12816       SDValue Val= combineStoreFPToInt(N, DCI);
12817       if (Val)
12818         return Val;
12819     }
12820 
12821     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12822     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12823         N->getOperand(1).getNode()->hasOneUse() &&
12824         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12825          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12826 
12827       // STBRX can only handle simple types and it makes no sense to store less
12828       // two bytes in byte-reversed order.
12829       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12830       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
12831         break;
12832 
12833       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12834       // Do an any-extend to 32-bits if this is a half-word input.
12835       if (BSwapOp.getValueType() == MVT::i16)
12836         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12837 
12838       // If the type of BSWAP operand is wider than stored memory width
12839       // it need to be shifted to the right side before STBRX.
12840       if (Op1VT.bitsGT(mVT)) {
12841         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12842         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12843                               DAG.getConstant(Shift, dl, MVT::i32));
12844         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12845         if (Op1VT == MVT::i64)
12846           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12847       }
12848 
12849       SDValue Ops[] = {
12850         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12851       };
12852       return
12853         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12854                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12855                                 cast<StoreSDNode>(N)->getMemOperand());
12856     }
12857 
12858     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12859     // So it can increase the chance of CSE constant construction.
12860     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12861         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12862       // Need to sign-extended to 64-bits to handle negative values.
12863       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12864       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12865                                     MemVT.getSizeInBits());
12866       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12867 
12868       // DAG.getTruncStore() can't be used here because it doesn't accept
12869       // the general (base + offset) addressing mode.
12870       // So we use UpdateNodeOperands and setTruncatingStore instead.
12871       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12872                              N->getOperand(3));
12873       cast<StoreSDNode>(N)->setTruncatingStore(true);
12874       return SDValue(N, 0);
12875     }
12876 
12877     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12878     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12879     if (Op1VT.isSimple()) {
12880       MVT StoreVT = Op1VT.getSimpleVT();
12881       if (Subtarget.needsSwapsForVSXMemOps() &&
12882           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12883            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12884         return expandVSXStoreForLE(N, DCI);
12885     }
12886     break;
12887   }
12888   case ISD::LOAD: {
12889     LoadSDNode *LD = cast<LoadSDNode>(N);
12890     EVT VT = LD->getValueType(0);
12891 
12892     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12893     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12894     if (VT.isSimple()) {
12895       MVT LoadVT = VT.getSimpleVT();
12896       if (Subtarget.needsSwapsForVSXMemOps() &&
12897           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12898            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12899         return expandVSXLoadForLE(N, DCI);
12900     }
12901 
12902     // We sometimes end up with a 64-bit integer load, from which we extract
12903     // two single-precision floating-point numbers. This happens with
12904     // std::complex<float>, and other similar structures, because of the way we
12905     // canonicalize structure copies. However, if we lack direct moves,
12906     // then the final bitcasts from the extracted integer values to the
12907     // floating-point numbers turn into store/load pairs. Even with direct moves,
12908     // just loading the two floating-point numbers is likely better.
12909     auto ReplaceTwoFloatLoad = [&]() {
12910       if (VT != MVT::i64)
12911         return false;
12912 
12913       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12914           LD->isVolatile())
12915         return false;
12916 
12917       //  We're looking for a sequence like this:
12918       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12919       //      t16: i64 = srl t13, Constant:i32<32>
12920       //    t17: i32 = truncate t16
12921       //  t18: f32 = bitcast t17
12922       //    t19: i32 = truncate t13
12923       //  t20: f32 = bitcast t19
12924 
12925       if (!LD->hasNUsesOfValue(2, 0))
12926         return false;
12927 
12928       auto UI = LD->use_begin();
12929       while (UI.getUse().getResNo() != 0) ++UI;
12930       SDNode *Trunc = *UI++;
12931       while (UI.getUse().getResNo() != 0) ++UI;
12932       SDNode *RightShift = *UI;
12933       if (Trunc->getOpcode() != ISD::TRUNCATE)
12934         std::swap(Trunc, RightShift);
12935 
12936       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12937           Trunc->getValueType(0) != MVT::i32 ||
12938           !Trunc->hasOneUse())
12939         return false;
12940       if (RightShift->getOpcode() != ISD::SRL ||
12941           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12942           RightShift->getConstantOperandVal(1) != 32 ||
12943           !RightShift->hasOneUse())
12944         return false;
12945 
12946       SDNode *Trunc2 = *RightShift->use_begin();
12947       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12948           Trunc2->getValueType(0) != MVT::i32 ||
12949           !Trunc2->hasOneUse())
12950         return false;
12951 
12952       SDNode *Bitcast = *Trunc->use_begin();
12953       SDNode *Bitcast2 = *Trunc2->use_begin();
12954 
12955       if (Bitcast->getOpcode() != ISD::BITCAST ||
12956           Bitcast->getValueType(0) != MVT::f32)
12957         return false;
12958       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12959           Bitcast2->getValueType(0) != MVT::f32)
12960         return false;
12961 
12962       if (Subtarget.isLittleEndian())
12963         std::swap(Bitcast, Bitcast2);
12964 
12965       // Bitcast has the second float (in memory-layout order) and Bitcast2
12966       // has the first one.
12967 
12968       SDValue BasePtr = LD->getBasePtr();
12969       if (LD->isIndexed()) {
12970         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12971                "Non-pre-inc AM on PPC?");
12972         BasePtr =
12973           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12974                       LD->getOffset());
12975       }
12976 
12977       auto MMOFlags =
12978           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12979       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12980                                       LD->getPointerInfo(), LD->getAlignment(),
12981                                       MMOFlags, LD->getAAInfo());
12982       SDValue AddPtr =
12983         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12984                     BasePtr, DAG.getIntPtrConstant(4, dl));
12985       SDValue FloatLoad2 = DAG.getLoad(
12986           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12987           LD->getPointerInfo().getWithOffset(4),
12988           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12989 
12990       if (LD->isIndexed()) {
12991         // Note that DAGCombine should re-form any pre-increment load(s) from
12992         // what is produced here if that makes sense.
12993         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12994       }
12995 
12996       DCI.CombineTo(Bitcast2, FloatLoad);
12997       DCI.CombineTo(Bitcast, FloatLoad2);
12998 
12999       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13000                                     SDValue(FloatLoad2.getNode(), 1));
13001       return true;
13002     };
13003 
13004     if (ReplaceTwoFloatLoad())
13005       return SDValue(N, 0);
13006 
13007     EVT MemVT = LD->getMemoryVT();
13008     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13009     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13010     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13011     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13012     if (LD->isUnindexed() && VT.isVector() &&
13013         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13014           // P8 and later hardware should just use LOAD.
13015           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13016                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13017          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13018           LD->getAlignment() >= ScalarABIAlignment)) &&
13019         LD->getAlignment() < ABIAlignment) {
13020       // This is a type-legal unaligned Altivec or QPX load.
13021       SDValue Chain = LD->getChain();
13022       SDValue Ptr = LD->getBasePtr();
13023       bool isLittleEndian = Subtarget.isLittleEndian();
13024 
13025       // This implements the loading of unaligned vectors as described in
13026       // the venerable Apple Velocity Engine overview. Specifically:
13027       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13028       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13029       //
13030       // The general idea is to expand a sequence of one or more unaligned
13031       // loads into an alignment-based permutation-control instruction (lvsl
13032       // or lvsr), a series of regular vector loads (which always truncate
13033       // their input address to an aligned address), and a series of
13034       // permutations.  The results of these permutations are the requested
13035       // loaded values.  The trick is that the last "extra" load is not taken
13036       // from the address you might suspect (sizeof(vector) bytes after the
13037       // last requested load), but rather sizeof(vector) - 1 bytes after the
13038       // last requested vector. The point of this is to avoid a page fault if
13039       // the base address happened to be aligned. This works because if the
13040       // base address is aligned, then adding less than a full vector length
13041       // will cause the last vector in the sequence to be (re)loaded.
13042       // Otherwise, the next vector will be fetched as you might suspect was
13043       // necessary.
13044 
13045       // We might be able to reuse the permutation generation from
13046       // a different base address offset from this one by an aligned amount.
13047       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13048       // optimization later.
13049       Intrinsic::ID Intr, IntrLD, IntrPerm;
13050       MVT PermCntlTy, PermTy, LDTy;
13051       if (Subtarget.hasAltivec()) {
13052         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13053                                  Intrinsic::ppc_altivec_lvsl;
13054         IntrLD = Intrinsic::ppc_altivec_lvx;
13055         IntrPerm = Intrinsic::ppc_altivec_vperm;
13056         PermCntlTy = MVT::v16i8;
13057         PermTy = MVT::v4i32;
13058         LDTy = MVT::v4i32;
13059       } else {
13060         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13061                                        Intrinsic::ppc_qpx_qvlpcls;
13062         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13063                                        Intrinsic::ppc_qpx_qvlfs;
13064         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13065         PermCntlTy = MVT::v4f64;
13066         PermTy = MVT::v4f64;
13067         LDTy = MemVT.getSimpleVT();
13068       }
13069 
13070       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13071 
13072       // Create the new MMO for the new base load. It is like the original MMO,
13073       // but represents an area in memory almost twice the vector size centered
13074       // on the original address. If the address is unaligned, we might start
13075       // reading up to (sizeof(vector)-1) bytes below the address of the
13076       // original unaligned load.
13077       MachineFunction &MF = DAG.getMachineFunction();
13078       MachineMemOperand *BaseMMO =
13079         MF.getMachineMemOperand(LD->getMemOperand(),
13080                                 -(long)MemVT.getStoreSize()+1,
13081                                 2*MemVT.getStoreSize()-1);
13082 
13083       // Create the new base load.
13084       SDValue LDXIntID =
13085           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13086       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13087       SDValue BaseLoad =
13088         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13089                                 DAG.getVTList(PermTy, MVT::Other),
13090                                 BaseLoadOps, LDTy, BaseMMO);
13091 
13092       // Note that the value of IncOffset (which is provided to the next
13093       // load's pointer info offset value, and thus used to calculate the
13094       // alignment), and the value of IncValue (which is actually used to
13095       // increment the pointer value) are different! This is because we
13096       // require the next load to appear to be aligned, even though it
13097       // is actually offset from the base pointer by a lesser amount.
13098       int IncOffset = VT.getSizeInBits() / 8;
13099       int IncValue = IncOffset;
13100 
13101       // Walk (both up and down) the chain looking for another load at the real
13102       // (aligned) offset (the alignment of the other load does not matter in
13103       // this case). If found, then do not use the offset reduction trick, as
13104       // that will prevent the loads from being later combined (as they would
13105       // otherwise be duplicates).
13106       if (!findConsecutiveLoad(LD, DAG))
13107         --IncValue;
13108 
13109       SDValue Increment =
13110           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
13111       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13112 
13113       MachineMemOperand *ExtraMMO =
13114         MF.getMachineMemOperand(LD->getMemOperand(),
13115                                 1, 2*MemVT.getStoreSize()-1);
13116       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13117       SDValue ExtraLoad =
13118         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13119                                 DAG.getVTList(PermTy, MVT::Other),
13120                                 ExtraLoadOps, LDTy, ExtraMMO);
13121 
13122       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13123         BaseLoad.getValue(1), ExtraLoad.getValue(1));
13124 
13125       // Because vperm has a big-endian bias, we must reverse the order
13126       // of the input vectors and complement the permute control vector
13127       // when generating little endian code.  We have already handled the
13128       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13129       // and ExtraLoad here.
13130       SDValue Perm;
13131       if (isLittleEndian)
13132         Perm = BuildIntrinsicOp(IntrPerm,
13133                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
13134       else
13135         Perm = BuildIntrinsicOp(IntrPerm,
13136                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13137 
13138       if (VT != PermTy)
13139         Perm = Subtarget.hasAltivec() ?
13140                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13141                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13142                                DAG.getTargetConstant(1, dl, MVT::i64));
13143                                // second argument is 1 because this rounding
13144                                // is always exact.
13145 
13146       // The output of the permutation is our loaded result, the TokenFactor is
13147       // our new chain.
13148       DCI.CombineTo(N, Perm, TF);
13149       return SDValue(N, 0);
13150     }
13151     }
13152     break;
13153     case ISD::INTRINSIC_WO_CHAIN: {
13154       bool isLittleEndian = Subtarget.isLittleEndian();
13155       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13156       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13157                                            : Intrinsic::ppc_altivec_lvsl);
13158       if ((IID == Intr ||
13159            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13160            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13161         N->getOperand(1)->getOpcode() == ISD::ADD) {
13162         SDValue Add = N->getOperand(1);
13163 
13164         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13165                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13166 
13167         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13168                                   APInt::getAllOnesValue(Bits /* alignment */)
13169                                       .zext(Add.getScalarValueSizeInBits()))) {
13170           SDNode *BasePtr = Add->getOperand(0).getNode();
13171           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13172                                     UE = BasePtr->use_end();
13173                UI != UE; ++UI) {
13174             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13175                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13176               // We've found another LVSL/LVSR, and this address is an aligned
13177               // multiple of that one. The results will be the same, so use the
13178               // one we've just found instead.
13179 
13180               return SDValue(*UI, 0);
13181             }
13182           }
13183         }
13184 
13185         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13186           SDNode *BasePtr = Add->getOperand(0).getNode();
13187           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13188                UE = BasePtr->use_end(); UI != UE; ++UI) {
13189             if (UI->getOpcode() == ISD::ADD &&
13190                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13191                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13192                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13193                 (1ULL << Bits) == 0) {
13194               SDNode *OtherAdd = *UI;
13195               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13196                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
13197                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13198                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13199                   return SDValue(*VI, 0);
13200                 }
13201               }
13202             }
13203           }
13204         }
13205       }
13206 
13207       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13208       // Expose the vabsduw/h/b opportunity for down stream
13209       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13210           (IID == Intrinsic::ppc_altivec_vmaxsw ||
13211            IID == Intrinsic::ppc_altivec_vmaxsh ||
13212            IID == Intrinsic::ppc_altivec_vmaxsb)) {
13213         SDValue V1 = N->getOperand(1);
13214         SDValue V2 = N->getOperand(2);
13215         if ((V1.getSimpleValueType() == MVT::v4i32 ||
13216              V1.getSimpleValueType() == MVT::v8i16 ||
13217              V1.getSimpleValueType() == MVT::v16i8) &&
13218             V1.getSimpleValueType() == V2.getSimpleValueType()) {
13219           // (0-a, a)
13220           if (V1.getOpcode() == ISD::SUB &&
13221               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13222               V1.getOperand(1) == V2) {
13223             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13224           }
13225           // (a, 0-a)
13226           if (V2.getOpcode() == ISD::SUB &&
13227               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13228               V2.getOperand(1) == V1) {
13229             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13230           }
13231           // (x-y, y-x)
13232           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13233               V1.getOperand(0) == V2.getOperand(1) &&
13234               V1.getOperand(1) == V2.getOperand(0)) {
13235             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13236           }
13237         }
13238       }
13239     }
13240 
13241     break;
13242   case ISD::INTRINSIC_W_CHAIN:
13243     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13244     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13245     if (Subtarget.needsSwapsForVSXMemOps()) {
13246       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13247       default:
13248         break;
13249       case Intrinsic::ppc_vsx_lxvw4x:
13250       case Intrinsic::ppc_vsx_lxvd2x:
13251         return expandVSXLoadForLE(N, DCI);
13252       }
13253     }
13254     break;
13255   case ISD::INTRINSIC_VOID:
13256     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13257     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13258     if (Subtarget.needsSwapsForVSXMemOps()) {
13259       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13260       default:
13261         break;
13262       case Intrinsic::ppc_vsx_stxvw4x:
13263       case Intrinsic::ppc_vsx_stxvd2x:
13264         return expandVSXStoreForLE(N, DCI);
13265       }
13266     }
13267     break;
13268   case ISD::BSWAP:
13269     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13270     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13271         N->getOperand(0).hasOneUse() &&
13272         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13273          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13274           N->getValueType(0) == MVT::i64))) {
13275       SDValue Load = N->getOperand(0);
13276       LoadSDNode *LD = cast<LoadSDNode>(Load);
13277       // Create the byte-swapping load.
13278       SDValue Ops[] = {
13279         LD->getChain(),    // Chain
13280         LD->getBasePtr(),  // Ptr
13281         DAG.getValueType(N->getValueType(0)) // VT
13282       };
13283       SDValue BSLoad =
13284         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13285                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13286                                               MVT::i64 : MVT::i32, MVT::Other),
13287                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13288 
13289       // If this is an i16 load, insert the truncate.
13290       SDValue ResVal = BSLoad;
13291       if (N->getValueType(0) == MVT::i16)
13292         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13293 
13294       // First, combine the bswap away.  This makes the value produced by the
13295       // load dead.
13296       DCI.CombineTo(N, ResVal);
13297 
13298       // Next, combine the load away, we give it a bogus result value but a real
13299       // chain result.  The result value is dead because the bswap is dead.
13300       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13301 
13302       // Return N so it doesn't get rechecked!
13303       return SDValue(N, 0);
13304     }
13305     break;
13306   case PPCISD::VCMP:
13307     // If a VCMPo node already exists with exactly the same operands as this
13308     // node, use its result instead of this node (VCMPo computes both a CR6 and
13309     // a normal output).
13310     //
13311     if (!N->getOperand(0).hasOneUse() &&
13312         !N->getOperand(1).hasOneUse() &&
13313         !N->getOperand(2).hasOneUse()) {
13314 
13315       // Scan all of the users of the LHS, looking for VCMPo's that match.
13316       SDNode *VCMPoNode = nullptr;
13317 
13318       SDNode *LHSN = N->getOperand(0).getNode();
13319       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13320            UI != E; ++UI)
13321         if (UI->getOpcode() == PPCISD::VCMPo &&
13322             UI->getOperand(1) == N->getOperand(1) &&
13323             UI->getOperand(2) == N->getOperand(2) &&
13324             UI->getOperand(0) == N->getOperand(0)) {
13325           VCMPoNode = *UI;
13326           break;
13327         }
13328 
13329       // If there is no VCMPo node, or if the flag value has a single use, don't
13330       // transform this.
13331       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13332         break;
13333 
13334       // Look at the (necessarily single) use of the flag value.  If it has a
13335       // chain, this transformation is more complex.  Note that multiple things
13336       // could use the value result, which we should ignore.
13337       SDNode *FlagUser = nullptr;
13338       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13339            FlagUser == nullptr; ++UI) {
13340         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13341         SDNode *User = *UI;
13342         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13343           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13344             FlagUser = User;
13345             break;
13346           }
13347         }
13348       }
13349 
13350       // If the user is a MFOCRF instruction, we know this is safe.
13351       // Otherwise we give up for right now.
13352       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13353         return SDValue(VCMPoNode, 0);
13354     }
13355     break;
13356   case ISD::BRCOND: {
13357     SDValue Cond = N->getOperand(1);
13358     SDValue Target = N->getOperand(2);
13359 
13360     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13361         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13362           Intrinsic::ppc_is_decremented_ctr_nonzero) {
13363 
13364       // We now need to make the intrinsic dead (it cannot be instruction
13365       // selected).
13366       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13367       assert(Cond.getNode()->hasOneUse() &&
13368              "Counter decrement has more than one use");
13369 
13370       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13371                          N->getOperand(0), Target);
13372     }
13373   }
13374   break;
13375   case ISD::BR_CC: {
13376     // If this is a branch on an altivec predicate comparison, lower this so
13377     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13378     // lowering is done pre-legalize, because the legalizer lowers the predicate
13379     // compare down to code that is difficult to reassemble.
13380     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13381     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13382 
13383     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13384     // value. If so, pass-through the AND to get to the intrinsic.
13385     if (LHS.getOpcode() == ISD::AND &&
13386         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13387         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13388           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13389         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13390         !isNullConstant(LHS.getOperand(1)))
13391       LHS = LHS.getOperand(0);
13392 
13393     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13394         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13395           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13396         isa<ConstantSDNode>(RHS)) {
13397       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13398              "Counter decrement comparison is not EQ or NE");
13399 
13400       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13401       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13402                     (CC == ISD::SETNE && !Val);
13403 
13404       // We now need to make the intrinsic dead (it cannot be instruction
13405       // selected).
13406       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13407       assert(LHS.getNode()->hasOneUse() &&
13408              "Counter decrement has more than one use");
13409 
13410       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13411                          N->getOperand(0), N->getOperand(4));
13412     }
13413 
13414     int CompareOpc;
13415     bool isDot;
13416 
13417     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13418         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13419         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13420       assert(isDot && "Can't compare against a vector result!");
13421 
13422       // If this is a comparison against something other than 0/1, then we know
13423       // that the condition is never/always true.
13424       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13425       if (Val != 0 && Val != 1) {
13426         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13427           return N->getOperand(0);
13428         // Always !=, turn it into an unconditional branch.
13429         return DAG.getNode(ISD::BR, dl, MVT::Other,
13430                            N->getOperand(0), N->getOperand(4));
13431       }
13432 
13433       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13434 
13435       // Create the PPCISD altivec 'dot' comparison node.
13436       SDValue Ops[] = {
13437         LHS.getOperand(2),  // LHS of compare
13438         LHS.getOperand(3),  // RHS of compare
13439         DAG.getConstant(CompareOpc, dl, MVT::i32)
13440       };
13441       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13442       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13443 
13444       // Unpack the result based on how the target uses it.
13445       PPC::Predicate CompOpc;
13446       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13447       default:  // Can't happen, don't crash on invalid number though.
13448       case 0:   // Branch on the value of the EQ bit of CR6.
13449         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13450         break;
13451       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13452         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13453         break;
13454       case 2:   // Branch on the value of the LT bit of CR6.
13455         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13456         break;
13457       case 3:   // Branch on the inverted value of the LT bit of CR6.
13458         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13459         break;
13460       }
13461 
13462       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13463                          DAG.getConstant(CompOpc, dl, MVT::i32),
13464                          DAG.getRegister(PPC::CR6, MVT::i32),
13465                          N->getOperand(4), CompNode.getValue(1));
13466     }
13467     break;
13468   }
13469   case ISD::BUILD_VECTOR:
13470     return DAGCombineBuildVector(N, DCI);
13471   case ISD::ABS:
13472     return combineABS(N, DCI);
13473   case ISD::VSELECT:
13474     return combineVSelect(N, DCI);
13475   }
13476 
13477   return SDValue();
13478 }
13479 
13480 SDValue
13481 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13482                                  SelectionDAG &DAG,
13483                                  SmallVectorImpl<SDNode *> &Created) const {
13484   // fold (sdiv X, pow2)
13485   EVT VT = N->getValueType(0);
13486   if (VT == MVT::i64 && !Subtarget.isPPC64())
13487     return SDValue();
13488   if ((VT != MVT::i32 && VT != MVT::i64) ||
13489       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13490     return SDValue();
13491 
13492   SDLoc DL(N);
13493   SDValue N0 = N->getOperand(0);
13494 
13495   bool IsNegPow2 = (-Divisor).isPowerOf2();
13496   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13497   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13498 
13499   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13500   Created.push_back(Op.getNode());
13501 
13502   if (IsNegPow2) {
13503     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13504     Created.push_back(Op.getNode());
13505   }
13506 
13507   return Op;
13508 }
13509 
13510 //===----------------------------------------------------------------------===//
13511 // Inline Assembly Support
13512 //===----------------------------------------------------------------------===//
13513 
13514 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13515                                                       KnownBits &Known,
13516                                                       const APInt &DemandedElts,
13517                                                       const SelectionDAG &DAG,
13518                                                       unsigned Depth) const {
13519   Known.resetAll();
13520   switch (Op.getOpcode()) {
13521   default: break;
13522   case PPCISD::LBRX: {
13523     // lhbrx is known to have the top bits cleared out.
13524     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13525       Known.Zero = 0xFFFF0000;
13526     break;
13527   }
13528   case ISD::INTRINSIC_WO_CHAIN: {
13529     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13530     default: break;
13531     case Intrinsic::ppc_altivec_vcmpbfp_p:
13532     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13533     case Intrinsic::ppc_altivec_vcmpequb_p:
13534     case Intrinsic::ppc_altivec_vcmpequh_p:
13535     case Intrinsic::ppc_altivec_vcmpequw_p:
13536     case Intrinsic::ppc_altivec_vcmpequd_p:
13537     case Intrinsic::ppc_altivec_vcmpgefp_p:
13538     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13539     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13540     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13541     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13542     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13543     case Intrinsic::ppc_altivec_vcmpgtub_p:
13544     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13545     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13546     case Intrinsic::ppc_altivec_vcmpgtud_p:
13547       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13548       break;
13549     }
13550   }
13551   }
13552 }
13553 
13554 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13555   switch (Subtarget.getDarwinDirective()) {
13556   default: break;
13557   case PPC::DIR_970:
13558   case PPC::DIR_PWR4:
13559   case PPC::DIR_PWR5:
13560   case PPC::DIR_PWR5X:
13561   case PPC::DIR_PWR6:
13562   case PPC::DIR_PWR6X:
13563   case PPC::DIR_PWR7:
13564   case PPC::DIR_PWR8:
13565   case PPC::DIR_PWR9: {
13566     if (!ML)
13567       break;
13568 
13569     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13570 
13571     // For small loops (between 5 and 8 instructions), align to a 32-byte
13572     // boundary so that the entire loop fits in one instruction-cache line.
13573     uint64_t LoopSize = 0;
13574     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13575       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13576         LoopSize += TII->getInstSizeInBytes(*J);
13577         if (LoopSize > 32)
13578           break;
13579       }
13580 
13581     if (LoopSize > 16 && LoopSize <= 32)
13582       return 5;
13583 
13584     break;
13585   }
13586   }
13587 
13588   return TargetLowering::getPrefLoopAlignment(ML);
13589 }
13590 
13591 /// getConstraintType - Given a constraint, return the type of
13592 /// constraint it is for this target.
13593 PPCTargetLowering::ConstraintType
13594 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13595   if (Constraint.size() == 1) {
13596     switch (Constraint[0]) {
13597     default: break;
13598     case 'b':
13599     case 'r':
13600     case 'f':
13601     case 'd':
13602     case 'v':
13603     case 'y':
13604       return C_RegisterClass;
13605     case 'Z':
13606       // FIXME: While Z does indicate a memory constraint, it specifically
13607       // indicates an r+r address (used in conjunction with the 'y' modifier
13608       // in the replacement string). Currently, we're forcing the base
13609       // register to be r0 in the asm printer (which is interpreted as zero)
13610       // and forming the complete address in the second register. This is
13611       // suboptimal.
13612       return C_Memory;
13613     }
13614   } else if (Constraint == "wc") { // individual CR bits.
13615     return C_RegisterClass;
13616   } else if (Constraint == "wa" || Constraint == "wd" ||
13617              Constraint == "wf" || Constraint == "ws" ||
13618              Constraint == "wi") {
13619     return C_RegisterClass; // VSX registers.
13620   }
13621   return TargetLowering::getConstraintType(Constraint);
13622 }
13623 
13624 /// Examine constraint type and operand type and determine a weight value.
13625 /// This object must already have been set up with the operand type
13626 /// and the current alternative constraint selected.
13627 TargetLowering::ConstraintWeight
13628 PPCTargetLowering::getSingleConstraintMatchWeight(
13629     AsmOperandInfo &info, const char *constraint) const {
13630   ConstraintWeight weight = CW_Invalid;
13631   Value *CallOperandVal = info.CallOperandVal;
13632     // If we don't have a value, we can't do a match,
13633     // but allow it at the lowest weight.
13634   if (!CallOperandVal)
13635     return CW_Default;
13636   Type *type = CallOperandVal->getType();
13637 
13638   // Look at the constraint type.
13639   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13640     return CW_Register; // an individual CR bit.
13641   else if ((StringRef(constraint) == "wa" ||
13642             StringRef(constraint) == "wd" ||
13643             StringRef(constraint) == "wf") &&
13644            type->isVectorTy())
13645     return CW_Register;
13646   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13647     return CW_Register;
13648   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
13649     return CW_Register; // just hold 64-bit integers data.
13650 
13651   switch (*constraint) {
13652   default:
13653     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13654     break;
13655   case 'b':
13656     if (type->isIntegerTy())
13657       weight = CW_Register;
13658     break;
13659   case 'f':
13660     if (type->isFloatTy())
13661       weight = CW_Register;
13662     break;
13663   case 'd':
13664     if (type->isDoubleTy())
13665       weight = CW_Register;
13666     break;
13667   case 'v':
13668     if (type->isVectorTy())
13669       weight = CW_Register;
13670     break;
13671   case 'y':
13672     weight = CW_Register;
13673     break;
13674   case 'Z':
13675     weight = CW_Memory;
13676     break;
13677   }
13678   return weight;
13679 }
13680 
13681 std::pair<unsigned, const TargetRegisterClass *>
13682 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13683                                                 StringRef Constraint,
13684                                                 MVT VT) const {
13685   if (Constraint.size() == 1) {
13686     // GCC RS6000 Constraint Letters
13687     switch (Constraint[0]) {
13688     case 'b':   // R1-R31
13689       if (VT == MVT::i64 && Subtarget.isPPC64())
13690         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13691       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13692     case 'r':   // R0-R31
13693       if (VT == MVT::i64 && Subtarget.isPPC64())
13694         return std::make_pair(0U, &PPC::G8RCRegClass);
13695       return std::make_pair(0U, &PPC::GPRCRegClass);
13696     // 'd' and 'f' constraints are both defined to be "the floating point
13697     // registers", where one is for 32-bit and the other for 64-bit. We don't
13698     // really care overly much here so just give them all the same reg classes.
13699     case 'd':
13700     case 'f':
13701       if (Subtarget.hasSPE()) {
13702         if (VT == MVT::f32 || VT == MVT::i32)
13703           return std::make_pair(0U, &PPC::SPE4RCRegClass);
13704         if (VT == MVT::f64 || VT == MVT::i64)
13705           return std::make_pair(0U, &PPC::SPERCRegClass);
13706       } else {
13707         if (VT == MVT::f32 || VT == MVT::i32)
13708           return std::make_pair(0U, &PPC::F4RCRegClass);
13709         if (VT == MVT::f64 || VT == MVT::i64)
13710           return std::make_pair(0U, &PPC::F8RCRegClass);
13711         if (VT == MVT::v4f64 && Subtarget.hasQPX())
13712           return std::make_pair(0U, &PPC::QFRCRegClass);
13713         if (VT == MVT::v4f32 && Subtarget.hasQPX())
13714           return std::make_pair(0U, &PPC::QSRCRegClass);
13715       }
13716       break;
13717     case 'v':
13718       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13719         return std::make_pair(0U, &PPC::QFRCRegClass);
13720       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13721         return std::make_pair(0U, &PPC::QSRCRegClass);
13722       if (Subtarget.hasAltivec())
13723         return std::make_pair(0U, &PPC::VRRCRegClass);
13724       break;
13725     case 'y':   // crrc
13726       return std::make_pair(0U, &PPC::CRRCRegClass);
13727     }
13728   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13729     // An individual CR bit.
13730     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13731   } else if ((Constraint == "wa" || Constraint == "wd" ||
13732              Constraint == "wf" || Constraint == "wi") &&
13733              Subtarget.hasVSX()) {
13734     return std::make_pair(0U, &PPC::VSRCRegClass);
13735   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13736     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13737       return std::make_pair(0U, &PPC::VSSRCRegClass);
13738     else
13739       return std::make_pair(0U, &PPC::VSFRCRegClass);
13740   }
13741 
13742   std::pair<unsigned, const TargetRegisterClass *> R =
13743       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13744 
13745   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13746   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13747   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13748   // register.
13749   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13750   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13751   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13752       PPC::GPRCRegClass.contains(R.first))
13753     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13754                             PPC::sub_32, &PPC::G8RCRegClass),
13755                           &PPC::G8RCRegClass);
13756 
13757   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13758   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13759     R.first = PPC::CR0;
13760     R.second = &PPC::CRRCRegClass;
13761   }
13762 
13763   return R;
13764 }
13765 
13766 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13767 /// vector.  If it is invalid, don't add anything to Ops.
13768 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13769                                                      std::string &Constraint,
13770                                                      std::vector<SDValue>&Ops,
13771                                                      SelectionDAG &DAG) const {
13772   SDValue Result;
13773 
13774   // Only support length 1 constraints.
13775   if (Constraint.length() > 1) return;
13776 
13777   char Letter = Constraint[0];
13778   switch (Letter) {
13779   default: break;
13780   case 'I':
13781   case 'J':
13782   case 'K':
13783   case 'L':
13784   case 'M':
13785   case 'N':
13786   case 'O':
13787   case 'P': {
13788     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13789     if (!CST) return; // Must be an immediate to match.
13790     SDLoc dl(Op);
13791     int64_t Value = CST->getSExtValue();
13792     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13793                          // numbers are printed as such.
13794     switch (Letter) {
13795     default: llvm_unreachable("Unknown constraint letter!");
13796     case 'I':  // "I" is a signed 16-bit constant.
13797       if (isInt<16>(Value))
13798         Result = DAG.getTargetConstant(Value, dl, TCVT);
13799       break;
13800     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13801       if (isShiftedUInt<16, 16>(Value))
13802         Result = DAG.getTargetConstant(Value, dl, TCVT);
13803       break;
13804     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13805       if (isShiftedInt<16, 16>(Value))
13806         Result = DAG.getTargetConstant(Value, dl, TCVT);
13807       break;
13808     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13809       if (isUInt<16>(Value))
13810         Result = DAG.getTargetConstant(Value, dl, TCVT);
13811       break;
13812     case 'M':  // "M" is a constant that is greater than 31.
13813       if (Value > 31)
13814         Result = DAG.getTargetConstant(Value, dl, TCVT);
13815       break;
13816     case 'N':  // "N" is a positive constant that is an exact power of two.
13817       if (Value > 0 && isPowerOf2_64(Value))
13818         Result = DAG.getTargetConstant(Value, dl, TCVT);
13819       break;
13820     case 'O':  // "O" is the constant zero.
13821       if (Value == 0)
13822         Result = DAG.getTargetConstant(Value, dl, TCVT);
13823       break;
13824     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13825       if (isInt<16>(-Value))
13826         Result = DAG.getTargetConstant(Value, dl, TCVT);
13827       break;
13828     }
13829     break;
13830   }
13831   }
13832 
13833   if (Result.getNode()) {
13834     Ops.push_back(Result);
13835     return;
13836   }
13837 
13838   // Handle standard constraint letters.
13839   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13840 }
13841 
13842 // isLegalAddressingMode - Return true if the addressing mode represented
13843 // by AM is legal for this target, for a load/store of the specified type.
13844 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13845                                               const AddrMode &AM, Type *Ty,
13846                                               unsigned AS, Instruction *I) const {
13847   // PPC does not allow r+i addressing modes for vectors!
13848   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13849     return false;
13850 
13851   // PPC allows a sign-extended 16-bit immediate field.
13852   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13853     return false;
13854 
13855   // No global is ever allowed as a base.
13856   if (AM.BaseGV)
13857     return false;
13858 
13859   // PPC only support r+r,
13860   switch (AM.Scale) {
13861   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13862     break;
13863   case 1:
13864     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13865       return false;
13866     // Otherwise we have r+r or r+i.
13867     break;
13868   case 2:
13869     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13870       return false;
13871     // Allow 2*r as r+r.
13872     break;
13873   default:
13874     // No other scales are supported.
13875     return false;
13876   }
13877 
13878   return true;
13879 }
13880 
13881 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13882                                            SelectionDAG &DAG) const {
13883   MachineFunction &MF = DAG.getMachineFunction();
13884   MachineFrameInfo &MFI = MF.getFrameInfo();
13885   MFI.setReturnAddressIsTaken(true);
13886 
13887   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13888     return SDValue();
13889 
13890   SDLoc dl(Op);
13891   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13892 
13893   // Make sure the function does not optimize away the store of the RA to
13894   // the stack.
13895   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13896   FuncInfo->setLRStoreRequired();
13897   bool isPPC64 = Subtarget.isPPC64();
13898   auto PtrVT = getPointerTy(MF.getDataLayout());
13899 
13900   if (Depth > 0) {
13901     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13902     SDValue Offset =
13903         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13904                         isPPC64 ? MVT::i64 : MVT::i32);
13905     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13906                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13907                        MachinePointerInfo());
13908   }
13909 
13910   // Just load the return address off the stack.
13911   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13912   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13913                      MachinePointerInfo());
13914 }
13915 
13916 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13917                                           SelectionDAG &DAG) const {
13918   SDLoc dl(Op);
13919   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13920 
13921   MachineFunction &MF = DAG.getMachineFunction();
13922   MachineFrameInfo &MFI = MF.getFrameInfo();
13923   MFI.setFrameAddressIsTaken(true);
13924 
13925   EVT PtrVT = getPointerTy(MF.getDataLayout());
13926   bool isPPC64 = PtrVT == MVT::i64;
13927 
13928   // Naked functions never have a frame pointer, and so we use r1. For all
13929   // other functions, this decision must be delayed until during PEI.
13930   unsigned FrameReg;
13931   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13932     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13933   else
13934     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13935 
13936   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13937                                          PtrVT);
13938   while (Depth--)
13939     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13940                             FrameAddr, MachinePointerInfo());
13941   return FrameAddr;
13942 }
13943 
13944 // FIXME? Maybe this could be a TableGen attribute on some registers and
13945 // this table could be generated automatically from RegInfo.
13946 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13947                                               SelectionDAG &DAG) const {
13948   bool isPPC64 = Subtarget.isPPC64();
13949   bool isDarwinABI = Subtarget.isDarwinABI();
13950 
13951   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13952       (!isPPC64 && VT != MVT::i32))
13953     report_fatal_error("Invalid register global variable type");
13954 
13955   bool is64Bit = isPPC64 && VT == MVT::i64;
13956   unsigned Reg = StringSwitch<unsigned>(RegName)
13957                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13958                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13959                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13960                                   (is64Bit ? PPC::X13 : PPC::R13))
13961                    .Default(0);
13962 
13963   if (Reg)
13964     return Reg;
13965   report_fatal_error("Invalid register name global variable");
13966 }
13967 
13968 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
13969   // 32-bit SVR4 ABI access everything as got-indirect.
13970   if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
13971     return true;
13972 
13973   CodeModel::Model CModel = getTargetMachine().getCodeModel();
13974   // If it is small or large code model, module locals are accessed
13975   // indirectly by loading their address from .toc/.got. The difference
13976   // is that for large code model we have ADDISTocHa + LDtocL and for
13977   // small code model we simply have LDtoc.
13978   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
13979     return true;
13980 
13981   // JumpTable and BlockAddress are accessed as got-indirect.
13982   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
13983     return true;
13984 
13985   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
13986     const GlobalValue *GV = G->getGlobal();
13987     unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
13988     // The NLP flag indicates that a global access has to use an
13989     // extra indirection.
13990     if (GVFlags & PPCII::MO_NLP_FLAG)
13991       return true;
13992   }
13993 
13994   return false;
13995 }
13996 
13997 bool
13998 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13999   // The PowerPC target isn't yet aware of offsets.
14000   return false;
14001 }
14002 
14003 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14004                                            const CallInst &I,
14005                                            MachineFunction &MF,
14006                                            unsigned Intrinsic) const {
14007   switch (Intrinsic) {
14008   case Intrinsic::ppc_qpx_qvlfd:
14009   case Intrinsic::ppc_qpx_qvlfs:
14010   case Intrinsic::ppc_qpx_qvlfcd:
14011   case Intrinsic::ppc_qpx_qvlfcs:
14012   case Intrinsic::ppc_qpx_qvlfiwa:
14013   case Intrinsic::ppc_qpx_qvlfiwz:
14014   case Intrinsic::ppc_altivec_lvx:
14015   case Intrinsic::ppc_altivec_lvxl:
14016   case Intrinsic::ppc_altivec_lvebx:
14017   case Intrinsic::ppc_altivec_lvehx:
14018   case Intrinsic::ppc_altivec_lvewx:
14019   case Intrinsic::ppc_vsx_lxvd2x:
14020   case Intrinsic::ppc_vsx_lxvw4x: {
14021     EVT VT;
14022     switch (Intrinsic) {
14023     case Intrinsic::ppc_altivec_lvebx:
14024       VT = MVT::i8;
14025       break;
14026     case Intrinsic::ppc_altivec_lvehx:
14027       VT = MVT::i16;
14028       break;
14029     case Intrinsic::ppc_altivec_lvewx:
14030       VT = MVT::i32;
14031       break;
14032     case Intrinsic::ppc_vsx_lxvd2x:
14033       VT = MVT::v2f64;
14034       break;
14035     case Intrinsic::ppc_qpx_qvlfd:
14036       VT = MVT::v4f64;
14037       break;
14038     case Intrinsic::ppc_qpx_qvlfs:
14039       VT = MVT::v4f32;
14040       break;
14041     case Intrinsic::ppc_qpx_qvlfcd:
14042       VT = MVT::v2f64;
14043       break;
14044     case Intrinsic::ppc_qpx_qvlfcs:
14045       VT = MVT::v2f32;
14046       break;
14047     default:
14048       VT = MVT::v4i32;
14049       break;
14050     }
14051 
14052     Info.opc = ISD::INTRINSIC_W_CHAIN;
14053     Info.memVT = VT;
14054     Info.ptrVal = I.getArgOperand(0);
14055     Info.offset = -VT.getStoreSize()+1;
14056     Info.size = 2*VT.getStoreSize()-1;
14057     Info.align = 1;
14058     Info.flags = MachineMemOperand::MOLoad;
14059     return true;
14060   }
14061   case Intrinsic::ppc_qpx_qvlfda:
14062   case Intrinsic::ppc_qpx_qvlfsa:
14063   case Intrinsic::ppc_qpx_qvlfcda:
14064   case Intrinsic::ppc_qpx_qvlfcsa:
14065   case Intrinsic::ppc_qpx_qvlfiwaa:
14066   case Intrinsic::ppc_qpx_qvlfiwza: {
14067     EVT VT;
14068     switch (Intrinsic) {
14069     case Intrinsic::ppc_qpx_qvlfda:
14070       VT = MVT::v4f64;
14071       break;
14072     case Intrinsic::ppc_qpx_qvlfsa:
14073       VT = MVT::v4f32;
14074       break;
14075     case Intrinsic::ppc_qpx_qvlfcda:
14076       VT = MVT::v2f64;
14077       break;
14078     case Intrinsic::ppc_qpx_qvlfcsa:
14079       VT = MVT::v2f32;
14080       break;
14081     default:
14082       VT = MVT::v4i32;
14083       break;
14084     }
14085 
14086     Info.opc = ISD::INTRINSIC_W_CHAIN;
14087     Info.memVT = VT;
14088     Info.ptrVal = I.getArgOperand(0);
14089     Info.offset = 0;
14090     Info.size = VT.getStoreSize();
14091     Info.align = 1;
14092     Info.flags = MachineMemOperand::MOLoad;
14093     return true;
14094   }
14095   case Intrinsic::ppc_qpx_qvstfd:
14096   case Intrinsic::ppc_qpx_qvstfs:
14097   case Intrinsic::ppc_qpx_qvstfcd:
14098   case Intrinsic::ppc_qpx_qvstfcs:
14099   case Intrinsic::ppc_qpx_qvstfiw:
14100   case Intrinsic::ppc_altivec_stvx:
14101   case Intrinsic::ppc_altivec_stvxl:
14102   case Intrinsic::ppc_altivec_stvebx:
14103   case Intrinsic::ppc_altivec_stvehx:
14104   case Intrinsic::ppc_altivec_stvewx:
14105   case Intrinsic::ppc_vsx_stxvd2x:
14106   case Intrinsic::ppc_vsx_stxvw4x: {
14107     EVT VT;
14108     switch (Intrinsic) {
14109     case Intrinsic::ppc_altivec_stvebx:
14110       VT = MVT::i8;
14111       break;
14112     case Intrinsic::ppc_altivec_stvehx:
14113       VT = MVT::i16;
14114       break;
14115     case Intrinsic::ppc_altivec_stvewx:
14116       VT = MVT::i32;
14117       break;
14118     case Intrinsic::ppc_vsx_stxvd2x:
14119       VT = MVT::v2f64;
14120       break;
14121     case Intrinsic::ppc_qpx_qvstfd:
14122       VT = MVT::v4f64;
14123       break;
14124     case Intrinsic::ppc_qpx_qvstfs:
14125       VT = MVT::v4f32;
14126       break;
14127     case Intrinsic::ppc_qpx_qvstfcd:
14128       VT = MVT::v2f64;
14129       break;
14130     case Intrinsic::ppc_qpx_qvstfcs:
14131       VT = MVT::v2f32;
14132       break;
14133     default:
14134       VT = MVT::v4i32;
14135       break;
14136     }
14137 
14138     Info.opc = ISD::INTRINSIC_VOID;
14139     Info.memVT = VT;
14140     Info.ptrVal = I.getArgOperand(1);
14141     Info.offset = -VT.getStoreSize()+1;
14142     Info.size = 2*VT.getStoreSize()-1;
14143     Info.align = 1;
14144     Info.flags = MachineMemOperand::MOStore;
14145     return true;
14146   }
14147   case Intrinsic::ppc_qpx_qvstfda:
14148   case Intrinsic::ppc_qpx_qvstfsa:
14149   case Intrinsic::ppc_qpx_qvstfcda:
14150   case Intrinsic::ppc_qpx_qvstfcsa:
14151   case Intrinsic::ppc_qpx_qvstfiwa: {
14152     EVT VT;
14153     switch (Intrinsic) {
14154     case Intrinsic::ppc_qpx_qvstfda:
14155       VT = MVT::v4f64;
14156       break;
14157     case Intrinsic::ppc_qpx_qvstfsa:
14158       VT = MVT::v4f32;
14159       break;
14160     case Intrinsic::ppc_qpx_qvstfcda:
14161       VT = MVT::v2f64;
14162       break;
14163     case Intrinsic::ppc_qpx_qvstfcsa:
14164       VT = MVT::v2f32;
14165       break;
14166     default:
14167       VT = MVT::v4i32;
14168       break;
14169     }
14170 
14171     Info.opc = ISD::INTRINSIC_VOID;
14172     Info.memVT = VT;
14173     Info.ptrVal = I.getArgOperand(1);
14174     Info.offset = 0;
14175     Info.size = VT.getStoreSize();
14176     Info.align = 1;
14177     Info.flags = MachineMemOperand::MOStore;
14178     return true;
14179   }
14180   default:
14181     break;
14182   }
14183 
14184   return false;
14185 }
14186 
14187 /// getOptimalMemOpType - Returns the target specific optimal type for load
14188 /// and store operations as a result of memset, memcpy, and memmove
14189 /// lowering. If DstAlign is zero that means it's safe to destination
14190 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14191 /// means there isn't a need to check it against alignment requirement,
14192 /// probably because the source does not need to be loaded. If 'IsMemset' is
14193 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14194 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14195 /// source is constant so it does not need to be loaded.
14196 /// It returns EVT::Other if the type should be determined using generic
14197 /// target-independent logic.
14198 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
14199                                            unsigned DstAlign, unsigned SrcAlign,
14200                                            bool IsMemset, bool ZeroMemset,
14201                                            bool MemcpyStrSrc,
14202                                            MachineFunction &MF) const {
14203   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14204     const Function &F = MF.getFunction();
14205     // When expanding a memset, require at least two QPX instructions to cover
14206     // the cost of loading the value to be stored from the constant pool.
14207     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14208        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14209         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
14210       return MVT::v4f64;
14211     }
14212 
14213     // We should use Altivec/VSX loads and stores when available. For unaligned
14214     // addresses, unaligned VSX loads are only fast starting with the P8.
14215     if (Subtarget.hasAltivec() && Size >= 16 &&
14216         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14217          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14218       return MVT::v4i32;
14219   }
14220 
14221   if (Subtarget.isPPC64()) {
14222     return MVT::i64;
14223   }
14224 
14225   return MVT::i32;
14226 }
14227 
14228 /// Returns true if it is beneficial to convert a load of a constant
14229 /// to just the constant itself.
14230 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14231                                                           Type *Ty) const {
14232   assert(Ty->isIntegerTy());
14233 
14234   unsigned BitSize = Ty->getPrimitiveSizeInBits();
14235   return !(BitSize == 0 || BitSize > 64);
14236 }
14237 
14238 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14239   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14240     return false;
14241   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14242   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14243   return NumBits1 == 64 && NumBits2 == 32;
14244 }
14245 
14246 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14247   if (!VT1.isInteger() || !VT2.isInteger())
14248     return false;
14249   unsigned NumBits1 = VT1.getSizeInBits();
14250   unsigned NumBits2 = VT2.getSizeInBits();
14251   return NumBits1 == 64 && NumBits2 == 32;
14252 }
14253 
14254 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14255   // Generally speaking, zexts are not free, but they are free when they can be
14256   // folded with other operations.
14257   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14258     EVT MemVT = LD->getMemoryVT();
14259     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14260          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14261         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14262          LD->getExtensionType() == ISD::ZEXTLOAD))
14263       return true;
14264   }
14265 
14266   // FIXME: Add other cases...
14267   //  - 32-bit shifts with a zext to i64
14268   //  - zext after ctlz, bswap, etc.
14269   //  - zext after and by a constant mask
14270 
14271   return TargetLowering::isZExtFree(Val, VT2);
14272 }
14273 
14274 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14275   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14276          "invalid fpext types");
14277   // Extending to float128 is not free.
14278   if (DestVT == MVT::f128)
14279     return false;
14280   return true;
14281 }
14282 
14283 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14284   return isInt<16>(Imm) || isUInt<16>(Imm);
14285 }
14286 
14287 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14288   return isInt<16>(Imm) || isUInt<16>(Imm);
14289 }
14290 
14291 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14292                                                        unsigned,
14293                                                        unsigned,
14294                                                        bool *Fast) const {
14295   if (DisablePPCUnaligned)
14296     return false;
14297 
14298   // PowerPC supports unaligned memory access for simple non-vector types.
14299   // Although accessing unaligned addresses is not as efficient as accessing
14300   // aligned addresses, it is generally more efficient than manual expansion,
14301   // and generally only traps for software emulation when crossing page
14302   // boundaries.
14303 
14304   if (!VT.isSimple())
14305     return false;
14306 
14307   if (VT.getSimpleVT().isVector()) {
14308     if (Subtarget.hasVSX()) {
14309       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14310           VT != MVT::v4f32 && VT != MVT::v4i32)
14311         return false;
14312     } else {
14313       return false;
14314     }
14315   }
14316 
14317   if (VT == MVT::ppcf128)
14318     return false;
14319 
14320   if (Fast)
14321     *Fast = true;
14322 
14323   return true;
14324 }
14325 
14326 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14327   VT = VT.getScalarType();
14328 
14329   if (!VT.isSimple())
14330     return false;
14331 
14332   switch (VT.getSimpleVT().SimpleTy) {
14333   case MVT::f32:
14334   case MVT::f64:
14335     return true;
14336   case MVT::f128:
14337     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14338   default:
14339     break;
14340   }
14341 
14342   return false;
14343 }
14344 
14345 const MCPhysReg *
14346 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14347   // LR is a callee-save register, but we must treat it as clobbered by any call
14348   // site. Hence we include LR in the scratch registers, which are in turn added
14349   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14350   // to CTR, which is used by any indirect call.
14351   static const MCPhysReg ScratchRegs[] = {
14352     PPC::X12, PPC::LR8, PPC::CTR8, 0
14353   };
14354 
14355   return ScratchRegs;
14356 }
14357 
14358 unsigned PPCTargetLowering::getExceptionPointerRegister(
14359     const Constant *PersonalityFn) const {
14360   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14361 }
14362 
14363 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14364     const Constant *PersonalityFn) const {
14365   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14366 }
14367 
14368 bool
14369 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14370                      EVT VT , unsigned DefinedValues) const {
14371   if (VT == MVT::v2i64)
14372     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14373 
14374   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14375     return true;
14376 
14377   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14378 }
14379 
14380 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14381   if (DisableILPPref || Subtarget.enableMachineScheduler())
14382     return TargetLowering::getSchedulingPreference(N);
14383 
14384   return Sched::ILP;
14385 }
14386 
14387 // Create a fast isel object.
14388 FastISel *
14389 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14390                                   const TargetLibraryInfo *LibInfo) const {
14391   return PPC::createFastISel(FuncInfo, LibInfo);
14392 }
14393 
14394 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14395   if (Subtarget.isDarwinABI()) return;
14396   if (!Subtarget.isPPC64()) return;
14397 
14398   // Update IsSplitCSR in PPCFunctionInfo
14399   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14400   PFI->setIsSplitCSR(true);
14401 }
14402 
14403 void PPCTargetLowering::insertCopiesSplitCSR(
14404   MachineBasicBlock *Entry,
14405   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14406   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14407   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14408   if (!IStart)
14409     return;
14410 
14411   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14412   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14413   MachineBasicBlock::iterator MBBI = Entry->begin();
14414   for (const MCPhysReg *I = IStart; *I; ++I) {
14415     const TargetRegisterClass *RC = nullptr;
14416     if (PPC::G8RCRegClass.contains(*I))
14417       RC = &PPC::G8RCRegClass;
14418     else if (PPC::F8RCRegClass.contains(*I))
14419       RC = &PPC::F8RCRegClass;
14420     else if (PPC::CRRCRegClass.contains(*I))
14421       RC = &PPC::CRRCRegClass;
14422     else if (PPC::VRRCRegClass.contains(*I))
14423       RC = &PPC::VRRCRegClass;
14424     else
14425       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14426 
14427     unsigned NewVR = MRI->createVirtualRegister(RC);
14428     // Create copy from CSR to a virtual register.
14429     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14430     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14431     // nounwind. If we want to generalize this later, we may need to emit
14432     // CFI pseudo-instructions.
14433     assert(Entry->getParent()->getFunction().hasFnAttribute(
14434              Attribute::NoUnwind) &&
14435            "Function should be nounwind in insertCopiesSplitCSR!");
14436     Entry->addLiveIn(*I);
14437     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14438       .addReg(*I);
14439 
14440     // Insert the copy-back instructions right before the terminator
14441     for (auto *Exit : Exits)
14442       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14443               TII->get(TargetOpcode::COPY), *I)
14444         .addReg(NewVR);
14445   }
14446 }
14447 
14448 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14449 bool PPCTargetLowering::useLoadStackGuardNode() const {
14450   if (!Subtarget.isTargetLinux())
14451     return TargetLowering::useLoadStackGuardNode();
14452   return true;
14453 }
14454 
14455 // Override to disable global variable loading on Linux.
14456 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14457   if (!Subtarget.isTargetLinux())
14458     return TargetLowering::insertSSPDeclarations(M);
14459 }
14460 
14461 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
14462                                      bool ForCodeSize) const {
14463   if (!VT.isSimple() || !Subtarget.hasVSX())
14464     return false;
14465 
14466   switch(VT.getSimpleVT().SimpleTy) {
14467   default:
14468     // For FP types that are currently not supported by PPC backend, return
14469     // false. Examples: f16, f80.
14470     return false;
14471   case MVT::f32:
14472   case MVT::f64:
14473   case MVT::ppcf128:
14474     return Imm.isPosZero();
14475   }
14476 }
14477 
14478 // For vector shift operation op, fold
14479 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14480 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14481                                   SelectionDAG &DAG) {
14482   SDValue N0 = N->getOperand(0);
14483   SDValue N1 = N->getOperand(1);
14484   EVT VT = N0.getValueType();
14485   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14486   unsigned Opcode = N->getOpcode();
14487   unsigned TargetOpcode;
14488 
14489   switch (Opcode) {
14490   default:
14491     llvm_unreachable("Unexpected shift operation");
14492   case ISD::SHL:
14493     TargetOpcode = PPCISD::SHL;
14494     break;
14495   case ISD::SRL:
14496     TargetOpcode = PPCISD::SRL;
14497     break;
14498   case ISD::SRA:
14499     TargetOpcode = PPCISD::SRA;
14500     break;
14501   }
14502 
14503   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14504       N1->getOpcode() == ISD::AND)
14505     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14506       if (Mask->getZExtValue() == OpSizeInBits - 1)
14507         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14508 
14509   return SDValue();
14510 }
14511 
14512 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14513   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14514     return Value;
14515 
14516   SDValue N0 = N->getOperand(0);
14517   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14518   if (!Subtarget.isISA3_0() ||
14519       N0.getOpcode() != ISD::SIGN_EXTEND ||
14520       N0.getOperand(0).getValueType() != MVT::i32 ||
14521       CN1 == nullptr || N->getValueType(0) != MVT::i64)
14522     return SDValue();
14523 
14524   // We can't save an operation here if the value is already extended, and
14525   // the existing shift is easier to combine.
14526   SDValue ExtsSrc = N0.getOperand(0);
14527   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14528       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14529     return SDValue();
14530 
14531   SDLoc DL(N0);
14532   SDValue ShiftBy = SDValue(CN1, 0);
14533   // We want the shift amount to be i32 on the extswli, but the shift could
14534   // have an i64.
14535   if (ShiftBy.getValueType() == MVT::i64)
14536     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14537 
14538   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14539                          ShiftBy);
14540 }
14541 
14542 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14543   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14544     return Value;
14545 
14546   return SDValue();
14547 }
14548 
14549 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14550   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14551     return Value;
14552 
14553   return SDValue();
14554 }
14555 
14556 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14557 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14558 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14559 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14560 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14561                                  const PPCSubtarget &Subtarget) {
14562   if (!Subtarget.isPPC64())
14563     return SDValue();
14564 
14565   SDValue LHS = N->getOperand(0);
14566   SDValue RHS = N->getOperand(1);
14567 
14568   auto isZextOfCompareWithConstant = [](SDValue Op) {
14569     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14570         Op.getValueType() != MVT::i64)
14571       return false;
14572 
14573     SDValue Cmp = Op.getOperand(0);
14574     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14575         Cmp.getOperand(0).getValueType() != MVT::i64)
14576       return false;
14577 
14578     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14579       int64_t NegConstant = 0 - Constant->getSExtValue();
14580       // Due to the limitations of the addi instruction,
14581       // -C is required to be [-32768, 32767].
14582       return isInt<16>(NegConstant);
14583     }
14584 
14585     return false;
14586   };
14587 
14588   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14589   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14590 
14591   // If there is a pattern, canonicalize a zext operand to the RHS.
14592   if (LHSHasPattern && !RHSHasPattern)
14593     std::swap(LHS, RHS);
14594   else if (!LHSHasPattern && !RHSHasPattern)
14595     return SDValue();
14596 
14597   SDLoc DL(N);
14598   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
14599   SDValue Cmp = RHS.getOperand(0);
14600   SDValue Z = Cmp.getOperand(0);
14601   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14602 
14603   assert(Constant && "Constant Should not be a null pointer.");
14604   int64_t NegConstant = 0 - Constant->getSExtValue();
14605 
14606   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14607   default: break;
14608   case ISD::SETNE: {
14609     //                                 when C == 0
14610     //                             --> addze X, (addic Z, -1).carry
14611     //                            /
14612     // add X, (zext(setne Z, C))--
14613     //                            \    when -32768 <= -C <= 32767 && C != 0
14614     //                             --> addze X, (addic (addi Z, -C), -1).carry
14615     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14616                               DAG.getConstant(NegConstant, DL, MVT::i64));
14617     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14618     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14619                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14620     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14621                        SDValue(Addc.getNode(), 1));
14622     }
14623   case ISD::SETEQ: {
14624     //                                 when C == 0
14625     //                             --> addze X, (subfic Z, 0).carry
14626     //                            /
14627     // add X, (zext(sete  Z, C))--
14628     //                            \    when -32768 <= -C <= 32767 && C != 0
14629     //                             --> addze X, (subfic (addi Z, -C), 0).carry
14630     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14631                               DAG.getConstant(NegConstant, DL, MVT::i64));
14632     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14633     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14634                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
14635     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14636                        SDValue(Subc.getNode(), 1));
14637     }
14638   }
14639 
14640   return SDValue();
14641 }
14642 
14643 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
14644   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
14645     return Value;
14646 
14647   return SDValue();
14648 }
14649 
14650 // Detect TRUNCATE operations on bitcasts of float128 values.
14651 // What we are looking for here is the situtation where we extract a subset
14652 // of bits from a 128 bit float.
14653 // This can be of two forms:
14654 // 1) BITCAST of f128 feeding TRUNCATE
14655 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14656 // The reason this is required is because we do not have a legal i128 type
14657 // and so we want to prevent having to store the f128 and then reload part
14658 // of it.
14659 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
14660                                            DAGCombinerInfo &DCI) const {
14661   // If we are using CRBits then try that first.
14662   if (Subtarget.useCRBits()) {
14663     // Check if CRBits did anything and return that if it did.
14664     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
14665       return CRTruncValue;
14666   }
14667 
14668   SDLoc dl(N);
14669   SDValue Op0 = N->getOperand(0);
14670 
14671   // Looking for a truncate of i128 to i64.
14672   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
14673     return SDValue();
14674 
14675   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
14676 
14677   // SRL feeding TRUNCATE.
14678   if (Op0.getOpcode() == ISD::SRL) {
14679     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
14680     // The right shift has to be by 64 bits.
14681     if (!ConstNode || ConstNode->getZExtValue() != 64)
14682       return SDValue();
14683 
14684     // Switch the element number to extract.
14685     EltToExtract = EltToExtract ? 0 : 1;
14686     // Update Op0 past the SRL.
14687     Op0 = Op0.getOperand(0);
14688   }
14689 
14690   // BITCAST feeding a TRUNCATE possibly via SRL.
14691   if (Op0.getOpcode() == ISD::BITCAST &&
14692       Op0.getValueType() == MVT::i128 &&
14693       Op0.getOperand(0).getValueType() == MVT::f128) {
14694     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
14695     return DCI.DAG.getNode(
14696         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
14697         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
14698   }
14699   return SDValue();
14700 }
14701 
14702 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
14703   SelectionDAG &DAG = DCI.DAG;
14704 
14705   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
14706   if (!ConstOpOrElement)
14707     return SDValue();
14708 
14709   // An imul is usually smaller than the alternative sequence for legal type.
14710   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
14711       isOperationLegal(ISD::MUL, N->getValueType(0)))
14712     return SDValue();
14713 
14714   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
14715     switch (this->Subtarget.getDarwinDirective()) {
14716     default:
14717       // TODO: enhance the condition for subtarget before pwr8
14718       return false;
14719     case PPC::DIR_PWR8:
14720       //  type        mul     add    shl
14721       // scalar        4       1      1
14722       // vector        7       2      2
14723       return true;
14724     case PPC::DIR_PWR9:
14725       //  type        mul     add    shl
14726       // scalar        5       2      2
14727       // vector        7       2      2
14728 
14729       // The cycle RATIO of related operations are showed as a table above.
14730       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
14731       // scalar and vector type. For 2 instrs patterns, add/sub + shl
14732       // are 4, it is always profitable; but for 3 instrs patterns
14733       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
14734       // So we should only do it for vector type.
14735       return IsAddOne && IsNeg ? VT.isVector() : true;
14736     }
14737   };
14738 
14739   EVT VT = N->getValueType(0);
14740   SDLoc DL(N);
14741 
14742   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
14743   bool IsNeg = MulAmt.isNegative();
14744   APInt MulAmtAbs = MulAmt.abs();
14745 
14746   if ((MulAmtAbs - 1).isPowerOf2()) {
14747     // (mul x, 2^N + 1) => (add (shl x, N), x)
14748     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
14749 
14750     if (!IsProfitable(IsNeg, true, VT))
14751       return SDValue();
14752 
14753     SDValue Op0 = N->getOperand(0);
14754     SDValue Op1 =
14755         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14756                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
14757     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
14758 
14759     if (!IsNeg)
14760       return Res;
14761 
14762     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
14763   } else if ((MulAmtAbs + 1).isPowerOf2()) {
14764     // (mul x, 2^N - 1) => (sub (shl x, N), x)
14765     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
14766 
14767     if (!IsProfitable(IsNeg, false, VT))
14768       return SDValue();
14769 
14770     SDValue Op0 = N->getOperand(0);
14771     SDValue Op1 =
14772         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14773                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
14774 
14775     if (!IsNeg)
14776       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
14777     else
14778       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
14779 
14780   } else {
14781     return SDValue();
14782   }
14783 }
14784 
14785 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14786   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14787   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14788     return false;
14789 
14790   // If not a tail call then no need to proceed.
14791   if (!CI->isTailCall())
14792     return false;
14793 
14794   // If tail calls are disabled for the caller then we are done.
14795   const Function *Caller = CI->getParent()->getParent();
14796   auto Attr = Caller->getFnAttribute("disable-tail-calls");
14797   if (Attr.getValueAsString() == "true")
14798     return false;
14799 
14800   // If sibling calls have been disabled and tail-calls aren't guaranteed
14801   // there is no reason to duplicate.
14802   auto &TM = getTargetMachine();
14803   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14804     return false;
14805 
14806   // Can't tail call a function called indirectly, or if it has variadic args.
14807   const Function *Callee = CI->getCalledFunction();
14808   if (!Callee || Callee->isVarArg())
14809     return false;
14810 
14811   // Make sure the callee and caller calling conventions are eligible for tco.
14812   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14813                                            CI->getCallingConv()))
14814       return false;
14815 
14816   // If the function is local then we have a good chance at tail-calling it
14817   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14818 }
14819 
14820 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
14821   if (!Subtarget.hasVSX())
14822     return false;
14823   if (Subtarget.hasP9Vector() && VT == MVT::f128)
14824     return true;
14825   return VT == MVT::f32 || VT == MVT::f64 ||
14826     VT == MVT::v4f32 || VT == MVT::v2f64;
14827 }
14828 
14829 bool PPCTargetLowering::
14830 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14831   const Value *Mask = AndI.getOperand(1);
14832   // If the mask is suitable for andi. or andis. we should sink the and.
14833   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14834     // Can't handle constants wider than 64-bits.
14835     if (CI->getBitWidth() > 64)
14836       return false;
14837     int64_t ConstVal = CI->getZExtValue();
14838     return isUInt<16>(ConstVal) ||
14839       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14840   }
14841 
14842   // For non-constant masks, we can always use the record-form and.
14843   return true;
14844 }
14845 
14846 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
14847 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
14848 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
14849 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
14850 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
14851 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
14852   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
14853   assert(Subtarget.hasP9Altivec() &&
14854          "Only combine this when P9 altivec supported!");
14855   EVT VT = N->getValueType(0);
14856   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14857     return SDValue();
14858 
14859   SelectionDAG &DAG = DCI.DAG;
14860   SDLoc dl(N);
14861   if (N->getOperand(0).getOpcode() == ISD::SUB) {
14862     // Even for signed integers, if it's known to be positive (as signed
14863     // integer) due to zero-extended inputs.
14864     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
14865     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
14866     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
14867          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
14868         (SubOpcd1 == ISD::ZERO_EXTEND ||
14869          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
14870       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14871                          N->getOperand(0)->getOperand(0),
14872                          N->getOperand(0)->getOperand(1),
14873                          DAG.getTargetConstant(0, dl, MVT::i32));
14874     }
14875 
14876     // For type v4i32, it can be optimized with xvnegsp + vabsduw
14877     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
14878         N->getOperand(0).hasOneUse()) {
14879       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14880                          N->getOperand(0)->getOperand(0),
14881                          N->getOperand(0)->getOperand(1),
14882                          DAG.getTargetConstant(1, dl, MVT::i32));
14883     }
14884   }
14885 
14886   return SDValue();
14887 }
14888 
14889 // For type v4i32/v8ii16/v16i8, transform
14890 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
14891 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
14892 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
14893 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
14894 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
14895                                           DAGCombinerInfo &DCI) const {
14896   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
14897   assert(Subtarget.hasP9Altivec() &&
14898          "Only combine this when P9 altivec supported!");
14899 
14900   SelectionDAG &DAG = DCI.DAG;
14901   SDLoc dl(N);
14902   SDValue Cond = N->getOperand(0);
14903   SDValue TrueOpnd = N->getOperand(1);
14904   SDValue FalseOpnd = N->getOperand(2);
14905   EVT VT = N->getOperand(1).getValueType();
14906 
14907   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
14908       FalseOpnd.getOpcode() != ISD::SUB)
14909     return SDValue();
14910 
14911   // ABSD only available for type v4i32/v8i16/v16i8
14912   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14913     return SDValue();
14914 
14915   // At least to save one more dependent computation
14916   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
14917     return SDValue();
14918 
14919   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14920 
14921   // Can only handle unsigned comparison here
14922   switch (CC) {
14923   default:
14924     return SDValue();
14925   case ISD::SETUGT:
14926   case ISD::SETUGE:
14927     break;
14928   case ISD::SETULT:
14929   case ISD::SETULE:
14930     std::swap(TrueOpnd, FalseOpnd);
14931     break;
14932   }
14933 
14934   SDValue CmpOpnd1 = Cond.getOperand(0);
14935   SDValue CmpOpnd2 = Cond.getOperand(1);
14936 
14937   // SETCC CmpOpnd1 CmpOpnd2 cond
14938   // TrueOpnd = CmpOpnd1 - CmpOpnd2
14939   // FalseOpnd = CmpOpnd2 - CmpOpnd1
14940   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
14941       TrueOpnd.getOperand(1) == CmpOpnd2 &&
14942       FalseOpnd.getOperand(0) == CmpOpnd2 &&
14943       FalseOpnd.getOperand(1) == CmpOpnd1) {
14944     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
14945                        CmpOpnd1, CmpOpnd2,
14946                        DAG.getTargetConstant(0, dl, MVT::i32));
14947   }
14948 
14949   return SDValue();
14950 }
14951