1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnablePPCPCRelTLS(
125     "enable-ppc-pcrel-tls",
126     cl::desc("enable the use of PC relative memops in TLS instructions on PPC"),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
155     } else {
156       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
157       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
158     }
159   }
160 
161   // Match BITREVERSE to customized fast code sequence in the td file.
162   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
163   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
164 
165   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
166   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
167 
168   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
169   for (MVT VT : MVT::integer_valuetypes()) {
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
172   }
173 
174   if (Subtarget.isISA3_0()) {
175     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
176     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
177     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
178     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
179   } else {
180     // No extending loads from f16 or HW conversions back and forth.
181     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
183     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
184     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
185     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
186     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
187     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
188     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
189   }
190 
191   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
192 
193   // PowerPC has pre-inc load and store's.
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
200   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
204   if (!Subtarget.hasSPE()) {
205     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
206     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
207     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
209   }
210 
211   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
212   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
213   for (MVT VT : ScalarIntVTs) {
214     setOperationAction(ISD::ADDC, VT, Legal);
215     setOperationAction(ISD::ADDE, VT, Legal);
216     setOperationAction(ISD::SUBC, VT, Legal);
217     setOperationAction(ISD::SUBE, VT, Legal);
218   }
219 
220   if (Subtarget.useCRBits()) {
221     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222 
223     if (isPPC64 || Subtarget.hasFPCVT()) {
224       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
225       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
226                         isPPC64 ? MVT::i64 : MVT::i32);
227       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
228       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
229                         isPPC64 ? MVT::i64 : MVT::i32);
230 
231       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
232       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
233                          isPPC64 ? MVT::i64 : MVT::i32);
234       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
235       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
236                         isPPC64 ? MVT::i64 : MVT::i32);
237     } else {
238       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
240       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
241       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
242     }
243 
244     // PowerPC does not support direct load/store of condition registers.
245     setOperationAction(ISD::LOAD, MVT::i1, Custom);
246     setOperationAction(ISD::STORE, MVT::i1, Custom);
247 
248     // FIXME: Remove this once the ANDI glue bug is fixed:
249     if (ANDIGlueBug)
250       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
251 
252     for (MVT VT : MVT::integer_valuetypes()) {
253       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
254       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
255       setTruncStoreAction(VT, MVT::i1, Expand);
256     }
257 
258     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
259   }
260 
261   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
262   // PPC (the libcall is not available).
263   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
264   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
265   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
266   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
267 
268   // We do not currently implement these libm ops for PowerPC.
269   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
270   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
271   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
272   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
273   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
274   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
275 
276   // PowerPC has no SREM/UREM instructions unless we are on P9
277   // On P9 we may use a hardware instruction to compute the remainder.
278   // When the result of both the remainder and the division is required it is
279   // more efficient to compute the remainder from the result of the division
280   // rather than use the remainder instruction. The instructions are legalized
281   // directly because the DivRemPairsPass performs the transformation at the IR
282   // level.
283   if (Subtarget.isISA3_0()) {
284     setOperationAction(ISD::SREM, MVT::i32, Legal);
285     setOperationAction(ISD::UREM, MVT::i32, Legal);
286     setOperationAction(ISD::SREM, MVT::i64, Legal);
287     setOperationAction(ISD::UREM, MVT::i64, Legal);
288   } else {
289     setOperationAction(ISD::SREM, MVT::i32, Expand);
290     setOperationAction(ISD::UREM, MVT::i32, Expand);
291     setOperationAction(ISD::SREM, MVT::i64, Expand);
292     setOperationAction(ISD::UREM, MVT::i64, Expand);
293   }
294 
295   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
296   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
297   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
298   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
299   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
300   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
301   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
302   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
303   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
304 
305   // Handle constrained floating-point operations of scalar.
306   // TODO: Handle SPE specific operation.
307   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
308   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
309   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
310   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
311   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
312   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
313 
314   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
315   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
316   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
317   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
318   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
319   if (Subtarget.hasVSX()) {
320     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
321     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
322   }
323 
324   if (Subtarget.hasFSQRT()) {
325     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
326     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
327   }
328 
329   if (Subtarget.hasFPRND()) {
330     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
331     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
332     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
333     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
334 
335     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
336     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
337     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
338     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
339   }
340 
341   // We don't support sin/cos/sqrt/fmod/pow
342   setOperationAction(ISD::FSIN , MVT::f64, Expand);
343   setOperationAction(ISD::FCOS , MVT::f64, Expand);
344   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
345   setOperationAction(ISD::FREM , MVT::f64, Expand);
346   setOperationAction(ISD::FPOW , MVT::f64, Expand);
347   setOperationAction(ISD::FSIN , MVT::f32, Expand);
348   setOperationAction(ISD::FCOS , MVT::f32, Expand);
349   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
350   setOperationAction(ISD::FREM , MVT::f32, Expand);
351   setOperationAction(ISD::FPOW , MVT::f32, Expand);
352   if (Subtarget.hasSPE()) {
353     setOperationAction(ISD::FMA  , MVT::f64, Expand);
354     setOperationAction(ISD::FMA  , MVT::f32, Expand);
355   } else {
356     setOperationAction(ISD::FMA  , MVT::f64, Legal);
357     setOperationAction(ISD::FMA  , MVT::f32, Legal);
358   }
359 
360   if (Subtarget.hasSPE())
361     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
362 
363   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
364 
365   // If we're enabling GP optimizations, use hardware square root
366   if (!Subtarget.hasFSQRT() &&
367       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
368         Subtarget.hasFRE()))
369     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
370 
371   if (!Subtarget.hasFSQRT() &&
372       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
373         Subtarget.hasFRES()))
374     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
375 
376   if (Subtarget.hasFCPSGN()) {
377     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
378     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
379   } else {
380     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
381     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
382   }
383 
384   if (Subtarget.hasFPRND()) {
385     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
386     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
387     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
388     setOperationAction(ISD::FROUND, MVT::f64, Legal);
389 
390     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
391     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
392     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
393     setOperationAction(ISD::FROUND, MVT::f32, Legal);
394   }
395 
396   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
397   // to speed up scalar BSWAP64.
398   // CTPOP or CTTZ were introduced in P8/P9 respectively
399   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
400   if (Subtarget.hasP9Vector())
401     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
402   else
403     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
404   if (Subtarget.isISA3_0()) {
405     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
406     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
407   } else {
408     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
409     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
410   }
411 
412   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
413     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
414     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
415   } else {
416     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
417     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
418   }
419 
420   // PowerPC does not have ROTR
421   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
422   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
423 
424   if (!Subtarget.useCRBits()) {
425     // PowerPC does not have Select
426     setOperationAction(ISD::SELECT, MVT::i32, Expand);
427     setOperationAction(ISD::SELECT, MVT::i64, Expand);
428     setOperationAction(ISD::SELECT, MVT::f32, Expand);
429     setOperationAction(ISD::SELECT, MVT::f64, Expand);
430   }
431 
432   // PowerPC wants to turn select_cc of FP into fsel when possible.
433   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
434   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
435 
436   // PowerPC wants to optimize integer setcc a bit
437   if (!Subtarget.useCRBits())
438     setOperationAction(ISD::SETCC, MVT::i32, Custom);
439 
440   if (Subtarget.hasFPU()) {
441     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
442     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
443     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
444 
445     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
446     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
447     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
448   }
449 
450   // PowerPC does not have BRCOND which requires SetCC
451   if (!Subtarget.useCRBits())
452     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
453 
454   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
455 
456   if (Subtarget.hasSPE()) {
457     // SPE has built-in conversions
458     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
459     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
460     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
461     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
462     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
463     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
464   } else {
465     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
466     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
467     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
468 
469     // PowerPC does not have [U|S]INT_TO_FP
470     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
471     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
472     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
473     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
474   }
475 
476   if (Subtarget.hasDirectMove() && isPPC64) {
477     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
478     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
479     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
480     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
481     if (TM.Options.UnsafeFPMath) {
482       setOperationAction(ISD::LRINT, MVT::f64, Legal);
483       setOperationAction(ISD::LRINT, MVT::f32, Legal);
484       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
485       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
486       setOperationAction(ISD::LROUND, MVT::f64, Legal);
487       setOperationAction(ISD::LROUND, MVT::f32, Legal);
488       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
489       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
490     }
491   } else {
492     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
493     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
494     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
495     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
496   }
497 
498   // We cannot sextinreg(i1).  Expand to shifts.
499   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
500 
501   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
502   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
503   // support continuation, user-level threading, and etc.. As a result, no
504   // other SjLj exception interfaces are implemented and please don't build
505   // your own exception handling based on them.
506   // LLVM/Clang supports zero-cost DWARF exception handling.
507   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
508   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
509 
510   // We want to legalize GlobalAddress and ConstantPool nodes into the
511   // appropriate instructions to materialize the address.
512   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
513   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
514   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
515   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
516   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
517   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
518   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
519   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
520   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
521   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
522 
523   // TRAP is legal.
524   setOperationAction(ISD::TRAP, MVT::Other, Legal);
525 
526   // TRAMPOLINE is custom lowered.
527   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
528   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
529 
530   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
531   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
532 
533   if (Subtarget.is64BitELFABI()) {
534     // VAARG always uses double-word chunks, so promote anything smaller.
535     setOperationAction(ISD::VAARG, MVT::i1, Promote);
536     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
537     setOperationAction(ISD::VAARG, MVT::i8, Promote);
538     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
539     setOperationAction(ISD::VAARG, MVT::i16, Promote);
540     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
541     setOperationAction(ISD::VAARG, MVT::i32, Promote);
542     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
543     setOperationAction(ISD::VAARG, MVT::Other, Expand);
544   } else if (Subtarget.is32BitELFABI()) {
545     // VAARG is custom lowered with the 32-bit SVR4 ABI.
546     setOperationAction(ISD::VAARG, MVT::Other, Custom);
547     setOperationAction(ISD::VAARG, MVT::i64, Custom);
548   } else
549     setOperationAction(ISD::VAARG, MVT::Other, Expand);
550 
551   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
552   if (Subtarget.is32BitELFABI())
553     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
554   else
555     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
556 
557   // Use the default implementation.
558   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
559   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
560   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
561   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
562   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
563   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
564   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
565   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
566   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
567 
568   // We want to custom lower some of our intrinsics.
569   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
570 
571   // To handle counter-based loop conditions.
572   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
573 
574   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
575   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
576   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
577   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
578 
579   // Comparisons that require checking two conditions.
580   if (Subtarget.hasSPE()) {
581     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
582     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
583     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
584     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
585   }
586   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
587   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
588   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
589   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
590   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
591   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
592   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
593   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
594   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
595   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
596   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
597   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
598 
599   if (Subtarget.has64BitSupport()) {
600     // They also have instructions for converting between i64 and fp.
601     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
602     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
603     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
604     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
605     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
606     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
607     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
608     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
609     // This is just the low 32 bits of a (signed) fp->i64 conversion.
610     // We cannot do this with Promote because i64 is not a legal type.
611     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
612     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
613 
614     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
615       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
616       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
617     }
618   } else {
619     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
620     if (Subtarget.hasSPE()) {
621       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
622       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
623     } else {
624       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
625       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
626     }
627   }
628 
629   // With the instructions enabled under FPCVT, we can do everything.
630   if (Subtarget.hasFPCVT()) {
631     if (Subtarget.has64BitSupport()) {
632       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
633       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
634       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
635       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
636       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
637       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
638       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
639       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
640     }
641 
642     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
643     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
644     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
645     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
646     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
647     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
648     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
649     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
650   }
651 
652   if (Subtarget.use64BitRegs()) {
653     // 64-bit PowerPC implementations can support i64 types directly
654     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
655     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
656     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
657     // 64-bit PowerPC wants to expand i128 shifts itself.
658     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
659     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
660     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
661   } else {
662     // 32-bit PowerPC wants to expand i64 shifts itself.
663     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
664     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
665     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
666   }
667 
668   // PowerPC has better expansions for funnel shifts than the generic
669   // TargetLowering::expandFunnelShift.
670   if (Subtarget.has64BitSupport()) {
671     setOperationAction(ISD::FSHL, MVT::i64, Custom);
672     setOperationAction(ISD::FSHR, MVT::i64, Custom);
673   }
674   setOperationAction(ISD::FSHL, MVT::i32, Custom);
675   setOperationAction(ISD::FSHR, MVT::i32, Custom);
676 
677   if (Subtarget.hasVSX()) {
678     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
679     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
680     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
681     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
682   }
683 
684   if (Subtarget.hasAltivec()) {
685     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
686       setOperationAction(ISD::SADDSAT, VT, Legal);
687       setOperationAction(ISD::SSUBSAT, VT, Legal);
688       setOperationAction(ISD::UADDSAT, VT, Legal);
689       setOperationAction(ISD::USUBSAT, VT, Legal);
690     }
691     // First set operation action for all vector types to expand. Then we
692     // will selectively turn on ones that can be effectively codegen'd.
693     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
694       // add/sub are legal for all supported vector VT's.
695       setOperationAction(ISD::ADD, VT, Legal);
696       setOperationAction(ISD::SUB, VT, Legal);
697 
698       // For v2i64, these are only valid with P8Vector. This is corrected after
699       // the loop.
700       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
701         setOperationAction(ISD::SMAX, VT, Legal);
702         setOperationAction(ISD::SMIN, VT, Legal);
703         setOperationAction(ISD::UMAX, VT, Legal);
704         setOperationAction(ISD::UMIN, VT, Legal);
705       }
706       else {
707         setOperationAction(ISD::SMAX, VT, Expand);
708         setOperationAction(ISD::SMIN, VT, Expand);
709         setOperationAction(ISD::UMAX, VT, Expand);
710         setOperationAction(ISD::UMIN, VT, Expand);
711       }
712 
713       if (Subtarget.hasVSX()) {
714         setOperationAction(ISD::FMAXNUM, VT, Legal);
715         setOperationAction(ISD::FMINNUM, VT, Legal);
716       }
717 
718       // Vector instructions introduced in P8
719       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
720         setOperationAction(ISD::CTPOP, VT, Legal);
721         setOperationAction(ISD::CTLZ, VT, Legal);
722       }
723       else {
724         setOperationAction(ISD::CTPOP, VT, Expand);
725         setOperationAction(ISD::CTLZ, VT, Expand);
726       }
727 
728       // Vector instructions introduced in P9
729       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
730         setOperationAction(ISD::CTTZ, VT, Legal);
731       else
732         setOperationAction(ISD::CTTZ, VT, Expand);
733 
734       // We promote all shuffles to v16i8.
735       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
736       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
737 
738       // We promote all non-typed operations to v4i32.
739       setOperationAction(ISD::AND   , VT, Promote);
740       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
741       setOperationAction(ISD::OR    , VT, Promote);
742       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
743       setOperationAction(ISD::XOR   , VT, Promote);
744       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
745       setOperationAction(ISD::LOAD  , VT, Promote);
746       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
747       setOperationAction(ISD::SELECT, VT, Promote);
748       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
749       setOperationAction(ISD::VSELECT, VT, Legal);
750       setOperationAction(ISD::SELECT_CC, VT, Promote);
751       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
752       setOperationAction(ISD::STORE, VT, Promote);
753       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
754 
755       // No other operations are legal.
756       setOperationAction(ISD::MUL , VT, Expand);
757       setOperationAction(ISD::SDIV, VT, Expand);
758       setOperationAction(ISD::SREM, VT, Expand);
759       setOperationAction(ISD::UDIV, VT, Expand);
760       setOperationAction(ISD::UREM, VT, Expand);
761       setOperationAction(ISD::FDIV, VT, Expand);
762       setOperationAction(ISD::FREM, VT, Expand);
763       setOperationAction(ISD::FNEG, VT, Expand);
764       setOperationAction(ISD::FSQRT, VT, Expand);
765       setOperationAction(ISD::FLOG, VT, Expand);
766       setOperationAction(ISD::FLOG10, VT, Expand);
767       setOperationAction(ISD::FLOG2, VT, Expand);
768       setOperationAction(ISD::FEXP, VT, Expand);
769       setOperationAction(ISD::FEXP2, VT, Expand);
770       setOperationAction(ISD::FSIN, VT, Expand);
771       setOperationAction(ISD::FCOS, VT, Expand);
772       setOperationAction(ISD::FABS, VT, Expand);
773       setOperationAction(ISD::FFLOOR, VT, Expand);
774       setOperationAction(ISD::FCEIL,  VT, Expand);
775       setOperationAction(ISD::FTRUNC, VT, Expand);
776       setOperationAction(ISD::FRINT,  VT, Expand);
777       setOperationAction(ISD::FNEARBYINT, VT, Expand);
778       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
779       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
780       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
781       setOperationAction(ISD::MULHU, VT, Expand);
782       setOperationAction(ISD::MULHS, VT, Expand);
783       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
784       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
785       setOperationAction(ISD::UDIVREM, VT, Expand);
786       setOperationAction(ISD::SDIVREM, VT, Expand);
787       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
788       setOperationAction(ISD::FPOW, VT, Expand);
789       setOperationAction(ISD::BSWAP, VT, Expand);
790       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
791       setOperationAction(ISD::ROTL, VT, Expand);
792       setOperationAction(ISD::ROTR, VT, Expand);
793 
794       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
795         setTruncStoreAction(VT, InnerVT, Expand);
796         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
797         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
798         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
799       }
800     }
801     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
802     if (!Subtarget.hasP8Vector()) {
803       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
804       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
805       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
806       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
807     }
808 
809     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
810       setOperationAction(ISD::ABS, VT, Custom);
811 
812     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
813     // with merges, splats, etc.
814     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
815 
816     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
817     // are cheap, so handle them before they get expanded to scalar.
818     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
819     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
820     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
821     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
822     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
823 
824     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
825     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
826     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
827     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
828     setOperationAction(ISD::SELECT, MVT::v4i32,
829                        Subtarget.useCRBits() ? Legal : Expand);
830     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
831     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
832     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
833     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
834     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
835     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
836     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
837     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
838     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
839     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
840     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
841     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
842     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
843 
844     // Without hasP8Altivec set, v2i64 SMAX isn't available.
845     // But ABS custom lowering requires SMAX support.
846     if (!Subtarget.hasP8Altivec())
847       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
848 
849     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
850     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
851     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
852     if (Subtarget.hasAltivec())
853       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
854         setOperationAction(ISD::ROTL, VT, Legal);
855     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
856     if (Subtarget.hasP8Altivec())
857       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
858 
859     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
860     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
861     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
862     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
863 
864     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
865     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
866 
867     if (Subtarget.hasVSX()) {
868       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
869       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
870     }
871 
872     if (Subtarget.hasP8Altivec())
873       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
874     else
875       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
876 
877     if (Subtarget.isISA3_1()) {
878       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
879       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
880       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
881       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
882       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
883       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
884       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
885       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
886       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
887       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
888       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
889       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
890       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
891       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
892       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
893       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
894       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
895       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
896     }
897 
898     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
899     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
900 
901     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
902     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
903 
904     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
905     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
906     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
907     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
908 
909     // Altivec does not contain unordered floating-point compare instructions
910     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
911     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
912     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
913     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
914 
915     if (Subtarget.hasVSX()) {
916       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
917       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
918       if (Subtarget.hasP8Vector()) {
919         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
920         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
921       }
922       if (Subtarget.hasDirectMove() && isPPC64) {
923         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
924         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
925         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
926         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
927         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
928         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
929         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
930         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
931       }
932       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
933 
934       // The nearbyint variants are not allowed to raise the inexact exception
935       // so we can only code-gen them with unsafe math.
936       if (TM.Options.UnsafeFPMath) {
937         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
938         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
939       }
940 
941       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
942       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
943       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
944       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
945       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
946       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
947       setOperationAction(ISD::FROUND, MVT::f64, Legal);
948       setOperationAction(ISD::FRINT, MVT::f64, Legal);
949 
950       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
951       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
952       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
953       setOperationAction(ISD::FROUND, MVT::f32, Legal);
954       setOperationAction(ISD::FRINT, MVT::f32, Legal);
955 
956       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
957       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
958 
959       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
960       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
961 
962       // Share the Altivec comparison restrictions.
963       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
964       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
965       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
966       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
967 
968       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
969       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
970 
971       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
972 
973       if (Subtarget.hasP8Vector())
974         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
975 
976       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
977 
978       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
979       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
980       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
981 
982       if (Subtarget.hasP8Altivec()) {
983         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
984         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
985         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
986 
987         // 128 bit shifts can be accomplished via 3 instructions for SHL and
988         // SRL, but not for SRA because of the instructions available:
989         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
990         // doing
991         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
992         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
993         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
994 
995         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
996       }
997       else {
998         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
999         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1000         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1001 
1002         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1003 
1004         // VSX v2i64 only supports non-arithmetic operations.
1005         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1006         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1007       }
1008 
1009       if (Subtarget.isISA3_1())
1010         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1011       else
1012         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1013 
1014       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1015       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1016       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1017       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1018 
1019       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1020 
1021       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1022       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1023       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1024       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1025       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1026       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1027       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1028       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1029 
1030       // Custom handling for partial vectors of integers converted to
1031       // floating point. We already have optimal handling for v2i32 through
1032       // the DAG combine, so those aren't necessary.
1033       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1034       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1035       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1036       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1037       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1038       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1039       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1040       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1041       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1042       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1043       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1044       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1045       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1046       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1047       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1048       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1049 
1050       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1051       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1052       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1053       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1054       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1055       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1056 
1057       if (Subtarget.hasDirectMove())
1058         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1059       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1060 
1061       // Handle constrained floating-point operations of vector.
1062       // The predictor is `hasVSX` because altivec instruction has
1063       // no exception but VSX vector instruction has.
1064       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1065       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1066       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1067       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1068       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1069       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1070       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1071       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1072       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1073       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1074       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1075       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1076       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1077 
1078       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1079       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1080       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1081       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1082       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1083       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1084       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1085       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1086       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1087       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1088       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1089       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1090       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1091 
1092       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1093     }
1094 
1095     if (Subtarget.hasP8Altivec()) {
1096       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1097       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1098     }
1099 
1100     if (Subtarget.hasP9Vector()) {
1101       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1102       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1103 
1104       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1105       // SRL, but not for SRA because of the instructions available:
1106       // VS{RL} and VS{RL}O.
1107       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1108       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1109       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1110 
1111       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1112       setOperationAction(ISD::FADD, MVT::f128, Legal);
1113       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1114       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1115       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1116       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1117       // No extending loads to f128 on PPC.
1118       for (MVT FPT : MVT::fp_valuetypes())
1119         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1120       setOperationAction(ISD::FMA, MVT::f128, Legal);
1121       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1122       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1123       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1124       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1125       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1126       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1127 
1128       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1129       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1130       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1131       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1132       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1133       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1134 
1135       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1136       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1137       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1138       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1139       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1140       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1141       // No implementation for these ops for PowerPC.
1142       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1143       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1144       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1145       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1146       setOperationAction(ISD::FREM, MVT::f128, Expand);
1147 
1148       // Handle constrained floating-point operations of fp128
1149       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1150       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1151       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1152       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1153       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1154       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1155       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1156       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1157       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1158       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1159       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1160       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1161       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1162       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1163       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1164       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1165       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1166       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1167       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1168       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1169     }
1170 
1171     if (Subtarget.hasP9Altivec()) {
1172       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1173       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1174 
1175       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1176       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1177       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1178       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1179       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1180       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1181       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1182     }
1183   }
1184 
1185   if (Subtarget.pairedVectorMemops()) {
1186     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1187     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1188     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1189   }
1190   if (Subtarget.hasMMA()) {
1191     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1192     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1193     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1194     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1195   }
1196 
1197   if (Subtarget.has64BitSupport())
1198     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1199 
1200   if (Subtarget.isISA3_1())
1201     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1202 
1203   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1204 
1205   if (!isPPC64) {
1206     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1207     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1208   }
1209 
1210   setBooleanContents(ZeroOrOneBooleanContent);
1211 
1212   if (Subtarget.hasAltivec()) {
1213     // Altivec instructions set fields to all zeros or all ones.
1214     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1215   }
1216 
1217   if (!isPPC64) {
1218     // These libcalls are not available in 32-bit.
1219     setLibcallName(RTLIB::SHL_I128, nullptr);
1220     setLibcallName(RTLIB::SRL_I128, nullptr);
1221     setLibcallName(RTLIB::SRA_I128, nullptr);
1222   }
1223 
1224   if (!isPPC64)
1225     setMaxAtomicSizeInBitsSupported(32);
1226 
1227   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1228 
1229   // We have target-specific dag combine patterns for the following nodes:
1230   setTargetDAGCombine(ISD::ADD);
1231   setTargetDAGCombine(ISD::SHL);
1232   setTargetDAGCombine(ISD::SRA);
1233   setTargetDAGCombine(ISD::SRL);
1234   setTargetDAGCombine(ISD::MUL);
1235   setTargetDAGCombine(ISD::FMA);
1236   setTargetDAGCombine(ISD::SINT_TO_FP);
1237   setTargetDAGCombine(ISD::BUILD_VECTOR);
1238   if (Subtarget.hasFPCVT())
1239     setTargetDAGCombine(ISD::UINT_TO_FP);
1240   setTargetDAGCombine(ISD::LOAD);
1241   setTargetDAGCombine(ISD::STORE);
1242   setTargetDAGCombine(ISD::BR_CC);
1243   if (Subtarget.useCRBits())
1244     setTargetDAGCombine(ISD::BRCOND);
1245   setTargetDAGCombine(ISD::BSWAP);
1246   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1247   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1248   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1249 
1250   setTargetDAGCombine(ISD::SIGN_EXTEND);
1251   setTargetDAGCombine(ISD::ZERO_EXTEND);
1252   setTargetDAGCombine(ISD::ANY_EXTEND);
1253 
1254   setTargetDAGCombine(ISD::TRUNCATE);
1255   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1256 
1257 
1258   if (Subtarget.useCRBits()) {
1259     setTargetDAGCombine(ISD::TRUNCATE);
1260     setTargetDAGCombine(ISD::SETCC);
1261     setTargetDAGCombine(ISD::SELECT_CC);
1262   }
1263 
1264   if (Subtarget.hasP9Altivec()) {
1265     setTargetDAGCombine(ISD::ABS);
1266     setTargetDAGCombine(ISD::VSELECT);
1267   }
1268 
1269   setLibcallName(RTLIB::LOG_F128, "logf128");
1270   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1271   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1272   setLibcallName(RTLIB::EXP_F128, "expf128");
1273   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1274   setLibcallName(RTLIB::SIN_F128, "sinf128");
1275   setLibcallName(RTLIB::COS_F128, "cosf128");
1276   setLibcallName(RTLIB::POW_F128, "powf128");
1277   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1278   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1279   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1280   setLibcallName(RTLIB::REM_F128, "fmodf128");
1281 
1282   // With 32 condition bits, we don't need to sink (and duplicate) compares
1283   // aggressively in CodeGenPrep.
1284   if (Subtarget.useCRBits()) {
1285     setHasMultipleConditionRegisters();
1286     setJumpIsExpensive();
1287   }
1288 
1289   setMinFunctionAlignment(Align(4));
1290 
1291   switch (Subtarget.getCPUDirective()) {
1292   default: break;
1293   case PPC::DIR_970:
1294   case PPC::DIR_A2:
1295   case PPC::DIR_E500:
1296   case PPC::DIR_E500mc:
1297   case PPC::DIR_E5500:
1298   case PPC::DIR_PWR4:
1299   case PPC::DIR_PWR5:
1300   case PPC::DIR_PWR5X:
1301   case PPC::DIR_PWR6:
1302   case PPC::DIR_PWR6X:
1303   case PPC::DIR_PWR7:
1304   case PPC::DIR_PWR8:
1305   case PPC::DIR_PWR9:
1306   case PPC::DIR_PWR10:
1307   case PPC::DIR_PWR_FUTURE:
1308     setPrefLoopAlignment(Align(16));
1309     setPrefFunctionAlignment(Align(16));
1310     break;
1311   }
1312 
1313   if (Subtarget.enableMachineScheduler())
1314     setSchedulingPreference(Sched::Source);
1315   else
1316     setSchedulingPreference(Sched::Hybrid);
1317 
1318   computeRegisterProperties(STI.getRegisterInfo());
1319 
1320   // The Freescale cores do better with aggressive inlining of memcpy and
1321   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1322   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1323       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1324     MaxStoresPerMemset = 32;
1325     MaxStoresPerMemsetOptSize = 16;
1326     MaxStoresPerMemcpy = 32;
1327     MaxStoresPerMemcpyOptSize = 8;
1328     MaxStoresPerMemmove = 32;
1329     MaxStoresPerMemmoveOptSize = 8;
1330   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1331     // The A2 also benefits from (very) aggressive inlining of memcpy and
1332     // friends. The overhead of a the function call, even when warm, can be
1333     // over one hundred cycles.
1334     MaxStoresPerMemset = 128;
1335     MaxStoresPerMemcpy = 128;
1336     MaxStoresPerMemmove = 128;
1337     MaxLoadsPerMemcmp = 128;
1338   } else {
1339     MaxLoadsPerMemcmp = 8;
1340     MaxLoadsPerMemcmpOptSize = 4;
1341   }
1342 
1343   IsStrictFPEnabled = true;
1344 
1345   // Let the subtarget (CPU) decide if a predictable select is more expensive
1346   // than the corresponding branch. This information is used in CGP to decide
1347   // when to convert selects into branches.
1348   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1349 }
1350 
1351 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1352 /// the desired ByVal argument alignment.
1353 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1354   if (MaxAlign == MaxMaxAlign)
1355     return;
1356   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1357     if (MaxMaxAlign >= 32 &&
1358         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1359       MaxAlign = Align(32);
1360     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1361              MaxAlign < 16)
1362       MaxAlign = Align(16);
1363   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1364     Align EltAlign;
1365     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1366     if (EltAlign > MaxAlign)
1367       MaxAlign = EltAlign;
1368   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1369     for (auto *EltTy : STy->elements()) {
1370       Align EltAlign;
1371       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1372       if (EltAlign > MaxAlign)
1373         MaxAlign = EltAlign;
1374       if (MaxAlign == MaxMaxAlign)
1375         break;
1376     }
1377   }
1378 }
1379 
1380 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1381 /// function arguments in the caller parameter area.
1382 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1383                                                   const DataLayout &DL) const {
1384   // 16byte and wider vectors are passed on 16byte boundary.
1385   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1386   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1387   if (Subtarget.hasAltivec())
1388     getMaxByValAlign(Ty, Alignment, Align(16));
1389   return Alignment.value();
1390 }
1391 
1392 bool PPCTargetLowering::useSoftFloat() const {
1393   return Subtarget.useSoftFloat();
1394 }
1395 
1396 bool PPCTargetLowering::hasSPE() const {
1397   return Subtarget.hasSPE();
1398 }
1399 
1400 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1401   return VT.isScalarInteger();
1402 }
1403 
1404 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1405   switch ((PPCISD::NodeType)Opcode) {
1406   case PPCISD::FIRST_NUMBER:    break;
1407   case PPCISD::FSEL:            return "PPCISD::FSEL";
1408   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1409   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1410   case PPCISD::FCFID:           return "PPCISD::FCFID";
1411   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1412   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1413   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1414   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1415   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1416   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1417   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1418   case PPCISD::FP_TO_UINT_IN_VSR:
1419                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1420   case PPCISD::FP_TO_SINT_IN_VSR:
1421                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1422   case PPCISD::FRE:             return "PPCISD::FRE";
1423   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1424   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1425   case PPCISD::VPERM:           return "PPCISD::VPERM";
1426   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1427   case PPCISD::XXSPLTI_SP_TO_DP:
1428     return "PPCISD::XXSPLTI_SP_TO_DP";
1429   case PPCISD::XXSPLTI32DX:
1430     return "PPCISD::XXSPLTI32DX";
1431   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1432   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1433   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1434   case PPCISD::CMPB:            return "PPCISD::CMPB";
1435   case PPCISD::Hi:              return "PPCISD::Hi";
1436   case PPCISD::Lo:              return "PPCISD::Lo";
1437   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1438   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1439   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1440   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1441   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1442   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1443   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1444   case PPCISD::SRL:             return "PPCISD::SRL";
1445   case PPCISD::SRA:             return "PPCISD::SRA";
1446   case PPCISD::SHL:             return "PPCISD::SHL";
1447   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1448   case PPCISD::CALL:            return "PPCISD::CALL";
1449   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1450   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1451   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1452   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1453   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1454   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1455   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1456   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1457   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1458   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1459   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1460   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1461   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1462   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1463   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1464   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1465     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1466   case PPCISD::ANDI_rec_1_EQ_BIT:
1467     return "PPCISD::ANDI_rec_1_EQ_BIT";
1468   case PPCISD::ANDI_rec_1_GT_BIT:
1469     return "PPCISD::ANDI_rec_1_GT_BIT";
1470   case PPCISD::VCMP:            return "PPCISD::VCMP";
1471   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1472   case PPCISD::LBRX:            return "PPCISD::LBRX";
1473   case PPCISD::STBRX:           return "PPCISD::STBRX";
1474   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1475   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1476   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1477   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1478   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1479   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1480   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1481   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1482   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1483   case PPCISD::ST_VSR_SCAL_INT:
1484                                 return "PPCISD::ST_VSR_SCAL_INT";
1485   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1486   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1487   case PPCISD::BDZ:             return "PPCISD::BDZ";
1488   case PPCISD::MFFS:            return "PPCISD::MFFS";
1489   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1490   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1491   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1492   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1493   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1494   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1495   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1496   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1497   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1498   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1499   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1500   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1501   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1502   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1503   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1504   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1505   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1506   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1507   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1508   case PPCISD::PADDI_DTPREL:
1509     return "PPCISD::PADDI_DTPREL";
1510   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1511   case PPCISD::SC:              return "PPCISD::SC";
1512   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1513   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1514   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1515   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1516   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1517   case PPCISD::VABSD:           return "PPCISD::VABSD";
1518   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1519   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1520   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1521   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1522   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1523   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1524   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1525   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1526     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1527   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1528     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1529   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1530   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1531   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1532   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1533   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1534   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1535   case PPCISD::STRICT_FADDRTZ:
1536     return "PPCISD::STRICT_FADDRTZ";
1537   case PPCISD::STRICT_FCTIDZ:
1538     return "PPCISD::STRICT_FCTIDZ";
1539   case PPCISD::STRICT_FCTIWZ:
1540     return "PPCISD::STRICT_FCTIWZ";
1541   case PPCISD::STRICT_FCTIDUZ:
1542     return "PPCISD::STRICT_FCTIDUZ";
1543   case PPCISD::STRICT_FCTIWUZ:
1544     return "PPCISD::STRICT_FCTIWUZ";
1545   case PPCISD::STRICT_FCFID:
1546     return "PPCISD::STRICT_FCFID";
1547   case PPCISD::STRICT_FCFIDU:
1548     return "PPCISD::STRICT_FCFIDU";
1549   case PPCISD::STRICT_FCFIDS:
1550     return "PPCISD::STRICT_FCFIDS";
1551   case PPCISD::STRICT_FCFIDUS:
1552     return "PPCISD::STRICT_FCFIDUS";
1553   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1554   }
1555   return nullptr;
1556 }
1557 
1558 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1559                                           EVT VT) const {
1560   if (!VT.isVector())
1561     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1562 
1563   return VT.changeVectorElementTypeToInteger();
1564 }
1565 
1566 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1567   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1568   return true;
1569 }
1570 
1571 //===----------------------------------------------------------------------===//
1572 // Node matching predicates, for use by the tblgen matching code.
1573 //===----------------------------------------------------------------------===//
1574 
1575 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1576 static bool isFloatingPointZero(SDValue Op) {
1577   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1578     return CFP->getValueAPF().isZero();
1579   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1580     // Maybe this has already been legalized into the constant pool?
1581     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1582       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1583         return CFP->getValueAPF().isZero();
1584   }
1585   return false;
1586 }
1587 
1588 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1589 /// true if Op is undef or if it matches the specified value.
1590 static bool isConstantOrUndef(int Op, int Val) {
1591   return Op < 0 || Op == Val;
1592 }
1593 
1594 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1595 /// VPKUHUM instruction.
1596 /// The ShuffleKind distinguishes between big-endian operations with
1597 /// two different inputs (0), either-endian operations with two identical
1598 /// inputs (1), and little-endian operations with two different inputs (2).
1599 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1600 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1601                                SelectionDAG &DAG) {
1602   bool IsLE = DAG.getDataLayout().isLittleEndian();
1603   if (ShuffleKind == 0) {
1604     if (IsLE)
1605       return false;
1606     for (unsigned i = 0; i != 16; ++i)
1607       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1608         return false;
1609   } else if (ShuffleKind == 2) {
1610     if (!IsLE)
1611       return false;
1612     for (unsigned i = 0; i != 16; ++i)
1613       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1614         return false;
1615   } else if (ShuffleKind == 1) {
1616     unsigned j = IsLE ? 0 : 1;
1617     for (unsigned i = 0; i != 8; ++i)
1618       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1619           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1620         return false;
1621   }
1622   return true;
1623 }
1624 
1625 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1626 /// VPKUWUM instruction.
1627 /// The ShuffleKind distinguishes between big-endian operations with
1628 /// two different inputs (0), either-endian operations with two identical
1629 /// inputs (1), and little-endian operations with two different inputs (2).
1630 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1631 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1632                                SelectionDAG &DAG) {
1633   bool IsLE = DAG.getDataLayout().isLittleEndian();
1634   if (ShuffleKind == 0) {
1635     if (IsLE)
1636       return false;
1637     for (unsigned i = 0; i != 16; i += 2)
1638       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1639           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1640         return false;
1641   } else if (ShuffleKind == 2) {
1642     if (!IsLE)
1643       return false;
1644     for (unsigned i = 0; i != 16; i += 2)
1645       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1646           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1647         return false;
1648   } else if (ShuffleKind == 1) {
1649     unsigned j = IsLE ? 0 : 2;
1650     for (unsigned i = 0; i != 8; i += 2)
1651       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1652           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1653           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1654           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1655         return false;
1656   }
1657   return true;
1658 }
1659 
1660 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1661 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1662 /// current subtarget.
1663 ///
1664 /// The ShuffleKind distinguishes between big-endian operations with
1665 /// two different inputs (0), either-endian operations with two identical
1666 /// inputs (1), and little-endian operations with two different inputs (2).
1667 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1668 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1669                                SelectionDAG &DAG) {
1670   const PPCSubtarget& Subtarget =
1671       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1672   if (!Subtarget.hasP8Vector())
1673     return false;
1674 
1675   bool IsLE = DAG.getDataLayout().isLittleEndian();
1676   if (ShuffleKind == 0) {
1677     if (IsLE)
1678       return false;
1679     for (unsigned i = 0; i != 16; i += 4)
1680       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1681           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1682           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1683           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1684         return false;
1685   } else if (ShuffleKind == 2) {
1686     if (!IsLE)
1687       return false;
1688     for (unsigned i = 0; i != 16; i += 4)
1689       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1690           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1691           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1692           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1693         return false;
1694   } else if (ShuffleKind == 1) {
1695     unsigned j = IsLE ? 0 : 4;
1696     for (unsigned i = 0; i != 8; i += 4)
1697       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1698           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1699           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1700           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1701           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1702           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1703           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1704           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1705         return false;
1706   }
1707   return true;
1708 }
1709 
1710 /// isVMerge - Common function, used to match vmrg* shuffles.
1711 ///
1712 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1713                      unsigned LHSStart, unsigned RHSStart) {
1714   if (N->getValueType(0) != MVT::v16i8)
1715     return false;
1716   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1717          "Unsupported merge size!");
1718 
1719   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1720     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1721       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1722                              LHSStart+j+i*UnitSize) ||
1723           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1724                              RHSStart+j+i*UnitSize))
1725         return false;
1726     }
1727   return true;
1728 }
1729 
1730 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1731 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1732 /// The ShuffleKind distinguishes between big-endian merges with two
1733 /// different inputs (0), either-endian merges with two identical inputs (1),
1734 /// and little-endian merges with two different inputs (2).  For the latter,
1735 /// the input operands are swapped (see PPCInstrAltivec.td).
1736 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1737                              unsigned ShuffleKind, SelectionDAG &DAG) {
1738   if (DAG.getDataLayout().isLittleEndian()) {
1739     if (ShuffleKind == 1) // unary
1740       return isVMerge(N, UnitSize, 0, 0);
1741     else if (ShuffleKind == 2) // swapped
1742       return isVMerge(N, UnitSize, 0, 16);
1743     else
1744       return false;
1745   } else {
1746     if (ShuffleKind == 1) // unary
1747       return isVMerge(N, UnitSize, 8, 8);
1748     else if (ShuffleKind == 0) // normal
1749       return isVMerge(N, UnitSize, 8, 24);
1750     else
1751       return false;
1752   }
1753 }
1754 
1755 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1756 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1757 /// The ShuffleKind distinguishes between big-endian merges with two
1758 /// different inputs (0), either-endian merges with two identical inputs (1),
1759 /// and little-endian merges with two different inputs (2).  For the latter,
1760 /// the input operands are swapped (see PPCInstrAltivec.td).
1761 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1762                              unsigned ShuffleKind, SelectionDAG &DAG) {
1763   if (DAG.getDataLayout().isLittleEndian()) {
1764     if (ShuffleKind == 1) // unary
1765       return isVMerge(N, UnitSize, 8, 8);
1766     else if (ShuffleKind == 2) // swapped
1767       return isVMerge(N, UnitSize, 8, 24);
1768     else
1769       return false;
1770   } else {
1771     if (ShuffleKind == 1) // unary
1772       return isVMerge(N, UnitSize, 0, 0);
1773     else if (ShuffleKind == 0) // normal
1774       return isVMerge(N, UnitSize, 0, 16);
1775     else
1776       return false;
1777   }
1778 }
1779 
1780 /**
1781  * Common function used to match vmrgew and vmrgow shuffles
1782  *
1783  * The indexOffset determines whether to look for even or odd words in
1784  * the shuffle mask. This is based on the of the endianness of the target
1785  * machine.
1786  *   - Little Endian:
1787  *     - Use offset of 0 to check for odd elements
1788  *     - Use offset of 4 to check for even elements
1789  *   - Big Endian:
1790  *     - Use offset of 0 to check for even elements
1791  *     - Use offset of 4 to check for odd elements
1792  * A detailed description of the vector element ordering for little endian and
1793  * big endian can be found at
1794  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1795  * Targeting your applications - what little endian and big endian IBM XL C/C++
1796  * compiler differences mean to you
1797  *
1798  * The mask to the shuffle vector instruction specifies the indices of the
1799  * elements from the two input vectors to place in the result. The elements are
1800  * numbered in array-access order, starting with the first vector. These vectors
1801  * are always of type v16i8, thus each vector will contain 16 elements of size
1802  * 8. More info on the shuffle vector can be found in the
1803  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1804  * Language Reference.
1805  *
1806  * The RHSStartValue indicates whether the same input vectors are used (unary)
1807  * or two different input vectors are used, based on the following:
1808  *   - If the instruction uses the same vector for both inputs, the range of the
1809  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1810  *     be 0.
1811  *   - If the instruction has two different vectors then the range of the
1812  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1813  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1814  *     to 31 specify elements in the second vector).
1815  *
1816  * \param[in] N The shuffle vector SD Node to analyze
1817  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1818  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1819  * vector to the shuffle_vector instruction
1820  * \return true iff this shuffle vector represents an even or odd word merge
1821  */
1822 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1823                      unsigned RHSStartValue) {
1824   if (N->getValueType(0) != MVT::v16i8)
1825     return false;
1826 
1827   for (unsigned i = 0; i < 2; ++i)
1828     for (unsigned j = 0; j < 4; ++j)
1829       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1830                              i*RHSStartValue+j+IndexOffset) ||
1831           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1832                              i*RHSStartValue+j+IndexOffset+8))
1833         return false;
1834   return true;
1835 }
1836 
1837 /**
1838  * Determine if the specified shuffle mask is suitable for the vmrgew or
1839  * vmrgow instructions.
1840  *
1841  * \param[in] N The shuffle vector SD Node to analyze
1842  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1843  * \param[in] ShuffleKind Identify the type of merge:
1844  *   - 0 = big-endian merge with two different inputs;
1845  *   - 1 = either-endian merge with two identical inputs;
1846  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1847  *     little-endian merges).
1848  * \param[in] DAG The current SelectionDAG
1849  * \return true iff this shuffle mask
1850  */
1851 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1852                               unsigned ShuffleKind, SelectionDAG &DAG) {
1853   if (DAG.getDataLayout().isLittleEndian()) {
1854     unsigned indexOffset = CheckEven ? 4 : 0;
1855     if (ShuffleKind == 1) // Unary
1856       return isVMerge(N, indexOffset, 0);
1857     else if (ShuffleKind == 2) // swapped
1858       return isVMerge(N, indexOffset, 16);
1859     else
1860       return false;
1861   }
1862   else {
1863     unsigned indexOffset = CheckEven ? 0 : 4;
1864     if (ShuffleKind == 1) // Unary
1865       return isVMerge(N, indexOffset, 0);
1866     else if (ShuffleKind == 0) // Normal
1867       return isVMerge(N, indexOffset, 16);
1868     else
1869       return false;
1870   }
1871   return false;
1872 }
1873 
1874 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1875 /// amount, otherwise return -1.
1876 /// The ShuffleKind distinguishes between big-endian operations with two
1877 /// different inputs (0), either-endian operations with two identical inputs
1878 /// (1), and little-endian operations with two different inputs (2).  For the
1879 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1880 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1881                              SelectionDAG &DAG) {
1882   if (N->getValueType(0) != MVT::v16i8)
1883     return -1;
1884 
1885   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1886 
1887   // Find the first non-undef value in the shuffle mask.
1888   unsigned i;
1889   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1890     /*search*/;
1891 
1892   if (i == 16) return -1;  // all undef.
1893 
1894   // Otherwise, check to see if the rest of the elements are consecutively
1895   // numbered from this value.
1896   unsigned ShiftAmt = SVOp->getMaskElt(i);
1897   if (ShiftAmt < i) return -1;
1898 
1899   ShiftAmt -= i;
1900   bool isLE = DAG.getDataLayout().isLittleEndian();
1901 
1902   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1903     // Check the rest of the elements to see if they are consecutive.
1904     for (++i; i != 16; ++i)
1905       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1906         return -1;
1907   } else if (ShuffleKind == 1) {
1908     // Check the rest of the elements to see if they are consecutive.
1909     for (++i; i != 16; ++i)
1910       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1911         return -1;
1912   } else
1913     return -1;
1914 
1915   if (isLE)
1916     ShiftAmt = 16 - ShiftAmt;
1917 
1918   return ShiftAmt;
1919 }
1920 
1921 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1922 /// specifies a splat of a single element that is suitable for input to
1923 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1924 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1925   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1926          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1927 
1928   // The consecutive indices need to specify an element, not part of two
1929   // different elements.  So abandon ship early if this isn't the case.
1930   if (N->getMaskElt(0) % EltSize != 0)
1931     return false;
1932 
1933   // This is a splat operation if each element of the permute is the same, and
1934   // if the value doesn't reference the second vector.
1935   unsigned ElementBase = N->getMaskElt(0);
1936 
1937   // FIXME: Handle UNDEF elements too!
1938   if (ElementBase >= 16)
1939     return false;
1940 
1941   // Check that the indices are consecutive, in the case of a multi-byte element
1942   // splatted with a v16i8 mask.
1943   for (unsigned i = 1; i != EltSize; ++i)
1944     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1945       return false;
1946 
1947   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1948     if (N->getMaskElt(i) < 0) continue;
1949     for (unsigned j = 0; j != EltSize; ++j)
1950       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1951         return false;
1952   }
1953   return true;
1954 }
1955 
1956 /// Check that the mask is shuffling N byte elements. Within each N byte
1957 /// element of the mask, the indices could be either in increasing or
1958 /// decreasing order as long as they are consecutive.
1959 /// \param[in] N the shuffle vector SD Node to analyze
1960 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1961 /// Word/DoubleWord/QuadWord).
1962 /// \param[in] StepLen the delta indices number among the N byte element, if
1963 /// the mask is in increasing/decreasing order then it is 1/-1.
1964 /// \return true iff the mask is shuffling N byte elements.
1965 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1966                                    int StepLen) {
1967   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1968          "Unexpected element width.");
1969   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1970 
1971   unsigned NumOfElem = 16 / Width;
1972   unsigned MaskVal[16]; //  Width is never greater than 16
1973   for (unsigned i = 0; i < NumOfElem; ++i) {
1974     MaskVal[0] = N->getMaskElt(i * Width);
1975     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1976       return false;
1977     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1978       return false;
1979     }
1980 
1981     for (unsigned int j = 1; j < Width; ++j) {
1982       MaskVal[j] = N->getMaskElt(i * Width + j);
1983       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1984         return false;
1985       }
1986     }
1987   }
1988 
1989   return true;
1990 }
1991 
1992 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1993                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1994   if (!isNByteElemShuffleMask(N, 4, 1))
1995     return false;
1996 
1997   // Now we look at mask elements 0,4,8,12
1998   unsigned M0 = N->getMaskElt(0) / 4;
1999   unsigned M1 = N->getMaskElt(4) / 4;
2000   unsigned M2 = N->getMaskElt(8) / 4;
2001   unsigned M3 = N->getMaskElt(12) / 4;
2002   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2003   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2004 
2005   // Below, let H and L be arbitrary elements of the shuffle mask
2006   // where H is in the range [4,7] and L is in the range [0,3].
2007   // H, 1, 2, 3 or L, 5, 6, 7
2008   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2009       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2010     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2011     InsertAtByte = IsLE ? 12 : 0;
2012     Swap = M0 < 4;
2013     return true;
2014   }
2015   // 0, H, 2, 3 or 4, L, 6, 7
2016   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2017       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2018     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2019     InsertAtByte = IsLE ? 8 : 4;
2020     Swap = M1 < 4;
2021     return true;
2022   }
2023   // 0, 1, H, 3 or 4, 5, L, 7
2024   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2025       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2026     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2027     InsertAtByte = IsLE ? 4 : 8;
2028     Swap = M2 < 4;
2029     return true;
2030   }
2031   // 0, 1, 2, H or 4, 5, 6, L
2032   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2033       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2034     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2035     InsertAtByte = IsLE ? 0 : 12;
2036     Swap = M3 < 4;
2037     return true;
2038   }
2039 
2040   // If both vector operands for the shuffle are the same vector, the mask will
2041   // contain only elements from the first one and the second one will be undef.
2042   if (N->getOperand(1).isUndef()) {
2043     ShiftElts = 0;
2044     Swap = true;
2045     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2046     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2047       InsertAtByte = IsLE ? 12 : 0;
2048       return true;
2049     }
2050     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2051       InsertAtByte = IsLE ? 8 : 4;
2052       return true;
2053     }
2054     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2055       InsertAtByte = IsLE ? 4 : 8;
2056       return true;
2057     }
2058     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2059       InsertAtByte = IsLE ? 0 : 12;
2060       return true;
2061     }
2062   }
2063 
2064   return false;
2065 }
2066 
2067 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2068                                bool &Swap, bool IsLE) {
2069   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2070   // Ensure each byte index of the word is consecutive.
2071   if (!isNByteElemShuffleMask(N, 4, 1))
2072     return false;
2073 
2074   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2075   unsigned M0 = N->getMaskElt(0) / 4;
2076   unsigned M1 = N->getMaskElt(4) / 4;
2077   unsigned M2 = N->getMaskElt(8) / 4;
2078   unsigned M3 = N->getMaskElt(12) / 4;
2079 
2080   // If both vector operands for the shuffle are the same vector, the mask will
2081   // contain only elements from the first one and the second one will be undef.
2082   if (N->getOperand(1).isUndef()) {
2083     assert(M0 < 4 && "Indexing into an undef vector?");
2084     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2085       return false;
2086 
2087     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2088     Swap = false;
2089     return true;
2090   }
2091 
2092   // Ensure each word index of the ShuffleVector Mask is consecutive.
2093   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2094     return false;
2095 
2096   if (IsLE) {
2097     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2098       // Input vectors don't need to be swapped if the leading element
2099       // of the result is one of the 3 left elements of the second vector
2100       // (or if there is no shift to be done at all).
2101       Swap = false;
2102       ShiftElts = (8 - M0) % 8;
2103     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2104       // Input vectors need to be swapped if the leading element
2105       // of the result is one of the 3 left elements of the first vector
2106       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2107       Swap = true;
2108       ShiftElts = (4 - M0) % 4;
2109     }
2110 
2111     return true;
2112   } else {                                          // BE
2113     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2114       // Input vectors don't need to be swapped if the leading element
2115       // of the result is one of the 4 elements of the first vector.
2116       Swap = false;
2117       ShiftElts = M0;
2118     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2119       // Input vectors need to be swapped if the leading element
2120       // of the result is one of the 4 elements of the right vector.
2121       Swap = true;
2122       ShiftElts = M0 - 4;
2123     }
2124 
2125     return true;
2126   }
2127 }
2128 
2129 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2130   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2131 
2132   if (!isNByteElemShuffleMask(N, Width, -1))
2133     return false;
2134 
2135   for (int i = 0; i < 16; i += Width)
2136     if (N->getMaskElt(i) != i + Width - 1)
2137       return false;
2138 
2139   return true;
2140 }
2141 
2142 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2143   return isXXBRShuffleMaskHelper(N, 2);
2144 }
2145 
2146 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2147   return isXXBRShuffleMaskHelper(N, 4);
2148 }
2149 
2150 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2151   return isXXBRShuffleMaskHelper(N, 8);
2152 }
2153 
2154 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2155   return isXXBRShuffleMaskHelper(N, 16);
2156 }
2157 
2158 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2159 /// if the inputs to the instruction should be swapped and set \p DM to the
2160 /// value for the immediate.
2161 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2162 /// AND element 0 of the result comes from the first input (LE) or second input
2163 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2164 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2165 /// mask.
2166 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2167                                bool &Swap, bool IsLE) {
2168   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2169 
2170   // Ensure each byte index of the double word is consecutive.
2171   if (!isNByteElemShuffleMask(N, 8, 1))
2172     return false;
2173 
2174   unsigned M0 = N->getMaskElt(0) / 8;
2175   unsigned M1 = N->getMaskElt(8) / 8;
2176   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2177 
2178   // If both vector operands for the shuffle are the same vector, the mask will
2179   // contain only elements from the first one and the second one will be undef.
2180   if (N->getOperand(1).isUndef()) {
2181     if ((M0 | M1) < 2) {
2182       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2183       Swap = false;
2184       return true;
2185     } else
2186       return false;
2187   }
2188 
2189   if (IsLE) {
2190     if (M0 > 1 && M1 < 2) {
2191       Swap = false;
2192     } else if (M0 < 2 && M1 > 1) {
2193       M0 = (M0 + 2) % 4;
2194       M1 = (M1 + 2) % 4;
2195       Swap = true;
2196     } else
2197       return false;
2198 
2199     // Note: if control flow comes here that means Swap is already set above
2200     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2201     return true;
2202   } else { // BE
2203     if (M0 < 2 && M1 > 1) {
2204       Swap = false;
2205     } else if (M0 > 1 && M1 < 2) {
2206       M0 = (M0 + 2) % 4;
2207       M1 = (M1 + 2) % 4;
2208       Swap = true;
2209     } else
2210       return false;
2211 
2212     // Note: if control flow comes here that means Swap is already set above
2213     DM = (M0 << 1) + (M1 & 1);
2214     return true;
2215   }
2216 }
2217 
2218 
2219 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2220 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2221 /// elements are counted from the left of the vector register).
2222 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2223                                          SelectionDAG &DAG) {
2224   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2225   assert(isSplatShuffleMask(SVOp, EltSize));
2226   if (DAG.getDataLayout().isLittleEndian())
2227     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2228   else
2229     return SVOp->getMaskElt(0) / EltSize;
2230 }
2231 
2232 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2233 /// by using a vspltis[bhw] instruction of the specified element size, return
2234 /// the constant being splatted.  The ByteSize field indicates the number of
2235 /// bytes of each element [124] -> [bhw].
2236 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2237   SDValue OpVal(nullptr, 0);
2238 
2239   // If ByteSize of the splat is bigger than the element size of the
2240   // build_vector, then we have a case where we are checking for a splat where
2241   // multiple elements of the buildvector are folded together into a single
2242   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2243   unsigned EltSize = 16/N->getNumOperands();
2244   if (EltSize < ByteSize) {
2245     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2246     SDValue UniquedVals[4];
2247     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2248 
2249     // See if all of the elements in the buildvector agree across.
2250     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2251       if (N->getOperand(i).isUndef()) continue;
2252       // If the element isn't a constant, bail fully out.
2253       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2254 
2255       if (!UniquedVals[i&(Multiple-1)].getNode())
2256         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2257       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2258         return SDValue();  // no match.
2259     }
2260 
2261     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2262     // either constant or undef values that are identical for each chunk.  See
2263     // if these chunks can form into a larger vspltis*.
2264 
2265     // Check to see if all of the leading entries are either 0 or -1.  If
2266     // neither, then this won't fit into the immediate field.
2267     bool LeadingZero = true;
2268     bool LeadingOnes = true;
2269     for (unsigned i = 0; i != Multiple-1; ++i) {
2270       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2271 
2272       LeadingZero &= isNullConstant(UniquedVals[i]);
2273       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2274     }
2275     // Finally, check the least significant entry.
2276     if (LeadingZero) {
2277       if (!UniquedVals[Multiple-1].getNode())
2278         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2279       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2280       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2281         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2282     }
2283     if (LeadingOnes) {
2284       if (!UniquedVals[Multiple-1].getNode())
2285         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2286       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2287       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2288         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2289     }
2290 
2291     return SDValue();
2292   }
2293 
2294   // Check to see if this buildvec has a single non-undef value in its elements.
2295   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2296     if (N->getOperand(i).isUndef()) continue;
2297     if (!OpVal.getNode())
2298       OpVal = N->getOperand(i);
2299     else if (OpVal != N->getOperand(i))
2300       return SDValue();
2301   }
2302 
2303   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2304 
2305   unsigned ValSizeInBytes = EltSize;
2306   uint64_t Value = 0;
2307   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2308     Value = CN->getZExtValue();
2309   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2310     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2311     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2312   }
2313 
2314   // If the splat value is larger than the element value, then we can never do
2315   // this splat.  The only case that we could fit the replicated bits into our
2316   // immediate field for would be zero, and we prefer to use vxor for it.
2317   if (ValSizeInBytes < ByteSize) return SDValue();
2318 
2319   // If the element value is larger than the splat value, check if it consists
2320   // of a repeated bit pattern of size ByteSize.
2321   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2322     return SDValue();
2323 
2324   // Properly sign extend the value.
2325   int MaskVal = SignExtend32(Value, ByteSize * 8);
2326 
2327   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2328   if (MaskVal == 0) return SDValue();
2329 
2330   // Finally, if this value fits in a 5 bit sext field, return it
2331   if (SignExtend32<5>(MaskVal) == MaskVal)
2332     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2333   return SDValue();
2334 }
2335 
2336 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2337 /// amount, otherwise return -1.
2338 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2339   EVT VT = N->getValueType(0);
2340   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2341     return -1;
2342 
2343   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2344 
2345   // Find the first non-undef value in the shuffle mask.
2346   unsigned i;
2347   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2348     /*search*/;
2349 
2350   if (i == 4) return -1;  // all undef.
2351 
2352   // Otherwise, check to see if the rest of the elements are consecutively
2353   // numbered from this value.
2354   unsigned ShiftAmt = SVOp->getMaskElt(i);
2355   if (ShiftAmt < i) return -1;
2356   ShiftAmt -= i;
2357 
2358   // Check the rest of the elements to see if they are consecutive.
2359   for (++i; i != 4; ++i)
2360     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2361       return -1;
2362 
2363   return ShiftAmt;
2364 }
2365 
2366 //===----------------------------------------------------------------------===//
2367 //  Addressing Mode Selection
2368 //===----------------------------------------------------------------------===//
2369 
2370 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2371 /// or 64-bit immediate, and if the value can be accurately represented as a
2372 /// sign extension from a 16-bit value.  If so, this returns true and the
2373 /// immediate.
2374 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2375   if (!isa<ConstantSDNode>(N))
2376     return false;
2377 
2378   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2379   if (N->getValueType(0) == MVT::i32)
2380     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2381   else
2382     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2383 }
2384 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2385   return isIntS16Immediate(Op.getNode(), Imm);
2386 }
2387 
2388 
2389 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2390 /// be represented as an indexed [r+r] operation.
2391 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2392                                                SDValue &Index,
2393                                                SelectionDAG &DAG) const {
2394   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2395       UI != E; ++UI) {
2396     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2397       if (Memop->getMemoryVT() == MVT::f64) {
2398           Base = N.getOperand(0);
2399           Index = N.getOperand(1);
2400           return true;
2401       }
2402     }
2403   }
2404   return false;
2405 }
2406 
2407 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2408 /// can be represented as an indexed [r+r] operation.  Returns false if it
2409 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2410 /// non-zero and N can be represented by a base register plus a signed 16-bit
2411 /// displacement, make a more precise judgement by checking (displacement % \p
2412 /// EncodingAlignment).
2413 bool PPCTargetLowering::SelectAddressRegReg(
2414     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2415     MaybeAlign EncodingAlignment) const {
2416   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2417   // a [pc+imm].
2418   if (SelectAddressPCRel(N, Base))
2419     return false;
2420 
2421   int16_t Imm = 0;
2422   if (N.getOpcode() == ISD::ADD) {
2423     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2424     // SPE load/store can only handle 8-bit offsets.
2425     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2426         return true;
2427     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2428         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2429       return false; // r+i
2430     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2431       return false;    // r+i
2432 
2433     Base = N.getOperand(0);
2434     Index = N.getOperand(1);
2435     return true;
2436   } else if (N.getOpcode() == ISD::OR) {
2437     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2438         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2439       return false; // r+i can fold it if we can.
2440 
2441     // If this is an or of disjoint bitfields, we can codegen this as an add
2442     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2443     // disjoint.
2444     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2445 
2446     if (LHSKnown.Zero.getBoolValue()) {
2447       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2448       // If all of the bits are known zero on the LHS or RHS, the add won't
2449       // carry.
2450       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2451         Base = N.getOperand(0);
2452         Index = N.getOperand(1);
2453         return true;
2454       }
2455     }
2456   }
2457 
2458   return false;
2459 }
2460 
2461 // If we happen to be doing an i64 load or store into a stack slot that has
2462 // less than a 4-byte alignment, then the frame-index elimination may need to
2463 // use an indexed load or store instruction (because the offset may not be a
2464 // multiple of 4). The extra register needed to hold the offset comes from the
2465 // register scavenger, and it is possible that the scavenger will need to use
2466 // an emergency spill slot. As a result, we need to make sure that a spill slot
2467 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2468 // stack slot.
2469 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2470   // FIXME: This does not handle the LWA case.
2471   if (VT != MVT::i64)
2472     return;
2473 
2474   // NOTE: We'll exclude negative FIs here, which come from argument
2475   // lowering, because there are no known test cases triggering this problem
2476   // using packed structures (or similar). We can remove this exclusion if
2477   // we find such a test case. The reason why this is so test-case driven is
2478   // because this entire 'fixup' is only to prevent crashes (from the
2479   // register scavenger) on not-really-valid inputs. For example, if we have:
2480   //   %a = alloca i1
2481   //   %b = bitcast i1* %a to i64*
2482   //   store i64* a, i64 b
2483   // then the store should really be marked as 'align 1', but is not. If it
2484   // were marked as 'align 1' then the indexed form would have been
2485   // instruction-selected initially, and the problem this 'fixup' is preventing
2486   // won't happen regardless.
2487   if (FrameIdx < 0)
2488     return;
2489 
2490   MachineFunction &MF = DAG.getMachineFunction();
2491   MachineFrameInfo &MFI = MF.getFrameInfo();
2492 
2493   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2494     return;
2495 
2496   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2497   FuncInfo->setHasNonRISpills();
2498 }
2499 
2500 /// Returns true if the address N can be represented by a base register plus
2501 /// a signed 16-bit displacement [r+imm], and if it is not better
2502 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2503 /// displacements that are multiples of that value.
2504 bool PPCTargetLowering::SelectAddressRegImm(
2505     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2506     MaybeAlign EncodingAlignment) const {
2507   // FIXME dl should come from parent load or store, not from address
2508   SDLoc dl(N);
2509 
2510   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2511   // a [pc+imm].
2512   if (SelectAddressPCRel(N, Base))
2513     return false;
2514 
2515   // If this can be more profitably realized as r+r, fail.
2516   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2517     return false;
2518 
2519   if (N.getOpcode() == ISD::ADD) {
2520     int16_t imm = 0;
2521     if (isIntS16Immediate(N.getOperand(1), imm) &&
2522         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2523       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2524       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2525         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2526         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2527       } else {
2528         Base = N.getOperand(0);
2529       }
2530       return true; // [r+i]
2531     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2532       // Match LOAD (ADD (X, Lo(G))).
2533       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2534              && "Cannot handle constant offsets yet!");
2535       Disp = N.getOperand(1).getOperand(0);  // The global address.
2536       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2537              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2538              Disp.getOpcode() == ISD::TargetConstantPool ||
2539              Disp.getOpcode() == ISD::TargetJumpTable);
2540       Base = N.getOperand(0);
2541       return true;  // [&g+r]
2542     }
2543   } else if (N.getOpcode() == ISD::OR) {
2544     int16_t imm = 0;
2545     if (isIntS16Immediate(N.getOperand(1), imm) &&
2546         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2547       // If this is an or of disjoint bitfields, we can codegen this as an add
2548       // (for better address arithmetic) if the LHS and RHS of the OR are
2549       // provably disjoint.
2550       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2551 
2552       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2553         // If all of the bits are known zero on the LHS or RHS, the add won't
2554         // carry.
2555         if (FrameIndexSDNode *FI =
2556               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2557           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2558           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2559         } else {
2560           Base = N.getOperand(0);
2561         }
2562         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2563         return true;
2564       }
2565     }
2566   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2567     // Loading from a constant address.
2568 
2569     // If this address fits entirely in a 16-bit sext immediate field, codegen
2570     // this as "d, 0"
2571     int16_t Imm;
2572     if (isIntS16Immediate(CN, Imm) &&
2573         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2574       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2575       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2576                              CN->getValueType(0));
2577       return true;
2578     }
2579 
2580     // Handle 32-bit sext immediates with LIS + addr mode.
2581     if ((CN->getValueType(0) == MVT::i32 ||
2582          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2583         (!EncodingAlignment ||
2584          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2585       int Addr = (int)CN->getZExtValue();
2586 
2587       // Otherwise, break this down into an LIS + disp.
2588       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2589 
2590       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2591                                    MVT::i32);
2592       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2593       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2594       return true;
2595     }
2596   }
2597 
2598   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2599   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2600     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2601     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2602   } else
2603     Base = N;
2604   return true;      // [r+0]
2605 }
2606 
2607 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2608 /// represented as an indexed [r+r] operation.
2609 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2610                                                 SDValue &Index,
2611                                                 SelectionDAG &DAG) const {
2612   // Check to see if we can easily represent this as an [r+r] address.  This
2613   // will fail if it thinks that the address is more profitably represented as
2614   // reg+imm, e.g. where imm = 0.
2615   if (SelectAddressRegReg(N, Base, Index, DAG))
2616     return true;
2617 
2618   // If the address is the result of an add, we will utilize the fact that the
2619   // address calculation includes an implicit add.  However, we can reduce
2620   // register pressure if we do not materialize a constant just for use as the
2621   // index register.  We only get rid of the add if it is not an add of a
2622   // value and a 16-bit signed constant and both have a single use.
2623   int16_t imm = 0;
2624   if (N.getOpcode() == ISD::ADD &&
2625       (!isIntS16Immediate(N.getOperand(1), imm) ||
2626        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2627     Base = N.getOperand(0);
2628     Index = N.getOperand(1);
2629     return true;
2630   }
2631 
2632   // Otherwise, do it the hard way, using R0 as the base register.
2633   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2634                          N.getValueType());
2635   Index = N;
2636   return true;
2637 }
2638 
2639 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2640   Ty *PCRelCand = dyn_cast<Ty>(N);
2641   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2642 }
2643 
2644 /// Returns true if this address is a PC Relative address.
2645 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2646 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2647 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2648   // This is a materialize PC Relative node. Always select this as PC Relative.
2649   Base = N;
2650   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2651     return true;
2652   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2653       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2654       isValidPCRelNode<JumpTableSDNode>(N) ||
2655       isValidPCRelNode<BlockAddressSDNode>(N))
2656     return true;
2657   return false;
2658 }
2659 
2660 /// Returns true if we should use a direct load into vector instruction
2661 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2662 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2663 
2664   // If there are any other uses other than scalar to vector, then we should
2665   // keep it as a scalar load -> direct move pattern to prevent multiple
2666   // loads.
2667   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2668   if (!LD)
2669     return false;
2670 
2671   EVT MemVT = LD->getMemoryVT();
2672   if (!MemVT.isSimple())
2673     return false;
2674   switch(MemVT.getSimpleVT().SimpleTy) {
2675   case MVT::i64:
2676     break;
2677   case MVT::i32:
2678     if (!ST.hasP8Vector())
2679       return false;
2680     break;
2681   case MVT::i16:
2682   case MVT::i8:
2683     if (!ST.hasP9Vector())
2684       return false;
2685     break;
2686   default:
2687     return false;
2688   }
2689 
2690   SDValue LoadedVal(N, 0);
2691   if (!LoadedVal.hasOneUse())
2692     return false;
2693 
2694   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2695        UI != UE; ++UI)
2696     if (UI.getUse().get().getResNo() == 0 &&
2697         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2698         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2699       return false;
2700 
2701   return true;
2702 }
2703 
2704 /// getPreIndexedAddressParts - returns true by value, base pointer and
2705 /// offset pointer and addressing mode by reference if the node's address
2706 /// can be legally represented as pre-indexed load / store address.
2707 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2708                                                   SDValue &Offset,
2709                                                   ISD::MemIndexedMode &AM,
2710                                                   SelectionDAG &DAG) const {
2711   if (DisablePPCPreinc) return false;
2712 
2713   bool isLoad = true;
2714   SDValue Ptr;
2715   EVT VT;
2716   unsigned Alignment;
2717   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2718     Ptr = LD->getBasePtr();
2719     VT = LD->getMemoryVT();
2720     Alignment = LD->getAlignment();
2721   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2722     Ptr = ST->getBasePtr();
2723     VT  = ST->getMemoryVT();
2724     Alignment = ST->getAlignment();
2725     isLoad = false;
2726   } else
2727     return false;
2728 
2729   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2730   // instructions because we can fold these into a more efficient instruction
2731   // instead, (such as LXSD).
2732   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2733     return false;
2734   }
2735 
2736   // PowerPC doesn't have preinc load/store instructions for vectors
2737   if (VT.isVector())
2738     return false;
2739 
2740   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2741     // Common code will reject creating a pre-inc form if the base pointer
2742     // is a frame index, or if N is a store and the base pointer is either
2743     // the same as or a predecessor of the value being stored.  Check for
2744     // those situations here, and try with swapped Base/Offset instead.
2745     bool Swap = false;
2746 
2747     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2748       Swap = true;
2749     else if (!isLoad) {
2750       SDValue Val = cast<StoreSDNode>(N)->getValue();
2751       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2752         Swap = true;
2753     }
2754 
2755     if (Swap)
2756       std::swap(Base, Offset);
2757 
2758     AM = ISD::PRE_INC;
2759     return true;
2760   }
2761 
2762   // LDU/STU can only handle immediates that are a multiple of 4.
2763   if (VT != MVT::i64) {
2764     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2765       return false;
2766   } else {
2767     // LDU/STU need an address with at least 4-byte alignment.
2768     if (Alignment < 4)
2769       return false;
2770 
2771     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2772       return false;
2773   }
2774 
2775   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2776     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2777     // sext i32 to i64 when addr mode is r+i.
2778     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2779         LD->getExtensionType() == ISD::SEXTLOAD &&
2780         isa<ConstantSDNode>(Offset))
2781       return false;
2782   }
2783 
2784   AM = ISD::PRE_INC;
2785   return true;
2786 }
2787 
2788 //===----------------------------------------------------------------------===//
2789 //  LowerOperation implementation
2790 //===----------------------------------------------------------------------===//
2791 
2792 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2793 /// and LoOpFlags to the target MO flags.
2794 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2795                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2796                                const GlobalValue *GV = nullptr) {
2797   HiOpFlags = PPCII::MO_HA;
2798   LoOpFlags = PPCII::MO_LO;
2799 
2800   // Don't use the pic base if not in PIC relocation model.
2801   if (IsPIC) {
2802     HiOpFlags |= PPCII::MO_PIC_FLAG;
2803     LoOpFlags |= PPCII::MO_PIC_FLAG;
2804   }
2805 }
2806 
2807 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2808                              SelectionDAG &DAG) {
2809   SDLoc DL(HiPart);
2810   EVT PtrVT = HiPart.getValueType();
2811   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2812 
2813   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2814   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2815 
2816   // With PIC, the first instruction is actually "GR+hi(&G)".
2817   if (isPIC)
2818     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2819                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2820 
2821   // Generate non-pic code that has direct accesses to the constant pool.
2822   // The address of the global is just (hi(&g)+lo(&g)).
2823   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2824 }
2825 
2826 static void setUsesTOCBasePtr(MachineFunction &MF) {
2827   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2828   FuncInfo->setUsesTOCBasePtr();
2829 }
2830 
2831 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2832   setUsesTOCBasePtr(DAG.getMachineFunction());
2833 }
2834 
2835 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2836                                        SDValue GA) const {
2837   const bool Is64Bit = Subtarget.isPPC64();
2838   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2839   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2840                         : Subtarget.isAIXABI()
2841                               ? DAG.getRegister(PPC::R2, VT)
2842                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2843   SDValue Ops[] = { GA, Reg };
2844   return DAG.getMemIntrinsicNode(
2845       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2846       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2847       MachineMemOperand::MOLoad);
2848 }
2849 
2850 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2851                                              SelectionDAG &DAG) const {
2852   EVT PtrVT = Op.getValueType();
2853   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2854   const Constant *C = CP->getConstVal();
2855 
2856   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2857   // The actual address of the GlobalValue is stored in the TOC.
2858   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2859     if (Subtarget.isUsingPCRelativeCalls()) {
2860       SDLoc DL(CP);
2861       EVT Ty = getPointerTy(DAG.getDataLayout());
2862       SDValue ConstPool = DAG.getTargetConstantPool(
2863           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2864       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2865     }
2866     setUsesTOCBasePtr(DAG);
2867     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2868     return getTOCEntry(DAG, SDLoc(CP), GA);
2869   }
2870 
2871   unsigned MOHiFlag, MOLoFlag;
2872   bool IsPIC = isPositionIndependent();
2873   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2874 
2875   if (IsPIC && Subtarget.isSVR4ABI()) {
2876     SDValue GA =
2877         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2878     return getTOCEntry(DAG, SDLoc(CP), GA);
2879   }
2880 
2881   SDValue CPIHi =
2882       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2883   SDValue CPILo =
2884       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2885   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2886 }
2887 
2888 // For 64-bit PowerPC, prefer the more compact relative encodings.
2889 // This trades 32 bits per jump table entry for one or two instructions
2890 // on the jump site.
2891 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2892   if (isJumpTableRelative())
2893     return MachineJumpTableInfo::EK_LabelDifference32;
2894 
2895   return TargetLowering::getJumpTableEncoding();
2896 }
2897 
2898 bool PPCTargetLowering::isJumpTableRelative() const {
2899   if (UseAbsoluteJumpTables)
2900     return false;
2901   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2902     return true;
2903   return TargetLowering::isJumpTableRelative();
2904 }
2905 
2906 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2907                                                     SelectionDAG &DAG) const {
2908   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2909     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2910 
2911   switch (getTargetMachine().getCodeModel()) {
2912   case CodeModel::Small:
2913   case CodeModel::Medium:
2914     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2915   default:
2916     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2917                        getPointerTy(DAG.getDataLayout()));
2918   }
2919 }
2920 
2921 const MCExpr *
2922 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2923                                                 unsigned JTI,
2924                                                 MCContext &Ctx) const {
2925   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2926     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2927 
2928   switch (getTargetMachine().getCodeModel()) {
2929   case CodeModel::Small:
2930   case CodeModel::Medium:
2931     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2932   default:
2933     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2934   }
2935 }
2936 
2937 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2938   EVT PtrVT = Op.getValueType();
2939   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2940 
2941   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2942   if (Subtarget.isUsingPCRelativeCalls()) {
2943     SDLoc DL(JT);
2944     EVT Ty = getPointerTy(DAG.getDataLayout());
2945     SDValue GA =
2946         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2947     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2948     return MatAddr;
2949   }
2950 
2951   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2952   // The actual address of the GlobalValue is stored in the TOC.
2953   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2954     setUsesTOCBasePtr(DAG);
2955     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2956     return getTOCEntry(DAG, SDLoc(JT), GA);
2957   }
2958 
2959   unsigned MOHiFlag, MOLoFlag;
2960   bool IsPIC = isPositionIndependent();
2961   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2962 
2963   if (IsPIC && Subtarget.isSVR4ABI()) {
2964     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2965                                         PPCII::MO_PIC_FLAG);
2966     return getTOCEntry(DAG, SDLoc(GA), GA);
2967   }
2968 
2969   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2970   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2971   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2972 }
2973 
2974 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2975                                              SelectionDAG &DAG) const {
2976   EVT PtrVT = Op.getValueType();
2977   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2978   const BlockAddress *BA = BASDN->getBlockAddress();
2979 
2980   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2981   if (Subtarget.isUsingPCRelativeCalls()) {
2982     SDLoc DL(BASDN);
2983     EVT Ty = getPointerTy(DAG.getDataLayout());
2984     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2985                                            PPCII::MO_PCREL_FLAG);
2986     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2987     return MatAddr;
2988   }
2989 
2990   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2991   // The actual BlockAddress is stored in the TOC.
2992   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2993     setUsesTOCBasePtr(DAG);
2994     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2995     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2996   }
2997 
2998   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2999   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3000     return getTOCEntry(
3001         DAG, SDLoc(BASDN),
3002         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3003 
3004   unsigned MOHiFlag, MOLoFlag;
3005   bool IsPIC = isPositionIndependent();
3006   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3007   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3008   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3009   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3010 }
3011 
3012 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3013                                               SelectionDAG &DAG) const {
3014   // FIXME: TLS addresses currently use medium model code sequences,
3015   // which is the most useful form.  Eventually support for small and
3016   // large models could be added if users need it, at the cost of
3017   // additional complexity.
3018   if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS)
3019     report_fatal_error("Thread local storage is not supported with pc-relative"
3020                        " addressing - please compile with -mno-pcrel");
3021   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3022   if (DAG.getTarget().useEmulatedTLS())
3023     return LowerToTLSEmulatedModel(GA, DAG);
3024 
3025   SDLoc dl(GA);
3026   const GlobalValue *GV = GA->getGlobal();
3027   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3028   bool is64bit = Subtarget.isPPC64();
3029   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3030   PICLevel::Level picLevel = M->getPICLevel();
3031 
3032   const TargetMachine &TM = getTargetMachine();
3033   TLSModel::Model Model = TM.getTLSModel(GV);
3034 
3035   if (Model == TLSModel::LocalExec) {
3036     if (Subtarget.isUsingPCRelativeCalls()) {
3037       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3038       SDValue TGA = DAG.getTargetGlobalAddress(
3039           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3040       SDValue MatAddr =
3041           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3042       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3043     }
3044 
3045     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3046                                                PPCII::MO_TPREL_HA);
3047     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3048                                                PPCII::MO_TPREL_LO);
3049     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3050                              : DAG.getRegister(PPC::R2, MVT::i32);
3051 
3052     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3053     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3054   }
3055 
3056   if (Model == TLSModel::InitialExec) {
3057     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3058     SDValue TGA = DAG.getTargetGlobalAddress(
3059         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3060     SDValue TGATLS = DAG.getTargetGlobalAddress(
3061         GV, dl, PtrVT, 0,
3062         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3063     SDValue TPOffset;
3064     if (IsPCRel) {
3065       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3066       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3067                              MachinePointerInfo());
3068     } else {
3069       SDValue GOTPtr;
3070       if (is64bit) {
3071         setUsesTOCBasePtr(DAG);
3072         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3073         GOTPtr =
3074             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3075       } else {
3076         if (!TM.isPositionIndependent())
3077           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3078         else if (picLevel == PICLevel::SmallPIC)
3079           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3080         else
3081           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3082       }
3083       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3084     }
3085     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3086   }
3087 
3088   if (Model == TLSModel::GeneralDynamic) {
3089     if (Subtarget.isUsingPCRelativeCalls()) {
3090       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3091                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3092       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3093     }
3094 
3095     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3096     SDValue GOTPtr;
3097     if (is64bit) {
3098       setUsesTOCBasePtr(DAG);
3099       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3100       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3101                                    GOTReg, TGA);
3102     } else {
3103       if (picLevel == PICLevel::SmallPIC)
3104         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3105       else
3106         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3107     }
3108     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3109                        GOTPtr, TGA, TGA);
3110   }
3111 
3112   if (Model == TLSModel::LocalDynamic) {
3113     if (Subtarget.isUsingPCRelativeCalls()) {
3114       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3115                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3116       SDValue MatPCRel =
3117           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3118       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3119     }
3120 
3121     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3122     SDValue GOTPtr;
3123     if (is64bit) {
3124       setUsesTOCBasePtr(DAG);
3125       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3126       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3127                            GOTReg, TGA);
3128     } else {
3129       if (picLevel == PICLevel::SmallPIC)
3130         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3131       else
3132         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3133     }
3134     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3135                                   PtrVT, GOTPtr, TGA, TGA);
3136     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3137                                       PtrVT, TLSAddr, TGA);
3138     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3139   }
3140 
3141   llvm_unreachable("Unknown TLS model!");
3142 }
3143 
3144 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3145                                               SelectionDAG &DAG) const {
3146   EVT PtrVT = Op.getValueType();
3147   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3148   SDLoc DL(GSDN);
3149   const GlobalValue *GV = GSDN->getGlobal();
3150 
3151   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3152   // The actual address of the GlobalValue is stored in the TOC.
3153   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3154     if (Subtarget.isUsingPCRelativeCalls()) {
3155       EVT Ty = getPointerTy(DAG.getDataLayout());
3156       if (isAccessedAsGotIndirect(Op)) {
3157         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3158                                                 PPCII::MO_PCREL_FLAG |
3159                                                     PPCII::MO_GOT_FLAG);
3160         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3161         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3162                                    MachinePointerInfo());
3163         return Load;
3164       } else {
3165         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3166                                                 PPCII::MO_PCREL_FLAG);
3167         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3168       }
3169     }
3170     setUsesTOCBasePtr(DAG);
3171     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3172     return getTOCEntry(DAG, DL, GA);
3173   }
3174 
3175   unsigned MOHiFlag, MOLoFlag;
3176   bool IsPIC = isPositionIndependent();
3177   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3178 
3179   if (IsPIC && Subtarget.isSVR4ABI()) {
3180     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3181                                             GSDN->getOffset(),
3182                                             PPCII::MO_PIC_FLAG);
3183     return getTOCEntry(DAG, DL, GA);
3184   }
3185 
3186   SDValue GAHi =
3187     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3188   SDValue GALo =
3189     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3190 
3191   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3192 }
3193 
3194 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3195   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3196   SDLoc dl(Op);
3197 
3198   if (Op.getValueType() == MVT::v2i64) {
3199     // When the operands themselves are v2i64 values, we need to do something
3200     // special because VSX has no underlying comparison operations for these.
3201     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3202       // Equality can be handled by casting to the legal type for Altivec
3203       // comparisons, everything else needs to be expanded.
3204       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3205         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3206                  DAG.getSetCC(dl, MVT::v4i32,
3207                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3208                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3209                    CC));
3210       }
3211 
3212       return SDValue();
3213     }
3214 
3215     // We handle most of these in the usual way.
3216     return Op;
3217   }
3218 
3219   // If we're comparing for equality to zero, expose the fact that this is
3220   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3221   // fold the new nodes.
3222   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3223     return V;
3224 
3225   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3226     // Leave comparisons against 0 and -1 alone for now, since they're usually
3227     // optimized.  FIXME: revisit this when we can custom lower all setcc
3228     // optimizations.
3229     if (C->isAllOnesValue() || C->isNullValue())
3230       return SDValue();
3231   }
3232 
3233   // If we have an integer seteq/setne, turn it into a compare against zero
3234   // by xor'ing the rhs with the lhs, which is faster than setting a
3235   // condition register, reading it back out, and masking the correct bit.  The
3236   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3237   // the result to other bit-twiddling opportunities.
3238   EVT LHSVT = Op.getOperand(0).getValueType();
3239   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3240     EVT VT = Op.getValueType();
3241     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3242                                 Op.getOperand(1));
3243     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3244   }
3245   return SDValue();
3246 }
3247 
3248 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3249   SDNode *Node = Op.getNode();
3250   EVT VT = Node->getValueType(0);
3251   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3252   SDValue InChain = Node->getOperand(0);
3253   SDValue VAListPtr = Node->getOperand(1);
3254   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3255   SDLoc dl(Node);
3256 
3257   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3258 
3259   // gpr_index
3260   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3261                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3262   InChain = GprIndex.getValue(1);
3263 
3264   if (VT == MVT::i64) {
3265     // Check if GprIndex is even
3266     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3267                                  DAG.getConstant(1, dl, MVT::i32));
3268     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3269                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3270     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3271                                           DAG.getConstant(1, dl, MVT::i32));
3272     // Align GprIndex to be even if it isn't
3273     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3274                            GprIndex);
3275   }
3276 
3277   // fpr index is 1 byte after gpr
3278   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3279                                DAG.getConstant(1, dl, MVT::i32));
3280 
3281   // fpr
3282   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3283                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3284   InChain = FprIndex.getValue(1);
3285 
3286   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3287                                        DAG.getConstant(8, dl, MVT::i32));
3288 
3289   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3290                                         DAG.getConstant(4, dl, MVT::i32));
3291 
3292   // areas
3293   SDValue OverflowArea =
3294       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3295   InChain = OverflowArea.getValue(1);
3296 
3297   SDValue RegSaveArea =
3298       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3299   InChain = RegSaveArea.getValue(1);
3300 
3301   // select overflow_area if index > 8
3302   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3303                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3304 
3305   // adjustment constant gpr_index * 4/8
3306   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3307                                     VT.isInteger() ? GprIndex : FprIndex,
3308                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3309                                                     MVT::i32));
3310 
3311   // OurReg = RegSaveArea + RegConstant
3312   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3313                                RegConstant);
3314 
3315   // Floating types are 32 bytes into RegSaveArea
3316   if (VT.isFloatingPoint())
3317     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3318                          DAG.getConstant(32, dl, MVT::i32));
3319 
3320   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3321   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3322                                    VT.isInteger() ? GprIndex : FprIndex,
3323                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3324                                                    MVT::i32));
3325 
3326   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3327                               VT.isInteger() ? VAListPtr : FprPtr,
3328                               MachinePointerInfo(SV), MVT::i8);
3329 
3330   // determine if we should load from reg_save_area or overflow_area
3331   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3332 
3333   // increase overflow_area by 4/8 if gpr/fpr > 8
3334   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3335                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3336                                           dl, MVT::i32));
3337 
3338   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3339                              OverflowAreaPlusN);
3340 
3341   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3342                               MachinePointerInfo(), MVT::i32);
3343 
3344   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3345 }
3346 
3347 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3348   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3349 
3350   // We have to copy the entire va_list struct:
3351   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3352   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3353                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3354                        false, true, false, MachinePointerInfo(),
3355                        MachinePointerInfo());
3356 }
3357 
3358 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3359                                                   SelectionDAG &DAG) const {
3360   if (Subtarget.isAIXABI())
3361     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3362 
3363   return Op.getOperand(0);
3364 }
3365 
3366 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3367                                                 SelectionDAG &DAG) const {
3368   if (Subtarget.isAIXABI())
3369     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3370 
3371   SDValue Chain = Op.getOperand(0);
3372   SDValue Trmp = Op.getOperand(1); // trampoline
3373   SDValue FPtr = Op.getOperand(2); // nested function
3374   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3375   SDLoc dl(Op);
3376 
3377   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3378   bool isPPC64 = (PtrVT == MVT::i64);
3379   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3380 
3381   TargetLowering::ArgListTy Args;
3382   TargetLowering::ArgListEntry Entry;
3383 
3384   Entry.Ty = IntPtrTy;
3385   Entry.Node = Trmp; Args.push_back(Entry);
3386 
3387   // TrampSize == (isPPC64 ? 48 : 40);
3388   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3389                                isPPC64 ? MVT::i64 : MVT::i32);
3390   Args.push_back(Entry);
3391 
3392   Entry.Node = FPtr; Args.push_back(Entry);
3393   Entry.Node = Nest; Args.push_back(Entry);
3394 
3395   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3396   TargetLowering::CallLoweringInfo CLI(DAG);
3397   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3398       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3399       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3400 
3401   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3402   return CallResult.second;
3403 }
3404 
3405 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3406   MachineFunction &MF = DAG.getMachineFunction();
3407   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3408   EVT PtrVT = getPointerTy(MF.getDataLayout());
3409 
3410   SDLoc dl(Op);
3411 
3412   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3413     // vastart just stores the address of the VarArgsFrameIndex slot into the
3414     // memory location argument.
3415     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3416     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3417     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3418                         MachinePointerInfo(SV));
3419   }
3420 
3421   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3422   // We suppose the given va_list is already allocated.
3423   //
3424   // typedef struct {
3425   //  char gpr;     /* index into the array of 8 GPRs
3426   //                 * stored in the register save area
3427   //                 * gpr=0 corresponds to r3,
3428   //                 * gpr=1 to r4, etc.
3429   //                 */
3430   //  char fpr;     /* index into the array of 8 FPRs
3431   //                 * stored in the register save area
3432   //                 * fpr=0 corresponds to f1,
3433   //                 * fpr=1 to f2, etc.
3434   //                 */
3435   //  char *overflow_arg_area;
3436   //                /* location on stack that holds
3437   //                 * the next overflow argument
3438   //                 */
3439   //  char *reg_save_area;
3440   //               /* where r3:r10 and f1:f8 (if saved)
3441   //                * are stored
3442   //                */
3443   // } va_list[1];
3444 
3445   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3446   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3447   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3448                                             PtrVT);
3449   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3450                                  PtrVT);
3451 
3452   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3453   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3454 
3455   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3456   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3457 
3458   uint64_t FPROffset = 1;
3459   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3460 
3461   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3462 
3463   // Store first byte : number of int regs
3464   SDValue firstStore =
3465       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3466                         MachinePointerInfo(SV), MVT::i8);
3467   uint64_t nextOffset = FPROffset;
3468   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3469                                   ConstFPROffset);
3470 
3471   // Store second byte : number of float regs
3472   SDValue secondStore =
3473       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3474                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3475   nextOffset += StackOffset;
3476   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3477 
3478   // Store second word : arguments given on stack
3479   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3480                                     MachinePointerInfo(SV, nextOffset));
3481   nextOffset += FrameOffset;
3482   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3483 
3484   // Store third word : arguments given in registers
3485   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3486                       MachinePointerInfo(SV, nextOffset));
3487 }
3488 
3489 /// FPR - The set of FP registers that should be allocated for arguments
3490 /// on Darwin and AIX.
3491 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3492                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3493                                 PPC::F11, PPC::F12, PPC::F13};
3494 
3495 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3496 /// the stack.
3497 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3498                                        unsigned PtrByteSize) {
3499   unsigned ArgSize = ArgVT.getStoreSize();
3500   if (Flags.isByVal())
3501     ArgSize = Flags.getByValSize();
3502 
3503   // Round up to multiples of the pointer size, except for array members,
3504   // which are always packed.
3505   if (!Flags.isInConsecutiveRegs())
3506     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3507 
3508   return ArgSize;
3509 }
3510 
3511 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3512 /// on the stack.
3513 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3514                                          ISD::ArgFlagsTy Flags,
3515                                          unsigned PtrByteSize) {
3516   Align Alignment(PtrByteSize);
3517 
3518   // Altivec parameters are padded to a 16 byte boundary.
3519   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3520       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3521       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3522       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3523     Alignment = Align(16);
3524 
3525   // ByVal parameters are aligned as requested.
3526   if (Flags.isByVal()) {
3527     auto BVAlign = Flags.getNonZeroByValAlign();
3528     if (BVAlign > PtrByteSize) {
3529       if (BVAlign.value() % PtrByteSize != 0)
3530         llvm_unreachable(
3531             "ByVal alignment is not a multiple of the pointer size");
3532 
3533       Alignment = BVAlign;
3534     }
3535   }
3536 
3537   // Array members are always packed to their original alignment.
3538   if (Flags.isInConsecutiveRegs()) {
3539     // If the array member was split into multiple registers, the first
3540     // needs to be aligned to the size of the full type.  (Except for
3541     // ppcf128, which is only aligned as its f64 components.)
3542     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3543       Alignment = Align(OrigVT.getStoreSize());
3544     else
3545       Alignment = Align(ArgVT.getStoreSize());
3546   }
3547 
3548   return Alignment;
3549 }
3550 
3551 /// CalculateStackSlotUsed - Return whether this argument will use its
3552 /// stack slot (instead of being passed in registers).  ArgOffset,
3553 /// AvailableFPRs, and AvailableVRs must hold the current argument
3554 /// position, and will be updated to account for this argument.
3555 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3556                                    unsigned PtrByteSize, unsigned LinkageSize,
3557                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3558                                    unsigned &AvailableFPRs,
3559                                    unsigned &AvailableVRs) {
3560   bool UseMemory = false;
3561 
3562   // Respect alignment of argument on the stack.
3563   Align Alignment =
3564       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3565   ArgOffset = alignTo(ArgOffset, Alignment);
3566   // If there's no space left in the argument save area, we must
3567   // use memory (this check also catches zero-sized arguments).
3568   if (ArgOffset >= LinkageSize + ParamAreaSize)
3569     UseMemory = true;
3570 
3571   // Allocate argument on the stack.
3572   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3573   if (Flags.isInConsecutiveRegsLast())
3574     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3575   // If we overran the argument save area, we must use memory
3576   // (this check catches arguments passed partially in memory)
3577   if (ArgOffset > LinkageSize + ParamAreaSize)
3578     UseMemory = true;
3579 
3580   // However, if the argument is actually passed in an FPR or a VR,
3581   // we don't use memory after all.
3582   if (!Flags.isByVal()) {
3583     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3584       if (AvailableFPRs > 0) {
3585         --AvailableFPRs;
3586         return false;
3587       }
3588     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3589         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3590         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3591         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3592       if (AvailableVRs > 0) {
3593         --AvailableVRs;
3594         return false;
3595       }
3596   }
3597 
3598   return UseMemory;
3599 }
3600 
3601 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3602 /// ensure minimum alignment required for target.
3603 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3604                                      unsigned NumBytes) {
3605   return alignTo(NumBytes, Lowering->getStackAlign());
3606 }
3607 
3608 SDValue PPCTargetLowering::LowerFormalArguments(
3609     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3610     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3611     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3612   if (Subtarget.isAIXABI())
3613     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3614                                     InVals);
3615   if (Subtarget.is64BitELFABI())
3616     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3617                                        InVals);
3618   if (Subtarget.is32BitELFABI())
3619     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3620                                        InVals);
3621 
3622   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3623                                      InVals);
3624 }
3625 
3626 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3627     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3628     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3629     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3630 
3631   // 32-bit SVR4 ABI Stack Frame Layout:
3632   //              +-----------------------------------+
3633   //        +-->  |            Back chain             |
3634   //        |     +-----------------------------------+
3635   //        |     | Floating-point register save area |
3636   //        |     +-----------------------------------+
3637   //        |     |    General register save area     |
3638   //        |     +-----------------------------------+
3639   //        |     |          CR save word             |
3640   //        |     +-----------------------------------+
3641   //        |     |         VRSAVE save word          |
3642   //        |     +-----------------------------------+
3643   //        |     |         Alignment padding         |
3644   //        |     +-----------------------------------+
3645   //        |     |     Vector register save area     |
3646   //        |     +-----------------------------------+
3647   //        |     |       Local variable space        |
3648   //        |     +-----------------------------------+
3649   //        |     |        Parameter list area        |
3650   //        |     +-----------------------------------+
3651   //        |     |           LR save word            |
3652   //        |     +-----------------------------------+
3653   // SP-->  +---  |            Back chain             |
3654   //              +-----------------------------------+
3655   //
3656   // Specifications:
3657   //   System V Application Binary Interface PowerPC Processor Supplement
3658   //   AltiVec Technology Programming Interface Manual
3659 
3660   MachineFunction &MF = DAG.getMachineFunction();
3661   MachineFrameInfo &MFI = MF.getFrameInfo();
3662   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3663 
3664   EVT PtrVT = getPointerTy(MF.getDataLayout());
3665   // Potential tail calls could cause overwriting of argument stack slots.
3666   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3667                        (CallConv == CallingConv::Fast));
3668   const Align PtrAlign(4);
3669 
3670   // Assign locations to all of the incoming arguments.
3671   SmallVector<CCValAssign, 16> ArgLocs;
3672   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3673                  *DAG.getContext());
3674 
3675   // Reserve space for the linkage area on the stack.
3676   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3677   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3678   if (useSoftFloat())
3679     CCInfo.PreAnalyzeFormalArguments(Ins);
3680 
3681   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3682   CCInfo.clearWasPPCF128();
3683 
3684   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3685     CCValAssign &VA = ArgLocs[i];
3686 
3687     // Arguments stored in registers.
3688     if (VA.isRegLoc()) {
3689       const TargetRegisterClass *RC;
3690       EVT ValVT = VA.getValVT();
3691 
3692       switch (ValVT.getSimpleVT().SimpleTy) {
3693         default:
3694           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3695         case MVT::i1:
3696         case MVT::i32:
3697           RC = &PPC::GPRCRegClass;
3698           break;
3699         case MVT::f32:
3700           if (Subtarget.hasP8Vector())
3701             RC = &PPC::VSSRCRegClass;
3702           else if (Subtarget.hasSPE())
3703             RC = &PPC::GPRCRegClass;
3704           else
3705             RC = &PPC::F4RCRegClass;
3706           break;
3707         case MVT::f64:
3708           if (Subtarget.hasVSX())
3709             RC = &PPC::VSFRCRegClass;
3710           else if (Subtarget.hasSPE())
3711             // SPE passes doubles in GPR pairs.
3712             RC = &PPC::GPRCRegClass;
3713           else
3714             RC = &PPC::F8RCRegClass;
3715           break;
3716         case MVT::v16i8:
3717         case MVT::v8i16:
3718         case MVT::v4i32:
3719           RC = &PPC::VRRCRegClass;
3720           break;
3721         case MVT::v4f32:
3722           RC = &PPC::VRRCRegClass;
3723           break;
3724         case MVT::v2f64:
3725         case MVT::v2i64:
3726           RC = &PPC::VRRCRegClass;
3727           break;
3728       }
3729 
3730       SDValue ArgValue;
3731       // Transform the arguments stored in physical registers into
3732       // virtual ones.
3733       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3734         assert(i + 1 < e && "No second half of double precision argument");
3735         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3736         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3737         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3738         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3739         if (!Subtarget.isLittleEndian())
3740           std::swap (ArgValueLo, ArgValueHi);
3741         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3742                                ArgValueHi);
3743       } else {
3744         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3745         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3746                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3747         if (ValVT == MVT::i1)
3748           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3749       }
3750 
3751       InVals.push_back(ArgValue);
3752     } else {
3753       // Argument stored in memory.
3754       assert(VA.isMemLoc());
3755 
3756       // Get the extended size of the argument type in stack
3757       unsigned ArgSize = VA.getLocVT().getStoreSize();
3758       // Get the actual size of the argument type
3759       unsigned ObjSize = VA.getValVT().getStoreSize();
3760       unsigned ArgOffset = VA.getLocMemOffset();
3761       // Stack objects in PPC32 are right justified.
3762       ArgOffset += ArgSize - ObjSize;
3763       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3764 
3765       // Create load nodes to retrieve arguments from the stack.
3766       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3767       InVals.push_back(
3768           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3769     }
3770   }
3771 
3772   // Assign locations to all of the incoming aggregate by value arguments.
3773   // Aggregates passed by value are stored in the local variable space of the
3774   // caller's stack frame, right above the parameter list area.
3775   SmallVector<CCValAssign, 16> ByValArgLocs;
3776   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3777                       ByValArgLocs, *DAG.getContext());
3778 
3779   // Reserve stack space for the allocations in CCInfo.
3780   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3781 
3782   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3783 
3784   // Area that is at least reserved in the caller of this function.
3785   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3786   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3787 
3788   // Set the size that is at least reserved in caller of this function.  Tail
3789   // call optimized function's reserved stack space needs to be aligned so that
3790   // taking the difference between two stack areas will result in an aligned
3791   // stack.
3792   MinReservedArea =
3793       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3794   FuncInfo->setMinReservedArea(MinReservedArea);
3795 
3796   SmallVector<SDValue, 8> MemOps;
3797 
3798   // If the function takes variable number of arguments, make a frame index for
3799   // the start of the first vararg value... for expansion of llvm.va_start.
3800   if (isVarArg) {
3801     static const MCPhysReg GPArgRegs[] = {
3802       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3803       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3804     };
3805     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3806 
3807     static const MCPhysReg FPArgRegs[] = {
3808       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3809       PPC::F8
3810     };
3811     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3812 
3813     if (useSoftFloat() || hasSPE())
3814        NumFPArgRegs = 0;
3815 
3816     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3817     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3818 
3819     // Make room for NumGPArgRegs and NumFPArgRegs.
3820     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3821                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3822 
3823     FuncInfo->setVarArgsStackOffset(
3824       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3825                             CCInfo.getNextStackOffset(), true));
3826 
3827     FuncInfo->setVarArgsFrameIndex(
3828         MFI.CreateStackObject(Depth, Align(8), false));
3829     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3830 
3831     // The fixed integer arguments of a variadic function are stored to the
3832     // VarArgsFrameIndex on the stack so that they may be loaded by
3833     // dereferencing the result of va_next.
3834     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3835       // Get an existing live-in vreg, or add a new one.
3836       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3837       if (!VReg)
3838         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3839 
3840       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3841       SDValue Store =
3842           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3843       MemOps.push_back(Store);
3844       // Increment the address by four for the next argument to store
3845       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3846       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3847     }
3848 
3849     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3850     // is set.
3851     // The double arguments are stored to the VarArgsFrameIndex
3852     // on the stack.
3853     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3854       // Get an existing live-in vreg, or add a new one.
3855       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3856       if (!VReg)
3857         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3858 
3859       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3860       SDValue Store =
3861           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3862       MemOps.push_back(Store);
3863       // Increment the address by eight for the next argument to store
3864       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3865                                          PtrVT);
3866       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3867     }
3868   }
3869 
3870   if (!MemOps.empty())
3871     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3872 
3873   return Chain;
3874 }
3875 
3876 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3877 // value to MVT::i64 and then truncate to the correct register size.
3878 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3879                                              EVT ObjectVT, SelectionDAG &DAG,
3880                                              SDValue ArgVal,
3881                                              const SDLoc &dl) const {
3882   if (Flags.isSExt())
3883     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3884                          DAG.getValueType(ObjectVT));
3885   else if (Flags.isZExt())
3886     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3887                          DAG.getValueType(ObjectVT));
3888 
3889   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3890 }
3891 
3892 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3893     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3894     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3895     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3896   // TODO: add description of PPC stack frame format, or at least some docs.
3897   //
3898   bool isELFv2ABI = Subtarget.isELFv2ABI();
3899   bool isLittleEndian = Subtarget.isLittleEndian();
3900   MachineFunction &MF = DAG.getMachineFunction();
3901   MachineFrameInfo &MFI = MF.getFrameInfo();
3902   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3903 
3904   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3905          "fastcc not supported on varargs functions");
3906 
3907   EVT PtrVT = getPointerTy(MF.getDataLayout());
3908   // Potential tail calls could cause overwriting of argument stack slots.
3909   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3910                        (CallConv == CallingConv::Fast));
3911   unsigned PtrByteSize = 8;
3912   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3913 
3914   static const MCPhysReg GPR[] = {
3915     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3916     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3917   };
3918   static const MCPhysReg VR[] = {
3919     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3920     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3921   };
3922 
3923   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3924   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3925   const unsigned Num_VR_Regs  = array_lengthof(VR);
3926 
3927   // Do a first pass over the arguments to determine whether the ABI
3928   // guarantees that our caller has allocated the parameter save area
3929   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3930   // in the ELFv2 ABI, it is true if this is a vararg function or if
3931   // any parameter is located in a stack slot.
3932 
3933   bool HasParameterArea = !isELFv2ABI || isVarArg;
3934   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3935   unsigned NumBytes = LinkageSize;
3936   unsigned AvailableFPRs = Num_FPR_Regs;
3937   unsigned AvailableVRs = Num_VR_Regs;
3938   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3939     if (Ins[i].Flags.isNest())
3940       continue;
3941 
3942     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3943                                PtrByteSize, LinkageSize, ParamAreaSize,
3944                                NumBytes, AvailableFPRs, AvailableVRs))
3945       HasParameterArea = true;
3946   }
3947 
3948   // Add DAG nodes to load the arguments or copy them out of registers.  On
3949   // entry to a function on PPC, the arguments start after the linkage area,
3950   // although the first ones are often in registers.
3951 
3952   unsigned ArgOffset = LinkageSize;
3953   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3954   SmallVector<SDValue, 8> MemOps;
3955   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3956   unsigned CurArgIdx = 0;
3957   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3958     SDValue ArgVal;
3959     bool needsLoad = false;
3960     EVT ObjectVT = Ins[ArgNo].VT;
3961     EVT OrigVT = Ins[ArgNo].ArgVT;
3962     unsigned ObjSize = ObjectVT.getStoreSize();
3963     unsigned ArgSize = ObjSize;
3964     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3965     if (Ins[ArgNo].isOrigArg()) {
3966       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3967       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3968     }
3969     // We re-align the argument offset for each argument, except when using the
3970     // fast calling convention, when we need to make sure we do that only when
3971     // we'll actually use a stack slot.
3972     unsigned CurArgOffset;
3973     Align Alignment;
3974     auto ComputeArgOffset = [&]() {
3975       /* Respect alignment of argument on the stack.  */
3976       Alignment =
3977           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3978       ArgOffset = alignTo(ArgOffset, Alignment);
3979       CurArgOffset = ArgOffset;
3980     };
3981 
3982     if (CallConv != CallingConv::Fast) {
3983       ComputeArgOffset();
3984 
3985       /* Compute GPR index associated with argument offset.  */
3986       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3987       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3988     }
3989 
3990     // FIXME the codegen can be much improved in some cases.
3991     // We do not have to keep everything in memory.
3992     if (Flags.isByVal()) {
3993       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3994 
3995       if (CallConv == CallingConv::Fast)
3996         ComputeArgOffset();
3997 
3998       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3999       ObjSize = Flags.getByValSize();
4000       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4001       // Empty aggregate parameters do not take up registers.  Examples:
4002       //   struct { } a;
4003       //   union  { } b;
4004       //   int c[0];
4005       // etc.  However, we have to provide a place-holder in InVals, so
4006       // pretend we have an 8-byte item at the current address for that
4007       // purpose.
4008       if (!ObjSize) {
4009         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4010         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4011         InVals.push_back(FIN);
4012         continue;
4013       }
4014 
4015       // Create a stack object covering all stack doublewords occupied
4016       // by the argument.  If the argument is (fully or partially) on
4017       // the stack, or if the argument is fully in registers but the
4018       // caller has allocated the parameter save anyway, we can refer
4019       // directly to the caller's stack frame.  Otherwise, create a
4020       // local copy in our own frame.
4021       int FI;
4022       if (HasParameterArea ||
4023           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4024         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4025       else
4026         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4027       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4028 
4029       // Handle aggregates smaller than 8 bytes.
4030       if (ObjSize < PtrByteSize) {
4031         // The value of the object is its address, which differs from the
4032         // address of the enclosing doubleword on big-endian systems.
4033         SDValue Arg = FIN;
4034         if (!isLittleEndian) {
4035           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4036           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4037         }
4038         InVals.push_back(Arg);
4039 
4040         if (GPR_idx != Num_GPR_Regs) {
4041           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4042           FuncInfo->addLiveInAttr(VReg, Flags);
4043           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4044           SDValue Store;
4045 
4046           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4047             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4048                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4049             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4050                                       MachinePointerInfo(&*FuncArg), ObjType);
4051           } else {
4052             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4053             // store the whole register as-is to the parameter save area
4054             // slot.
4055             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4056                                  MachinePointerInfo(&*FuncArg));
4057           }
4058 
4059           MemOps.push_back(Store);
4060         }
4061         // Whether we copied from a register or not, advance the offset
4062         // into the parameter save area by a full doubleword.
4063         ArgOffset += PtrByteSize;
4064         continue;
4065       }
4066 
4067       // The value of the object is its address, which is the address of
4068       // its first stack doubleword.
4069       InVals.push_back(FIN);
4070 
4071       // Store whatever pieces of the object are in registers to memory.
4072       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4073         if (GPR_idx == Num_GPR_Regs)
4074           break;
4075 
4076         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4077         FuncInfo->addLiveInAttr(VReg, Flags);
4078         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4079         SDValue Addr = FIN;
4080         if (j) {
4081           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4082           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4083         }
4084         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4085                                      MachinePointerInfo(&*FuncArg, j));
4086         MemOps.push_back(Store);
4087         ++GPR_idx;
4088       }
4089       ArgOffset += ArgSize;
4090       continue;
4091     }
4092 
4093     switch (ObjectVT.getSimpleVT().SimpleTy) {
4094     default: llvm_unreachable("Unhandled argument type!");
4095     case MVT::i1:
4096     case MVT::i32:
4097     case MVT::i64:
4098       if (Flags.isNest()) {
4099         // The 'nest' parameter, if any, is passed in R11.
4100         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4101         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4102 
4103         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4104           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4105 
4106         break;
4107       }
4108 
4109       // These can be scalar arguments or elements of an integer array type
4110       // passed directly.  Clang may use those instead of "byval" aggregate
4111       // types to avoid forcing arguments to memory unnecessarily.
4112       if (GPR_idx != Num_GPR_Regs) {
4113         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4114         FuncInfo->addLiveInAttr(VReg, Flags);
4115         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4116 
4117         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4118           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4119           // value to MVT::i64 and then truncate to the correct register size.
4120           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4121       } else {
4122         if (CallConv == CallingConv::Fast)
4123           ComputeArgOffset();
4124 
4125         needsLoad = true;
4126         ArgSize = PtrByteSize;
4127       }
4128       if (CallConv != CallingConv::Fast || needsLoad)
4129         ArgOffset += 8;
4130       break;
4131 
4132     case MVT::f32:
4133     case MVT::f64:
4134       // These can be scalar arguments or elements of a float array type
4135       // passed directly.  The latter are used to implement ELFv2 homogenous
4136       // float aggregates.
4137       if (FPR_idx != Num_FPR_Regs) {
4138         unsigned VReg;
4139 
4140         if (ObjectVT == MVT::f32)
4141           VReg = MF.addLiveIn(FPR[FPR_idx],
4142                               Subtarget.hasP8Vector()
4143                                   ? &PPC::VSSRCRegClass
4144                                   : &PPC::F4RCRegClass);
4145         else
4146           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4147                                                 ? &PPC::VSFRCRegClass
4148                                                 : &PPC::F8RCRegClass);
4149 
4150         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4151         ++FPR_idx;
4152       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4153         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4154         // once we support fp <-> gpr moves.
4155 
4156         // This can only ever happen in the presence of f32 array types,
4157         // since otherwise we never run out of FPRs before running out
4158         // of GPRs.
4159         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4160         FuncInfo->addLiveInAttr(VReg, Flags);
4161         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4162 
4163         if (ObjectVT == MVT::f32) {
4164           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4165             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4166                                  DAG.getConstant(32, dl, MVT::i32));
4167           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4168         }
4169 
4170         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4171       } else {
4172         if (CallConv == CallingConv::Fast)
4173           ComputeArgOffset();
4174 
4175         needsLoad = true;
4176       }
4177 
4178       // When passing an array of floats, the array occupies consecutive
4179       // space in the argument area; only round up to the next doubleword
4180       // at the end of the array.  Otherwise, each float takes 8 bytes.
4181       if (CallConv != CallingConv::Fast || needsLoad) {
4182         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4183         ArgOffset += ArgSize;
4184         if (Flags.isInConsecutiveRegsLast())
4185           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4186       }
4187       break;
4188     case MVT::v4f32:
4189     case MVT::v4i32:
4190     case MVT::v8i16:
4191     case MVT::v16i8:
4192     case MVT::v2f64:
4193     case MVT::v2i64:
4194     case MVT::v1i128:
4195     case MVT::f128:
4196       // These can be scalar arguments or elements of a vector array type
4197       // passed directly.  The latter are used to implement ELFv2 homogenous
4198       // vector aggregates.
4199       if (VR_idx != Num_VR_Regs) {
4200         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4201         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4202         ++VR_idx;
4203       } else {
4204         if (CallConv == CallingConv::Fast)
4205           ComputeArgOffset();
4206         needsLoad = true;
4207       }
4208       if (CallConv != CallingConv::Fast || needsLoad)
4209         ArgOffset += 16;
4210       break;
4211     }
4212 
4213     // We need to load the argument to a virtual register if we determined
4214     // above that we ran out of physical registers of the appropriate type.
4215     if (needsLoad) {
4216       if (ObjSize < ArgSize && !isLittleEndian)
4217         CurArgOffset += ArgSize - ObjSize;
4218       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4219       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4220       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4221     }
4222 
4223     InVals.push_back(ArgVal);
4224   }
4225 
4226   // Area that is at least reserved in the caller of this function.
4227   unsigned MinReservedArea;
4228   if (HasParameterArea)
4229     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4230   else
4231     MinReservedArea = LinkageSize;
4232 
4233   // Set the size that is at least reserved in caller of this function.  Tail
4234   // call optimized functions' reserved stack space needs to be aligned so that
4235   // taking the difference between two stack areas will result in an aligned
4236   // stack.
4237   MinReservedArea =
4238       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4239   FuncInfo->setMinReservedArea(MinReservedArea);
4240 
4241   // If the function takes variable number of arguments, make a frame index for
4242   // the start of the first vararg value... for expansion of llvm.va_start.
4243   // On ELFv2ABI spec, it writes:
4244   // C programs that are intended to be *portable* across different compilers
4245   // and architectures must use the header file <stdarg.h> to deal with variable
4246   // argument lists.
4247   if (isVarArg && MFI.hasVAStart()) {
4248     int Depth = ArgOffset;
4249 
4250     FuncInfo->setVarArgsFrameIndex(
4251       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4252     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4253 
4254     // If this function is vararg, store any remaining integer argument regs
4255     // to their spots on the stack so that they may be loaded by dereferencing
4256     // the result of va_next.
4257     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4258          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4259       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4260       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4261       SDValue Store =
4262           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4263       MemOps.push_back(Store);
4264       // Increment the address by four for the next argument to store
4265       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4266       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4267     }
4268   }
4269 
4270   if (!MemOps.empty())
4271     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4272 
4273   return Chain;
4274 }
4275 
4276 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4277     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4278     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4279     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4280   // TODO: add description of PPC stack frame format, or at least some docs.
4281   //
4282   MachineFunction &MF = DAG.getMachineFunction();
4283   MachineFrameInfo &MFI = MF.getFrameInfo();
4284   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4285 
4286   EVT PtrVT = getPointerTy(MF.getDataLayout());
4287   bool isPPC64 = PtrVT == MVT::i64;
4288   // Potential tail calls could cause overwriting of argument stack slots.
4289   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4290                        (CallConv == CallingConv::Fast));
4291   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4292   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4293   unsigned ArgOffset = LinkageSize;
4294   // Area that is at least reserved in caller of this function.
4295   unsigned MinReservedArea = ArgOffset;
4296 
4297   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4298     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4299     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4300   };
4301   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4302     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4303     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4304   };
4305   static const MCPhysReg VR[] = {
4306     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4307     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4308   };
4309 
4310   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4311   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4312   const unsigned Num_VR_Regs  = array_lengthof( VR);
4313 
4314   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4315 
4316   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4317 
4318   // In 32-bit non-varargs functions, the stack space for vectors is after the
4319   // stack space for non-vectors.  We do not use this space unless we have
4320   // too many vectors to fit in registers, something that only occurs in
4321   // constructed examples:), but we have to walk the arglist to figure
4322   // that out...for the pathological case, compute VecArgOffset as the
4323   // start of the vector parameter area.  Computing VecArgOffset is the
4324   // entire point of the following loop.
4325   unsigned VecArgOffset = ArgOffset;
4326   if (!isVarArg && !isPPC64) {
4327     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4328          ++ArgNo) {
4329       EVT ObjectVT = Ins[ArgNo].VT;
4330       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4331 
4332       if (Flags.isByVal()) {
4333         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4334         unsigned ObjSize = Flags.getByValSize();
4335         unsigned ArgSize =
4336                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4337         VecArgOffset += ArgSize;
4338         continue;
4339       }
4340 
4341       switch(ObjectVT.getSimpleVT().SimpleTy) {
4342       default: llvm_unreachable("Unhandled argument type!");
4343       case MVT::i1:
4344       case MVT::i32:
4345       case MVT::f32:
4346         VecArgOffset += 4;
4347         break;
4348       case MVT::i64:  // PPC64
4349       case MVT::f64:
4350         // FIXME: We are guaranteed to be !isPPC64 at this point.
4351         // Does MVT::i64 apply?
4352         VecArgOffset += 8;
4353         break;
4354       case MVT::v4f32:
4355       case MVT::v4i32:
4356       case MVT::v8i16:
4357       case MVT::v16i8:
4358         // Nothing to do, we're only looking at Nonvector args here.
4359         break;
4360       }
4361     }
4362   }
4363   // We've found where the vector parameter area in memory is.  Skip the
4364   // first 12 parameters; these don't use that memory.
4365   VecArgOffset = ((VecArgOffset+15)/16)*16;
4366   VecArgOffset += 12*16;
4367 
4368   // Add DAG nodes to load the arguments or copy them out of registers.  On
4369   // entry to a function on PPC, the arguments start after the linkage area,
4370   // although the first ones are often in registers.
4371 
4372   SmallVector<SDValue, 8> MemOps;
4373   unsigned nAltivecParamsAtEnd = 0;
4374   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4375   unsigned CurArgIdx = 0;
4376   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4377     SDValue ArgVal;
4378     bool needsLoad = false;
4379     EVT ObjectVT = Ins[ArgNo].VT;
4380     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4381     unsigned ArgSize = ObjSize;
4382     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4383     if (Ins[ArgNo].isOrigArg()) {
4384       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4385       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4386     }
4387     unsigned CurArgOffset = ArgOffset;
4388 
4389     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4390     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4391         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4392       if (isVarArg || isPPC64) {
4393         MinReservedArea = ((MinReservedArea+15)/16)*16;
4394         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4395                                                   Flags,
4396                                                   PtrByteSize);
4397       } else  nAltivecParamsAtEnd++;
4398     } else
4399       // Calculate min reserved area.
4400       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4401                                                 Flags,
4402                                                 PtrByteSize);
4403 
4404     // FIXME the codegen can be much improved in some cases.
4405     // We do not have to keep everything in memory.
4406     if (Flags.isByVal()) {
4407       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4408 
4409       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4410       ObjSize = Flags.getByValSize();
4411       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4412       // Objects of size 1 and 2 are right justified, everything else is
4413       // left justified.  This means the memory address is adjusted forwards.
4414       if (ObjSize==1 || ObjSize==2) {
4415         CurArgOffset = CurArgOffset + (4 - ObjSize);
4416       }
4417       // The value of the object is its address.
4418       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4419       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4420       InVals.push_back(FIN);
4421       if (ObjSize==1 || ObjSize==2) {
4422         if (GPR_idx != Num_GPR_Regs) {
4423           unsigned VReg;
4424           if (isPPC64)
4425             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4426           else
4427             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4428           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4429           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4430           SDValue Store =
4431               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4432                                 MachinePointerInfo(&*FuncArg), ObjType);
4433           MemOps.push_back(Store);
4434           ++GPR_idx;
4435         }
4436 
4437         ArgOffset += PtrByteSize;
4438 
4439         continue;
4440       }
4441       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4442         // Store whatever pieces of the object are in registers
4443         // to memory.  ArgOffset will be the address of the beginning
4444         // of the object.
4445         if (GPR_idx != Num_GPR_Regs) {
4446           unsigned VReg;
4447           if (isPPC64)
4448             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4449           else
4450             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4451           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4452           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4453           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4454           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4455                                        MachinePointerInfo(&*FuncArg, j));
4456           MemOps.push_back(Store);
4457           ++GPR_idx;
4458           ArgOffset += PtrByteSize;
4459         } else {
4460           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4461           break;
4462         }
4463       }
4464       continue;
4465     }
4466 
4467     switch (ObjectVT.getSimpleVT().SimpleTy) {
4468     default: llvm_unreachable("Unhandled argument type!");
4469     case MVT::i1:
4470     case MVT::i32:
4471       if (!isPPC64) {
4472         if (GPR_idx != Num_GPR_Regs) {
4473           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4474           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4475 
4476           if (ObjectVT == MVT::i1)
4477             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4478 
4479           ++GPR_idx;
4480         } else {
4481           needsLoad = true;
4482           ArgSize = PtrByteSize;
4483         }
4484         // All int arguments reserve stack space in the Darwin ABI.
4485         ArgOffset += PtrByteSize;
4486         break;
4487       }
4488       LLVM_FALLTHROUGH;
4489     case MVT::i64:  // PPC64
4490       if (GPR_idx != Num_GPR_Regs) {
4491         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4492         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4493 
4494         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4495           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4496           // value to MVT::i64 and then truncate to the correct register size.
4497           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4498 
4499         ++GPR_idx;
4500       } else {
4501         needsLoad = true;
4502         ArgSize = PtrByteSize;
4503       }
4504       // All int arguments reserve stack space in the Darwin ABI.
4505       ArgOffset += 8;
4506       break;
4507 
4508     case MVT::f32:
4509     case MVT::f64:
4510       // Every 4 bytes of argument space consumes one of the GPRs available for
4511       // argument passing.
4512       if (GPR_idx != Num_GPR_Regs) {
4513         ++GPR_idx;
4514         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4515           ++GPR_idx;
4516       }
4517       if (FPR_idx != Num_FPR_Regs) {
4518         unsigned VReg;
4519 
4520         if (ObjectVT == MVT::f32)
4521           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4522         else
4523           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4524 
4525         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4526         ++FPR_idx;
4527       } else {
4528         needsLoad = true;
4529       }
4530 
4531       // All FP arguments reserve stack space in the Darwin ABI.
4532       ArgOffset += isPPC64 ? 8 : ObjSize;
4533       break;
4534     case MVT::v4f32:
4535     case MVT::v4i32:
4536     case MVT::v8i16:
4537     case MVT::v16i8:
4538       // Note that vector arguments in registers don't reserve stack space,
4539       // except in varargs functions.
4540       if (VR_idx != Num_VR_Regs) {
4541         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4542         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4543         if (isVarArg) {
4544           while ((ArgOffset % 16) != 0) {
4545             ArgOffset += PtrByteSize;
4546             if (GPR_idx != Num_GPR_Regs)
4547               GPR_idx++;
4548           }
4549           ArgOffset += 16;
4550           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4551         }
4552         ++VR_idx;
4553       } else {
4554         if (!isVarArg && !isPPC64) {
4555           // Vectors go after all the nonvectors.
4556           CurArgOffset = VecArgOffset;
4557           VecArgOffset += 16;
4558         } else {
4559           // Vectors are aligned.
4560           ArgOffset = ((ArgOffset+15)/16)*16;
4561           CurArgOffset = ArgOffset;
4562           ArgOffset += 16;
4563         }
4564         needsLoad = true;
4565       }
4566       break;
4567     }
4568 
4569     // We need to load the argument to a virtual register if we determined above
4570     // that we ran out of physical registers of the appropriate type.
4571     if (needsLoad) {
4572       int FI = MFI.CreateFixedObject(ObjSize,
4573                                      CurArgOffset + (ArgSize - ObjSize),
4574                                      isImmutable);
4575       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4576       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4577     }
4578 
4579     InVals.push_back(ArgVal);
4580   }
4581 
4582   // Allow for Altivec parameters at the end, if needed.
4583   if (nAltivecParamsAtEnd) {
4584     MinReservedArea = ((MinReservedArea+15)/16)*16;
4585     MinReservedArea += 16*nAltivecParamsAtEnd;
4586   }
4587 
4588   // Area that is at least reserved in the caller of this function.
4589   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4590 
4591   // Set the size that is at least reserved in caller of this function.  Tail
4592   // call optimized functions' reserved stack space needs to be aligned so that
4593   // taking the difference between two stack areas will result in an aligned
4594   // stack.
4595   MinReservedArea =
4596       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4597   FuncInfo->setMinReservedArea(MinReservedArea);
4598 
4599   // If the function takes variable number of arguments, make a frame index for
4600   // the start of the first vararg value... for expansion of llvm.va_start.
4601   if (isVarArg) {
4602     int Depth = ArgOffset;
4603 
4604     FuncInfo->setVarArgsFrameIndex(
4605       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4606                             Depth, true));
4607     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4608 
4609     // If this function is vararg, store any remaining integer argument regs
4610     // to their spots on the stack so that they may be loaded by dereferencing
4611     // the result of va_next.
4612     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4613       unsigned VReg;
4614 
4615       if (isPPC64)
4616         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4617       else
4618         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4619 
4620       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4621       SDValue Store =
4622           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4623       MemOps.push_back(Store);
4624       // Increment the address by four for the next argument to store
4625       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4626       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4627     }
4628   }
4629 
4630   if (!MemOps.empty())
4631     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4632 
4633   return Chain;
4634 }
4635 
4636 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4637 /// adjusted to accommodate the arguments for the tailcall.
4638 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4639                                    unsigned ParamSize) {
4640 
4641   if (!isTailCall) return 0;
4642 
4643   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4644   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4645   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4646   // Remember only if the new adjustment is bigger.
4647   if (SPDiff < FI->getTailCallSPDelta())
4648     FI->setTailCallSPDelta(SPDiff);
4649 
4650   return SPDiff;
4651 }
4652 
4653 static bool isFunctionGlobalAddress(SDValue Callee);
4654 
4655 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4656                               const TargetMachine &TM) {
4657   // It does not make sense to call callsShareTOCBase() with a caller that
4658   // is PC Relative since PC Relative callers do not have a TOC.
4659 #ifndef NDEBUG
4660   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4661   assert(!STICaller->isUsingPCRelativeCalls() &&
4662          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4663 #endif
4664 
4665   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4666   // don't have enough information to determine if the caller and callee share
4667   // the same  TOC base, so we have to pessimistically assume they don't for
4668   // correctness.
4669   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4670   if (!G)
4671     return false;
4672 
4673   const GlobalValue *GV = G->getGlobal();
4674 
4675   // If the callee is preemptable, then the static linker will use a plt-stub
4676   // which saves the toc to the stack, and needs a nop after the call
4677   // instruction to convert to a toc-restore.
4678   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4679     return false;
4680 
4681   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4682   // We may need a TOC restore in the situation where the caller requires a
4683   // valid TOC but the callee is PC Relative and does not.
4684   const Function *F = dyn_cast<Function>(GV);
4685   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4686 
4687   // If we have an Alias we can try to get the function from there.
4688   if (Alias) {
4689     const GlobalObject *GlobalObj = Alias->getBaseObject();
4690     F = dyn_cast<Function>(GlobalObj);
4691   }
4692 
4693   // If we still have no valid function pointer we do not have enough
4694   // information to determine if the callee uses PC Relative calls so we must
4695   // assume that it does.
4696   if (!F)
4697     return false;
4698 
4699   // If the callee uses PC Relative we cannot guarantee that the callee won't
4700   // clobber the TOC of the caller and so we must assume that the two
4701   // functions do not share a TOC base.
4702   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4703   if (STICallee->isUsingPCRelativeCalls())
4704     return false;
4705 
4706   // The medium and large code models are expected to provide a sufficiently
4707   // large TOC to provide all data addressing needs of a module with a
4708   // single TOC.
4709   if (CodeModel::Medium == TM.getCodeModel() ||
4710       CodeModel::Large == TM.getCodeModel())
4711     return true;
4712 
4713   // Otherwise we need to ensure callee and caller are in the same section,
4714   // since the linker may allocate multiple TOCs, and we don't know which
4715   // sections will belong to the same TOC base.
4716   if (!GV->isStrongDefinitionForLinker())
4717     return false;
4718 
4719   // Any explicitly-specified sections and section prefixes must also match.
4720   // Also, if we're using -ffunction-sections, then each function is always in
4721   // a different section (the same is true for COMDAT functions).
4722   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4723       GV->getSection() != Caller->getSection())
4724     return false;
4725   if (const auto *F = dyn_cast<Function>(GV)) {
4726     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4727       return false;
4728   }
4729 
4730   return true;
4731 }
4732 
4733 static bool
4734 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4735                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4736   assert(Subtarget.is64BitELFABI());
4737 
4738   const unsigned PtrByteSize = 8;
4739   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4740 
4741   static const MCPhysReg GPR[] = {
4742     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4743     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4744   };
4745   static const MCPhysReg VR[] = {
4746     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4747     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4748   };
4749 
4750   const unsigned NumGPRs = array_lengthof(GPR);
4751   const unsigned NumFPRs = 13;
4752   const unsigned NumVRs = array_lengthof(VR);
4753   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4754 
4755   unsigned NumBytes = LinkageSize;
4756   unsigned AvailableFPRs = NumFPRs;
4757   unsigned AvailableVRs = NumVRs;
4758 
4759   for (const ISD::OutputArg& Param : Outs) {
4760     if (Param.Flags.isNest()) continue;
4761 
4762     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4763                                LinkageSize, ParamAreaSize, NumBytes,
4764                                AvailableFPRs, AvailableVRs))
4765       return true;
4766   }
4767   return false;
4768 }
4769 
4770 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4771   if (CB.arg_size() != CallerFn->arg_size())
4772     return false;
4773 
4774   auto CalleeArgIter = CB.arg_begin();
4775   auto CalleeArgEnd = CB.arg_end();
4776   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4777 
4778   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4779     const Value* CalleeArg = *CalleeArgIter;
4780     const Value* CallerArg = &(*CallerArgIter);
4781     if (CalleeArg == CallerArg)
4782       continue;
4783 
4784     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4785     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4786     //      }
4787     // 1st argument of callee is undef and has the same type as caller.
4788     if (CalleeArg->getType() == CallerArg->getType() &&
4789         isa<UndefValue>(CalleeArg))
4790       continue;
4791 
4792     return false;
4793   }
4794 
4795   return true;
4796 }
4797 
4798 // Returns true if TCO is possible between the callers and callees
4799 // calling conventions.
4800 static bool
4801 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4802                                     CallingConv::ID CalleeCC) {
4803   // Tail calls are possible with fastcc and ccc.
4804   auto isTailCallableCC  = [] (CallingConv::ID CC){
4805       return  CC == CallingConv::C || CC == CallingConv::Fast;
4806   };
4807   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4808     return false;
4809 
4810   // We can safely tail call both fastcc and ccc callees from a c calling
4811   // convention caller. If the caller is fastcc, we may have less stack space
4812   // than a non-fastcc caller with the same signature so disable tail-calls in
4813   // that case.
4814   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4815 }
4816 
4817 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4818     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4819     const SmallVectorImpl<ISD::OutputArg> &Outs,
4820     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4821   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4822 
4823   if (DisableSCO && !TailCallOpt) return false;
4824 
4825   // Variadic argument functions are not supported.
4826   if (isVarArg) return false;
4827 
4828   auto &Caller = DAG.getMachineFunction().getFunction();
4829   // Check that the calling conventions are compatible for tco.
4830   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4831     return false;
4832 
4833   // Caller contains any byval parameter is not supported.
4834   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4835     return false;
4836 
4837   // Callee contains any byval parameter is not supported, too.
4838   // Note: This is a quick work around, because in some cases, e.g.
4839   // caller's stack size > callee's stack size, we are still able to apply
4840   // sibling call optimization. For example, gcc is able to do SCO for caller1
4841   // in the following example, but not for caller2.
4842   //   struct test {
4843   //     long int a;
4844   //     char ary[56];
4845   //   } gTest;
4846   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4847   //     b->a = v.a;
4848   //     return 0;
4849   //   }
4850   //   void caller1(struct test a, struct test c, struct test *b) {
4851   //     callee(gTest, b); }
4852   //   void caller2(struct test *b) { callee(gTest, b); }
4853   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4854     return false;
4855 
4856   // If callee and caller use different calling conventions, we cannot pass
4857   // parameters on stack since offsets for the parameter area may be different.
4858   if (Caller.getCallingConv() != CalleeCC &&
4859       needStackSlotPassParameters(Subtarget, Outs))
4860     return false;
4861 
4862   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4863   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4864   // callee potentially have different TOC bases then we cannot tail call since
4865   // we need to restore the TOC pointer after the call.
4866   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4867   // We cannot guarantee this for indirect calls or calls to external functions.
4868   // When PC-Relative addressing is used, the concept of the TOC is no longer
4869   // applicable so this check is not required.
4870   // Check first for indirect calls.
4871   if (!Subtarget.isUsingPCRelativeCalls() &&
4872       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4873     return false;
4874 
4875   // Check if we share the TOC base.
4876   if (!Subtarget.isUsingPCRelativeCalls() &&
4877       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4878     return false;
4879 
4880   // TCO allows altering callee ABI, so we don't have to check further.
4881   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4882     return true;
4883 
4884   if (DisableSCO) return false;
4885 
4886   // If callee use the same argument list that caller is using, then we can
4887   // apply SCO on this case. If it is not, then we need to check if callee needs
4888   // stack for passing arguments.
4889   // PC Relative tail calls may not have a CallBase.
4890   // If there is no CallBase we cannot verify if we have the same argument
4891   // list so assume that we don't have the same argument list.
4892   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4893       needStackSlotPassParameters(Subtarget, Outs))
4894     return false;
4895   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4896     return false;
4897 
4898   return true;
4899 }
4900 
4901 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4902 /// for tail call optimization. Targets which want to do tail call
4903 /// optimization should implement this function.
4904 bool
4905 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4906                                                      CallingConv::ID CalleeCC,
4907                                                      bool isVarArg,
4908                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4909                                                      SelectionDAG& DAG) const {
4910   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4911     return false;
4912 
4913   // Variable argument functions are not supported.
4914   if (isVarArg)
4915     return false;
4916 
4917   MachineFunction &MF = DAG.getMachineFunction();
4918   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4919   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4920     // Functions containing by val parameters are not supported.
4921     for (unsigned i = 0; i != Ins.size(); i++) {
4922        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4923        if (Flags.isByVal()) return false;
4924     }
4925 
4926     // Non-PIC/GOT tail calls are supported.
4927     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4928       return true;
4929 
4930     // At the moment we can only do local tail calls (in same module, hidden
4931     // or protected) if we are generating PIC.
4932     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4933       return G->getGlobal()->hasHiddenVisibility()
4934           || G->getGlobal()->hasProtectedVisibility();
4935   }
4936 
4937   return false;
4938 }
4939 
4940 /// isCallCompatibleAddress - Return the immediate to use if the specified
4941 /// 32-bit value is representable in the immediate field of a BxA instruction.
4942 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4943   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4944   if (!C) return nullptr;
4945 
4946   int Addr = C->getZExtValue();
4947   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4948       SignExtend32<26>(Addr) != Addr)
4949     return nullptr;  // Top 6 bits have to be sext of immediate.
4950 
4951   return DAG
4952       .getConstant(
4953           (int)C->getZExtValue() >> 2, SDLoc(Op),
4954           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4955       .getNode();
4956 }
4957 
4958 namespace {
4959 
4960 struct TailCallArgumentInfo {
4961   SDValue Arg;
4962   SDValue FrameIdxOp;
4963   int FrameIdx = 0;
4964 
4965   TailCallArgumentInfo() = default;
4966 };
4967 
4968 } // end anonymous namespace
4969 
4970 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4971 static void StoreTailCallArgumentsToStackSlot(
4972     SelectionDAG &DAG, SDValue Chain,
4973     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4974     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4975   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4976     SDValue Arg = TailCallArgs[i].Arg;
4977     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4978     int FI = TailCallArgs[i].FrameIdx;
4979     // Store relative to framepointer.
4980     MemOpChains.push_back(DAG.getStore(
4981         Chain, dl, Arg, FIN,
4982         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4983   }
4984 }
4985 
4986 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4987 /// the appropriate stack slot for the tail call optimized function call.
4988 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4989                                              SDValue OldRetAddr, SDValue OldFP,
4990                                              int SPDiff, const SDLoc &dl) {
4991   if (SPDiff) {
4992     // Calculate the new stack slot for the return address.
4993     MachineFunction &MF = DAG.getMachineFunction();
4994     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4995     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4996     bool isPPC64 = Subtarget.isPPC64();
4997     int SlotSize = isPPC64 ? 8 : 4;
4998     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4999     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5000                                                          NewRetAddrLoc, true);
5001     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5002     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5003     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5004                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5005   }
5006   return Chain;
5007 }
5008 
5009 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5010 /// the position of the argument.
5011 static void
5012 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5013                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5014                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5015   int Offset = ArgOffset + SPDiff;
5016   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5017   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5018   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5019   SDValue FIN = DAG.getFrameIndex(FI, VT);
5020   TailCallArgumentInfo Info;
5021   Info.Arg = Arg;
5022   Info.FrameIdxOp = FIN;
5023   Info.FrameIdx = FI;
5024   TailCallArguments.push_back(Info);
5025 }
5026 
5027 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5028 /// stack slot. Returns the chain as result and the loaded frame pointers in
5029 /// LROpOut/FPOpout. Used when tail calling.
5030 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5031     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5032     SDValue &FPOpOut, const SDLoc &dl) const {
5033   if (SPDiff) {
5034     // Load the LR and FP stack slot for later adjusting.
5035     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5036     LROpOut = getReturnAddrFrameIndex(DAG);
5037     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5038     Chain = SDValue(LROpOut.getNode(), 1);
5039   }
5040   return Chain;
5041 }
5042 
5043 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5044 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5045 /// specified by the specific parameter attribute. The copy will be passed as
5046 /// a byval function parameter.
5047 /// Sometimes what we are copying is the end of a larger object, the part that
5048 /// does not fit in registers.
5049 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5050                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5051                                          SelectionDAG &DAG, const SDLoc &dl) {
5052   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5053   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5054                        Flags.getNonZeroByValAlign(), false, false, false,
5055                        MachinePointerInfo(), MachinePointerInfo());
5056 }
5057 
5058 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5059 /// tail calls.
5060 static void LowerMemOpCallTo(
5061     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5062     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5063     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5064     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5065   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5066   if (!isTailCall) {
5067     if (isVector) {
5068       SDValue StackPtr;
5069       if (isPPC64)
5070         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5071       else
5072         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5073       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5074                            DAG.getConstant(ArgOffset, dl, PtrVT));
5075     }
5076     MemOpChains.push_back(
5077         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5078     // Calculate and remember argument location.
5079   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5080                                   TailCallArguments);
5081 }
5082 
5083 static void
5084 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5085                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5086                 SDValue FPOp,
5087                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5088   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5089   // might overwrite each other in case of tail call optimization.
5090   SmallVector<SDValue, 8> MemOpChains2;
5091   // Do not flag preceding copytoreg stuff together with the following stuff.
5092   InFlag = SDValue();
5093   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5094                                     MemOpChains2, dl);
5095   if (!MemOpChains2.empty())
5096     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5097 
5098   // Store the return address to the appropriate stack slot.
5099   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5100 
5101   // Emit callseq_end just before tailcall node.
5102   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5103                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5104   InFlag = Chain.getValue(1);
5105 }
5106 
5107 // Is this global address that of a function that can be called by name? (as
5108 // opposed to something that must hold a descriptor for an indirect call).
5109 static bool isFunctionGlobalAddress(SDValue Callee) {
5110   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5111     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5112         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5113       return false;
5114 
5115     return G->getGlobal()->getValueType()->isFunctionTy();
5116   }
5117 
5118   return false;
5119 }
5120 
5121 SDValue PPCTargetLowering::LowerCallResult(
5122     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5123     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5124     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5125   SmallVector<CCValAssign, 16> RVLocs;
5126   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5127                     *DAG.getContext());
5128 
5129   CCRetInfo.AnalyzeCallResult(
5130       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5131                ? RetCC_PPC_Cold
5132                : RetCC_PPC);
5133 
5134   // Copy all of the result registers out of their specified physreg.
5135   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5136     CCValAssign &VA = RVLocs[i];
5137     assert(VA.isRegLoc() && "Can only return in registers!");
5138 
5139     SDValue Val;
5140 
5141     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5142       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5143                                       InFlag);
5144       Chain = Lo.getValue(1);
5145       InFlag = Lo.getValue(2);
5146       VA = RVLocs[++i]; // skip ahead to next loc
5147       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5148                                       InFlag);
5149       Chain = Hi.getValue(1);
5150       InFlag = Hi.getValue(2);
5151       if (!Subtarget.isLittleEndian())
5152         std::swap (Lo, Hi);
5153       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5154     } else {
5155       Val = DAG.getCopyFromReg(Chain, dl,
5156                                VA.getLocReg(), VA.getLocVT(), InFlag);
5157       Chain = Val.getValue(1);
5158       InFlag = Val.getValue(2);
5159     }
5160 
5161     switch (VA.getLocInfo()) {
5162     default: llvm_unreachable("Unknown loc info!");
5163     case CCValAssign::Full: break;
5164     case CCValAssign::AExt:
5165       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5166       break;
5167     case CCValAssign::ZExt:
5168       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5169                         DAG.getValueType(VA.getValVT()));
5170       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5171       break;
5172     case CCValAssign::SExt:
5173       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5174                         DAG.getValueType(VA.getValVT()));
5175       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5176       break;
5177     }
5178 
5179     InVals.push_back(Val);
5180   }
5181 
5182   return Chain;
5183 }
5184 
5185 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5186                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5187   // PatchPoint calls are not indirect.
5188   if (isPatchPoint)
5189     return false;
5190 
5191   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5192     return false;
5193 
5194   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5195   // becuase the immediate function pointer points to a descriptor instead of
5196   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5197   // pointer immediate points to the global entry point, while the BLA would
5198   // need to jump to the local entry point (see rL211174).
5199   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5200       isBLACompatibleAddress(Callee, DAG))
5201     return false;
5202 
5203   return true;
5204 }
5205 
5206 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5207 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5208   return Subtarget.isAIXABI() ||
5209          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5210 }
5211 
5212 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5213                               const Function &Caller,
5214                               const SDValue &Callee,
5215                               const PPCSubtarget &Subtarget,
5216                               const TargetMachine &TM) {
5217   if (CFlags.IsTailCall)
5218     return PPCISD::TC_RETURN;
5219 
5220   // This is a call through a function pointer.
5221   if (CFlags.IsIndirect) {
5222     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5223     // indirect calls. The save of the caller's TOC pointer to the stack will be
5224     // inserted into the DAG as part of call lowering. The restore of the TOC
5225     // pointer is modeled by using a pseudo instruction for the call opcode that
5226     // represents the 2 instruction sequence of an indirect branch and link,
5227     // immediately followed by a load of the TOC pointer from the the stack save
5228     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5229     // as it is not saved or used.
5230     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5231                                                : PPCISD::BCTRL;
5232   }
5233 
5234   if (Subtarget.isUsingPCRelativeCalls()) {
5235     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5236     return PPCISD::CALL_NOTOC;
5237   }
5238 
5239   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5240   // immediately following the call instruction if the caller and callee may
5241   // have different TOC bases. At link time if the linker determines the calls
5242   // may not share a TOC base, the call is redirected to a trampoline inserted
5243   // by the linker. The trampoline will (among other things) save the callers
5244   // TOC pointer at an ABI designated offset in the linkage area and the linker
5245   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5246   // into gpr2.
5247   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5248     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5249                                                   : PPCISD::CALL_NOP;
5250 
5251   return PPCISD::CALL;
5252 }
5253 
5254 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5255                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5256   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5257     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5258       return SDValue(Dest, 0);
5259 
5260   // Returns true if the callee is local, and false otherwise.
5261   auto isLocalCallee = [&]() {
5262     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5263     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5264     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5265 
5266     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5267            !dyn_cast_or_null<GlobalIFunc>(GV);
5268   };
5269 
5270   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5271   // a static relocation model causes some versions of GNU LD (2.17.50, at
5272   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5273   // built with secure-PLT.
5274   bool UsePlt =
5275       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5276       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5277 
5278   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5279     const TargetMachine &TM = Subtarget.getTargetMachine();
5280     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5281     MCSymbolXCOFF *S =
5282         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5283 
5284     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5285     return DAG.getMCSymbol(S, PtrVT);
5286   };
5287 
5288   if (isFunctionGlobalAddress(Callee)) {
5289     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5290 
5291     if (Subtarget.isAIXABI()) {
5292       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5293       return getAIXFuncEntryPointSymbolSDNode(GV);
5294     }
5295     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5296                                       UsePlt ? PPCII::MO_PLT : 0);
5297   }
5298 
5299   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5300     const char *SymName = S->getSymbol();
5301     if (Subtarget.isAIXABI()) {
5302       // If there exists a user-declared function whose name is the same as the
5303       // ExternalSymbol's, then we pick up the user-declared version.
5304       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5305       if (const Function *F =
5306               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5307         return getAIXFuncEntryPointSymbolSDNode(F);
5308 
5309       // On AIX, direct function calls reference the symbol for the function's
5310       // entry point, which is named by prepending a "." before the function's
5311       // C-linkage name. A Qualname is returned here because an external
5312       // function entry point is a csect with XTY_ER property.
5313       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5314         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5315         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5316             (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5317             SectionKind::getMetadata());
5318         return Sec->getQualNameSymbol();
5319       };
5320 
5321       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5322     }
5323     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5324                                        UsePlt ? PPCII::MO_PLT : 0);
5325   }
5326 
5327   // No transformation needed.
5328   assert(Callee.getNode() && "What no callee?");
5329   return Callee;
5330 }
5331 
5332 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5333   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5334          "Expected a CALLSEQ_STARTSDNode.");
5335 
5336   // The last operand is the chain, except when the node has glue. If the node
5337   // has glue, then the last operand is the glue, and the chain is the second
5338   // last operand.
5339   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5340   if (LastValue.getValueType() != MVT::Glue)
5341     return LastValue;
5342 
5343   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5344 }
5345 
5346 // Creates the node that moves a functions address into the count register
5347 // to prepare for an indirect call instruction.
5348 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5349                                 SDValue &Glue, SDValue &Chain,
5350                                 const SDLoc &dl) {
5351   SDValue MTCTROps[] = {Chain, Callee, Glue};
5352   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5353   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5354                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5355   // The glue is the second value produced.
5356   Glue = Chain.getValue(1);
5357 }
5358 
5359 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5360                                           SDValue &Glue, SDValue &Chain,
5361                                           SDValue CallSeqStart,
5362                                           const CallBase *CB, const SDLoc &dl,
5363                                           bool hasNest,
5364                                           const PPCSubtarget &Subtarget) {
5365   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5366   // entry point, but to the function descriptor (the function entry point
5367   // address is part of the function descriptor though).
5368   // The function descriptor is a three doubleword structure with the
5369   // following fields: function entry point, TOC base address and
5370   // environment pointer.
5371   // Thus for a call through a function pointer, the following actions need
5372   // to be performed:
5373   //   1. Save the TOC of the caller in the TOC save area of its stack
5374   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5375   //   2. Load the address of the function entry point from the function
5376   //      descriptor.
5377   //   3. Load the TOC of the callee from the function descriptor into r2.
5378   //   4. Load the environment pointer from the function descriptor into
5379   //      r11.
5380   //   5. Branch to the function entry point address.
5381   //   6. On return of the callee, the TOC of the caller needs to be
5382   //      restored (this is done in FinishCall()).
5383   //
5384   // The loads are scheduled at the beginning of the call sequence, and the
5385   // register copies are flagged together to ensure that no other
5386   // operations can be scheduled in between. E.g. without flagging the
5387   // copies together, a TOC access in the caller could be scheduled between
5388   // the assignment of the callee TOC and the branch to the callee, which leads
5389   // to incorrect code.
5390 
5391   // Start by loading the function address from the descriptor.
5392   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5393   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5394                       ? (MachineMemOperand::MODereferenceable |
5395                          MachineMemOperand::MOInvariant)
5396                       : MachineMemOperand::MONone;
5397 
5398   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5399 
5400   // Registers used in building the DAG.
5401   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5402   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5403 
5404   // Offsets of descriptor members.
5405   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5406   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5407 
5408   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5409   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5410 
5411   // One load for the functions entry point address.
5412   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5413                                     Alignment, MMOFlags);
5414 
5415   // One for loading the TOC anchor for the module that contains the called
5416   // function.
5417   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5418   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5419   SDValue TOCPtr =
5420       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5421                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5422 
5423   // One for loading the environment pointer.
5424   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5425   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5426   SDValue LoadEnvPtr =
5427       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5428                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5429 
5430 
5431   // Then copy the newly loaded TOC anchor to the TOC pointer.
5432   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5433   Chain = TOCVal.getValue(0);
5434   Glue = TOCVal.getValue(1);
5435 
5436   // If the function call has an explicit 'nest' parameter, it takes the
5437   // place of the environment pointer.
5438   assert((!hasNest || !Subtarget.isAIXABI()) &&
5439          "Nest parameter is not supported on AIX.");
5440   if (!hasNest) {
5441     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5442     Chain = EnvVal.getValue(0);
5443     Glue = EnvVal.getValue(1);
5444   }
5445 
5446   // The rest of the indirect call sequence is the same as the non-descriptor
5447   // DAG.
5448   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5449 }
5450 
5451 static void
5452 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5453                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5454                   SelectionDAG &DAG,
5455                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5456                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5457                   const PPCSubtarget &Subtarget) {
5458   const bool IsPPC64 = Subtarget.isPPC64();
5459   // MVT for a general purpose register.
5460   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5461 
5462   // First operand is always the chain.
5463   Ops.push_back(Chain);
5464 
5465   // If it's a direct call pass the callee as the second operand.
5466   if (!CFlags.IsIndirect)
5467     Ops.push_back(Callee);
5468   else {
5469     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5470 
5471     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5472     // on the stack (this would have been done in `LowerCall_64SVR4` or
5473     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5474     // represents both the indirect branch and a load that restores the TOC
5475     // pointer from the linkage area. The operand for the TOC restore is an add
5476     // of the TOC save offset to the stack pointer. This must be the second
5477     // operand: after the chain input but before any other variadic arguments.
5478     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5479     // saved or used.
5480     if (isTOCSaveRestoreRequired(Subtarget)) {
5481       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5482 
5483       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5484       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5485       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5486       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5487       Ops.push_back(AddTOC);
5488     }
5489 
5490     // Add the register used for the environment pointer.
5491     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5492       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5493                                     RegVT));
5494 
5495 
5496     // Add CTR register as callee so a bctr can be emitted later.
5497     if (CFlags.IsTailCall)
5498       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5499   }
5500 
5501   // If this is a tail call add stack pointer delta.
5502   if (CFlags.IsTailCall)
5503     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5504 
5505   // Add argument registers to the end of the list so that they are known live
5506   // into the call.
5507   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5508     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5509                                   RegsToPass[i].second.getValueType()));
5510 
5511   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5512   // no way to mark dependencies as implicit here.
5513   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5514   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5515        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5516     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5517 
5518   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5519   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5520     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5521 
5522   // Add a register mask operand representing the call-preserved registers.
5523   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5524   const uint32_t *Mask =
5525       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5526   assert(Mask && "Missing call preserved mask for calling convention");
5527   Ops.push_back(DAG.getRegisterMask(Mask));
5528 
5529   // If the glue is valid, it is the last operand.
5530   if (Glue.getNode())
5531     Ops.push_back(Glue);
5532 }
5533 
5534 SDValue PPCTargetLowering::FinishCall(
5535     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5536     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5537     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5538     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5539     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5540 
5541   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5542       Subtarget.isAIXABI())
5543     setUsesTOCBasePtr(DAG);
5544 
5545   unsigned CallOpc =
5546       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5547                     Subtarget, DAG.getTarget());
5548 
5549   if (!CFlags.IsIndirect)
5550     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5551   else if (Subtarget.usesFunctionDescriptors())
5552     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5553                                   dl, CFlags.HasNest, Subtarget);
5554   else
5555     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5556 
5557   // Build the operand list for the call instruction.
5558   SmallVector<SDValue, 8> Ops;
5559   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5560                     SPDiff, Subtarget);
5561 
5562   // Emit tail call.
5563   if (CFlags.IsTailCall) {
5564     // Indirect tail call when using PC Relative calls do not have the same
5565     // constraints.
5566     assert(((Callee.getOpcode() == ISD::Register &&
5567              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5568             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5569             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5570             isa<ConstantSDNode>(Callee) ||
5571             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5572            "Expecting a global address, external symbol, absolute value, "
5573            "register or an indirect tail call when PC Relative calls are "
5574            "used.");
5575     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5576     assert(CallOpc == PPCISD::TC_RETURN &&
5577            "Unexpected call opcode for a tail call.");
5578     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5579     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5580   }
5581 
5582   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5583   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5584   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5585   Glue = Chain.getValue(1);
5586 
5587   // When performing tail call optimization the callee pops its arguments off
5588   // the stack. Account for this here so these bytes can be pushed back on in
5589   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5590   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5591                          getTargetMachine().Options.GuaranteedTailCallOpt)
5592                             ? NumBytes
5593                             : 0;
5594 
5595   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5596                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5597                              Glue, dl);
5598   Glue = Chain.getValue(1);
5599 
5600   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5601                          DAG, InVals);
5602 }
5603 
5604 SDValue
5605 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5606                              SmallVectorImpl<SDValue> &InVals) const {
5607   SelectionDAG &DAG                     = CLI.DAG;
5608   SDLoc &dl                             = CLI.DL;
5609   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5610   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5611   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5612   SDValue Chain                         = CLI.Chain;
5613   SDValue Callee                        = CLI.Callee;
5614   bool &isTailCall                      = CLI.IsTailCall;
5615   CallingConv::ID CallConv              = CLI.CallConv;
5616   bool isVarArg                         = CLI.IsVarArg;
5617   bool isPatchPoint                     = CLI.IsPatchPoint;
5618   const CallBase *CB                    = CLI.CB;
5619 
5620   if (isTailCall) {
5621     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5622       isTailCall = false;
5623     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5624       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5625           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5626     else
5627       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5628                                                      Ins, DAG);
5629     if (isTailCall) {
5630       ++NumTailCalls;
5631       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5632         ++NumSiblingCalls;
5633 
5634       // PC Relative calls no longer guarantee that the callee is a Global
5635       // Address Node. The callee could be an indirect tail call in which
5636       // case the SDValue for the callee could be a load (to load the address
5637       // of a function pointer) or it may be a register copy (to move the
5638       // address of the callee from a function parameter into a virtual
5639       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5640       assert((Subtarget.isUsingPCRelativeCalls() ||
5641               isa<GlobalAddressSDNode>(Callee)) &&
5642              "Callee should be an llvm::Function object.");
5643 
5644       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5645                         << "\nTCO callee: ");
5646       LLVM_DEBUG(Callee.dump());
5647     }
5648   }
5649 
5650   if (!isTailCall && CB && CB->isMustTailCall())
5651     report_fatal_error("failed to perform tail call elimination on a call "
5652                        "site marked musttail");
5653 
5654   // When long calls (i.e. indirect calls) are always used, calls are always
5655   // made via function pointer. If we have a function name, first translate it
5656   // into a pointer.
5657   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5658       !isTailCall)
5659     Callee = LowerGlobalAddress(Callee, DAG);
5660 
5661   CallFlags CFlags(
5662       CallConv, isTailCall, isVarArg, isPatchPoint,
5663       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5664       // hasNest
5665       Subtarget.is64BitELFABI() &&
5666           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5667       CLI.NoMerge);
5668 
5669   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5670     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5671                             InVals, CB);
5672 
5673   if (Subtarget.isSVR4ABI())
5674     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5675                             InVals, CB);
5676 
5677   if (Subtarget.isAIXABI())
5678     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5679                          InVals, CB);
5680 
5681   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5682                           InVals, CB);
5683 }
5684 
5685 SDValue PPCTargetLowering::LowerCall_32SVR4(
5686     SDValue Chain, SDValue Callee, CallFlags CFlags,
5687     const SmallVectorImpl<ISD::OutputArg> &Outs,
5688     const SmallVectorImpl<SDValue> &OutVals,
5689     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5690     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5691     const CallBase *CB) const {
5692   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5693   // of the 32-bit SVR4 ABI stack frame layout.
5694 
5695   const CallingConv::ID CallConv = CFlags.CallConv;
5696   const bool IsVarArg = CFlags.IsVarArg;
5697   const bool IsTailCall = CFlags.IsTailCall;
5698 
5699   assert((CallConv == CallingConv::C ||
5700           CallConv == CallingConv::Cold ||
5701           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5702 
5703   const Align PtrAlign(4);
5704 
5705   MachineFunction &MF = DAG.getMachineFunction();
5706 
5707   // Mark this function as potentially containing a function that contains a
5708   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5709   // and restoring the callers stack pointer in this functions epilog. This is
5710   // done because by tail calling the called function might overwrite the value
5711   // in this function's (MF) stack pointer stack slot 0(SP).
5712   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5713       CallConv == CallingConv::Fast)
5714     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5715 
5716   // Count how many bytes are to be pushed on the stack, including the linkage
5717   // area, parameter list area and the part of the local variable space which
5718   // contains copies of aggregates which are passed by value.
5719 
5720   // Assign locations to all of the outgoing arguments.
5721   SmallVector<CCValAssign, 16> ArgLocs;
5722   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5723 
5724   // Reserve space for the linkage area on the stack.
5725   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5726                        PtrAlign);
5727   if (useSoftFloat())
5728     CCInfo.PreAnalyzeCallOperands(Outs);
5729 
5730   if (IsVarArg) {
5731     // Handle fixed and variable vector arguments differently.
5732     // Fixed vector arguments go into registers as long as registers are
5733     // available. Variable vector arguments always go into memory.
5734     unsigned NumArgs = Outs.size();
5735 
5736     for (unsigned i = 0; i != NumArgs; ++i) {
5737       MVT ArgVT = Outs[i].VT;
5738       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5739       bool Result;
5740 
5741       if (Outs[i].IsFixed) {
5742         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5743                                CCInfo);
5744       } else {
5745         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5746                                       ArgFlags, CCInfo);
5747       }
5748 
5749       if (Result) {
5750 #ifndef NDEBUG
5751         errs() << "Call operand #" << i << " has unhandled type "
5752              << EVT(ArgVT).getEVTString() << "\n";
5753 #endif
5754         llvm_unreachable(nullptr);
5755       }
5756     }
5757   } else {
5758     // All arguments are treated the same.
5759     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5760   }
5761   CCInfo.clearWasPPCF128();
5762 
5763   // Assign locations to all of the outgoing aggregate by value arguments.
5764   SmallVector<CCValAssign, 16> ByValArgLocs;
5765   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5766 
5767   // Reserve stack space for the allocations in CCInfo.
5768   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5769 
5770   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5771 
5772   // Size of the linkage area, parameter list area and the part of the local
5773   // space variable where copies of aggregates which are passed by value are
5774   // stored.
5775   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5776 
5777   // Calculate by how many bytes the stack has to be adjusted in case of tail
5778   // call optimization.
5779   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5780 
5781   // Adjust the stack pointer for the new arguments...
5782   // These operations are automatically eliminated by the prolog/epilog pass
5783   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5784   SDValue CallSeqStart = Chain;
5785 
5786   // Load the return address and frame pointer so it can be moved somewhere else
5787   // later.
5788   SDValue LROp, FPOp;
5789   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5790 
5791   // Set up a copy of the stack pointer for use loading and storing any
5792   // arguments that may not fit in the registers available for argument
5793   // passing.
5794   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5795 
5796   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5797   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5798   SmallVector<SDValue, 8> MemOpChains;
5799 
5800   bool seenFloatArg = false;
5801   // Walk the register/memloc assignments, inserting copies/loads.
5802   // i - Tracks the index into the list of registers allocated for the call
5803   // RealArgIdx - Tracks the index into the list of actual function arguments
5804   // j - Tracks the index into the list of byval arguments
5805   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5806        i != e;
5807        ++i, ++RealArgIdx) {
5808     CCValAssign &VA = ArgLocs[i];
5809     SDValue Arg = OutVals[RealArgIdx];
5810     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5811 
5812     if (Flags.isByVal()) {
5813       // Argument is an aggregate which is passed by value, thus we need to
5814       // create a copy of it in the local variable space of the current stack
5815       // frame (which is the stack frame of the caller) and pass the address of
5816       // this copy to the callee.
5817       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5818       CCValAssign &ByValVA = ByValArgLocs[j++];
5819       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5820 
5821       // Memory reserved in the local variable space of the callers stack frame.
5822       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5823 
5824       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5825       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5826                            StackPtr, PtrOff);
5827 
5828       // Create a copy of the argument in the local area of the current
5829       // stack frame.
5830       SDValue MemcpyCall =
5831         CreateCopyOfByValArgument(Arg, PtrOff,
5832                                   CallSeqStart.getNode()->getOperand(0),
5833                                   Flags, DAG, dl);
5834 
5835       // This must go outside the CALLSEQ_START..END.
5836       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5837                                                      SDLoc(MemcpyCall));
5838       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5839                              NewCallSeqStart.getNode());
5840       Chain = CallSeqStart = NewCallSeqStart;
5841 
5842       // Pass the address of the aggregate copy on the stack either in a
5843       // physical register or in the parameter list area of the current stack
5844       // frame to the callee.
5845       Arg = PtrOff;
5846     }
5847 
5848     // When useCRBits() is true, there can be i1 arguments.
5849     // It is because getRegisterType(MVT::i1) => MVT::i1,
5850     // and for other integer types getRegisterType() => MVT::i32.
5851     // Extend i1 and ensure callee will get i32.
5852     if (Arg.getValueType() == MVT::i1)
5853       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5854                         dl, MVT::i32, Arg);
5855 
5856     if (VA.isRegLoc()) {
5857       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5858       // Put argument in a physical register.
5859       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5860         bool IsLE = Subtarget.isLittleEndian();
5861         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5862                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5863         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5864         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5865                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5866         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5867                              SVal.getValue(0)));
5868       } else
5869         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5870     } else {
5871       // Put argument in the parameter list area of the current stack frame.
5872       assert(VA.isMemLoc());
5873       unsigned LocMemOffset = VA.getLocMemOffset();
5874 
5875       if (!IsTailCall) {
5876         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5877         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5878                              StackPtr, PtrOff);
5879 
5880         MemOpChains.push_back(
5881             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5882       } else {
5883         // Calculate and remember argument location.
5884         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5885                                  TailCallArguments);
5886       }
5887     }
5888   }
5889 
5890   if (!MemOpChains.empty())
5891     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5892 
5893   // Build a sequence of copy-to-reg nodes chained together with token chain
5894   // and flag operands which copy the outgoing args into the appropriate regs.
5895   SDValue InFlag;
5896   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5897     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5898                              RegsToPass[i].second, InFlag);
5899     InFlag = Chain.getValue(1);
5900   }
5901 
5902   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5903   // registers.
5904   if (IsVarArg) {
5905     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5906     SDValue Ops[] = { Chain, InFlag };
5907 
5908     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5909                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5910 
5911     InFlag = Chain.getValue(1);
5912   }
5913 
5914   if (IsTailCall)
5915     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5916                     TailCallArguments);
5917 
5918   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5919                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5920 }
5921 
5922 // Copy an argument into memory, being careful to do this outside the
5923 // call sequence for the call to which the argument belongs.
5924 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5925     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5926     SelectionDAG &DAG, const SDLoc &dl) const {
5927   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5928                         CallSeqStart.getNode()->getOperand(0),
5929                         Flags, DAG, dl);
5930   // The MEMCPY must go outside the CALLSEQ_START..END.
5931   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5932   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5933                                                  SDLoc(MemcpyCall));
5934   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5935                          NewCallSeqStart.getNode());
5936   return NewCallSeqStart;
5937 }
5938 
5939 SDValue PPCTargetLowering::LowerCall_64SVR4(
5940     SDValue Chain, SDValue Callee, CallFlags CFlags,
5941     const SmallVectorImpl<ISD::OutputArg> &Outs,
5942     const SmallVectorImpl<SDValue> &OutVals,
5943     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5944     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5945     const CallBase *CB) const {
5946   bool isELFv2ABI = Subtarget.isELFv2ABI();
5947   bool isLittleEndian = Subtarget.isLittleEndian();
5948   unsigned NumOps = Outs.size();
5949   bool IsSibCall = false;
5950   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5951 
5952   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5953   unsigned PtrByteSize = 8;
5954 
5955   MachineFunction &MF = DAG.getMachineFunction();
5956 
5957   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5958     IsSibCall = true;
5959 
5960   // Mark this function as potentially containing a function that contains a
5961   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5962   // and restoring the callers stack pointer in this functions epilog. This is
5963   // done because by tail calling the called function might overwrite the value
5964   // in this function's (MF) stack pointer stack slot 0(SP).
5965   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5966     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5967 
5968   assert(!(IsFastCall && CFlags.IsVarArg) &&
5969          "fastcc not supported on varargs functions");
5970 
5971   // Count how many bytes are to be pushed on the stack, including the linkage
5972   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5973   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5974   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5975   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5976   unsigned NumBytes = LinkageSize;
5977   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5978 
5979   static const MCPhysReg GPR[] = {
5980     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5981     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5982   };
5983   static const MCPhysReg VR[] = {
5984     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5985     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5986   };
5987 
5988   const unsigned NumGPRs = array_lengthof(GPR);
5989   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5990   const unsigned NumVRs  = array_lengthof(VR);
5991 
5992   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5993   // can be passed to the callee in registers.
5994   // For the fast calling convention, there is another check below.
5995   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5996   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5997   if (!HasParameterArea) {
5998     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5999     unsigned AvailableFPRs = NumFPRs;
6000     unsigned AvailableVRs = NumVRs;
6001     unsigned NumBytesTmp = NumBytes;
6002     for (unsigned i = 0; i != NumOps; ++i) {
6003       if (Outs[i].Flags.isNest()) continue;
6004       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6005                                  PtrByteSize, LinkageSize, ParamAreaSize,
6006                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
6007         HasParameterArea = true;
6008     }
6009   }
6010 
6011   // When using the fast calling convention, we don't provide backing for
6012   // arguments that will be in registers.
6013   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6014 
6015   // Avoid allocating parameter area for fastcc functions if all the arguments
6016   // can be passed in the registers.
6017   if (IsFastCall)
6018     HasParameterArea = false;
6019 
6020   // Add up all the space actually used.
6021   for (unsigned i = 0; i != NumOps; ++i) {
6022     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6023     EVT ArgVT = Outs[i].VT;
6024     EVT OrigVT = Outs[i].ArgVT;
6025 
6026     if (Flags.isNest())
6027       continue;
6028 
6029     if (IsFastCall) {
6030       if (Flags.isByVal()) {
6031         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6032         if (NumGPRsUsed > NumGPRs)
6033           HasParameterArea = true;
6034       } else {
6035         switch (ArgVT.getSimpleVT().SimpleTy) {
6036         default: llvm_unreachable("Unexpected ValueType for argument!");
6037         case MVT::i1:
6038         case MVT::i32:
6039         case MVT::i64:
6040           if (++NumGPRsUsed <= NumGPRs)
6041             continue;
6042           break;
6043         case MVT::v4i32:
6044         case MVT::v8i16:
6045         case MVT::v16i8:
6046         case MVT::v2f64:
6047         case MVT::v2i64:
6048         case MVT::v1i128:
6049         case MVT::f128:
6050           if (++NumVRsUsed <= NumVRs)
6051             continue;
6052           break;
6053         case MVT::v4f32:
6054           if (++NumVRsUsed <= NumVRs)
6055             continue;
6056           break;
6057         case MVT::f32:
6058         case MVT::f64:
6059           if (++NumFPRsUsed <= NumFPRs)
6060             continue;
6061           break;
6062         }
6063         HasParameterArea = true;
6064       }
6065     }
6066 
6067     /* Respect alignment of argument on the stack.  */
6068     auto Alignement =
6069         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6070     NumBytes = alignTo(NumBytes, Alignement);
6071 
6072     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6073     if (Flags.isInConsecutiveRegsLast())
6074       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6075   }
6076 
6077   unsigned NumBytesActuallyUsed = NumBytes;
6078 
6079   // In the old ELFv1 ABI,
6080   // the prolog code of the callee may store up to 8 GPR argument registers to
6081   // the stack, allowing va_start to index over them in memory if its varargs.
6082   // Because we cannot tell if this is needed on the caller side, we have to
6083   // conservatively assume that it is needed.  As such, make sure we have at
6084   // least enough stack space for the caller to store the 8 GPRs.
6085   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6086   // really requires memory operands, e.g. a vararg function.
6087   if (HasParameterArea)
6088     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6089   else
6090     NumBytes = LinkageSize;
6091 
6092   // Tail call needs the stack to be aligned.
6093   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6094     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6095 
6096   int SPDiff = 0;
6097 
6098   // Calculate by how many bytes the stack has to be adjusted in case of tail
6099   // call optimization.
6100   if (!IsSibCall)
6101     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6102 
6103   // To protect arguments on the stack from being clobbered in a tail call,
6104   // force all the loads to happen before doing any other lowering.
6105   if (CFlags.IsTailCall)
6106     Chain = DAG.getStackArgumentTokenFactor(Chain);
6107 
6108   // Adjust the stack pointer for the new arguments...
6109   // These operations are automatically eliminated by the prolog/epilog pass
6110   if (!IsSibCall)
6111     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6112   SDValue CallSeqStart = Chain;
6113 
6114   // Load the return address and frame pointer so it can be move somewhere else
6115   // later.
6116   SDValue LROp, FPOp;
6117   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6118 
6119   // Set up a copy of the stack pointer for use loading and storing any
6120   // arguments that may not fit in the registers available for argument
6121   // passing.
6122   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6123 
6124   // Figure out which arguments are going to go in registers, and which in
6125   // memory.  Also, if this is a vararg function, floating point operations
6126   // must be stored to our stack, and loaded into integer regs as well, if
6127   // any integer regs are available for argument passing.
6128   unsigned ArgOffset = LinkageSize;
6129 
6130   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6131   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6132 
6133   SmallVector<SDValue, 8> MemOpChains;
6134   for (unsigned i = 0; i != NumOps; ++i) {
6135     SDValue Arg = OutVals[i];
6136     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6137     EVT ArgVT = Outs[i].VT;
6138     EVT OrigVT = Outs[i].ArgVT;
6139 
6140     // PtrOff will be used to store the current argument to the stack if a
6141     // register cannot be found for it.
6142     SDValue PtrOff;
6143 
6144     // We re-align the argument offset for each argument, except when using the
6145     // fast calling convention, when we need to make sure we do that only when
6146     // we'll actually use a stack slot.
6147     auto ComputePtrOff = [&]() {
6148       /* Respect alignment of argument on the stack.  */
6149       auto Alignment =
6150           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6151       ArgOffset = alignTo(ArgOffset, Alignment);
6152 
6153       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6154 
6155       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6156     };
6157 
6158     if (!IsFastCall) {
6159       ComputePtrOff();
6160 
6161       /* Compute GPR index associated with argument offset.  */
6162       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6163       GPR_idx = std::min(GPR_idx, NumGPRs);
6164     }
6165 
6166     // Promote integers to 64-bit values.
6167     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6168       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6169       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6170       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6171     }
6172 
6173     // FIXME memcpy is used way more than necessary.  Correctness first.
6174     // Note: "by value" is code for passing a structure by value, not
6175     // basic types.
6176     if (Flags.isByVal()) {
6177       // Note: Size includes alignment padding, so
6178       //   struct x { short a; char b; }
6179       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6180       // These are the proper values we need for right-justifying the
6181       // aggregate in a parameter register.
6182       unsigned Size = Flags.getByValSize();
6183 
6184       // An empty aggregate parameter takes up no storage and no
6185       // registers.
6186       if (Size == 0)
6187         continue;
6188 
6189       if (IsFastCall)
6190         ComputePtrOff();
6191 
6192       // All aggregates smaller than 8 bytes must be passed right-justified.
6193       if (Size==1 || Size==2 || Size==4) {
6194         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6195         if (GPR_idx != NumGPRs) {
6196           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6197                                         MachinePointerInfo(), VT);
6198           MemOpChains.push_back(Load.getValue(1));
6199           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6200 
6201           ArgOffset += PtrByteSize;
6202           continue;
6203         }
6204       }
6205 
6206       if (GPR_idx == NumGPRs && Size < 8) {
6207         SDValue AddPtr = PtrOff;
6208         if (!isLittleEndian) {
6209           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6210                                           PtrOff.getValueType());
6211           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6212         }
6213         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6214                                                           CallSeqStart,
6215                                                           Flags, DAG, dl);
6216         ArgOffset += PtrByteSize;
6217         continue;
6218       }
6219       // Copy entire object into memory.  There are cases where gcc-generated
6220       // code assumes it is there, even if it could be put entirely into
6221       // registers.  (This is not what the doc says.)
6222 
6223       // FIXME: The above statement is likely due to a misunderstanding of the
6224       // documents.  All arguments must be copied into the parameter area BY
6225       // THE CALLEE in the event that the callee takes the address of any
6226       // formal argument.  That has not yet been implemented.  However, it is
6227       // reasonable to use the stack area as a staging area for the register
6228       // load.
6229 
6230       // Skip this for small aggregates, as we will use the same slot for a
6231       // right-justified copy, below.
6232       if (Size >= 8)
6233         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6234                                                           CallSeqStart,
6235                                                           Flags, DAG, dl);
6236 
6237       // When a register is available, pass a small aggregate right-justified.
6238       if (Size < 8 && GPR_idx != NumGPRs) {
6239         // The easiest way to get this right-justified in a register
6240         // is to copy the structure into the rightmost portion of a
6241         // local variable slot, then load the whole slot into the
6242         // register.
6243         // FIXME: The memcpy seems to produce pretty awful code for
6244         // small aggregates, particularly for packed ones.
6245         // FIXME: It would be preferable to use the slot in the
6246         // parameter save area instead of a new local variable.
6247         SDValue AddPtr = PtrOff;
6248         if (!isLittleEndian) {
6249           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6250           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6251         }
6252         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6253                                                           CallSeqStart,
6254                                                           Flags, DAG, dl);
6255 
6256         // Load the slot into the register.
6257         SDValue Load =
6258             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6259         MemOpChains.push_back(Load.getValue(1));
6260         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6261 
6262         // Done with this argument.
6263         ArgOffset += PtrByteSize;
6264         continue;
6265       }
6266 
6267       // For aggregates larger than PtrByteSize, copy the pieces of the
6268       // object that fit into registers from the parameter save area.
6269       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6270         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6271         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6272         if (GPR_idx != NumGPRs) {
6273           SDValue Load =
6274               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6275           MemOpChains.push_back(Load.getValue(1));
6276           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6277           ArgOffset += PtrByteSize;
6278         } else {
6279           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6280           break;
6281         }
6282       }
6283       continue;
6284     }
6285 
6286     switch (Arg.getSimpleValueType().SimpleTy) {
6287     default: llvm_unreachable("Unexpected ValueType for argument!");
6288     case MVT::i1:
6289     case MVT::i32:
6290     case MVT::i64:
6291       if (Flags.isNest()) {
6292         // The 'nest' parameter, if any, is passed in R11.
6293         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6294         break;
6295       }
6296 
6297       // These can be scalar arguments or elements of an integer array type
6298       // passed directly.  Clang may use those instead of "byval" aggregate
6299       // types to avoid forcing arguments to memory unnecessarily.
6300       if (GPR_idx != NumGPRs) {
6301         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6302       } else {
6303         if (IsFastCall)
6304           ComputePtrOff();
6305 
6306         assert(HasParameterArea &&
6307                "Parameter area must exist to pass an argument in memory.");
6308         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6309                          true, CFlags.IsTailCall, false, MemOpChains,
6310                          TailCallArguments, dl);
6311         if (IsFastCall)
6312           ArgOffset += PtrByteSize;
6313       }
6314       if (!IsFastCall)
6315         ArgOffset += PtrByteSize;
6316       break;
6317     case MVT::f32:
6318     case MVT::f64: {
6319       // These can be scalar arguments or elements of a float array type
6320       // passed directly.  The latter are used to implement ELFv2 homogenous
6321       // float aggregates.
6322 
6323       // Named arguments go into FPRs first, and once they overflow, the
6324       // remaining arguments go into GPRs and then the parameter save area.
6325       // Unnamed arguments for vararg functions always go to GPRs and
6326       // then the parameter save area.  For now, put all arguments to vararg
6327       // routines always in both locations (FPR *and* GPR or stack slot).
6328       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6329       bool NeededLoad = false;
6330 
6331       // First load the argument into the next available FPR.
6332       if (FPR_idx != NumFPRs)
6333         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6334 
6335       // Next, load the argument into GPR or stack slot if needed.
6336       if (!NeedGPROrStack)
6337         ;
6338       else if (GPR_idx != NumGPRs && !IsFastCall) {
6339         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6340         // once we support fp <-> gpr moves.
6341 
6342         // In the non-vararg case, this can only ever happen in the
6343         // presence of f32 array types, since otherwise we never run
6344         // out of FPRs before running out of GPRs.
6345         SDValue ArgVal;
6346 
6347         // Double values are always passed in a single GPR.
6348         if (Arg.getValueType() != MVT::f32) {
6349           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6350 
6351         // Non-array float values are extended and passed in a GPR.
6352         } else if (!Flags.isInConsecutiveRegs()) {
6353           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6354           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6355 
6356         // If we have an array of floats, we collect every odd element
6357         // together with its predecessor into one GPR.
6358         } else if (ArgOffset % PtrByteSize != 0) {
6359           SDValue Lo, Hi;
6360           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6361           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6362           if (!isLittleEndian)
6363             std::swap(Lo, Hi);
6364           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6365 
6366         // The final element, if even, goes into the first half of a GPR.
6367         } else if (Flags.isInConsecutiveRegsLast()) {
6368           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6369           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6370           if (!isLittleEndian)
6371             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6372                                  DAG.getConstant(32, dl, MVT::i32));
6373 
6374         // Non-final even elements are skipped; they will be handled
6375         // together the with subsequent argument on the next go-around.
6376         } else
6377           ArgVal = SDValue();
6378 
6379         if (ArgVal.getNode())
6380           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6381       } else {
6382         if (IsFastCall)
6383           ComputePtrOff();
6384 
6385         // Single-precision floating-point values are mapped to the
6386         // second (rightmost) word of the stack doubleword.
6387         if (Arg.getValueType() == MVT::f32 &&
6388             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6389           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6390           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6391         }
6392 
6393         assert(HasParameterArea &&
6394                "Parameter area must exist to pass an argument in memory.");
6395         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6396                          true, CFlags.IsTailCall, false, MemOpChains,
6397                          TailCallArguments, dl);
6398 
6399         NeededLoad = true;
6400       }
6401       // When passing an array of floats, the array occupies consecutive
6402       // space in the argument area; only round up to the next doubleword
6403       // at the end of the array.  Otherwise, each float takes 8 bytes.
6404       if (!IsFastCall || NeededLoad) {
6405         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6406                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6407         if (Flags.isInConsecutiveRegsLast())
6408           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6409       }
6410       break;
6411     }
6412     case MVT::v4f32:
6413     case MVT::v4i32:
6414     case MVT::v8i16:
6415     case MVT::v16i8:
6416     case MVT::v2f64:
6417     case MVT::v2i64:
6418     case MVT::v1i128:
6419     case MVT::f128:
6420       // These can be scalar arguments or elements of a vector array type
6421       // passed directly.  The latter are used to implement ELFv2 homogenous
6422       // vector aggregates.
6423 
6424       // For a varargs call, named arguments go into VRs or on the stack as
6425       // usual; unnamed arguments always go to the stack or the corresponding
6426       // GPRs when within range.  For now, we always put the value in both
6427       // locations (or even all three).
6428       if (CFlags.IsVarArg) {
6429         assert(HasParameterArea &&
6430                "Parameter area must exist if we have a varargs call.");
6431         // We could elide this store in the case where the object fits
6432         // entirely in R registers.  Maybe later.
6433         SDValue Store =
6434             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6435         MemOpChains.push_back(Store);
6436         if (VR_idx != NumVRs) {
6437           SDValue Load =
6438               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6439           MemOpChains.push_back(Load.getValue(1));
6440           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6441         }
6442         ArgOffset += 16;
6443         for (unsigned i=0; i<16; i+=PtrByteSize) {
6444           if (GPR_idx == NumGPRs)
6445             break;
6446           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6447                                    DAG.getConstant(i, dl, PtrVT));
6448           SDValue Load =
6449               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6450           MemOpChains.push_back(Load.getValue(1));
6451           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6452         }
6453         break;
6454       }
6455 
6456       // Non-varargs Altivec params go into VRs or on the stack.
6457       if (VR_idx != NumVRs) {
6458         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6459       } else {
6460         if (IsFastCall)
6461           ComputePtrOff();
6462 
6463         assert(HasParameterArea &&
6464                "Parameter area must exist to pass an argument in memory.");
6465         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6466                          true, CFlags.IsTailCall, true, MemOpChains,
6467                          TailCallArguments, dl);
6468         if (IsFastCall)
6469           ArgOffset += 16;
6470       }
6471 
6472       if (!IsFastCall)
6473         ArgOffset += 16;
6474       break;
6475     }
6476   }
6477 
6478   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6479          "mismatch in size of parameter area");
6480   (void)NumBytesActuallyUsed;
6481 
6482   if (!MemOpChains.empty())
6483     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6484 
6485   // Check if this is an indirect call (MTCTR/BCTRL).
6486   // See prepareDescriptorIndirectCall and buildCallOperands for more
6487   // information about calls through function pointers in the 64-bit SVR4 ABI.
6488   if (CFlags.IsIndirect) {
6489     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6490     // caller in the TOC save area.
6491     if (isTOCSaveRestoreRequired(Subtarget)) {
6492       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6493       // Load r2 into a virtual register and store it to the TOC save area.
6494       setUsesTOCBasePtr(DAG);
6495       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6496       // TOC save area offset.
6497       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6498       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6499       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6500       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6501                            MachinePointerInfo::getStack(
6502                                DAG.getMachineFunction(), TOCSaveOffset));
6503     }
6504     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6505     // This does not mean the MTCTR instruction must use R12; it's easier
6506     // to model this as an extra parameter, so do that.
6507     if (isELFv2ABI && !CFlags.IsPatchPoint)
6508       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6509   }
6510 
6511   // Build a sequence of copy-to-reg nodes chained together with token chain
6512   // and flag operands which copy the outgoing args into the appropriate regs.
6513   SDValue InFlag;
6514   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6515     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6516                              RegsToPass[i].second, InFlag);
6517     InFlag = Chain.getValue(1);
6518   }
6519 
6520   if (CFlags.IsTailCall && !IsSibCall)
6521     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6522                     TailCallArguments);
6523 
6524   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6525                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6526 }
6527 
6528 SDValue PPCTargetLowering::LowerCall_Darwin(
6529     SDValue Chain, SDValue Callee, CallFlags CFlags,
6530     const SmallVectorImpl<ISD::OutputArg> &Outs,
6531     const SmallVectorImpl<SDValue> &OutVals,
6532     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6533     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6534     const CallBase *CB) const {
6535   unsigned NumOps = Outs.size();
6536 
6537   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6538   bool isPPC64 = PtrVT == MVT::i64;
6539   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6540 
6541   MachineFunction &MF = DAG.getMachineFunction();
6542 
6543   // Mark this function as potentially containing a function that contains a
6544   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6545   // and restoring the callers stack pointer in this functions epilog. This is
6546   // done because by tail calling the called function might overwrite the value
6547   // in this function's (MF) stack pointer stack slot 0(SP).
6548   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6549       CFlags.CallConv == CallingConv::Fast)
6550     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6551 
6552   // Count how many bytes are to be pushed on the stack, including the linkage
6553   // area, and parameter passing area.  We start with 24/48 bytes, which is
6554   // prereserved space for [SP][CR][LR][3 x unused].
6555   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6556   unsigned NumBytes = LinkageSize;
6557 
6558   // Add up all the space actually used.
6559   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6560   // they all go in registers, but we must reserve stack space for them for
6561   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6562   // assigned stack space in order, with padding so Altivec parameters are
6563   // 16-byte aligned.
6564   unsigned nAltivecParamsAtEnd = 0;
6565   for (unsigned i = 0; i != NumOps; ++i) {
6566     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6567     EVT ArgVT = Outs[i].VT;
6568     // Varargs Altivec parameters are padded to a 16 byte boundary.
6569     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6570         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6571         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6572       if (!CFlags.IsVarArg && !isPPC64) {
6573         // Non-varargs Altivec parameters go after all the non-Altivec
6574         // parameters; handle those later so we know how much padding we need.
6575         nAltivecParamsAtEnd++;
6576         continue;
6577       }
6578       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6579       NumBytes = ((NumBytes+15)/16)*16;
6580     }
6581     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6582   }
6583 
6584   // Allow for Altivec parameters at the end, if needed.
6585   if (nAltivecParamsAtEnd) {
6586     NumBytes = ((NumBytes+15)/16)*16;
6587     NumBytes += 16*nAltivecParamsAtEnd;
6588   }
6589 
6590   // The prolog code of the callee may store up to 8 GPR argument registers to
6591   // the stack, allowing va_start to index over them in memory if its varargs.
6592   // Because we cannot tell if this is needed on the caller side, we have to
6593   // conservatively assume that it is needed.  As such, make sure we have at
6594   // least enough stack space for the caller to store the 8 GPRs.
6595   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6596 
6597   // Tail call needs the stack to be aligned.
6598   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6599       CFlags.CallConv == CallingConv::Fast)
6600     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6601 
6602   // Calculate by how many bytes the stack has to be adjusted in case of tail
6603   // call optimization.
6604   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6605 
6606   // To protect arguments on the stack from being clobbered in a tail call,
6607   // force all the loads to happen before doing any other lowering.
6608   if (CFlags.IsTailCall)
6609     Chain = DAG.getStackArgumentTokenFactor(Chain);
6610 
6611   // Adjust the stack pointer for the new arguments...
6612   // These operations are automatically eliminated by the prolog/epilog pass
6613   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6614   SDValue CallSeqStart = Chain;
6615 
6616   // Load the return address and frame pointer so it can be move somewhere else
6617   // later.
6618   SDValue LROp, FPOp;
6619   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6620 
6621   // Set up a copy of the stack pointer for use loading and storing any
6622   // arguments that may not fit in the registers available for argument
6623   // passing.
6624   SDValue StackPtr;
6625   if (isPPC64)
6626     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6627   else
6628     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6629 
6630   // Figure out which arguments are going to go in registers, and which in
6631   // memory.  Also, if this is a vararg function, floating point operations
6632   // must be stored to our stack, and loaded into integer regs as well, if
6633   // any integer regs are available for argument passing.
6634   unsigned ArgOffset = LinkageSize;
6635   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6636 
6637   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6638     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6639     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6640   };
6641   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6642     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6643     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6644   };
6645   static const MCPhysReg VR[] = {
6646     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6647     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6648   };
6649   const unsigned NumGPRs = array_lengthof(GPR_32);
6650   const unsigned NumFPRs = 13;
6651   const unsigned NumVRs  = array_lengthof(VR);
6652 
6653   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6654 
6655   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6656   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6657 
6658   SmallVector<SDValue, 8> MemOpChains;
6659   for (unsigned i = 0; i != NumOps; ++i) {
6660     SDValue Arg = OutVals[i];
6661     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6662 
6663     // PtrOff will be used to store the current argument to the stack if a
6664     // register cannot be found for it.
6665     SDValue PtrOff;
6666 
6667     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6668 
6669     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6670 
6671     // On PPC64, promote integers to 64-bit values.
6672     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6673       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6674       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6675       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6676     }
6677 
6678     // FIXME memcpy is used way more than necessary.  Correctness first.
6679     // Note: "by value" is code for passing a structure by value, not
6680     // basic types.
6681     if (Flags.isByVal()) {
6682       unsigned Size = Flags.getByValSize();
6683       // Very small objects are passed right-justified.  Everything else is
6684       // passed left-justified.
6685       if (Size==1 || Size==2) {
6686         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6687         if (GPR_idx != NumGPRs) {
6688           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6689                                         MachinePointerInfo(), VT);
6690           MemOpChains.push_back(Load.getValue(1));
6691           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6692 
6693           ArgOffset += PtrByteSize;
6694         } else {
6695           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6696                                           PtrOff.getValueType());
6697           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6698           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6699                                                             CallSeqStart,
6700                                                             Flags, DAG, dl);
6701           ArgOffset += PtrByteSize;
6702         }
6703         continue;
6704       }
6705       // Copy entire object into memory.  There are cases where gcc-generated
6706       // code assumes it is there, even if it could be put entirely into
6707       // registers.  (This is not what the doc says.)
6708       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6709                                                         CallSeqStart,
6710                                                         Flags, DAG, dl);
6711 
6712       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6713       // copy the pieces of the object that fit into registers from the
6714       // parameter save area.
6715       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6716         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6717         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6718         if (GPR_idx != NumGPRs) {
6719           SDValue Load =
6720               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6721           MemOpChains.push_back(Load.getValue(1));
6722           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6723           ArgOffset += PtrByteSize;
6724         } else {
6725           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6726           break;
6727         }
6728       }
6729       continue;
6730     }
6731 
6732     switch (Arg.getSimpleValueType().SimpleTy) {
6733     default: llvm_unreachable("Unexpected ValueType for argument!");
6734     case MVT::i1:
6735     case MVT::i32:
6736     case MVT::i64:
6737       if (GPR_idx != NumGPRs) {
6738         if (Arg.getValueType() == MVT::i1)
6739           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6740 
6741         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6742       } else {
6743         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6744                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6745                          TailCallArguments, dl);
6746       }
6747       ArgOffset += PtrByteSize;
6748       break;
6749     case MVT::f32:
6750     case MVT::f64:
6751       if (FPR_idx != NumFPRs) {
6752         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6753 
6754         if (CFlags.IsVarArg) {
6755           SDValue Store =
6756               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6757           MemOpChains.push_back(Store);
6758 
6759           // Float varargs are always shadowed in available integer registers
6760           if (GPR_idx != NumGPRs) {
6761             SDValue Load =
6762                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6763             MemOpChains.push_back(Load.getValue(1));
6764             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6765           }
6766           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6767             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6768             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6769             SDValue Load =
6770                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6771             MemOpChains.push_back(Load.getValue(1));
6772             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6773           }
6774         } else {
6775           // If we have any FPRs remaining, we may also have GPRs remaining.
6776           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6777           // GPRs.
6778           if (GPR_idx != NumGPRs)
6779             ++GPR_idx;
6780           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6781               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6782             ++GPR_idx;
6783         }
6784       } else
6785         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6786                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6787                          TailCallArguments, dl);
6788       if (isPPC64)
6789         ArgOffset += 8;
6790       else
6791         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6792       break;
6793     case MVT::v4f32:
6794     case MVT::v4i32:
6795     case MVT::v8i16:
6796     case MVT::v16i8:
6797       if (CFlags.IsVarArg) {
6798         // These go aligned on the stack, or in the corresponding R registers
6799         // when within range.  The Darwin PPC ABI doc claims they also go in
6800         // V registers; in fact gcc does this only for arguments that are
6801         // prototyped, not for those that match the ...  We do it for all
6802         // arguments, seems to work.
6803         while (ArgOffset % 16 !=0) {
6804           ArgOffset += PtrByteSize;
6805           if (GPR_idx != NumGPRs)
6806             GPR_idx++;
6807         }
6808         // We could elide this store in the case where the object fits
6809         // entirely in R registers.  Maybe later.
6810         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6811                              DAG.getConstant(ArgOffset, dl, PtrVT));
6812         SDValue Store =
6813             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6814         MemOpChains.push_back(Store);
6815         if (VR_idx != NumVRs) {
6816           SDValue Load =
6817               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6818           MemOpChains.push_back(Load.getValue(1));
6819           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6820         }
6821         ArgOffset += 16;
6822         for (unsigned i=0; i<16; i+=PtrByteSize) {
6823           if (GPR_idx == NumGPRs)
6824             break;
6825           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6826                                    DAG.getConstant(i, dl, PtrVT));
6827           SDValue Load =
6828               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6829           MemOpChains.push_back(Load.getValue(1));
6830           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6831         }
6832         break;
6833       }
6834 
6835       // Non-varargs Altivec params generally go in registers, but have
6836       // stack space allocated at the end.
6837       if (VR_idx != NumVRs) {
6838         // Doesn't have GPR space allocated.
6839         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6840       } else if (nAltivecParamsAtEnd==0) {
6841         // We are emitting Altivec params in order.
6842         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6843                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6844                          TailCallArguments, dl);
6845         ArgOffset += 16;
6846       }
6847       break;
6848     }
6849   }
6850   // If all Altivec parameters fit in registers, as they usually do,
6851   // they get stack space following the non-Altivec parameters.  We
6852   // don't track this here because nobody below needs it.
6853   // If there are more Altivec parameters than fit in registers emit
6854   // the stores here.
6855   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6856     unsigned j = 0;
6857     // Offset is aligned; skip 1st 12 params which go in V registers.
6858     ArgOffset = ((ArgOffset+15)/16)*16;
6859     ArgOffset += 12*16;
6860     for (unsigned i = 0; i != NumOps; ++i) {
6861       SDValue Arg = OutVals[i];
6862       EVT ArgType = Outs[i].VT;
6863       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6864           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6865         if (++j > NumVRs) {
6866           SDValue PtrOff;
6867           // We are emitting Altivec params in order.
6868           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6869                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6870                            TailCallArguments, dl);
6871           ArgOffset += 16;
6872         }
6873       }
6874     }
6875   }
6876 
6877   if (!MemOpChains.empty())
6878     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6879 
6880   // On Darwin, R12 must contain the address of an indirect callee.  This does
6881   // not mean the MTCTR instruction must use R12; it's easier to model this as
6882   // an extra parameter, so do that.
6883   if (CFlags.IsIndirect) {
6884     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6885     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6886                                                    PPC::R12), Callee));
6887   }
6888 
6889   // Build a sequence of copy-to-reg nodes chained together with token chain
6890   // and flag operands which copy the outgoing args into the appropriate regs.
6891   SDValue InFlag;
6892   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6893     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6894                              RegsToPass[i].second, InFlag);
6895     InFlag = Chain.getValue(1);
6896   }
6897 
6898   if (CFlags.IsTailCall)
6899     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6900                     TailCallArguments);
6901 
6902   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6903                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6904 }
6905 
6906 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6907                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6908                    CCState &State) {
6909 
6910   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6911       State.getMachineFunction().getSubtarget());
6912   const bool IsPPC64 = Subtarget.isPPC64();
6913   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6914   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6915 
6916   assert((!ValVT.isInteger() ||
6917           (ValVT.getFixedSizeInBits() <= RegVT.getFixedSizeInBits())) &&
6918          "Integer argument exceeds register size: should have been legalized");
6919 
6920   if (ValVT == MVT::f128)
6921     report_fatal_error("f128 is unimplemented on AIX.");
6922 
6923   if (ArgFlags.isNest())
6924     report_fatal_error("Nest arguments are unimplemented.");
6925 
6926   if (ValVT.isVector() || LocVT.isVector())
6927     report_fatal_error("Vector arguments are unimplemented on AIX.");
6928 
6929   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6930                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6931                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6932   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6933                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6934                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6935 
6936   if (ArgFlags.isByVal()) {
6937     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6938       report_fatal_error("Pass-by-value arguments with alignment greater than "
6939                          "register width are not supported.");
6940 
6941     const unsigned ByValSize = ArgFlags.getByValSize();
6942 
6943     // An empty aggregate parameter takes up no storage and no registers,
6944     // but needs a MemLoc for a stack slot for the formal arguments side.
6945     if (ByValSize == 0) {
6946       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6947                                        State.getNextStackOffset(), RegVT,
6948                                        LocInfo));
6949       return false;
6950     }
6951 
6952     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6953     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6954     for (const unsigned E = Offset + StackSize; Offset < E;
6955          Offset += PtrAlign.value()) {
6956       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6957         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6958       else {
6959         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6960                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6961                                          LocInfo));
6962         break;
6963       }
6964     }
6965     return false;
6966   }
6967 
6968   // Arguments always reserve parameter save area.
6969   switch (ValVT.SimpleTy) {
6970   default:
6971     report_fatal_error("Unhandled value type for argument.");
6972   case MVT::i64:
6973     // i64 arguments should have been split to i32 for PPC32.
6974     assert(IsPPC64 && "PPC32 should have split i64 values.");
6975     LLVM_FALLTHROUGH;
6976   case MVT::i1:
6977   case MVT::i32: {
6978     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6979     // AIX integer arguments are always passed in register width.
6980     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6981       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6982                                   : CCValAssign::LocInfo::ZExt;
6983     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6984       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6985     else
6986       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6987 
6988     return false;
6989   }
6990   case MVT::f32:
6991   case MVT::f64: {
6992     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6993     const unsigned StoreSize = LocVT.getStoreSize();
6994     // Floats are always 4-byte aligned in the PSA on AIX.
6995     // This includes f64 in 64-bit mode for ABI compatibility.
6996     const unsigned Offset =
6997         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6998     unsigned FReg = State.AllocateReg(FPR);
6999     if (FReg)
7000       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
7001 
7002     // Reserve and initialize GPRs or initialize the PSA as required.
7003     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
7004       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
7005         assert(FReg && "An FPR should be available when a GPR is reserved.");
7006         if (State.isVarArg()) {
7007           // Successfully reserved GPRs are only initialized for vararg calls.
7008           // Custom handling is required for:
7009           //   f64 in PPC32 needs to be split into 2 GPRs.
7010           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
7011           State.addLoc(
7012               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7013         }
7014       } else {
7015         // If there are insufficient GPRs, the PSA needs to be initialized.
7016         // Initialization occurs even if an FPR was initialized for
7017         // compatibility with the AIX XL compiler. The full memory for the
7018         // argument will be initialized even if a prior word is saved in GPR.
7019         // A custom memLoc is used when the argument also passes in FPR so
7020         // that the callee handling can skip over it easily.
7021         State.addLoc(
7022             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
7023                                              LocInfo)
7024                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
7025         break;
7026       }
7027     }
7028 
7029     return false;
7030   }
7031   }
7032   return true;
7033 }
7034 
7035 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7036                                                     bool IsPPC64) {
7037   assert((IsPPC64 || SVT != MVT::i64) &&
7038          "i64 should have been split for 32-bit codegen.");
7039 
7040   switch (SVT) {
7041   default:
7042     report_fatal_error("Unexpected value type for formal argument");
7043   case MVT::i1:
7044   case MVT::i32:
7045   case MVT::i64:
7046     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7047   case MVT::f32:
7048     return &PPC::F4RCRegClass;
7049   case MVT::f64:
7050     return &PPC::F8RCRegClass;
7051   }
7052 }
7053 
7054 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7055                                         SelectionDAG &DAG, SDValue ArgValue,
7056                                         MVT LocVT, const SDLoc &dl) {
7057   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7058   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
7059 
7060   if (Flags.isSExt())
7061     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7062                            DAG.getValueType(ValVT));
7063   else if (Flags.isZExt())
7064     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7065                            DAG.getValueType(ValVT));
7066 
7067   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7068 }
7069 
7070 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7071   const unsigned LASize = FL->getLinkageSize();
7072 
7073   if (PPC::GPRCRegClass.contains(Reg)) {
7074     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7075            "Reg must be a valid argument register!");
7076     return LASize + 4 * (Reg - PPC::R3);
7077   }
7078 
7079   if (PPC::G8RCRegClass.contains(Reg)) {
7080     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7081            "Reg must be a valid argument register!");
7082     return LASize + 8 * (Reg - PPC::X3);
7083   }
7084 
7085   llvm_unreachable("Only general purpose registers expected.");
7086 }
7087 
7088 //   AIX ABI Stack Frame Layout:
7089 //
7090 //   Low Memory +--------------------------------------------+
7091 //   SP   +---> | Back chain                                 | ---+
7092 //        |     +--------------------------------------------+    |
7093 //        |     | Saved Condition Register                   |    |
7094 //        |     +--------------------------------------------+    |
7095 //        |     | Saved Linkage Register                     |    |
7096 //        |     +--------------------------------------------+    | Linkage Area
7097 //        |     | Reserved for compilers                     |    |
7098 //        |     +--------------------------------------------+    |
7099 //        |     | Reserved for binders                       |    |
7100 //        |     +--------------------------------------------+    |
7101 //        |     | Saved TOC pointer                          | ---+
7102 //        |     +--------------------------------------------+
7103 //        |     | Parameter save area                        |
7104 //        |     +--------------------------------------------+
7105 //        |     | Alloca space                               |
7106 //        |     +--------------------------------------------+
7107 //        |     | Local variable space                       |
7108 //        |     +--------------------------------------------+
7109 //        |     | Float/int conversion temporary             |
7110 //        |     +--------------------------------------------+
7111 //        |     | Save area for AltiVec registers            |
7112 //        |     +--------------------------------------------+
7113 //        |     | AltiVec alignment padding                  |
7114 //        |     +--------------------------------------------+
7115 //        |     | Save area for VRSAVE register              |
7116 //        |     +--------------------------------------------+
7117 //        |     | Save area for General Purpose registers    |
7118 //        |     +--------------------------------------------+
7119 //        |     | Save area for Floating Point registers     |
7120 //        |     +--------------------------------------------+
7121 //        +---- | Back chain                                 |
7122 // High Memory  +--------------------------------------------+
7123 //
7124 //  Specifications:
7125 //  AIX 7.2 Assembler Language Reference
7126 //  Subroutine linkage convention
7127 
7128 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7129     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7130     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7131     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7132 
7133   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7134           CallConv == CallingConv::Fast) &&
7135          "Unexpected calling convention!");
7136 
7137   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7138     report_fatal_error("Tail call support is unimplemented on AIX.");
7139 
7140   if (useSoftFloat())
7141     report_fatal_error("Soft float support is unimplemented on AIX.");
7142 
7143   const PPCSubtarget &Subtarget =
7144       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7145 
7146   const bool IsPPC64 = Subtarget.isPPC64();
7147   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7148 
7149   // Assign locations to all of the incoming arguments.
7150   SmallVector<CCValAssign, 16> ArgLocs;
7151   MachineFunction &MF = DAG.getMachineFunction();
7152   MachineFrameInfo &MFI = MF.getFrameInfo();
7153   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7154 
7155   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7156   // Reserve space for the linkage area on the stack.
7157   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7158   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7159   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7160 
7161   SmallVector<SDValue, 8> MemOps;
7162 
7163   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7164     CCValAssign &VA = ArgLocs[I++];
7165     MVT LocVT = VA.getLocVT();
7166     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7167 
7168     // For compatibility with the AIX XL compiler, the float args in the
7169     // parameter save area are initialized even if the argument is available
7170     // in register.  The caller is required to initialize both the register
7171     // and memory, however, the callee can choose to expect it in either.
7172     // The memloc is dismissed here because the argument is retrieved from
7173     // the register.
7174     if (VA.isMemLoc() && VA.needsCustom())
7175       continue;
7176 
7177     if (Flags.isByVal() && VA.isMemLoc()) {
7178       const unsigned Size =
7179           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7180                   PtrByteSize);
7181       const int FI = MF.getFrameInfo().CreateFixedObject(
7182           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7183           /* IsAliased */ true);
7184       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7185       InVals.push_back(FIN);
7186 
7187       continue;
7188     }
7189 
7190     if (Flags.isByVal()) {
7191       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7192 
7193       const MCPhysReg ArgReg = VA.getLocReg();
7194       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7195 
7196       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7197         report_fatal_error("Over aligned byvals not supported yet.");
7198 
7199       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7200       const int FI = MF.getFrameInfo().CreateFixedObject(
7201           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7202           /* IsAliased */ true);
7203       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7204       InVals.push_back(FIN);
7205 
7206       // Add live ins for all the RegLocs for the same ByVal.
7207       const TargetRegisterClass *RegClass =
7208           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7209 
7210       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7211                                                unsigned Offset) {
7212         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7213         // Since the callers side has left justified the aggregate in the
7214         // register, we can simply store the entire register into the stack
7215         // slot.
7216         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7217         // The store to the fixedstack object is needed becuase accessing a
7218         // field of the ByVal will use a gep and load. Ideally we will optimize
7219         // to extracting the value from the register directly, and elide the
7220         // stores when the arguments address is not taken, but that will need to
7221         // be future work.
7222         SDValue Store = DAG.getStore(
7223             CopyFrom.getValue(1), dl, CopyFrom,
7224             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7225             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7226 
7227         MemOps.push_back(Store);
7228       };
7229 
7230       unsigned Offset = 0;
7231       HandleRegLoc(VA.getLocReg(), Offset);
7232       Offset += PtrByteSize;
7233       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7234            Offset += PtrByteSize) {
7235         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7236                "RegLocs should be for ByVal argument.");
7237 
7238         const CCValAssign RL = ArgLocs[I++];
7239         HandleRegLoc(RL.getLocReg(), Offset);
7240       }
7241 
7242       if (Offset != StackSize) {
7243         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7244                "Expected MemLoc for remaining bytes.");
7245         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7246         // Consume the MemLoc.The InVal has already been emitted, so nothing
7247         // more needs to be done.
7248         ++I;
7249       }
7250 
7251       continue;
7252     }
7253 
7254     EVT ValVT = VA.getValVT();
7255     if (VA.isRegLoc() && !VA.needsCustom()) {
7256       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7257       unsigned VReg =
7258           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7259       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7260       if (ValVT.isScalarInteger() &&
7261           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7262         ArgValue =
7263             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7264       }
7265       InVals.push_back(ArgValue);
7266       continue;
7267     }
7268     if (VA.isMemLoc()) {
7269       const unsigned LocSize = LocVT.getStoreSize();
7270       const unsigned ValSize = ValVT.getStoreSize();
7271       assert((ValSize <= LocSize) &&
7272              "Object size is larger than size of MemLoc");
7273       int CurArgOffset = VA.getLocMemOffset();
7274       // Objects are right-justified because AIX is big-endian.
7275       if (LocSize > ValSize)
7276         CurArgOffset += LocSize - ValSize;
7277       // Potential tail calls could cause overwriting of argument stack slots.
7278       const bool IsImmutable =
7279           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7280             (CallConv == CallingConv::Fast));
7281       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7282       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7283       SDValue ArgValue =
7284           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7285       InVals.push_back(ArgValue);
7286       continue;
7287     }
7288   }
7289 
7290   // On AIX a minimum of 8 words is saved to the parameter save area.
7291   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7292   // Area that is at least reserved in the caller of this function.
7293   unsigned CallerReservedArea =
7294       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7295 
7296   // Set the size that is at least reserved in caller of this function. Tail
7297   // call optimized function's reserved stack space needs to be aligned so
7298   // that taking the difference between two stack areas will result in an
7299   // aligned stack.
7300   CallerReservedArea =
7301       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7302   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7303   FuncInfo->setMinReservedArea(CallerReservedArea);
7304 
7305   if (isVarArg) {
7306     FuncInfo->setVarArgsFrameIndex(
7307         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7308     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7309 
7310     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7311                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7312 
7313     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7314                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7315     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7316 
7317     // The fixed integer arguments of a variadic function are stored to the
7318     // VarArgsFrameIndex on the stack so that they may be loaded by
7319     // dereferencing the result of va_next.
7320     for (unsigned GPRIndex =
7321              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7322          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7323 
7324       const unsigned VReg =
7325           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7326                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7327 
7328       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7329       SDValue Store =
7330           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7331       MemOps.push_back(Store);
7332       // Increment the address for the next argument to store.
7333       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7334       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7335     }
7336   }
7337 
7338   if (!MemOps.empty())
7339     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7340 
7341   return Chain;
7342 }
7343 
7344 SDValue PPCTargetLowering::LowerCall_AIX(
7345     SDValue Chain, SDValue Callee, CallFlags CFlags,
7346     const SmallVectorImpl<ISD::OutputArg> &Outs,
7347     const SmallVectorImpl<SDValue> &OutVals,
7348     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7349     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7350     const CallBase *CB) const {
7351   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7352   // AIX ABI stack frame layout.
7353 
7354   assert((CFlags.CallConv == CallingConv::C ||
7355           CFlags.CallConv == CallingConv::Cold ||
7356           CFlags.CallConv == CallingConv::Fast) &&
7357          "Unexpected calling convention!");
7358 
7359   if (CFlags.IsPatchPoint)
7360     report_fatal_error("This call type is unimplemented on AIX.");
7361 
7362   const PPCSubtarget& Subtarget =
7363       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7364   if (Subtarget.hasAltivec())
7365     report_fatal_error("Altivec support is unimplemented on AIX.");
7366 
7367   MachineFunction &MF = DAG.getMachineFunction();
7368   SmallVector<CCValAssign, 16> ArgLocs;
7369   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7370                  *DAG.getContext());
7371 
7372   // Reserve space for the linkage save area (LSA) on the stack.
7373   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7374   //   [SP][CR][LR][2 x reserved][TOC].
7375   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7376   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7377   const bool IsPPC64 = Subtarget.isPPC64();
7378   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7379   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7380   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7381   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7382 
7383   // The prolog code of the callee may store up to 8 GPR argument registers to
7384   // the stack, allowing va_start to index over them in memory if the callee
7385   // is variadic.
7386   // Because we cannot tell if this is needed on the caller side, we have to
7387   // conservatively assume that it is needed.  As such, make sure we have at
7388   // least enough stack space for the caller to store the 8 GPRs.
7389   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7390   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7391                                      CCInfo.getNextStackOffset());
7392 
7393   // Adjust the stack pointer for the new arguments...
7394   // These operations are automatically eliminated by the prolog/epilog pass.
7395   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7396   SDValue CallSeqStart = Chain;
7397 
7398   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7399   SmallVector<SDValue, 8> MemOpChains;
7400 
7401   // Set up a copy of the stack pointer for loading and storing any
7402   // arguments that may not fit in the registers available for argument
7403   // passing.
7404   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7405                                    : DAG.getRegister(PPC::R1, MVT::i32);
7406 
7407   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7408     const unsigned ValNo = ArgLocs[I].getValNo();
7409     SDValue Arg = OutVals[ValNo];
7410     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7411 
7412     if (Flags.isByVal()) {
7413       const unsigned ByValSize = Flags.getByValSize();
7414 
7415       // Nothing to do for zero-sized ByVals on the caller side.
7416       if (!ByValSize) {
7417         ++I;
7418         continue;
7419       }
7420 
7421       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7422         return DAG.getExtLoad(
7423             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7424             (LoadOffset != 0)
7425                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7426                 : Arg,
7427             MachinePointerInfo(), VT);
7428       };
7429 
7430       unsigned LoadOffset = 0;
7431 
7432       // Initialize registers, which are fully occupied by the by-val argument.
7433       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7434         SDValue Load = GetLoad(PtrVT, LoadOffset);
7435         MemOpChains.push_back(Load.getValue(1));
7436         LoadOffset += PtrByteSize;
7437         const CCValAssign &ByValVA = ArgLocs[I++];
7438         assert(ByValVA.getValNo() == ValNo &&
7439                "Unexpected location for pass-by-value argument.");
7440         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7441       }
7442 
7443       if (LoadOffset == ByValSize)
7444         continue;
7445 
7446       // There must be one more loc to handle the remainder.
7447       assert(ArgLocs[I].getValNo() == ValNo &&
7448              "Expected additional location for by-value argument.");
7449 
7450       if (ArgLocs[I].isMemLoc()) {
7451         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7452         const CCValAssign &ByValVA = ArgLocs[I++];
7453         ISD::ArgFlagsTy MemcpyFlags = Flags;
7454         // Only memcpy the bytes that don't pass in register.
7455         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7456         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7457             (LoadOffset != 0)
7458                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7459                 : Arg,
7460             DAG.getObjectPtrOffset(dl, StackPtr,
7461                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7462             CallSeqStart, MemcpyFlags, DAG, dl);
7463         continue;
7464       }
7465 
7466       // Initialize the final register residue.
7467       // Any residue that occupies the final by-val arg register must be
7468       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7469       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7470       // 2 and 1 byte loads.
7471       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7472       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7473              "Unexpected register residue for by-value argument.");
7474       SDValue ResidueVal;
7475       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7476         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7477         const MVT VT =
7478             N == 1 ? MVT::i8
7479                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7480         SDValue Load = GetLoad(VT, LoadOffset);
7481         MemOpChains.push_back(Load.getValue(1));
7482         LoadOffset += N;
7483         Bytes += N;
7484 
7485         // By-val arguments are passed left-justfied in register.
7486         // Every load here needs to be shifted, otherwise a full register load
7487         // should have been used.
7488         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7489                "Unexpected load emitted during handling of pass-by-value "
7490                "argument.");
7491         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7492         EVT ShiftAmountTy =
7493             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7494         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7495         SDValue ShiftedLoad =
7496             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7497         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7498                                               ShiftedLoad)
7499                                 : ShiftedLoad;
7500       }
7501 
7502       const CCValAssign &ByValVA = ArgLocs[I++];
7503       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7504       continue;
7505     }
7506 
7507     CCValAssign &VA = ArgLocs[I++];
7508     const MVT LocVT = VA.getLocVT();
7509     const MVT ValVT = VA.getValVT();
7510 
7511     switch (VA.getLocInfo()) {
7512     default:
7513       report_fatal_error("Unexpected argument extension type.");
7514     case CCValAssign::Full:
7515       break;
7516     case CCValAssign::ZExt:
7517       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7518       break;
7519     case CCValAssign::SExt:
7520       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7521       break;
7522     }
7523 
7524     if (VA.isRegLoc() && !VA.needsCustom()) {
7525       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7526       continue;
7527     }
7528 
7529     if (VA.isMemLoc()) {
7530       SDValue PtrOff =
7531           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7532       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7533       MemOpChains.push_back(
7534           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7535 
7536       continue;
7537     }
7538 
7539     // Custom handling is used for GPR initializations for vararg float
7540     // arguments.
7541     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7542            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7543            "Unexpected register handling for calling convention.");
7544 
7545     SDValue ArgAsInt =
7546         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7547 
7548     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7549       // f32 in 32-bit GPR
7550       // f64 in 64-bit GPR
7551       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7552     else if (Arg.getValueType().getFixedSizeInBits() <
7553              LocVT.getFixedSizeInBits())
7554       // f32 in 64-bit GPR.
7555       RegsToPass.push_back(std::make_pair(
7556           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7557     else {
7558       // f64 in two 32-bit GPRs
7559       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7560       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7561              "Unexpected custom register for argument!");
7562       CCValAssign &GPR1 = VA;
7563       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7564                                      DAG.getConstant(32, dl, MVT::i8));
7565       RegsToPass.push_back(std::make_pair(
7566           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7567 
7568       if (I != E) {
7569         // If only 1 GPR was available, there will only be one custom GPR and
7570         // the argument will also pass in memory.
7571         CCValAssign &PeekArg = ArgLocs[I];
7572         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7573           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7574           CCValAssign &GPR2 = ArgLocs[I++];
7575           RegsToPass.push_back(std::make_pair(
7576               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7577         }
7578       }
7579     }
7580   }
7581 
7582   if (!MemOpChains.empty())
7583     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7584 
7585   // For indirect calls, we need to save the TOC base to the stack for
7586   // restoration after the call.
7587   if (CFlags.IsIndirect) {
7588     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7589     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7590     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7591     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7592     const unsigned TOCSaveOffset =
7593         Subtarget.getFrameLowering()->getTOCSaveOffset();
7594 
7595     setUsesTOCBasePtr(DAG);
7596     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7597     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7598     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7599     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7600     Chain = DAG.getStore(
7601         Val.getValue(1), dl, Val, AddPtr,
7602         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7603   }
7604 
7605   // Build a sequence of copy-to-reg nodes chained together with token chain
7606   // and flag operands which copy the outgoing args into the appropriate regs.
7607   SDValue InFlag;
7608   for (auto Reg : RegsToPass) {
7609     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7610     InFlag = Chain.getValue(1);
7611   }
7612 
7613   const int SPDiff = 0;
7614   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7615                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7616 }
7617 
7618 bool
7619 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7620                                   MachineFunction &MF, bool isVarArg,
7621                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7622                                   LLVMContext &Context) const {
7623   SmallVector<CCValAssign, 16> RVLocs;
7624   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7625   return CCInfo.CheckReturn(
7626       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7627                 ? RetCC_PPC_Cold
7628                 : RetCC_PPC);
7629 }
7630 
7631 SDValue
7632 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7633                                bool isVarArg,
7634                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7635                                const SmallVectorImpl<SDValue> &OutVals,
7636                                const SDLoc &dl, SelectionDAG &DAG) const {
7637   SmallVector<CCValAssign, 16> RVLocs;
7638   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7639                  *DAG.getContext());
7640   CCInfo.AnalyzeReturn(Outs,
7641                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7642                            ? RetCC_PPC_Cold
7643                            : RetCC_PPC);
7644 
7645   SDValue Flag;
7646   SmallVector<SDValue, 4> RetOps(1, Chain);
7647 
7648   // Copy the result values into the output registers.
7649   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7650     CCValAssign &VA = RVLocs[i];
7651     assert(VA.isRegLoc() && "Can only return in registers!");
7652 
7653     SDValue Arg = OutVals[RealResIdx];
7654 
7655     if (Subtarget.isAIXABI() &&
7656         (VA.getLocVT().isVector() || VA.getValVT().isVector()))
7657       report_fatal_error("Returning vector types not yet supported on AIX.");
7658 
7659     switch (VA.getLocInfo()) {
7660     default: llvm_unreachable("Unknown loc info!");
7661     case CCValAssign::Full: break;
7662     case CCValAssign::AExt:
7663       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7664       break;
7665     case CCValAssign::ZExt:
7666       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7667       break;
7668     case CCValAssign::SExt:
7669       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7670       break;
7671     }
7672     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7673       bool isLittleEndian = Subtarget.isLittleEndian();
7674       // Legalize ret f64 -> ret 2 x i32.
7675       SDValue SVal =
7676           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7677                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7678       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7679       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7680       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7681                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7682       Flag = Chain.getValue(1);
7683       VA = RVLocs[++i]; // skip ahead to next loc
7684       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7685     } else
7686       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7687     Flag = Chain.getValue(1);
7688     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7689   }
7690 
7691   RetOps[0] = Chain;  // Update chain.
7692 
7693   // Add the flag if we have it.
7694   if (Flag.getNode())
7695     RetOps.push_back(Flag);
7696 
7697   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7698 }
7699 
7700 SDValue
7701 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7702                                                 SelectionDAG &DAG) const {
7703   SDLoc dl(Op);
7704 
7705   // Get the correct type for integers.
7706   EVT IntVT = Op.getValueType();
7707 
7708   // Get the inputs.
7709   SDValue Chain = Op.getOperand(0);
7710   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7711   // Build a DYNAREAOFFSET node.
7712   SDValue Ops[2] = {Chain, FPSIdx};
7713   SDVTList VTs = DAG.getVTList(IntVT);
7714   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7715 }
7716 
7717 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7718                                              SelectionDAG &DAG) const {
7719   // When we pop the dynamic allocation we need to restore the SP link.
7720   SDLoc dl(Op);
7721 
7722   // Get the correct type for pointers.
7723   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7724 
7725   // Construct the stack pointer operand.
7726   bool isPPC64 = Subtarget.isPPC64();
7727   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7728   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7729 
7730   // Get the operands for the STACKRESTORE.
7731   SDValue Chain = Op.getOperand(0);
7732   SDValue SaveSP = Op.getOperand(1);
7733 
7734   // Load the old link SP.
7735   SDValue LoadLinkSP =
7736       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7737 
7738   // Restore the stack pointer.
7739   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7740 
7741   // Store the old link SP.
7742   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7743 }
7744 
7745 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7746   MachineFunction &MF = DAG.getMachineFunction();
7747   bool isPPC64 = Subtarget.isPPC64();
7748   EVT PtrVT = getPointerTy(MF.getDataLayout());
7749 
7750   // Get current frame pointer save index.  The users of this index will be
7751   // primarily DYNALLOC instructions.
7752   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7753   int RASI = FI->getReturnAddrSaveIndex();
7754 
7755   // If the frame pointer save index hasn't been defined yet.
7756   if (!RASI) {
7757     // Find out what the fix offset of the frame pointer save area.
7758     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7759     // Allocate the frame index for frame pointer save area.
7760     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7761     // Save the result.
7762     FI->setReturnAddrSaveIndex(RASI);
7763   }
7764   return DAG.getFrameIndex(RASI, PtrVT);
7765 }
7766 
7767 SDValue
7768 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7769   MachineFunction &MF = DAG.getMachineFunction();
7770   bool isPPC64 = Subtarget.isPPC64();
7771   EVT PtrVT = getPointerTy(MF.getDataLayout());
7772 
7773   // Get current frame pointer save index.  The users of this index will be
7774   // primarily DYNALLOC instructions.
7775   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7776   int FPSI = FI->getFramePointerSaveIndex();
7777 
7778   // If the frame pointer save index hasn't been defined yet.
7779   if (!FPSI) {
7780     // Find out what the fix offset of the frame pointer save area.
7781     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7782     // Allocate the frame index for frame pointer save area.
7783     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7784     // Save the result.
7785     FI->setFramePointerSaveIndex(FPSI);
7786   }
7787   return DAG.getFrameIndex(FPSI, PtrVT);
7788 }
7789 
7790 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7791                                                    SelectionDAG &DAG) const {
7792   MachineFunction &MF = DAG.getMachineFunction();
7793   // Get the inputs.
7794   SDValue Chain = Op.getOperand(0);
7795   SDValue Size  = Op.getOperand(1);
7796   SDLoc dl(Op);
7797 
7798   // Get the correct type for pointers.
7799   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7800   // Negate the size.
7801   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7802                                 DAG.getConstant(0, dl, PtrVT), Size);
7803   // Construct a node for the frame pointer save index.
7804   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7805   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7806   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7807   if (hasInlineStackProbe(MF))
7808     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7809   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7810 }
7811 
7812 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7813                                                      SelectionDAG &DAG) const {
7814   MachineFunction &MF = DAG.getMachineFunction();
7815 
7816   bool isPPC64 = Subtarget.isPPC64();
7817   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7818 
7819   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7820   return DAG.getFrameIndex(FI, PtrVT);
7821 }
7822 
7823 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7824                                                SelectionDAG &DAG) const {
7825   SDLoc DL(Op);
7826   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7827                      DAG.getVTList(MVT::i32, MVT::Other),
7828                      Op.getOperand(0), Op.getOperand(1));
7829 }
7830 
7831 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7832                                                 SelectionDAG &DAG) const {
7833   SDLoc DL(Op);
7834   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7835                      Op.getOperand(0), Op.getOperand(1));
7836 }
7837 
7838 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7839   if (Op.getValueType().isVector())
7840     return LowerVectorLoad(Op, DAG);
7841 
7842   assert(Op.getValueType() == MVT::i1 &&
7843          "Custom lowering only for i1 loads");
7844 
7845   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7846 
7847   SDLoc dl(Op);
7848   LoadSDNode *LD = cast<LoadSDNode>(Op);
7849 
7850   SDValue Chain = LD->getChain();
7851   SDValue BasePtr = LD->getBasePtr();
7852   MachineMemOperand *MMO = LD->getMemOperand();
7853 
7854   SDValue NewLD =
7855       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7856                      BasePtr, MVT::i8, MMO);
7857   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7858 
7859   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7860   return DAG.getMergeValues(Ops, dl);
7861 }
7862 
7863 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7864   if (Op.getOperand(1).getValueType().isVector())
7865     return LowerVectorStore(Op, DAG);
7866 
7867   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7868          "Custom lowering only for i1 stores");
7869 
7870   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7871 
7872   SDLoc dl(Op);
7873   StoreSDNode *ST = cast<StoreSDNode>(Op);
7874 
7875   SDValue Chain = ST->getChain();
7876   SDValue BasePtr = ST->getBasePtr();
7877   SDValue Value = ST->getValue();
7878   MachineMemOperand *MMO = ST->getMemOperand();
7879 
7880   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7881                       Value);
7882   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7883 }
7884 
7885 // FIXME: Remove this once the ANDI glue bug is fixed:
7886 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7887   assert(Op.getValueType() == MVT::i1 &&
7888          "Custom lowering only for i1 results");
7889 
7890   SDLoc DL(Op);
7891   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7892 }
7893 
7894 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7895                                                SelectionDAG &DAG) const {
7896 
7897   // Implements a vector truncate that fits in a vector register as a shuffle.
7898   // We want to legalize vector truncates down to where the source fits in
7899   // a vector register (and target is therefore smaller than vector register
7900   // size).  At that point legalization will try to custom lower the sub-legal
7901   // result and get here - where we can contain the truncate as a single target
7902   // operation.
7903 
7904   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7905   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7906   //
7907   // We will implement it for big-endian ordering as this (where x denotes
7908   // undefined):
7909   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7910   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7911   //
7912   // The same operation in little-endian ordering will be:
7913   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7914   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7915 
7916   EVT TrgVT = Op.getValueType();
7917   assert(TrgVT.isVector() && "Vector type expected.");
7918   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7919   EVT EltVT = TrgVT.getVectorElementType();
7920   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7921       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7922       !isPowerOf2_32(EltVT.getSizeInBits()))
7923     return SDValue();
7924 
7925   SDValue N1 = Op.getOperand(0);
7926   EVT SrcVT = N1.getValueType();
7927   unsigned SrcSize = SrcVT.getSizeInBits();
7928   if (SrcSize > 256 ||
7929       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7930       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7931     return SDValue();
7932   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7933     return SDValue();
7934 
7935   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7936   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7937 
7938   SDLoc DL(Op);
7939   SDValue Op1, Op2;
7940   if (SrcSize == 256) {
7941     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7942     EVT SplitVT =
7943         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7944     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7945     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7946                       DAG.getConstant(0, DL, VecIdxTy));
7947     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7948                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7949   }
7950   else {
7951     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7952     Op2 = DAG.getUNDEF(WideVT);
7953   }
7954 
7955   // First list the elements we want to keep.
7956   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7957   SmallVector<int, 16> ShuffV;
7958   if (Subtarget.isLittleEndian())
7959     for (unsigned i = 0; i < TrgNumElts; ++i)
7960       ShuffV.push_back(i * SizeMult);
7961   else
7962     for (unsigned i = 1; i <= TrgNumElts; ++i)
7963       ShuffV.push_back(i * SizeMult - 1);
7964 
7965   // Populate the remaining elements with undefs.
7966   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7967     // ShuffV.push_back(i + WideNumElts);
7968     ShuffV.push_back(WideNumElts + 1);
7969 
7970   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7971   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7972   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7973 }
7974 
7975 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7976 /// possible.
7977 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7978   // Not FP, or using SPE? Not a fsel.
7979   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7980       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7981     return Op;
7982 
7983   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7984 
7985   EVT ResVT = Op.getValueType();
7986   EVT CmpVT = Op.getOperand(0).getValueType();
7987   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7988   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7989   SDLoc dl(Op);
7990   SDNodeFlags Flags = Op.getNode()->getFlags();
7991 
7992   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7993   // presence of infinities.
7994   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7995     switch (CC) {
7996     default:
7997       break;
7998     case ISD::SETOGT:
7999     case ISD::SETGT:
8000       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
8001     case ISD::SETOLT:
8002     case ISD::SETLT:
8003       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
8004     }
8005   }
8006 
8007   // We might be able to do better than this under some circumstances, but in
8008   // general, fsel-based lowering of select is a finite-math-only optimization.
8009   // For more information, see section F.3 of the 2.06 ISA specification.
8010   // With ISA 3.0
8011   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
8012       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
8013     return Op;
8014 
8015   // If the RHS of the comparison is a 0.0, we don't need to do the
8016   // subtraction at all.
8017   SDValue Sel1;
8018   if (isFloatingPointZero(RHS))
8019     switch (CC) {
8020     default: break;       // SETUO etc aren't handled by fsel.
8021     case ISD::SETNE:
8022       std::swap(TV, FV);
8023       LLVM_FALLTHROUGH;
8024     case ISD::SETEQ:
8025       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8026         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8027       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8028       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8029         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8030       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8031                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8032     case ISD::SETULT:
8033     case ISD::SETLT:
8034       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8035       LLVM_FALLTHROUGH;
8036     case ISD::SETOGE:
8037     case ISD::SETGE:
8038       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8039         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8040       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8041     case ISD::SETUGT:
8042     case ISD::SETGT:
8043       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8044       LLVM_FALLTHROUGH;
8045     case ISD::SETOLE:
8046     case ISD::SETLE:
8047       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8048         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8049       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8050                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8051     }
8052 
8053   SDValue Cmp;
8054   switch (CC) {
8055   default: break;       // SETUO etc aren't handled by fsel.
8056   case ISD::SETNE:
8057     std::swap(TV, FV);
8058     LLVM_FALLTHROUGH;
8059   case ISD::SETEQ:
8060     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8061     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8062       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8063     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8064     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8065       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8066     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8067                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8068   case ISD::SETULT:
8069   case ISD::SETLT:
8070     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8071     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8072       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8073     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8074   case ISD::SETOGE:
8075   case ISD::SETGE:
8076     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8077     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8078       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8079     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8080   case ISD::SETUGT:
8081   case ISD::SETGT:
8082     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8083     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8084       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8085     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8086   case ISD::SETOLE:
8087   case ISD::SETLE:
8088     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8089     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8090       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8091     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8092   }
8093   return Op;
8094 }
8095 
8096 static unsigned getPPCStrictOpcode(unsigned Opc) {
8097   switch (Opc) {
8098   default:
8099     llvm_unreachable("No strict version of this opcode!");
8100   case PPCISD::FCTIDZ:
8101     return PPCISD::STRICT_FCTIDZ;
8102   case PPCISD::FCTIWZ:
8103     return PPCISD::STRICT_FCTIWZ;
8104   case PPCISD::FCTIDUZ:
8105     return PPCISD::STRICT_FCTIDUZ;
8106   case PPCISD::FCTIWUZ:
8107     return PPCISD::STRICT_FCTIWUZ;
8108   case PPCISD::FCFID:
8109     return PPCISD::STRICT_FCFID;
8110   case PPCISD::FCFIDU:
8111     return PPCISD::STRICT_FCFIDU;
8112   case PPCISD::FCFIDS:
8113     return PPCISD::STRICT_FCFIDS;
8114   case PPCISD::FCFIDUS:
8115     return PPCISD::STRICT_FCFIDUS;
8116   }
8117 }
8118 
8119 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8120                               const PPCSubtarget &Subtarget) {
8121   SDLoc dl(Op);
8122   bool IsStrict = Op->isStrictFPOpcode();
8123   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8124                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8125 
8126   // TODO: Any other flags to propagate?
8127   SDNodeFlags Flags;
8128   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8129 
8130   // For strict nodes, source is the second operand.
8131   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8132   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8133   assert(Src.getValueType().isFloatingPoint());
8134   if (Src.getValueType() == MVT::f32) {
8135     if (IsStrict) {
8136       Src =
8137           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8138                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8139       Chain = Src.getValue(1);
8140     } else
8141       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8142   }
8143   SDValue Conv;
8144   unsigned Opc = ISD::DELETED_NODE;
8145   switch (Op.getSimpleValueType().SimpleTy) {
8146   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8147   case MVT::i32:
8148     Opc = IsSigned ? PPCISD::FCTIWZ
8149                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8150     break;
8151   case MVT::i64:
8152     assert((IsSigned || Subtarget.hasFPCVT()) &&
8153            "i64 FP_TO_UINT is supported only with FPCVT");
8154     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8155   }
8156   if (IsStrict) {
8157     Opc = getPPCStrictOpcode(Opc);
8158     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8159                        {Chain, Src}, Flags);
8160   } else {
8161     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8162   }
8163   return Conv;
8164 }
8165 
8166 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8167                                                SelectionDAG &DAG,
8168                                                const SDLoc &dl) const {
8169   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8170   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8171                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8172   bool IsStrict = Op->isStrictFPOpcode();
8173 
8174   // Convert the FP value to an int value through memory.
8175   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8176                   (IsSigned || Subtarget.hasFPCVT());
8177   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8178   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8179   MachinePointerInfo MPI =
8180       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8181 
8182   // Emit a store to the stack slot.
8183   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8184   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8185   if (i32Stack) {
8186     MachineFunction &MF = DAG.getMachineFunction();
8187     Alignment = Align(4);
8188     MachineMemOperand *MMO =
8189         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8190     SDValue Ops[] = { Chain, Tmp, FIPtr };
8191     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8192               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8193   } else
8194     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8195 
8196   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8197   // add in a bias on big endian.
8198   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8199     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8200                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8201     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8202   }
8203 
8204   RLI.Chain = Chain;
8205   RLI.Ptr = FIPtr;
8206   RLI.MPI = MPI;
8207   RLI.Alignment = Alignment;
8208 }
8209 
8210 /// Custom lowers floating point to integer conversions to use
8211 /// the direct move instructions available in ISA 2.07 to avoid the
8212 /// need for load/store combinations.
8213 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8214                                                     SelectionDAG &DAG,
8215                                                     const SDLoc &dl) const {
8216   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8217   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8218   if (Op->isStrictFPOpcode())
8219     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8220   else
8221     return Mov;
8222 }
8223 
8224 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8225                                           const SDLoc &dl) const {
8226   bool IsStrict = Op->isStrictFPOpcode();
8227   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8228                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8229   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8230   EVT SrcVT = Src.getValueType();
8231   EVT DstVT = Op.getValueType();
8232 
8233   // FP to INT conversions are legal for f128.
8234   if (SrcVT == MVT::f128)
8235     return Op;
8236 
8237   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8238   // PPC (the libcall is not available).
8239   if (SrcVT == MVT::ppcf128) {
8240     if (DstVT == MVT::i32) {
8241       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8242       // set other fast-math flags to FP operations in both strict and
8243       // non-strict cases. (FP_TO_SINT, FSUB)
8244       SDNodeFlags Flags;
8245       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8246 
8247       if (IsSigned) {
8248         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8249                                  DAG.getIntPtrConstant(0, dl));
8250         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8251                                  DAG.getIntPtrConstant(1, dl));
8252 
8253         // Add the two halves of the long double in round-to-zero mode, and use
8254         // a smaller FP_TO_SINT.
8255         if (IsStrict) {
8256           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8257                                     DAG.getVTList(MVT::f64, MVT::Other),
8258                                     {Op.getOperand(0), Lo, Hi}, Flags);
8259           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8260                              DAG.getVTList(MVT::i32, MVT::Other),
8261                              {Res.getValue(1), Res}, Flags);
8262         } else {
8263           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8264           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8265         }
8266       } else {
8267         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8268         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8269         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8270         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8271         if (IsStrict) {
8272           // Sel = Src < 0x80000000
8273           // FltOfs = select Sel, 0.0, 0x80000000
8274           // IntOfs = select Sel, 0, 0x80000000
8275           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8276           SDValue Chain = Op.getOperand(0);
8277           EVT SetCCVT =
8278               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8279           EVT DstSetCCVT =
8280               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8281           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8282                                      Chain, true);
8283           Chain = Sel.getValue(1);
8284 
8285           SDValue FltOfs = DAG.getSelect(
8286               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8287           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8288 
8289           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8290                                     DAG.getVTList(SrcVT, MVT::Other),
8291                                     {Chain, Src, FltOfs}, Flags);
8292           Chain = Val.getValue(1);
8293           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8294                                      DAG.getVTList(DstVT, MVT::Other),
8295                                      {Chain, Val}, Flags);
8296           Chain = SInt.getValue(1);
8297           SDValue IntOfs = DAG.getSelect(
8298               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8299           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8300           return DAG.getMergeValues({Result, Chain}, dl);
8301         } else {
8302           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8303           // FIXME: generated code sucks.
8304           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8305           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8306           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8307           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8308           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8309         }
8310       }
8311     }
8312 
8313     return SDValue();
8314   }
8315 
8316   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8317     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8318 
8319   ReuseLoadInfo RLI;
8320   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8321 
8322   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8323                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8324 }
8325 
8326 // We're trying to insert a regular store, S, and then a load, L. If the
8327 // incoming value, O, is a load, we might just be able to have our load use the
8328 // address used by O. However, we don't know if anything else will store to
8329 // that address before we can load from it. To prevent this situation, we need
8330 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8331 // the same chain operand as O, we create a token factor from the chain results
8332 // of O and L, and we replace all uses of O's chain result with that token
8333 // factor (see spliceIntoChain below for this last part).
8334 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8335                                             ReuseLoadInfo &RLI,
8336                                             SelectionDAG &DAG,
8337                                             ISD::LoadExtType ET) const {
8338   // Conservatively skip reusing for constrained FP nodes.
8339   if (Op->isStrictFPOpcode())
8340     return false;
8341 
8342   SDLoc dl(Op);
8343   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8344                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8345   if (ET == ISD::NON_EXTLOAD &&
8346       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8347       isOperationLegalOrCustom(Op.getOpcode(),
8348                                Op.getOperand(0).getValueType())) {
8349 
8350     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8351     return true;
8352   }
8353 
8354   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8355   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8356       LD->isNonTemporal())
8357     return false;
8358   if (LD->getMemoryVT() != MemVT)
8359     return false;
8360 
8361   RLI.Ptr = LD->getBasePtr();
8362   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8363     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8364            "Non-pre-inc AM on PPC?");
8365     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8366                           LD->getOffset());
8367   }
8368 
8369   RLI.Chain = LD->getChain();
8370   RLI.MPI = LD->getPointerInfo();
8371   RLI.IsDereferenceable = LD->isDereferenceable();
8372   RLI.IsInvariant = LD->isInvariant();
8373   RLI.Alignment = LD->getAlign();
8374   RLI.AAInfo = LD->getAAInfo();
8375   RLI.Ranges = LD->getRanges();
8376 
8377   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8378   return true;
8379 }
8380 
8381 // Given the head of the old chain, ResChain, insert a token factor containing
8382 // it and NewResChain, and make users of ResChain now be users of that token
8383 // factor.
8384 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8385 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8386                                         SDValue NewResChain,
8387                                         SelectionDAG &DAG) const {
8388   if (!ResChain)
8389     return;
8390 
8391   SDLoc dl(NewResChain);
8392 
8393   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8394                            NewResChain, DAG.getUNDEF(MVT::Other));
8395   assert(TF.getNode() != NewResChain.getNode() &&
8396          "A new TF really is required here");
8397 
8398   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8399   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8400 }
8401 
8402 /// Analyze profitability of direct move
8403 /// prefer float load to int load plus direct move
8404 /// when there is no integer use of int load
8405 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8406   SDNode *Origin = Op.getOperand(0).getNode();
8407   if (Origin->getOpcode() != ISD::LOAD)
8408     return true;
8409 
8410   // If there is no LXSIBZX/LXSIHZX, like Power8,
8411   // prefer direct move if the memory size is 1 or 2 bytes.
8412   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8413   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8414     return true;
8415 
8416   for (SDNode::use_iterator UI = Origin->use_begin(),
8417                             UE = Origin->use_end();
8418        UI != UE; ++UI) {
8419 
8420     // Only look at the users of the loaded value.
8421     if (UI.getUse().get().getResNo() != 0)
8422       continue;
8423 
8424     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8425         UI->getOpcode() != ISD::UINT_TO_FP &&
8426         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8427         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8428       return true;
8429   }
8430 
8431   return false;
8432 }
8433 
8434 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8435                               const PPCSubtarget &Subtarget,
8436                               SDValue Chain = SDValue()) {
8437   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8438                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8439   SDLoc dl(Op);
8440 
8441   // TODO: Any other flags to propagate?
8442   SDNodeFlags Flags;
8443   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8444 
8445   // If we have FCFIDS, then use it when converting to single-precision.
8446   // Otherwise, convert to double-precision and then round.
8447   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8448   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8449                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8450   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8451   if (Op->isStrictFPOpcode()) {
8452     if (!Chain)
8453       Chain = Op.getOperand(0);
8454     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8455                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8456   } else
8457     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8458 }
8459 
8460 /// Custom lowers integer to floating point conversions to use
8461 /// the direct move instructions available in ISA 2.07 to avoid the
8462 /// need for load/store combinations.
8463 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8464                                                     SelectionDAG &DAG,
8465                                                     const SDLoc &dl) const {
8466   assert((Op.getValueType() == MVT::f32 ||
8467           Op.getValueType() == MVT::f64) &&
8468          "Invalid floating point type as target of conversion");
8469   assert(Subtarget.hasFPCVT() &&
8470          "Int to FP conversions with direct moves require FPCVT");
8471   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8472   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8473   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8474                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8475   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8476   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8477   return convertIntToFP(Op, Mov, DAG, Subtarget);
8478 }
8479 
8480 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8481 
8482   EVT VecVT = Vec.getValueType();
8483   assert(VecVT.isVector() && "Expected a vector type.");
8484   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8485 
8486   EVT EltVT = VecVT.getVectorElementType();
8487   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8488   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8489 
8490   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8491   SmallVector<SDValue, 16> Ops(NumConcat);
8492   Ops[0] = Vec;
8493   SDValue UndefVec = DAG.getUNDEF(VecVT);
8494   for (unsigned i = 1; i < NumConcat; ++i)
8495     Ops[i] = UndefVec;
8496 
8497   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8498 }
8499 
8500 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8501                                                 const SDLoc &dl) const {
8502   bool IsStrict = Op->isStrictFPOpcode();
8503   unsigned Opc = Op.getOpcode();
8504   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8505   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8506           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8507          "Unexpected conversion type");
8508   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8509          "Supports conversions to v2f64/v4f32 only.");
8510 
8511   // TODO: Any other flags to propagate?
8512   SDNodeFlags Flags;
8513   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8514 
8515   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8516   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8517 
8518   SDValue Wide = widenVec(DAG, Src, dl);
8519   EVT WideVT = Wide.getValueType();
8520   unsigned WideNumElts = WideVT.getVectorNumElements();
8521   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8522 
8523   SmallVector<int, 16> ShuffV;
8524   for (unsigned i = 0; i < WideNumElts; ++i)
8525     ShuffV.push_back(i + WideNumElts);
8526 
8527   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8528   int SaveElts = FourEltRes ? 4 : 2;
8529   if (Subtarget.isLittleEndian())
8530     for (int i = 0; i < SaveElts; i++)
8531       ShuffV[i * Stride] = i;
8532   else
8533     for (int i = 1; i <= SaveElts; i++)
8534       ShuffV[i * Stride - 1] = i - 1;
8535 
8536   SDValue ShuffleSrc2 =
8537       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8538   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8539 
8540   SDValue Extend;
8541   if (SignedConv) {
8542     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8543     EVT ExtVT = Src.getValueType();
8544     if (Subtarget.hasP9Altivec())
8545       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8546                                IntermediateVT.getVectorNumElements());
8547 
8548     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8549                          DAG.getValueType(ExtVT));
8550   } else
8551     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8552 
8553   if (IsStrict)
8554     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8555                        {Op.getOperand(0), Extend}, Flags);
8556 
8557   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8558 }
8559 
8560 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8561                                           SelectionDAG &DAG) const {
8562   SDLoc dl(Op);
8563   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8564                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8565   bool IsStrict = Op->isStrictFPOpcode();
8566   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8567   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8568 
8569   // TODO: Any other flags to propagate?
8570   SDNodeFlags Flags;
8571   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8572 
8573   EVT InVT = Src.getValueType();
8574   EVT OutVT = Op.getValueType();
8575   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8576       isOperationCustom(Op.getOpcode(), InVT))
8577     return LowerINT_TO_FPVector(Op, DAG, dl);
8578 
8579   // Conversions to f128 are legal.
8580   if (Op.getValueType() == MVT::f128)
8581     return Op;
8582 
8583   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8584   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8585     return SDValue();
8586 
8587   if (Src.getValueType() == MVT::i1)
8588     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8589                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8590                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8591 
8592   // If we have direct moves, we can do all the conversion, skip the store/load
8593   // however, without FPCVT we can't do most conversions.
8594   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8595       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8596     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8597 
8598   assert((IsSigned || Subtarget.hasFPCVT()) &&
8599          "UINT_TO_FP is supported only with FPCVT");
8600 
8601   if (Src.getValueType() == MVT::i64) {
8602     SDValue SINT = Src;
8603     // When converting to single-precision, we actually need to convert
8604     // to double-precision first and then round to single-precision.
8605     // To avoid double-rounding effects during that operation, we have
8606     // to prepare the input operand.  Bits that might be truncated when
8607     // converting to double-precision are replaced by a bit that won't
8608     // be lost at this stage, but is below the single-precision rounding
8609     // position.
8610     //
8611     // However, if -enable-unsafe-fp-math is in effect, accept double
8612     // rounding to avoid the extra overhead.
8613     if (Op.getValueType() == MVT::f32 &&
8614         !Subtarget.hasFPCVT() &&
8615         !DAG.getTarget().Options.UnsafeFPMath) {
8616 
8617       // Twiddle input to make sure the low 11 bits are zero.  (If this
8618       // is the case, we are guaranteed the value will fit into the 53 bit
8619       // mantissa of an IEEE double-precision value without rounding.)
8620       // If any of those low 11 bits were not zero originally, make sure
8621       // bit 12 (value 2048) is set instead, so that the final rounding
8622       // to single-precision gets the correct result.
8623       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8624                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8625       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8626                           Round, DAG.getConstant(2047, dl, MVT::i64));
8627       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8628       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8629                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8630 
8631       // However, we cannot use that value unconditionally: if the magnitude
8632       // of the input value is small, the bit-twiddling we did above might
8633       // end up visibly changing the output.  Fortunately, in that case, we
8634       // don't need to twiddle bits since the original input will convert
8635       // exactly to double-precision floating-point already.  Therefore,
8636       // construct a conditional to use the original value if the top 11
8637       // bits are all sign-bit copies, and use the rounded value computed
8638       // above otherwise.
8639       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8640                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8641       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8642                          Cond, DAG.getConstant(1, dl, MVT::i64));
8643       Cond = DAG.getSetCC(
8644           dl,
8645           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8646           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8647 
8648       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8649     }
8650 
8651     ReuseLoadInfo RLI;
8652     SDValue Bits;
8653 
8654     MachineFunction &MF = DAG.getMachineFunction();
8655     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8656       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8657                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8658       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8659     } else if (Subtarget.hasLFIWAX() &&
8660                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8661       MachineMemOperand *MMO =
8662         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8663                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8664       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8665       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8666                                      DAG.getVTList(MVT::f64, MVT::Other),
8667                                      Ops, MVT::i32, MMO);
8668       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8669     } else if (Subtarget.hasFPCVT() &&
8670                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8671       MachineMemOperand *MMO =
8672         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8673                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8674       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8675       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8676                                      DAG.getVTList(MVT::f64, MVT::Other),
8677                                      Ops, MVT::i32, MMO);
8678       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8679     } else if (((Subtarget.hasLFIWAX() &&
8680                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8681                 (Subtarget.hasFPCVT() &&
8682                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8683                SINT.getOperand(0).getValueType() == MVT::i32) {
8684       MachineFrameInfo &MFI = MF.getFrameInfo();
8685       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8686 
8687       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8688       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8689 
8690       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8691                                    MachinePointerInfo::getFixedStack(
8692                                        DAG.getMachineFunction(), FrameIdx));
8693       Chain = Store;
8694 
8695       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8696              "Expected an i32 store");
8697 
8698       RLI.Ptr = FIdx;
8699       RLI.Chain = Chain;
8700       RLI.MPI =
8701           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8702       RLI.Alignment = Align(4);
8703 
8704       MachineMemOperand *MMO =
8705         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8706                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8707       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8708       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8709                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8710                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8711                                      Ops, MVT::i32, MMO);
8712       Chain = Bits.getValue(1);
8713     } else
8714       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8715 
8716     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8717     if (IsStrict)
8718       Chain = FP.getValue(1);
8719 
8720     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8721       if (IsStrict)
8722         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8723                          DAG.getVTList(MVT::f32, MVT::Other),
8724                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8725       else
8726         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8727                          DAG.getIntPtrConstant(0, dl));
8728     }
8729     return FP;
8730   }
8731 
8732   assert(Src.getValueType() == MVT::i32 &&
8733          "Unhandled INT_TO_FP type in custom expander!");
8734   // Since we only generate this in 64-bit mode, we can take advantage of
8735   // 64-bit registers.  In particular, sign extend the input value into the
8736   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8737   // then lfd it and fcfid it.
8738   MachineFunction &MF = DAG.getMachineFunction();
8739   MachineFrameInfo &MFI = MF.getFrameInfo();
8740   EVT PtrVT = getPointerTy(MF.getDataLayout());
8741 
8742   SDValue Ld;
8743   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8744     ReuseLoadInfo RLI;
8745     bool ReusingLoad;
8746     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8747       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8748       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8749 
8750       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8751                                    MachinePointerInfo::getFixedStack(
8752                                        DAG.getMachineFunction(), FrameIdx));
8753       Chain = Store;
8754 
8755       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8756              "Expected an i32 store");
8757 
8758       RLI.Ptr = FIdx;
8759       RLI.Chain = Chain;
8760       RLI.MPI =
8761           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8762       RLI.Alignment = Align(4);
8763     }
8764 
8765     MachineMemOperand *MMO =
8766       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8767                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8768     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8769     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8770                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8771                                  MVT::i32, MMO);
8772     Chain = Ld.getValue(1);
8773     if (ReusingLoad)
8774       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8775   } else {
8776     assert(Subtarget.isPPC64() &&
8777            "i32->FP without LFIWAX supported only on PPC64");
8778 
8779     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8780     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8781 
8782     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8783 
8784     // STD the extended value into the stack slot.
8785     SDValue Store = DAG.getStore(
8786         Chain, dl, Ext64, FIdx,
8787         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8788     Chain = Store;
8789 
8790     // Load the value as a double.
8791     Ld = DAG.getLoad(
8792         MVT::f64, dl, Chain, FIdx,
8793         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8794     Chain = Ld.getValue(1);
8795   }
8796 
8797   // FCFID it and return it.
8798   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8799   if (IsStrict)
8800     Chain = FP.getValue(1);
8801   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8802     if (IsStrict)
8803       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8804                        DAG.getVTList(MVT::f32, MVT::Other),
8805                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8806     else
8807       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8808                        DAG.getIntPtrConstant(0, dl));
8809   }
8810   return FP;
8811 }
8812 
8813 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8814                                             SelectionDAG &DAG) const {
8815   SDLoc dl(Op);
8816   /*
8817    The rounding mode is in bits 30:31 of FPSR, and has the following
8818    settings:
8819      00 Round to nearest
8820      01 Round to 0
8821      10 Round to +inf
8822      11 Round to -inf
8823 
8824   FLT_ROUNDS, on the other hand, expects the following:
8825     -1 Undefined
8826      0 Round to 0
8827      1 Round to nearest
8828      2 Round to +inf
8829      3 Round to -inf
8830 
8831   To perform the conversion, we do:
8832     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8833   */
8834 
8835   MachineFunction &MF = DAG.getMachineFunction();
8836   EVT VT = Op.getValueType();
8837   EVT PtrVT = getPointerTy(MF.getDataLayout());
8838 
8839   // Save FP Control Word to register
8840   SDValue Chain = Op.getOperand(0);
8841   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8842   Chain = MFFS.getValue(1);
8843 
8844   // Save FP register to stack slot
8845   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8846   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8847   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8848 
8849   // Load FP Control Word from low 32 bits of stack slot.
8850   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8851   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8852   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8853   Chain = CWD.getValue(1);
8854 
8855   // Transform as necessary
8856   SDValue CWD1 =
8857     DAG.getNode(ISD::AND, dl, MVT::i32,
8858                 CWD, DAG.getConstant(3, dl, MVT::i32));
8859   SDValue CWD2 =
8860     DAG.getNode(ISD::SRL, dl, MVT::i32,
8861                 DAG.getNode(ISD::AND, dl, MVT::i32,
8862                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8863                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8864                             DAG.getConstant(3, dl, MVT::i32)),
8865                 DAG.getConstant(1, dl, MVT::i32));
8866 
8867   SDValue RetVal =
8868     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8869 
8870   RetVal =
8871       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8872                   dl, VT, RetVal);
8873 
8874   return DAG.getMergeValues({RetVal, Chain}, dl);
8875 }
8876 
8877 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8878   EVT VT = Op.getValueType();
8879   unsigned BitWidth = VT.getSizeInBits();
8880   SDLoc dl(Op);
8881   assert(Op.getNumOperands() == 3 &&
8882          VT == Op.getOperand(1).getValueType() &&
8883          "Unexpected SHL!");
8884 
8885   // Expand into a bunch of logical ops.  Note that these ops
8886   // depend on the PPC behavior for oversized shift amounts.
8887   SDValue Lo = Op.getOperand(0);
8888   SDValue Hi = Op.getOperand(1);
8889   SDValue Amt = Op.getOperand(2);
8890   EVT AmtVT = Amt.getValueType();
8891 
8892   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8893                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8894   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8895   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8896   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8897   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8898                              DAG.getConstant(-BitWidth, dl, AmtVT));
8899   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8900   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8901   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8902   SDValue OutOps[] = { OutLo, OutHi };
8903   return DAG.getMergeValues(OutOps, dl);
8904 }
8905 
8906 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8907   EVT VT = Op.getValueType();
8908   SDLoc dl(Op);
8909   unsigned BitWidth = VT.getSizeInBits();
8910   assert(Op.getNumOperands() == 3 &&
8911          VT == Op.getOperand(1).getValueType() &&
8912          "Unexpected SRL!");
8913 
8914   // Expand into a bunch of logical ops.  Note that these ops
8915   // depend on the PPC behavior for oversized shift amounts.
8916   SDValue Lo = Op.getOperand(0);
8917   SDValue Hi = Op.getOperand(1);
8918   SDValue Amt = Op.getOperand(2);
8919   EVT AmtVT = Amt.getValueType();
8920 
8921   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8922                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8923   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8924   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8925   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8926   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8927                              DAG.getConstant(-BitWidth, dl, AmtVT));
8928   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8929   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8930   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8931   SDValue OutOps[] = { OutLo, OutHi };
8932   return DAG.getMergeValues(OutOps, dl);
8933 }
8934 
8935 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8936   SDLoc dl(Op);
8937   EVT VT = Op.getValueType();
8938   unsigned BitWidth = VT.getSizeInBits();
8939   assert(Op.getNumOperands() == 3 &&
8940          VT == Op.getOperand(1).getValueType() &&
8941          "Unexpected SRA!");
8942 
8943   // Expand into a bunch of logical ops, followed by a select_cc.
8944   SDValue Lo = Op.getOperand(0);
8945   SDValue Hi = Op.getOperand(1);
8946   SDValue Amt = Op.getOperand(2);
8947   EVT AmtVT = Amt.getValueType();
8948 
8949   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8950                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8951   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8952   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8953   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8954   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8955                              DAG.getConstant(-BitWidth, dl, AmtVT));
8956   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8957   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8958   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8959                                   Tmp4, Tmp6, ISD::SETLE);
8960   SDValue OutOps[] = { OutLo, OutHi };
8961   return DAG.getMergeValues(OutOps, dl);
8962 }
8963 
8964 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8965                                             SelectionDAG &DAG) const {
8966   SDLoc dl(Op);
8967   EVT VT = Op.getValueType();
8968   unsigned BitWidth = VT.getSizeInBits();
8969 
8970   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8971   SDValue X = Op.getOperand(0);
8972   SDValue Y = Op.getOperand(1);
8973   SDValue Z = Op.getOperand(2);
8974   EVT AmtVT = Z.getValueType();
8975 
8976   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8977   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8978   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8979   // on PowerPC shift by BW being well defined.
8980   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8981                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8982   SDValue SubZ =
8983       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8984   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8985   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8986   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8987 }
8988 
8989 //===----------------------------------------------------------------------===//
8990 // Vector related lowering.
8991 //
8992 
8993 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8994 /// element size of SplatSize. Cast the result to VT.
8995 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8996                                       SelectionDAG &DAG, const SDLoc &dl) {
8997   static const MVT VTys[] = { // canonical VT to use for each size.
8998     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8999   };
9000 
9001   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
9002 
9003   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
9004   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
9005     SplatSize = 1;
9006     Val = 0xFF;
9007   }
9008 
9009   EVT CanonicalVT = VTys[SplatSize-1];
9010 
9011   // Build a canonical splat for this value.
9012   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
9013 }
9014 
9015 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
9016 /// specified intrinsic ID.
9017 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
9018                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
9019   if (DestVT == MVT::Other) DestVT = Op.getValueType();
9020   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9021                      DAG.getConstant(IID, dl, MVT::i32), Op);
9022 }
9023 
9024 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
9025 /// specified intrinsic ID.
9026 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
9027                                 SelectionDAG &DAG, const SDLoc &dl,
9028                                 EVT DestVT = MVT::Other) {
9029   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
9030   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9031                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
9032 }
9033 
9034 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
9035 /// specified intrinsic ID.
9036 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
9037                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
9038                                 EVT DestVT = MVT::Other) {
9039   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
9040   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9041                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
9042 }
9043 
9044 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9045 /// amount.  The result has the specified value type.
9046 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9047                            SelectionDAG &DAG, const SDLoc &dl) {
9048   // Force LHS/RHS to be the right type.
9049   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9050   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9051 
9052   int Ops[16];
9053   for (unsigned i = 0; i != 16; ++i)
9054     Ops[i] = i + Amt;
9055   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9056   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9057 }
9058 
9059 /// Do we have an efficient pattern in a .td file for this node?
9060 ///
9061 /// \param V - pointer to the BuildVectorSDNode being matched
9062 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9063 ///
9064 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9065 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9066 /// the opposite is true (expansion is beneficial) are:
9067 /// - The node builds a vector out of integers that are not 32 or 64-bits
9068 /// - The node builds a vector out of constants
9069 /// - The node is a "load-and-splat"
9070 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9071 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9072                                             bool HasDirectMove,
9073                                             bool HasP8Vector) {
9074   EVT VecVT = V->getValueType(0);
9075   bool RightType = VecVT == MVT::v2f64 ||
9076     (HasP8Vector && VecVT == MVT::v4f32) ||
9077     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9078   if (!RightType)
9079     return false;
9080 
9081   bool IsSplat = true;
9082   bool IsLoad = false;
9083   SDValue Op0 = V->getOperand(0);
9084 
9085   // This function is called in a block that confirms the node is not a constant
9086   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9087   // different constants.
9088   if (V->isConstant())
9089     return false;
9090   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9091     if (V->getOperand(i).isUndef())
9092       return false;
9093     // We want to expand nodes that represent load-and-splat even if the
9094     // loaded value is a floating point truncation or conversion to int.
9095     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9096         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9097          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9098         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9099          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9100         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9101          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9102       IsLoad = true;
9103     // If the operands are different or the input is not a load and has more
9104     // uses than just this BV node, then it isn't a splat.
9105     if (V->getOperand(i) != Op0 ||
9106         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9107       IsSplat = false;
9108   }
9109   return !(IsSplat && IsLoad);
9110 }
9111 
9112 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9113 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9114 
9115   SDLoc dl(Op);
9116   SDValue Op0 = Op->getOperand(0);
9117 
9118   if ((Op.getValueType() != MVT::f128) ||
9119       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9120       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9121       (Op0.getOperand(1).getValueType() != MVT::i64))
9122     return SDValue();
9123 
9124   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9125                      Op0.getOperand(1));
9126 }
9127 
9128 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9129   const SDValue *InputLoad = &Op;
9130   if (InputLoad->getOpcode() == ISD::BITCAST)
9131     InputLoad = &InputLoad->getOperand(0);
9132   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9133       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9134     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9135     InputLoad = &InputLoad->getOperand(0);
9136   }
9137   if (InputLoad->getOpcode() != ISD::LOAD)
9138     return nullptr;
9139   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9140   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9141 }
9142 
9143 // Convert the argument APFloat to a single precision APFloat if there is no
9144 // loss in information during the conversion to single precision APFloat and the
9145 // resulting number is not a denormal number. Return true if successful.
9146 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9147   APFloat APFloatToConvert = ArgAPFloat;
9148   bool LosesInfo = true;
9149   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9150                            &LosesInfo);
9151   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9152   if (Success)
9153     ArgAPFloat = APFloatToConvert;
9154   return Success;
9155 }
9156 
9157 // Bitcast the argument APInt to a double and convert it to a single precision
9158 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9159 // argument if there is no loss in information during the conversion from
9160 // double to single precision APFloat and the resulting number is not a denormal
9161 // number. Return true if successful.
9162 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9163   double DpValue = ArgAPInt.bitsToDouble();
9164   APFloat APFloatDp(DpValue);
9165   bool Success = convertToNonDenormSingle(APFloatDp);
9166   if (Success)
9167     ArgAPInt = APFloatDp.bitcastToAPInt();
9168   return Success;
9169 }
9170 
9171 // If this is a case we can't handle, return null and let the default
9172 // expansion code take care of it.  If we CAN select this case, and if it
9173 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9174 // this case more efficiently than a constant pool load, lower it to the
9175 // sequence of ops that should be used.
9176 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9177                                              SelectionDAG &DAG) const {
9178   SDLoc dl(Op);
9179   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9180   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9181 
9182   // Check if this is a splat of a constant value.
9183   APInt APSplatBits, APSplatUndef;
9184   unsigned SplatBitSize;
9185   bool HasAnyUndefs;
9186   bool BVNIsConstantSplat =
9187       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9188                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9189 
9190   // If it is a splat of a double, check if we can shrink it to a 32 bit
9191   // non-denormal float which when converted back to double gives us the same
9192   // double. This is to exploit the XXSPLTIDP instruction.
9193   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
9194       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
9195       convertToNonDenormSingle(APSplatBits)) {
9196     SDValue SplatNode = DAG.getNode(
9197         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9198         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9199     return DAG.getBitcast(Op.getValueType(), SplatNode);
9200   }
9201 
9202   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9203 
9204     bool IsPermutedLoad = false;
9205     const SDValue *InputLoad =
9206         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9207     // Handle load-and-splat patterns as we have instructions that will do this
9208     // in one go.
9209     if (InputLoad && DAG.isSplatValue(Op, true)) {
9210       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9211 
9212       // We have handling for 4 and 8 byte elements.
9213       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9214 
9215       // Checking for a single use of this load, we have to check for vector
9216       // width (128 bits) / ElementSize uses (since each operand of the
9217       // BUILD_VECTOR is a separate use of the value.
9218       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9219           ((Subtarget.hasVSX() && ElementSize == 64) ||
9220            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9221         SDValue Ops[] = {
9222           LD->getChain(),    // Chain
9223           LD->getBasePtr(),  // Ptr
9224           DAG.getValueType(Op.getValueType()) // VT
9225         };
9226         return
9227           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9228                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9229                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9230       }
9231     }
9232 
9233     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9234     // lowered to VSX instructions under certain conditions.
9235     // Without VSX, there is no pattern more efficient than expanding the node.
9236     if (Subtarget.hasVSX() &&
9237         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9238                                         Subtarget.hasP8Vector()))
9239       return Op;
9240     return SDValue();
9241   }
9242 
9243   uint64_t SplatBits = APSplatBits.getZExtValue();
9244   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9245   unsigned SplatSize = SplatBitSize / 8;
9246 
9247   // First, handle single instruction cases.
9248 
9249   // All zeros?
9250   if (SplatBits == 0) {
9251     // Canonicalize all zero vectors to be v4i32.
9252     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9253       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9254       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9255     }
9256     return Op;
9257   }
9258 
9259   // We have XXSPLTIW for constant splats four bytes wide.
9260   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9261   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9262   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9263   // turned into a 4-byte splat of 0xABABABAB.
9264   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9265     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
9266                                   Op.getValueType(), DAG, dl);
9267 
9268   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9269     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9270                                   dl);
9271 
9272   // We have XXSPLTIB for constant splats one byte wide.
9273   if (Subtarget.hasP9Vector() && SplatSize == 1)
9274     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9275                                   dl);
9276 
9277   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9278   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9279                     (32-SplatBitSize));
9280   if (SextVal >= -16 && SextVal <= 15)
9281     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9282                                   dl);
9283 
9284   // Two instruction sequences.
9285 
9286   // If this value is in the range [-32,30] and is even, use:
9287   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9288   // If this value is in the range [17,31] and is odd, use:
9289   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9290   // If this value is in the range [-31,-17] and is odd, use:
9291   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9292   // Note the last two are three-instruction sequences.
9293   if (SextVal >= -32 && SextVal <= 31) {
9294     // To avoid having these optimizations undone by constant folding,
9295     // we convert to a pseudo that will be expanded later into one of
9296     // the above forms.
9297     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9298     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9299               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9300     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9301     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9302     if (VT == Op.getValueType())
9303       return RetVal;
9304     else
9305       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9306   }
9307 
9308   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9309   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9310   // for fneg/fabs.
9311   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9312     // Make -1 and vspltisw -1:
9313     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9314 
9315     // Make the VSLW intrinsic, computing 0x8000_0000.
9316     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9317                                    OnesV, DAG, dl);
9318 
9319     // xor by OnesV to invert it.
9320     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9321     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9322   }
9323 
9324   // Check to see if this is a wide variety of vsplti*, binop self cases.
9325   static const signed char SplatCsts[] = {
9326     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9327     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9328   };
9329 
9330   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9331     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9332     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9333     int i = SplatCsts[idx];
9334 
9335     // Figure out what shift amount will be used by altivec if shifted by i in
9336     // this splat size.
9337     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9338 
9339     // vsplti + shl self.
9340     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9341       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9342       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9343         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9344         Intrinsic::ppc_altivec_vslw
9345       };
9346       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9347       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9348     }
9349 
9350     // vsplti + srl self.
9351     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9352       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9353       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9354         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9355         Intrinsic::ppc_altivec_vsrw
9356       };
9357       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9358       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9359     }
9360 
9361     // vsplti + sra self.
9362     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9363       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9364       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9365         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9366         Intrinsic::ppc_altivec_vsraw
9367       };
9368       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9369       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9370     }
9371 
9372     // vsplti + rol self.
9373     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9374                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9375       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9376       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9377         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9378         Intrinsic::ppc_altivec_vrlw
9379       };
9380       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9381       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9382     }
9383 
9384     // t = vsplti c, result = vsldoi t, t, 1
9385     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9386       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9387       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9388       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9389     }
9390     // t = vsplti c, result = vsldoi t, t, 2
9391     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9392       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9393       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9394       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9395     }
9396     // t = vsplti c, result = vsldoi t, t, 3
9397     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9398       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9399       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9400       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9401     }
9402   }
9403 
9404   return SDValue();
9405 }
9406 
9407 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9408 /// the specified operations to build the shuffle.
9409 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9410                                       SDValue RHS, SelectionDAG &DAG,
9411                                       const SDLoc &dl) {
9412   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9413   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9414   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9415 
9416   enum {
9417     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9418     OP_VMRGHW,
9419     OP_VMRGLW,
9420     OP_VSPLTISW0,
9421     OP_VSPLTISW1,
9422     OP_VSPLTISW2,
9423     OP_VSPLTISW3,
9424     OP_VSLDOI4,
9425     OP_VSLDOI8,
9426     OP_VSLDOI12
9427   };
9428 
9429   if (OpNum == OP_COPY) {
9430     if (LHSID == (1*9+2)*9+3) return LHS;
9431     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9432     return RHS;
9433   }
9434 
9435   SDValue OpLHS, OpRHS;
9436   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9437   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9438 
9439   int ShufIdxs[16];
9440   switch (OpNum) {
9441   default: llvm_unreachable("Unknown i32 permute!");
9442   case OP_VMRGHW:
9443     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9444     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9445     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9446     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9447     break;
9448   case OP_VMRGLW:
9449     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9450     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9451     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9452     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9453     break;
9454   case OP_VSPLTISW0:
9455     for (unsigned i = 0; i != 16; ++i)
9456       ShufIdxs[i] = (i&3)+0;
9457     break;
9458   case OP_VSPLTISW1:
9459     for (unsigned i = 0; i != 16; ++i)
9460       ShufIdxs[i] = (i&3)+4;
9461     break;
9462   case OP_VSPLTISW2:
9463     for (unsigned i = 0; i != 16; ++i)
9464       ShufIdxs[i] = (i&3)+8;
9465     break;
9466   case OP_VSPLTISW3:
9467     for (unsigned i = 0; i != 16; ++i)
9468       ShufIdxs[i] = (i&3)+12;
9469     break;
9470   case OP_VSLDOI4:
9471     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9472   case OP_VSLDOI8:
9473     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9474   case OP_VSLDOI12:
9475     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9476   }
9477   EVT VT = OpLHS.getValueType();
9478   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9479   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9480   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9481   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9482 }
9483 
9484 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9485 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9486 /// SDValue.
9487 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9488                                            SelectionDAG &DAG) const {
9489   const unsigned BytesInVector = 16;
9490   bool IsLE = Subtarget.isLittleEndian();
9491   SDLoc dl(N);
9492   SDValue V1 = N->getOperand(0);
9493   SDValue V2 = N->getOperand(1);
9494   unsigned ShiftElts = 0, InsertAtByte = 0;
9495   bool Swap = false;
9496 
9497   // Shifts required to get the byte we want at element 7.
9498   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9499                                    0, 15, 14, 13, 12, 11, 10, 9};
9500   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9501                                 1, 2,  3,  4,  5,  6,  7,  8};
9502 
9503   ArrayRef<int> Mask = N->getMask();
9504   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9505 
9506   // For each mask element, find out if we're just inserting something
9507   // from V2 into V1 or vice versa.
9508   // Possible permutations inserting an element from V2 into V1:
9509   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9510   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9511   //   ...
9512   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9513   // Inserting from V1 into V2 will be similar, except mask range will be
9514   // [16,31].
9515 
9516   bool FoundCandidate = false;
9517   // If both vector operands for the shuffle are the same vector, the mask
9518   // will contain only elements from the first one and the second one will be
9519   // undef.
9520   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9521   // Go through the mask of half-words to find an element that's being moved
9522   // from one vector to the other.
9523   for (unsigned i = 0; i < BytesInVector; ++i) {
9524     unsigned CurrentElement = Mask[i];
9525     // If 2nd operand is undefined, we should only look for element 7 in the
9526     // Mask.
9527     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9528       continue;
9529 
9530     bool OtherElementsInOrder = true;
9531     // Examine the other elements in the Mask to see if they're in original
9532     // order.
9533     for (unsigned j = 0; j < BytesInVector; ++j) {
9534       if (j == i)
9535         continue;
9536       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9537       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9538       // in which we always assume we're always picking from the 1st operand.
9539       int MaskOffset =
9540           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9541       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9542         OtherElementsInOrder = false;
9543         break;
9544       }
9545     }
9546     // If other elements are in original order, we record the number of shifts
9547     // we need to get the element we want into element 7. Also record which byte
9548     // in the vector we should insert into.
9549     if (OtherElementsInOrder) {
9550       // If 2nd operand is undefined, we assume no shifts and no swapping.
9551       if (V2.isUndef()) {
9552         ShiftElts = 0;
9553         Swap = false;
9554       } else {
9555         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9556         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9557                          : BigEndianShifts[CurrentElement & 0xF];
9558         Swap = CurrentElement < BytesInVector;
9559       }
9560       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9561       FoundCandidate = true;
9562       break;
9563     }
9564   }
9565 
9566   if (!FoundCandidate)
9567     return SDValue();
9568 
9569   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9570   // optionally with VECSHL if shift is required.
9571   if (Swap)
9572     std::swap(V1, V2);
9573   if (V2.isUndef())
9574     V2 = V1;
9575   if (ShiftElts) {
9576     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9577                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9578     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9579                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9580   }
9581   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9582                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9583 }
9584 
9585 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9586 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9587 /// SDValue.
9588 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9589                                            SelectionDAG &DAG) const {
9590   const unsigned NumHalfWords = 8;
9591   const unsigned BytesInVector = NumHalfWords * 2;
9592   // Check that the shuffle is on half-words.
9593   if (!isNByteElemShuffleMask(N, 2, 1))
9594     return SDValue();
9595 
9596   bool IsLE = Subtarget.isLittleEndian();
9597   SDLoc dl(N);
9598   SDValue V1 = N->getOperand(0);
9599   SDValue V2 = N->getOperand(1);
9600   unsigned ShiftElts = 0, InsertAtByte = 0;
9601   bool Swap = false;
9602 
9603   // Shifts required to get the half-word we want at element 3.
9604   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9605   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9606 
9607   uint32_t Mask = 0;
9608   uint32_t OriginalOrderLow = 0x1234567;
9609   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9610   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9611   // 32-bit space, only need 4-bit nibbles per element.
9612   for (unsigned i = 0; i < NumHalfWords; ++i) {
9613     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9614     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9615   }
9616 
9617   // For each mask element, find out if we're just inserting something
9618   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9619   // from V2 into V1:
9620   //   X, 1, 2, 3, 4, 5, 6, 7
9621   //   0, X, 2, 3, 4, 5, 6, 7
9622   //   0, 1, X, 3, 4, 5, 6, 7
9623   //   0, 1, 2, X, 4, 5, 6, 7
9624   //   0, 1, 2, 3, X, 5, 6, 7
9625   //   0, 1, 2, 3, 4, X, 6, 7
9626   //   0, 1, 2, 3, 4, 5, X, 7
9627   //   0, 1, 2, 3, 4, 5, 6, X
9628   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9629 
9630   bool FoundCandidate = false;
9631   // Go through the mask of half-words to find an element that's being moved
9632   // from one vector to the other.
9633   for (unsigned i = 0; i < NumHalfWords; ++i) {
9634     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9635     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9636     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9637     uint32_t TargetOrder = 0x0;
9638 
9639     // If both vector operands for the shuffle are the same vector, the mask
9640     // will contain only elements from the first one and the second one will be
9641     // undef.
9642     if (V2.isUndef()) {
9643       ShiftElts = 0;
9644       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9645       TargetOrder = OriginalOrderLow;
9646       Swap = false;
9647       // Skip if not the correct element or mask of other elements don't equal
9648       // to our expected order.
9649       if (MaskOneElt == VINSERTHSrcElem &&
9650           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9651         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9652         FoundCandidate = true;
9653         break;
9654       }
9655     } else { // If both operands are defined.
9656       // Target order is [8,15] if the current mask is between [0,7].
9657       TargetOrder =
9658           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9659       // Skip if mask of other elements don't equal our expected order.
9660       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9661         // We only need the last 3 bits for the number of shifts.
9662         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9663                          : BigEndianShifts[MaskOneElt & 0x7];
9664         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9665         Swap = MaskOneElt < NumHalfWords;
9666         FoundCandidate = true;
9667         break;
9668       }
9669     }
9670   }
9671 
9672   if (!FoundCandidate)
9673     return SDValue();
9674 
9675   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9676   // optionally with VECSHL if shift is required.
9677   if (Swap)
9678     std::swap(V1, V2);
9679   if (V2.isUndef())
9680     V2 = V1;
9681   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9682   if (ShiftElts) {
9683     // Double ShiftElts because we're left shifting on v16i8 type.
9684     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9685                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9686     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9687     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9688                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9689     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9690   }
9691   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9692   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9693                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9694   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9695 }
9696 
9697 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9698 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9699 /// return the default SDValue.
9700 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9701                                               SelectionDAG &DAG) const {
9702   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9703   // to v16i8. Peek through the bitcasts to get the actual operands.
9704   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9705   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9706 
9707   auto ShuffleMask = SVN->getMask();
9708   SDValue VecShuffle(SVN, 0);
9709   SDLoc DL(SVN);
9710 
9711   // Check that we have a four byte shuffle.
9712   if (!isNByteElemShuffleMask(SVN, 4, 1))
9713     return SDValue();
9714 
9715   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9716   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9717     std::swap(LHS, RHS);
9718     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9719     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9720   }
9721 
9722   // Ensure that the RHS is a vector of constants.
9723   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9724   if (!BVN)
9725     return SDValue();
9726 
9727   // Check if RHS is a splat of 4-bytes (or smaller).
9728   APInt APSplatValue, APSplatUndef;
9729   unsigned SplatBitSize;
9730   bool HasAnyUndefs;
9731   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9732                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9733       SplatBitSize > 32)
9734     return SDValue();
9735 
9736   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9737   // The instruction splats a constant C into two words of the source vector
9738   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9739   // Thus we check that the shuffle mask is the equivalent  of
9740   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9741   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9742   // within each word are consecutive, so we only need to check the first byte.
9743   SDValue Index;
9744   bool IsLE = Subtarget.isLittleEndian();
9745   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9746       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9747        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9748     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9749   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9750            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9751             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9752     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9753   else
9754     return SDValue();
9755 
9756   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9757   // for XXSPLTI32DX.
9758   unsigned SplatVal = APSplatValue.getZExtValue();
9759   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9760     SplatVal |= (SplatVal << SplatBitSize);
9761 
9762   SDValue SplatNode = DAG.getNode(
9763       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9764       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9765   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9766 }
9767 
9768 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9769 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9770 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9771 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9772 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9773   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9774   assert(Op.getValueType() == MVT::v1i128 &&
9775          "Only set v1i128 as custom, other type shouldn't reach here!");
9776   SDLoc dl(Op);
9777   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9778   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9779   unsigned SHLAmt = N1.getConstantOperandVal(0);
9780   if (SHLAmt % 8 == 0) {
9781     SmallVector<int, 16> Mask(16, 0);
9782     std::iota(Mask.begin(), Mask.end(), 0);
9783     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9784     if (SDValue Shuffle =
9785             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9786                                  DAG.getUNDEF(MVT::v16i8), Mask))
9787       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9788   }
9789   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9790   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9791                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9792   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9793                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9794   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9795   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9796 }
9797 
9798 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9799 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9800 /// return the code it can be lowered into.  Worst case, it can always be
9801 /// lowered into a vperm.
9802 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9803                                                SelectionDAG &DAG) const {
9804   SDLoc dl(Op);
9805   SDValue V1 = Op.getOperand(0);
9806   SDValue V2 = Op.getOperand(1);
9807   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9808 
9809   // Any nodes that were combined in the target-independent combiner prior
9810   // to vector legalization will not be sent to the target combine. Try to
9811   // combine it here.
9812   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9813     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9814       return NewShuffle;
9815     Op = NewShuffle;
9816     SVOp = cast<ShuffleVectorSDNode>(Op);
9817     V1 = Op.getOperand(0);
9818     V2 = Op.getOperand(1);
9819   }
9820   EVT VT = Op.getValueType();
9821   bool isLittleEndian = Subtarget.isLittleEndian();
9822 
9823   unsigned ShiftElts, InsertAtByte;
9824   bool Swap = false;
9825 
9826   // If this is a load-and-splat, we can do that with a single instruction
9827   // in some cases. However if the load has multiple uses, we don't want to
9828   // combine it because that will just produce multiple loads.
9829   bool IsPermutedLoad = false;
9830   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9831   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9832       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9833       InputLoad->hasOneUse()) {
9834     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9835     int SplatIdx =
9836       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9837 
9838     // The splat index for permuted loads will be in the left half of the vector
9839     // which is strictly wider than the loaded value by 8 bytes. So we need to
9840     // adjust the splat index to point to the correct address in memory.
9841     if (IsPermutedLoad) {
9842       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9843       SplatIdx += IsFourByte ? 2 : 1;
9844       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9845              "Splat of a value outside of the loaded memory");
9846     }
9847 
9848     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9849     // For 4-byte load-and-splat, we need Power9.
9850     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9851       uint64_t Offset = 0;
9852       if (IsFourByte)
9853         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9854       else
9855         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9856 
9857       SDValue BasePtr = LD->getBasePtr();
9858       if (Offset != 0)
9859         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9860                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9861       SDValue Ops[] = {
9862         LD->getChain(),    // Chain
9863         BasePtr,           // BasePtr
9864         DAG.getValueType(Op.getValueType()) // VT
9865       };
9866       SDVTList VTL =
9867         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9868       SDValue LdSplt =
9869         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9870                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9871       if (LdSplt.getValueType() != SVOp->getValueType(0))
9872         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9873       return LdSplt;
9874     }
9875   }
9876   if (Subtarget.hasP9Vector() &&
9877       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9878                            isLittleEndian)) {
9879     if (Swap)
9880       std::swap(V1, V2);
9881     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9882     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9883     if (ShiftElts) {
9884       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9885                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9886       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9887                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9888       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9889     }
9890     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9891                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9892     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9893   }
9894 
9895   if (Subtarget.hasPrefixInstrs()) {
9896     SDValue SplatInsertNode;
9897     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9898       return SplatInsertNode;
9899   }
9900 
9901   if (Subtarget.hasP9Altivec()) {
9902     SDValue NewISDNode;
9903     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9904       return NewISDNode;
9905 
9906     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9907       return NewISDNode;
9908   }
9909 
9910   if (Subtarget.hasVSX() &&
9911       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9912     if (Swap)
9913       std::swap(V1, V2);
9914     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9915     SDValue Conv2 =
9916         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9917 
9918     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9919                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9920     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9921   }
9922 
9923   if (Subtarget.hasVSX() &&
9924     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9925     if (Swap)
9926       std::swap(V1, V2);
9927     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9928     SDValue Conv2 =
9929         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9930 
9931     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9932                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9933     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9934   }
9935 
9936   if (Subtarget.hasP9Vector()) {
9937      if (PPC::isXXBRHShuffleMask(SVOp)) {
9938       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9939       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9940       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9941     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9942       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9943       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9944       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9945     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9946       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9947       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9948       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9949     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9950       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9951       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9952       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9953     }
9954   }
9955 
9956   if (Subtarget.hasVSX()) {
9957     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9958       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9959 
9960       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9961       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9962                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9963       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9964     }
9965 
9966     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9967     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9968       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9969       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9970       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9971     }
9972   }
9973 
9974   // Cases that are handled by instructions that take permute immediates
9975   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9976   // selected by the instruction selector.
9977   if (V2.isUndef()) {
9978     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9979         PPC::isSplatShuffleMask(SVOp, 2) ||
9980         PPC::isSplatShuffleMask(SVOp, 4) ||
9981         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9982         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9983         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9984         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9985         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9986         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9987         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9988         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9989         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9990         (Subtarget.hasP8Altivec() && (
9991          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9992          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9993          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9994       return Op;
9995     }
9996   }
9997 
9998   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9999   // and produce a fixed permutation.  If any of these match, do not lower to
10000   // VPERM.
10001   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10002   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10003       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10004       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10005       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10006       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10007       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10008       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10009       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10010       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10011       (Subtarget.hasP8Altivec() && (
10012        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10013        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10014        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10015     return Op;
10016 
10017   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10018   // perfect shuffle table to emit an optimal matching sequence.
10019   ArrayRef<int> PermMask = SVOp->getMask();
10020 
10021   unsigned PFIndexes[4];
10022   bool isFourElementShuffle = true;
10023   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
10024     unsigned EltNo = 8;   // Start out undef.
10025     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
10026       if (PermMask[i*4+j] < 0)
10027         continue;   // Undef, ignore it.
10028 
10029       unsigned ByteSource = PermMask[i*4+j];
10030       if ((ByteSource & 3) != j) {
10031         isFourElementShuffle = false;
10032         break;
10033       }
10034 
10035       if (EltNo == 8) {
10036         EltNo = ByteSource/4;
10037       } else if (EltNo != ByteSource/4) {
10038         isFourElementShuffle = false;
10039         break;
10040       }
10041     }
10042     PFIndexes[i] = EltNo;
10043   }
10044 
10045   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10046   // perfect shuffle vector to determine if it is cost effective to do this as
10047   // discrete instructions, or whether we should use a vperm.
10048   // For now, we skip this for little endian until such time as we have a
10049   // little-endian perfect shuffle table.
10050   if (isFourElementShuffle && !isLittleEndian) {
10051     // Compute the index in the perfect shuffle table.
10052     unsigned PFTableIndex =
10053       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10054 
10055     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10056     unsigned Cost  = (PFEntry >> 30);
10057 
10058     // Determining when to avoid vperm is tricky.  Many things affect the cost
10059     // of vperm, particularly how many times the perm mask needs to be computed.
10060     // For example, if the perm mask can be hoisted out of a loop or is already
10061     // used (perhaps because there are multiple permutes with the same shuffle
10062     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10063     // the loop requires an extra register.
10064     //
10065     // As a compromise, we only emit discrete instructions if the shuffle can be
10066     // generated in 3 or fewer operations.  When we have loop information
10067     // available, if this block is within a loop, we should avoid using vperm
10068     // for 3-operation perms and use a constant pool load instead.
10069     if (Cost < 3)
10070       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10071   }
10072 
10073   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10074   // vector that will get spilled to the constant pool.
10075   if (V2.isUndef()) V2 = V1;
10076 
10077   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10078   // that it is in input element units, not in bytes.  Convert now.
10079 
10080   // For little endian, the order of the input vectors is reversed, and
10081   // the permutation mask is complemented with respect to 31.  This is
10082   // necessary to produce proper semantics with the big-endian-biased vperm
10083   // instruction.
10084   EVT EltVT = V1.getValueType().getVectorElementType();
10085   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10086 
10087   SmallVector<SDValue, 16> ResultMask;
10088   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10089     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10090 
10091     for (unsigned j = 0; j != BytesPerElement; ++j)
10092       if (isLittleEndian)
10093         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10094                                              dl, MVT::i32));
10095       else
10096         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10097                                              MVT::i32));
10098   }
10099 
10100   ShufflesHandledWithVPERM++;
10101   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10102   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10103   LLVM_DEBUG(SVOp->dump());
10104   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10105   LLVM_DEBUG(VPermMask.dump());
10106 
10107   if (isLittleEndian)
10108     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10109                        V2, V1, VPermMask);
10110   else
10111     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10112                        V1, V2, VPermMask);
10113 }
10114 
10115 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10116 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10117 /// information about the intrinsic.
10118 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10119                                  bool &isDot, const PPCSubtarget &Subtarget) {
10120   unsigned IntrinsicID =
10121       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10122   CompareOpc = -1;
10123   isDot = false;
10124   switch (IntrinsicID) {
10125   default:
10126     return false;
10127   // Comparison predicates.
10128   case Intrinsic::ppc_altivec_vcmpbfp_p:
10129     CompareOpc = 966;
10130     isDot = true;
10131     break;
10132   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10133     CompareOpc = 198;
10134     isDot = true;
10135     break;
10136   case Intrinsic::ppc_altivec_vcmpequb_p:
10137     CompareOpc = 6;
10138     isDot = true;
10139     break;
10140   case Intrinsic::ppc_altivec_vcmpequh_p:
10141     CompareOpc = 70;
10142     isDot = true;
10143     break;
10144   case Intrinsic::ppc_altivec_vcmpequw_p:
10145     CompareOpc = 134;
10146     isDot = true;
10147     break;
10148   case Intrinsic::ppc_altivec_vcmpequd_p:
10149     if (Subtarget.hasP8Altivec()) {
10150       CompareOpc = 199;
10151       isDot = true;
10152     } else
10153       return false;
10154     break;
10155   case Intrinsic::ppc_altivec_vcmpneb_p:
10156   case Intrinsic::ppc_altivec_vcmpneh_p:
10157   case Intrinsic::ppc_altivec_vcmpnew_p:
10158   case Intrinsic::ppc_altivec_vcmpnezb_p:
10159   case Intrinsic::ppc_altivec_vcmpnezh_p:
10160   case Intrinsic::ppc_altivec_vcmpnezw_p:
10161     if (Subtarget.hasP9Altivec()) {
10162       switch (IntrinsicID) {
10163       default:
10164         llvm_unreachable("Unknown comparison intrinsic.");
10165       case Intrinsic::ppc_altivec_vcmpneb_p:
10166         CompareOpc = 7;
10167         break;
10168       case Intrinsic::ppc_altivec_vcmpneh_p:
10169         CompareOpc = 71;
10170         break;
10171       case Intrinsic::ppc_altivec_vcmpnew_p:
10172         CompareOpc = 135;
10173         break;
10174       case Intrinsic::ppc_altivec_vcmpnezb_p:
10175         CompareOpc = 263;
10176         break;
10177       case Intrinsic::ppc_altivec_vcmpnezh_p:
10178         CompareOpc = 327;
10179         break;
10180       case Intrinsic::ppc_altivec_vcmpnezw_p:
10181         CompareOpc = 391;
10182         break;
10183       }
10184       isDot = true;
10185     } else
10186       return false;
10187     break;
10188   case Intrinsic::ppc_altivec_vcmpgefp_p:
10189     CompareOpc = 454;
10190     isDot = true;
10191     break;
10192   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10193     CompareOpc = 710;
10194     isDot = true;
10195     break;
10196   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10197     CompareOpc = 774;
10198     isDot = true;
10199     break;
10200   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10201     CompareOpc = 838;
10202     isDot = true;
10203     break;
10204   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10205     CompareOpc = 902;
10206     isDot = true;
10207     break;
10208   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10209     if (Subtarget.hasP8Altivec()) {
10210       CompareOpc = 967;
10211       isDot = true;
10212     } else
10213       return false;
10214     break;
10215   case Intrinsic::ppc_altivec_vcmpgtub_p:
10216     CompareOpc = 518;
10217     isDot = true;
10218     break;
10219   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10220     CompareOpc = 582;
10221     isDot = true;
10222     break;
10223   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10224     CompareOpc = 646;
10225     isDot = true;
10226     break;
10227   case Intrinsic::ppc_altivec_vcmpgtud_p:
10228     if (Subtarget.hasP8Altivec()) {
10229       CompareOpc = 711;
10230       isDot = true;
10231     } else
10232       return false;
10233     break;
10234 
10235   case Intrinsic::ppc_altivec_vcmpequq:
10236   case Intrinsic::ppc_altivec_vcmpgtsq:
10237   case Intrinsic::ppc_altivec_vcmpgtuq:
10238     if (!Subtarget.isISA3_1())
10239       return false;
10240     switch (IntrinsicID) {
10241     default:
10242       llvm_unreachable("Unknown comparison intrinsic.");
10243     case Intrinsic::ppc_altivec_vcmpequq:
10244       CompareOpc = 455;
10245       break;
10246     case Intrinsic::ppc_altivec_vcmpgtsq:
10247       CompareOpc = 903;
10248       break;
10249     case Intrinsic::ppc_altivec_vcmpgtuq:
10250       CompareOpc = 647;
10251       break;
10252     }
10253     break;
10254 
10255   // VSX predicate comparisons use the same infrastructure
10256   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10257   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10258   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10259   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10260   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10261   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10262     if (Subtarget.hasVSX()) {
10263       switch (IntrinsicID) {
10264       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10265         CompareOpc = 99;
10266         break;
10267       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10268         CompareOpc = 115;
10269         break;
10270       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10271         CompareOpc = 107;
10272         break;
10273       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10274         CompareOpc = 67;
10275         break;
10276       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10277         CompareOpc = 83;
10278         break;
10279       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10280         CompareOpc = 75;
10281         break;
10282       }
10283       isDot = true;
10284     } else
10285       return false;
10286     break;
10287 
10288   // Normal Comparisons.
10289   case Intrinsic::ppc_altivec_vcmpbfp:
10290     CompareOpc = 966;
10291     break;
10292   case Intrinsic::ppc_altivec_vcmpeqfp:
10293     CompareOpc = 198;
10294     break;
10295   case Intrinsic::ppc_altivec_vcmpequb:
10296     CompareOpc = 6;
10297     break;
10298   case Intrinsic::ppc_altivec_vcmpequh:
10299     CompareOpc = 70;
10300     break;
10301   case Intrinsic::ppc_altivec_vcmpequw:
10302     CompareOpc = 134;
10303     break;
10304   case Intrinsic::ppc_altivec_vcmpequd:
10305     if (Subtarget.hasP8Altivec())
10306       CompareOpc = 199;
10307     else
10308       return false;
10309     break;
10310   case Intrinsic::ppc_altivec_vcmpneb:
10311   case Intrinsic::ppc_altivec_vcmpneh:
10312   case Intrinsic::ppc_altivec_vcmpnew:
10313   case Intrinsic::ppc_altivec_vcmpnezb:
10314   case Intrinsic::ppc_altivec_vcmpnezh:
10315   case Intrinsic::ppc_altivec_vcmpnezw:
10316     if (Subtarget.hasP9Altivec())
10317       switch (IntrinsicID) {
10318       default:
10319         llvm_unreachable("Unknown comparison intrinsic.");
10320       case Intrinsic::ppc_altivec_vcmpneb:
10321         CompareOpc = 7;
10322         break;
10323       case Intrinsic::ppc_altivec_vcmpneh:
10324         CompareOpc = 71;
10325         break;
10326       case Intrinsic::ppc_altivec_vcmpnew:
10327         CompareOpc = 135;
10328         break;
10329       case Intrinsic::ppc_altivec_vcmpnezb:
10330         CompareOpc = 263;
10331         break;
10332       case Intrinsic::ppc_altivec_vcmpnezh:
10333         CompareOpc = 327;
10334         break;
10335       case Intrinsic::ppc_altivec_vcmpnezw:
10336         CompareOpc = 391;
10337         break;
10338       }
10339     else
10340       return false;
10341     break;
10342   case Intrinsic::ppc_altivec_vcmpgefp:
10343     CompareOpc = 454;
10344     break;
10345   case Intrinsic::ppc_altivec_vcmpgtfp:
10346     CompareOpc = 710;
10347     break;
10348   case Intrinsic::ppc_altivec_vcmpgtsb:
10349     CompareOpc = 774;
10350     break;
10351   case Intrinsic::ppc_altivec_vcmpgtsh:
10352     CompareOpc = 838;
10353     break;
10354   case Intrinsic::ppc_altivec_vcmpgtsw:
10355     CompareOpc = 902;
10356     break;
10357   case Intrinsic::ppc_altivec_vcmpgtsd:
10358     if (Subtarget.hasP8Altivec())
10359       CompareOpc = 967;
10360     else
10361       return false;
10362     break;
10363   case Intrinsic::ppc_altivec_vcmpgtub:
10364     CompareOpc = 518;
10365     break;
10366   case Intrinsic::ppc_altivec_vcmpgtuh:
10367     CompareOpc = 582;
10368     break;
10369   case Intrinsic::ppc_altivec_vcmpgtuw:
10370     CompareOpc = 646;
10371     break;
10372   case Intrinsic::ppc_altivec_vcmpgtud:
10373     if (Subtarget.hasP8Altivec())
10374       CompareOpc = 711;
10375     else
10376       return false;
10377     break;
10378   case Intrinsic::ppc_altivec_vcmpequq_p:
10379   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10380   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10381     if (!Subtarget.isISA3_1())
10382       return false;
10383     switch (IntrinsicID) {
10384     default:
10385       llvm_unreachable("Unknown comparison intrinsic.");
10386     case Intrinsic::ppc_altivec_vcmpequq_p:
10387       CompareOpc = 455;
10388       break;
10389     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10390       CompareOpc = 903;
10391       break;
10392     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10393       CompareOpc = 647;
10394       break;
10395     }
10396     isDot = true;
10397     break;
10398   }
10399   return true;
10400 }
10401 
10402 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10403 /// lower, do it, otherwise return null.
10404 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10405                                                    SelectionDAG &DAG) const {
10406   unsigned IntrinsicID =
10407     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10408 
10409   SDLoc dl(Op);
10410 
10411   switch (IntrinsicID) {
10412   case Intrinsic::thread_pointer:
10413     // Reads the thread pointer register, used for __builtin_thread_pointer.
10414     if (Subtarget.isPPC64())
10415       return DAG.getRegister(PPC::X13, MVT::i64);
10416     return DAG.getRegister(PPC::R2, MVT::i32);
10417 
10418   case Intrinsic::ppc_mma_disassemble_acc:
10419   case Intrinsic::ppc_mma_disassemble_pair: {
10420     int NumVecs = 2;
10421     SDValue WideVec = Op.getOperand(1);
10422     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10423       NumVecs = 4;
10424       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10425     }
10426     SmallVector<SDValue, 4> RetOps;
10427     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10428       SDValue Extract = DAG.getNode(
10429           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10430           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10431                                                      : VecNo,
10432                           dl, MVT::i64));
10433       RetOps.push_back(Extract);
10434     }
10435     return DAG.getMergeValues(RetOps, dl);
10436   }
10437   }
10438 
10439   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10440   // opcode number of the comparison.
10441   int CompareOpc;
10442   bool isDot;
10443   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10444     return SDValue();    // Don't custom lower most intrinsics.
10445 
10446   // If this is a non-dot comparison, make the VCMP node and we are done.
10447   if (!isDot) {
10448     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10449                               Op.getOperand(1), Op.getOperand(2),
10450                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10451     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10452   }
10453 
10454   // Create the PPCISD altivec 'dot' comparison node.
10455   SDValue Ops[] = {
10456     Op.getOperand(2),  // LHS
10457     Op.getOperand(3),  // RHS
10458     DAG.getConstant(CompareOpc, dl, MVT::i32)
10459   };
10460   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10461   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10462 
10463   // Now that we have the comparison, emit a copy from the CR to a GPR.
10464   // This is flagged to the above dot comparison.
10465   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10466                                 DAG.getRegister(PPC::CR6, MVT::i32),
10467                                 CompNode.getValue(1));
10468 
10469   // Unpack the result based on how the target uses it.
10470   unsigned BitNo;   // Bit # of CR6.
10471   bool InvertBit;   // Invert result?
10472   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10473   default:  // Can't happen, don't crash on invalid number though.
10474   case 0:   // Return the value of the EQ bit of CR6.
10475     BitNo = 0; InvertBit = false;
10476     break;
10477   case 1:   // Return the inverted value of the EQ bit of CR6.
10478     BitNo = 0; InvertBit = true;
10479     break;
10480   case 2:   // Return the value of the LT bit of CR6.
10481     BitNo = 2; InvertBit = false;
10482     break;
10483   case 3:   // Return the inverted value of the LT bit of CR6.
10484     BitNo = 2; InvertBit = true;
10485     break;
10486   }
10487 
10488   // Shift the bit into the low position.
10489   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10490                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10491   // Isolate the bit.
10492   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10493                       DAG.getConstant(1, dl, MVT::i32));
10494 
10495   // If we are supposed to, toggle the bit.
10496   if (InvertBit)
10497     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10498                         DAG.getConstant(1, dl, MVT::i32));
10499   return Flags;
10500 }
10501 
10502 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10503                                                SelectionDAG &DAG) const {
10504   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10505   // the beginning of the argument list.
10506   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10507   SDLoc DL(Op);
10508   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10509   case Intrinsic::ppc_cfence: {
10510     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10511     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10512     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10513                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10514                                                   Op.getOperand(ArgStart + 1)),
10515                                       Op.getOperand(0)),
10516                    0);
10517   }
10518   default:
10519     break;
10520   }
10521   return SDValue();
10522 }
10523 
10524 // Lower scalar BSWAP64 to xxbrd.
10525 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10526   SDLoc dl(Op);
10527   // MTVSRDD
10528   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10529                    Op.getOperand(0));
10530   // XXBRD
10531   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10532   // MFVSRD
10533   int VectorIndex = 0;
10534   if (Subtarget.isLittleEndian())
10535     VectorIndex = 1;
10536   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10537                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10538   return Op;
10539 }
10540 
10541 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10542 // compared to a value that is atomically loaded (atomic loads zero-extend).
10543 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10544                                                 SelectionDAG &DAG) const {
10545   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10546          "Expecting an atomic compare-and-swap here.");
10547   SDLoc dl(Op);
10548   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10549   EVT MemVT = AtomicNode->getMemoryVT();
10550   if (MemVT.getSizeInBits() >= 32)
10551     return Op;
10552 
10553   SDValue CmpOp = Op.getOperand(2);
10554   // If this is already correctly zero-extended, leave it alone.
10555   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10556   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10557     return Op;
10558 
10559   // Clear the high bits of the compare operand.
10560   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10561   SDValue NewCmpOp =
10562     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10563                 DAG.getConstant(MaskVal, dl, MVT::i32));
10564 
10565   // Replace the existing compare operand with the properly zero-extended one.
10566   SmallVector<SDValue, 4> Ops;
10567   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10568     Ops.push_back(AtomicNode->getOperand(i));
10569   Ops[2] = NewCmpOp;
10570   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10571   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10572   auto NodeTy =
10573     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10574   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10575 }
10576 
10577 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10578                                                  SelectionDAG &DAG) const {
10579   SDLoc dl(Op);
10580   // Create a stack slot that is 16-byte aligned.
10581   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10582   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10583   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10584   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10585 
10586   // Store the input value into Value#0 of the stack slot.
10587   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10588                                MachinePointerInfo());
10589   // Load it out.
10590   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10591 }
10592 
10593 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10594                                                   SelectionDAG &DAG) const {
10595   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10596          "Should only be called for ISD::INSERT_VECTOR_ELT");
10597 
10598   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10599   // We have legal lowering for constant indices but not for variable ones.
10600   if (!C)
10601     return SDValue();
10602 
10603   EVT VT = Op.getValueType();
10604   SDLoc dl(Op);
10605   SDValue V1 = Op.getOperand(0);
10606   SDValue V2 = Op.getOperand(1);
10607   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10608   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10609     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10610     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10611     unsigned InsertAtElement = C->getZExtValue();
10612     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10613     if (Subtarget.isLittleEndian()) {
10614       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10615     }
10616     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10617                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10618   }
10619   return Op;
10620 }
10621 
10622 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10623                                            SelectionDAG &DAG) const {
10624   SDLoc dl(Op);
10625   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10626   SDValue LoadChain = LN->getChain();
10627   SDValue BasePtr = LN->getBasePtr();
10628   EVT VT = Op.getValueType();
10629 
10630   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10631     return Op;
10632 
10633   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10634   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10635   // 2 or 4 vsx registers.
10636   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10637          "Type unsupported without MMA");
10638   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10639          "Type unsupported without paired vector support");
10640   Align Alignment = LN->getAlign();
10641   SmallVector<SDValue, 4> Loads;
10642   SmallVector<SDValue, 4> LoadChains;
10643   unsigned NumVecs = VT.getSizeInBits() / 128;
10644   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10645     SDValue Load =
10646         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10647                     LN->getPointerInfo().getWithOffset(Idx * 16),
10648                     commonAlignment(Alignment, Idx * 16),
10649                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10650     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10651                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10652     Loads.push_back(Load);
10653     LoadChains.push_back(Load.getValue(1));
10654   }
10655   if (Subtarget.isLittleEndian()) {
10656     std::reverse(Loads.begin(), Loads.end());
10657     std::reverse(LoadChains.begin(), LoadChains.end());
10658   }
10659   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10660   SDValue Value =
10661       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10662                   dl, VT, Loads);
10663   SDValue RetOps[] = {Value, TF};
10664   return DAG.getMergeValues(RetOps, dl);
10665 }
10666 
10667 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10668                                             SelectionDAG &DAG) const {
10669   SDLoc dl(Op);
10670   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10671   SDValue StoreChain = SN->getChain();
10672   SDValue BasePtr = SN->getBasePtr();
10673   SDValue Value = SN->getValue();
10674   EVT StoreVT = Value.getValueType();
10675 
10676   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10677     return Op;
10678 
10679   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10680   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10681   // underlying registers individually.
10682   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10683          "Type unsupported without MMA");
10684   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10685          "Type unsupported without paired vector support");
10686   Align Alignment = SN->getAlign();
10687   SmallVector<SDValue, 4> Stores;
10688   unsigned NumVecs = 2;
10689   if (StoreVT == MVT::v512i1) {
10690     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10691     NumVecs = 4;
10692   }
10693   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10694     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10695     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10696                               DAG.getConstant(VecNum, dl, MVT::i64));
10697     SDValue Store =
10698         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10699                      SN->getPointerInfo().getWithOffset(Idx * 16),
10700                      commonAlignment(Alignment, Idx * 16),
10701                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10702     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10703                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10704     Stores.push_back(Store);
10705   }
10706   SDValue TF = DAG.getTokenFactor(dl, Stores);
10707   return TF;
10708 }
10709 
10710 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10711   SDLoc dl(Op);
10712   if (Op.getValueType() == MVT::v4i32) {
10713     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10714 
10715     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10716     // +16 as shift amt.
10717     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10718     SDValue RHSSwap =   // = vrlw RHS, 16
10719       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10720 
10721     // Shrinkify inputs to v8i16.
10722     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10723     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10724     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10725 
10726     // Low parts multiplied together, generating 32-bit results (we ignore the
10727     // top parts).
10728     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10729                                         LHS, RHS, DAG, dl, MVT::v4i32);
10730 
10731     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10732                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10733     // Shift the high parts up 16 bits.
10734     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10735                               Neg16, DAG, dl);
10736     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10737   } else if (Op.getValueType() == MVT::v16i8) {
10738     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10739     bool isLittleEndian = Subtarget.isLittleEndian();
10740 
10741     // Multiply the even 8-bit parts, producing 16-bit sums.
10742     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10743                                            LHS, RHS, DAG, dl, MVT::v8i16);
10744     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10745 
10746     // Multiply the odd 8-bit parts, producing 16-bit sums.
10747     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10748                                           LHS, RHS, DAG, dl, MVT::v8i16);
10749     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10750 
10751     // Merge the results together.  Because vmuleub and vmuloub are
10752     // instructions with a big-endian bias, we must reverse the
10753     // element numbering and reverse the meaning of "odd" and "even"
10754     // when generating little endian code.
10755     int Ops[16];
10756     for (unsigned i = 0; i != 8; ++i) {
10757       if (isLittleEndian) {
10758         Ops[i*2  ] = 2*i;
10759         Ops[i*2+1] = 2*i+16;
10760       } else {
10761         Ops[i*2  ] = 2*i+1;
10762         Ops[i*2+1] = 2*i+1+16;
10763       }
10764     }
10765     if (isLittleEndian)
10766       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10767     else
10768       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10769   } else {
10770     llvm_unreachable("Unknown mul to lower!");
10771   }
10772 }
10773 
10774 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10775 
10776   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10777 
10778   EVT VT = Op.getValueType();
10779   assert(VT.isVector() &&
10780          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10781   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10782           VT == MVT::v16i8) &&
10783          "Unexpected vector element type!");
10784   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10785          "Current subtarget doesn't support smax v2i64!");
10786 
10787   // For vector abs, it can be lowered to:
10788   // abs x
10789   // ==>
10790   // y = -x
10791   // smax(x, y)
10792 
10793   SDLoc dl(Op);
10794   SDValue X = Op.getOperand(0);
10795   SDValue Zero = DAG.getConstant(0, dl, VT);
10796   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10797 
10798   // SMAX patch https://reviews.llvm.org/D47332
10799   // hasn't landed yet, so use intrinsic first here.
10800   // TODO: Should use SMAX directly once SMAX patch landed
10801   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10802   if (VT == MVT::v2i64)
10803     BifID = Intrinsic::ppc_altivec_vmaxsd;
10804   else if (VT == MVT::v8i16)
10805     BifID = Intrinsic::ppc_altivec_vmaxsh;
10806   else if (VT == MVT::v16i8)
10807     BifID = Intrinsic::ppc_altivec_vmaxsb;
10808 
10809   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10810 }
10811 
10812 // Custom lowering for fpext vf32 to v2f64
10813 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10814 
10815   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10816          "Should only be called for ISD::FP_EXTEND");
10817 
10818   // FIXME: handle extends from half precision float vectors on P9.
10819   // We only want to custom lower an extend from v2f32 to v2f64.
10820   if (Op.getValueType() != MVT::v2f64 ||
10821       Op.getOperand(0).getValueType() != MVT::v2f32)
10822     return SDValue();
10823 
10824   SDLoc dl(Op);
10825   SDValue Op0 = Op.getOperand(0);
10826 
10827   switch (Op0.getOpcode()) {
10828   default:
10829     return SDValue();
10830   case ISD::EXTRACT_SUBVECTOR: {
10831     assert(Op0.getNumOperands() == 2 &&
10832            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10833            "Node should have 2 operands with second one being a constant!");
10834 
10835     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10836       return SDValue();
10837 
10838     // Custom lower is only done for high or low doubleword.
10839     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10840     if (Idx % 2 != 0)
10841       return SDValue();
10842 
10843     // Since input is v4f32, at this point Idx is either 0 or 2.
10844     // Shift to get the doubleword position we want.
10845     int DWord = Idx >> 1;
10846 
10847     // High and low word positions are different on little endian.
10848     if (Subtarget.isLittleEndian())
10849       DWord ^= 0x1;
10850 
10851     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10852                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10853   }
10854   case ISD::FADD:
10855   case ISD::FMUL:
10856   case ISD::FSUB: {
10857     SDValue NewLoad[2];
10858     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10859       // Ensure both input are loads.
10860       SDValue LdOp = Op0.getOperand(i);
10861       if (LdOp.getOpcode() != ISD::LOAD)
10862         return SDValue();
10863       // Generate new load node.
10864       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10865       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10866       NewLoad[i] = DAG.getMemIntrinsicNode(
10867           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10868           LD->getMemoryVT(), LD->getMemOperand());
10869     }
10870     SDValue NewOp =
10871         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10872                     NewLoad[1], Op0.getNode()->getFlags());
10873     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10874                        DAG.getConstant(0, dl, MVT::i32));
10875   }
10876   case ISD::LOAD: {
10877     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10878     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10879     SDValue NewLd = DAG.getMemIntrinsicNode(
10880         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10881         LD->getMemoryVT(), LD->getMemOperand());
10882     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10883                        DAG.getConstant(0, dl, MVT::i32));
10884   }
10885   }
10886   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10887 }
10888 
10889 /// LowerOperation - Provide custom lowering hooks for some operations.
10890 ///
10891 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10892   switch (Op.getOpcode()) {
10893   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10894   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10895   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10896   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10897   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10898   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10899   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10900   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10901   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10902 
10903   // Variable argument lowering.
10904   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10905   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10906   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10907 
10908   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10909   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10910   case ISD::GET_DYNAMIC_AREA_OFFSET:
10911     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10912 
10913   // Exception handling lowering.
10914   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10915   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10916   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10917 
10918   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10919   case ISD::STORE:              return LowerSTORE(Op, DAG);
10920   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10921   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10922   case ISD::STRICT_FP_TO_UINT:
10923   case ISD::STRICT_FP_TO_SINT:
10924   case ISD::FP_TO_UINT:
10925   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10926   case ISD::STRICT_UINT_TO_FP:
10927   case ISD::STRICT_SINT_TO_FP:
10928   case ISD::UINT_TO_FP:
10929   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10930   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10931 
10932   // Lower 64-bit shifts.
10933   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10934   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10935   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10936 
10937   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10938   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10939 
10940   // Vector-related lowering.
10941   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10942   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10943   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10944   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10945   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10946   case ISD::MUL:                return LowerMUL(Op, DAG);
10947   case ISD::ABS:                return LowerABS(Op, DAG);
10948   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10949   case ISD::ROTL:               return LowerROTL(Op, DAG);
10950 
10951   // For counter-based loop handling.
10952   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10953 
10954   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10955 
10956   // Frame & Return address.
10957   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10958   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10959 
10960   case ISD::INTRINSIC_VOID:
10961     return LowerINTRINSIC_VOID(Op, DAG);
10962   case ISD::BSWAP:
10963     return LowerBSWAP(Op, DAG);
10964   case ISD::ATOMIC_CMP_SWAP:
10965     return LowerATOMIC_CMP_SWAP(Op, DAG);
10966   }
10967 }
10968 
10969 void PPCTargetLowering::LowerOperationWrapper(SDNode *N,
10970                                               SmallVectorImpl<SDValue> &Results,
10971                                               SelectionDAG &DAG) const {
10972   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10973 
10974   if (!Res.getNode())
10975     return;
10976 
10977   // Take the return value as-is if original node has only one result.
10978   if (N->getNumValues() == 1) {
10979     Results.push_back(Res);
10980     return;
10981   }
10982 
10983   // New node should have the same number of results.
10984   assert((N->getNumValues() == Res->getNumValues()) &&
10985       "Lowering returned the wrong number of results!");
10986 
10987   for (unsigned i = 0; i < N->getNumValues(); ++i)
10988     Results.push_back(Res.getValue(i));
10989 }
10990 
10991 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10992                                            SmallVectorImpl<SDValue>&Results,
10993                                            SelectionDAG &DAG) const {
10994   SDLoc dl(N);
10995   switch (N->getOpcode()) {
10996   default:
10997     llvm_unreachable("Do not know how to custom type legalize this operation!");
10998   case ISD::READCYCLECOUNTER: {
10999     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11000     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11001 
11002     Results.push_back(
11003         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11004     Results.push_back(RTB.getValue(2));
11005     break;
11006   }
11007   case ISD::INTRINSIC_W_CHAIN: {
11008     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11009         Intrinsic::loop_decrement)
11010       break;
11011 
11012     assert(N->getValueType(0) == MVT::i1 &&
11013            "Unexpected result type for CTR decrement intrinsic");
11014     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11015                                  N->getValueType(0));
11016     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11017     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11018                                  N->getOperand(1));
11019 
11020     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11021     Results.push_back(NewInt.getValue(1));
11022     break;
11023   }
11024   case ISD::VAARG: {
11025     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11026       return;
11027 
11028     EVT VT = N->getValueType(0);
11029 
11030     if (VT == MVT::i64) {
11031       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11032 
11033       Results.push_back(NewNode);
11034       Results.push_back(NewNode.getValue(1));
11035     }
11036     return;
11037   }
11038   case ISD::STRICT_FP_TO_SINT:
11039   case ISD::STRICT_FP_TO_UINT:
11040   case ISD::FP_TO_SINT:
11041   case ISD::FP_TO_UINT:
11042     // LowerFP_TO_INT() can only handle f32 and f64.
11043     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11044         MVT::ppcf128)
11045       return;
11046     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
11047     return;
11048   case ISD::TRUNCATE: {
11049     if (!N->getValueType(0).isVector())
11050       return;
11051     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11052     if (Lowered)
11053       Results.push_back(Lowered);
11054     return;
11055   }
11056   case ISD::FSHL:
11057   case ISD::FSHR:
11058     // Don't handle funnel shifts here.
11059     return;
11060   case ISD::BITCAST:
11061     // Don't handle bitcast here.
11062     return;
11063   case ISD::FP_EXTEND:
11064     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11065     if (Lowered)
11066       Results.push_back(Lowered);
11067     return;
11068   }
11069 }
11070 
11071 //===----------------------------------------------------------------------===//
11072 //  Other Lowering Code
11073 //===----------------------------------------------------------------------===//
11074 
11075 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
11076   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11077   Function *Func = Intrinsic::getDeclaration(M, Id);
11078   return Builder.CreateCall(Func, {});
11079 }
11080 
11081 // The mappings for emitLeading/TrailingFence is taken from
11082 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11083 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
11084                                                  Instruction *Inst,
11085                                                  AtomicOrdering Ord) const {
11086   if (Ord == AtomicOrdering::SequentiallyConsistent)
11087     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11088   if (isReleaseOrStronger(Ord))
11089     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11090   return nullptr;
11091 }
11092 
11093 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11094                                                   Instruction *Inst,
11095                                                   AtomicOrdering Ord) const {
11096   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11097     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11098     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11099     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11100     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11101       return Builder.CreateCall(
11102           Intrinsic::getDeclaration(
11103               Builder.GetInsertBlock()->getParent()->getParent(),
11104               Intrinsic::ppc_cfence, {Inst->getType()}),
11105           {Inst});
11106     // FIXME: Can use isync for rmw operation.
11107     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11108   }
11109   return nullptr;
11110 }
11111 
11112 MachineBasicBlock *
11113 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11114                                     unsigned AtomicSize,
11115                                     unsigned BinOpcode,
11116                                     unsigned CmpOpcode,
11117                                     unsigned CmpPred) const {
11118   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11119   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11120 
11121   auto LoadMnemonic = PPC::LDARX;
11122   auto StoreMnemonic = PPC::STDCX;
11123   switch (AtomicSize) {
11124   default:
11125     llvm_unreachable("Unexpected size of atomic entity");
11126   case 1:
11127     LoadMnemonic = PPC::LBARX;
11128     StoreMnemonic = PPC::STBCX;
11129     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11130     break;
11131   case 2:
11132     LoadMnemonic = PPC::LHARX;
11133     StoreMnemonic = PPC::STHCX;
11134     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11135     break;
11136   case 4:
11137     LoadMnemonic = PPC::LWARX;
11138     StoreMnemonic = PPC::STWCX;
11139     break;
11140   case 8:
11141     LoadMnemonic = PPC::LDARX;
11142     StoreMnemonic = PPC::STDCX;
11143     break;
11144   }
11145 
11146   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11147   MachineFunction *F = BB->getParent();
11148   MachineFunction::iterator It = ++BB->getIterator();
11149 
11150   Register dest = MI.getOperand(0).getReg();
11151   Register ptrA = MI.getOperand(1).getReg();
11152   Register ptrB = MI.getOperand(2).getReg();
11153   Register incr = MI.getOperand(3).getReg();
11154   DebugLoc dl = MI.getDebugLoc();
11155 
11156   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11157   MachineBasicBlock *loop2MBB =
11158     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11159   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11160   F->insert(It, loopMBB);
11161   if (CmpOpcode)
11162     F->insert(It, loop2MBB);
11163   F->insert(It, exitMBB);
11164   exitMBB->splice(exitMBB->begin(), BB,
11165                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11166   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11167 
11168   MachineRegisterInfo &RegInfo = F->getRegInfo();
11169   Register TmpReg = (!BinOpcode) ? incr :
11170     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11171                                            : &PPC::GPRCRegClass);
11172 
11173   //  thisMBB:
11174   //   ...
11175   //   fallthrough --> loopMBB
11176   BB->addSuccessor(loopMBB);
11177 
11178   //  loopMBB:
11179   //   l[wd]arx dest, ptr
11180   //   add r0, dest, incr
11181   //   st[wd]cx. r0, ptr
11182   //   bne- loopMBB
11183   //   fallthrough --> exitMBB
11184 
11185   // For max/min...
11186   //  loopMBB:
11187   //   l[wd]arx dest, ptr
11188   //   cmpl?[wd] incr, dest
11189   //   bgt exitMBB
11190   //  loop2MBB:
11191   //   st[wd]cx. dest, ptr
11192   //   bne- loopMBB
11193   //   fallthrough --> exitMBB
11194 
11195   BB = loopMBB;
11196   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11197     .addReg(ptrA).addReg(ptrB);
11198   if (BinOpcode)
11199     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11200   if (CmpOpcode) {
11201     // Signed comparisons of byte or halfword values must be sign-extended.
11202     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11203       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11204       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11205               ExtReg).addReg(dest);
11206       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11207         .addReg(incr).addReg(ExtReg);
11208     } else
11209       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11210         .addReg(incr).addReg(dest);
11211 
11212     BuildMI(BB, dl, TII->get(PPC::BCC))
11213       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11214     BB->addSuccessor(loop2MBB);
11215     BB->addSuccessor(exitMBB);
11216     BB = loop2MBB;
11217   }
11218   BuildMI(BB, dl, TII->get(StoreMnemonic))
11219     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11220   BuildMI(BB, dl, TII->get(PPC::BCC))
11221     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11222   BB->addSuccessor(loopMBB);
11223   BB->addSuccessor(exitMBB);
11224 
11225   //  exitMBB:
11226   //   ...
11227   BB = exitMBB;
11228   return BB;
11229 }
11230 
11231 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11232     MachineInstr &MI, MachineBasicBlock *BB,
11233     bool is8bit, // operation
11234     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11235   // If we support part-word atomic mnemonics, just use them
11236   if (Subtarget.hasPartwordAtomics())
11237     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11238                             CmpPred);
11239 
11240   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11241   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11242   // In 64 bit mode we have to use 64 bits for addresses, even though the
11243   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11244   // registers without caring whether they're 32 or 64, but here we're
11245   // doing actual arithmetic on the addresses.
11246   bool is64bit = Subtarget.isPPC64();
11247   bool isLittleEndian = Subtarget.isLittleEndian();
11248   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11249 
11250   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11251   MachineFunction *F = BB->getParent();
11252   MachineFunction::iterator It = ++BB->getIterator();
11253 
11254   Register dest = MI.getOperand(0).getReg();
11255   Register ptrA = MI.getOperand(1).getReg();
11256   Register ptrB = MI.getOperand(2).getReg();
11257   Register incr = MI.getOperand(3).getReg();
11258   DebugLoc dl = MI.getDebugLoc();
11259 
11260   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11261   MachineBasicBlock *loop2MBB =
11262       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11263   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11264   F->insert(It, loopMBB);
11265   if (CmpOpcode)
11266     F->insert(It, loop2MBB);
11267   F->insert(It, exitMBB);
11268   exitMBB->splice(exitMBB->begin(), BB,
11269                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11270   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11271 
11272   MachineRegisterInfo &RegInfo = F->getRegInfo();
11273   const TargetRegisterClass *RC =
11274       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11275   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11276 
11277   Register PtrReg = RegInfo.createVirtualRegister(RC);
11278   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11279   Register ShiftReg =
11280       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11281   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11282   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11283   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11284   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11285   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11286   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11287   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11288   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11289   Register Ptr1Reg;
11290   Register TmpReg =
11291       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11292 
11293   //  thisMBB:
11294   //   ...
11295   //   fallthrough --> loopMBB
11296   BB->addSuccessor(loopMBB);
11297 
11298   // The 4-byte load must be aligned, while a char or short may be
11299   // anywhere in the word.  Hence all this nasty bookkeeping code.
11300   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11301   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11302   //   xori shift, shift1, 24 [16]
11303   //   rlwinm ptr, ptr1, 0, 0, 29
11304   //   slw incr2, incr, shift
11305   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11306   //   slw mask, mask2, shift
11307   //  loopMBB:
11308   //   lwarx tmpDest, ptr
11309   //   add tmp, tmpDest, incr2
11310   //   andc tmp2, tmpDest, mask
11311   //   and tmp3, tmp, mask
11312   //   or tmp4, tmp3, tmp2
11313   //   stwcx. tmp4, ptr
11314   //   bne- loopMBB
11315   //   fallthrough --> exitMBB
11316   //   srw dest, tmpDest, shift
11317   if (ptrA != ZeroReg) {
11318     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11319     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11320         .addReg(ptrA)
11321         .addReg(ptrB);
11322   } else {
11323     Ptr1Reg = ptrB;
11324   }
11325   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11326   // mode.
11327   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11328       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11329       .addImm(3)
11330       .addImm(27)
11331       .addImm(is8bit ? 28 : 27);
11332   if (!isLittleEndian)
11333     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11334         .addReg(Shift1Reg)
11335         .addImm(is8bit ? 24 : 16);
11336   if (is64bit)
11337     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11338         .addReg(Ptr1Reg)
11339         .addImm(0)
11340         .addImm(61);
11341   else
11342     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11343         .addReg(Ptr1Reg)
11344         .addImm(0)
11345         .addImm(0)
11346         .addImm(29);
11347   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11348   if (is8bit)
11349     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11350   else {
11351     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11352     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11353         .addReg(Mask3Reg)
11354         .addImm(65535);
11355   }
11356   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11357       .addReg(Mask2Reg)
11358       .addReg(ShiftReg);
11359 
11360   BB = loopMBB;
11361   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11362       .addReg(ZeroReg)
11363       .addReg(PtrReg);
11364   if (BinOpcode)
11365     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11366         .addReg(Incr2Reg)
11367         .addReg(TmpDestReg);
11368   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11369       .addReg(TmpDestReg)
11370       .addReg(MaskReg);
11371   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11372   if (CmpOpcode) {
11373     // For unsigned comparisons, we can directly compare the shifted values.
11374     // For signed comparisons we shift and sign extend.
11375     Register SReg = RegInfo.createVirtualRegister(GPRC);
11376     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11377         .addReg(TmpDestReg)
11378         .addReg(MaskReg);
11379     unsigned ValueReg = SReg;
11380     unsigned CmpReg = Incr2Reg;
11381     if (CmpOpcode == PPC::CMPW) {
11382       ValueReg = RegInfo.createVirtualRegister(GPRC);
11383       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11384           .addReg(SReg)
11385           .addReg(ShiftReg);
11386       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11387       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11388           .addReg(ValueReg);
11389       ValueReg = ValueSReg;
11390       CmpReg = incr;
11391     }
11392     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11393         .addReg(CmpReg)
11394         .addReg(ValueReg);
11395     BuildMI(BB, dl, TII->get(PPC::BCC))
11396         .addImm(CmpPred)
11397         .addReg(PPC::CR0)
11398         .addMBB(exitMBB);
11399     BB->addSuccessor(loop2MBB);
11400     BB->addSuccessor(exitMBB);
11401     BB = loop2MBB;
11402   }
11403   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11404   BuildMI(BB, dl, TII->get(PPC::STWCX))
11405       .addReg(Tmp4Reg)
11406       .addReg(ZeroReg)
11407       .addReg(PtrReg);
11408   BuildMI(BB, dl, TII->get(PPC::BCC))
11409       .addImm(PPC::PRED_NE)
11410       .addReg(PPC::CR0)
11411       .addMBB(loopMBB);
11412   BB->addSuccessor(loopMBB);
11413   BB->addSuccessor(exitMBB);
11414 
11415   //  exitMBB:
11416   //   ...
11417   BB = exitMBB;
11418   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11419       .addReg(TmpDestReg)
11420       .addReg(ShiftReg);
11421   return BB;
11422 }
11423 
11424 llvm::MachineBasicBlock *
11425 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11426                                     MachineBasicBlock *MBB) const {
11427   DebugLoc DL = MI.getDebugLoc();
11428   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11429   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11430 
11431   MachineFunction *MF = MBB->getParent();
11432   MachineRegisterInfo &MRI = MF->getRegInfo();
11433 
11434   const BasicBlock *BB = MBB->getBasicBlock();
11435   MachineFunction::iterator I = ++MBB->getIterator();
11436 
11437   Register DstReg = MI.getOperand(0).getReg();
11438   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11439   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11440   Register mainDstReg = MRI.createVirtualRegister(RC);
11441   Register restoreDstReg = MRI.createVirtualRegister(RC);
11442 
11443   MVT PVT = getPointerTy(MF->getDataLayout());
11444   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11445          "Invalid Pointer Size!");
11446   // For v = setjmp(buf), we generate
11447   //
11448   // thisMBB:
11449   //  SjLjSetup mainMBB
11450   //  bl mainMBB
11451   //  v_restore = 1
11452   //  b sinkMBB
11453   //
11454   // mainMBB:
11455   //  buf[LabelOffset] = LR
11456   //  v_main = 0
11457   //
11458   // sinkMBB:
11459   //  v = phi(main, restore)
11460   //
11461 
11462   MachineBasicBlock *thisMBB = MBB;
11463   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11464   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11465   MF->insert(I, mainMBB);
11466   MF->insert(I, sinkMBB);
11467 
11468   MachineInstrBuilder MIB;
11469 
11470   // Transfer the remainder of BB and its successor edges to sinkMBB.
11471   sinkMBB->splice(sinkMBB->begin(), MBB,
11472                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11473   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11474 
11475   // Note that the structure of the jmp_buf used here is not compatible
11476   // with that used by libc, and is not designed to be. Specifically, it
11477   // stores only those 'reserved' registers that LLVM does not otherwise
11478   // understand how to spill. Also, by convention, by the time this
11479   // intrinsic is called, Clang has already stored the frame address in the
11480   // first slot of the buffer and stack address in the third. Following the
11481   // X86 target code, we'll store the jump address in the second slot. We also
11482   // need to save the TOC pointer (R2) to handle jumps between shared
11483   // libraries, and that will be stored in the fourth slot. The thread
11484   // identifier (R13) is not affected.
11485 
11486   // thisMBB:
11487   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11488   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11489   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11490 
11491   // Prepare IP either in reg.
11492   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11493   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11494   Register BufReg = MI.getOperand(1).getReg();
11495 
11496   if (Subtarget.is64BitELFABI()) {
11497     setUsesTOCBasePtr(*MBB->getParent());
11498     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11499               .addReg(PPC::X2)
11500               .addImm(TOCOffset)
11501               .addReg(BufReg)
11502               .cloneMemRefs(MI);
11503   }
11504 
11505   // Naked functions never have a base pointer, and so we use r1. For all
11506   // other functions, this decision must be delayed until during PEI.
11507   unsigned BaseReg;
11508   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11509     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11510   else
11511     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11512 
11513   MIB = BuildMI(*thisMBB, MI, DL,
11514                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11515             .addReg(BaseReg)
11516             .addImm(BPOffset)
11517             .addReg(BufReg)
11518             .cloneMemRefs(MI);
11519 
11520   // Setup
11521   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11522   MIB.addRegMask(TRI->getNoPreservedMask());
11523 
11524   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11525 
11526   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11527           .addMBB(mainMBB);
11528   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11529 
11530   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11531   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11532 
11533   // mainMBB:
11534   //  mainDstReg = 0
11535   MIB =
11536       BuildMI(mainMBB, DL,
11537               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11538 
11539   // Store IP
11540   if (Subtarget.isPPC64()) {
11541     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11542             .addReg(LabelReg)
11543             .addImm(LabelOffset)
11544             .addReg(BufReg);
11545   } else {
11546     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11547             .addReg(LabelReg)
11548             .addImm(LabelOffset)
11549             .addReg(BufReg);
11550   }
11551   MIB.cloneMemRefs(MI);
11552 
11553   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11554   mainMBB->addSuccessor(sinkMBB);
11555 
11556   // sinkMBB:
11557   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11558           TII->get(PPC::PHI), DstReg)
11559     .addReg(mainDstReg).addMBB(mainMBB)
11560     .addReg(restoreDstReg).addMBB(thisMBB);
11561 
11562   MI.eraseFromParent();
11563   return sinkMBB;
11564 }
11565 
11566 MachineBasicBlock *
11567 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11568                                      MachineBasicBlock *MBB) const {
11569   DebugLoc DL = MI.getDebugLoc();
11570   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11571 
11572   MachineFunction *MF = MBB->getParent();
11573   MachineRegisterInfo &MRI = MF->getRegInfo();
11574 
11575   MVT PVT = getPointerTy(MF->getDataLayout());
11576   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11577          "Invalid Pointer Size!");
11578 
11579   const TargetRegisterClass *RC =
11580     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11581   Register Tmp = MRI.createVirtualRegister(RC);
11582   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11583   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11584   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11585   unsigned BP =
11586       (PVT == MVT::i64)
11587           ? PPC::X30
11588           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11589                                                               : PPC::R30);
11590 
11591   MachineInstrBuilder MIB;
11592 
11593   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11594   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11595   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11596   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11597 
11598   Register BufReg = MI.getOperand(0).getReg();
11599 
11600   // Reload FP (the jumped-to function may not have had a
11601   // frame pointer, and if so, then its r31 will be restored
11602   // as necessary).
11603   if (PVT == MVT::i64) {
11604     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11605             .addImm(0)
11606             .addReg(BufReg);
11607   } else {
11608     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11609             .addImm(0)
11610             .addReg(BufReg);
11611   }
11612   MIB.cloneMemRefs(MI);
11613 
11614   // Reload IP
11615   if (PVT == MVT::i64) {
11616     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11617             .addImm(LabelOffset)
11618             .addReg(BufReg);
11619   } else {
11620     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11621             .addImm(LabelOffset)
11622             .addReg(BufReg);
11623   }
11624   MIB.cloneMemRefs(MI);
11625 
11626   // Reload SP
11627   if (PVT == MVT::i64) {
11628     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11629             .addImm(SPOffset)
11630             .addReg(BufReg);
11631   } else {
11632     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11633             .addImm(SPOffset)
11634             .addReg(BufReg);
11635   }
11636   MIB.cloneMemRefs(MI);
11637 
11638   // Reload BP
11639   if (PVT == MVT::i64) {
11640     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11641             .addImm(BPOffset)
11642             .addReg(BufReg);
11643   } else {
11644     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11645             .addImm(BPOffset)
11646             .addReg(BufReg);
11647   }
11648   MIB.cloneMemRefs(MI);
11649 
11650   // Reload TOC
11651   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11652     setUsesTOCBasePtr(*MBB->getParent());
11653     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11654               .addImm(TOCOffset)
11655               .addReg(BufReg)
11656               .cloneMemRefs(MI);
11657   }
11658 
11659   // Jump
11660   BuildMI(*MBB, MI, DL,
11661           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11662   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11663 
11664   MI.eraseFromParent();
11665   return MBB;
11666 }
11667 
11668 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11669   // If the function specifically requests inline stack probes, emit them.
11670   if (MF.getFunction().hasFnAttribute("probe-stack"))
11671     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11672            "inline-asm";
11673   return false;
11674 }
11675 
11676 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11677   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11678   unsigned StackAlign = TFI->getStackAlignment();
11679   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11680          "Unexpected stack alignment");
11681   // The default stack probe size is 4096 if the function has no
11682   // stack-probe-size attribute.
11683   unsigned StackProbeSize = 4096;
11684   const Function &Fn = MF.getFunction();
11685   if (Fn.hasFnAttribute("stack-probe-size"))
11686     Fn.getFnAttribute("stack-probe-size")
11687         .getValueAsString()
11688         .getAsInteger(0, StackProbeSize);
11689   // Round down to the stack alignment.
11690   StackProbeSize &= ~(StackAlign - 1);
11691   return StackProbeSize ? StackProbeSize : StackAlign;
11692 }
11693 
11694 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11695 // into three phases. In the first phase, it uses pseudo instruction
11696 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11697 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11698 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11699 // MaxCallFrameSize so that it can calculate correct data area pointer.
11700 MachineBasicBlock *
11701 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11702                                     MachineBasicBlock *MBB) const {
11703   const bool isPPC64 = Subtarget.isPPC64();
11704   MachineFunction *MF = MBB->getParent();
11705   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11706   DebugLoc DL = MI.getDebugLoc();
11707   const unsigned ProbeSize = getStackProbeSize(*MF);
11708   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11709   MachineRegisterInfo &MRI = MF->getRegInfo();
11710   // The CFG of probing stack looks as
11711   //         +-----+
11712   //         | MBB |
11713   //         +--+--+
11714   //            |
11715   //       +----v----+
11716   //  +--->+ TestMBB +---+
11717   //  |    +----+----+   |
11718   //  |         |        |
11719   //  |   +-----v----+   |
11720   //  +---+ BlockMBB |   |
11721   //      +----------+   |
11722   //                     |
11723   //       +---------+   |
11724   //       | TailMBB +<--+
11725   //       +---------+
11726   // In MBB, calculate previous frame pointer and final stack pointer.
11727   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11728   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11729   // TailMBB is spliced via \p MI.
11730   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11731   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11732   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11733 
11734   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11735   MF->insert(MBBIter, TestMBB);
11736   MF->insert(MBBIter, BlockMBB);
11737   MF->insert(MBBIter, TailMBB);
11738 
11739   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11740   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11741 
11742   Register DstReg = MI.getOperand(0).getReg();
11743   Register NegSizeReg = MI.getOperand(1).getReg();
11744   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11745   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11746   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11747   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11748 
11749   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11750   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11751   // NegSize.
11752   unsigned ProbeOpc;
11753   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11754     ProbeOpc =
11755         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11756   else
11757     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11758     // and NegSizeReg will be allocated in the same phyreg to avoid
11759     // redundant copy when NegSizeReg has only one use which is current MI and
11760     // will be replaced by PREPARE_PROBED_ALLOCA then.
11761     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11762                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11763   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11764       .addDef(ActualNegSizeReg)
11765       .addReg(NegSizeReg)
11766       .add(MI.getOperand(2))
11767       .add(MI.getOperand(3));
11768 
11769   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11770   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11771           FinalStackPtr)
11772       .addReg(SPReg)
11773       .addReg(ActualNegSizeReg);
11774 
11775   // Materialize a scratch register for update.
11776   int64_t NegProbeSize = -(int64_t)ProbeSize;
11777   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11778   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11779   if (!isInt<16>(NegProbeSize)) {
11780     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11781     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11782         .addImm(NegProbeSize >> 16);
11783     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11784             ScratchReg)
11785         .addReg(TempReg)
11786         .addImm(NegProbeSize & 0xFFFF);
11787   } else
11788     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11789         .addImm(NegProbeSize);
11790 
11791   {
11792     // Probing leading residual part.
11793     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11794     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11795         .addReg(ActualNegSizeReg)
11796         .addReg(ScratchReg);
11797     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11798     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11799         .addReg(Div)
11800         .addReg(ScratchReg);
11801     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11802     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11803         .addReg(Mul)
11804         .addReg(ActualNegSizeReg);
11805     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11806         .addReg(FramePointer)
11807         .addReg(SPReg)
11808         .addReg(NegMod);
11809   }
11810 
11811   {
11812     // Remaining part should be multiple of ProbeSize.
11813     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11814     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11815         .addReg(SPReg)
11816         .addReg(FinalStackPtr);
11817     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11818         .addImm(PPC::PRED_EQ)
11819         .addReg(CmpResult)
11820         .addMBB(TailMBB);
11821     TestMBB->addSuccessor(BlockMBB);
11822     TestMBB->addSuccessor(TailMBB);
11823   }
11824 
11825   {
11826     // Touch the block.
11827     // |P...|P...|P...
11828     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11829         .addReg(FramePointer)
11830         .addReg(SPReg)
11831         .addReg(ScratchReg);
11832     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11833     BlockMBB->addSuccessor(TestMBB);
11834   }
11835 
11836   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11837   // DYNAREAOFFSET pseudo instruction to get the future result.
11838   Register MaxCallFrameSizeReg =
11839       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11840   BuildMI(TailMBB, DL,
11841           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11842           MaxCallFrameSizeReg)
11843       .add(MI.getOperand(2))
11844       .add(MI.getOperand(3));
11845   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11846       .addReg(SPReg)
11847       .addReg(MaxCallFrameSizeReg);
11848 
11849   // Splice instructions after MI to TailMBB.
11850   TailMBB->splice(TailMBB->end(), MBB,
11851                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11852   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11853   MBB->addSuccessor(TestMBB);
11854 
11855   // Delete the pseudo instruction.
11856   MI.eraseFromParent();
11857 
11858   ++NumDynamicAllocaProbed;
11859   return TailMBB;
11860 }
11861 
11862 MachineBasicBlock *
11863 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11864                                                MachineBasicBlock *BB) const {
11865   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11866       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11867     if (Subtarget.is64BitELFABI() &&
11868         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11869         !Subtarget.isUsingPCRelativeCalls()) {
11870       // Call lowering should have added an r2 operand to indicate a dependence
11871       // on the TOC base pointer value. It can't however, because there is no
11872       // way to mark the dependence as implicit there, and so the stackmap code
11873       // will confuse it with a regular operand. Instead, add the dependence
11874       // here.
11875       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11876     }
11877 
11878     return emitPatchPoint(MI, BB);
11879   }
11880 
11881   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11882       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11883     return emitEHSjLjSetJmp(MI, BB);
11884   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11885              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11886     return emitEHSjLjLongJmp(MI, BB);
11887   }
11888 
11889   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11890 
11891   // To "insert" these instructions we actually have to insert their
11892   // control-flow patterns.
11893   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11894   MachineFunction::iterator It = ++BB->getIterator();
11895 
11896   MachineFunction *F = BB->getParent();
11897 
11898   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11899       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11900       MI.getOpcode() == PPC::SELECT_I8) {
11901     SmallVector<MachineOperand, 2> Cond;
11902     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11903         MI.getOpcode() == PPC::SELECT_CC_I8)
11904       Cond.push_back(MI.getOperand(4));
11905     else
11906       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11907     Cond.push_back(MI.getOperand(1));
11908 
11909     DebugLoc dl = MI.getDebugLoc();
11910     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11911                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11912   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11913              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11914              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11915              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11916              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11917              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11918              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11919              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11920              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11921              MI.getOpcode() == PPC::SELECT_F4 ||
11922              MI.getOpcode() == PPC::SELECT_F8 ||
11923              MI.getOpcode() == PPC::SELECT_F16 ||
11924              MI.getOpcode() == PPC::SELECT_SPE ||
11925              MI.getOpcode() == PPC::SELECT_SPE4 ||
11926              MI.getOpcode() == PPC::SELECT_VRRC ||
11927              MI.getOpcode() == PPC::SELECT_VSFRC ||
11928              MI.getOpcode() == PPC::SELECT_VSSRC ||
11929              MI.getOpcode() == PPC::SELECT_VSRC) {
11930     // The incoming instruction knows the destination vreg to set, the
11931     // condition code register to branch on, the true/false values to
11932     // select between, and a branch opcode to use.
11933 
11934     //  thisMBB:
11935     //  ...
11936     //   TrueVal = ...
11937     //   cmpTY ccX, r1, r2
11938     //   bCC copy1MBB
11939     //   fallthrough --> copy0MBB
11940     MachineBasicBlock *thisMBB = BB;
11941     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11942     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11943     DebugLoc dl = MI.getDebugLoc();
11944     F->insert(It, copy0MBB);
11945     F->insert(It, sinkMBB);
11946 
11947     // Transfer the remainder of BB and its successor edges to sinkMBB.
11948     sinkMBB->splice(sinkMBB->begin(), BB,
11949                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11950     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11951 
11952     // Next, add the true and fallthrough blocks as its successors.
11953     BB->addSuccessor(copy0MBB);
11954     BB->addSuccessor(sinkMBB);
11955 
11956     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11957         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11958         MI.getOpcode() == PPC::SELECT_F16 ||
11959         MI.getOpcode() == PPC::SELECT_SPE4 ||
11960         MI.getOpcode() == PPC::SELECT_SPE ||
11961         MI.getOpcode() == PPC::SELECT_VRRC ||
11962         MI.getOpcode() == PPC::SELECT_VSFRC ||
11963         MI.getOpcode() == PPC::SELECT_VSSRC ||
11964         MI.getOpcode() == PPC::SELECT_VSRC) {
11965       BuildMI(BB, dl, TII->get(PPC::BC))
11966           .addReg(MI.getOperand(1).getReg())
11967           .addMBB(sinkMBB);
11968     } else {
11969       unsigned SelectPred = MI.getOperand(4).getImm();
11970       BuildMI(BB, dl, TII->get(PPC::BCC))
11971           .addImm(SelectPred)
11972           .addReg(MI.getOperand(1).getReg())
11973           .addMBB(sinkMBB);
11974     }
11975 
11976     //  copy0MBB:
11977     //   %FalseValue = ...
11978     //   # fallthrough to sinkMBB
11979     BB = copy0MBB;
11980 
11981     // Update machine-CFG edges
11982     BB->addSuccessor(sinkMBB);
11983 
11984     //  sinkMBB:
11985     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11986     //  ...
11987     BB = sinkMBB;
11988     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11989         .addReg(MI.getOperand(3).getReg())
11990         .addMBB(copy0MBB)
11991         .addReg(MI.getOperand(2).getReg())
11992         .addMBB(thisMBB);
11993   } else if (MI.getOpcode() == PPC::ReadTB) {
11994     // To read the 64-bit time-base register on a 32-bit target, we read the
11995     // two halves. Should the counter have wrapped while it was being read, we
11996     // need to try again.
11997     // ...
11998     // readLoop:
11999     // mfspr Rx,TBU # load from TBU
12000     // mfspr Ry,TB  # load from TB
12001     // mfspr Rz,TBU # load from TBU
12002     // cmpw crX,Rx,Rz # check if 'old'='new'
12003     // bne readLoop   # branch if they're not equal
12004     // ...
12005 
12006     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12007     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12008     DebugLoc dl = MI.getDebugLoc();
12009     F->insert(It, readMBB);
12010     F->insert(It, sinkMBB);
12011 
12012     // Transfer the remainder of BB and its successor edges to sinkMBB.
12013     sinkMBB->splice(sinkMBB->begin(), BB,
12014                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12015     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12016 
12017     BB->addSuccessor(readMBB);
12018     BB = readMBB;
12019 
12020     MachineRegisterInfo &RegInfo = F->getRegInfo();
12021     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12022     Register LoReg = MI.getOperand(0).getReg();
12023     Register HiReg = MI.getOperand(1).getReg();
12024 
12025     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12026     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12027     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12028 
12029     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12030 
12031     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12032         .addReg(HiReg)
12033         .addReg(ReadAgainReg);
12034     BuildMI(BB, dl, TII->get(PPC::BCC))
12035         .addImm(PPC::PRED_NE)
12036         .addReg(CmpReg)
12037         .addMBB(readMBB);
12038 
12039     BB->addSuccessor(readMBB);
12040     BB->addSuccessor(sinkMBB);
12041   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12042     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12043   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12044     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12045   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12046     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12047   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12048     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12049 
12050   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12051     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12052   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12053     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12054   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12055     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12056   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12057     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12058 
12059   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12060     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12061   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12062     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12063   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12064     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12065   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12066     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12067 
12068   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12069     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12070   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12071     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12072   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12073     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12074   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12075     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12076 
12077   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12078     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12079   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12080     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12081   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12082     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12083   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12084     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12085 
12086   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12087     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12088   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12089     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12090   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12091     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12092   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12093     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12094 
12095   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12096     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12097   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12098     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12099   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12100     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12101   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12102     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12103 
12104   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12105     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12106   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12107     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12108   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12109     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12110   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12111     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12112 
12113   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12114     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12115   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12116     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12117   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12118     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12119   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12120     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12121 
12122   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12123     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12124   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12125     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12126   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12127     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12128   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12129     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12130 
12131   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12132     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12133   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12134     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12135   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12136     BB = EmitAtomicBinary(MI, BB, 4, 0);
12137   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12138     BB = EmitAtomicBinary(MI, BB, 8, 0);
12139   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12140            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12141            (Subtarget.hasPartwordAtomics() &&
12142             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12143            (Subtarget.hasPartwordAtomics() &&
12144             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12145     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12146 
12147     auto LoadMnemonic = PPC::LDARX;
12148     auto StoreMnemonic = PPC::STDCX;
12149     switch (MI.getOpcode()) {
12150     default:
12151       llvm_unreachable("Compare and swap of unknown size");
12152     case PPC::ATOMIC_CMP_SWAP_I8:
12153       LoadMnemonic = PPC::LBARX;
12154       StoreMnemonic = PPC::STBCX;
12155       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12156       break;
12157     case PPC::ATOMIC_CMP_SWAP_I16:
12158       LoadMnemonic = PPC::LHARX;
12159       StoreMnemonic = PPC::STHCX;
12160       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12161       break;
12162     case PPC::ATOMIC_CMP_SWAP_I32:
12163       LoadMnemonic = PPC::LWARX;
12164       StoreMnemonic = PPC::STWCX;
12165       break;
12166     case PPC::ATOMIC_CMP_SWAP_I64:
12167       LoadMnemonic = PPC::LDARX;
12168       StoreMnemonic = PPC::STDCX;
12169       break;
12170     }
12171     Register dest = MI.getOperand(0).getReg();
12172     Register ptrA = MI.getOperand(1).getReg();
12173     Register ptrB = MI.getOperand(2).getReg();
12174     Register oldval = MI.getOperand(3).getReg();
12175     Register newval = MI.getOperand(4).getReg();
12176     DebugLoc dl = MI.getDebugLoc();
12177 
12178     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12179     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12180     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12181     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12182     F->insert(It, loop1MBB);
12183     F->insert(It, loop2MBB);
12184     F->insert(It, midMBB);
12185     F->insert(It, exitMBB);
12186     exitMBB->splice(exitMBB->begin(), BB,
12187                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12188     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12189 
12190     //  thisMBB:
12191     //   ...
12192     //   fallthrough --> loopMBB
12193     BB->addSuccessor(loop1MBB);
12194 
12195     // loop1MBB:
12196     //   l[bhwd]arx dest, ptr
12197     //   cmp[wd] dest, oldval
12198     //   bne- midMBB
12199     // loop2MBB:
12200     //   st[bhwd]cx. newval, ptr
12201     //   bne- loopMBB
12202     //   b exitBB
12203     // midMBB:
12204     //   st[bhwd]cx. dest, ptr
12205     // exitBB:
12206     BB = loop1MBB;
12207     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12208     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12209         .addReg(oldval)
12210         .addReg(dest);
12211     BuildMI(BB, dl, TII->get(PPC::BCC))
12212         .addImm(PPC::PRED_NE)
12213         .addReg(PPC::CR0)
12214         .addMBB(midMBB);
12215     BB->addSuccessor(loop2MBB);
12216     BB->addSuccessor(midMBB);
12217 
12218     BB = loop2MBB;
12219     BuildMI(BB, dl, TII->get(StoreMnemonic))
12220         .addReg(newval)
12221         .addReg(ptrA)
12222         .addReg(ptrB);
12223     BuildMI(BB, dl, TII->get(PPC::BCC))
12224         .addImm(PPC::PRED_NE)
12225         .addReg(PPC::CR0)
12226         .addMBB(loop1MBB);
12227     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12228     BB->addSuccessor(loop1MBB);
12229     BB->addSuccessor(exitMBB);
12230 
12231     BB = midMBB;
12232     BuildMI(BB, dl, TII->get(StoreMnemonic))
12233         .addReg(dest)
12234         .addReg(ptrA)
12235         .addReg(ptrB);
12236     BB->addSuccessor(exitMBB);
12237 
12238     //  exitMBB:
12239     //   ...
12240     BB = exitMBB;
12241   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12242              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12243     // We must use 64-bit registers for addresses when targeting 64-bit,
12244     // since we're actually doing arithmetic on them.  Other registers
12245     // can be 32-bit.
12246     bool is64bit = Subtarget.isPPC64();
12247     bool isLittleEndian = Subtarget.isLittleEndian();
12248     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12249 
12250     Register dest = MI.getOperand(0).getReg();
12251     Register ptrA = MI.getOperand(1).getReg();
12252     Register ptrB = MI.getOperand(2).getReg();
12253     Register oldval = MI.getOperand(3).getReg();
12254     Register newval = MI.getOperand(4).getReg();
12255     DebugLoc dl = MI.getDebugLoc();
12256 
12257     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12258     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12259     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12260     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12261     F->insert(It, loop1MBB);
12262     F->insert(It, loop2MBB);
12263     F->insert(It, midMBB);
12264     F->insert(It, exitMBB);
12265     exitMBB->splice(exitMBB->begin(), BB,
12266                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12267     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12268 
12269     MachineRegisterInfo &RegInfo = F->getRegInfo();
12270     const TargetRegisterClass *RC =
12271         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12272     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12273 
12274     Register PtrReg = RegInfo.createVirtualRegister(RC);
12275     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12276     Register ShiftReg =
12277         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12278     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12279     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12280     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12281     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12282     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12283     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12284     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12285     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12286     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12287     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12288     Register Ptr1Reg;
12289     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12290     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12291     //  thisMBB:
12292     //   ...
12293     //   fallthrough --> loopMBB
12294     BB->addSuccessor(loop1MBB);
12295 
12296     // The 4-byte load must be aligned, while a char or short may be
12297     // anywhere in the word.  Hence all this nasty bookkeeping code.
12298     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12299     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12300     //   xori shift, shift1, 24 [16]
12301     //   rlwinm ptr, ptr1, 0, 0, 29
12302     //   slw newval2, newval, shift
12303     //   slw oldval2, oldval,shift
12304     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12305     //   slw mask, mask2, shift
12306     //   and newval3, newval2, mask
12307     //   and oldval3, oldval2, mask
12308     // loop1MBB:
12309     //   lwarx tmpDest, ptr
12310     //   and tmp, tmpDest, mask
12311     //   cmpw tmp, oldval3
12312     //   bne- midMBB
12313     // loop2MBB:
12314     //   andc tmp2, tmpDest, mask
12315     //   or tmp4, tmp2, newval3
12316     //   stwcx. tmp4, ptr
12317     //   bne- loop1MBB
12318     //   b exitBB
12319     // midMBB:
12320     //   stwcx. tmpDest, ptr
12321     // exitBB:
12322     //   srw dest, tmpDest, shift
12323     if (ptrA != ZeroReg) {
12324       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12325       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12326           .addReg(ptrA)
12327           .addReg(ptrB);
12328     } else {
12329       Ptr1Reg = ptrB;
12330     }
12331 
12332     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12333     // mode.
12334     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12335         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12336         .addImm(3)
12337         .addImm(27)
12338         .addImm(is8bit ? 28 : 27);
12339     if (!isLittleEndian)
12340       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12341           .addReg(Shift1Reg)
12342           .addImm(is8bit ? 24 : 16);
12343     if (is64bit)
12344       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12345           .addReg(Ptr1Reg)
12346           .addImm(0)
12347           .addImm(61);
12348     else
12349       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12350           .addReg(Ptr1Reg)
12351           .addImm(0)
12352           .addImm(0)
12353           .addImm(29);
12354     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12355         .addReg(newval)
12356         .addReg(ShiftReg);
12357     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12358         .addReg(oldval)
12359         .addReg(ShiftReg);
12360     if (is8bit)
12361       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12362     else {
12363       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12364       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12365           .addReg(Mask3Reg)
12366           .addImm(65535);
12367     }
12368     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12369         .addReg(Mask2Reg)
12370         .addReg(ShiftReg);
12371     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12372         .addReg(NewVal2Reg)
12373         .addReg(MaskReg);
12374     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12375         .addReg(OldVal2Reg)
12376         .addReg(MaskReg);
12377 
12378     BB = loop1MBB;
12379     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12380         .addReg(ZeroReg)
12381         .addReg(PtrReg);
12382     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12383         .addReg(TmpDestReg)
12384         .addReg(MaskReg);
12385     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12386         .addReg(TmpReg)
12387         .addReg(OldVal3Reg);
12388     BuildMI(BB, dl, TII->get(PPC::BCC))
12389         .addImm(PPC::PRED_NE)
12390         .addReg(PPC::CR0)
12391         .addMBB(midMBB);
12392     BB->addSuccessor(loop2MBB);
12393     BB->addSuccessor(midMBB);
12394 
12395     BB = loop2MBB;
12396     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12397         .addReg(TmpDestReg)
12398         .addReg(MaskReg);
12399     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12400         .addReg(Tmp2Reg)
12401         .addReg(NewVal3Reg);
12402     BuildMI(BB, dl, TII->get(PPC::STWCX))
12403         .addReg(Tmp4Reg)
12404         .addReg(ZeroReg)
12405         .addReg(PtrReg);
12406     BuildMI(BB, dl, TII->get(PPC::BCC))
12407         .addImm(PPC::PRED_NE)
12408         .addReg(PPC::CR0)
12409         .addMBB(loop1MBB);
12410     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12411     BB->addSuccessor(loop1MBB);
12412     BB->addSuccessor(exitMBB);
12413 
12414     BB = midMBB;
12415     BuildMI(BB, dl, TII->get(PPC::STWCX))
12416         .addReg(TmpDestReg)
12417         .addReg(ZeroReg)
12418         .addReg(PtrReg);
12419     BB->addSuccessor(exitMBB);
12420 
12421     //  exitMBB:
12422     //   ...
12423     BB = exitMBB;
12424     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12425         .addReg(TmpReg)
12426         .addReg(ShiftReg);
12427   } else if (MI.getOpcode() == PPC::FADDrtz) {
12428     // This pseudo performs an FADD with rounding mode temporarily forced
12429     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12430     // is not modeled at the SelectionDAG level.
12431     Register Dest = MI.getOperand(0).getReg();
12432     Register Src1 = MI.getOperand(1).getReg();
12433     Register Src2 = MI.getOperand(2).getReg();
12434     DebugLoc dl = MI.getDebugLoc();
12435 
12436     MachineRegisterInfo &RegInfo = F->getRegInfo();
12437     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12438 
12439     // Save FPSCR value.
12440     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12441 
12442     // Set rounding mode to round-to-zero.
12443     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12444         .addImm(31)
12445         .addReg(PPC::RM, RegState::ImplicitDefine);
12446 
12447     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12448         .addImm(30)
12449         .addReg(PPC::RM, RegState::ImplicitDefine);
12450 
12451     // Perform addition.
12452     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12453                    .addReg(Src1)
12454                    .addReg(Src2);
12455     if (MI.getFlag(MachineInstr::NoFPExcept))
12456       MIB.setMIFlag(MachineInstr::NoFPExcept);
12457 
12458     // Restore FPSCR value.
12459     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12460   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12461              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12462              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12463              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12464     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12465                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12466                           ? PPC::ANDI8_rec
12467                           : PPC::ANDI_rec;
12468     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12469                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12470 
12471     MachineRegisterInfo &RegInfo = F->getRegInfo();
12472     Register Dest = RegInfo.createVirtualRegister(
12473         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12474 
12475     DebugLoc Dl = MI.getDebugLoc();
12476     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12477         .addReg(MI.getOperand(1).getReg())
12478         .addImm(1);
12479     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12480             MI.getOperand(0).getReg())
12481         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12482   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12483     DebugLoc Dl = MI.getDebugLoc();
12484     MachineRegisterInfo &RegInfo = F->getRegInfo();
12485     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12486     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12487     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12488             MI.getOperand(0).getReg())
12489         .addReg(CRReg);
12490   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12491     DebugLoc Dl = MI.getDebugLoc();
12492     unsigned Imm = MI.getOperand(1).getImm();
12493     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12494     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12495             MI.getOperand(0).getReg())
12496         .addReg(PPC::CR0EQ);
12497   } else if (MI.getOpcode() == PPC::SETRNDi) {
12498     DebugLoc dl = MI.getDebugLoc();
12499     Register OldFPSCRReg = MI.getOperand(0).getReg();
12500 
12501     // Save FPSCR value.
12502     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12503 
12504     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12505     // the following settings:
12506     //   00 Round to nearest
12507     //   01 Round to 0
12508     //   10 Round to +inf
12509     //   11 Round to -inf
12510 
12511     // When the operand is immediate, using the two least significant bits of
12512     // the immediate to set the bits 62:63 of FPSCR.
12513     unsigned Mode = MI.getOperand(1).getImm();
12514     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12515         .addImm(31)
12516         .addReg(PPC::RM, RegState::ImplicitDefine);
12517 
12518     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12519         .addImm(30)
12520         .addReg(PPC::RM, RegState::ImplicitDefine);
12521   } else if (MI.getOpcode() == PPC::SETRND) {
12522     DebugLoc dl = MI.getDebugLoc();
12523 
12524     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12525     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12526     // If the target doesn't have DirectMove, we should use stack to do the
12527     // conversion, because the target doesn't have the instructions like mtvsrd
12528     // or mfvsrd to do this conversion directly.
12529     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12530       if (Subtarget.hasDirectMove()) {
12531         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12532           .addReg(SrcReg);
12533       } else {
12534         // Use stack to do the register copy.
12535         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12536         MachineRegisterInfo &RegInfo = F->getRegInfo();
12537         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12538         if (RC == &PPC::F8RCRegClass) {
12539           // Copy register from F8RCRegClass to G8RCRegclass.
12540           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12541                  "Unsupported RegClass.");
12542 
12543           StoreOp = PPC::STFD;
12544           LoadOp = PPC::LD;
12545         } else {
12546           // Copy register from G8RCRegClass to F8RCRegclass.
12547           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12548                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12549                  "Unsupported RegClass.");
12550         }
12551 
12552         MachineFrameInfo &MFI = F->getFrameInfo();
12553         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12554 
12555         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12556             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12557             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12558             MFI.getObjectAlign(FrameIdx));
12559 
12560         // Store the SrcReg into the stack.
12561         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12562           .addReg(SrcReg)
12563           .addImm(0)
12564           .addFrameIndex(FrameIdx)
12565           .addMemOperand(MMOStore);
12566 
12567         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12568             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12569             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12570             MFI.getObjectAlign(FrameIdx));
12571 
12572         // Load from the stack where SrcReg is stored, and save to DestReg,
12573         // so we have done the RegClass conversion from RegClass::SrcReg to
12574         // RegClass::DestReg.
12575         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12576           .addImm(0)
12577           .addFrameIndex(FrameIdx)
12578           .addMemOperand(MMOLoad);
12579       }
12580     };
12581 
12582     Register OldFPSCRReg = MI.getOperand(0).getReg();
12583 
12584     // Save FPSCR value.
12585     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12586 
12587     // When the operand is gprc register, use two least significant bits of the
12588     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12589     //
12590     // copy OldFPSCRTmpReg, OldFPSCRReg
12591     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12592     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12593     // copy NewFPSCRReg, NewFPSCRTmpReg
12594     // mtfsf 255, NewFPSCRReg
12595     MachineOperand SrcOp = MI.getOperand(1);
12596     MachineRegisterInfo &RegInfo = F->getRegInfo();
12597     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12598 
12599     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12600 
12601     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12602     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12603 
12604     // The first operand of INSERT_SUBREG should be a register which has
12605     // subregisters, we only care about its RegClass, so we should use an
12606     // IMPLICIT_DEF register.
12607     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12608     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12609       .addReg(ImDefReg)
12610       .add(SrcOp)
12611       .addImm(1);
12612 
12613     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12614     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12615       .addReg(OldFPSCRTmpReg)
12616       .addReg(ExtSrcReg)
12617       .addImm(0)
12618       .addImm(62);
12619 
12620     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12621     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12622 
12623     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12624     // bits of FPSCR.
12625     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12626       .addImm(255)
12627       .addReg(NewFPSCRReg)
12628       .addImm(0)
12629       .addImm(0);
12630   } else if (MI.getOpcode() == PPC::SETFLM) {
12631     DebugLoc Dl = MI.getDebugLoc();
12632 
12633     // Result of setflm is previous FPSCR content, so we need to save it first.
12634     Register OldFPSCRReg = MI.getOperand(0).getReg();
12635     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12636 
12637     // Put bits in 32:63 to FPSCR.
12638     Register NewFPSCRReg = MI.getOperand(1).getReg();
12639     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12640         .addImm(255)
12641         .addReg(NewFPSCRReg)
12642         .addImm(0)
12643         .addImm(0);
12644   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12645              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12646     return emitProbedAlloca(MI, BB);
12647   } else {
12648     llvm_unreachable("Unexpected instr type to insert");
12649   }
12650 
12651   MI.eraseFromParent(); // The pseudo instruction is gone now.
12652   return BB;
12653 }
12654 
12655 //===----------------------------------------------------------------------===//
12656 // Target Optimization Hooks
12657 //===----------------------------------------------------------------------===//
12658 
12659 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12660   // For the estimates, convergence is quadratic, so we essentially double the
12661   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12662   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12663   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12664   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12665   if (VT.getScalarType() == MVT::f64)
12666     RefinementSteps++;
12667   return RefinementSteps;
12668 }
12669 
12670 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12671                                            int Enabled, int &RefinementSteps,
12672                                            bool &UseOneConstNR,
12673                                            bool Reciprocal) const {
12674   EVT VT = Operand.getValueType();
12675   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12676       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12677       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12678       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12679     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12680       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12681 
12682     // The Newton-Raphson computation with a single constant does not provide
12683     // enough accuracy on some CPUs.
12684     UseOneConstNR = !Subtarget.needsTwoConstNR();
12685     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12686   }
12687   return SDValue();
12688 }
12689 
12690 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12691                                             int Enabled,
12692                                             int &RefinementSteps) const {
12693   EVT VT = Operand.getValueType();
12694   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12695       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12696       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12697       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12698     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12699       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12700     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12701   }
12702   return SDValue();
12703 }
12704 
12705 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12706   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12707   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12708   // enabled for division), this functionality is redundant with the default
12709   // combiner logic (once the division -> reciprocal/multiply transformation
12710   // has taken place). As a result, this matters more for older cores than for
12711   // newer ones.
12712 
12713   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12714   // reciprocal if there are two or more FDIVs (for embedded cores with only
12715   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12716   switch (Subtarget.getCPUDirective()) {
12717   default:
12718     return 3;
12719   case PPC::DIR_440:
12720   case PPC::DIR_A2:
12721   case PPC::DIR_E500:
12722   case PPC::DIR_E500mc:
12723   case PPC::DIR_E5500:
12724     return 2;
12725   }
12726 }
12727 
12728 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12729 // collapsed, and so we need to look through chains of them.
12730 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12731                                      int64_t& Offset, SelectionDAG &DAG) {
12732   if (DAG.isBaseWithConstantOffset(Loc)) {
12733     Base = Loc.getOperand(0);
12734     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12735 
12736     // The base might itself be a base plus an offset, and if so, accumulate
12737     // that as well.
12738     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12739   }
12740 }
12741 
12742 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12743                             unsigned Bytes, int Dist,
12744                             SelectionDAG &DAG) {
12745   if (VT.getSizeInBits() / 8 != Bytes)
12746     return false;
12747 
12748   SDValue BaseLoc = Base->getBasePtr();
12749   if (Loc.getOpcode() == ISD::FrameIndex) {
12750     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12751       return false;
12752     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12753     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12754     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12755     int FS  = MFI.getObjectSize(FI);
12756     int BFS = MFI.getObjectSize(BFI);
12757     if (FS != BFS || FS != (int)Bytes) return false;
12758     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12759   }
12760 
12761   SDValue Base1 = Loc, Base2 = BaseLoc;
12762   int64_t Offset1 = 0, Offset2 = 0;
12763   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12764   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12765   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12766     return true;
12767 
12768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12769   const GlobalValue *GV1 = nullptr;
12770   const GlobalValue *GV2 = nullptr;
12771   Offset1 = 0;
12772   Offset2 = 0;
12773   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12774   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12775   if (isGA1 && isGA2 && GV1 == GV2)
12776     return Offset1 == (Offset2 + Dist*Bytes);
12777   return false;
12778 }
12779 
12780 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12781 // not enforce equality of the chain operands.
12782 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12783                             unsigned Bytes, int Dist,
12784                             SelectionDAG &DAG) {
12785   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12786     EVT VT = LS->getMemoryVT();
12787     SDValue Loc = LS->getBasePtr();
12788     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12789   }
12790 
12791   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12792     EVT VT;
12793     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12794     default: return false;
12795     case Intrinsic::ppc_altivec_lvx:
12796     case Intrinsic::ppc_altivec_lvxl:
12797     case Intrinsic::ppc_vsx_lxvw4x:
12798     case Intrinsic::ppc_vsx_lxvw4x_be:
12799       VT = MVT::v4i32;
12800       break;
12801     case Intrinsic::ppc_vsx_lxvd2x:
12802     case Intrinsic::ppc_vsx_lxvd2x_be:
12803       VT = MVT::v2f64;
12804       break;
12805     case Intrinsic::ppc_altivec_lvebx:
12806       VT = MVT::i8;
12807       break;
12808     case Intrinsic::ppc_altivec_lvehx:
12809       VT = MVT::i16;
12810       break;
12811     case Intrinsic::ppc_altivec_lvewx:
12812       VT = MVT::i32;
12813       break;
12814     }
12815 
12816     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12817   }
12818 
12819   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12820     EVT VT;
12821     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12822     default: return false;
12823     case Intrinsic::ppc_altivec_stvx:
12824     case Intrinsic::ppc_altivec_stvxl:
12825     case Intrinsic::ppc_vsx_stxvw4x:
12826       VT = MVT::v4i32;
12827       break;
12828     case Intrinsic::ppc_vsx_stxvd2x:
12829       VT = MVT::v2f64;
12830       break;
12831     case Intrinsic::ppc_vsx_stxvw4x_be:
12832       VT = MVT::v4i32;
12833       break;
12834     case Intrinsic::ppc_vsx_stxvd2x_be:
12835       VT = MVT::v2f64;
12836       break;
12837     case Intrinsic::ppc_altivec_stvebx:
12838       VT = MVT::i8;
12839       break;
12840     case Intrinsic::ppc_altivec_stvehx:
12841       VT = MVT::i16;
12842       break;
12843     case Intrinsic::ppc_altivec_stvewx:
12844       VT = MVT::i32;
12845       break;
12846     }
12847 
12848     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12849   }
12850 
12851   return false;
12852 }
12853 
12854 // Return true is there is a nearyby consecutive load to the one provided
12855 // (regardless of alignment). We search up and down the chain, looking though
12856 // token factors and other loads (but nothing else). As a result, a true result
12857 // indicates that it is safe to create a new consecutive load adjacent to the
12858 // load provided.
12859 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12860   SDValue Chain = LD->getChain();
12861   EVT VT = LD->getMemoryVT();
12862 
12863   SmallSet<SDNode *, 16> LoadRoots;
12864   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12865   SmallSet<SDNode *, 16> Visited;
12866 
12867   // First, search up the chain, branching to follow all token-factor operands.
12868   // If we find a consecutive load, then we're done, otherwise, record all
12869   // nodes just above the top-level loads and token factors.
12870   while (!Queue.empty()) {
12871     SDNode *ChainNext = Queue.pop_back_val();
12872     if (!Visited.insert(ChainNext).second)
12873       continue;
12874 
12875     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12876       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12877         return true;
12878 
12879       if (!Visited.count(ChainLD->getChain().getNode()))
12880         Queue.push_back(ChainLD->getChain().getNode());
12881     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12882       for (const SDUse &O : ChainNext->ops())
12883         if (!Visited.count(O.getNode()))
12884           Queue.push_back(O.getNode());
12885     } else
12886       LoadRoots.insert(ChainNext);
12887   }
12888 
12889   // Second, search down the chain, starting from the top-level nodes recorded
12890   // in the first phase. These top-level nodes are the nodes just above all
12891   // loads and token factors. Starting with their uses, recursively look though
12892   // all loads (just the chain uses) and token factors to find a consecutive
12893   // load.
12894   Visited.clear();
12895   Queue.clear();
12896 
12897   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12898        IE = LoadRoots.end(); I != IE; ++I) {
12899     Queue.push_back(*I);
12900 
12901     while (!Queue.empty()) {
12902       SDNode *LoadRoot = Queue.pop_back_val();
12903       if (!Visited.insert(LoadRoot).second)
12904         continue;
12905 
12906       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12907         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12908           return true;
12909 
12910       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12911            UE = LoadRoot->use_end(); UI != UE; ++UI)
12912         if (((isa<MemSDNode>(*UI) &&
12913             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12914             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12915           Queue.push_back(*UI);
12916     }
12917   }
12918 
12919   return false;
12920 }
12921 
12922 /// This function is called when we have proved that a SETCC node can be replaced
12923 /// by subtraction (and other supporting instructions) so that the result of
12924 /// comparison is kept in a GPR instead of CR. This function is purely for
12925 /// codegen purposes and has some flags to guide the codegen process.
12926 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12927                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12928   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12929 
12930   // Zero extend the operands to the largest legal integer. Originally, they
12931   // must be of a strictly smaller size.
12932   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12933                          DAG.getConstant(Size, DL, MVT::i32));
12934   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12935                          DAG.getConstant(Size, DL, MVT::i32));
12936 
12937   // Swap if needed. Depends on the condition code.
12938   if (Swap)
12939     std::swap(Op0, Op1);
12940 
12941   // Subtract extended integers.
12942   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12943 
12944   // Move the sign bit to the least significant position and zero out the rest.
12945   // Now the least significant bit carries the result of original comparison.
12946   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12947                              DAG.getConstant(Size - 1, DL, MVT::i32));
12948   auto Final = Shifted;
12949 
12950   // Complement the result if needed. Based on the condition code.
12951   if (Complement)
12952     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12953                         DAG.getConstant(1, DL, MVT::i64));
12954 
12955   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12956 }
12957 
12958 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12959                                                   DAGCombinerInfo &DCI) const {
12960   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12961 
12962   SelectionDAG &DAG = DCI.DAG;
12963   SDLoc DL(N);
12964 
12965   // Size of integers being compared has a critical role in the following
12966   // analysis, so we prefer to do this when all types are legal.
12967   if (!DCI.isAfterLegalizeDAG())
12968     return SDValue();
12969 
12970   // If all users of SETCC extend its value to a legal integer type
12971   // then we replace SETCC with a subtraction
12972   for (SDNode::use_iterator UI = N->use_begin(),
12973        UE = N->use_end(); UI != UE; ++UI) {
12974     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12975       return SDValue();
12976   }
12977 
12978   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12979   auto OpSize = N->getOperand(0).getValueSizeInBits();
12980 
12981   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12982 
12983   if (OpSize < Size) {
12984     switch (CC) {
12985     default: break;
12986     case ISD::SETULT:
12987       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12988     case ISD::SETULE:
12989       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12990     case ISD::SETUGT:
12991       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12992     case ISD::SETUGE:
12993       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12994     }
12995   }
12996 
12997   return SDValue();
12998 }
12999 
13000 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13001                                                   DAGCombinerInfo &DCI) const {
13002   SelectionDAG &DAG = DCI.DAG;
13003   SDLoc dl(N);
13004 
13005   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13006   // If we're tracking CR bits, we need to be careful that we don't have:
13007   //   trunc(binary-ops(zext(x), zext(y)))
13008   // or
13009   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13010   // such that we're unnecessarily moving things into GPRs when it would be
13011   // better to keep them in CR bits.
13012 
13013   // Note that trunc here can be an actual i1 trunc, or can be the effective
13014   // truncation that comes from a setcc or select_cc.
13015   if (N->getOpcode() == ISD::TRUNCATE &&
13016       N->getValueType(0) != MVT::i1)
13017     return SDValue();
13018 
13019   if (N->getOperand(0).getValueType() != MVT::i32 &&
13020       N->getOperand(0).getValueType() != MVT::i64)
13021     return SDValue();
13022 
13023   if (N->getOpcode() == ISD::SETCC ||
13024       N->getOpcode() == ISD::SELECT_CC) {
13025     // If we're looking at a comparison, then we need to make sure that the
13026     // high bits (all except for the first) don't matter the result.
13027     ISD::CondCode CC =
13028       cast<CondCodeSDNode>(N->getOperand(
13029         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13030     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13031 
13032     if (ISD::isSignedIntSetCC(CC)) {
13033       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13034           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13035         return SDValue();
13036     } else if (ISD::isUnsignedIntSetCC(CC)) {
13037       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13038                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13039           !DAG.MaskedValueIsZero(N->getOperand(1),
13040                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13041         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13042                                              : SDValue());
13043     } else {
13044       // This is neither a signed nor an unsigned comparison, just make sure
13045       // that the high bits are equal.
13046       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13047       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13048 
13049       // We don't really care about what is known about the first bit (if
13050       // anything), so clear it in all masks prior to comparing them.
13051       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
13052       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
13053 
13054       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
13055         return SDValue();
13056     }
13057   }
13058 
13059   // We now know that the higher-order bits are irrelevant, we just need to
13060   // make sure that all of the intermediate operations are bit operations, and
13061   // all inputs are extensions.
13062   if (N->getOperand(0).getOpcode() != ISD::AND &&
13063       N->getOperand(0).getOpcode() != ISD::OR  &&
13064       N->getOperand(0).getOpcode() != ISD::XOR &&
13065       N->getOperand(0).getOpcode() != ISD::SELECT &&
13066       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13067       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13068       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13069       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13070       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13071     return SDValue();
13072 
13073   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13074       N->getOperand(1).getOpcode() != ISD::AND &&
13075       N->getOperand(1).getOpcode() != ISD::OR  &&
13076       N->getOperand(1).getOpcode() != ISD::XOR &&
13077       N->getOperand(1).getOpcode() != ISD::SELECT &&
13078       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13079       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13080       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13081       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13082       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13083     return SDValue();
13084 
13085   SmallVector<SDValue, 4> Inputs;
13086   SmallVector<SDValue, 8> BinOps, PromOps;
13087   SmallPtrSet<SDNode *, 16> Visited;
13088 
13089   for (unsigned i = 0; i < 2; ++i) {
13090     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13091           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13092           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13093           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13094         isa<ConstantSDNode>(N->getOperand(i)))
13095       Inputs.push_back(N->getOperand(i));
13096     else
13097       BinOps.push_back(N->getOperand(i));
13098 
13099     if (N->getOpcode() == ISD::TRUNCATE)
13100       break;
13101   }
13102 
13103   // Visit all inputs, collect all binary operations (and, or, xor and
13104   // select) that are all fed by extensions.
13105   while (!BinOps.empty()) {
13106     SDValue BinOp = BinOps.back();
13107     BinOps.pop_back();
13108 
13109     if (!Visited.insert(BinOp.getNode()).second)
13110       continue;
13111 
13112     PromOps.push_back(BinOp);
13113 
13114     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13115       // The condition of the select is not promoted.
13116       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13117         continue;
13118       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13119         continue;
13120 
13121       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13122             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13123             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13124            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13125           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13126         Inputs.push_back(BinOp.getOperand(i));
13127       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13128                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13129                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13130                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13131                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13132                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13133                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13134                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13135                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13136         BinOps.push_back(BinOp.getOperand(i));
13137       } else {
13138         // We have an input that is not an extension or another binary
13139         // operation; we'll abort this transformation.
13140         return SDValue();
13141       }
13142     }
13143   }
13144 
13145   // Make sure that this is a self-contained cluster of operations (which
13146   // is not quite the same thing as saying that everything has only one
13147   // use).
13148   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13149     if (isa<ConstantSDNode>(Inputs[i]))
13150       continue;
13151 
13152     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13153                               UE = Inputs[i].getNode()->use_end();
13154          UI != UE; ++UI) {
13155       SDNode *User = *UI;
13156       if (User != N && !Visited.count(User))
13157         return SDValue();
13158 
13159       // Make sure that we're not going to promote the non-output-value
13160       // operand(s) or SELECT or SELECT_CC.
13161       // FIXME: Although we could sometimes handle this, and it does occur in
13162       // practice that one of the condition inputs to the select is also one of
13163       // the outputs, we currently can't deal with this.
13164       if (User->getOpcode() == ISD::SELECT) {
13165         if (User->getOperand(0) == Inputs[i])
13166           return SDValue();
13167       } else if (User->getOpcode() == ISD::SELECT_CC) {
13168         if (User->getOperand(0) == Inputs[i] ||
13169             User->getOperand(1) == Inputs[i])
13170           return SDValue();
13171       }
13172     }
13173   }
13174 
13175   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13176     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13177                               UE = PromOps[i].getNode()->use_end();
13178          UI != UE; ++UI) {
13179       SDNode *User = *UI;
13180       if (User != N && !Visited.count(User))
13181         return SDValue();
13182 
13183       // Make sure that we're not going to promote the non-output-value
13184       // operand(s) or SELECT or SELECT_CC.
13185       // FIXME: Although we could sometimes handle this, and it does occur in
13186       // practice that one of the condition inputs to the select is also one of
13187       // the outputs, we currently can't deal with this.
13188       if (User->getOpcode() == ISD::SELECT) {
13189         if (User->getOperand(0) == PromOps[i])
13190           return SDValue();
13191       } else if (User->getOpcode() == ISD::SELECT_CC) {
13192         if (User->getOperand(0) == PromOps[i] ||
13193             User->getOperand(1) == PromOps[i])
13194           return SDValue();
13195       }
13196     }
13197   }
13198 
13199   // Replace all inputs with the extension operand.
13200   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13201     // Constants may have users outside the cluster of to-be-promoted nodes,
13202     // and so we need to replace those as we do the promotions.
13203     if (isa<ConstantSDNode>(Inputs[i]))
13204       continue;
13205     else
13206       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13207   }
13208 
13209   std::list<HandleSDNode> PromOpHandles;
13210   for (auto &PromOp : PromOps)
13211     PromOpHandles.emplace_back(PromOp);
13212 
13213   // Replace all operations (these are all the same, but have a different
13214   // (i1) return type). DAG.getNode will validate that the types of
13215   // a binary operator match, so go through the list in reverse so that
13216   // we've likely promoted both operands first. Any intermediate truncations or
13217   // extensions disappear.
13218   while (!PromOpHandles.empty()) {
13219     SDValue PromOp = PromOpHandles.back().getValue();
13220     PromOpHandles.pop_back();
13221 
13222     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13223         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13224         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13225         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13226       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13227           PromOp.getOperand(0).getValueType() != MVT::i1) {
13228         // The operand is not yet ready (see comment below).
13229         PromOpHandles.emplace_front(PromOp);
13230         continue;
13231       }
13232 
13233       SDValue RepValue = PromOp.getOperand(0);
13234       if (isa<ConstantSDNode>(RepValue))
13235         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13236 
13237       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13238       continue;
13239     }
13240 
13241     unsigned C;
13242     switch (PromOp.getOpcode()) {
13243     default:             C = 0; break;
13244     case ISD::SELECT:    C = 1; break;
13245     case ISD::SELECT_CC: C = 2; break;
13246     }
13247 
13248     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13249          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13250         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13251          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13252       // The to-be-promoted operands of this node have not yet been
13253       // promoted (this should be rare because we're going through the
13254       // list backward, but if one of the operands has several users in
13255       // this cluster of to-be-promoted nodes, it is possible).
13256       PromOpHandles.emplace_front(PromOp);
13257       continue;
13258     }
13259 
13260     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13261                                 PromOp.getNode()->op_end());
13262 
13263     // If there are any constant inputs, make sure they're replaced now.
13264     for (unsigned i = 0; i < 2; ++i)
13265       if (isa<ConstantSDNode>(Ops[C+i]))
13266         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13267 
13268     DAG.ReplaceAllUsesOfValueWith(PromOp,
13269       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13270   }
13271 
13272   // Now we're left with the initial truncation itself.
13273   if (N->getOpcode() == ISD::TRUNCATE)
13274     return N->getOperand(0);
13275 
13276   // Otherwise, this is a comparison. The operands to be compared have just
13277   // changed type (to i1), but everything else is the same.
13278   return SDValue(N, 0);
13279 }
13280 
13281 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13282                                                   DAGCombinerInfo &DCI) const {
13283   SelectionDAG &DAG = DCI.DAG;
13284   SDLoc dl(N);
13285 
13286   // If we're tracking CR bits, we need to be careful that we don't have:
13287   //   zext(binary-ops(trunc(x), trunc(y)))
13288   // or
13289   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13290   // such that we're unnecessarily moving things into CR bits that can more
13291   // efficiently stay in GPRs. Note that if we're not certain that the high
13292   // bits are set as required by the final extension, we still may need to do
13293   // some masking to get the proper behavior.
13294 
13295   // This same functionality is important on PPC64 when dealing with
13296   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13297   // the return values of functions. Because it is so similar, it is handled
13298   // here as well.
13299 
13300   if (N->getValueType(0) != MVT::i32 &&
13301       N->getValueType(0) != MVT::i64)
13302     return SDValue();
13303 
13304   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13305         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13306     return SDValue();
13307 
13308   if (N->getOperand(0).getOpcode() != ISD::AND &&
13309       N->getOperand(0).getOpcode() != ISD::OR  &&
13310       N->getOperand(0).getOpcode() != ISD::XOR &&
13311       N->getOperand(0).getOpcode() != ISD::SELECT &&
13312       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13313     return SDValue();
13314 
13315   SmallVector<SDValue, 4> Inputs;
13316   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13317   SmallPtrSet<SDNode *, 16> Visited;
13318 
13319   // Visit all inputs, collect all binary operations (and, or, xor and
13320   // select) that are all fed by truncations.
13321   while (!BinOps.empty()) {
13322     SDValue BinOp = BinOps.back();
13323     BinOps.pop_back();
13324 
13325     if (!Visited.insert(BinOp.getNode()).second)
13326       continue;
13327 
13328     PromOps.push_back(BinOp);
13329 
13330     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13331       // The condition of the select is not promoted.
13332       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13333         continue;
13334       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13335         continue;
13336 
13337       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13338           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13339         Inputs.push_back(BinOp.getOperand(i));
13340       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13341                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13342                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13343                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13344                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13345         BinOps.push_back(BinOp.getOperand(i));
13346       } else {
13347         // We have an input that is not a truncation or another binary
13348         // operation; we'll abort this transformation.
13349         return SDValue();
13350       }
13351     }
13352   }
13353 
13354   // The operands of a select that must be truncated when the select is
13355   // promoted because the operand is actually part of the to-be-promoted set.
13356   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13357 
13358   // Make sure that this is a self-contained cluster of operations (which
13359   // is not quite the same thing as saying that everything has only one
13360   // use).
13361   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13362     if (isa<ConstantSDNode>(Inputs[i]))
13363       continue;
13364 
13365     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13366                               UE = Inputs[i].getNode()->use_end();
13367          UI != UE; ++UI) {
13368       SDNode *User = *UI;
13369       if (User != N && !Visited.count(User))
13370         return SDValue();
13371 
13372       // If we're going to promote the non-output-value operand(s) or SELECT or
13373       // SELECT_CC, record them for truncation.
13374       if (User->getOpcode() == ISD::SELECT) {
13375         if (User->getOperand(0) == Inputs[i])
13376           SelectTruncOp[0].insert(std::make_pair(User,
13377                                     User->getOperand(0).getValueType()));
13378       } else if (User->getOpcode() == ISD::SELECT_CC) {
13379         if (User->getOperand(0) == Inputs[i])
13380           SelectTruncOp[0].insert(std::make_pair(User,
13381                                     User->getOperand(0).getValueType()));
13382         if (User->getOperand(1) == Inputs[i])
13383           SelectTruncOp[1].insert(std::make_pair(User,
13384                                     User->getOperand(1).getValueType()));
13385       }
13386     }
13387   }
13388 
13389   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13390     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13391                               UE = PromOps[i].getNode()->use_end();
13392          UI != UE; ++UI) {
13393       SDNode *User = *UI;
13394       if (User != N && !Visited.count(User))
13395         return SDValue();
13396 
13397       // If we're going to promote the non-output-value operand(s) or SELECT or
13398       // SELECT_CC, record them for truncation.
13399       if (User->getOpcode() == ISD::SELECT) {
13400         if (User->getOperand(0) == PromOps[i])
13401           SelectTruncOp[0].insert(std::make_pair(User,
13402                                     User->getOperand(0).getValueType()));
13403       } else if (User->getOpcode() == ISD::SELECT_CC) {
13404         if (User->getOperand(0) == PromOps[i])
13405           SelectTruncOp[0].insert(std::make_pair(User,
13406                                     User->getOperand(0).getValueType()));
13407         if (User->getOperand(1) == PromOps[i])
13408           SelectTruncOp[1].insert(std::make_pair(User,
13409                                     User->getOperand(1).getValueType()));
13410       }
13411     }
13412   }
13413 
13414   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13415   bool ReallyNeedsExt = false;
13416   if (N->getOpcode() != ISD::ANY_EXTEND) {
13417     // If all of the inputs are not already sign/zero extended, then
13418     // we'll still need to do that at the end.
13419     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13420       if (isa<ConstantSDNode>(Inputs[i]))
13421         continue;
13422 
13423       unsigned OpBits =
13424         Inputs[i].getOperand(0).getValueSizeInBits();
13425       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13426 
13427       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13428            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13429                                   APInt::getHighBitsSet(OpBits,
13430                                                         OpBits-PromBits))) ||
13431           (N->getOpcode() == ISD::SIGN_EXTEND &&
13432            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13433              (OpBits-(PromBits-1)))) {
13434         ReallyNeedsExt = true;
13435         break;
13436       }
13437     }
13438   }
13439 
13440   // Replace all inputs, either with the truncation operand, or a
13441   // truncation or extension to the final output type.
13442   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13443     // Constant inputs need to be replaced with the to-be-promoted nodes that
13444     // use them because they might have users outside of the cluster of
13445     // promoted nodes.
13446     if (isa<ConstantSDNode>(Inputs[i]))
13447       continue;
13448 
13449     SDValue InSrc = Inputs[i].getOperand(0);
13450     if (Inputs[i].getValueType() == N->getValueType(0))
13451       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13452     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13453       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13454         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13455     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13456       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13457         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13458     else
13459       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13460         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13461   }
13462 
13463   std::list<HandleSDNode> PromOpHandles;
13464   for (auto &PromOp : PromOps)
13465     PromOpHandles.emplace_back(PromOp);
13466 
13467   // Replace all operations (these are all the same, but have a different
13468   // (promoted) return type). DAG.getNode will validate that the types of
13469   // a binary operator match, so go through the list in reverse so that
13470   // we've likely promoted both operands first.
13471   while (!PromOpHandles.empty()) {
13472     SDValue PromOp = PromOpHandles.back().getValue();
13473     PromOpHandles.pop_back();
13474 
13475     unsigned C;
13476     switch (PromOp.getOpcode()) {
13477     default:             C = 0; break;
13478     case ISD::SELECT:    C = 1; break;
13479     case ISD::SELECT_CC: C = 2; break;
13480     }
13481 
13482     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13483          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13484         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13485          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13486       // The to-be-promoted operands of this node have not yet been
13487       // promoted (this should be rare because we're going through the
13488       // list backward, but if one of the operands has several users in
13489       // this cluster of to-be-promoted nodes, it is possible).
13490       PromOpHandles.emplace_front(PromOp);
13491       continue;
13492     }
13493 
13494     // For SELECT and SELECT_CC nodes, we do a similar check for any
13495     // to-be-promoted comparison inputs.
13496     if (PromOp.getOpcode() == ISD::SELECT ||
13497         PromOp.getOpcode() == ISD::SELECT_CC) {
13498       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13499            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13500           (SelectTruncOp[1].count(PromOp.getNode()) &&
13501            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13502         PromOpHandles.emplace_front(PromOp);
13503         continue;
13504       }
13505     }
13506 
13507     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13508                                 PromOp.getNode()->op_end());
13509 
13510     // If this node has constant inputs, then they'll need to be promoted here.
13511     for (unsigned i = 0; i < 2; ++i) {
13512       if (!isa<ConstantSDNode>(Ops[C+i]))
13513         continue;
13514       if (Ops[C+i].getValueType() == N->getValueType(0))
13515         continue;
13516 
13517       if (N->getOpcode() == ISD::SIGN_EXTEND)
13518         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13519       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13520         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13521       else
13522         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13523     }
13524 
13525     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13526     // truncate them again to the original value type.
13527     if (PromOp.getOpcode() == ISD::SELECT ||
13528         PromOp.getOpcode() == ISD::SELECT_CC) {
13529       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13530       if (SI0 != SelectTruncOp[0].end())
13531         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13532       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13533       if (SI1 != SelectTruncOp[1].end())
13534         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13535     }
13536 
13537     DAG.ReplaceAllUsesOfValueWith(PromOp,
13538       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13539   }
13540 
13541   // Now we're left with the initial extension itself.
13542   if (!ReallyNeedsExt)
13543     return N->getOperand(0);
13544 
13545   // To zero extend, just mask off everything except for the first bit (in the
13546   // i1 case).
13547   if (N->getOpcode() == ISD::ZERO_EXTEND)
13548     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13549                        DAG.getConstant(APInt::getLowBitsSet(
13550                                          N->getValueSizeInBits(0), PromBits),
13551                                        dl, N->getValueType(0)));
13552 
13553   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13554          "Invalid extension type");
13555   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13556   SDValue ShiftCst =
13557       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13558   return DAG.getNode(
13559       ISD::SRA, dl, N->getValueType(0),
13560       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13561       ShiftCst);
13562 }
13563 
13564 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13565                                         DAGCombinerInfo &DCI) const {
13566   assert(N->getOpcode() == ISD::SETCC &&
13567          "Should be called with a SETCC node");
13568 
13569   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13570   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13571     SDValue LHS = N->getOperand(0);
13572     SDValue RHS = N->getOperand(1);
13573 
13574     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13575     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13576         LHS.hasOneUse())
13577       std::swap(LHS, RHS);
13578 
13579     // x == 0-y --> x+y == 0
13580     // x != 0-y --> x+y != 0
13581     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13582         RHS.hasOneUse()) {
13583       SDLoc DL(N);
13584       SelectionDAG &DAG = DCI.DAG;
13585       EVT VT = N->getValueType(0);
13586       EVT OpVT = LHS.getValueType();
13587       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13588       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13589     }
13590   }
13591 
13592   return DAGCombineTruncBoolExt(N, DCI);
13593 }
13594 
13595 // Is this an extending load from an f32 to an f64?
13596 static bool isFPExtLoad(SDValue Op) {
13597   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13598     return LD->getExtensionType() == ISD::EXTLOAD &&
13599       Op.getValueType() == MVT::f64;
13600   return false;
13601 }
13602 
13603 /// Reduces the number of fp-to-int conversion when building a vector.
13604 ///
13605 /// If this vector is built out of floating to integer conversions,
13606 /// transform it to a vector built out of floating point values followed by a
13607 /// single floating to integer conversion of the vector.
13608 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13609 /// becomes (fptosi (build_vector ($A, $B, ...)))
13610 SDValue PPCTargetLowering::
13611 combineElementTruncationToVectorTruncation(SDNode *N,
13612                                            DAGCombinerInfo &DCI) const {
13613   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13614          "Should be called with a BUILD_VECTOR node");
13615 
13616   SelectionDAG &DAG = DCI.DAG;
13617   SDLoc dl(N);
13618 
13619   SDValue FirstInput = N->getOperand(0);
13620   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13621          "The input operand must be an fp-to-int conversion.");
13622 
13623   // This combine happens after legalization so the fp_to_[su]i nodes are
13624   // already converted to PPCSISD nodes.
13625   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13626   if (FirstConversion == PPCISD::FCTIDZ ||
13627       FirstConversion == PPCISD::FCTIDUZ ||
13628       FirstConversion == PPCISD::FCTIWZ ||
13629       FirstConversion == PPCISD::FCTIWUZ) {
13630     bool IsSplat = true;
13631     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13632       FirstConversion == PPCISD::FCTIWUZ;
13633     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13634     SmallVector<SDValue, 4> Ops;
13635     EVT TargetVT = N->getValueType(0);
13636     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13637       SDValue NextOp = N->getOperand(i);
13638       if (NextOp.getOpcode() != PPCISD::MFVSR)
13639         return SDValue();
13640       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13641       if (NextConversion != FirstConversion)
13642         return SDValue();
13643       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13644       // This is not valid if the input was originally double precision. It is
13645       // also not profitable to do unless this is an extending load in which
13646       // case doing this combine will allow us to combine consecutive loads.
13647       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13648         return SDValue();
13649       if (N->getOperand(i) != FirstInput)
13650         IsSplat = false;
13651     }
13652 
13653     // If this is a splat, we leave it as-is since there will be only a single
13654     // fp-to-int conversion followed by a splat of the integer. This is better
13655     // for 32-bit and smaller ints and neutral for 64-bit ints.
13656     if (IsSplat)
13657       return SDValue();
13658 
13659     // Now that we know we have the right type of node, get its operands
13660     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13661       SDValue In = N->getOperand(i).getOperand(0);
13662       if (Is32Bit) {
13663         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13664         // here, we know that all inputs are extending loads so this is safe).
13665         if (In.isUndef())
13666           Ops.push_back(DAG.getUNDEF(SrcVT));
13667         else {
13668           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13669                                       MVT::f32, In.getOperand(0),
13670                                       DAG.getIntPtrConstant(1, dl));
13671           Ops.push_back(Trunc);
13672         }
13673       } else
13674         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13675     }
13676 
13677     unsigned Opcode;
13678     if (FirstConversion == PPCISD::FCTIDZ ||
13679         FirstConversion == PPCISD::FCTIWZ)
13680       Opcode = ISD::FP_TO_SINT;
13681     else
13682       Opcode = ISD::FP_TO_UINT;
13683 
13684     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13685     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13686     return DAG.getNode(Opcode, dl, TargetVT, BV);
13687   }
13688   return SDValue();
13689 }
13690 
13691 /// Reduce the number of loads when building a vector.
13692 ///
13693 /// Building a vector out of multiple loads can be converted to a load
13694 /// of the vector type if the loads are consecutive. If the loads are
13695 /// consecutive but in descending order, a shuffle is added at the end
13696 /// to reorder the vector.
13697 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13698   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13699          "Should be called with a BUILD_VECTOR node");
13700 
13701   SDLoc dl(N);
13702 
13703   // Return early for non byte-sized type, as they can't be consecutive.
13704   if (!N->getValueType(0).getVectorElementType().isByteSized())
13705     return SDValue();
13706 
13707   bool InputsAreConsecutiveLoads = true;
13708   bool InputsAreReverseConsecutive = true;
13709   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13710   SDValue FirstInput = N->getOperand(0);
13711   bool IsRoundOfExtLoad = false;
13712 
13713   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13714       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13715     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13716     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13717   }
13718   // Not a build vector of (possibly fp_rounded) loads.
13719   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13720       N->getNumOperands() == 1)
13721     return SDValue();
13722 
13723   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13724     // If any inputs are fp_round(extload), they all must be.
13725     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13726       return SDValue();
13727 
13728     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13729       N->getOperand(i);
13730     if (NextInput.getOpcode() != ISD::LOAD)
13731       return SDValue();
13732 
13733     SDValue PreviousInput =
13734       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13735     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13736     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13737 
13738     // If any inputs are fp_round(extload), they all must be.
13739     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13740       return SDValue();
13741 
13742     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13743       InputsAreConsecutiveLoads = false;
13744     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13745       InputsAreReverseConsecutive = false;
13746 
13747     // Exit early if the loads are neither consecutive nor reverse consecutive.
13748     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13749       return SDValue();
13750   }
13751 
13752   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13753          "The loads cannot be both consecutive and reverse consecutive.");
13754 
13755   SDValue FirstLoadOp =
13756     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13757   SDValue LastLoadOp =
13758     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13759                        N->getOperand(N->getNumOperands()-1);
13760 
13761   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13762   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13763   if (InputsAreConsecutiveLoads) {
13764     assert(LD1 && "Input needs to be a LoadSDNode.");
13765     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13766                        LD1->getBasePtr(), LD1->getPointerInfo(),
13767                        LD1->getAlignment());
13768   }
13769   if (InputsAreReverseConsecutive) {
13770     assert(LDL && "Input needs to be a LoadSDNode.");
13771     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13772                                LDL->getBasePtr(), LDL->getPointerInfo(),
13773                                LDL->getAlignment());
13774     SmallVector<int, 16> Ops;
13775     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13776       Ops.push_back(i);
13777 
13778     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13779                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13780   }
13781   return SDValue();
13782 }
13783 
13784 // This function adds the required vector_shuffle needed to get
13785 // the elements of the vector extract in the correct position
13786 // as specified by the CorrectElems encoding.
13787 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13788                                       SDValue Input, uint64_t Elems,
13789                                       uint64_t CorrectElems) {
13790   SDLoc dl(N);
13791 
13792   unsigned NumElems = Input.getValueType().getVectorNumElements();
13793   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13794 
13795   // Knowing the element indices being extracted from the original
13796   // vector and the order in which they're being inserted, just put
13797   // them at element indices required for the instruction.
13798   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13799     if (DAG.getDataLayout().isLittleEndian())
13800       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13801     else
13802       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13803     CorrectElems = CorrectElems >> 8;
13804     Elems = Elems >> 8;
13805   }
13806 
13807   SDValue Shuffle =
13808       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13809                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13810 
13811   EVT VT = N->getValueType(0);
13812   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13813 
13814   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13815                                Input.getValueType().getVectorElementType(),
13816                                VT.getVectorNumElements());
13817   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13818                      DAG.getValueType(ExtVT));
13819 }
13820 
13821 // Look for build vector patterns where input operands come from sign
13822 // extended vector_extract elements of specific indices. If the correct indices
13823 // aren't used, add a vector shuffle to fix up the indices and create
13824 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13825 // during instruction selection.
13826 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13827   // This array encodes the indices that the vector sign extend instructions
13828   // extract from when extending from one type to another for both BE and LE.
13829   // The right nibble of each byte corresponds to the LE incides.
13830   // and the left nibble of each byte corresponds to the BE incides.
13831   // For example: 0x3074B8FC  byte->word
13832   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13833   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13834   // For example: 0x000070F8  byte->double word
13835   // For LE: the allowed indices are: 0x0,0x8
13836   // For BE: the allowed indices are: 0x7,0xF
13837   uint64_t TargetElems[] = {
13838       0x3074B8FC, // b->w
13839       0x000070F8, // b->d
13840       0x10325476, // h->w
13841       0x00003074, // h->d
13842       0x00001032, // w->d
13843   };
13844 
13845   uint64_t Elems = 0;
13846   int Index;
13847   SDValue Input;
13848 
13849   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13850     if (!Op)
13851       return false;
13852     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13853         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13854       return false;
13855 
13856     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13857     // of the right width.
13858     SDValue Extract = Op.getOperand(0);
13859     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13860       Extract = Extract.getOperand(0);
13861     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13862       return false;
13863 
13864     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13865     if (!ExtOp)
13866       return false;
13867 
13868     Index = ExtOp->getZExtValue();
13869     if (Input && Input != Extract.getOperand(0))
13870       return false;
13871 
13872     if (!Input)
13873       Input = Extract.getOperand(0);
13874 
13875     Elems = Elems << 8;
13876     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13877     Elems |= Index;
13878 
13879     return true;
13880   };
13881 
13882   // If the build vector operands aren't sign extended vector extracts,
13883   // of the same input vector, then return.
13884   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13885     if (!isSExtOfVecExtract(N->getOperand(i))) {
13886       return SDValue();
13887     }
13888   }
13889 
13890   // If the vector extract indicies are not correct, add the appropriate
13891   // vector_shuffle.
13892   int TgtElemArrayIdx;
13893   int InputSize = Input.getValueType().getScalarSizeInBits();
13894   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13895   if (InputSize + OutputSize == 40)
13896     TgtElemArrayIdx = 0;
13897   else if (InputSize + OutputSize == 72)
13898     TgtElemArrayIdx = 1;
13899   else if (InputSize + OutputSize == 48)
13900     TgtElemArrayIdx = 2;
13901   else if (InputSize + OutputSize == 80)
13902     TgtElemArrayIdx = 3;
13903   else if (InputSize + OutputSize == 96)
13904     TgtElemArrayIdx = 4;
13905   else
13906     return SDValue();
13907 
13908   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13909   CorrectElems = DAG.getDataLayout().isLittleEndian()
13910                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13911                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13912   if (Elems != CorrectElems) {
13913     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13914   }
13915 
13916   // Regular lowering will catch cases where a shuffle is not needed.
13917   return SDValue();
13918 }
13919 
13920 // Look for the pattern of a load from a narrow width to i128, feeding
13921 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13922 // (LXVRZX). This node represents a zero extending load that will be matched
13923 // to the Load VSX Vector Rightmost instructions.
13924 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13925   SDLoc DL(N);
13926 
13927   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13928   if (N->getValueType(0) != MVT::v1i128)
13929     return SDValue();
13930 
13931   SDValue Operand = N->getOperand(0);
13932   // Proceed with the transformation if the operand to the BUILD_VECTOR
13933   // is a load instruction.
13934   if (Operand.getOpcode() != ISD::LOAD)
13935     return SDValue();
13936 
13937   LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand);
13938   EVT MemoryType = LD->getMemoryVT();
13939 
13940   // This transformation is only valid if the we are loading either a byte,
13941   // halfword, word, or doubleword.
13942   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13943                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13944 
13945   // Ensure that the load from the narrow width is being zero extended to i128.
13946   if (!ValidLDType ||
13947       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13948        LD->getExtensionType() != ISD::EXTLOAD))
13949     return SDValue();
13950 
13951   SDValue LoadOps[] = {
13952       LD->getChain(), LD->getBasePtr(),
13953       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13954 
13955   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13956                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13957                                  LoadOps, MemoryType, LD->getMemOperand());
13958 }
13959 
13960 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13961                                                  DAGCombinerInfo &DCI) const {
13962   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13963          "Should be called with a BUILD_VECTOR node");
13964 
13965   SelectionDAG &DAG = DCI.DAG;
13966   SDLoc dl(N);
13967 
13968   if (!Subtarget.hasVSX())
13969     return SDValue();
13970 
13971   // The target independent DAG combiner will leave a build_vector of
13972   // float-to-int conversions intact. We can generate MUCH better code for
13973   // a float-to-int conversion of a vector of floats.
13974   SDValue FirstInput = N->getOperand(0);
13975   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13976     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13977     if (Reduced)
13978       return Reduced;
13979   }
13980 
13981   // If we're building a vector out of consecutive loads, just load that
13982   // vector type.
13983   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13984   if (Reduced)
13985     return Reduced;
13986 
13987   // If we're building a vector out of extended elements from another vector
13988   // we have P9 vector integer extend instructions. The code assumes legal
13989   // input types (i.e. it can't handle things like v4i16) so do not run before
13990   // legalization.
13991   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13992     Reduced = combineBVOfVecSExt(N, DAG);
13993     if (Reduced)
13994       return Reduced;
13995   }
13996 
13997   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13998   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13999   // is a load from <valid narrow width> to i128.
14000   if (Subtarget.isISA3_1()) {
14001     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14002     if (BVOfZLoad)
14003       return BVOfZLoad;
14004   }
14005 
14006   if (N->getValueType(0) != MVT::v2f64)
14007     return SDValue();
14008 
14009   // Looking for:
14010   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14011   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14012       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14013     return SDValue();
14014   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14015       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14016     return SDValue();
14017   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14018     return SDValue();
14019 
14020   SDValue Ext1 = FirstInput.getOperand(0);
14021   SDValue Ext2 = N->getOperand(1).getOperand(0);
14022   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14023      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14024     return SDValue();
14025 
14026   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14027   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14028   if (!Ext1Op || !Ext2Op)
14029     return SDValue();
14030   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14031       Ext1.getOperand(0) != Ext2.getOperand(0))
14032     return SDValue();
14033 
14034   int FirstElem = Ext1Op->getZExtValue();
14035   int SecondElem = Ext2Op->getZExtValue();
14036   int SubvecIdx;
14037   if (FirstElem == 0 && SecondElem == 1)
14038     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14039   else if (FirstElem == 2 && SecondElem == 3)
14040     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14041   else
14042     return SDValue();
14043 
14044   SDValue SrcVec = Ext1.getOperand(0);
14045   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14046     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14047   return DAG.getNode(NodeType, dl, MVT::v2f64,
14048                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14049 }
14050 
14051 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14052                                               DAGCombinerInfo &DCI) const {
14053   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14054           N->getOpcode() == ISD::UINT_TO_FP) &&
14055          "Need an int -> FP conversion node here");
14056 
14057   if (useSoftFloat() || !Subtarget.has64BitSupport())
14058     return SDValue();
14059 
14060   SelectionDAG &DAG = DCI.DAG;
14061   SDLoc dl(N);
14062   SDValue Op(N, 0);
14063 
14064   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14065   // from the hardware.
14066   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14067     return SDValue();
14068   if (!Op.getOperand(0).getValueType().isSimple())
14069     return SDValue();
14070   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14071       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14072     return SDValue();
14073 
14074   SDValue FirstOperand(Op.getOperand(0));
14075   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14076     (FirstOperand.getValueType() == MVT::i8 ||
14077      FirstOperand.getValueType() == MVT::i16);
14078   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14079     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14080     bool DstDouble = Op.getValueType() == MVT::f64;
14081     unsigned ConvOp = Signed ?
14082       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14083       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14084     SDValue WidthConst =
14085       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14086                             dl, false);
14087     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14088     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14089     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14090                                          DAG.getVTList(MVT::f64, MVT::Other),
14091                                          Ops, MVT::i8, LDN->getMemOperand());
14092 
14093     // For signed conversion, we need to sign-extend the value in the VSR
14094     if (Signed) {
14095       SDValue ExtOps[] = { Ld, WidthConst };
14096       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14097       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14098     } else
14099       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14100   }
14101 
14102 
14103   // For i32 intermediate values, unfortunately, the conversion functions
14104   // leave the upper 32 bits of the value are undefined. Within the set of
14105   // scalar instructions, we have no method for zero- or sign-extending the
14106   // value. Thus, we cannot handle i32 intermediate values here.
14107   if (Op.getOperand(0).getValueType() == MVT::i32)
14108     return SDValue();
14109 
14110   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14111          "UINT_TO_FP is supported only with FPCVT");
14112 
14113   // If we have FCFIDS, then use it when converting to single-precision.
14114   // Otherwise, convert to double-precision and then round.
14115   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14116                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14117                                                             : PPCISD::FCFIDS)
14118                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14119                                                             : PPCISD::FCFID);
14120   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14121                   ? MVT::f32
14122                   : MVT::f64;
14123 
14124   // If we're converting from a float, to an int, and back to a float again,
14125   // then we don't need the store/load pair at all.
14126   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14127        Subtarget.hasFPCVT()) ||
14128       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14129     SDValue Src = Op.getOperand(0).getOperand(0);
14130     if (Src.getValueType() == MVT::f32) {
14131       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14132       DCI.AddToWorklist(Src.getNode());
14133     } else if (Src.getValueType() != MVT::f64) {
14134       // Make sure that we don't pick up a ppc_fp128 source value.
14135       return SDValue();
14136     }
14137 
14138     unsigned FCTOp =
14139       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14140                                                         PPCISD::FCTIDUZ;
14141 
14142     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14143     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14144 
14145     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14146       FP = DAG.getNode(ISD::FP_ROUND, dl,
14147                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14148       DCI.AddToWorklist(FP.getNode());
14149     }
14150 
14151     return FP;
14152   }
14153 
14154   return SDValue();
14155 }
14156 
14157 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14158 // builtins) into loads with swaps.
14159 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14160                                               DAGCombinerInfo &DCI) const {
14161   SelectionDAG &DAG = DCI.DAG;
14162   SDLoc dl(N);
14163   SDValue Chain;
14164   SDValue Base;
14165   MachineMemOperand *MMO;
14166 
14167   switch (N->getOpcode()) {
14168   default:
14169     llvm_unreachable("Unexpected opcode for little endian VSX load");
14170   case ISD::LOAD: {
14171     LoadSDNode *LD = cast<LoadSDNode>(N);
14172     Chain = LD->getChain();
14173     Base = LD->getBasePtr();
14174     MMO = LD->getMemOperand();
14175     // If the MMO suggests this isn't a load of a full vector, leave
14176     // things alone.  For a built-in, we have to make the change for
14177     // correctness, so if there is a size problem that will be a bug.
14178     if (MMO->getSize() < 16)
14179       return SDValue();
14180     break;
14181   }
14182   case ISD::INTRINSIC_W_CHAIN: {
14183     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14184     Chain = Intrin->getChain();
14185     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14186     // us what we want. Get operand 2 instead.
14187     Base = Intrin->getOperand(2);
14188     MMO = Intrin->getMemOperand();
14189     break;
14190   }
14191   }
14192 
14193   MVT VecTy = N->getValueType(0).getSimpleVT();
14194 
14195   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14196   // aligned and the type is a vector with elements up to 4 bytes
14197   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14198       VecTy.getScalarSizeInBits() <= 32) {
14199     return SDValue();
14200   }
14201 
14202   SDValue LoadOps[] = { Chain, Base };
14203   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14204                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14205                                          LoadOps, MVT::v2f64, MMO);
14206 
14207   DCI.AddToWorklist(Load.getNode());
14208   Chain = Load.getValue(1);
14209   SDValue Swap = DAG.getNode(
14210       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14211   DCI.AddToWorklist(Swap.getNode());
14212 
14213   // Add a bitcast if the resulting load type doesn't match v2f64.
14214   if (VecTy != MVT::v2f64) {
14215     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14216     DCI.AddToWorklist(N.getNode());
14217     // Package {bitcast value, swap's chain} to match Load's shape.
14218     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14219                        N, Swap.getValue(1));
14220   }
14221 
14222   return Swap;
14223 }
14224 
14225 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14226 // builtins) into stores with swaps.
14227 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14228                                                DAGCombinerInfo &DCI) const {
14229   SelectionDAG &DAG = DCI.DAG;
14230   SDLoc dl(N);
14231   SDValue Chain;
14232   SDValue Base;
14233   unsigned SrcOpnd;
14234   MachineMemOperand *MMO;
14235 
14236   switch (N->getOpcode()) {
14237   default:
14238     llvm_unreachable("Unexpected opcode for little endian VSX store");
14239   case ISD::STORE: {
14240     StoreSDNode *ST = cast<StoreSDNode>(N);
14241     Chain = ST->getChain();
14242     Base = ST->getBasePtr();
14243     MMO = ST->getMemOperand();
14244     SrcOpnd = 1;
14245     // If the MMO suggests this isn't a store of a full vector, leave
14246     // things alone.  For a built-in, we have to make the change for
14247     // correctness, so if there is a size problem that will be a bug.
14248     if (MMO->getSize() < 16)
14249       return SDValue();
14250     break;
14251   }
14252   case ISD::INTRINSIC_VOID: {
14253     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14254     Chain = Intrin->getChain();
14255     // Intrin->getBasePtr() oddly does not get what we want.
14256     Base = Intrin->getOperand(3);
14257     MMO = Intrin->getMemOperand();
14258     SrcOpnd = 2;
14259     break;
14260   }
14261   }
14262 
14263   SDValue Src = N->getOperand(SrcOpnd);
14264   MVT VecTy = Src.getValueType().getSimpleVT();
14265 
14266   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14267   // aligned and the type is a vector with elements up to 4 bytes
14268   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14269       VecTy.getScalarSizeInBits() <= 32) {
14270     return SDValue();
14271   }
14272 
14273   // All stores are done as v2f64 and possible bit cast.
14274   if (VecTy != MVT::v2f64) {
14275     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14276     DCI.AddToWorklist(Src.getNode());
14277   }
14278 
14279   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14280                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14281   DCI.AddToWorklist(Swap.getNode());
14282   Chain = Swap.getValue(1);
14283   SDValue StoreOps[] = { Chain, Swap, Base };
14284   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14285                                           DAG.getVTList(MVT::Other),
14286                                           StoreOps, VecTy, MMO);
14287   DCI.AddToWorklist(Store.getNode());
14288   return Store;
14289 }
14290 
14291 // Handle DAG combine for STORE (FP_TO_INT F).
14292 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14293                                                DAGCombinerInfo &DCI) const {
14294 
14295   SelectionDAG &DAG = DCI.DAG;
14296   SDLoc dl(N);
14297   unsigned Opcode = N->getOperand(1).getOpcode();
14298 
14299   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14300          && "Not a FP_TO_INT Instruction!");
14301 
14302   SDValue Val = N->getOperand(1).getOperand(0);
14303   EVT Op1VT = N->getOperand(1).getValueType();
14304   EVT ResVT = Val.getValueType();
14305 
14306   if (!isTypeLegal(ResVT))
14307     return SDValue();
14308 
14309   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14310   bool ValidTypeForStoreFltAsInt =
14311         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14312          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14313 
14314   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14315       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14316     return SDValue();
14317 
14318   // Extend f32 values to f64
14319   if (ResVT.getScalarSizeInBits() == 32) {
14320     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14321     DCI.AddToWorklist(Val.getNode());
14322   }
14323 
14324   // Set signed or unsigned conversion opcode.
14325   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14326                           PPCISD::FP_TO_SINT_IN_VSR :
14327                           PPCISD::FP_TO_UINT_IN_VSR;
14328 
14329   Val = DAG.getNode(ConvOpcode,
14330                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14331   DCI.AddToWorklist(Val.getNode());
14332 
14333   // Set number of bytes being converted.
14334   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14335   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14336                     DAG.getIntPtrConstant(ByteSize, dl, false),
14337                     DAG.getValueType(Op1VT) };
14338 
14339   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14340           DAG.getVTList(MVT::Other), Ops,
14341           cast<StoreSDNode>(N)->getMemoryVT(),
14342           cast<StoreSDNode>(N)->getMemOperand());
14343 
14344   DCI.AddToWorklist(Val.getNode());
14345   return Val;
14346 }
14347 
14348 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14349   // Check that the source of the element keeps flipping
14350   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14351   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14352   for (int i = 1, e = Mask.size(); i < e; i++) {
14353     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14354       return false;
14355     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14356       return false;
14357     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14358   }
14359   return true;
14360 }
14361 
14362 static bool isSplatBV(SDValue Op) {
14363   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14364     return false;
14365   SDValue FirstOp;
14366 
14367   // Find first non-undef input.
14368   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14369     FirstOp = Op.getOperand(i);
14370     if (!FirstOp.isUndef())
14371       break;
14372   }
14373 
14374   // All inputs are undef or the same as the first non-undef input.
14375   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14376     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14377       return false;
14378   return true;
14379 }
14380 
14381 static SDValue isScalarToVec(SDValue Op) {
14382   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14383     return Op;
14384   if (Op.getOpcode() != ISD::BITCAST)
14385     return SDValue();
14386   Op = Op.getOperand(0);
14387   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14388     return Op;
14389   return SDValue();
14390 }
14391 
14392 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14393                                             int LHSMaxIdx, int RHSMinIdx,
14394                                             int RHSMaxIdx, int HalfVec) {
14395   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14396     int Idx = ShuffV[i];
14397     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14398       ShuffV[i] += HalfVec;
14399   }
14400   return;
14401 }
14402 
14403 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14404 // the original is:
14405 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14406 // In such a case, just change the shuffle mask to extract the element
14407 // from the permuted index.
14408 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14409   SDLoc dl(OrigSToV);
14410   EVT VT = OrigSToV.getValueType();
14411   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14412          "Expecting a SCALAR_TO_VECTOR here");
14413   SDValue Input = OrigSToV.getOperand(0);
14414 
14415   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14416     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14417     SDValue OrigVector = Input.getOperand(0);
14418 
14419     // Can't handle non-const element indices or different vector types
14420     // for the input to the extract and the output of the scalar_to_vector.
14421     if (Idx && VT == OrigVector.getValueType()) {
14422       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14423       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14424       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14425     }
14426   }
14427   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14428                      OrigSToV.getOperand(0));
14429 }
14430 
14431 // On little endian subtargets, combine shuffles such as:
14432 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14433 // into:
14434 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14435 // because the latter can be matched to a single instruction merge.
14436 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14437 // to put the value into element zero. Adjust the shuffle mask so that the
14438 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14439 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14440                                                 SelectionDAG &DAG) const {
14441   SDValue LHS = SVN->getOperand(0);
14442   SDValue RHS = SVN->getOperand(1);
14443   auto Mask = SVN->getMask();
14444   int NumElts = LHS.getValueType().getVectorNumElements();
14445   SDValue Res(SVN, 0);
14446   SDLoc dl(SVN);
14447 
14448   // None of these combines are useful on big endian systems since the ISA
14449   // already has a big endian bias.
14450   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14451     return Res;
14452 
14453   // If this is not a shuffle of a shuffle and the first element comes from
14454   // the second vector, canonicalize to the commuted form. This will make it
14455   // more likely to match one of the single instruction patterns.
14456   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14457       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14458     std::swap(LHS, RHS);
14459     Res = DAG.getCommutedVectorShuffle(*SVN);
14460     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14461   }
14462 
14463   // Adjust the shuffle mask if either input vector comes from a
14464   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14465   // form (to prevent the need for a swap).
14466   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14467   SDValue SToVLHS = isScalarToVec(LHS);
14468   SDValue SToVRHS = isScalarToVec(RHS);
14469   if (SToVLHS || SToVRHS) {
14470     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14471                             : SToVRHS.getValueType().getVectorNumElements();
14472     int NumEltsOut = ShuffV.size();
14473 
14474     // Initially assume that neither input is permuted. These will be adjusted
14475     // accordingly if either input is.
14476     int LHSMaxIdx = -1;
14477     int RHSMinIdx = -1;
14478     int RHSMaxIdx = -1;
14479     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14480 
14481     // Get the permuted scalar to vector nodes for the source(s) that come from
14482     // ISD::SCALAR_TO_VECTOR.
14483     if (SToVLHS) {
14484       // Set up the values for the shuffle vector fixup.
14485       LHSMaxIdx = NumEltsOut / NumEltsIn;
14486       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14487       if (SToVLHS.getValueType() != LHS.getValueType())
14488         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14489       LHS = SToVLHS;
14490     }
14491     if (SToVRHS) {
14492       RHSMinIdx = NumEltsOut;
14493       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14494       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14495       if (SToVRHS.getValueType() != RHS.getValueType())
14496         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14497       RHS = SToVRHS;
14498     }
14499 
14500     // Fix up the shuffle mask to reflect where the desired element actually is.
14501     // The minimum and maximum indices that correspond to element zero for both
14502     // the LHS and RHS are computed and will control which shuffle mask entries
14503     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14504     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14505     // HalfVec to refer to the corresponding element in the permuted vector.
14506     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14507                                     HalfVec);
14508     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14509 
14510     // We may have simplified away the shuffle. We won't be able to do anything
14511     // further with it here.
14512     if (!isa<ShuffleVectorSDNode>(Res))
14513       return Res;
14514     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14515   }
14516 
14517   // The common case after we commuted the shuffle is that the RHS is a splat
14518   // and we have elements coming in from the splat at indices that are not
14519   // conducive to using a merge.
14520   // Example:
14521   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14522   if (!isSplatBV(RHS))
14523     return Res;
14524 
14525   // We are looking for a mask such that all even elements are from
14526   // one vector and all odd elements from the other.
14527   if (!isAlternatingShuffMask(Mask, NumElts))
14528     return Res;
14529 
14530   // Adjust the mask so we are pulling in the same index from the splat
14531   // as the index from the interesting vector in consecutive elements.
14532   // Example (even elements from first vector):
14533   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14534   if (Mask[0] < NumElts)
14535     for (int i = 1, e = Mask.size(); i < e; i += 2)
14536       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14537   // Example (odd elements from first vector):
14538   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14539   else
14540     for (int i = 0, e = Mask.size(); i < e; i += 2)
14541       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14542 
14543   // If the RHS has undefs, we need to remove them since we may have created
14544   // a shuffle that adds those instead of the splat value.
14545   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14546   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14547 
14548   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14549   return Res;
14550 }
14551 
14552 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14553                                                 LSBaseSDNode *LSBase,
14554                                                 DAGCombinerInfo &DCI) const {
14555   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14556         "Not a reverse memop pattern!");
14557 
14558   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14559     auto Mask = SVN->getMask();
14560     int i = 0;
14561     auto I = Mask.rbegin();
14562     auto E = Mask.rend();
14563 
14564     for (; I != E; ++I) {
14565       if (*I != i)
14566         return false;
14567       i++;
14568     }
14569     return true;
14570   };
14571 
14572   SelectionDAG &DAG = DCI.DAG;
14573   EVT VT = SVN->getValueType(0);
14574 
14575   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14576     return SDValue();
14577 
14578   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14579   // See comment in PPCVSXSwapRemoval.cpp.
14580   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14581   if (!Subtarget.hasP9Vector())
14582     return SDValue();
14583 
14584   if(!IsElementReverse(SVN))
14585     return SDValue();
14586 
14587   if (LSBase->getOpcode() == ISD::LOAD) {
14588     SDLoc dl(SVN);
14589     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14590     return DAG.getMemIntrinsicNode(
14591         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14592         LSBase->getMemoryVT(), LSBase->getMemOperand());
14593   }
14594 
14595   if (LSBase->getOpcode() == ISD::STORE) {
14596     SDLoc dl(LSBase);
14597     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14598                           LSBase->getBasePtr()};
14599     return DAG.getMemIntrinsicNode(
14600         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14601         LSBase->getMemoryVT(), LSBase->getMemOperand());
14602   }
14603 
14604   llvm_unreachable("Expected a load or store node here");
14605 }
14606 
14607 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14608                                              DAGCombinerInfo &DCI) const {
14609   SelectionDAG &DAG = DCI.DAG;
14610   SDLoc dl(N);
14611   switch (N->getOpcode()) {
14612   default: break;
14613   case ISD::ADD:
14614     return combineADD(N, DCI);
14615   case ISD::SHL:
14616     return combineSHL(N, DCI);
14617   case ISD::SRA:
14618     return combineSRA(N, DCI);
14619   case ISD::SRL:
14620     return combineSRL(N, DCI);
14621   case ISD::MUL:
14622     return combineMUL(N, DCI);
14623   case ISD::FMA:
14624   case PPCISD::FNMSUB:
14625     return combineFMALike(N, DCI);
14626   case PPCISD::SHL:
14627     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14628         return N->getOperand(0);
14629     break;
14630   case PPCISD::SRL:
14631     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14632         return N->getOperand(0);
14633     break;
14634   case PPCISD::SRA:
14635     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14636       if (C->isNullValue() ||   //  0 >>s V -> 0.
14637           C->isAllOnesValue())    // -1 >>s V -> -1.
14638         return N->getOperand(0);
14639     }
14640     break;
14641   case ISD::SIGN_EXTEND:
14642   case ISD::ZERO_EXTEND:
14643   case ISD::ANY_EXTEND:
14644     return DAGCombineExtBoolTrunc(N, DCI);
14645   case ISD::TRUNCATE:
14646     return combineTRUNCATE(N, DCI);
14647   case ISD::SETCC:
14648     if (SDValue CSCC = combineSetCC(N, DCI))
14649       return CSCC;
14650     LLVM_FALLTHROUGH;
14651   case ISD::SELECT_CC:
14652     return DAGCombineTruncBoolExt(N, DCI);
14653   case ISD::SINT_TO_FP:
14654   case ISD::UINT_TO_FP:
14655     return combineFPToIntToFP(N, DCI);
14656   case ISD::VECTOR_SHUFFLE:
14657     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14658       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14659       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14660     }
14661     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14662   case ISD::STORE: {
14663 
14664     EVT Op1VT = N->getOperand(1).getValueType();
14665     unsigned Opcode = N->getOperand(1).getOpcode();
14666 
14667     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14668       SDValue Val= combineStoreFPToInt(N, DCI);
14669       if (Val)
14670         return Val;
14671     }
14672 
14673     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14674       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14675       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14676       if (Val)
14677         return Val;
14678     }
14679 
14680     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14681     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14682         N->getOperand(1).getNode()->hasOneUse() &&
14683         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14684          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14685 
14686       // STBRX can only handle simple types and it makes no sense to store less
14687       // two bytes in byte-reversed order.
14688       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14689       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14690         break;
14691 
14692       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14693       // Do an any-extend to 32-bits if this is a half-word input.
14694       if (BSwapOp.getValueType() == MVT::i16)
14695         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14696 
14697       // If the type of BSWAP operand is wider than stored memory width
14698       // it need to be shifted to the right side before STBRX.
14699       if (Op1VT.bitsGT(mVT)) {
14700         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14701         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14702                               DAG.getConstant(Shift, dl, MVT::i32));
14703         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14704         if (Op1VT == MVT::i64)
14705           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14706       }
14707 
14708       SDValue Ops[] = {
14709         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14710       };
14711       return
14712         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14713                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14714                                 cast<StoreSDNode>(N)->getMemOperand());
14715     }
14716 
14717     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14718     // So it can increase the chance of CSE constant construction.
14719     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14720         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14721       // Need to sign-extended to 64-bits to handle negative values.
14722       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14723       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14724                                     MemVT.getSizeInBits());
14725       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14726 
14727       // DAG.getTruncStore() can't be used here because it doesn't accept
14728       // the general (base + offset) addressing mode.
14729       // So we use UpdateNodeOperands and setTruncatingStore instead.
14730       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14731                              N->getOperand(3));
14732       cast<StoreSDNode>(N)->setTruncatingStore(true);
14733       return SDValue(N, 0);
14734     }
14735 
14736     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14737     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14738     if (Op1VT.isSimple()) {
14739       MVT StoreVT = Op1VT.getSimpleVT();
14740       if (Subtarget.needsSwapsForVSXMemOps() &&
14741           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14742            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14743         return expandVSXStoreForLE(N, DCI);
14744     }
14745     break;
14746   }
14747   case ISD::LOAD: {
14748     LoadSDNode *LD = cast<LoadSDNode>(N);
14749     EVT VT = LD->getValueType(0);
14750 
14751     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14752     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14753     if (VT.isSimple()) {
14754       MVT LoadVT = VT.getSimpleVT();
14755       if (Subtarget.needsSwapsForVSXMemOps() &&
14756           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14757            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14758         return expandVSXLoadForLE(N, DCI);
14759     }
14760 
14761     // We sometimes end up with a 64-bit integer load, from which we extract
14762     // two single-precision floating-point numbers. This happens with
14763     // std::complex<float>, and other similar structures, because of the way we
14764     // canonicalize structure copies. However, if we lack direct moves,
14765     // then the final bitcasts from the extracted integer values to the
14766     // floating-point numbers turn into store/load pairs. Even with direct moves,
14767     // just loading the two floating-point numbers is likely better.
14768     auto ReplaceTwoFloatLoad = [&]() {
14769       if (VT != MVT::i64)
14770         return false;
14771 
14772       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14773           LD->isVolatile())
14774         return false;
14775 
14776       //  We're looking for a sequence like this:
14777       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14778       //      t16: i64 = srl t13, Constant:i32<32>
14779       //    t17: i32 = truncate t16
14780       //  t18: f32 = bitcast t17
14781       //    t19: i32 = truncate t13
14782       //  t20: f32 = bitcast t19
14783 
14784       if (!LD->hasNUsesOfValue(2, 0))
14785         return false;
14786 
14787       auto UI = LD->use_begin();
14788       while (UI.getUse().getResNo() != 0) ++UI;
14789       SDNode *Trunc = *UI++;
14790       while (UI.getUse().getResNo() != 0) ++UI;
14791       SDNode *RightShift = *UI;
14792       if (Trunc->getOpcode() != ISD::TRUNCATE)
14793         std::swap(Trunc, RightShift);
14794 
14795       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14796           Trunc->getValueType(0) != MVT::i32 ||
14797           !Trunc->hasOneUse())
14798         return false;
14799       if (RightShift->getOpcode() != ISD::SRL ||
14800           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14801           RightShift->getConstantOperandVal(1) != 32 ||
14802           !RightShift->hasOneUse())
14803         return false;
14804 
14805       SDNode *Trunc2 = *RightShift->use_begin();
14806       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14807           Trunc2->getValueType(0) != MVT::i32 ||
14808           !Trunc2->hasOneUse())
14809         return false;
14810 
14811       SDNode *Bitcast = *Trunc->use_begin();
14812       SDNode *Bitcast2 = *Trunc2->use_begin();
14813 
14814       if (Bitcast->getOpcode() != ISD::BITCAST ||
14815           Bitcast->getValueType(0) != MVT::f32)
14816         return false;
14817       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14818           Bitcast2->getValueType(0) != MVT::f32)
14819         return false;
14820 
14821       if (Subtarget.isLittleEndian())
14822         std::swap(Bitcast, Bitcast2);
14823 
14824       // Bitcast has the second float (in memory-layout order) and Bitcast2
14825       // has the first one.
14826 
14827       SDValue BasePtr = LD->getBasePtr();
14828       if (LD->isIndexed()) {
14829         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14830                "Non-pre-inc AM on PPC?");
14831         BasePtr =
14832           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14833                       LD->getOffset());
14834       }
14835 
14836       auto MMOFlags =
14837           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14838       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14839                                       LD->getPointerInfo(), LD->getAlignment(),
14840                                       MMOFlags, LD->getAAInfo());
14841       SDValue AddPtr =
14842         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14843                     BasePtr, DAG.getIntPtrConstant(4, dl));
14844       SDValue FloatLoad2 = DAG.getLoad(
14845           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14846           LD->getPointerInfo().getWithOffset(4),
14847           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14848 
14849       if (LD->isIndexed()) {
14850         // Note that DAGCombine should re-form any pre-increment load(s) from
14851         // what is produced here if that makes sense.
14852         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14853       }
14854 
14855       DCI.CombineTo(Bitcast2, FloatLoad);
14856       DCI.CombineTo(Bitcast, FloatLoad2);
14857 
14858       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14859                                     SDValue(FloatLoad2.getNode(), 1));
14860       return true;
14861     };
14862 
14863     if (ReplaceTwoFloatLoad())
14864       return SDValue(N, 0);
14865 
14866     EVT MemVT = LD->getMemoryVT();
14867     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14868     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14869     if (LD->isUnindexed() && VT.isVector() &&
14870         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14871           // P8 and later hardware should just use LOAD.
14872           !Subtarget.hasP8Vector() &&
14873           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14874            VT == MVT::v4f32))) &&
14875         LD->getAlign() < ABIAlignment) {
14876       // This is a type-legal unaligned Altivec load.
14877       SDValue Chain = LD->getChain();
14878       SDValue Ptr = LD->getBasePtr();
14879       bool isLittleEndian = Subtarget.isLittleEndian();
14880 
14881       // This implements the loading of unaligned vectors as described in
14882       // the venerable Apple Velocity Engine overview. Specifically:
14883       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14884       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14885       //
14886       // The general idea is to expand a sequence of one or more unaligned
14887       // loads into an alignment-based permutation-control instruction (lvsl
14888       // or lvsr), a series of regular vector loads (which always truncate
14889       // their input address to an aligned address), and a series of
14890       // permutations.  The results of these permutations are the requested
14891       // loaded values.  The trick is that the last "extra" load is not taken
14892       // from the address you might suspect (sizeof(vector) bytes after the
14893       // last requested load), but rather sizeof(vector) - 1 bytes after the
14894       // last requested vector. The point of this is to avoid a page fault if
14895       // the base address happened to be aligned. This works because if the
14896       // base address is aligned, then adding less than a full vector length
14897       // will cause the last vector in the sequence to be (re)loaded.
14898       // Otherwise, the next vector will be fetched as you might suspect was
14899       // necessary.
14900 
14901       // We might be able to reuse the permutation generation from
14902       // a different base address offset from this one by an aligned amount.
14903       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14904       // optimization later.
14905       Intrinsic::ID Intr, IntrLD, IntrPerm;
14906       MVT PermCntlTy, PermTy, LDTy;
14907       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14908                             : Intrinsic::ppc_altivec_lvsl;
14909       IntrLD = Intrinsic::ppc_altivec_lvx;
14910       IntrPerm = Intrinsic::ppc_altivec_vperm;
14911       PermCntlTy = MVT::v16i8;
14912       PermTy = MVT::v4i32;
14913       LDTy = MVT::v4i32;
14914 
14915       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14916 
14917       // Create the new MMO for the new base load. It is like the original MMO,
14918       // but represents an area in memory almost twice the vector size centered
14919       // on the original address. If the address is unaligned, we might start
14920       // reading up to (sizeof(vector)-1) bytes below the address of the
14921       // original unaligned load.
14922       MachineFunction &MF = DAG.getMachineFunction();
14923       MachineMemOperand *BaseMMO =
14924         MF.getMachineMemOperand(LD->getMemOperand(),
14925                                 -(long)MemVT.getStoreSize()+1,
14926                                 2*MemVT.getStoreSize()-1);
14927 
14928       // Create the new base load.
14929       SDValue LDXIntID =
14930           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14931       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14932       SDValue BaseLoad =
14933         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14934                                 DAG.getVTList(PermTy, MVT::Other),
14935                                 BaseLoadOps, LDTy, BaseMMO);
14936 
14937       // Note that the value of IncOffset (which is provided to the next
14938       // load's pointer info offset value, and thus used to calculate the
14939       // alignment), and the value of IncValue (which is actually used to
14940       // increment the pointer value) are different! This is because we
14941       // require the next load to appear to be aligned, even though it
14942       // is actually offset from the base pointer by a lesser amount.
14943       int IncOffset = VT.getSizeInBits() / 8;
14944       int IncValue = IncOffset;
14945 
14946       // Walk (both up and down) the chain looking for another load at the real
14947       // (aligned) offset (the alignment of the other load does not matter in
14948       // this case). If found, then do not use the offset reduction trick, as
14949       // that will prevent the loads from being later combined (as they would
14950       // otherwise be duplicates).
14951       if (!findConsecutiveLoad(LD, DAG))
14952         --IncValue;
14953 
14954       SDValue Increment =
14955           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14956       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14957 
14958       MachineMemOperand *ExtraMMO =
14959         MF.getMachineMemOperand(LD->getMemOperand(),
14960                                 1, 2*MemVT.getStoreSize()-1);
14961       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14962       SDValue ExtraLoad =
14963         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14964                                 DAG.getVTList(PermTy, MVT::Other),
14965                                 ExtraLoadOps, LDTy, ExtraMMO);
14966 
14967       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14968         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14969 
14970       // Because vperm has a big-endian bias, we must reverse the order
14971       // of the input vectors and complement the permute control vector
14972       // when generating little endian code.  We have already handled the
14973       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14974       // and ExtraLoad here.
14975       SDValue Perm;
14976       if (isLittleEndian)
14977         Perm = BuildIntrinsicOp(IntrPerm,
14978                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14979       else
14980         Perm = BuildIntrinsicOp(IntrPerm,
14981                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14982 
14983       if (VT != PermTy)
14984         Perm = Subtarget.hasAltivec()
14985                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14986                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14987                                  DAG.getTargetConstant(1, dl, MVT::i64));
14988                                // second argument is 1 because this rounding
14989                                // is always exact.
14990 
14991       // The output of the permutation is our loaded result, the TokenFactor is
14992       // our new chain.
14993       DCI.CombineTo(N, Perm, TF);
14994       return SDValue(N, 0);
14995     }
14996     }
14997     break;
14998     case ISD::INTRINSIC_WO_CHAIN: {
14999       bool isLittleEndian = Subtarget.isLittleEndian();
15000       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15001       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15002                                            : Intrinsic::ppc_altivec_lvsl);
15003       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15004         SDValue Add = N->getOperand(1);
15005 
15006         int Bits = 4 /* 16 byte alignment */;
15007 
15008         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15009                                   APInt::getAllOnesValue(Bits /* alignment */)
15010                                       .zext(Add.getScalarValueSizeInBits()))) {
15011           SDNode *BasePtr = Add->getOperand(0).getNode();
15012           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15013                                     UE = BasePtr->use_end();
15014                UI != UE; ++UI) {
15015             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15016                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
15017                     IID) {
15018               // We've found another LVSL/LVSR, and this address is an aligned
15019               // multiple of that one. The results will be the same, so use the
15020               // one we've just found instead.
15021 
15022               return SDValue(*UI, 0);
15023             }
15024           }
15025         }
15026 
15027         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15028           SDNode *BasePtr = Add->getOperand(0).getNode();
15029           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15030                UE = BasePtr->use_end(); UI != UE; ++UI) {
15031             if (UI->getOpcode() == ISD::ADD &&
15032                 isa<ConstantSDNode>(UI->getOperand(1)) &&
15033                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15034                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
15035                 (1ULL << Bits) == 0) {
15036               SDNode *OtherAdd = *UI;
15037               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
15038                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
15039                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15040                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
15041                   return SDValue(*VI, 0);
15042                 }
15043               }
15044             }
15045           }
15046         }
15047       }
15048 
15049       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15050       // Expose the vabsduw/h/b opportunity for down stream
15051       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15052           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15053            IID == Intrinsic::ppc_altivec_vmaxsh ||
15054            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15055         SDValue V1 = N->getOperand(1);
15056         SDValue V2 = N->getOperand(2);
15057         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15058              V1.getSimpleValueType() == MVT::v8i16 ||
15059              V1.getSimpleValueType() == MVT::v16i8) &&
15060             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15061           // (0-a, a)
15062           if (V1.getOpcode() == ISD::SUB &&
15063               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15064               V1.getOperand(1) == V2) {
15065             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15066           }
15067           // (a, 0-a)
15068           if (V2.getOpcode() == ISD::SUB &&
15069               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15070               V2.getOperand(1) == V1) {
15071             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15072           }
15073           // (x-y, y-x)
15074           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15075               V1.getOperand(0) == V2.getOperand(1) &&
15076               V1.getOperand(1) == V2.getOperand(0)) {
15077             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15078           }
15079         }
15080       }
15081     }
15082 
15083     break;
15084   case ISD::INTRINSIC_W_CHAIN:
15085     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15086     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15087     if (Subtarget.needsSwapsForVSXMemOps()) {
15088       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15089       default:
15090         break;
15091       case Intrinsic::ppc_vsx_lxvw4x:
15092       case Intrinsic::ppc_vsx_lxvd2x:
15093         return expandVSXLoadForLE(N, DCI);
15094       }
15095     }
15096     break;
15097   case ISD::INTRINSIC_VOID:
15098     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15099     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15100     if (Subtarget.needsSwapsForVSXMemOps()) {
15101       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15102       default:
15103         break;
15104       case Intrinsic::ppc_vsx_stxvw4x:
15105       case Intrinsic::ppc_vsx_stxvd2x:
15106         return expandVSXStoreForLE(N, DCI);
15107       }
15108     }
15109     break;
15110   case ISD::BSWAP:
15111     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15112     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
15113         N->getOperand(0).hasOneUse() &&
15114         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15115          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
15116           N->getValueType(0) == MVT::i64))) {
15117       SDValue Load = N->getOperand(0);
15118       LoadSDNode *LD = cast<LoadSDNode>(Load);
15119       // Create the byte-swapping load.
15120       SDValue Ops[] = {
15121         LD->getChain(),    // Chain
15122         LD->getBasePtr(),  // Ptr
15123         DAG.getValueType(N->getValueType(0)) // VT
15124       };
15125       SDValue BSLoad =
15126         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15127                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15128                                               MVT::i64 : MVT::i32, MVT::Other),
15129                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15130 
15131       // If this is an i16 load, insert the truncate.
15132       SDValue ResVal = BSLoad;
15133       if (N->getValueType(0) == MVT::i16)
15134         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15135 
15136       // First, combine the bswap away.  This makes the value produced by the
15137       // load dead.
15138       DCI.CombineTo(N, ResVal);
15139 
15140       // Next, combine the load away, we give it a bogus result value but a real
15141       // chain result.  The result value is dead because the bswap is dead.
15142       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15143 
15144       // Return N so it doesn't get rechecked!
15145       return SDValue(N, 0);
15146     }
15147     break;
15148   case PPCISD::VCMP:
15149     // If a VCMPo node already exists with exactly the same operands as this
15150     // node, use its result instead of this node (VCMPo computes both a CR6 and
15151     // a normal output).
15152     //
15153     if (!N->getOperand(0).hasOneUse() &&
15154         !N->getOperand(1).hasOneUse() &&
15155         !N->getOperand(2).hasOneUse()) {
15156 
15157       // Scan all of the users of the LHS, looking for VCMPo's that match.
15158       SDNode *VCMPoNode = nullptr;
15159 
15160       SDNode *LHSN = N->getOperand(0).getNode();
15161       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15162            UI != E; ++UI)
15163         if (UI->getOpcode() == PPCISD::VCMPo &&
15164             UI->getOperand(1) == N->getOperand(1) &&
15165             UI->getOperand(2) == N->getOperand(2) &&
15166             UI->getOperand(0) == N->getOperand(0)) {
15167           VCMPoNode = *UI;
15168           break;
15169         }
15170 
15171       // If there is no VCMPo node, or if the flag value has a single use, don't
15172       // transform this.
15173       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
15174         break;
15175 
15176       // Look at the (necessarily single) use of the flag value.  If it has a
15177       // chain, this transformation is more complex.  Note that multiple things
15178       // could use the value result, which we should ignore.
15179       SDNode *FlagUser = nullptr;
15180       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
15181            FlagUser == nullptr; ++UI) {
15182         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
15183         SDNode *User = *UI;
15184         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15185           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
15186             FlagUser = User;
15187             break;
15188           }
15189         }
15190       }
15191 
15192       // If the user is a MFOCRF instruction, we know this is safe.
15193       // Otherwise we give up for right now.
15194       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15195         return SDValue(VCMPoNode, 0);
15196     }
15197     break;
15198   case ISD::BRCOND: {
15199     SDValue Cond = N->getOperand(1);
15200     SDValue Target = N->getOperand(2);
15201 
15202     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15203         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15204           Intrinsic::loop_decrement) {
15205 
15206       // We now need to make the intrinsic dead (it cannot be instruction
15207       // selected).
15208       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15209       assert(Cond.getNode()->hasOneUse() &&
15210              "Counter decrement has more than one use");
15211 
15212       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15213                          N->getOperand(0), Target);
15214     }
15215   }
15216   break;
15217   case ISD::BR_CC: {
15218     // If this is a branch on an altivec predicate comparison, lower this so
15219     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15220     // lowering is done pre-legalize, because the legalizer lowers the predicate
15221     // compare down to code that is difficult to reassemble.
15222     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15223     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15224 
15225     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15226     // value. If so, pass-through the AND to get to the intrinsic.
15227     if (LHS.getOpcode() == ISD::AND &&
15228         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15229         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15230           Intrinsic::loop_decrement &&
15231         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15232         !isNullConstant(LHS.getOperand(1)))
15233       LHS = LHS.getOperand(0);
15234 
15235     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15236         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15237           Intrinsic::loop_decrement &&
15238         isa<ConstantSDNode>(RHS)) {
15239       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15240              "Counter decrement comparison is not EQ or NE");
15241 
15242       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15243       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15244                     (CC == ISD::SETNE && !Val);
15245 
15246       // We now need to make the intrinsic dead (it cannot be instruction
15247       // selected).
15248       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15249       assert(LHS.getNode()->hasOneUse() &&
15250              "Counter decrement has more than one use");
15251 
15252       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15253                          N->getOperand(0), N->getOperand(4));
15254     }
15255 
15256     int CompareOpc;
15257     bool isDot;
15258 
15259     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15260         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15261         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15262       assert(isDot && "Can't compare against a vector result!");
15263 
15264       // If this is a comparison against something other than 0/1, then we know
15265       // that the condition is never/always true.
15266       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15267       if (Val != 0 && Val != 1) {
15268         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15269           return N->getOperand(0);
15270         // Always !=, turn it into an unconditional branch.
15271         return DAG.getNode(ISD::BR, dl, MVT::Other,
15272                            N->getOperand(0), N->getOperand(4));
15273       }
15274 
15275       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15276 
15277       // Create the PPCISD altivec 'dot' comparison node.
15278       SDValue Ops[] = {
15279         LHS.getOperand(2),  // LHS of compare
15280         LHS.getOperand(3),  // RHS of compare
15281         DAG.getConstant(CompareOpc, dl, MVT::i32)
15282       };
15283       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15284       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
15285 
15286       // Unpack the result based on how the target uses it.
15287       PPC::Predicate CompOpc;
15288       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15289       default:  // Can't happen, don't crash on invalid number though.
15290       case 0:   // Branch on the value of the EQ bit of CR6.
15291         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15292         break;
15293       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15294         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15295         break;
15296       case 2:   // Branch on the value of the LT bit of CR6.
15297         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15298         break;
15299       case 3:   // Branch on the inverted value of the LT bit of CR6.
15300         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15301         break;
15302       }
15303 
15304       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15305                          DAG.getConstant(CompOpc, dl, MVT::i32),
15306                          DAG.getRegister(PPC::CR6, MVT::i32),
15307                          N->getOperand(4), CompNode.getValue(1));
15308     }
15309     break;
15310   }
15311   case ISD::BUILD_VECTOR:
15312     return DAGCombineBuildVector(N, DCI);
15313   case ISD::ABS:
15314     return combineABS(N, DCI);
15315   case ISD::VSELECT:
15316     return combineVSelect(N, DCI);
15317   }
15318 
15319   return SDValue();
15320 }
15321 
15322 SDValue
15323 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15324                                  SelectionDAG &DAG,
15325                                  SmallVectorImpl<SDNode *> &Created) const {
15326   // fold (sdiv X, pow2)
15327   EVT VT = N->getValueType(0);
15328   if (VT == MVT::i64 && !Subtarget.isPPC64())
15329     return SDValue();
15330   if ((VT != MVT::i32 && VT != MVT::i64) ||
15331       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15332     return SDValue();
15333 
15334   SDLoc DL(N);
15335   SDValue N0 = N->getOperand(0);
15336 
15337   bool IsNegPow2 = (-Divisor).isPowerOf2();
15338   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15339   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15340 
15341   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15342   Created.push_back(Op.getNode());
15343 
15344   if (IsNegPow2) {
15345     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15346     Created.push_back(Op.getNode());
15347   }
15348 
15349   return Op;
15350 }
15351 
15352 //===----------------------------------------------------------------------===//
15353 // Inline Assembly Support
15354 //===----------------------------------------------------------------------===//
15355 
15356 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15357                                                       KnownBits &Known,
15358                                                       const APInt &DemandedElts,
15359                                                       const SelectionDAG &DAG,
15360                                                       unsigned Depth) const {
15361   Known.resetAll();
15362   switch (Op.getOpcode()) {
15363   default: break;
15364   case PPCISD::LBRX: {
15365     // lhbrx is known to have the top bits cleared out.
15366     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15367       Known.Zero = 0xFFFF0000;
15368     break;
15369   }
15370   case ISD::INTRINSIC_WO_CHAIN: {
15371     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15372     default: break;
15373     case Intrinsic::ppc_altivec_vcmpbfp_p:
15374     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15375     case Intrinsic::ppc_altivec_vcmpequb_p:
15376     case Intrinsic::ppc_altivec_vcmpequh_p:
15377     case Intrinsic::ppc_altivec_vcmpequw_p:
15378     case Intrinsic::ppc_altivec_vcmpequd_p:
15379     case Intrinsic::ppc_altivec_vcmpequq_p:
15380     case Intrinsic::ppc_altivec_vcmpgefp_p:
15381     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15382     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15383     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15384     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15385     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15386     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15387     case Intrinsic::ppc_altivec_vcmpgtub_p:
15388     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15389     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15390     case Intrinsic::ppc_altivec_vcmpgtud_p:
15391     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15392       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15393       break;
15394     }
15395   }
15396   }
15397 }
15398 
15399 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15400   switch (Subtarget.getCPUDirective()) {
15401   default: break;
15402   case PPC::DIR_970:
15403   case PPC::DIR_PWR4:
15404   case PPC::DIR_PWR5:
15405   case PPC::DIR_PWR5X:
15406   case PPC::DIR_PWR6:
15407   case PPC::DIR_PWR6X:
15408   case PPC::DIR_PWR7:
15409   case PPC::DIR_PWR8:
15410   case PPC::DIR_PWR9:
15411   case PPC::DIR_PWR10:
15412   case PPC::DIR_PWR_FUTURE: {
15413     if (!ML)
15414       break;
15415 
15416     if (!DisableInnermostLoopAlign32) {
15417       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15418       // so that we can decrease cache misses and branch-prediction misses.
15419       // Actual alignment of the loop will depend on the hotness check and other
15420       // logic in alignBlocks.
15421       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15422         return Align(32);
15423     }
15424 
15425     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15426 
15427     // For small loops (between 5 and 8 instructions), align to a 32-byte
15428     // boundary so that the entire loop fits in one instruction-cache line.
15429     uint64_t LoopSize = 0;
15430     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15431       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15432         LoopSize += TII->getInstSizeInBytes(*J);
15433         if (LoopSize > 32)
15434           break;
15435       }
15436 
15437     if (LoopSize > 16 && LoopSize <= 32)
15438       return Align(32);
15439 
15440     break;
15441   }
15442   }
15443 
15444   return TargetLowering::getPrefLoopAlignment(ML);
15445 }
15446 
15447 /// getConstraintType - Given a constraint, return the type of
15448 /// constraint it is for this target.
15449 PPCTargetLowering::ConstraintType
15450 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15451   if (Constraint.size() == 1) {
15452     switch (Constraint[0]) {
15453     default: break;
15454     case 'b':
15455     case 'r':
15456     case 'f':
15457     case 'd':
15458     case 'v':
15459     case 'y':
15460       return C_RegisterClass;
15461     case 'Z':
15462       // FIXME: While Z does indicate a memory constraint, it specifically
15463       // indicates an r+r address (used in conjunction with the 'y' modifier
15464       // in the replacement string). Currently, we're forcing the base
15465       // register to be r0 in the asm printer (which is interpreted as zero)
15466       // and forming the complete address in the second register. This is
15467       // suboptimal.
15468       return C_Memory;
15469     }
15470   } else if (Constraint == "wc") { // individual CR bits.
15471     return C_RegisterClass;
15472   } else if (Constraint == "wa" || Constraint == "wd" ||
15473              Constraint == "wf" || Constraint == "ws" ||
15474              Constraint == "wi" || Constraint == "ww") {
15475     return C_RegisterClass; // VSX registers.
15476   }
15477   return TargetLowering::getConstraintType(Constraint);
15478 }
15479 
15480 /// Examine constraint type and operand type and determine a weight value.
15481 /// This object must already have been set up with the operand type
15482 /// and the current alternative constraint selected.
15483 TargetLowering::ConstraintWeight
15484 PPCTargetLowering::getSingleConstraintMatchWeight(
15485     AsmOperandInfo &info, const char *constraint) const {
15486   ConstraintWeight weight = CW_Invalid;
15487   Value *CallOperandVal = info.CallOperandVal;
15488     // If we don't have a value, we can't do a match,
15489     // but allow it at the lowest weight.
15490   if (!CallOperandVal)
15491     return CW_Default;
15492   Type *type = CallOperandVal->getType();
15493 
15494   // Look at the constraint type.
15495   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15496     return CW_Register; // an individual CR bit.
15497   else if ((StringRef(constraint) == "wa" ||
15498             StringRef(constraint) == "wd" ||
15499             StringRef(constraint) == "wf") &&
15500            type->isVectorTy())
15501     return CW_Register;
15502   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15503     return CW_Register; // just hold 64-bit integers data.
15504   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15505     return CW_Register;
15506   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15507     return CW_Register;
15508 
15509   switch (*constraint) {
15510   default:
15511     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15512     break;
15513   case 'b':
15514     if (type->isIntegerTy())
15515       weight = CW_Register;
15516     break;
15517   case 'f':
15518     if (type->isFloatTy())
15519       weight = CW_Register;
15520     break;
15521   case 'd':
15522     if (type->isDoubleTy())
15523       weight = CW_Register;
15524     break;
15525   case 'v':
15526     if (type->isVectorTy())
15527       weight = CW_Register;
15528     break;
15529   case 'y':
15530     weight = CW_Register;
15531     break;
15532   case 'Z':
15533     weight = CW_Memory;
15534     break;
15535   }
15536   return weight;
15537 }
15538 
15539 std::pair<unsigned, const TargetRegisterClass *>
15540 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15541                                                 StringRef Constraint,
15542                                                 MVT VT) const {
15543   if (Constraint.size() == 1) {
15544     // GCC RS6000 Constraint Letters
15545     switch (Constraint[0]) {
15546     case 'b':   // R1-R31
15547       if (VT == MVT::i64 && Subtarget.isPPC64())
15548         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15549       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15550     case 'r':   // R0-R31
15551       if (VT == MVT::i64 && Subtarget.isPPC64())
15552         return std::make_pair(0U, &PPC::G8RCRegClass);
15553       return std::make_pair(0U, &PPC::GPRCRegClass);
15554     // 'd' and 'f' constraints are both defined to be "the floating point
15555     // registers", where one is for 32-bit and the other for 64-bit. We don't
15556     // really care overly much here so just give them all the same reg classes.
15557     case 'd':
15558     case 'f':
15559       if (Subtarget.hasSPE()) {
15560         if (VT == MVT::f32 || VT == MVT::i32)
15561           return std::make_pair(0U, &PPC::GPRCRegClass);
15562         if (VT == MVT::f64 || VT == MVT::i64)
15563           return std::make_pair(0U, &PPC::SPERCRegClass);
15564       } else {
15565         if (VT == MVT::f32 || VT == MVT::i32)
15566           return std::make_pair(0U, &PPC::F4RCRegClass);
15567         if (VT == MVT::f64 || VT == MVT::i64)
15568           return std::make_pair(0U, &PPC::F8RCRegClass);
15569       }
15570       break;
15571     case 'v':
15572       if (Subtarget.hasAltivec())
15573         return std::make_pair(0U, &PPC::VRRCRegClass);
15574       break;
15575     case 'y':   // crrc
15576       return std::make_pair(0U, &PPC::CRRCRegClass);
15577     }
15578   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15579     // An individual CR bit.
15580     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15581   } else if ((Constraint == "wa" || Constraint == "wd" ||
15582              Constraint == "wf" || Constraint == "wi") &&
15583              Subtarget.hasVSX()) {
15584     return std::make_pair(0U, &PPC::VSRCRegClass);
15585   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15586     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15587       return std::make_pair(0U, &PPC::VSSRCRegClass);
15588     else
15589       return std::make_pair(0U, &PPC::VSFRCRegClass);
15590   }
15591 
15592   // If we name a VSX register, we can't defer to the base class because it
15593   // will not recognize the correct register (their names will be VSL{0-31}
15594   // and V{0-31} so they won't match). So we match them here.
15595   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15596     int VSNum = atoi(Constraint.data() + 3);
15597     assert(VSNum >= 0 && VSNum <= 63 &&
15598            "Attempted to access a vsr out of range");
15599     if (VSNum < 32)
15600       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15601     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15602   }
15603   std::pair<unsigned, const TargetRegisterClass *> R =
15604       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15605 
15606   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15607   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15608   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15609   // register.
15610   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15611   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15612   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15613       PPC::GPRCRegClass.contains(R.first))
15614     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15615                             PPC::sub_32, &PPC::G8RCRegClass),
15616                           &PPC::G8RCRegClass);
15617 
15618   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15619   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15620     R.first = PPC::CR0;
15621     R.second = &PPC::CRRCRegClass;
15622   }
15623 
15624   return R;
15625 }
15626 
15627 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15628 /// vector.  If it is invalid, don't add anything to Ops.
15629 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15630                                                      std::string &Constraint,
15631                                                      std::vector<SDValue>&Ops,
15632                                                      SelectionDAG &DAG) const {
15633   SDValue Result;
15634 
15635   // Only support length 1 constraints.
15636   if (Constraint.length() > 1) return;
15637 
15638   char Letter = Constraint[0];
15639   switch (Letter) {
15640   default: break;
15641   case 'I':
15642   case 'J':
15643   case 'K':
15644   case 'L':
15645   case 'M':
15646   case 'N':
15647   case 'O':
15648   case 'P': {
15649     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15650     if (!CST) return; // Must be an immediate to match.
15651     SDLoc dl(Op);
15652     int64_t Value = CST->getSExtValue();
15653     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15654                          // numbers are printed as such.
15655     switch (Letter) {
15656     default: llvm_unreachable("Unknown constraint letter!");
15657     case 'I':  // "I" is a signed 16-bit constant.
15658       if (isInt<16>(Value))
15659         Result = DAG.getTargetConstant(Value, dl, TCVT);
15660       break;
15661     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15662       if (isShiftedUInt<16, 16>(Value))
15663         Result = DAG.getTargetConstant(Value, dl, TCVT);
15664       break;
15665     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15666       if (isShiftedInt<16, 16>(Value))
15667         Result = DAG.getTargetConstant(Value, dl, TCVT);
15668       break;
15669     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15670       if (isUInt<16>(Value))
15671         Result = DAG.getTargetConstant(Value, dl, TCVT);
15672       break;
15673     case 'M':  // "M" is a constant that is greater than 31.
15674       if (Value > 31)
15675         Result = DAG.getTargetConstant(Value, dl, TCVT);
15676       break;
15677     case 'N':  // "N" is a positive constant that is an exact power of two.
15678       if (Value > 0 && isPowerOf2_64(Value))
15679         Result = DAG.getTargetConstant(Value, dl, TCVT);
15680       break;
15681     case 'O':  // "O" is the constant zero.
15682       if (Value == 0)
15683         Result = DAG.getTargetConstant(Value, dl, TCVT);
15684       break;
15685     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15686       if (isInt<16>(-Value))
15687         Result = DAG.getTargetConstant(Value, dl, TCVT);
15688       break;
15689     }
15690     break;
15691   }
15692   }
15693 
15694   if (Result.getNode()) {
15695     Ops.push_back(Result);
15696     return;
15697   }
15698 
15699   // Handle standard constraint letters.
15700   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15701 }
15702 
15703 // isLegalAddressingMode - Return true if the addressing mode represented
15704 // by AM is legal for this target, for a load/store of the specified type.
15705 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15706                                               const AddrMode &AM, Type *Ty,
15707                                               unsigned AS,
15708                                               Instruction *I) const {
15709   // Vector type r+i form is supported since power9 as DQ form. We don't check
15710   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15711   // imm form is preferred and the offset can be adjusted to use imm form later
15712   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15713   // max offset to check legal addressing mode, we should be a little aggressive
15714   // to contain other offsets for that LSRUse.
15715   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15716     return false;
15717 
15718   // PPC allows a sign-extended 16-bit immediate field.
15719   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15720     return false;
15721 
15722   // No global is ever allowed as a base.
15723   if (AM.BaseGV)
15724     return false;
15725 
15726   // PPC only support r+r,
15727   switch (AM.Scale) {
15728   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15729     break;
15730   case 1:
15731     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15732       return false;
15733     // Otherwise we have r+r or r+i.
15734     break;
15735   case 2:
15736     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15737       return false;
15738     // Allow 2*r as r+r.
15739     break;
15740   default:
15741     // No other scales are supported.
15742     return false;
15743   }
15744 
15745   return true;
15746 }
15747 
15748 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15749                                            SelectionDAG &DAG) const {
15750   MachineFunction &MF = DAG.getMachineFunction();
15751   MachineFrameInfo &MFI = MF.getFrameInfo();
15752   MFI.setReturnAddressIsTaken(true);
15753 
15754   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15755     return SDValue();
15756 
15757   SDLoc dl(Op);
15758   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15759 
15760   // Make sure the function does not optimize away the store of the RA to
15761   // the stack.
15762   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15763   FuncInfo->setLRStoreRequired();
15764   bool isPPC64 = Subtarget.isPPC64();
15765   auto PtrVT = getPointerTy(MF.getDataLayout());
15766 
15767   if (Depth > 0) {
15768     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15769     SDValue Offset =
15770         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15771                         isPPC64 ? MVT::i64 : MVT::i32);
15772     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15773                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15774                        MachinePointerInfo());
15775   }
15776 
15777   // Just load the return address off the stack.
15778   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15779   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15780                      MachinePointerInfo());
15781 }
15782 
15783 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15784                                           SelectionDAG &DAG) const {
15785   SDLoc dl(Op);
15786   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15787 
15788   MachineFunction &MF = DAG.getMachineFunction();
15789   MachineFrameInfo &MFI = MF.getFrameInfo();
15790   MFI.setFrameAddressIsTaken(true);
15791 
15792   EVT PtrVT = getPointerTy(MF.getDataLayout());
15793   bool isPPC64 = PtrVT == MVT::i64;
15794 
15795   // Naked functions never have a frame pointer, and so we use r1. For all
15796   // other functions, this decision must be delayed until during PEI.
15797   unsigned FrameReg;
15798   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15799     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15800   else
15801     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15802 
15803   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15804                                          PtrVT);
15805   while (Depth--)
15806     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15807                             FrameAddr, MachinePointerInfo());
15808   return FrameAddr;
15809 }
15810 
15811 // FIXME? Maybe this could be a TableGen attribute on some registers and
15812 // this table could be generated automatically from RegInfo.
15813 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15814                                               const MachineFunction &MF) const {
15815   bool isPPC64 = Subtarget.isPPC64();
15816 
15817   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15818   if (!is64Bit && VT != LLT::scalar(32))
15819     report_fatal_error("Invalid register global variable type");
15820 
15821   Register Reg = StringSwitch<Register>(RegName)
15822                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15823                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15824                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15825                      .Default(Register());
15826 
15827   if (Reg)
15828     return Reg;
15829   report_fatal_error("Invalid register name global variable");
15830 }
15831 
15832 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15833   // 32-bit SVR4 ABI access everything as got-indirect.
15834   if (Subtarget.is32BitELFABI())
15835     return true;
15836 
15837   // AIX accesses everything indirectly through the TOC, which is similar to
15838   // the GOT.
15839   if (Subtarget.isAIXABI())
15840     return true;
15841 
15842   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15843   // If it is small or large code model, module locals are accessed
15844   // indirectly by loading their address from .toc/.got.
15845   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15846     return true;
15847 
15848   // JumpTable and BlockAddress are accessed as got-indirect.
15849   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15850     return true;
15851 
15852   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15853     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15854 
15855   return false;
15856 }
15857 
15858 bool
15859 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15860   // The PowerPC target isn't yet aware of offsets.
15861   return false;
15862 }
15863 
15864 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15865                                            const CallInst &I,
15866                                            MachineFunction &MF,
15867                                            unsigned Intrinsic) const {
15868   switch (Intrinsic) {
15869   case Intrinsic::ppc_altivec_lvx:
15870   case Intrinsic::ppc_altivec_lvxl:
15871   case Intrinsic::ppc_altivec_lvebx:
15872   case Intrinsic::ppc_altivec_lvehx:
15873   case Intrinsic::ppc_altivec_lvewx:
15874   case Intrinsic::ppc_vsx_lxvd2x:
15875   case Intrinsic::ppc_vsx_lxvw4x:
15876   case Intrinsic::ppc_vsx_lxvd2x_be:
15877   case Intrinsic::ppc_vsx_lxvw4x_be:
15878   case Intrinsic::ppc_vsx_lxvl:
15879   case Intrinsic::ppc_vsx_lxvll: {
15880     EVT VT;
15881     switch (Intrinsic) {
15882     case Intrinsic::ppc_altivec_lvebx:
15883       VT = MVT::i8;
15884       break;
15885     case Intrinsic::ppc_altivec_lvehx:
15886       VT = MVT::i16;
15887       break;
15888     case Intrinsic::ppc_altivec_lvewx:
15889       VT = MVT::i32;
15890       break;
15891     case Intrinsic::ppc_vsx_lxvd2x:
15892     case Intrinsic::ppc_vsx_lxvd2x_be:
15893       VT = MVT::v2f64;
15894       break;
15895     default:
15896       VT = MVT::v4i32;
15897       break;
15898     }
15899 
15900     Info.opc = ISD::INTRINSIC_W_CHAIN;
15901     Info.memVT = VT;
15902     Info.ptrVal = I.getArgOperand(0);
15903     Info.offset = -VT.getStoreSize()+1;
15904     Info.size = 2*VT.getStoreSize()-1;
15905     Info.align = Align(1);
15906     Info.flags = MachineMemOperand::MOLoad;
15907     return true;
15908   }
15909   case Intrinsic::ppc_altivec_stvx:
15910   case Intrinsic::ppc_altivec_stvxl:
15911   case Intrinsic::ppc_altivec_stvebx:
15912   case Intrinsic::ppc_altivec_stvehx:
15913   case Intrinsic::ppc_altivec_stvewx:
15914   case Intrinsic::ppc_vsx_stxvd2x:
15915   case Intrinsic::ppc_vsx_stxvw4x:
15916   case Intrinsic::ppc_vsx_stxvd2x_be:
15917   case Intrinsic::ppc_vsx_stxvw4x_be:
15918   case Intrinsic::ppc_vsx_stxvl:
15919   case Intrinsic::ppc_vsx_stxvll: {
15920     EVT VT;
15921     switch (Intrinsic) {
15922     case Intrinsic::ppc_altivec_stvebx:
15923       VT = MVT::i8;
15924       break;
15925     case Intrinsic::ppc_altivec_stvehx:
15926       VT = MVT::i16;
15927       break;
15928     case Intrinsic::ppc_altivec_stvewx:
15929       VT = MVT::i32;
15930       break;
15931     case Intrinsic::ppc_vsx_stxvd2x:
15932     case Intrinsic::ppc_vsx_stxvd2x_be:
15933       VT = MVT::v2f64;
15934       break;
15935     default:
15936       VT = MVT::v4i32;
15937       break;
15938     }
15939 
15940     Info.opc = ISD::INTRINSIC_VOID;
15941     Info.memVT = VT;
15942     Info.ptrVal = I.getArgOperand(1);
15943     Info.offset = -VT.getStoreSize()+1;
15944     Info.size = 2*VT.getStoreSize()-1;
15945     Info.align = Align(1);
15946     Info.flags = MachineMemOperand::MOStore;
15947     return true;
15948   }
15949   default:
15950     break;
15951   }
15952 
15953   return false;
15954 }
15955 
15956 /// It returns EVT::Other if the type should be determined using generic
15957 /// target-independent logic.
15958 EVT PPCTargetLowering::getOptimalMemOpType(
15959     const MemOp &Op, const AttributeList &FuncAttributes) const {
15960   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15961     // We should use Altivec/VSX loads and stores when available. For unaligned
15962     // addresses, unaligned VSX loads are only fast starting with the P8.
15963     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15964         (Op.isAligned(Align(16)) ||
15965          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15966       return MVT::v4i32;
15967   }
15968 
15969   if (Subtarget.isPPC64()) {
15970     return MVT::i64;
15971   }
15972 
15973   return MVT::i32;
15974 }
15975 
15976 /// Returns true if it is beneficial to convert a load of a constant
15977 /// to just the constant itself.
15978 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15979                                                           Type *Ty) const {
15980   assert(Ty->isIntegerTy());
15981 
15982   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15983   return !(BitSize == 0 || BitSize > 64);
15984 }
15985 
15986 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15987   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15988     return false;
15989   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15990   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15991   return NumBits1 == 64 && NumBits2 == 32;
15992 }
15993 
15994 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15995   if (!VT1.isInteger() || !VT2.isInteger())
15996     return false;
15997   unsigned NumBits1 = VT1.getSizeInBits();
15998   unsigned NumBits2 = VT2.getSizeInBits();
15999   return NumBits1 == 64 && NumBits2 == 32;
16000 }
16001 
16002 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16003   // Generally speaking, zexts are not free, but they are free when they can be
16004   // folded with other operations.
16005   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16006     EVT MemVT = LD->getMemoryVT();
16007     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16008          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16009         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16010          LD->getExtensionType() == ISD::ZEXTLOAD))
16011       return true;
16012   }
16013 
16014   // FIXME: Add other cases...
16015   //  - 32-bit shifts with a zext to i64
16016   //  - zext after ctlz, bswap, etc.
16017   //  - zext after and by a constant mask
16018 
16019   return TargetLowering::isZExtFree(Val, VT2);
16020 }
16021 
16022 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16023   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16024          "invalid fpext types");
16025   // Extending to float128 is not free.
16026   if (DestVT == MVT::f128)
16027     return false;
16028   return true;
16029 }
16030 
16031 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16032   return isInt<16>(Imm) || isUInt<16>(Imm);
16033 }
16034 
16035 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16036   return isInt<16>(Imm) || isUInt<16>(Imm);
16037 }
16038 
16039 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
16040                                                        unsigned,
16041                                                        unsigned,
16042                                                        MachineMemOperand::Flags,
16043                                                        bool *Fast) const {
16044   if (DisablePPCUnaligned)
16045     return false;
16046 
16047   // PowerPC supports unaligned memory access for simple non-vector types.
16048   // Although accessing unaligned addresses is not as efficient as accessing
16049   // aligned addresses, it is generally more efficient than manual expansion,
16050   // and generally only traps for software emulation when crossing page
16051   // boundaries.
16052 
16053   if (!VT.isSimple())
16054     return false;
16055 
16056   if (VT.isFloatingPoint() && !VT.isVector() &&
16057       !Subtarget.allowsUnalignedFPAccess())
16058     return false;
16059 
16060   if (VT.getSimpleVT().isVector()) {
16061     if (Subtarget.hasVSX()) {
16062       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16063           VT != MVT::v4f32 && VT != MVT::v4i32)
16064         return false;
16065     } else {
16066       return false;
16067     }
16068   }
16069 
16070   if (VT == MVT::ppcf128)
16071     return false;
16072 
16073   if (Fast)
16074     *Fast = true;
16075 
16076   return true;
16077 }
16078 
16079 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16080                                                SDValue C) const {
16081   // Check integral scalar types.
16082   if (!VT.isScalarInteger())
16083     return false;
16084   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16085     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16086       return false;
16087     // This transformation will generate >= 2 operations. But the following
16088     // cases will generate <= 2 instructions during ISEL. So exclude them.
16089     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16090     // HW instruction, ie. MULLI
16091     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16092     // instruction is needed than case 1, ie. MULLI and RLDICR
16093     int64_t Imm = ConstNode->getSExtValue();
16094     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16095     Imm >>= Shift;
16096     if (isInt<16>(Imm))
16097       return false;
16098     uint64_t UImm = static_cast<uint64_t>(Imm);
16099     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16100         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16101       return true;
16102   }
16103   return false;
16104 }
16105 
16106 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16107                                                    EVT VT) const {
16108   return isFMAFasterThanFMulAndFAdd(
16109       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16110 }
16111 
16112 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16113                                                    Type *Ty) const {
16114   switch (Ty->getScalarType()->getTypeID()) {
16115   case Type::FloatTyID:
16116   case Type::DoubleTyID:
16117     return true;
16118   case Type::FP128TyID:
16119     return Subtarget.hasP9Vector();
16120   default:
16121     return false;
16122   }
16123 }
16124 
16125 // FIXME: add more patterns which are not profitable to hoist.
16126 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16127   if (!I->hasOneUse())
16128     return true;
16129 
16130   Instruction *User = I->user_back();
16131   assert(User && "A single use instruction with no uses.");
16132 
16133   switch (I->getOpcode()) {
16134   case Instruction::FMul: {
16135     // Don't break FMA, PowerPC prefers FMA.
16136     if (User->getOpcode() != Instruction::FSub &&
16137         User->getOpcode() != Instruction::FAdd)
16138       return true;
16139 
16140     const TargetOptions &Options = getTargetMachine().Options;
16141     const Function *F = I->getFunction();
16142     const DataLayout &DL = F->getParent()->getDataLayout();
16143     Type *Ty = User->getOperand(0)->getType();
16144 
16145     return !(
16146         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16147         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16148         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16149   }
16150   case Instruction::Load: {
16151     // Don't break "store (load float*)" pattern, this pattern will be combined
16152     // to "store (load int32)" in later InstCombine pass. See function
16153     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16154     // cycles than loading a 32 bit integer.
16155     LoadInst *LI = cast<LoadInst>(I);
16156     // For the loads that combineLoadToOperationType does nothing, like
16157     // ordered load, it should be profitable to hoist them.
16158     // For swifterror load, it can only be used for pointer to pointer type, so
16159     // later type check should get rid of this case.
16160     if (!LI->isUnordered())
16161       return true;
16162 
16163     if (User->getOpcode() != Instruction::Store)
16164       return true;
16165 
16166     if (I->getType()->getTypeID() != Type::FloatTyID)
16167       return true;
16168 
16169     return false;
16170   }
16171   default:
16172     return true;
16173   }
16174   return true;
16175 }
16176 
16177 const MCPhysReg *
16178 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16179   // LR is a callee-save register, but we must treat it as clobbered by any call
16180   // site. Hence we include LR in the scratch registers, which are in turn added
16181   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16182   // to CTR, which is used by any indirect call.
16183   static const MCPhysReg ScratchRegs[] = {
16184     PPC::X12, PPC::LR8, PPC::CTR8, 0
16185   };
16186 
16187   return ScratchRegs;
16188 }
16189 
16190 Register PPCTargetLowering::getExceptionPointerRegister(
16191     const Constant *PersonalityFn) const {
16192   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16193 }
16194 
16195 Register PPCTargetLowering::getExceptionSelectorRegister(
16196     const Constant *PersonalityFn) const {
16197   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16198 }
16199 
16200 bool
16201 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16202                      EVT VT , unsigned DefinedValues) const {
16203   if (VT == MVT::v2i64)
16204     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16205 
16206   if (Subtarget.hasVSX())
16207     return true;
16208 
16209   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16210 }
16211 
16212 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16213   if (DisableILPPref || Subtarget.enableMachineScheduler())
16214     return TargetLowering::getSchedulingPreference(N);
16215 
16216   return Sched::ILP;
16217 }
16218 
16219 // Create a fast isel object.
16220 FastISel *
16221 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16222                                   const TargetLibraryInfo *LibInfo) const {
16223   return PPC::createFastISel(FuncInfo, LibInfo);
16224 }
16225 
16226 // 'Inverted' means the FMA opcode after negating one multiplicand.
16227 // For example, (fma -a b c) = (fnmsub a b c)
16228 static unsigned invertFMAOpcode(unsigned Opc) {
16229   switch (Opc) {
16230   default:
16231     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16232   case ISD::FMA:
16233     return PPCISD::FNMSUB;
16234   case PPCISD::FNMSUB:
16235     return ISD::FMA;
16236   }
16237 }
16238 
16239 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16240                                                 bool LegalOps, bool OptForSize,
16241                                                 NegatibleCost &Cost,
16242                                                 unsigned Depth) const {
16243   if (Depth > SelectionDAG::MaxRecursionDepth)
16244     return SDValue();
16245 
16246   unsigned Opc = Op.getOpcode();
16247   EVT VT = Op.getValueType();
16248   SDNodeFlags Flags = Op.getNode()->getFlags();
16249 
16250   switch (Opc) {
16251   case PPCISD::FNMSUB:
16252     if (!Op.hasOneUse() || !isTypeLegal(VT))
16253       break;
16254 
16255     const TargetOptions &Options = getTargetMachine().Options;
16256     SDValue N0 = Op.getOperand(0);
16257     SDValue N1 = Op.getOperand(1);
16258     SDValue N2 = Op.getOperand(2);
16259     SDLoc Loc(Op);
16260 
16261     NegatibleCost N2Cost = NegatibleCost::Expensive;
16262     SDValue NegN2 =
16263         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16264 
16265     if (!NegN2)
16266       return SDValue();
16267 
16268     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16269     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16270     // These transformations may change sign of zeroes. For example,
16271     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16272     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16273       // Try and choose the cheaper one to negate.
16274       NegatibleCost N0Cost = NegatibleCost::Expensive;
16275       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16276                                            N0Cost, Depth + 1);
16277 
16278       NegatibleCost N1Cost = NegatibleCost::Expensive;
16279       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16280                                            N1Cost, Depth + 1);
16281 
16282       if (NegN0 && N0Cost <= N1Cost) {
16283         Cost = std::min(N0Cost, N2Cost);
16284         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16285       } else if (NegN1) {
16286         Cost = std::min(N1Cost, N2Cost);
16287         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16288       }
16289     }
16290 
16291     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16292     if (isOperationLegal(ISD::FMA, VT)) {
16293       Cost = N2Cost;
16294       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16295     }
16296 
16297     break;
16298   }
16299 
16300   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16301                                               Cost, Depth);
16302 }
16303 
16304 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16305 bool PPCTargetLowering::useLoadStackGuardNode() const {
16306   if (!Subtarget.isTargetLinux())
16307     return TargetLowering::useLoadStackGuardNode();
16308   return true;
16309 }
16310 
16311 // Override to disable global variable loading on Linux.
16312 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16313   if (!Subtarget.isTargetLinux())
16314     return TargetLowering::insertSSPDeclarations(M);
16315 }
16316 
16317 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16318                                      bool ForCodeSize) const {
16319   if (!VT.isSimple() || !Subtarget.hasVSX())
16320     return false;
16321 
16322   switch(VT.getSimpleVT().SimpleTy) {
16323   default:
16324     // For FP types that are currently not supported by PPC backend, return
16325     // false. Examples: f16, f80.
16326     return false;
16327   case MVT::f32:
16328   case MVT::f64:
16329     if (Subtarget.hasPrefixInstrs()) {
16330       // With prefixed instructions, we can materialize anything that can be
16331       // represented with a 32-bit immediate, not just positive zero.
16332       APFloat APFloatOfImm = Imm;
16333       return convertToNonDenormSingle(APFloatOfImm);
16334     }
16335     LLVM_FALLTHROUGH;
16336   case MVT::ppcf128:
16337     return Imm.isPosZero();
16338   }
16339 }
16340 
16341 // For vector shift operation op, fold
16342 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16343 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16344                                   SelectionDAG &DAG) {
16345   SDValue N0 = N->getOperand(0);
16346   SDValue N1 = N->getOperand(1);
16347   EVT VT = N0.getValueType();
16348   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16349   unsigned Opcode = N->getOpcode();
16350   unsigned TargetOpcode;
16351 
16352   switch (Opcode) {
16353   default:
16354     llvm_unreachable("Unexpected shift operation");
16355   case ISD::SHL:
16356     TargetOpcode = PPCISD::SHL;
16357     break;
16358   case ISD::SRL:
16359     TargetOpcode = PPCISD::SRL;
16360     break;
16361   case ISD::SRA:
16362     TargetOpcode = PPCISD::SRA;
16363     break;
16364   }
16365 
16366   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16367       N1->getOpcode() == ISD::AND)
16368     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16369       if (Mask->getZExtValue() == OpSizeInBits - 1)
16370         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16371 
16372   return SDValue();
16373 }
16374 
16375 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16376   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16377     return Value;
16378 
16379   SDValue N0 = N->getOperand(0);
16380   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16381   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16382       N0.getOpcode() != ISD::SIGN_EXTEND ||
16383       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16384       N->getValueType(0) != MVT::i64)
16385     return SDValue();
16386 
16387   // We can't save an operation here if the value is already extended, and
16388   // the existing shift is easier to combine.
16389   SDValue ExtsSrc = N0.getOperand(0);
16390   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16391       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16392     return SDValue();
16393 
16394   SDLoc DL(N0);
16395   SDValue ShiftBy = SDValue(CN1, 0);
16396   // We want the shift amount to be i32 on the extswli, but the shift could
16397   // have an i64.
16398   if (ShiftBy.getValueType() == MVT::i64)
16399     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16400 
16401   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16402                          ShiftBy);
16403 }
16404 
16405 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16406   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16407     return Value;
16408 
16409   return SDValue();
16410 }
16411 
16412 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16413   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16414     return Value;
16415 
16416   return SDValue();
16417 }
16418 
16419 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16420 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16421 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16422 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16423 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16424                                  const PPCSubtarget &Subtarget) {
16425   if (!Subtarget.isPPC64())
16426     return SDValue();
16427 
16428   SDValue LHS = N->getOperand(0);
16429   SDValue RHS = N->getOperand(1);
16430 
16431   auto isZextOfCompareWithConstant = [](SDValue Op) {
16432     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16433         Op.getValueType() != MVT::i64)
16434       return false;
16435 
16436     SDValue Cmp = Op.getOperand(0);
16437     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16438         Cmp.getOperand(0).getValueType() != MVT::i64)
16439       return false;
16440 
16441     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16442       int64_t NegConstant = 0 - Constant->getSExtValue();
16443       // Due to the limitations of the addi instruction,
16444       // -C is required to be [-32768, 32767].
16445       return isInt<16>(NegConstant);
16446     }
16447 
16448     return false;
16449   };
16450 
16451   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16452   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16453 
16454   // If there is a pattern, canonicalize a zext operand to the RHS.
16455   if (LHSHasPattern && !RHSHasPattern)
16456     std::swap(LHS, RHS);
16457   else if (!LHSHasPattern && !RHSHasPattern)
16458     return SDValue();
16459 
16460   SDLoc DL(N);
16461   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16462   SDValue Cmp = RHS.getOperand(0);
16463   SDValue Z = Cmp.getOperand(0);
16464   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16465 
16466   assert(Constant && "Constant Should not be a null pointer.");
16467   int64_t NegConstant = 0 - Constant->getSExtValue();
16468 
16469   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16470   default: break;
16471   case ISD::SETNE: {
16472     //                                 when C == 0
16473     //                             --> addze X, (addic Z, -1).carry
16474     //                            /
16475     // add X, (zext(setne Z, C))--
16476     //                            \    when -32768 <= -C <= 32767 && C != 0
16477     //                             --> addze X, (addic (addi Z, -C), -1).carry
16478     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16479                               DAG.getConstant(NegConstant, DL, MVT::i64));
16480     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16481     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16482                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16483     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16484                        SDValue(Addc.getNode(), 1));
16485     }
16486   case ISD::SETEQ: {
16487     //                                 when C == 0
16488     //                             --> addze X, (subfic Z, 0).carry
16489     //                            /
16490     // add X, (zext(sete  Z, C))--
16491     //                            \    when -32768 <= -C <= 32767 && C != 0
16492     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16493     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16494                               DAG.getConstant(NegConstant, DL, MVT::i64));
16495     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16496     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16497                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16498     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16499                        SDValue(Subc.getNode(), 1));
16500     }
16501   }
16502 
16503   return SDValue();
16504 }
16505 
16506 // Transform
16507 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16508 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16509 // In this case both C1 and C2 must be known constants.
16510 // C1+C2 must fit into a 34 bit signed integer.
16511 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16512                                           const PPCSubtarget &Subtarget) {
16513   if (!Subtarget.isUsingPCRelativeCalls())
16514     return SDValue();
16515 
16516   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16517   // If we find that node try to cast the Global Address and the Constant.
16518   SDValue LHS = N->getOperand(0);
16519   SDValue RHS = N->getOperand(1);
16520 
16521   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16522     std::swap(LHS, RHS);
16523 
16524   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16525     return SDValue();
16526 
16527   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16528   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16529   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16530 
16531   // Check that both casts succeeded.
16532   if (!GSDN || !ConstNode)
16533     return SDValue();
16534 
16535   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16536   SDLoc DL(GSDN);
16537 
16538   // The signed int offset needs to fit in 34 bits.
16539   if (!isInt<34>(NewOffset))
16540     return SDValue();
16541 
16542   // The new global address is a copy of the old global address except
16543   // that it has the updated Offset.
16544   SDValue GA =
16545       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16546                                  NewOffset, GSDN->getTargetFlags());
16547   SDValue MatPCRel =
16548       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16549   return MatPCRel;
16550 }
16551 
16552 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16553   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16554     return Value;
16555 
16556   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16557     return Value;
16558 
16559   return SDValue();
16560 }
16561 
16562 // Detect TRUNCATE operations on bitcasts of float128 values.
16563 // What we are looking for here is the situtation where we extract a subset
16564 // of bits from a 128 bit float.
16565 // This can be of two forms:
16566 // 1) BITCAST of f128 feeding TRUNCATE
16567 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16568 // The reason this is required is because we do not have a legal i128 type
16569 // and so we want to prevent having to store the f128 and then reload part
16570 // of it.
16571 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16572                                            DAGCombinerInfo &DCI) const {
16573   // If we are using CRBits then try that first.
16574   if (Subtarget.useCRBits()) {
16575     // Check if CRBits did anything and return that if it did.
16576     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16577       return CRTruncValue;
16578   }
16579 
16580   SDLoc dl(N);
16581   SDValue Op0 = N->getOperand(0);
16582 
16583   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16584   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16585     EVT VT = N->getValueType(0);
16586     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16587       return SDValue();
16588     SDValue Sub = Op0.getOperand(0);
16589     if (Sub.getOpcode() == ISD::SUB) {
16590       SDValue SubOp0 = Sub.getOperand(0);
16591       SDValue SubOp1 = Sub.getOperand(1);
16592       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16593           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16594         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16595                                SubOp1.getOperand(0),
16596                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16597       }
16598     }
16599   }
16600 
16601   // Looking for a truncate of i128 to i64.
16602   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16603     return SDValue();
16604 
16605   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16606 
16607   // SRL feeding TRUNCATE.
16608   if (Op0.getOpcode() == ISD::SRL) {
16609     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16610     // The right shift has to be by 64 bits.
16611     if (!ConstNode || ConstNode->getZExtValue() != 64)
16612       return SDValue();
16613 
16614     // Switch the element number to extract.
16615     EltToExtract = EltToExtract ? 0 : 1;
16616     // Update Op0 past the SRL.
16617     Op0 = Op0.getOperand(0);
16618   }
16619 
16620   // BITCAST feeding a TRUNCATE possibly via SRL.
16621   if (Op0.getOpcode() == ISD::BITCAST &&
16622       Op0.getValueType() == MVT::i128 &&
16623       Op0.getOperand(0).getValueType() == MVT::f128) {
16624     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16625     return DCI.DAG.getNode(
16626         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16627         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16628   }
16629   return SDValue();
16630 }
16631 
16632 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16633   SelectionDAG &DAG = DCI.DAG;
16634 
16635   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16636   if (!ConstOpOrElement)
16637     return SDValue();
16638 
16639   // An imul is usually smaller than the alternative sequence for legal type.
16640   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16641       isOperationLegal(ISD::MUL, N->getValueType(0)))
16642     return SDValue();
16643 
16644   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16645     switch (this->Subtarget.getCPUDirective()) {
16646     default:
16647       // TODO: enhance the condition for subtarget before pwr8
16648       return false;
16649     case PPC::DIR_PWR8:
16650       //  type        mul     add    shl
16651       // scalar        4       1      1
16652       // vector        7       2      2
16653       return true;
16654     case PPC::DIR_PWR9:
16655     case PPC::DIR_PWR10:
16656     case PPC::DIR_PWR_FUTURE:
16657       //  type        mul     add    shl
16658       // scalar        5       2      2
16659       // vector        7       2      2
16660 
16661       // The cycle RATIO of related operations are showed as a table above.
16662       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16663       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16664       // are 4, it is always profitable; but for 3 instrs patterns
16665       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16666       // So we should only do it for vector type.
16667       return IsAddOne && IsNeg ? VT.isVector() : true;
16668     }
16669   };
16670 
16671   EVT VT = N->getValueType(0);
16672   SDLoc DL(N);
16673 
16674   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16675   bool IsNeg = MulAmt.isNegative();
16676   APInt MulAmtAbs = MulAmt.abs();
16677 
16678   if ((MulAmtAbs - 1).isPowerOf2()) {
16679     // (mul x, 2^N + 1) => (add (shl x, N), x)
16680     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16681 
16682     if (!IsProfitable(IsNeg, true, VT))
16683       return SDValue();
16684 
16685     SDValue Op0 = N->getOperand(0);
16686     SDValue Op1 =
16687         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16688                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16689     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16690 
16691     if (!IsNeg)
16692       return Res;
16693 
16694     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16695   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16696     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16697     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16698 
16699     if (!IsProfitable(IsNeg, false, VT))
16700       return SDValue();
16701 
16702     SDValue Op0 = N->getOperand(0);
16703     SDValue Op1 =
16704         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16705                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16706 
16707     if (!IsNeg)
16708       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16709     else
16710       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16711 
16712   } else {
16713     return SDValue();
16714   }
16715 }
16716 
16717 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16718 // in combiner since we need to check SD flags and other subtarget features.
16719 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16720                                           DAGCombinerInfo &DCI) const {
16721   SDValue N0 = N->getOperand(0);
16722   SDValue N1 = N->getOperand(1);
16723   SDValue N2 = N->getOperand(2);
16724   SDNodeFlags Flags = N->getFlags();
16725   EVT VT = N->getValueType(0);
16726   SelectionDAG &DAG = DCI.DAG;
16727   const TargetOptions &Options = getTargetMachine().Options;
16728   unsigned Opc = N->getOpcode();
16729   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16730   bool LegalOps = !DCI.isBeforeLegalizeOps();
16731   SDLoc Loc(N);
16732 
16733   if (!isOperationLegal(ISD::FMA, VT))
16734     return SDValue();
16735 
16736   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16737   // since (fnmsub a b c)=-0 while c-ab=+0.
16738   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16739     return SDValue();
16740 
16741   // (fma (fneg a) b c) => (fnmsub a b c)
16742   // (fnmsub (fneg a) b c) => (fma a b c)
16743   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16744     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16745 
16746   // (fma a (fneg b) c) => (fnmsub a b c)
16747   // (fnmsub a (fneg b) c) => (fma a b c)
16748   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16749     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16750 
16751   return SDValue();
16752 }
16753 
16754 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16755   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16756   if (!Subtarget.is64BitELFABI())
16757     return false;
16758 
16759   // If not a tail call then no need to proceed.
16760   if (!CI->isTailCall())
16761     return false;
16762 
16763   // If sibling calls have been disabled and tail-calls aren't guaranteed
16764   // there is no reason to duplicate.
16765   auto &TM = getTargetMachine();
16766   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16767     return false;
16768 
16769   // Can't tail call a function called indirectly, or if it has variadic args.
16770   const Function *Callee = CI->getCalledFunction();
16771   if (!Callee || Callee->isVarArg())
16772     return false;
16773 
16774   // Make sure the callee and caller calling conventions are eligible for tco.
16775   const Function *Caller = CI->getParent()->getParent();
16776   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16777                                            CI->getCallingConv()))
16778       return false;
16779 
16780   // If the function is local then we have a good chance at tail-calling it
16781   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16782 }
16783 
16784 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16785   if (!Subtarget.hasVSX())
16786     return false;
16787   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16788     return true;
16789   return VT == MVT::f32 || VT == MVT::f64 ||
16790     VT == MVT::v4f32 || VT == MVT::v2f64;
16791 }
16792 
16793 bool PPCTargetLowering::
16794 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16795   const Value *Mask = AndI.getOperand(1);
16796   // If the mask is suitable for andi. or andis. we should sink the and.
16797   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16798     // Can't handle constants wider than 64-bits.
16799     if (CI->getBitWidth() > 64)
16800       return false;
16801     int64_t ConstVal = CI->getZExtValue();
16802     return isUInt<16>(ConstVal) ||
16803       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16804   }
16805 
16806   // For non-constant masks, we can always use the record-form and.
16807   return true;
16808 }
16809 
16810 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16811 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16812 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16813 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16814 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16815 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16816   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16817   assert(Subtarget.hasP9Altivec() &&
16818          "Only combine this when P9 altivec supported!");
16819   EVT VT = N->getValueType(0);
16820   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16821     return SDValue();
16822 
16823   SelectionDAG &DAG = DCI.DAG;
16824   SDLoc dl(N);
16825   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16826     // Even for signed integers, if it's known to be positive (as signed
16827     // integer) due to zero-extended inputs.
16828     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16829     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16830     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16831          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16832         (SubOpcd1 == ISD::ZERO_EXTEND ||
16833          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16834       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16835                          N->getOperand(0)->getOperand(0),
16836                          N->getOperand(0)->getOperand(1),
16837                          DAG.getTargetConstant(0, dl, MVT::i32));
16838     }
16839 
16840     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16841     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16842         N->getOperand(0).hasOneUse()) {
16843       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16844                          N->getOperand(0)->getOperand(0),
16845                          N->getOperand(0)->getOperand(1),
16846                          DAG.getTargetConstant(1, dl, MVT::i32));
16847     }
16848   }
16849 
16850   return SDValue();
16851 }
16852 
16853 // For type v4i32/v8ii16/v16i8, transform
16854 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16855 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16856 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16857 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16858 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16859                                           DAGCombinerInfo &DCI) const {
16860   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16861   assert(Subtarget.hasP9Altivec() &&
16862          "Only combine this when P9 altivec supported!");
16863 
16864   SelectionDAG &DAG = DCI.DAG;
16865   SDLoc dl(N);
16866   SDValue Cond = N->getOperand(0);
16867   SDValue TrueOpnd = N->getOperand(1);
16868   SDValue FalseOpnd = N->getOperand(2);
16869   EVT VT = N->getOperand(1).getValueType();
16870 
16871   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16872       FalseOpnd.getOpcode() != ISD::SUB)
16873     return SDValue();
16874 
16875   // ABSD only available for type v4i32/v8i16/v16i8
16876   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16877     return SDValue();
16878 
16879   // At least to save one more dependent computation
16880   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16881     return SDValue();
16882 
16883   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16884 
16885   // Can only handle unsigned comparison here
16886   switch (CC) {
16887   default:
16888     return SDValue();
16889   case ISD::SETUGT:
16890   case ISD::SETUGE:
16891     break;
16892   case ISD::SETULT:
16893   case ISD::SETULE:
16894     std::swap(TrueOpnd, FalseOpnd);
16895     break;
16896   }
16897 
16898   SDValue CmpOpnd1 = Cond.getOperand(0);
16899   SDValue CmpOpnd2 = Cond.getOperand(1);
16900 
16901   // SETCC CmpOpnd1 CmpOpnd2 cond
16902   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16903   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16904   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16905       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16906       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16907       FalseOpnd.getOperand(1) == CmpOpnd1) {
16908     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16909                        CmpOpnd1, CmpOpnd2,
16910                        DAG.getTargetConstant(0, dl, MVT::i32));
16911   }
16912 
16913   return SDValue();
16914 }
16915