1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 // TODO - Remove this option if soft fp128 has been fully supported . 125 static cl::opt<bool> 126 EnableSoftFP128("enable-soft-fp128", 127 cl::desc("temp option to enable soft fp128"), cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 // EFPU2 APU only supports f32 155 if (!Subtarget.hasEFPU2()) 156 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 157 } else { 158 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 159 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 160 } 161 } 162 163 // Match BITREVERSE to customized fast code sequence in the td file. 164 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 165 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 166 167 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 168 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 169 170 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 171 for (MVT VT : MVT::integer_valuetypes()) { 172 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 173 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 174 } 175 176 if (Subtarget.isISA3_0()) { 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 179 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 180 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 181 } else { 182 // No extending loads from f16 or HW conversions back and forth. 183 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 184 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 185 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 187 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 188 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 189 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 190 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 191 } 192 193 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 194 195 // PowerPC has pre-inc load and store's. 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 199 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 200 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 205 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 206 if (!Subtarget.hasSPE()) { 207 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 209 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 210 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 211 } 212 213 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 214 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 215 for (MVT VT : ScalarIntVTs) { 216 setOperationAction(ISD::ADDC, VT, Legal); 217 setOperationAction(ISD::ADDE, VT, Legal); 218 setOperationAction(ISD::SUBC, VT, Legal); 219 setOperationAction(ISD::SUBE, VT, Legal); 220 } 221 222 if (Subtarget.useCRBits()) { 223 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 224 225 if (isPPC64 || Subtarget.hasFPCVT()) { 226 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 227 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 228 isPPC64 ? MVT::i64 : MVT::i32); 229 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 230 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 231 isPPC64 ? MVT::i64 : MVT::i32); 232 233 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 234 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 235 isPPC64 ? MVT::i64 : MVT::i32); 236 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 240 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 241 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 242 isPPC64 ? MVT::i64 : MVT::i32); 243 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 244 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 247 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 248 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 249 isPPC64 ? MVT::i64 : MVT::i32); 250 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 } else { 254 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 255 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 256 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 257 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 258 } 259 260 // PowerPC does not support direct load/store of condition registers. 261 setOperationAction(ISD::LOAD, MVT::i1, Custom); 262 setOperationAction(ISD::STORE, MVT::i1, Custom); 263 264 // FIXME: Remove this once the ANDI glue bug is fixed: 265 if (ANDIGlueBug) 266 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 267 268 for (MVT VT : MVT::integer_valuetypes()) { 269 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 270 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 271 setTruncStoreAction(VT, MVT::i1, Expand); 272 } 273 274 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 275 } 276 277 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 278 // PPC (the libcall is not available). 279 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 280 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 281 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 282 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 283 284 // We do not currently implement these libm ops for PowerPC. 285 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 286 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 287 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 288 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 289 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 290 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 291 292 // PowerPC has no SREM/UREM instructions unless we are on P9 293 // On P9 we may use a hardware instruction to compute the remainder. 294 // When the result of both the remainder and the division is required it is 295 // more efficient to compute the remainder from the result of the division 296 // rather than use the remainder instruction. The instructions are legalized 297 // directly because the DivRemPairsPass performs the transformation at the IR 298 // level. 299 if (Subtarget.isISA3_0()) { 300 setOperationAction(ISD::SREM, MVT::i32, Legal); 301 setOperationAction(ISD::UREM, MVT::i32, Legal); 302 setOperationAction(ISD::SREM, MVT::i64, Legal); 303 setOperationAction(ISD::UREM, MVT::i64, Legal); 304 } else { 305 setOperationAction(ISD::SREM, MVT::i32, Expand); 306 setOperationAction(ISD::UREM, MVT::i32, Expand); 307 setOperationAction(ISD::SREM, MVT::i64, Expand); 308 setOperationAction(ISD::UREM, MVT::i64, Expand); 309 } 310 311 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 312 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 313 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 314 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 315 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 316 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 317 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 318 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 319 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 320 321 // Handle constrained floating-point operations of scalar. 322 // TODO: Handle SPE specific operation. 323 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 324 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 325 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 327 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 328 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 329 330 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 331 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 332 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 333 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 334 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 335 if (Subtarget.hasVSX()) { 336 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 338 } 339 340 if (Subtarget.hasFSQRT()) { 341 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 343 } 344 345 if (Subtarget.hasFPRND()) { 346 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 347 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 348 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 349 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 350 351 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 352 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 353 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 354 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 355 } 356 357 // We don't support sin/cos/sqrt/fmod/pow 358 setOperationAction(ISD::FSIN , MVT::f64, Expand); 359 setOperationAction(ISD::FCOS , MVT::f64, Expand); 360 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 361 setOperationAction(ISD::FREM , MVT::f64, Expand); 362 setOperationAction(ISD::FPOW , MVT::f64, Expand); 363 setOperationAction(ISD::FSIN , MVT::f32, Expand); 364 setOperationAction(ISD::FCOS , MVT::f32, Expand); 365 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 366 setOperationAction(ISD::FREM , MVT::f32, Expand); 367 setOperationAction(ISD::FPOW , MVT::f32, Expand); 368 if (Subtarget.hasSPE()) { 369 setOperationAction(ISD::FMA , MVT::f64, Expand); 370 setOperationAction(ISD::FMA , MVT::f32, Expand); 371 } else { 372 setOperationAction(ISD::FMA , MVT::f64, Legal); 373 setOperationAction(ISD::FMA , MVT::f32, Legal); 374 } 375 376 if (Subtarget.hasSPE()) 377 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 378 379 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 380 381 // If we're enabling GP optimizations, use hardware square root 382 if (!Subtarget.hasFSQRT() && 383 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 384 Subtarget.hasFRE())) 385 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 386 387 if (!Subtarget.hasFSQRT() && 388 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 389 Subtarget.hasFRES())) 390 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 391 392 if (Subtarget.hasFCPSGN()) { 393 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 394 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 395 } else { 396 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 397 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 398 } 399 400 if (Subtarget.hasFPRND()) { 401 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 402 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 403 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 404 setOperationAction(ISD::FROUND, MVT::f64, Legal); 405 406 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 407 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 408 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 409 setOperationAction(ISD::FROUND, MVT::f32, Legal); 410 } 411 412 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 413 // to speed up scalar BSWAP64. 414 // CTPOP or CTTZ were introduced in P8/P9 respectively 415 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 416 if (Subtarget.hasP9Vector()) 417 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 418 else 419 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 420 if (Subtarget.isISA3_0()) { 421 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 422 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 423 } else { 424 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 425 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 426 } 427 428 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 429 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 430 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 431 } else { 432 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 433 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 434 } 435 436 // PowerPC does not have ROTR 437 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 438 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 439 440 if (!Subtarget.useCRBits()) { 441 // PowerPC does not have Select 442 setOperationAction(ISD::SELECT, MVT::i32, Expand); 443 setOperationAction(ISD::SELECT, MVT::i64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f32, Expand); 445 setOperationAction(ISD::SELECT, MVT::f64, Expand); 446 } 447 448 // PowerPC wants to turn select_cc of FP into fsel when possible. 449 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 450 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 451 452 // PowerPC wants to optimize integer setcc a bit 453 if (!Subtarget.useCRBits()) 454 setOperationAction(ISD::SETCC, MVT::i32, Custom); 455 456 if (Subtarget.hasFPU()) { 457 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 458 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 459 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 460 461 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 462 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 463 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 464 } 465 466 // PowerPC does not have BRCOND which requires SetCC 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 469 470 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 471 472 if (Subtarget.hasSPE()) { 473 // SPE has built-in conversions 474 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 475 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 476 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 477 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 478 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 479 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 480 } else { 481 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 482 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 483 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 484 485 // PowerPC does not have [U|S]INT_TO_FP 486 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 487 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 488 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 489 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 490 } 491 492 if (Subtarget.hasDirectMove() && isPPC64) { 493 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 494 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 495 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 496 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 497 if (TM.Options.UnsafeFPMath) { 498 setOperationAction(ISD::LRINT, MVT::f64, Legal); 499 setOperationAction(ISD::LRINT, MVT::f32, Legal); 500 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 501 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 502 setOperationAction(ISD::LROUND, MVT::f64, Legal); 503 setOperationAction(ISD::LROUND, MVT::f32, Legal); 504 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 505 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 506 } 507 } else { 508 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 509 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 510 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 511 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 512 } 513 514 // We cannot sextinreg(i1). Expand to shifts. 515 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 516 517 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 518 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 519 // support continuation, user-level threading, and etc.. As a result, no 520 // other SjLj exception interfaces are implemented and please don't build 521 // your own exception handling based on them. 522 // LLVM/Clang supports zero-cost DWARF exception handling. 523 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 524 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 525 526 // We want to legalize GlobalAddress and ConstantPool nodes into the 527 // appropriate instructions to materialize the address. 528 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 529 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 530 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 531 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 532 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 533 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 534 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 535 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 536 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 537 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 538 539 // TRAP is legal. 540 setOperationAction(ISD::TRAP, MVT::Other, Legal); 541 542 // TRAMPOLINE is custom lowered. 543 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 544 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 545 546 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 547 setOperationAction(ISD::VASTART , MVT::Other, Custom); 548 549 if (Subtarget.is64BitELFABI()) { 550 // VAARG always uses double-word chunks, so promote anything smaller. 551 setOperationAction(ISD::VAARG, MVT::i1, Promote); 552 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 553 setOperationAction(ISD::VAARG, MVT::i8, Promote); 554 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 555 setOperationAction(ISD::VAARG, MVT::i16, Promote); 556 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 557 setOperationAction(ISD::VAARG, MVT::i32, Promote); 558 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 559 setOperationAction(ISD::VAARG, MVT::Other, Expand); 560 } else if (Subtarget.is32BitELFABI()) { 561 // VAARG is custom lowered with the 32-bit SVR4 ABI. 562 setOperationAction(ISD::VAARG, MVT::Other, Custom); 563 setOperationAction(ISD::VAARG, MVT::i64, Custom); 564 } else 565 setOperationAction(ISD::VAARG, MVT::Other, Expand); 566 567 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 568 if (Subtarget.is32BitELFABI()) 569 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 570 else 571 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 572 573 // Use the default implementation. 574 setOperationAction(ISD::VAEND , MVT::Other, Expand); 575 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 576 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 577 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 578 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 579 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 580 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 581 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 582 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 583 584 // We want to custom lower some of our intrinsics. 585 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 586 587 // To handle counter-based loop conditions. 588 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 589 590 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 591 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 592 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 593 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 594 595 // Comparisons that require checking two conditions. 596 if (Subtarget.hasSPE()) { 597 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 598 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 599 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 600 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 601 } 602 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 603 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 604 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 605 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 606 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 607 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 608 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 609 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 610 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 611 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 612 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 613 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 614 615 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 616 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 617 618 if (Subtarget.has64BitSupport()) { 619 // They also have instructions for converting between i64 and fp. 620 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 621 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 622 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 623 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 624 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 625 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 626 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 627 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 628 // This is just the low 32 bits of a (signed) fp->i64 conversion. 629 // We cannot do this with Promote because i64 is not a legal type. 630 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 631 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 632 633 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 634 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 635 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 636 } 637 } else { 638 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 639 if (Subtarget.hasSPE()) { 640 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 641 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 642 } else { 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 644 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 645 } 646 } 647 648 // With the instructions enabled under FPCVT, we can do everything. 649 if (Subtarget.hasFPCVT()) { 650 if (Subtarget.has64BitSupport()) { 651 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 652 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 653 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 654 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 655 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 656 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 657 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 658 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 659 } 660 661 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 662 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 663 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 664 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 665 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 666 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 667 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 668 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 669 } 670 671 if (Subtarget.use64BitRegs()) { 672 // 64-bit PowerPC implementations can support i64 types directly 673 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 674 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 675 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 676 // 64-bit PowerPC wants to expand i128 shifts itself. 677 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 678 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 679 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 680 } else { 681 // 32-bit PowerPC wants to expand i64 shifts itself. 682 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 683 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 684 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 685 } 686 687 // PowerPC has better expansions for funnel shifts than the generic 688 // TargetLowering::expandFunnelShift. 689 if (Subtarget.has64BitSupport()) { 690 setOperationAction(ISD::FSHL, MVT::i64, Custom); 691 setOperationAction(ISD::FSHR, MVT::i64, Custom); 692 } 693 setOperationAction(ISD::FSHL, MVT::i32, Custom); 694 setOperationAction(ISD::FSHR, MVT::i32, Custom); 695 696 if (Subtarget.hasVSX()) { 697 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 698 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 699 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 700 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 701 } 702 703 if (Subtarget.hasAltivec()) { 704 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 705 setOperationAction(ISD::SADDSAT, VT, Legal); 706 setOperationAction(ISD::SSUBSAT, VT, Legal); 707 setOperationAction(ISD::UADDSAT, VT, Legal); 708 setOperationAction(ISD::USUBSAT, VT, Legal); 709 } 710 // First set operation action for all vector types to expand. Then we 711 // will selectively turn on ones that can be effectively codegen'd. 712 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 713 // add/sub are legal for all supported vector VT's. 714 setOperationAction(ISD::ADD, VT, Legal); 715 setOperationAction(ISD::SUB, VT, Legal); 716 717 // For v2i64, these are only valid with P8Vector. This is corrected after 718 // the loop. 719 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 720 setOperationAction(ISD::SMAX, VT, Legal); 721 setOperationAction(ISD::SMIN, VT, Legal); 722 setOperationAction(ISD::UMAX, VT, Legal); 723 setOperationAction(ISD::UMIN, VT, Legal); 724 } 725 else { 726 setOperationAction(ISD::SMAX, VT, Expand); 727 setOperationAction(ISD::SMIN, VT, Expand); 728 setOperationAction(ISD::UMAX, VT, Expand); 729 setOperationAction(ISD::UMIN, VT, Expand); 730 } 731 732 if (Subtarget.hasVSX()) { 733 setOperationAction(ISD::FMAXNUM, VT, Legal); 734 setOperationAction(ISD::FMINNUM, VT, Legal); 735 } 736 737 // Vector instructions introduced in P8 738 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 739 setOperationAction(ISD::CTPOP, VT, Legal); 740 setOperationAction(ISD::CTLZ, VT, Legal); 741 } 742 else { 743 setOperationAction(ISD::CTPOP, VT, Expand); 744 setOperationAction(ISD::CTLZ, VT, Expand); 745 } 746 747 // Vector instructions introduced in P9 748 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 749 setOperationAction(ISD::CTTZ, VT, Legal); 750 else 751 setOperationAction(ISD::CTTZ, VT, Expand); 752 753 // We promote all shuffles to v16i8. 754 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 755 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 756 757 // We promote all non-typed operations to v4i32. 758 setOperationAction(ISD::AND , VT, Promote); 759 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 760 setOperationAction(ISD::OR , VT, Promote); 761 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 762 setOperationAction(ISD::XOR , VT, Promote); 763 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 764 setOperationAction(ISD::LOAD , VT, Promote); 765 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 766 setOperationAction(ISD::SELECT, VT, Promote); 767 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 768 setOperationAction(ISD::VSELECT, VT, Legal); 769 setOperationAction(ISD::SELECT_CC, VT, Promote); 770 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 771 setOperationAction(ISD::STORE, VT, Promote); 772 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 773 774 // No other operations are legal. 775 setOperationAction(ISD::MUL , VT, Expand); 776 setOperationAction(ISD::SDIV, VT, Expand); 777 setOperationAction(ISD::SREM, VT, Expand); 778 setOperationAction(ISD::UDIV, VT, Expand); 779 setOperationAction(ISD::UREM, VT, Expand); 780 setOperationAction(ISD::FDIV, VT, Expand); 781 setOperationAction(ISD::FREM, VT, Expand); 782 setOperationAction(ISD::FNEG, VT, Expand); 783 setOperationAction(ISD::FSQRT, VT, Expand); 784 setOperationAction(ISD::FLOG, VT, Expand); 785 setOperationAction(ISD::FLOG10, VT, Expand); 786 setOperationAction(ISD::FLOG2, VT, Expand); 787 setOperationAction(ISD::FEXP, VT, Expand); 788 setOperationAction(ISD::FEXP2, VT, Expand); 789 setOperationAction(ISD::FSIN, VT, Expand); 790 setOperationAction(ISD::FCOS, VT, Expand); 791 setOperationAction(ISD::FABS, VT, Expand); 792 setOperationAction(ISD::FFLOOR, VT, Expand); 793 setOperationAction(ISD::FCEIL, VT, Expand); 794 setOperationAction(ISD::FTRUNC, VT, Expand); 795 setOperationAction(ISD::FRINT, VT, Expand); 796 setOperationAction(ISD::FNEARBYINT, VT, Expand); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 798 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 799 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 800 setOperationAction(ISD::MULHU, VT, Expand); 801 setOperationAction(ISD::MULHS, VT, Expand); 802 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 803 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 804 setOperationAction(ISD::UDIVREM, VT, Expand); 805 setOperationAction(ISD::SDIVREM, VT, Expand); 806 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 807 setOperationAction(ISD::FPOW, VT, Expand); 808 setOperationAction(ISD::BSWAP, VT, Expand); 809 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 810 setOperationAction(ISD::ROTL, VT, Expand); 811 setOperationAction(ISD::ROTR, VT, Expand); 812 813 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 814 setTruncStoreAction(VT, InnerVT, Expand); 815 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 816 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 817 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 818 } 819 } 820 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 821 if (!Subtarget.hasP8Vector()) { 822 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 823 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 824 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 825 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 826 } 827 828 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 829 // with merges, splats, etc. 830 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 831 832 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 833 // are cheap, so handle them before they get expanded to scalar. 834 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 835 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 836 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 837 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 838 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 839 840 setOperationAction(ISD::AND , MVT::v4i32, Legal); 841 setOperationAction(ISD::OR , MVT::v4i32, Legal); 842 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 843 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 844 setOperationAction(ISD::SELECT, MVT::v4i32, 845 Subtarget.useCRBits() ? Legal : Expand); 846 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 847 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 848 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 849 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 850 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 851 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 852 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 853 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 854 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 855 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 856 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 857 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 858 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 859 860 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 861 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 862 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 863 if (Subtarget.hasAltivec()) 864 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 865 setOperationAction(ISD::ROTL, VT, Legal); 866 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 867 if (Subtarget.hasP8Altivec()) 868 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 869 870 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 871 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 872 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 873 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 874 875 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 876 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 877 878 if (Subtarget.hasVSX()) { 879 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 880 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 881 } 882 883 if (Subtarget.hasP8Altivec()) 884 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 885 else 886 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 887 888 if (Subtarget.isISA3_1()) { 889 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 890 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 891 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 892 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 893 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 894 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 895 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 896 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 897 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 898 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 899 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 900 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 901 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 902 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 903 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 904 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 905 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 906 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 907 } 908 909 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 910 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 911 912 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 913 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 914 915 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 916 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 917 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 918 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 919 920 // Altivec does not contain unordered floating-point compare instructions 921 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 922 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 923 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 924 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 925 926 if (Subtarget.hasVSX()) { 927 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 928 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 929 if (Subtarget.hasP8Vector()) { 930 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 931 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 932 } 933 if (Subtarget.hasDirectMove() && isPPC64) { 934 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 935 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 936 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 937 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 938 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 939 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 940 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 941 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 942 } 943 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 944 945 // The nearbyint variants are not allowed to raise the inexact exception 946 // so we can only code-gen them with unsafe math. 947 if (TM.Options.UnsafeFPMath) { 948 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 949 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 950 } 951 952 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 953 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 954 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 955 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 956 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 957 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 958 setOperationAction(ISD::FROUND, MVT::f64, Legal); 959 setOperationAction(ISD::FRINT, MVT::f64, Legal); 960 961 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 962 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 963 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 964 setOperationAction(ISD::FROUND, MVT::f32, Legal); 965 setOperationAction(ISD::FRINT, MVT::f32, Legal); 966 967 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 968 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 969 970 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 971 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 972 973 // Share the Altivec comparison restrictions. 974 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 975 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 976 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 977 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 978 979 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 980 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 981 982 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 983 984 if (Subtarget.hasP8Vector()) 985 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 986 987 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 988 989 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 990 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 991 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 992 993 if (Subtarget.hasP8Altivec()) { 994 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 995 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 996 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 997 998 // 128 bit shifts can be accomplished via 3 instructions for SHL and 999 // SRL, but not for SRA because of the instructions available: 1000 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1001 // doing 1002 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1003 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1004 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1005 1006 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1007 } 1008 else { 1009 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1010 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1011 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1012 1013 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1014 1015 // VSX v2i64 only supports non-arithmetic operations. 1016 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1017 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1018 } 1019 1020 if (Subtarget.isISA3_1()) 1021 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1022 else 1023 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1024 1025 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1026 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1027 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1028 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1029 1030 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1031 1032 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1033 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1034 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1035 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1036 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1037 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1038 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1039 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1040 1041 // Custom handling for partial vectors of integers converted to 1042 // floating point. We already have optimal handling for v2i32 through 1043 // the DAG combine, so those aren't necessary. 1044 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1045 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1046 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1047 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1048 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1049 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1050 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1051 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1052 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1053 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1054 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1055 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1056 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1057 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1058 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1059 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1060 1061 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1062 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1063 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1064 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1065 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1066 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1067 1068 if (Subtarget.hasDirectMove()) 1069 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1070 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1071 1072 // Handle constrained floating-point operations of vector. 1073 // The predictor is `hasVSX` because altivec instruction has 1074 // no exception but VSX vector instruction has. 1075 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1076 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1077 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1078 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1079 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1080 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1081 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1082 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1083 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1084 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1085 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1086 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1087 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1088 1089 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1090 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1091 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1092 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1093 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1094 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1095 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1096 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1097 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1098 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1099 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1100 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1101 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1102 1103 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1104 } 1105 1106 if (Subtarget.hasP8Altivec()) { 1107 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1108 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1109 } 1110 1111 if (Subtarget.hasP9Vector()) { 1112 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1113 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1114 1115 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1116 // SRL, but not for SRA because of the instructions available: 1117 // VS{RL} and VS{RL}O. 1118 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1119 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1120 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1121 1122 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1123 setOperationAction(ISD::FADD, MVT::f128, Legal); 1124 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1125 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1126 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1127 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1128 // No extending loads to f128 on PPC. 1129 for (MVT FPT : MVT::fp_valuetypes()) 1130 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1131 setOperationAction(ISD::FMA, MVT::f128, Legal); 1132 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1133 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1134 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1135 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1136 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1137 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1138 1139 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1140 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1141 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1142 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1143 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1144 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1145 1146 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1147 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1148 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1149 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1150 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1151 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1152 // No implementation for these ops for PowerPC. 1153 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1154 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1155 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1156 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1157 setOperationAction(ISD::FREM, MVT::f128, Expand); 1158 1159 // Handle constrained floating-point operations of fp128 1160 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1161 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1162 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1163 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1164 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1165 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1166 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1167 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1168 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1169 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1170 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1171 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1172 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1173 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1174 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1175 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1176 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1177 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1178 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1179 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1180 } else if (Subtarget.hasAltivec() && EnableSoftFP128) { 1181 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1182 1183 for (MVT FPT : MVT::fp_valuetypes()) 1184 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1185 1186 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1187 setOperationAction(ISD::STORE, MVT::f128, Promote); 1188 1189 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1190 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1191 1192 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1193 // fp_to_uint and int_to_fp. 1194 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1195 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1196 1197 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1198 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1199 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1200 setOperationAction(ISD::FABS, MVT::f128, Expand); 1201 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1202 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1203 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1204 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1205 setOperationAction(ISD::FREM, MVT::f128, Expand); 1206 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1207 setOperationAction(ISD::FMA, MVT::f128, Expand); 1208 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1209 1210 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1211 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1212 1213 // Expand the fp_extend if the target type is fp128. 1214 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1215 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1216 1217 // Expand the fp_round if the source type is fp128. 1218 for (MVT VT : {MVT::f32, MVT::f64}) { 1219 setOperationAction(ISD::FP_ROUND, VT, Custom); 1220 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1221 } 1222 1223 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1224 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1225 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1226 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1227 1228 // Lower following f128 select_cc pattern: 1229 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1230 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1231 1232 // We need to handle f128 SELECT_CC with integer result type. 1233 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1234 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1235 } 1236 1237 if (Subtarget.hasP9Altivec()) { 1238 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1239 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1240 1241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1242 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1243 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1244 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1245 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1246 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1247 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1248 } 1249 1250 if (Subtarget.isISA3_1()) { 1251 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1252 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 1253 } 1254 } 1255 1256 if (Subtarget.pairedVectorMemops()) { 1257 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1258 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1259 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1260 } 1261 if (Subtarget.hasMMA()) { 1262 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1263 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1264 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1265 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1266 } 1267 1268 if (Subtarget.has64BitSupport()) 1269 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1270 1271 if (Subtarget.isISA3_1()) 1272 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1273 1274 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1275 1276 if (!isPPC64) { 1277 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1278 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1279 } 1280 1281 setBooleanContents(ZeroOrOneBooleanContent); 1282 1283 if (Subtarget.hasAltivec()) { 1284 // Altivec instructions set fields to all zeros or all ones. 1285 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1286 } 1287 1288 if (!isPPC64) { 1289 // These libcalls are not available in 32-bit. 1290 setLibcallName(RTLIB::SHL_I128, nullptr); 1291 setLibcallName(RTLIB::SRL_I128, nullptr); 1292 setLibcallName(RTLIB::SRA_I128, nullptr); 1293 } 1294 1295 if (!isPPC64) 1296 setMaxAtomicSizeInBitsSupported(32); 1297 1298 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1299 1300 // We have target-specific dag combine patterns for the following nodes: 1301 setTargetDAGCombine(ISD::ADD); 1302 setTargetDAGCombine(ISD::SHL); 1303 setTargetDAGCombine(ISD::SRA); 1304 setTargetDAGCombine(ISD::SRL); 1305 setTargetDAGCombine(ISD::MUL); 1306 setTargetDAGCombine(ISD::FMA); 1307 setTargetDAGCombine(ISD::SINT_TO_FP); 1308 setTargetDAGCombine(ISD::BUILD_VECTOR); 1309 if (Subtarget.hasFPCVT()) 1310 setTargetDAGCombine(ISD::UINT_TO_FP); 1311 setTargetDAGCombine(ISD::LOAD); 1312 setTargetDAGCombine(ISD::STORE); 1313 setTargetDAGCombine(ISD::BR_CC); 1314 if (Subtarget.useCRBits()) 1315 setTargetDAGCombine(ISD::BRCOND); 1316 setTargetDAGCombine(ISD::BSWAP); 1317 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1318 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1319 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1320 1321 setTargetDAGCombine(ISD::SIGN_EXTEND); 1322 setTargetDAGCombine(ISD::ZERO_EXTEND); 1323 setTargetDAGCombine(ISD::ANY_EXTEND); 1324 1325 setTargetDAGCombine(ISD::TRUNCATE); 1326 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1327 1328 1329 if (Subtarget.useCRBits()) { 1330 setTargetDAGCombine(ISD::TRUNCATE); 1331 setTargetDAGCombine(ISD::SETCC); 1332 setTargetDAGCombine(ISD::SELECT_CC); 1333 } 1334 1335 if (Subtarget.hasP9Altivec()) { 1336 setTargetDAGCombine(ISD::ABS); 1337 setTargetDAGCombine(ISD::VSELECT); 1338 } 1339 1340 setLibcallName(RTLIB::LOG_F128, "logf128"); 1341 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1342 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1343 setLibcallName(RTLIB::EXP_F128, "expf128"); 1344 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1345 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1346 setLibcallName(RTLIB::COS_F128, "cosf128"); 1347 setLibcallName(RTLIB::POW_F128, "powf128"); 1348 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1349 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1350 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1351 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1352 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1353 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1354 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1355 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1356 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1357 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1358 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1359 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1360 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1361 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1362 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1363 1364 // With 32 condition bits, we don't need to sink (and duplicate) compares 1365 // aggressively in CodeGenPrep. 1366 if (Subtarget.useCRBits()) { 1367 setHasMultipleConditionRegisters(); 1368 setJumpIsExpensive(); 1369 } 1370 1371 setMinFunctionAlignment(Align(4)); 1372 1373 switch (Subtarget.getCPUDirective()) { 1374 default: break; 1375 case PPC::DIR_970: 1376 case PPC::DIR_A2: 1377 case PPC::DIR_E500: 1378 case PPC::DIR_E500mc: 1379 case PPC::DIR_E5500: 1380 case PPC::DIR_PWR4: 1381 case PPC::DIR_PWR5: 1382 case PPC::DIR_PWR5X: 1383 case PPC::DIR_PWR6: 1384 case PPC::DIR_PWR6X: 1385 case PPC::DIR_PWR7: 1386 case PPC::DIR_PWR8: 1387 case PPC::DIR_PWR9: 1388 case PPC::DIR_PWR10: 1389 case PPC::DIR_PWR_FUTURE: 1390 setPrefLoopAlignment(Align(16)); 1391 setPrefFunctionAlignment(Align(16)); 1392 break; 1393 } 1394 1395 if (Subtarget.enableMachineScheduler()) 1396 setSchedulingPreference(Sched::Source); 1397 else 1398 setSchedulingPreference(Sched::Hybrid); 1399 1400 computeRegisterProperties(STI.getRegisterInfo()); 1401 1402 // The Freescale cores do better with aggressive inlining of memcpy and 1403 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1404 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1405 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1406 MaxStoresPerMemset = 32; 1407 MaxStoresPerMemsetOptSize = 16; 1408 MaxStoresPerMemcpy = 32; 1409 MaxStoresPerMemcpyOptSize = 8; 1410 MaxStoresPerMemmove = 32; 1411 MaxStoresPerMemmoveOptSize = 8; 1412 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1413 // The A2 also benefits from (very) aggressive inlining of memcpy and 1414 // friends. The overhead of a the function call, even when warm, can be 1415 // over one hundred cycles. 1416 MaxStoresPerMemset = 128; 1417 MaxStoresPerMemcpy = 128; 1418 MaxStoresPerMemmove = 128; 1419 MaxLoadsPerMemcmp = 128; 1420 } else { 1421 MaxLoadsPerMemcmp = 8; 1422 MaxLoadsPerMemcmpOptSize = 4; 1423 } 1424 1425 IsStrictFPEnabled = true; 1426 1427 // Let the subtarget (CPU) decide if a predictable select is more expensive 1428 // than the corresponding branch. This information is used in CGP to decide 1429 // when to convert selects into branches. 1430 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1431 } 1432 1433 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1434 /// the desired ByVal argument alignment. 1435 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1436 if (MaxAlign == MaxMaxAlign) 1437 return; 1438 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1439 if (MaxMaxAlign >= 32 && 1440 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1441 MaxAlign = Align(32); 1442 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1443 MaxAlign < 16) 1444 MaxAlign = Align(16); 1445 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1446 Align EltAlign; 1447 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1448 if (EltAlign > MaxAlign) 1449 MaxAlign = EltAlign; 1450 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1451 for (auto *EltTy : STy->elements()) { 1452 Align EltAlign; 1453 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1454 if (EltAlign > MaxAlign) 1455 MaxAlign = EltAlign; 1456 if (MaxAlign == MaxMaxAlign) 1457 break; 1458 } 1459 } 1460 } 1461 1462 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1463 /// function arguments in the caller parameter area. 1464 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1465 const DataLayout &DL) const { 1466 // 16byte and wider vectors are passed on 16byte boundary. 1467 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1468 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1469 if (Subtarget.hasAltivec()) 1470 getMaxByValAlign(Ty, Alignment, Align(16)); 1471 return Alignment.value(); 1472 } 1473 1474 bool PPCTargetLowering::useSoftFloat() const { 1475 return Subtarget.useSoftFloat(); 1476 } 1477 1478 bool PPCTargetLowering::hasSPE() const { 1479 return Subtarget.hasSPE(); 1480 } 1481 1482 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1483 return VT.isScalarInteger(); 1484 } 1485 1486 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1487 switch ((PPCISD::NodeType)Opcode) { 1488 case PPCISD::FIRST_NUMBER: break; 1489 case PPCISD::FSEL: return "PPCISD::FSEL"; 1490 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1491 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1492 case PPCISD::FCFID: return "PPCISD::FCFID"; 1493 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1494 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1495 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1496 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1497 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1498 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1499 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1500 case PPCISD::FP_TO_UINT_IN_VSR: 1501 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1502 case PPCISD::FP_TO_SINT_IN_VSR: 1503 return "PPCISD::FP_TO_SINT_IN_VSR"; 1504 case PPCISD::FRE: return "PPCISD::FRE"; 1505 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1506 case PPCISD::FTSQRT: 1507 return "PPCISD::FTSQRT"; 1508 case PPCISD::FSQRT: 1509 return "PPCISD::FSQRT"; 1510 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1511 case PPCISD::VPERM: return "PPCISD::VPERM"; 1512 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1513 case PPCISD::XXSPLTI_SP_TO_DP: 1514 return "PPCISD::XXSPLTI_SP_TO_DP"; 1515 case PPCISD::XXSPLTI32DX: 1516 return "PPCISD::XXSPLTI32DX"; 1517 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1518 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1519 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1520 case PPCISD::CMPB: return "PPCISD::CMPB"; 1521 case PPCISD::Hi: return "PPCISD::Hi"; 1522 case PPCISD::Lo: return "PPCISD::Lo"; 1523 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1524 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1525 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1526 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1527 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1528 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1529 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1530 case PPCISD::SRL: return "PPCISD::SRL"; 1531 case PPCISD::SRA: return "PPCISD::SRA"; 1532 case PPCISD::SHL: return "PPCISD::SHL"; 1533 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1534 case PPCISD::CALL: return "PPCISD::CALL"; 1535 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1536 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1537 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1538 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1539 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1540 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1541 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1542 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1543 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1544 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1545 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1546 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1547 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1548 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1549 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1550 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1551 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1552 case PPCISD::ANDI_rec_1_EQ_BIT: 1553 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1554 case PPCISD::ANDI_rec_1_GT_BIT: 1555 return "PPCISD::ANDI_rec_1_GT_BIT"; 1556 case PPCISD::VCMP: return "PPCISD::VCMP"; 1557 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1558 case PPCISD::LBRX: return "PPCISD::LBRX"; 1559 case PPCISD::STBRX: return "PPCISD::STBRX"; 1560 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1561 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1562 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1563 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1564 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1565 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1566 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1567 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1568 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1569 case PPCISD::ST_VSR_SCAL_INT: 1570 return "PPCISD::ST_VSR_SCAL_INT"; 1571 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1572 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1573 case PPCISD::BDZ: return "PPCISD::BDZ"; 1574 case PPCISD::MFFS: return "PPCISD::MFFS"; 1575 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1576 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1577 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1578 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1579 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1580 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1581 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1582 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1583 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1584 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1585 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1586 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1587 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1588 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1589 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1590 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1591 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1592 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1593 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1594 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1595 case PPCISD::PADDI_DTPREL: 1596 return "PPCISD::PADDI_DTPREL"; 1597 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1598 case PPCISD::SC: return "PPCISD::SC"; 1599 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1600 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1601 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1602 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1603 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1604 case PPCISD::VABSD: return "PPCISD::VABSD"; 1605 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1606 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1607 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1608 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1609 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1610 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1611 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1612 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1613 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1614 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1615 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1616 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1617 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1618 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1619 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1620 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1621 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1622 case PPCISD::STRICT_FADDRTZ: 1623 return "PPCISD::STRICT_FADDRTZ"; 1624 case PPCISD::STRICT_FCTIDZ: 1625 return "PPCISD::STRICT_FCTIDZ"; 1626 case PPCISD::STRICT_FCTIWZ: 1627 return "PPCISD::STRICT_FCTIWZ"; 1628 case PPCISD::STRICT_FCTIDUZ: 1629 return "PPCISD::STRICT_FCTIDUZ"; 1630 case PPCISD::STRICT_FCTIWUZ: 1631 return "PPCISD::STRICT_FCTIWUZ"; 1632 case PPCISD::STRICT_FCFID: 1633 return "PPCISD::STRICT_FCFID"; 1634 case PPCISD::STRICT_FCFIDU: 1635 return "PPCISD::STRICT_FCFIDU"; 1636 case PPCISD::STRICT_FCFIDS: 1637 return "PPCISD::STRICT_FCFIDS"; 1638 case PPCISD::STRICT_FCFIDUS: 1639 return "PPCISD::STRICT_FCFIDUS"; 1640 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1641 } 1642 return nullptr; 1643 } 1644 1645 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1646 EVT VT) const { 1647 if (!VT.isVector()) 1648 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1649 1650 return VT.changeVectorElementTypeToInteger(); 1651 } 1652 1653 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1654 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1655 return true; 1656 } 1657 1658 //===----------------------------------------------------------------------===// 1659 // Node matching predicates, for use by the tblgen matching code. 1660 //===----------------------------------------------------------------------===// 1661 1662 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1663 static bool isFloatingPointZero(SDValue Op) { 1664 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1665 return CFP->getValueAPF().isZero(); 1666 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1667 // Maybe this has already been legalized into the constant pool? 1668 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1669 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1670 return CFP->getValueAPF().isZero(); 1671 } 1672 return false; 1673 } 1674 1675 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1676 /// true if Op is undef or if it matches the specified value. 1677 static bool isConstantOrUndef(int Op, int Val) { 1678 return Op < 0 || Op == Val; 1679 } 1680 1681 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1682 /// VPKUHUM instruction. 1683 /// The ShuffleKind distinguishes between big-endian operations with 1684 /// two different inputs (0), either-endian operations with two identical 1685 /// inputs (1), and little-endian operations with two different inputs (2). 1686 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1687 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1688 SelectionDAG &DAG) { 1689 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1690 if (ShuffleKind == 0) { 1691 if (IsLE) 1692 return false; 1693 for (unsigned i = 0; i != 16; ++i) 1694 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1695 return false; 1696 } else if (ShuffleKind == 2) { 1697 if (!IsLE) 1698 return false; 1699 for (unsigned i = 0; i != 16; ++i) 1700 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1701 return false; 1702 } else if (ShuffleKind == 1) { 1703 unsigned j = IsLE ? 0 : 1; 1704 for (unsigned i = 0; i != 8; ++i) 1705 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1706 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1707 return false; 1708 } 1709 return true; 1710 } 1711 1712 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1713 /// VPKUWUM instruction. 1714 /// The ShuffleKind distinguishes between big-endian operations with 1715 /// two different inputs (0), either-endian operations with two identical 1716 /// inputs (1), and little-endian operations with two different inputs (2). 1717 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1718 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1719 SelectionDAG &DAG) { 1720 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1721 if (ShuffleKind == 0) { 1722 if (IsLE) 1723 return false; 1724 for (unsigned i = 0; i != 16; i += 2) 1725 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1726 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1727 return false; 1728 } else if (ShuffleKind == 2) { 1729 if (!IsLE) 1730 return false; 1731 for (unsigned i = 0; i != 16; i += 2) 1732 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1733 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1734 return false; 1735 } else if (ShuffleKind == 1) { 1736 unsigned j = IsLE ? 0 : 2; 1737 for (unsigned i = 0; i != 8; i += 2) 1738 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1739 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1740 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1741 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1742 return false; 1743 } 1744 return true; 1745 } 1746 1747 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1748 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1749 /// current subtarget. 1750 /// 1751 /// The ShuffleKind distinguishes between big-endian operations with 1752 /// two different inputs (0), either-endian operations with two identical 1753 /// inputs (1), and little-endian operations with two different inputs (2). 1754 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1755 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1756 SelectionDAG &DAG) { 1757 const PPCSubtarget& Subtarget = 1758 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1759 if (!Subtarget.hasP8Vector()) 1760 return false; 1761 1762 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1763 if (ShuffleKind == 0) { 1764 if (IsLE) 1765 return false; 1766 for (unsigned i = 0; i != 16; i += 4) 1767 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1768 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1769 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1770 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1771 return false; 1772 } else if (ShuffleKind == 2) { 1773 if (!IsLE) 1774 return false; 1775 for (unsigned i = 0; i != 16; i += 4) 1776 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1777 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1778 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1779 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1780 return false; 1781 } else if (ShuffleKind == 1) { 1782 unsigned j = IsLE ? 0 : 4; 1783 for (unsigned i = 0; i != 8; i += 4) 1784 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1785 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1786 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1787 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1788 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1789 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1790 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1791 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1792 return false; 1793 } 1794 return true; 1795 } 1796 1797 /// isVMerge - Common function, used to match vmrg* shuffles. 1798 /// 1799 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1800 unsigned LHSStart, unsigned RHSStart) { 1801 if (N->getValueType(0) != MVT::v16i8) 1802 return false; 1803 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1804 "Unsupported merge size!"); 1805 1806 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1807 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1808 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1809 LHSStart+j+i*UnitSize) || 1810 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1811 RHSStart+j+i*UnitSize)) 1812 return false; 1813 } 1814 return true; 1815 } 1816 1817 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1818 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1819 /// The ShuffleKind distinguishes between big-endian merges with two 1820 /// different inputs (0), either-endian merges with two identical inputs (1), 1821 /// and little-endian merges with two different inputs (2). For the latter, 1822 /// the input operands are swapped (see PPCInstrAltivec.td). 1823 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1824 unsigned ShuffleKind, SelectionDAG &DAG) { 1825 if (DAG.getDataLayout().isLittleEndian()) { 1826 if (ShuffleKind == 1) // unary 1827 return isVMerge(N, UnitSize, 0, 0); 1828 else if (ShuffleKind == 2) // swapped 1829 return isVMerge(N, UnitSize, 0, 16); 1830 else 1831 return false; 1832 } else { 1833 if (ShuffleKind == 1) // unary 1834 return isVMerge(N, UnitSize, 8, 8); 1835 else if (ShuffleKind == 0) // normal 1836 return isVMerge(N, UnitSize, 8, 24); 1837 else 1838 return false; 1839 } 1840 } 1841 1842 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1843 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1844 /// The ShuffleKind distinguishes between big-endian merges with two 1845 /// different inputs (0), either-endian merges with two identical inputs (1), 1846 /// and little-endian merges with two different inputs (2). For the latter, 1847 /// the input operands are swapped (see PPCInstrAltivec.td). 1848 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1849 unsigned ShuffleKind, SelectionDAG &DAG) { 1850 if (DAG.getDataLayout().isLittleEndian()) { 1851 if (ShuffleKind == 1) // unary 1852 return isVMerge(N, UnitSize, 8, 8); 1853 else if (ShuffleKind == 2) // swapped 1854 return isVMerge(N, UnitSize, 8, 24); 1855 else 1856 return false; 1857 } else { 1858 if (ShuffleKind == 1) // unary 1859 return isVMerge(N, UnitSize, 0, 0); 1860 else if (ShuffleKind == 0) // normal 1861 return isVMerge(N, UnitSize, 0, 16); 1862 else 1863 return false; 1864 } 1865 } 1866 1867 /** 1868 * Common function used to match vmrgew and vmrgow shuffles 1869 * 1870 * The indexOffset determines whether to look for even or odd words in 1871 * the shuffle mask. This is based on the of the endianness of the target 1872 * machine. 1873 * - Little Endian: 1874 * - Use offset of 0 to check for odd elements 1875 * - Use offset of 4 to check for even elements 1876 * - Big Endian: 1877 * - Use offset of 0 to check for even elements 1878 * - Use offset of 4 to check for odd elements 1879 * A detailed description of the vector element ordering for little endian and 1880 * big endian can be found at 1881 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1882 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1883 * compiler differences mean to you 1884 * 1885 * The mask to the shuffle vector instruction specifies the indices of the 1886 * elements from the two input vectors to place in the result. The elements are 1887 * numbered in array-access order, starting with the first vector. These vectors 1888 * are always of type v16i8, thus each vector will contain 16 elements of size 1889 * 8. More info on the shuffle vector can be found in the 1890 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1891 * Language Reference. 1892 * 1893 * The RHSStartValue indicates whether the same input vectors are used (unary) 1894 * or two different input vectors are used, based on the following: 1895 * - If the instruction uses the same vector for both inputs, the range of the 1896 * indices will be 0 to 15. In this case, the RHSStart value passed should 1897 * be 0. 1898 * - If the instruction has two different vectors then the range of the 1899 * indices will be 0 to 31. In this case, the RHSStart value passed should 1900 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1901 * to 31 specify elements in the second vector). 1902 * 1903 * \param[in] N The shuffle vector SD Node to analyze 1904 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1905 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1906 * vector to the shuffle_vector instruction 1907 * \return true iff this shuffle vector represents an even or odd word merge 1908 */ 1909 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1910 unsigned RHSStartValue) { 1911 if (N->getValueType(0) != MVT::v16i8) 1912 return false; 1913 1914 for (unsigned i = 0; i < 2; ++i) 1915 for (unsigned j = 0; j < 4; ++j) 1916 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1917 i*RHSStartValue+j+IndexOffset) || 1918 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1919 i*RHSStartValue+j+IndexOffset+8)) 1920 return false; 1921 return true; 1922 } 1923 1924 /** 1925 * Determine if the specified shuffle mask is suitable for the vmrgew or 1926 * vmrgow instructions. 1927 * 1928 * \param[in] N The shuffle vector SD Node to analyze 1929 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1930 * \param[in] ShuffleKind Identify the type of merge: 1931 * - 0 = big-endian merge with two different inputs; 1932 * - 1 = either-endian merge with two identical inputs; 1933 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1934 * little-endian merges). 1935 * \param[in] DAG The current SelectionDAG 1936 * \return true iff this shuffle mask 1937 */ 1938 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1939 unsigned ShuffleKind, SelectionDAG &DAG) { 1940 if (DAG.getDataLayout().isLittleEndian()) { 1941 unsigned indexOffset = CheckEven ? 4 : 0; 1942 if (ShuffleKind == 1) // Unary 1943 return isVMerge(N, indexOffset, 0); 1944 else if (ShuffleKind == 2) // swapped 1945 return isVMerge(N, indexOffset, 16); 1946 else 1947 return false; 1948 } 1949 else { 1950 unsigned indexOffset = CheckEven ? 0 : 4; 1951 if (ShuffleKind == 1) // Unary 1952 return isVMerge(N, indexOffset, 0); 1953 else if (ShuffleKind == 0) // Normal 1954 return isVMerge(N, indexOffset, 16); 1955 else 1956 return false; 1957 } 1958 return false; 1959 } 1960 1961 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1962 /// amount, otherwise return -1. 1963 /// The ShuffleKind distinguishes between big-endian operations with two 1964 /// different inputs (0), either-endian operations with two identical inputs 1965 /// (1), and little-endian operations with two different inputs (2). For the 1966 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1967 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1968 SelectionDAG &DAG) { 1969 if (N->getValueType(0) != MVT::v16i8) 1970 return -1; 1971 1972 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1973 1974 // Find the first non-undef value in the shuffle mask. 1975 unsigned i; 1976 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1977 /*search*/; 1978 1979 if (i == 16) return -1; // all undef. 1980 1981 // Otherwise, check to see if the rest of the elements are consecutively 1982 // numbered from this value. 1983 unsigned ShiftAmt = SVOp->getMaskElt(i); 1984 if (ShiftAmt < i) return -1; 1985 1986 ShiftAmt -= i; 1987 bool isLE = DAG.getDataLayout().isLittleEndian(); 1988 1989 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1990 // Check the rest of the elements to see if they are consecutive. 1991 for (++i; i != 16; ++i) 1992 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1993 return -1; 1994 } else if (ShuffleKind == 1) { 1995 // Check the rest of the elements to see if they are consecutive. 1996 for (++i; i != 16; ++i) 1997 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1998 return -1; 1999 } else 2000 return -1; 2001 2002 if (isLE) 2003 ShiftAmt = 16 - ShiftAmt; 2004 2005 return ShiftAmt; 2006 } 2007 2008 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2009 /// specifies a splat of a single element that is suitable for input to 2010 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2011 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2012 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2013 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2014 2015 // The consecutive indices need to specify an element, not part of two 2016 // different elements. So abandon ship early if this isn't the case. 2017 if (N->getMaskElt(0) % EltSize != 0) 2018 return false; 2019 2020 // This is a splat operation if each element of the permute is the same, and 2021 // if the value doesn't reference the second vector. 2022 unsigned ElementBase = N->getMaskElt(0); 2023 2024 // FIXME: Handle UNDEF elements too! 2025 if (ElementBase >= 16) 2026 return false; 2027 2028 // Check that the indices are consecutive, in the case of a multi-byte element 2029 // splatted with a v16i8 mask. 2030 for (unsigned i = 1; i != EltSize; ++i) 2031 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2032 return false; 2033 2034 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2035 if (N->getMaskElt(i) < 0) continue; 2036 for (unsigned j = 0; j != EltSize; ++j) 2037 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2038 return false; 2039 } 2040 return true; 2041 } 2042 2043 /// Check that the mask is shuffling N byte elements. Within each N byte 2044 /// element of the mask, the indices could be either in increasing or 2045 /// decreasing order as long as they are consecutive. 2046 /// \param[in] N the shuffle vector SD Node to analyze 2047 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2048 /// Word/DoubleWord/QuadWord). 2049 /// \param[in] StepLen the delta indices number among the N byte element, if 2050 /// the mask is in increasing/decreasing order then it is 1/-1. 2051 /// \return true iff the mask is shuffling N byte elements. 2052 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2053 int StepLen) { 2054 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2055 "Unexpected element width."); 2056 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2057 2058 unsigned NumOfElem = 16 / Width; 2059 unsigned MaskVal[16]; // Width is never greater than 16 2060 for (unsigned i = 0; i < NumOfElem; ++i) { 2061 MaskVal[0] = N->getMaskElt(i * Width); 2062 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2063 return false; 2064 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2065 return false; 2066 } 2067 2068 for (unsigned int j = 1; j < Width; ++j) { 2069 MaskVal[j] = N->getMaskElt(i * Width + j); 2070 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2071 return false; 2072 } 2073 } 2074 } 2075 2076 return true; 2077 } 2078 2079 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2080 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2081 if (!isNByteElemShuffleMask(N, 4, 1)) 2082 return false; 2083 2084 // Now we look at mask elements 0,4,8,12 2085 unsigned M0 = N->getMaskElt(0) / 4; 2086 unsigned M1 = N->getMaskElt(4) / 4; 2087 unsigned M2 = N->getMaskElt(8) / 4; 2088 unsigned M3 = N->getMaskElt(12) / 4; 2089 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2090 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2091 2092 // Below, let H and L be arbitrary elements of the shuffle mask 2093 // where H is in the range [4,7] and L is in the range [0,3]. 2094 // H, 1, 2, 3 or L, 5, 6, 7 2095 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2096 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2097 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2098 InsertAtByte = IsLE ? 12 : 0; 2099 Swap = M0 < 4; 2100 return true; 2101 } 2102 // 0, H, 2, 3 or 4, L, 6, 7 2103 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2104 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2105 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2106 InsertAtByte = IsLE ? 8 : 4; 2107 Swap = M1 < 4; 2108 return true; 2109 } 2110 // 0, 1, H, 3 or 4, 5, L, 7 2111 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2112 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2113 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2114 InsertAtByte = IsLE ? 4 : 8; 2115 Swap = M2 < 4; 2116 return true; 2117 } 2118 // 0, 1, 2, H or 4, 5, 6, L 2119 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2120 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2121 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2122 InsertAtByte = IsLE ? 0 : 12; 2123 Swap = M3 < 4; 2124 return true; 2125 } 2126 2127 // If both vector operands for the shuffle are the same vector, the mask will 2128 // contain only elements from the first one and the second one will be undef. 2129 if (N->getOperand(1).isUndef()) { 2130 ShiftElts = 0; 2131 Swap = true; 2132 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2133 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2134 InsertAtByte = IsLE ? 12 : 0; 2135 return true; 2136 } 2137 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2138 InsertAtByte = IsLE ? 8 : 4; 2139 return true; 2140 } 2141 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2142 InsertAtByte = IsLE ? 4 : 8; 2143 return true; 2144 } 2145 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2146 InsertAtByte = IsLE ? 0 : 12; 2147 return true; 2148 } 2149 } 2150 2151 return false; 2152 } 2153 2154 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2155 bool &Swap, bool IsLE) { 2156 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2157 // Ensure each byte index of the word is consecutive. 2158 if (!isNByteElemShuffleMask(N, 4, 1)) 2159 return false; 2160 2161 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2162 unsigned M0 = N->getMaskElt(0) / 4; 2163 unsigned M1 = N->getMaskElt(4) / 4; 2164 unsigned M2 = N->getMaskElt(8) / 4; 2165 unsigned M3 = N->getMaskElt(12) / 4; 2166 2167 // If both vector operands for the shuffle are the same vector, the mask will 2168 // contain only elements from the first one and the second one will be undef. 2169 if (N->getOperand(1).isUndef()) { 2170 assert(M0 < 4 && "Indexing into an undef vector?"); 2171 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2172 return false; 2173 2174 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2175 Swap = false; 2176 return true; 2177 } 2178 2179 // Ensure each word index of the ShuffleVector Mask is consecutive. 2180 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2181 return false; 2182 2183 if (IsLE) { 2184 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2185 // Input vectors don't need to be swapped if the leading element 2186 // of the result is one of the 3 left elements of the second vector 2187 // (or if there is no shift to be done at all). 2188 Swap = false; 2189 ShiftElts = (8 - M0) % 8; 2190 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2191 // Input vectors need to be swapped if the leading element 2192 // of the result is one of the 3 left elements of the first vector 2193 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2194 Swap = true; 2195 ShiftElts = (4 - M0) % 4; 2196 } 2197 2198 return true; 2199 } else { // BE 2200 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2201 // Input vectors don't need to be swapped if the leading element 2202 // of the result is one of the 4 elements of the first vector. 2203 Swap = false; 2204 ShiftElts = M0; 2205 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2206 // Input vectors need to be swapped if the leading element 2207 // of the result is one of the 4 elements of the right vector. 2208 Swap = true; 2209 ShiftElts = M0 - 4; 2210 } 2211 2212 return true; 2213 } 2214 } 2215 2216 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2217 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2218 2219 if (!isNByteElemShuffleMask(N, Width, -1)) 2220 return false; 2221 2222 for (int i = 0; i < 16; i += Width) 2223 if (N->getMaskElt(i) != i + Width - 1) 2224 return false; 2225 2226 return true; 2227 } 2228 2229 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2230 return isXXBRShuffleMaskHelper(N, 2); 2231 } 2232 2233 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2234 return isXXBRShuffleMaskHelper(N, 4); 2235 } 2236 2237 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2238 return isXXBRShuffleMaskHelper(N, 8); 2239 } 2240 2241 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2242 return isXXBRShuffleMaskHelper(N, 16); 2243 } 2244 2245 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2246 /// if the inputs to the instruction should be swapped and set \p DM to the 2247 /// value for the immediate. 2248 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2249 /// AND element 0 of the result comes from the first input (LE) or second input 2250 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2251 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2252 /// mask. 2253 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2254 bool &Swap, bool IsLE) { 2255 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2256 2257 // Ensure each byte index of the double word is consecutive. 2258 if (!isNByteElemShuffleMask(N, 8, 1)) 2259 return false; 2260 2261 unsigned M0 = N->getMaskElt(0) / 8; 2262 unsigned M1 = N->getMaskElt(8) / 8; 2263 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2264 2265 // If both vector operands for the shuffle are the same vector, the mask will 2266 // contain only elements from the first one and the second one will be undef. 2267 if (N->getOperand(1).isUndef()) { 2268 if ((M0 | M1) < 2) { 2269 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2270 Swap = false; 2271 return true; 2272 } else 2273 return false; 2274 } 2275 2276 if (IsLE) { 2277 if (M0 > 1 && M1 < 2) { 2278 Swap = false; 2279 } else if (M0 < 2 && M1 > 1) { 2280 M0 = (M0 + 2) % 4; 2281 M1 = (M1 + 2) % 4; 2282 Swap = true; 2283 } else 2284 return false; 2285 2286 // Note: if control flow comes here that means Swap is already set above 2287 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2288 return true; 2289 } else { // BE 2290 if (M0 < 2 && M1 > 1) { 2291 Swap = false; 2292 } else if (M0 > 1 && M1 < 2) { 2293 M0 = (M0 + 2) % 4; 2294 M1 = (M1 + 2) % 4; 2295 Swap = true; 2296 } else 2297 return false; 2298 2299 // Note: if control flow comes here that means Swap is already set above 2300 DM = (M0 << 1) + (M1 & 1); 2301 return true; 2302 } 2303 } 2304 2305 2306 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2307 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2308 /// elements are counted from the left of the vector register). 2309 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2310 SelectionDAG &DAG) { 2311 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2312 assert(isSplatShuffleMask(SVOp, EltSize)); 2313 if (DAG.getDataLayout().isLittleEndian()) 2314 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2315 else 2316 return SVOp->getMaskElt(0) / EltSize; 2317 } 2318 2319 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2320 /// by using a vspltis[bhw] instruction of the specified element size, return 2321 /// the constant being splatted. The ByteSize field indicates the number of 2322 /// bytes of each element [124] -> [bhw]. 2323 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2324 SDValue OpVal(nullptr, 0); 2325 2326 // If ByteSize of the splat is bigger than the element size of the 2327 // build_vector, then we have a case where we are checking for a splat where 2328 // multiple elements of the buildvector are folded together into a single 2329 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2330 unsigned EltSize = 16/N->getNumOperands(); 2331 if (EltSize < ByteSize) { 2332 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2333 SDValue UniquedVals[4]; 2334 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2335 2336 // See if all of the elements in the buildvector agree across. 2337 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2338 if (N->getOperand(i).isUndef()) continue; 2339 // If the element isn't a constant, bail fully out. 2340 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2341 2342 if (!UniquedVals[i&(Multiple-1)].getNode()) 2343 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2344 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2345 return SDValue(); // no match. 2346 } 2347 2348 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2349 // either constant or undef values that are identical for each chunk. See 2350 // if these chunks can form into a larger vspltis*. 2351 2352 // Check to see if all of the leading entries are either 0 or -1. If 2353 // neither, then this won't fit into the immediate field. 2354 bool LeadingZero = true; 2355 bool LeadingOnes = true; 2356 for (unsigned i = 0; i != Multiple-1; ++i) { 2357 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2358 2359 LeadingZero &= isNullConstant(UniquedVals[i]); 2360 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2361 } 2362 // Finally, check the least significant entry. 2363 if (LeadingZero) { 2364 if (!UniquedVals[Multiple-1].getNode()) 2365 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2366 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2367 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2368 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2369 } 2370 if (LeadingOnes) { 2371 if (!UniquedVals[Multiple-1].getNode()) 2372 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2373 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2374 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2375 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2376 } 2377 2378 return SDValue(); 2379 } 2380 2381 // Check to see if this buildvec has a single non-undef value in its elements. 2382 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2383 if (N->getOperand(i).isUndef()) continue; 2384 if (!OpVal.getNode()) 2385 OpVal = N->getOperand(i); 2386 else if (OpVal != N->getOperand(i)) 2387 return SDValue(); 2388 } 2389 2390 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2391 2392 unsigned ValSizeInBytes = EltSize; 2393 uint64_t Value = 0; 2394 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2395 Value = CN->getZExtValue(); 2396 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2397 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2398 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2399 } 2400 2401 // If the splat value is larger than the element value, then we can never do 2402 // this splat. The only case that we could fit the replicated bits into our 2403 // immediate field for would be zero, and we prefer to use vxor for it. 2404 if (ValSizeInBytes < ByteSize) return SDValue(); 2405 2406 // If the element value is larger than the splat value, check if it consists 2407 // of a repeated bit pattern of size ByteSize. 2408 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2409 return SDValue(); 2410 2411 // Properly sign extend the value. 2412 int MaskVal = SignExtend32(Value, ByteSize * 8); 2413 2414 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2415 if (MaskVal == 0) return SDValue(); 2416 2417 // Finally, if this value fits in a 5 bit sext field, return it 2418 if (SignExtend32<5>(MaskVal) == MaskVal) 2419 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2420 return SDValue(); 2421 } 2422 2423 //===----------------------------------------------------------------------===// 2424 // Addressing Mode Selection 2425 //===----------------------------------------------------------------------===// 2426 2427 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2428 /// or 64-bit immediate, and if the value can be accurately represented as a 2429 /// sign extension from a 16-bit value. If so, this returns true and the 2430 /// immediate. 2431 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2432 if (!isa<ConstantSDNode>(N)) 2433 return false; 2434 2435 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2436 if (N->getValueType(0) == MVT::i32) 2437 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2438 else 2439 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2440 } 2441 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2442 return isIntS16Immediate(Op.getNode(), Imm); 2443 } 2444 2445 2446 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2447 /// be represented as an indexed [r+r] operation. 2448 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2449 SDValue &Index, 2450 SelectionDAG &DAG) const { 2451 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2452 UI != E; ++UI) { 2453 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2454 if (Memop->getMemoryVT() == MVT::f64) { 2455 Base = N.getOperand(0); 2456 Index = N.getOperand(1); 2457 return true; 2458 } 2459 } 2460 } 2461 return false; 2462 } 2463 2464 /// isIntS34Immediate - This method tests if value of node given can be 2465 /// accurately represented as a sign extension from a 34-bit value. If so, 2466 /// this returns true and the immediate. 2467 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2468 if (!isa<ConstantSDNode>(N)) 2469 return false; 2470 2471 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2472 return isInt<34>(Imm); 2473 } 2474 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2475 return isIntS34Immediate(Op.getNode(), Imm); 2476 } 2477 2478 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2479 /// can be represented as an indexed [r+r] operation. Returns false if it 2480 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2481 /// non-zero and N can be represented by a base register plus a signed 16-bit 2482 /// displacement, make a more precise judgement by checking (displacement % \p 2483 /// EncodingAlignment). 2484 bool PPCTargetLowering::SelectAddressRegReg( 2485 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2486 MaybeAlign EncodingAlignment) const { 2487 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2488 // a [pc+imm]. 2489 if (SelectAddressPCRel(N, Base)) 2490 return false; 2491 2492 int16_t Imm = 0; 2493 if (N.getOpcode() == ISD::ADD) { 2494 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2495 // SPE load/store can only handle 8-bit offsets. 2496 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2497 return true; 2498 if (isIntS16Immediate(N.getOperand(1), Imm) && 2499 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2500 return false; // r+i 2501 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2502 return false; // r+i 2503 2504 Base = N.getOperand(0); 2505 Index = N.getOperand(1); 2506 return true; 2507 } else if (N.getOpcode() == ISD::OR) { 2508 if (isIntS16Immediate(N.getOperand(1), Imm) && 2509 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2510 return false; // r+i can fold it if we can. 2511 2512 // If this is an or of disjoint bitfields, we can codegen this as an add 2513 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2514 // disjoint. 2515 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2516 2517 if (LHSKnown.Zero.getBoolValue()) { 2518 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2519 // If all of the bits are known zero on the LHS or RHS, the add won't 2520 // carry. 2521 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2522 Base = N.getOperand(0); 2523 Index = N.getOperand(1); 2524 return true; 2525 } 2526 } 2527 } 2528 2529 return false; 2530 } 2531 2532 // If we happen to be doing an i64 load or store into a stack slot that has 2533 // less than a 4-byte alignment, then the frame-index elimination may need to 2534 // use an indexed load or store instruction (because the offset may not be a 2535 // multiple of 4). The extra register needed to hold the offset comes from the 2536 // register scavenger, and it is possible that the scavenger will need to use 2537 // an emergency spill slot. As a result, we need to make sure that a spill slot 2538 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2539 // stack slot. 2540 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2541 // FIXME: This does not handle the LWA case. 2542 if (VT != MVT::i64) 2543 return; 2544 2545 // NOTE: We'll exclude negative FIs here, which come from argument 2546 // lowering, because there are no known test cases triggering this problem 2547 // using packed structures (or similar). We can remove this exclusion if 2548 // we find such a test case. The reason why this is so test-case driven is 2549 // because this entire 'fixup' is only to prevent crashes (from the 2550 // register scavenger) on not-really-valid inputs. For example, if we have: 2551 // %a = alloca i1 2552 // %b = bitcast i1* %a to i64* 2553 // store i64* a, i64 b 2554 // then the store should really be marked as 'align 1', but is not. If it 2555 // were marked as 'align 1' then the indexed form would have been 2556 // instruction-selected initially, and the problem this 'fixup' is preventing 2557 // won't happen regardless. 2558 if (FrameIdx < 0) 2559 return; 2560 2561 MachineFunction &MF = DAG.getMachineFunction(); 2562 MachineFrameInfo &MFI = MF.getFrameInfo(); 2563 2564 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2565 return; 2566 2567 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2568 FuncInfo->setHasNonRISpills(); 2569 } 2570 2571 /// Returns true if the address N can be represented by a base register plus 2572 /// a signed 16-bit displacement [r+imm], and if it is not better 2573 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2574 /// displacements that are multiples of that value. 2575 bool PPCTargetLowering::SelectAddressRegImm( 2576 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2577 MaybeAlign EncodingAlignment) const { 2578 // FIXME dl should come from parent load or store, not from address 2579 SDLoc dl(N); 2580 2581 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2582 // a [pc+imm]. 2583 if (SelectAddressPCRel(N, Base)) 2584 return false; 2585 2586 // If this can be more profitably realized as r+r, fail. 2587 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2588 return false; 2589 2590 if (N.getOpcode() == ISD::ADD) { 2591 int16_t imm = 0; 2592 if (isIntS16Immediate(N.getOperand(1), imm) && 2593 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2594 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2595 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2596 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2597 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2598 } else { 2599 Base = N.getOperand(0); 2600 } 2601 return true; // [r+i] 2602 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2603 // Match LOAD (ADD (X, Lo(G))). 2604 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2605 && "Cannot handle constant offsets yet!"); 2606 Disp = N.getOperand(1).getOperand(0); // The global address. 2607 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2608 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2609 Disp.getOpcode() == ISD::TargetConstantPool || 2610 Disp.getOpcode() == ISD::TargetJumpTable); 2611 Base = N.getOperand(0); 2612 return true; // [&g+r] 2613 } 2614 } else if (N.getOpcode() == ISD::OR) { 2615 int16_t imm = 0; 2616 if (isIntS16Immediate(N.getOperand(1), imm) && 2617 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2618 // If this is an or of disjoint bitfields, we can codegen this as an add 2619 // (for better address arithmetic) if the LHS and RHS of the OR are 2620 // provably disjoint. 2621 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2622 2623 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2624 // If all of the bits are known zero on the LHS or RHS, the add won't 2625 // carry. 2626 if (FrameIndexSDNode *FI = 2627 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2628 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2629 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2630 } else { 2631 Base = N.getOperand(0); 2632 } 2633 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2634 return true; 2635 } 2636 } 2637 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2638 // Loading from a constant address. 2639 2640 // If this address fits entirely in a 16-bit sext immediate field, codegen 2641 // this as "d, 0" 2642 int16_t Imm; 2643 if (isIntS16Immediate(CN, Imm) && 2644 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2645 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2646 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2647 CN->getValueType(0)); 2648 return true; 2649 } 2650 2651 // Handle 32-bit sext immediates with LIS + addr mode. 2652 if ((CN->getValueType(0) == MVT::i32 || 2653 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2654 (!EncodingAlignment || 2655 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2656 int Addr = (int)CN->getZExtValue(); 2657 2658 // Otherwise, break this down into an LIS + disp. 2659 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2660 2661 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2662 MVT::i32); 2663 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2664 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2665 return true; 2666 } 2667 } 2668 2669 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2670 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2671 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2672 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2673 } else 2674 Base = N; 2675 return true; // [r+0] 2676 } 2677 2678 /// Similar to the 16-bit case but for instructions that take a 34-bit 2679 /// displacement field (prefixed loads/stores). 2680 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2681 SDValue &Base, 2682 SelectionDAG &DAG) const { 2683 // Only on 64-bit targets. 2684 if (N.getValueType() != MVT::i64) 2685 return false; 2686 2687 SDLoc dl(N); 2688 int64_t Imm = 0; 2689 2690 if (N.getOpcode() == ISD::ADD) { 2691 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2692 return false; 2693 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2694 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2695 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2696 else 2697 Base = N.getOperand(0); 2698 return true; 2699 } 2700 2701 if (N.getOpcode() == ISD::OR) { 2702 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2703 return false; 2704 // If this is an or of disjoint bitfields, we can codegen this as an add 2705 // (for better address arithmetic) if the LHS and RHS of the OR are 2706 // provably disjoint. 2707 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2708 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2709 return false; 2710 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2711 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2712 else 2713 Base = N.getOperand(0); 2714 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2715 return true; 2716 } 2717 2718 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2719 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2720 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2721 return true; 2722 } 2723 2724 return false; 2725 } 2726 2727 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2728 /// represented as an indexed [r+r] operation. 2729 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2730 SDValue &Index, 2731 SelectionDAG &DAG) const { 2732 // Check to see if we can easily represent this as an [r+r] address. This 2733 // will fail if it thinks that the address is more profitably represented as 2734 // reg+imm, e.g. where imm = 0. 2735 if (SelectAddressRegReg(N, Base, Index, DAG)) 2736 return true; 2737 2738 // If the address is the result of an add, we will utilize the fact that the 2739 // address calculation includes an implicit add. However, we can reduce 2740 // register pressure if we do not materialize a constant just for use as the 2741 // index register. We only get rid of the add if it is not an add of a 2742 // value and a 16-bit signed constant and both have a single use. 2743 int16_t imm = 0; 2744 if (N.getOpcode() == ISD::ADD && 2745 (!isIntS16Immediate(N.getOperand(1), imm) || 2746 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2747 Base = N.getOperand(0); 2748 Index = N.getOperand(1); 2749 return true; 2750 } 2751 2752 // Otherwise, do it the hard way, using R0 as the base register. 2753 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2754 N.getValueType()); 2755 Index = N; 2756 return true; 2757 } 2758 2759 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2760 Ty *PCRelCand = dyn_cast<Ty>(N); 2761 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2762 } 2763 2764 /// Returns true if this address is a PC Relative address. 2765 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2766 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2767 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2768 // This is a materialize PC Relative node. Always select this as PC Relative. 2769 Base = N; 2770 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2771 return true; 2772 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2773 isValidPCRelNode<GlobalAddressSDNode>(N) || 2774 isValidPCRelNode<JumpTableSDNode>(N) || 2775 isValidPCRelNode<BlockAddressSDNode>(N)) 2776 return true; 2777 return false; 2778 } 2779 2780 /// Returns true if we should use a direct load into vector instruction 2781 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2782 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2783 2784 // If there are any other uses other than scalar to vector, then we should 2785 // keep it as a scalar load -> direct move pattern to prevent multiple 2786 // loads. 2787 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2788 if (!LD) 2789 return false; 2790 2791 EVT MemVT = LD->getMemoryVT(); 2792 if (!MemVT.isSimple()) 2793 return false; 2794 switch(MemVT.getSimpleVT().SimpleTy) { 2795 case MVT::i64: 2796 break; 2797 case MVT::i32: 2798 if (!ST.hasP8Vector()) 2799 return false; 2800 break; 2801 case MVT::i16: 2802 case MVT::i8: 2803 if (!ST.hasP9Vector()) 2804 return false; 2805 break; 2806 default: 2807 return false; 2808 } 2809 2810 SDValue LoadedVal(N, 0); 2811 if (!LoadedVal.hasOneUse()) 2812 return false; 2813 2814 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2815 UI != UE; ++UI) 2816 if (UI.getUse().get().getResNo() == 0 && 2817 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2818 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2819 return false; 2820 2821 return true; 2822 } 2823 2824 /// getPreIndexedAddressParts - returns true by value, base pointer and 2825 /// offset pointer and addressing mode by reference if the node's address 2826 /// can be legally represented as pre-indexed load / store address. 2827 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2828 SDValue &Offset, 2829 ISD::MemIndexedMode &AM, 2830 SelectionDAG &DAG) const { 2831 if (DisablePPCPreinc) return false; 2832 2833 bool isLoad = true; 2834 SDValue Ptr; 2835 EVT VT; 2836 unsigned Alignment; 2837 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2838 Ptr = LD->getBasePtr(); 2839 VT = LD->getMemoryVT(); 2840 Alignment = LD->getAlignment(); 2841 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2842 Ptr = ST->getBasePtr(); 2843 VT = ST->getMemoryVT(); 2844 Alignment = ST->getAlignment(); 2845 isLoad = false; 2846 } else 2847 return false; 2848 2849 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2850 // instructions because we can fold these into a more efficient instruction 2851 // instead, (such as LXSD). 2852 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2853 return false; 2854 } 2855 2856 // PowerPC doesn't have preinc load/store instructions for vectors 2857 if (VT.isVector()) 2858 return false; 2859 2860 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2861 // Common code will reject creating a pre-inc form if the base pointer 2862 // is a frame index, or if N is a store and the base pointer is either 2863 // the same as or a predecessor of the value being stored. Check for 2864 // those situations here, and try with swapped Base/Offset instead. 2865 bool Swap = false; 2866 2867 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2868 Swap = true; 2869 else if (!isLoad) { 2870 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2871 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2872 Swap = true; 2873 } 2874 2875 if (Swap) 2876 std::swap(Base, Offset); 2877 2878 AM = ISD::PRE_INC; 2879 return true; 2880 } 2881 2882 // LDU/STU can only handle immediates that are a multiple of 4. 2883 if (VT != MVT::i64) { 2884 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2885 return false; 2886 } else { 2887 // LDU/STU need an address with at least 4-byte alignment. 2888 if (Alignment < 4) 2889 return false; 2890 2891 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2892 return false; 2893 } 2894 2895 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2896 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2897 // sext i32 to i64 when addr mode is r+i. 2898 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2899 LD->getExtensionType() == ISD::SEXTLOAD && 2900 isa<ConstantSDNode>(Offset)) 2901 return false; 2902 } 2903 2904 AM = ISD::PRE_INC; 2905 return true; 2906 } 2907 2908 //===----------------------------------------------------------------------===// 2909 // LowerOperation implementation 2910 //===----------------------------------------------------------------------===// 2911 2912 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2913 /// and LoOpFlags to the target MO flags. 2914 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2915 unsigned &HiOpFlags, unsigned &LoOpFlags, 2916 const GlobalValue *GV = nullptr) { 2917 HiOpFlags = PPCII::MO_HA; 2918 LoOpFlags = PPCII::MO_LO; 2919 2920 // Don't use the pic base if not in PIC relocation model. 2921 if (IsPIC) { 2922 HiOpFlags |= PPCII::MO_PIC_FLAG; 2923 LoOpFlags |= PPCII::MO_PIC_FLAG; 2924 } 2925 } 2926 2927 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2928 SelectionDAG &DAG) { 2929 SDLoc DL(HiPart); 2930 EVT PtrVT = HiPart.getValueType(); 2931 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2932 2933 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2934 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2935 2936 // With PIC, the first instruction is actually "GR+hi(&G)". 2937 if (isPIC) 2938 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2939 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2940 2941 // Generate non-pic code that has direct accesses to the constant pool. 2942 // The address of the global is just (hi(&g)+lo(&g)). 2943 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2944 } 2945 2946 static void setUsesTOCBasePtr(MachineFunction &MF) { 2947 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2948 FuncInfo->setUsesTOCBasePtr(); 2949 } 2950 2951 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2952 setUsesTOCBasePtr(DAG.getMachineFunction()); 2953 } 2954 2955 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2956 SDValue GA) const { 2957 const bool Is64Bit = Subtarget.isPPC64(); 2958 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2959 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2960 : Subtarget.isAIXABI() 2961 ? DAG.getRegister(PPC::R2, VT) 2962 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2963 SDValue Ops[] = { GA, Reg }; 2964 return DAG.getMemIntrinsicNode( 2965 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2966 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2967 MachineMemOperand::MOLoad); 2968 } 2969 2970 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2971 SelectionDAG &DAG) const { 2972 EVT PtrVT = Op.getValueType(); 2973 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2974 const Constant *C = CP->getConstVal(); 2975 2976 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2977 // The actual address of the GlobalValue is stored in the TOC. 2978 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2979 if (Subtarget.isUsingPCRelativeCalls()) { 2980 SDLoc DL(CP); 2981 EVT Ty = getPointerTy(DAG.getDataLayout()); 2982 SDValue ConstPool = DAG.getTargetConstantPool( 2983 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2984 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2985 } 2986 setUsesTOCBasePtr(DAG); 2987 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2988 return getTOCEntry(DAG, SDLoc(CP), GA); 2989 } 2990 2991 unsigned MOHiFlag, MOLoFlag; 2992 bool IsPIC = isPositionIndependent(); 2993 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2994 2995 if (IsPIC && Subtarget.isSVR4ABI()) { 2996 SDValue GA = 2997 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2998 return getTOCEntry(DAG, SDLoc(CP), GA); 2999 } 3000 3001 SDValue CPIHi = 3002 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3003 SDValue CPILo = 3004 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3005 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3006 } 3007 3008 // For 64-bit PowerPC, prefer the more compact relative encodings. 3009 // This trades 32 bits per jump table entry for one or two instructions 3010 // on the jump site. 3011 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3012 if (isJumpTableRelative()) 3013 return MachineJumpTableInfo::EK_LabelDifference32; 3014 3015 return TargetLowering::getJumpTableEncoding(); 3016 } 3017 3018 bool PPCTargetLowering::isJumpTableRelative() const { 3019 if (UseAbsoluteJumpTables) 3020 return false; 3021 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3022 return true; 3023 return TargetLowering::isJumpTableRelative(); 3024 } 3025 3026 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3027 SelectionDAG &DAG) const { 3028 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3029 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3030 3031 switch (getTargetMachine().getCodeModel()) { 3032 case CodeModel::Small: 3033 case CodeModel::Medium: 3034 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3035 default: 3036 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3037 getPointerTy(DAG.getDataLayout())); 3038 } 3039 } 3040 3041 const MCExpr * 3042 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3043 unsigned JTI, 3044 MCContext &Ctx) const { 3045 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3046 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3047 3048 switch (getTargetMachine().getCodeModel()) { 3049 case CodeModel::Small: 3050 case CodeModel::Medium: 3051 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3052 default: 3053 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3054 } 3055 } 3056 3057 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3058 EVT PtrVT = Op.getValueType(); 3059 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3060 3061 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3062 if (Subtarget.isUsingPCRelativeCalls()) { 3063 SDLoc DL(JT); 3064 EVT Ty = getPointerTy(DAG.getDataLayout()); 3065 SDValue GA = 3066 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3067 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3068 return MatAddr; 3069 } 3070 3071 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3072 // The actual address of the GlobalValue is stored in the TOC. 3073 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3074 setUsesTOCBasePtr(DAG); 3075 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3076 return getTOCEntry(DAG, SDLoc(JT), GA); 3077 } 3078 3079 unsigned MOHiFlag, MOLoFlag; 3080 bool IsPIC = isPositionIndependent(); 3081 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3082 3083 if (IsPIC && Subtarget.isSVR4ABI()) { 3084 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3085 PPCII::MO_PIC_FLAG); 3086 return getTOCEntry(DAG, SDLoc(GA), GA); 3087 } 3088 3089 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3090 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3091 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3092 } 3093 3094 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3095 SelectionDAG &DAG) const { 3096 EVT PtrVT = Op.getValueType(); 3097 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3098 const BlockAddress *BA = BASDN->getBlockAddress(); 3099 3100 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3101 if (Subtarget.isUsingPCRelativeCalls()) { 3102 SDLoc DL(BASDN); 3103 EVT Ty = getPointerTy(DAG.getDataLayout()); 3104 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3105 PPCII::MO_PCREL_FLAG); 3106 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3107 return MatAddr; 3108 } 3109 3110 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3111 // The actual BlockAddress is stored in the TOC. 3112 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3113 setUsesTOCBasePtr(DAG); 3114 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3115 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3116 } 3117 3118 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3119 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3120 return getTOCEntry( 3121 DAG, SDLoc(BASDN), 3122 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3123 3124 unsigned MOHiFlag, MOLoFlag; 3125 bool IsPIC = isPositionIndependent(); 3126 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3127 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3128 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3129 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3130 } 3131 3132 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3133 SelectionDAG &DAG) const { 3134 if (Subtarget.isAIXABI()) 3135 return LowerGlobalTLSAddressAIX(Op, DAG); 3136 3137 return LowerGlobalTLSAddressLinux(Op, DAG); 3138 } 3139 3140 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3141 SelectionDAG &DAG) const { 3142 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3143 3144 if (DAG.getTarget().useEmulatedTLS()) 3145 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3146 3147 SDLoc dl(GA); 3148 const GlobalValue *GV = GA->getGlobal(); 3149 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3150 3151 // The general-dynamic model is the only access model supported for now, so 3152 // all the GlobalTLSAddress nodes are lowered with this model. 3153 // We need to generate two TOC entries, one for the variable offset, one for 3154 // the region handle. The global address for the TOC entry of the region 3155 // handle is created with the MO_TLSGD_FLAG flag so we can easily identify 3156 // this entry and add the right relocation. 3157 SDValue VariableOffsetTGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3158 SDValue RegionHandleTGA = 3159 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3160 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3161 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3162 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3163 RegionHandle); 3164 } 3165 3166 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3167 SelectionDAG &DAG) const { 3168 // FIXME: TLS addresses currently use medium model code sequences, 3169 // which is the most useful form. Eventually support for small and 3170 // large models could be added if users need it, at the cost of 3171 // additional complexity. 3172 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3173 if (DAG.getTarget().useEmulatedTLS()) 3174 return LowerToTLSEmulatedModel(GA, DAG); 3175 3176 SDLoc dl(GA); 3177 const GlobalValue *GV = GA->getGlobal(); 3178 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3179 bool is64bit = Subtarget.isPPC64(); 3180 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3181 PICLevel::Level picLevel = M->getPICLevel(); 3182 3183 const TargetMachine &TM = getTargetMachine(); 3184 TLSModel::Model Model = TM.getTLSModel(GV); 3185 3186 if (Model == TLSModel::LocalExec) { 3187 if (Subtarget.isUsingPCRelativeCalls()) { 3188 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3189 SDValue TGA = DAG.getTargetGlobalAddress( 3190 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3191 SDValue MatAddr = 3192 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3193 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3194 } 3195 3196 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3197 PPCII::MO_TPREL_HA); 3198 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3199 PPCII::MO_TPREL_LO); 3200 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3201 : DAG.getRegister(PPC::R2, MVT::i32); 3202 3203 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3204 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3205 } 3206 3207 if (Model == TLSModel::InitialExec) { 3208 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3209 SDValue TGA = DAG.getTargetGlobalAddress( 3210 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3211 SDValue TGATLS = DAG.getTargetGlobalAddress( 3212 GV, dl, PtrVT, 0, 3213 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3214 SDValue TPOffset; 3215 if (IsPCRel) { 3216 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3217 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3218 MachinePointerInfo()); 3219 } else { 3220 SDValue GOTPtr; 3221 if (is64bit) { 3222 setUsesTOCBasePtr(DAG); 3223 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3224 GOTPtr = 3225 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3226 } else { 3227 if (!TM.isPositionIndependent()) 3228 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3229 else if (picLevel == PICLevel::SmallPIC) 3230 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3231 else 3232 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3233 } 3234 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3235 } 3236 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3237 } 3238 3239 if (Model == TLSModel::GeneralDynamic) { 3240 if (Subtarget.isUsingPCRelativeCalls()) { 3241 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3242 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3243 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3244 } 3245 3246 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3247 SDValue GOTPtr; 3248 if (is64bit) { 3249 setUsesTOCBasePtr(DAG); 3250 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3251 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3252 GOTReg, TGA); 3253 } else { 3254 if (picLevel == PICLevel::SmallPIC) 3255 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3256 else 3257 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3258 } 3259 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3260 GOTPtr, TGA, TGA); 3261 } 3262 3263 if (Model == TLSModel::LocalDynamic) { 3264 if (Subtarget.isUsingPCRelativeCalls()) { 3265 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3266 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3267 SDValue MatPCRel = 3268 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3269 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3270 } 3271 3272 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3273 SDValue GOTPtr; 3274 if (is64bit) { 3275 setUsesTOCBasePtr(DAG); 3276 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3277 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3278 GOTReg, TGA); 3279 } else { 3280 if (picLevel == PICLevel::SmallPIC) 3281 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3282 else 3283 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3284 } 3285 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3286 PtrVT, GOTPtr, TGA, TGA); 3287 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3288 PtrVT, TLSAddr, TGA); 3289 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3290 } 3291 3292 llvm_unreachable("Unknown TLS model!"); 3293 } 3294 3295 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3296 SelectionDAG &DAG) const { 3297 EVT PtrVT = Op.getValueType(); 3298 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3299 SDLoc DL(GSDN); 3300 const GlobalValue *GV = GSDN->getGlobal(); 3301 3302 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3303 // The actual address of the GlobalValue is stored in the TOC. 3304 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3305 if (Subtarget.isUsingPCRelativeCalls()) { 3306 EVT Ty = getPointerTy(DAG.getDataLayout()); 3307 if (isAccessedAsGotIndirect(Op)) { 3308 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3309 PPCII::MO_PCREL_FLAG | 3310 PPCII::MO_GOT_FLAG); 3311 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3312 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3313 MachinePointerInfo()); 3314 return Load; 3315 } else { 3316 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3317 PPCII::MO_PCREL_FLAG); 3318 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3319 } 3320 } 3321 setUsesTOCBasePtr(DAG); 3322 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3323 return getTOCEntry(DAG, DL, GA); 3324 } 3325 3326 unsigned MOHiFlag, MOLoFlag; 3327 bool IsPIC = isPositionIndependent(); 3328 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3329 3330 if (IsPIC && Subtarget.isSVR4ABI()) { 3331 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3332 GSDN->getOffset(), 3333 PPCII::MO_PIC_FLAG); 3334 return getTOCEntry(DAG, DL, GA); 3335 } 3336 3337 SDValue GAHi = 3338 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3339 SDValue GALo = 3340 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3341 3342 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3343 } 3344 3345 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3346 bool IsStrict = Op->isStrictFPOpcode(); 3347 ISD::CondCode CC = 3348 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3349 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3350 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3351 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3352 EVT LHSVT = LHS.getValueType(); 3353 SDLoc dl(Op); 3354 3355 // Soften the setcc with libcall if it is fp128. 3356 if (LHSVT == MVT::f128) { 3357 assert(!Subtarget.hasP9Vector() && 3358 "SETCC for f128 is already legal under Power9!"); 3359 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3360 Op->getOpcode() == ISD::STRICT_FSETCCS); 3361 if (RHS.getNode()) 3362 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3363 DAG.getCondCode(CC)); 3364 if (IsStrict) 3365 return DAG.getMergeValues({LHS, Chain}, dl); 3366 return LHS; 3367 } 3368 3369 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3370 3371 if (Op.getValueType() == MVT::v2i64) { 3372 // When the operands themselves are v2i64 values, we need to do something 3373 // special because VSX has no underlying comparison operations for these. 3374 if (LHS.getValueType() == MVT::v2i64) { 3375 // Equality can be handled by casting to the legal type for Altivec 3376 // comparisons, everything else needs to be expanded. 3377 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3378 return DAG.getNode( 3379 ISD::BITCAST, dl, MVT::v2i64, 3380 DAG.getSetCC(dl, MVT::v4i32, 3381 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3382 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC)); 3383 } 3384 3385 return SDValue(); 3386 } 3387 3388 // We handle most of these in the usual way. 3389 return Op; 3390 } 3391 3392 // If we're comparing for equality to zero, expose the fact that this is 3393 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3394 // fold the new nodes. 3395 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3396 return V; 3397 3398 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3399 // Leave comparisons against 0 and -1 alone for now, since they're usually 3400 // optimized. FIXME: revisit this when we can custom lower all setcc 3401 // optimizations. 3402 if (C->isAllOnesValue() || C->isNullValue()) 3403 return SDValue(); 3404 } 3405 3406 // If we have an integer seteq/setne, turn it into a compare against zero 3407 // by xor'ing the rhs with the lhs, which is faster than setting a 3408 // condition register, reading it back out, and masking the correct bit. The 3409 // normal approach here uses sub to do this instead of xor. Using xor exposes 3410 // the result to other bit-twiddling opportunities. 3411 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3412 EVT VT = Op.getValueType(); 3413 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3414 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3415 } 3416 return SDValue(); 3417 } 3418 3419 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3420 SDNode *Node = Op.getNode(); 3421 EVT VT = Node->getValueType(0); 3422 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3423 SDValue InChain = Node->getOperand(0); 3424 SDValue VAListPtr = Node->getOperand(1); 3425 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3426 SDLoc dl(Node); 3427 3428 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3429 3430 // gpr_index 3431 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3432 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3433 InChain = GprIndex.getValue(1); 3434 3435 if (VT == MVT::i64) { 3436 // Check if GprIndex is even 3437 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3438 DAG.getConstant(1, dl, MVT::i32)); 3439 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3440 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3441 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3442 DAG.getConstant(1, dl, MVT::i32)); 3443 // Align GprIndex to be even if it isn't 3444 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3445 GprIndex); 3446 } 3447 3448 // fpr index is 1 byte after gpr 3449 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3450 DAG.getConstant(1, dl, MVT::i32)); 3451 3452 // fpr 3453 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3454 FprPtr, MachinePointerInfo(SV), MVT::i8); 3455 InChain = FprIndex.getValue(1); 3456 3457 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3458 DAG.getConstant(8, dl, MVT::i32)); 3459 3460 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3461 DAG.getConstant(4, dl, MVT::i32)); 3462 3463 // areas 3464 SDValue OverflowArea = 3465 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3466 InChain = OverflowArea.getValue(1); 3467 3468 SDValue RegSaveArea = 3469 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3470 InChain = RegSaveArea.getValue(1); 3471 3472 // select overflow_area if index > 8 3473 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3474 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3475 3476 // adjustment constant gpr_index * 4/8 3477 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3478 VT.isInteger() ? GprIndex : FprIndex, 3479 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3480 MVT::i32)); 3481 3482 // OurReg = RegSaveArea + RegConstant 3483 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3484 RegConstant); 3485 3486 // Floating types are 32 bytes into RegSaveArea 3487 if (VT.isFloatingPoint()) 3488 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3489 DAG.getConstant(32, dl, MVT::i32)); 3490 3491 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3492 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3493 VT.isInteger() ? GprIndex : FprIndex, 3494 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3495 MVT::i32)); 3496 3497 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3498 VT.isInteger() ? VAListPtr : FprPtr, 3499 MachinePointerInfo(SV), MVT::i8); 3500 3501 // determine if we should load from reg_save_area or overflow_area 3502 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3503 3504 // increase overflow_area by 4/8 if gpr/fpr > 8 3505 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3506 DAG.getConstant(VT.isInteger() ? 4 : 8, 3507 dl, MVT::i32)); 3508 3509 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3510 OverflowAreaPlusN); 3511 3512 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3513 MachinePointerInfo(), MVT::i32); 3514 3515 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3516 } 3517 3518 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3519 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3520 3521 // We have to copy the entire va_list struct: 3522 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3523 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3524 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3525 false, true, false, MachinePointerInfo(), 3526 MachinePointerInfo()); 3527 } 3528 3529 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3530 SelectionDAG &DAG) const { 3531 if (Subtarget.isAIXABI()) 3532 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3533 3534 return Op.getOperand(0); 3535 } 3536 3537 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3538 SelectionDAG &DAG) const { 3539 if (Subtarget.isAIXABI()) 3540 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3541 3542 SDValue Chain = Op.getOperand(0); 3543 SDValue Trmp = Op.getOperand(1); // trampoline 3544 SDValue FPtr = Op.getOperand(2); // nested function 3545 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3546 SDLoc dl(Op); 3547 3548 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3549 bool isPPC64 = (PtrVT == MVT::i64); 3550 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3551 3552 TargetLowering::ArgListTy Args; 3553 TargetLowering::ArgListEntry Entry; 3554 3555 Entry.Ty = IntPtrTy; 3556 Entry.Node = Trmp; Args.push_back(Entry); 3557 3558 // TrampSize == (isPPC64 ? 48 : 40); 3559 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3560 isPPC64 ? MVT::i64 : MVT::i32); 3561 Args.push_back(Entry); 3562 3563 Entry.Node = FPtr; Args.push_back(Entry); 3564 Entry.Node = Nest; Args.push_back(Entry); 3565 3566 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3567 TargetLowering::CallLoweringInfo CLI(DAG); 3568 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3569 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3570 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3571 3572 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3573 return CallResult.second; 3574 } 3575 3576 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3577 MachineFunction &MF = DAG.getMachineFunction(); 3578 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3579 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3580 3581 SDLoc dl(Op); 3582 3583 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3584 // vastart just stores the address of the VarArgsFrameIndex slot into the 3585 // memory location argument. 3586 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3587 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3588 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3589 MachinePointerInfo(SV)); 3590 } 3591 3592 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3593 // We suppose the given va_list is already allocated. 3594 // 3595 // typedef struct { 3596 // char gpr; /* index into the array of 8 GPRs 3597 // * stored in the register save area 3598 // * gpr=0 corresponds to r3, 3599 // * gpr=1 to r4, etc. 3600 // */ 3601 // char fpr; /* index into the array of 8 FPRs 3602 // * stored in the register save area 3603 // * fpr=0 corresponds to f1, 3604 // * fpr=1 to f2, etc. 3605 // */ 3606 // char *overflow_arg_area; 3607 // /* location on stack that holds 3608 // * the next overflow argument 3609 // */ 3610 // char *reg_save_area; 3611 // /* where r3:r10 and f1:f8 (if saved) 3612 // * are stored 3613 // */ 3614 // } va_list[1]; 3615 3616 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3617 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3618 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3619 PtrVT); 3620 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3621 PtrVT); 3622 3623 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3624 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3625 3626 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3627 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3628 3629 uint64_t FPROffset = 1; 3630 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3631 3632 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3633 3634 // Store first byte : number of int regs 3635 SDValue firstStore = 3636 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3637 MachinePointerInfo(SV), MVT::i8); 3638 uint64_t nextOffset = FPROffset; 3639 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3640 ConstFPROffset); 3641 3642 // Store second byte : number of float regs 3643 SDValue secondStore = 3644 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3645 MachinePointerInfo(SV, nextOffset), MVT::i8); 3646 nextOffset += StackOffset; 3647 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3648 3649 // Store second word : arguments given on stack 3650 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3651 MachinePointerInfo(SV, nextOffset)); 3652 nextOffset += FrameOffset; 3653 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3654 3655 // Store third word : arguments given in registers 3656 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3657 MachinePointerInfo(SV, nextOffset)); 3658 } 3659 3660 /// FPR - The set of FP registers that should be allocated for arguments 3661 /// on Darwin and AIX. 3662 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3663 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3664 PPC::F11, PPC::F12, PPC::F13}; 3665 3666 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3667 /// the stack. 3668 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3669 unsigned PtrByteSize) { 3670 unsigned ArgSize = ArgVT.getStoreSize(); 3671 if (Flags.isByVal()) 3672 ArgSize = Flags.getByValSize(); 3673 3674 // Round up to multiples of the pointer size, except for array members, 3675 // which are always packed. 3676 if (!Flags.isInConsecutiveRegs()) 3677 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3678 3679 return ArgSize; 3680 } 3681 3682 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3683 /// on the stack. 3684 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3685 ISD::ArgFlagsTy Flags, 3686 unsigned PtrByteSize) { 3687 Align Alignment(PtrByteSize); 3688 3689 // Altivec parameters are padded to a 16 byte boundary. 3690 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3691 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3692 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3693 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3694 Alignment = Align(16); 3695 3696 // ByVal parameters are aligned as requested. 3697 if (Flags.isByVal()) { 3698 auto BVAlign = Flags.getNonZeroByValAlign(); 3699 if (BVAlign > PtrByteSize) { 3700 if (BVAlign.value() % PtrByteSize != 0) 3701 llvm_unreachable( 3702 "ByVal alignment is not a multiple of the pointer size"); 3703 3704 Alignment = BVAlign; 3705 } 3706 } 3707 3708 // Array members are always packed to their original alignment. 3709 if (Flags.isInConsecutiveRegs()) { 3710 // If the array member was split into multiple registers, the first 3711 // needs to be aligned to the size of the full type. (Except for 3712 // ppcf128, which is only aligned as its f64 components.) 3713 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3714 Alignment = Align(OrigVT.getStoreSize()); 3715 else 3716 Alignment = Align(ArgVT.getStoreSize()); 3717 } 3718 3719 return Alignment; 3720 } 3721 3722 /// CalculateStackSlotUsed - Return whether this argument will use its 3723 /// stack slot (instead of being passed in registers). ArgOffset, 3724 /// AvailableFPRs, and AvailableVRs must hold the current argument 3725 /// position, and will be updated to account for this argument. 3726 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3727 unsigned PtrByteSize, unsigned LinkageSize, 3728 unsigned ParamAreaSize, unsigned &ArgOffset, 3729 unsigned &AvailableFPRs, 3730 unsigned &AvailableVRs) { 3731 bool UseMemory = false; 3732 3733 // Respect alignment of argument on the stack. 3734 Align Alignment = 3735 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3736 ArgOffset = alignTo(ArgOffset, Alignment); 3737 // If there's no space left in the argument save area, we must 3738 // use memory (this check also catches zero-sized arguments). 3739 if (ArgOffset >= LinkageSize + ParamAreaSize) 3740 UseMemory = true; 3741 3742 // Allocate argument on the stack. 3743 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3744 if (Flags.isInConsecutiveRegsLast()) 3745 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3746 // If we overran the argument save area, we must use memory 3747 // (this check catches arguments passed partially in memory) 3748 if (ArgOffset > LinkageSize + ParamAreaSize) 3749 UseMemory = true; 3750 3751 // However, if the argument is actually passed in an FPR or a VR, 3752 // we don't use memory after all. 3753 if (!Flags.isByVal()) { 3754 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3755 if (AvailableFPRs > 0) { 3756 --AvailableFPRs; 3757 return false; 3758 } 3759 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3760 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3761 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3762 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3763 if (AvailableVRs > 0) { 3764 --AvailableVRs; 3765 return false; 3766 } 3767 } 3768 3769 return UseMemory; 3770 } 3771 3772 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3773 /// ensure minimum alignment required for target. 3774 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3775 unsigned NumBytes) { 3776 return alignTo(NumBytes, Lowering->getStackAlign()); 3777 } 3778 3779 SDValue PPCTargetLowering::LowerFormalArguments( 3780 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3781 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3782 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3783 if (Subtarget.isAIXABI()) 3784 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3785 InVals); 3786 if (Subtarget.is64BitELFABI()) 3787 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3788 InVals); 3789 assert(Subtarget.is32BitELFABI()); 3790 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3791 InVals); 3792 } 3793 3794 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3795 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3796 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3797 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3798 3799 // 32-bit SVR4 ABI Stack Frame Layout: 3800 // +-----------------------------------+ 3801 // +--> | Back chain | 3802 // | +-----------------------------------+ 3803 // | | Floating-point register save area | 3804 // | +-----------------------------------+ 3805 // | | General register save area | 3806 // | +-----------------------------------+ 3807 // | | CR save word | 3808 // | +-----------------------------------+ 3809 // | | VRSAVE save word | 3810 // | +-----------------------------------+ 3811 // | | Alignment padding | 3812 // | +-----------------------------------+ 3813 // | | Vector register save area | 3814 // | +-----------------------------------+ 3815 // | | Local variable space | 3816 // | +-----------------------------------+ 3817 // | | Parameter list area | 3818 // | +-----------------------------------+ 3819 // | | LR save word | 3820 // | +-----------------------------------+ 3821 // SP--> +--- | Back chain | 3822 // +-----------------------------------+ 3823 // 3824 // Specifications: 3825 // System V Application Binary Interface PowerPC Processor Supplement 3826 // AltiVec Technology Programming Interface Manual 3827 3828 MachineFunction &MF = DAG.getMachineFunction(); 3829 MachineFrameInfo &MFI = MF.getFrameInfo(); 3830 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3831 3832 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3833 // Potential tail calls could cause overwriting of argument stack slots. 3834 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3835 (CallConv == CallingConv::Fast)); 3836 const Align PtrAlign(4); 3837 3838 // Assign locations to all of the incoming arguments. 3839 SmallVector<CCValAssign, 16> ArgLocs; 3840 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3841 *DAG.getContext()); 3842 3843 // Reserve space for the linkage area on the stack. 3844 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3845 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3846 if (useSoftFloat()) 3847 CCInfo.PreAnalyzeFormalArguments(Ins); 3848 3849 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3850 CCInfo.clearWasPPCF128(); 3851 3852 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3853 CCValAssign &VA = ArgLocs[i]; 3854 3855 // Arguments stored in registers. 3856 if (VA.isRegLoc()) { 3857 const TargetRegisterClass *RC; 3858 EVT ValVT = VA.getValVT(); 3859 3860 switch (ValVT.getSimpleVT().SimpleTy) { 3861 default: 3862 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3863 case MVT::i1: 3864 case MVT::i32: 3865 RC = &PPC::GPRCRegClass; 3866 break; 3867 case MVT::f32: 3868 if (Subtarget.hasP8Vector()) 3869 RC = &PPC::VSSRCRegClass; 3870 else if (Subtarget.hasSPE()) 3871 RC = &PPC::GPRCRegClass; 3872 else 3873 RC = &PPC::F4RCRegClass; 3874 break; 3875 case MVT::f64: 3876 if (Subtarget.hasVSX()) 3877 RC = &PPC::VSFRCRegClass; 3878 else if (Subtarget.hasSPE()) 3879 // SPE passes doubles in GPR pairs. 3880 RC = &PPC::GPRCRegClass; 3881 else 3882 RC = &PPC::F8RCRegClass; 3883 break; 3884 case MVT::v16i8: 3885 case MVT::v8i16: 3886 case MVT::v4i32: 3887 RC = &PPC::VRRCRegClass; 3888 break; 3889 case MVT::v4f32: 3890 RC = &PPC::VRRCRegClass; 3891 break; 3892 case MVT::v2f64: 3893 case MVT::v2i64: 3894 RC = &PPC::VRRCRegClass; 3895 break; 3896 } 3897 3898 SDValue ArgValue; 3899 // Transform the arguments stored in physical registers into 3900 // virtual ones. 3901 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3902 assert(i + 1 < e && "No second half of double precision argument"); 3903 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3904 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3905 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3906 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3907 if (!Subtarget.isLittleEndian()) 3908 std::swap (ArgValueLo, ArgValueHi); 3909 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3910 ArgValueHi); 3911 } else { 3912 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3913 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3914 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3915 if (ValVT == MVT::i1) 3916 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3917 } 3918 3919 InVals.push_back(ArgValue); 3920 } else { 3921 // Argument stored in memory. 3922 assert(VA.isMemLoc()); 3923 3924 // Get the extended size of the argument type in stack 3925 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3926 // Get the actual size of the argument type 3927 unsigned ObjSize = VA.getValVT().getStoreSize(); 3928 unsigned ArgOffset = VA.getLocMemOffset(); 3929 // Stack objects in PPC32 are right justified. 3930 ArgOffset += ArgSize - ObjSize; 3931 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3932 3933 // Create load nodes to retrieve arguments from the stack. 3934 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3935 InVals.push_back( 3936 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3937 } 3938 } 3939 3940 // Assign locations to all of the incoming aggregate by value arguments. 3941 // Aggregates passed by value are stored in the local variable space of the 3942 // caller's stack frame, right above the parameter list area. 3943 SmallVector<CCValAssign, 16> ByValArgLocs; 3944 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3945 ByValArgLocs, *DAG.getContext()); 3946 3947 // Reserve stack space for the allocations in CCInfo. 3948 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3949 3950 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3951 3952 // Area that is at least reserved in the caller of this function. 3953 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3954 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3955 3956 // Set the size that is at least reserved in caller of this function. Tail 3957 // call optimized function's reserved stack space needs to be aligned so that 3958 // taking the difference between two stack areas will result in an aligned 3959 // stack. 3960 MinReservedArea = 3961 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3962 FuncInfo->setMinReservedArea(MinReservedArea); 3963 3964 SmallVector<SDValue, 8> MemOps; 3965 3966 // If the function takes variable number of arguments, make a frame index for 3967 // the start of the first vararg value... for expansion of llvm.va_start. 3968 if (isVarArg) { 3969 static const MCPhysReg GPArgRegs[] = { 3970 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3971 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3972 }; 3973 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3974 3975 static const MCPhysReg FPArgRegs[] = { 3976 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3977 PPC::F8 3978 }; 3979 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3980 3981 if (useSoftFloat() || hasSPE()) 3982 NumFPArgRegs = 0; 3983 3984 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3985 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3986 3987 // Make room for NumGPArgRegs and NumFPArgRegs. 3988 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3989 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3990 3991 FuncInfo->setVarArgsStackOffset( 3992 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3993 CCInfo.getNextStackOffset(), true)); 3994 3995 FuncInfo->setVarArgsFrameIndex( 3996 MFI.CreateStackObject(Depth, Align(8), false)); 3997 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3998 3999 // The fixed integer arguments of a variadic function are stored to the 4000 // VarArgsFrameIndex on the stack so that they may be loaded by 4001 // dereferencing the result of va_next. 4002 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4003 // Get an existing live-in vreg, or add a new one. 4004 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4005 if (!VReg) 4006 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4007 4008 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4009 SDValue Store = 4010 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4011 MemOps.push_back(Store); 4012 // Increment the address by four for the next argument to store 4013 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4014 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4015 } 4016 4017 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4018 // is set. 4019 // The double arguments are stored to the VarArgsFrameIndex 4020 // on the stack. 4021 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4022 // Get an existing live-in vreg, or add a new one. 4023 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4024 if (!VReg) 4025 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4026 4027 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4028 SDValue Store = 4029 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4030 MemOps.push_back(Store); 4031 // Increment the address by eight for the next argument to store 4032 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4033 PtrVT); 4034 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4035 } 4036 } 4037 4038 if (!MemOps.empty()) 4039 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4040 4041 return Chain; 4042 } 4043 4044 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4045 // value to MVT::i64 and then truncate to the correct register size. 4046 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4047 EVT ObjectVT, SelectionDAG &DAG, 4048 SDValue ArgVal, 4049 const SDLoc &dl) const { 4050 if (Flags.isSExt()) 4051 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4052 DAG.getValueType(ObjectVT)); 4053 else if (Flags.isZExt()) 4054 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4055 DAG.getValueType(ObjectVT)); 4056 4057 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4058 } 4059 4060 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4061 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4062 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4063 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4064 // TODO: add description of PPC stack frame format, or at least some docs. 4065 // 4066 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4067 bool isLittleEndian = Subtarget.isLittleEndian(); 4068 MachineFunction &MF = DAG.getMachineFunction(); 4069 MachineFrameInfo &MFI = MF.getFrameInfo(); 4070 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4071 4072 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4073 "fastcc not supported on varargs functions"); 4074 4075 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4076 // Potential tail calls could cause overwriting of argument stack slots. 4077 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4078 (CallConv == CallingConv::Fast)); 4079 unsigned PtrByteSize = 8; 4080 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4081 4082 static const MCPhysReg GPR[] = { 4083 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4084 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4085 }; 4086 static const MCPhysReg VR[] = { 4087 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4088 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4089 }; 4090 4091 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4092 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4093 const unsigned Num_VR_Regs = array_lengthof(VR); 4094 4095 // Do a first pass over the arguments to determine whether the ABI 4096 // guarantees that our caller has allocated the parameter save area 4097 // on its stack frame. In the ELFv1 ABI, this is always the case; 4098 // in the ELFv2 ABI, it is true if this is a vararg function or if 4099 // any parameter is located in a stack slot. 4100 4101 bool HasParameterArea = !isELFv2ABI || isVarArg; 4102 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4103 unsigned NumBytes = LinkageSize; 4104 unsigned AvailableFPRs = Num_FPR_Regs; 4105 unsigned AvailableVRs = Num_VR_Regs; 4106 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4107 if (Ins[i].Flags.isNest()) 4108 continue; 4109 4110 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4111 PtrByteSize, LinkageSize, ParamAreaSize, 4112 NumBytes, AvailableFPRs, AvailableVRs)) 4113 HasParameterArea = true; 4114 } 4115 4116 // Add DAG nodes to load the arguments or copy them out of registers. On 4117 // entry to a function on PPC, the arguments start after the linkage area, 4118 // although the first ones are often in registers. 4119 4120 unsigned ArgOffset = LinkageSize; 4121 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4122 SmallVector<SDValue, 8> MemOps; 4123 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4124 unsigned CurArgIdx = 0; 4125 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4126 SDValue ArgVal; 4127 bool needsLoad = false; 4128 EVT ObjectVT = Ins[ArgNo].VT; 4129 EVT OrigVT = Ins[ArgNo].ArgVT; 4130 unsigned ObjSize = ObjectVT.getStoreSize(); 4131 unsigned ArgSize = ObjSize; 4132 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4133 if (Ins[ArgNo].isOrigArg()) { 4134 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4135 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4136 } 4137 // We re-align the argument offset for each argument, except when using the 4138 // fast calling convention, when we need to make sure we do that only when 4139 // we'll actually use a stack slot. 4140 unsigned CurArgOffset; 4141 Align Alignment; 4142 auto ComputeArgOffset = [&]() { 4143 /* Respect alignment of argument on the stack. */ 4144 Alignment = 4145 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4146 ArgOffset = alignTo(ArgOffset, Alignment); 4147 CurArgOffset = ArgOffset; 4148 }; 4149 4150 if (CallConv != CallingConv::Fast) { 4151 ComputeArgOffset(); 4152 4153 /* Compute GPR index associated with argument offset. */ 4154 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4155 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4156 } 4157 4158 // FIXME the codegen can be much improved in some cases. 4159 // We do not have to keep everything in memory. 4160 if (Flags.isByVal()) { 4161 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4162 4163 if (CallConv == CallingConv::Fast) 4164 ComputeArgOffset(); 4165 4166 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4167 ObjSize = Flags.getByValSize(); 4168 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4169 // Empty aggregate parameters do not take up registers. Examples: 4170 // struct { } a; 4171 // union { } b; 4172 // int c[0]; 4173 // etc. However, we have to provide a place-holder in InVals, so 4174 // pretend we have an 8-byte item at the current address for that 4175 // purpose. 4176 if (!ObjSize) { 4177 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4178 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4179 InVals.push_back(FIN); 4180 continue; 4181 } 4182 4183 // Create a stack object covering all stack doublewords occupied 4184 // by the argument. If the argument is (fully or partially) on 4185 // the stack, or if the argument is fully in registers but the 4186 // caller has allocated the parameter save anyway, we can refer 4187 // directly to the caller's stack frame. Otherwise, create a 4188 // local copy in our own frame. 4189 int FI; 4190 if (HasParameterArea || 4191 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4192 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4193 else 4194 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4195 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4196 4197 // Handle aggregates smaller than 8 bytes. 4198 if (ObjSize < PtrByteSize) { 4199 // The value of the object is its address, which differs from the 4200 // address of the enclosing doubleword on big-endian systems. 4201 SDValue Arg = FIN; 4202 if (!isLittleEndian) { 4203 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4204 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4205 } 4206 InVals.push_back(Arg); 4207 4208 if (GPR_idx != Num_GPR_Regs) { 4209 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4210 FuncInfo->addLiveInAttr(VReg, Flags); 4211 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4212 SDValue Store; 4213 4214 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4215 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4216 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4217 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4218 MachinePointerInfo(&*FuncArg), ObjType); 4219 } else { 4220 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4221 // store the whole register as-is to the parameter save area 4222 // slot. 4223 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4224 MachinePointerInfo(&*FuncArg)); 4225 } 4226 4227 MemOps.push_back(Store); 4228 } 4229 // Whether we copied from a register or not, advance the offset 4230 // into the parameter save area by a full doubleword. 4231 ArgOffset += PtrByteSize; 4232 continue; 4233 } 4234 4235 // The value of the object is its address, which is the address of 4236 // its first stack doubleword. 4237 InVals.push_back(FIN); 4238 4239 // Store whatever pieces of the object are in registers to memory. 4240 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4241 if (GPR_idx == Num_GPR_Regs) 4242 break; 4243 4244 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4245 FuncInfo->addLiveInAttr(VReg, Flags); 4246 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4247 SDValue Addr = FIN; 4248 if (j) { 4249 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4250 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4251 } 4252 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4253 MachinePointerInfo(&*FuncArg, j)); 4254 MemOps.push_back(Store); 4255 ++GPR_idx; 4256 } 4257 ArgOffset += ArgSize; 4258 continue; 4259 } 4260 4261 switch (ObjectVT.getSimpleVT().SimpleTy) { 4262 default: llvm_unreachable("Unhandled argument type!"); 4263 case MVT::i1: 4264 case MVT::i32: 4265 case MVT::i64: 4266 if (Flags.isNest()) { 4267 // The 'nest' parameter, if any, is passed in R11. 4268 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4269 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4270 4271 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4272 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4273 4274 break; 4275 } 4276 4277 // These can be scalar arguments or elements of an integer array type 4278 // passed directly. Clang may use those instead of "byval" aggregate 4279 // types to avoid forcing arguments to memory unnecessarily. 4280 if (GPR_idx != Num_GPR_Regs) { 4281 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4282 FuncInfo->addLiveInAttr(VReg, Flags); 4283 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4284 4285 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4286 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4287 // value to MVT::i64 and then truncate to the correct register size. 4288 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4289 } else { 4290 if (CallConv == CallingConv::Fast) 4291 ComputeArgOffset(); 4292 4293 needsLoad = true; 4294 ArgSize = PtrByteSize; 4295 } 4296 if (CallConv != CallingConv::Fast || needsLoad) 4297 ArgOffset += 8; 4298 break; 4299 4300 case MVT::f32: 4301 case MVT::f64: 4302 // These can be scalar arguments or elements of a float array type 4303 // passed directly. The latter are used to implement ELFv2 homogenous 4304 // float aggregates. 4305 if (FPR_idx != Num_FPR_Regs) { 4306 unsigned VReg; 4307 4308 if (ObjectVT == MVT::f32) 4309 VReg = MF.addLiveIn(FPR[FPR_idx], 4310 Subtarget.hasP8Vector() 4311 ? &PPC::VSSRCRegClass 4312 : &PPC::F4RCRegClass); 4313 else 4314 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4315 ? &PPC::VSFRCRegClass 4316 : &PPC::F8RCRegClass); 4317 4318 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4319 ++FPR_idx; 4320 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4321 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4322 // once we support fp <-> gpr moves. 4323 4324 // This can only ever happen in the presence of f32 array types, 4325 // since otherwise we never run out of FPRs before running out 4326 // of GPRs. 4327 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4328 FuncInfo->addLiveInAttr(VReg, Flags); 4329 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4330 4331 if (ObjectVT == MVT::f32) { 4332 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4333 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4334 DAG.getConstant(32, dl, MVT::i32)); 4335 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4336 } 4337 4338 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4339 } else { 4340 if (CallConv == CallingConv::Fast) 4341 ComputeArgOffset(); 4342 4343 needsLoad = true; 4344 } 4345 4346 // When passing an array of floats, the array occupies consecutive 4347 // space in the argument area; only round up to the next doubleword 4348 // at the end of the array. Otherwise, each float takes 8 bytes. 4349 if (CallConv != CallingConv::Fast || needsLoad) { 4350 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4351 ArgOffset += ArgSize; 4352 if (Flags.isInConsecutiveRegsLast()) 4353 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4354 } 4355 break; 4356 case MVT::v4f32: 4357 case MVT::v4i32: 4358 case MVT::v8i16: 4359 case MVT::v16i8: 4360 case MVT::v2f64: 4361 case MVT::v2i64: 4362 case MVT::v1i128: 4363 case MVT::f128: 4364 // These can be scalar arguments or elements of a vector array type 4365 // passed directly. The latter are used to implement ELFv2 homogenous 4366 // vector aggregates. 4367 if (VR_idx != Num_VR_Regs) { 4368 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4369 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4370 ++VR_idx; 4371 } else { 4372 if (CallConv == CallingConv::Fast) 4373 ComputeArgOffset(); 4374 needsLoad = true; 4375 } 4376 if (CallConv != CallingConv::Fast || needsLoad) 4377 ArgOffset += 16; 4378 break; 4379 } 4380 4381 // We need to load the argument to a virtual register if we determined 4382 // above that we ran out of physical registers of the appropriate type. 4383 if (needsLoad) { 4384 if (ObjSize < ArgSize && !isLittleEndian) 4385 CurArgOffset += ArgSize - ObjSize; 4386 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4387 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4388 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4389 } 4390 4391 InVals.push_back(ArgVal); 4392 } 4393 4394 // Area that is at least reserved in the caller of this function. 4395 unsigned MinReservedArea; 4396 if (HasParameterArea) 4397 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4398 else 4399 MinReservedArea = LinkageSize; 4400 4401 // Set the size that is at least reserved in caller of this function. Tail 4402 // call optimized functions' reserved stack space needs to be aligned so that 4403 // taking the difference between two stack areas will result in an aligned 4404 // stack. 4405 MinReservedArea = 4406 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4407 FuncInfo->setMinReservedArea(MinReservedArea); 4408 4409 // If the function takes variable number of arguments, make a frame index for 4410 // the start of the first vararg value... for expansion of llvm.va_start. 4411 // On ELFv2ABI spec, it writes: 4412 // C programs that are intended to be *portable* across different compilers 4413 // and architectures must use the header file <stdarg.h> to deal with variable 4414 // argument lists. 4415 if (isVarArg && MFI.hasVAStart()) { 4416 int Depth = ArgOffset; 4417 4418 FuncInfo->setVarArgsFrameIndex( 4419 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4420 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4421 4422 // If this function is vararg, store any remaining integer argument regs 4423 // to their spots on the stack so that they may be loaded by dereferencing 4424 // the result of va_next. 4425 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4426 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4427 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4428 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4429 SDValue Store = 4430 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4431 MemOps.push_back(Store); 4432 // Increment the address by four for the next argument to store 4433 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4434 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4435 } 4436 } 4437 4438 if (!MemOps.empty()) 4439 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4440 4441 return Chain; 4442 } 4443 4444 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4445 /// adjusted to accommodate the arguments for the tailcall. 4446 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4447 unsigned ParamSize) { 4448 4449 if (!isTailCall) return 0; 4450 4451 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4452 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4453 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4454 // Remember only if the new adjustment is bigger. 4455 if (SPDiff < FI->getTailCallSPDelta()) 4456 FI->setTailCallSPDelta(SPDiff); 4457 4458 return SPDiff; 4459 } 4460 4461 static bool isFunctionGlobalAddress(SDValue Callee); 4462 4463 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4464 const TargetMachine &TM) { 4465 // It does not make sense to call callsShareTOCBase() with a caller that 4466 // is PC Relative since PC Relative callers do not have a TOC. 4467 #ifndef NDEBUG 4468 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4469 assert(!STICaller->isUsingPCRelativeCalls() && 4470 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4471 #endif 4472 4473 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4474 // don't have enough information to determine if the caller and callee share 4475 // the same TOC base, so we have to pessimistically assume they don't for 4476 // correctness. 4477 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4478 if (!G) 4479 return false; 4480 4481 const GlobalValue *GV = G->getGlobal(); 4482 4483 // If the callee is preemptable, then the static linker will use a plt-stub 4484 // which saves the toc to the stack, and needs a nop after the call 4485 // instruction to convert to a toc-restore. 4486 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4487 return false; 4488 4489 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4490 // We may need a TOC restore in the situation where the caller requires a 4491 // valid TOC but the callee is PC Relative and does not. 4492 const Function *F = dyn_cast<Function>(GV); 4493 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4494 4495 // If we have an Alias we can try to get the function from there. 4496 if (Alias) { 4497 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4498 F = dyn_cast<Function>(GlobalObj); 4499 } 4500 4501 // If we still have no valid function pointer we do not have enough 4502 // information to determine if the callee uses PC Relative calls so we must 4503 // assume that it does. 4504 if (!F) 4505 return false; 4506 4507 // If the callee uses PC Relative we cannot guarantee that the callee won't 4508 // clobber the TOC of the caller and so we must assume that the two 4509 // functions do not share a TOC base. 4510 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4511 if (STICallee->isUsingPCRelativeCalls()) 4512 return false; 4513 4514 // If the GV is not a strong definition then we need to assume it can be 4515 // replaced by another function at link time. The function that replaces 4516 // it may not share the same TOC as the caller since the callee may be 4517 // replaced by a PC Relative version of the same function. 4518 if (!GV->isStrongDefinitionForLinker()) 4519 return false; 4520 4521 // The medium and large code models are expected to provide a sufficiently 4522 // large TOC to provide all data addressing needs of a module with a 4523 // single TOC. 4524 if (CodeModel::Medium == TM.getCodeModel() || 4525 CodeModel::Large == TM.getCodeModel()) 4526 return true; 4527 4528 // Any explicitly-specified sections and section prefixes must also match. 4529 // Also, if we're using -ffunction-sections, then each function is always in 4530 // a different section (the same is true for COMDAT functions). 4531 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4532 GV->getSection() != Caller->getSection()) 4533 return false; 4534 if (const auto *F = dyn_cast<Function>(GV)) { 4535 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4536 return false; 4537 } 4538 4539 return true; 4540 } 4541 4542 static bool 4543 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4544 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4545 assert(Subtarget.is64BitELFABI()); 4546 4547 const unsigned PtrByteSize = 8; 4548 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4549 4550 static const MCPhysReg GPR[] = { 4551 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4552 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4553 }; 4554 static const MCPhysReg VR[] = { 4555 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4556 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4557 }; 4558 4559 const unsigned NumGPRs = array_lengthof(GPR); 4560 const unsigned NumFPRs = 13; 4561 const unsigned NumVRs = array_lengthof(VR); 4562 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4563 4564 unsigned NumBytes = LinkageSize; 4565 unsigned AvailableFPRs = NumFPRs; 4566 unsigned AvailableVRs = NumVRs; 4567 4568 for (const ISD::OutputArg& Param : Outs) { 4569 if (Param.Flags.isNest()) continue; 4570 4571 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4572 LinkageSize, ParamAreaSize, NumBytes, 4573 AvailableFPRs, AvailableVRs)) 4574 return true; 4575 } 4576 return false; 4577 } 4578 4579 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4580 if (CB.arg_size() != CallerFn->arg_size()) 4581 return false; 4582 4583 auto CalleeArgIter = CB.arg_begin(); 4584 auto CalleeArgEnd = CB.arg_end(); 4585 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4586 4587 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4588 const Value* CalleeArg = *CalleeArgIter; 4589 const Value* CallerArg = &(*CallerArgIter); 4590 if (CalleeArg == CallerArg) 4591 continue; 4592 4593 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4594 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4595 // } 4596 // 1st argument of callee is undef and has the same type as caller. 4597 if (CalleeArg->getType() == CallerArg->getType() && 4598 isa<UndefValue>(CalleeArg)) 4599 continue; 4600 4601 return false; 4602 } 4603 4604 return true; 4605 } 4606 4607 // Returns true if TCO is possible between the callers and callees 4608 // calling conventions. 4609 static bool 4610 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4611 CallingConv::ID CalleeCC) { 4612 // Tail calls are possible with fastcc and ccc. 4613 auto isTailCallableCC = [] (CallingConv::ID CC){ 4614 return CC == CallingConv::C || CC == CallingConv::Fast; 4615 }; 4616 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4617 return false; 4618 4619 // We can safely tail call both fastcc and ccc callees from a c calling 4620 // convention caller. If the caller is fastcc, we may have less stack space 4621 // than a non-fastcc caller with the same signature so disable tail-calls in 4622 // that case. 4623 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4624 } 4625 4626 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4627 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4628 const SmallVectorImpl<ISD::OutputArg> &Outs, 4629 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4630 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4631 4632 if (DisableSCO && !TailCallOpt) return false; 4633 4634 // Variadic argument functions are not supported. 4635 if (isVarArg) return false; 4636 4637 auto &Caller = DAG.getMachineFunction().getFunction(); 4638 // Check that the calling conventions are compatible for tco. 4639 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4640 return false; 4641 4642 // Caller contains any byval parameter is not supported. 4643 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4644 return false; 4645 4646 // Callee contains any byval parameter is not supported, too. 4647 // Note: This is a quick work around, because in some cases, e.g. 4648 // caller's stack size > callee's stack size, we are still able to apply 4649 // sibling call optimization. For example, gcc is able to do SCO for caller1 4650 // in the following example, but not for caller2. 4651 // struct test { 4652 // long int a; 4653 // char ary[56]; 4654 // } gTest; 4655 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4656 // b->a = v.a; 4657 // return 0; 4658 // } 4659 // void caller1(struct test a, struct test c, struct test *b) { 4660 // callee(gTest, b); } 4661 // void caller2(struct test *b) { callee(gTest, b); } 4662 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4663 return false; 4664 4665 // If callee and caller use different calling conventions, we cannot pass 4666 // parameters on stack since offsets for the parameter area may be different. 4667 if (Caller.getCallingConv() != CalleeCC && 4668 needStackSlotPassParameters(Subtarget, Outs)) 4669 return false; 4670 4671 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4672 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4673 // callee potentially have different TOC bases then we cannot tail call since 4674 // we need to restore the TOC pointer after the call. 4675 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4676 // We cannot guarantee this for indirect calls or calls to external functions. 4677 // When PC-Relative addressing is used, the concept of the TOC is no longer 4678 // applicable so this check is not required. 4679 // Check first for indirect calls. 4680 if (!Subtarget.isUsingPCRelativeCalls() && 4681 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4682 return false; 4683 4684 // Check if we share the TOC base. 4685 if (!Subtarget.isUsingPCRelativeCalls() && 4686 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4687 return false; 4688 4689 // TCO allows altering callee ABI, so we don't have to check further. 4690 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4691 return true; 4692 4693 if (DisableSCO) return false; 4694 4695 // If callee use the same argument list that caller is using, then we can 4696 // apply SCO on this case. If it is not, then we need to check if callee needs 4697 // stack for passing arguments. 4698 // PC Relative tail calls may not have a CallBase. 4699 // If there is no CallBase we cannot verify if we have the same argument 4700 // list so assume that we don't have the same argument list. 4701 if (CB && !hasSameArgumentList(&Caller, *CB) && 4702 needStackSlotPassParameters(Subtarget, Outs)) 4703 return false; 4704 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4705 return false; 4706 4707 return true; 4708 } 4709 4710 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4711 /// for tail call optimization. Targets which want to do tail call 4712 /// optimization should implement this function. 4713 bool 4714 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4715 CallingConv::ID CalleeCC, 4716 bool isVarArg, 4717 const SmallVectorImpl<ISD::InputArg> &Ins, 4718 SelectionDAG& DAG) const { 4719 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4720 return false; 4721 4722 // Variable argument functions are not supported. 4723 if (isVarArg) 4724 return false; 4725 4726 MachineFunction &MF = DAG.getMachineFunction(); 4727 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4728 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4729 // Functions containing by val parameters are not supported. 4730 for (unsigned i = 0; i != Ins.size(); i++) { 4731 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4732 if (Flags.isByVal()) return false; 4733 } 4734 4735 // Non-PIC/GOT tail calls are supported. 4736 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4737 return true; 4738 4739 // At the moment we can only do local tail calls (in same module, hidden 4740 // or protected) if we are generating PIC. 4741 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4742 return G->getGlobal()->hasHiddenVisibility() 4743 || G->getGlobal()->hasProtectedVisibility(); 4744 } 4745 4746 return false; 4747 } 4748 4749 /// isCallCompatibleAddress - Return the immediate to use if the specified 4750 /// 32-bit value is representable in the immediate field of a BxA instruction. 4751 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4752 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4753 if (!C) return nullptr; 4754 4755 int Addr = C->getZExtValue(); 4756 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4757 SignExtend32<26>(Addr) != Addr) 4758 return nullptr; // Top 6 bits have to be sext of immediate. 4759 4760 return DAG 4761 .getConstant( 4762 (int)C->getZExtValue() >> 2, SDLoc(Op), 4763 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4764 .getNode(); 4765 } 4766 4767 namespace { 4768 4769 struct TailCallArgumentInfo { 4770 SDValue Arg; 4771 SDValue FrameIdxOp; 4772 int FrameIdx = 0; 4773 4774 TailCallArgumentInfo() = default; 4775 }; 4776 4777 } // end anonymous namespace 4778 4779 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4780 static void StoreTailCallArgumentsToStackSlot( 4781 SelectionDAG &DAG, SDValue Chain, 4782 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4783 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4784 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4785 SDValue Arg = TailCallArgs[i].Arg; 4786 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4787 int FI = TailCallArgs[i].FrameIdx; 4788 // Store relative to framepointer. 4789 MemOpChains.push_back(DAG.getStore( 4790 Chain, dl, Arg, FIN, 4791 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4792 } 4793 } 4794 4795 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4796 /// the appropriate stack slot for the tail call optimized function call. 4797 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4798 SDValue OldRetAddr, SDValue OldFP, 4799 int SPDiff, const SDLoc &dl) { 4800 if (SPDiff) { 4801 // Calculate the new stack slot for the return address. 4802 MachineFunction &MF = DAG.getMachineFunction(); 4803 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4804 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4805 bool isPPC64 = Subtarget.isPPC64(); 4806 int SlotSize = isPPC64 ? 8 : 4; 4807 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4808 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4809 NewRetAddrLoc, true); 4810 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4811 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4812 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4813 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4814 } 4815 return Chain; 4816 } 4817 4818 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4819 /// the position of the argument. 4820 static void 4821 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4822 SDValue Arg, int SPDiff, unsigned ArgOffset, 4823 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4824 int Offset = ArgOffset + SPDiff; 4825 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4826 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4827 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4828 SDValue FIN = DAG.getFrameIndex(FI, VT); 4829 TailCallArgumentInfo Info; 4830 Info.Arg = Arg; 4831 Info.FrameIdxOp = FIN; 4832 Info.FrameIdx = FI; 4833 TailCallArguments.push_back(Info); 4834 } 4835 4836 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4837 /// stack slot. Returns the chain as result and the loaded frame pointers in 4838 /// LROpOut/FPOpout. Used when tail calling. 4839 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4840 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4841 SDValue &FPOpOut, const SDLoc &dl) const { 4842 if (SPDiff) { 4843 // Load the LR and FP stack slot for later adjusting. 4844 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4845 LROpOut = getReturnAddrFrameIndex(DAG); 4846 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4847 Chain = SDValue(LROpOut.getNode(), 1); 4848 } 4849 return Chain; 4850 } 4851 4852 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4853 /// by "Src" to address "Dst" of size "Size". Alignment information is 4854 /// specified by the specific parameter attribute. The copy will be passed as 4855 /// a byval function parameter. 4856 /// Sometimes what we are copying is the end of a larger object, the part that 4857 /// does not fit in registers. 4858 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4859 SDValue Chain, ISD::ArgFlagsTy Flags, 4860 SelectionDAG &DAG, const SDLoc &dl) { 4861 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4862 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4863 Flags.getNonZeroByValAlign(), false, false, false, 4864 MachinePointerInfo(), MachinePointerInfo()); 4865 } 4866 4867 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4868 /// tail calls. 4869 static void LowerMemOpCallTo( 4870 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4871 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4872 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4873 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4874 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4875 if (!isTailCall) { 4876 if (isVector) { 4877 SDValue StackPtr; 4878 if (isPPC64) 4879 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4880 else 4881 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4882 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4883 DAG.getConstant(ArgOffset, dl, PtrVT)); 4884 } 4885 MemOpChains.push_back( 4886 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4887 // Calculate and remember argument location. 4888 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4889 TailCallArguments); 4890 } 4891 4892 static void 4893 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4894 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4895 SDValue FPOp, 4896 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4897 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4898 // might overwrite each other in case of tail call optimization. 4899 SmallVector<SDValue, 8> MemOpChains2; 4900 // Do not flag preceding copytoreg stuff together with the following stuff. 4901 InFlag = SDValue(); 4902 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4903 MemOpChains2, dl); 4904 if (!MemOpChains2.empty()) 4905 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4906 4907 // Store the return address to the appropriate stack slot. 4908 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4909 4910 // Emit callseq_end just before tailcall node. 4911 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4912 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4913 InFlag = Chain.getValue(1); 4914 } 4915 4916 // Is this global address that of a function that can be called by name? (as 4917 // opposed to something that must hold a descriptor for an indirect call). 4918 static bool isFunctionGlobalAddress(SDValue Callee) { 4919 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4920 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4921 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4922 return false; 4923 4924 return G->getGlobal()->getValueType()->isFunctionTy(); 4925 } 4926 4927 return false; 4928 } 4929 4930 SDValue PPCTargetLowering::LowerCallResult( 4931 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4932 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4933 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4934 SmallVector<CCValAssign, 16> RVLocs; 4935 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4936 *DAG.getContext()); 4937 4938 CCRetInfo.AnalyzeCallResult( 4939 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4940 ? RetCC_PPC_Cold 4941 : RetCC_PPC); 4942 4943 // Copy all of the result registers out of their specified physreg. 4944 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4945 CCValAssign &VA = RVLocs[i]; 4946 assert(VA.isRegLoc() && "Can only return in registers!"); 4947 4948 SDValue Val; 4949 4950 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 4951 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4952 InFlag); 4953 Chain = Lo.getValue(1); 4954 InFlag = Lo.getValue(2); 4955 VA = RVLocs[++i]; // skip ahead to next loc 4956 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4957 InFlag); 4958 Chain = Hi.getValue(1); 4959 InFlag = Hi.getValue(2); 4960 if (!Subtarget.isLittleEndian()) 4961 std::swap (Lo, Hi); 4962 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 4963 } else { 4964 Val = DAG.getCopyFromReg(Chain, dl, 4965 VA.getLocReg(), VA.getLocVT(), InFlag); 4966 Chain = Val.getValue(1); 4967 InFlag = Val.getValue(2); 4968 } 4969 4970 switch (VA.getLocInfo()) { 4971 default: llvm_unreachable("Unknown loc info!"); 4972 case CCValAssign::Full: break; 4973 case CCValAssign::AExt: 4974 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4975 break; 4976 case CCValAssign::ZExt: 4977 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4978 DAG.getValueType(VA.getValVT())); 4979 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4980 break; 4981 case CCValAssign::SExt: 4982 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4983 DAG.getValueType(VA.getValVT())); 4984 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4985 break; 4986 } 4987 4988 InVals.push_back(Val); 4989 } 4990 4991 return Chain; 4992 } 4993 4994 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 4995 const PPCSubtarget &Subtarget, bool isPatchPoint) { 4996 // PatchPoint calls are not indirect. 4997 if (isPatchPoint) 4998 return false; 4999 5000 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5001 return false; 5002 5003 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5004 // becuase the immediate function pointer points to a descriptor instead of 5005 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5006 // pointer immediate points to the global entry point, while the BLA would 5007 // need to jump to the local entry point (see rL211174). 5008 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5009 isBLACompatibleAddress(Callee, DAG)) 5010 return false; 5011 5012 return true; 5013 } 5014 5015 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5016 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5017 return Subtarget.isAIXABI() || 5018 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5019 } 5020 5021 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5022 const Function &Caller, 5023 const SDValue &Callee, 5024 const PPCSubtarget &Subtarget, 5025 const TargetMachine &TM) { 5026 if (CFlags.IsTailCall) 5027 return PPCISD::TC_RETURN; 5028 5029 // This is a call through a function pointer. 5030 if (CFlags.IsIndirect) { 5031 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5032 // indirect calls. The save of the caller's TOC pointer to the stack will be 5033 // inserted into the DAG as part of call lowering. The restore of the TOC 5034 // pointer is modeled by using a pseudo instruction for the call opcode that 5035 // represents the 2 instruction sequence of an indirect branch and link, 5036 // immediately followed by a load of the TOC pointer from the the stack save 5037 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5038 // as it is not saved or used. 5039 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5040 : PPCISD::BCTRL; 5041 } 5042 5043 if (Subtarget.isUsingPCRelativeCalls()) { 5044 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5045 return PPCISD::CALL_NOTOC; 5046 } 5047 5048 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5049 // immediately following the call instruction if the caller and callee may 5050 // have different TOC bases. At link time if the linker determines the calls 5051 // may not share a TOC base, the call is redirected to a trampoline inserted 5052 // by the linker. The trampoline will (among other things) save the callers 5053 // TOC pointer at an ABI designated offset in the linkage area and the linker 5054 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5055 // into gpr2. 5056 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5057 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5058 : PPCISD::CALL_NOP; 5059 5060 return PPCISD::CALL; 5061 } 5062 5063 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5064 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5065 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5066 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5067 return SDValue(Dest, 0); 5068 5069 // Returns true if the callee is local, and false otherwise. 5070 auto isLocalCallee = [&]() { 5071 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5072 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5073 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5074 5075 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5076 !dyn_cast_or_null<GlobalIFunc>(GV); 5077 }; 5078 5079 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5080 // a static relocation model causes some versions of GNU LD (2.17.50, at 5081 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5082 // built with secure-PLT. 5083 bool UsePlt = 5084 Subtarget.is32BitELFABI() && !isLocalCallee() && 5085 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5086 5087 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5088 const TargetMachine &TM = Subtarget.getTargetMachine(); 5089 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5090 MCSymbolXCOFF *S = 5091 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5092 5093 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5094 return DAG.getMCSymbol(S, PtrVT); 5095 }; 5096 5097 if (isFunctionGlobalAddress(Callee)) { 5098 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5099 5100 if (Subtarget.isAIXABI()) { 5101 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5102 return getAIXFuncEntryPointSymbolSDNode(GV); 5103 } 5104 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5105 UsePlt ? PPCII::MO_PLT : 0); 5106 } 5107 5108 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5109 const char *SymName = S->getSymbol(); 5110 if (Subtarget.isAIXABI()) { 5111 // If there exists a user-declared function whose name is the same as the 5112 // ExternalSymbol's, then we pick up the user-declared version. 5113 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5114 if (const Function *F = 5115 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5116 return getAIXFuncEntryPointSymbolSDNode(F); 5117 5118 // On AIX, direct function calls reference the symbol for the function's 5119 // entry point, which is named by prepending a "." before the function's 5120 // C-linkage name. A Qualname is returned here because an external 5121 // function entry point is a csect with XTY_ER property. 5122 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5123 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5124 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5125 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5126 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5127 return Sec->getQualNameSymbol(); 5128 }; 5129 5130 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5131 } 5132 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5133 UsePlt ? PPCII::MO_PLT : 0); 5134 } 5135 5136 // No transformation needed. 5137 assert(Callee.getNode() && "What no callee?"); 5138 return Callee; 5139 } 5140 5141 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5142 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5143 "Expected a CALLSEQ_STARTSDNode."); 5144 5145 // The last operand is the chain, except when the node has glue. If the node 5146 // has glue, then the last operand is the glue, and the chain is the second 5147 // last operand. 5148 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5149 if (LastValue.getValueType() != MVT::Glue) 5150 return LastValue; 5151 5152 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5153 } 5154 5155 // Creates the node that moves a functions address into the count register 5156 // to prepare for an indirect call instruction. 5157 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5158 SDValue &Glue, SDValue &Chain, 5159 const SDLoc &dl) { 5160 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5161 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5162 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5163 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5164 // The glue is the second value produced. 5165 Glue = Chain.getValue(1); 5166 } 5167 5168 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5169 SDValue &Glue, SDValue &Chain, 5170 SDValue CallSeqStart, 5171 const CallBase *CB, const SDLoc &dl, 5172 bool hasNest, 5173 const PPCSubtarget &Subtarget) { 5174 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5175 // entry point, but to the function descriptor (the function entry point 5176 // address is part of the function descriptor though). 5177 // The function descriptor is a three doubleword structure with the 5178 // following fields: function entry point, TOC base address and 5179 // environment pointer. 5180 // Thus for a call through a function pointer, the following actions need 5181 // to be performed: 5182 // 1. Save the TOC of the caller in the TOC save area of its stack 5183 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5184 // 2. Load the address of the function entry point from the function 5185 // descriptor. 5186 // 3. Load the TOC of the callee from the function descriptor into r2. 5187 // 4. Load the environment pointer from the function descriptor into 5188 // r11. 5189 // 5. Branch to the function entry point address. 5190 // 6. On return of the callee, the TOC of the caller needs to be 5191 // restored (this is done in FinishCall()). 5192 // 5193 // The loads are scheduled at the beginning of the call sequence, and the 5194 // register copies are flagged together to ensure that no other 5195 // operations can be scheduled in between. E.g. without flagging the 5196 // copies together, a TOC access in the caller could be scheduled between 5197 // the assignment of the callee TOC and the branch to the callee, which leads 5198 // to incorrect code. 5199 5200 // Start by loading the function address from the descriptor. 5201 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5202 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5203 ? (MachineMemOperand::MODereferenceable | 5204 MachineMemOperand::MOInvariant) 5205 : MachineMemOperand::MONone; 5206 5207 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5208 5209 // Registers used in building the DAG. 5210 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5211 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5212 5213 // Offsets of descriptor members. 5214 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5215 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5216 5217 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5218 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5219 5220 // One load for the functions entry point address. 5221 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5222 Alignment, MMOFlags); 5223 5224 // One for loading the TOC anchor for the module that contains the called 5225 // function. 5226 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5227 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5228 SDValue TOCPtr = 5229 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5230 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5231 5232 // One for loading the environment pointer. 5233 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5234 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5235 SDValue LoadEnvPtr = 5236 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5237 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5238 5239 5240 // Then copy the newly loaded TOC anchor to the TOC pointer. 5241 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5242 Chain = TOCVal.getValue(0); 5243 Glue = TOCVal.getValue(1); 5244 5245 // If the function call has an explicit 'nest' parameter, it takes the 5246 // place of the environment pointer. 5247 assert((!hasNest || !Subtarget.isAIXABI()) && 5248 "Nest parameter is not supported on AIX."); 5249 if (!hasNest) { 5250 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5251 Chain = EnvVal.getValue(0); 5252 Glue = EnvVal.getValue(1); 5253 } 5254 5255 // The rest of the indirect call sequence is the same as the non-descriptor 5256 // DAG. 5257 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5258 } 5259 5260 static void 5261 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5262 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5263 SelectionDAG &DAG, 5264 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5265 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5266 const PPCSubtarget &Subtarget) { 5267 const bool IsPPC64 = Subtarget.isPPC64(); 5268 // MVT for a general purpose register. 5269 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5270 5271 // First operand is always the chain. 5272 Ops.push_back(Chain); 5273 5274 // If it's a direct call pass the callee as the second operand. 5275 if (!CFlags.IsIndirect) 5276 Ops.push_back(Callee); 5277 else { 5278 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5279 5280 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5281 // on the stack (this would have been done in `LowerCall_64SVR4` or 5282 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5283 // represents both the indirect branch and a load that restores the TOC 5284 // pointer from the linkage area. The operand for the TOC restore is an add 5285 // of the TOC save offset to the stack pointer. This must be the second 5286 // operand: after the chain input but before any other variadic arguments. 5287 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5288 // saved or used. 5289 if (isTOCSaveRestoreRequired(Subtarget)) { 5290 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5291 5292 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5293 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5294 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5295 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5296 Ops.push_back(AddTOC); 5297 } 5298 5299 // Add the register used for the environment pointer. 5300 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5301 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5302 RegVT)); 5303 5304 5305 // Add CTR register as callee so a bctr can be emitted later. 5306 if (CFlags.IsTailCall) 5307 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5308 } 5309 5310 // If this is a tail call add stack pointer delta. 5311 if (CFlags.IsTailCall) 5312 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5313 5314 // Add argument registers to the end of the list so that they are known live 5315 // into the call. 5316 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5317 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5318 RegsToPass[i].second.getValueType())); 5319 5320 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5321 // no way to mark dependencies as implicit here. 5322 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5323 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5324 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5325 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5326 5327 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5328 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5329 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5330 5331 // Add a register mask operand representing the call-preserved registers. 5332 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5333 const uint32_t *Mask = 5334 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5335 assert(Mask && "Missing call preserved mask for calling convention"); 5336 Ops.push_back(DAG.getRegisterMask(Mask)); 5337 5338 // If the glue is valid, it is the last operand. 5339 if (Glue.getNode()) 5340 Ops.push_back(Glue); 5341 } 5342 5343 SDValue PPCTargetLowering::FinishCall( 5344 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5345 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5346 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5347 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5348 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5349 5350 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5351 Subtarget.isAIXABI()) 5352 setUsesTOCBasePtr(DAG); 5353 5354 unsigned CallOpc = 5355 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5356 Subtarget, DAG.getTarget()); 5357 5358 if (!CFlags.IsIndirect) 5359 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5360 else if (Subtarget.usesFunctionDescriptors()) 5361 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5362 dl, CFlags.HasNest, Subtarget); 5363 else 5364 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5365 5366 // Build the operand list for the call instruction. 5367 SmallVector<SDValue, 8> Ops; 5368 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5369 SPDiff, Subtarget); 5370 5371 // Emit tail call. 5372 if (CFlags.IsTailCall) { 5373 // Indirect tail call when using PC Relative calls do not have the same 5374 // constraints. 5375 assert(((Callee.getOpcode() == ISD::Register && 5376 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5377 Callee.getOpcode() == ISD::TargetExternalSymbol || 5378 Callee.getOpcode() == ISD::TargetGlobalAddress || 5379 isa<ConstantSDNode>(Callee) || 5380 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5381 "Expecting a global address, external symbol, absolute value, " 5382 "register or an indirect tail call when PC Relative calls are " 5383 "used."); 5384 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5385 assert(CallOpc == PPCISD::TC_RETURN && 5386 "Unexpected call opcode for a tail call."); 5387 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5388 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5389 } 5390 5391 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5392 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5393 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5394 Glue = Chain.getValue(1); 5395 5396 // When performing tail call optimization the callee pops its arguments off 5397 // the stack. Account for this here so these bytes can be pushed back on in 5398 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5399 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5400 getTargetMachine().Options.GuaranteedTailCallOpt) 5401 ? NumBytes 5402 : 0; 5403 5404 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5405 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5406 Glue, dl); 5407 Glue = Chain.getValue(1); 5408 5409 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5410 DAG, InVals); 5411 } 5412 5413 SDValue 5414 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5415 SmallVectorImpl<SDValue> &InVals) const { 5416 SelectionDAG &DAG = CLI.DAG; 5417 SDLoc &dl = CLI.DL; 5418 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5419 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5420 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5421 SDValue Chain = CLI.Chain; 5422 SDValue Callee = CLI.Callee; 5423 bool &isTailCall = CLI.IsTailCall; 5424 CallingConv::ID CallConv = CLI.CallConv; 5425 bool isVarArg = CLI.IsVarArg; 5426 bool isPatchPoint = CLI.IsPatchPoint; 5427 const CallBase *CB = CLI.CB; 5428 5429 if (isTailCall) { 5430 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5431 isTailCall = false; 5432 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5433 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5434 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5435 else 5436 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5437 Ins, DAG); 5438 if (isTailCall) { 5439 ++NumTailCalls; 5440 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5441 ++NumSiblingCalls; 5442 5443 // PC Relative calls no longer guarantee that the callee is a Global 5444 // Address Node. The callee could be an indirect tail call in which 5445 // case the SDValue for the callee could be a load (to load the address 5446 // of a function pointer) or it may be a register copy (to move the 5447 // address of the callee from a function parameter into a virtual 5448 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5449 assert((Subtarget.isUsingPCRelativeCalls() || 5450 isa<GlobalAddressSDNode>(Callee)) && 5451 "Callee should be an llvm::Function object."); 5452 5453 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5454 << "\nTCO callee: "); 5455 LLVM_DEBUG(Callee.dump()); 5456 } 5457 } 5458 5459 if (!isTailCall && CB && CB->isMustTailCall()) 5460 report_fatal_error("failed to perform tail call elimination on a call " 5461 "site marked musttail"); 5462 5463 // When long calls (i.e. indirect calls) are always used, calls are always 5464 // made via function pointer. If we have a function name, first translate it 5465 // into a pointer. 5466 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5467 !isTailCall) 5468 Callee = LowerGlobalAddress(Callee, DAG); 5469 5470 CallFlags CFlags( 5471 CallConv, isTailCall, isVarArg, isPatchPoint, 5472 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5473 // hasNest 5474 Subtarget.is64BitELFABI() && 5475 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5476 CLI.NoMerge); 5477 5478 if (Subtarget.isAIXABI()) 5479 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5480 InVals, CB); 5481 5482 assert(Subtarget.isSVR4ABI()); 5483 if (Subtarget.isPPC64()) 5484 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5485 InVals, CB); 5486 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5487 InVals, CB); 5488 } 5489 5490 SDValue PPCTargetLowering::LowerCall_32SVR4( 5491 SDValue Chain, SDValue Callee, CallFlags CFlags, 5492 const SmallVectorImpl<ISD::OutputArg> &Outs, 5493 const SmallVectorImpl<SDValue> &OutVals, 5494 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5495 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5496 const CallBase *CB) const { 5497 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5498 // of the 32-bit SVR4 ABI stack frame layout. 5499 5500 const CallingConv::ID CallConv = CFlags.CallConv; 5501 const bool IsVarArg = CFlags.IsVarArg; 5502 const bool IsTailCall = CFlags.IsTailCall; 5503 5504 assert((CallConv == CallingConv::C || 5505 CallConv == CallingConv::Cold || 5506 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5507 5508 const Align PtrAlign(4); 5509 5510 MachineFunction &MF = DAG.getMachineFunction(); 5511 5512 // Mark this function as potentially containing a function that contains a 5513 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5514 // and restoring the callers stack pointer in this functions epilog. This is 5515 // done because by tail calling the called function might overwrite the value 5516 // in this function's (MF) stack pointer stack slot 0(SP). 5517 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5518 CallConv == CallingConv::Fast) 5519 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5520 5521 // Count how many bytes are to be pushed on the stack, including the linkage 5522 // area, parameter list area and the part of the local variable space which 5523 // contains copies of aggregates which are passed by value. 5524 5525 // Assign locations to all of the outgoing arguments. 5526 SmallVector<CCValAssign, 16> ArgLocs; 5527 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5528 5529 // Reserve space for the linkage area on the stack. 5530 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5531 PtrAlign); 5532 if (useSoftFloat()) 5533 CCInfo.PreAnalyzeCallOperands(Outs); 5534 5535 if (IsVarArg) { 5536 // Handle fixed and variable vector arguments differently. 5537 // Fixed vector arguments go into registers as long as registers are 5538 // available. Variable vector arguments always go into memory. 5539 unsigned NumArgs = Outs.size(); 5540 5541 for (unsigned i = 0; i != NumArgs; ++i) { 5542 MVT ArgVT = Outs[i].VT; 5543 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5544 bool Result; 5545 5546 if (Outs[i].IsFixed) { 5547 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5548 CCInfo); 5549 } else { 5550 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5551 ArgFlags, CCInfo); 5552 } 5553 5554 if (Result) { 5555 #ifndef NDEBUG 5556 errs() << "Call operand #" << i << " has unhandled type " 5557 << EVT(ArgVT).getEVTString() << "\n"; 5558 #endif 5559 llvm_unreachable(nullptr); 5560 } 5561 } 5562 } else { 5563 // All arguments are treated the same. 5564 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5565 } 5566 CCInfo.clearWasPPCF128(); 5567 5568 // Assign locations to all of the outgoing aggregate by value arguments. 5569 SmallVector<CCValAssign, 16> ByValArgLocs; 5570 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5571 5572 // Reserve stack space for the allocations in CCInfo. 5573 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5574 5575 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5576 5577 // Size of the linkage area, parameter list area and the part of the local 5578 // space variable where copies of aggregates which are passed by value are 5579 // stored. 5580 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5581 5582 // Calculate by how many bytes the stack has to be adjusted in case of tail 5583 // call optimization. 5584 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5585 5586 // Adjust the stack pointer for the new arguments... 5587 // These operations are automatically eliminated by the prolog/epilog pass 5588 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5589 SDValue CallSeqStart = Chain; 5590 5591 // Load the return address and frame pointer so it can be moved somewhere else 5592 // later. 5593 SDValue LROp, FPOp; 5594 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5595 5596 // Set up a copy of the stack pointer for use loading and storing any 5597 // arguments that may not fit in the registers available for argument 5598 // passing. 5599 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5600 5601 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5602 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5603 SmallVector<SDValue, 8> MemOpChains; 5604 5605 bool seenFloatArg = false; 5606 // Walk the register/memloc assignments, inserting copies/loads. 5607 // i - Tracks the index into the list of registers allocated for the call 5608 // RealArgIdx - Tracks the index into the list of actual function arguments 5609 // j - Tracks the index into the list of byval arguments 5610 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5611 i != e; 5612 ++i, ++RealArgIdx) { 5613 CCValAssign &VA = ArgLocs[i]; 5614 SDValue Arg = OutVals[RealArgIdx]; 5615 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5616 5617 if (Flags.isByVal()) { 5618 // Argument is an aggregate which is passed by value, thus we need to 5619 // create a copy of it in the local variable space of the current stack 5620 // frame (which is the stack frame of the caller) and pass the address of 5621 // this copy to the callee. 5622 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5623 CCValAssign &ByValVA = ByValArgLocs[j++]; 5624 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5625 5626 // Memory reserved in the local variable space of the callers stack frame. 5627 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5628 5629 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5630 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5631 StackPtr, PtrOff); 5632 5633 // Create a copy of the argument in the local area of the current 5634 // stack frame. 5635 SDValue MemcpyCall = 5636 CreateCopyOfByValArgument(Arg, PtrOff, 5637 CallSeqStart.getNode()->getOperand(0), 5638 Flags, DAG, dl); 5639 5640 // This must go outside the CALLSEQ_START..END. 5641 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5642 SDLoc(MemcpyCall)); 5643 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5644 NewCallSeqStart.getNode()); 5645 Chain = CallSeqStart = NewCallSeqStart; 5646 5647 // Pass the address of the aggregate copy on the stack either in a 5648 // physical register or in the parameter list area of the current stack 5649 // frame to the callee. 5650 Arg = PtrOff; 5651 } 5652 5653 // When useCRBits() is true, there can be i1 arguments. 5654 // It is because getRegisterType(MVT::i1) => MVT::i1, 5655 // and for other integer types getRegisterType() => MVT::i32. 5656 // Extend i1 and ensure callee will get i32. 5657 if (Arg.getValueType() == MVT::i1) 5658 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5659 dl, MVT::i32, Arg); 5660 5661 if (VA.isRegLoc()) { 5662 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5663 // Put argument in a physical register. 5664 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5665 bool IsLE = Subtarget.isLittleEndian(); 5666 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5667 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5668 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5669 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5670 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5671 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5672 SVal.getValue(0))); 5673 } else 5674 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5675 } else { 5676 // Put argument in the parameter list area of the current stack frame. 5677 assert(VA.isMemLoc()); 5678 unsigned LocMemOffset = VA.getLocMemOffset(); 5679 5680 if (!IsTailCall) { 5681 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5682 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5683 StackPtr, PtrOff); 5684 5685 MemOpChains.push_back( 5686 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5687 } else { 5688 // Calculate and remember argument location. 5689 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5690 TailCallArguments); 5691 } 5692 } 5693 } 5694 5695 if (!MemOpChains.empty()) 5696 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5697 5698 // Build a sequence of copy-to-reg nodes chained together with token chain 5699 // and flag operands which copy the outgoing args into the appropriate regs. 5700 SDValue InFlag; 5701 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5702 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5703 RegsToPass[i].second, InFlag); 5704 InFlag = Chain.getValue(1); 5705 } 5706 5707 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5708 // registers. 5709 if (IsVarArg) { 5710 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5711 SDValue Ops[] = { Chain, InFlag }; 5712 5713 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5714 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5715 5716 InFlag = Chain.getValue(1); 5717 } 5718 5719 if (IsTailCall) 5720 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5721 TailCallArguments); 5722 5723 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5724 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5725 } 5726 5727 // Copy an argument into memory, being careful to do this outside the 5728 // call sequence for the call to which the argument belongs. 5729 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5730 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5731 SelectionDAG &DAG, const SDLoc &dl) const { 5732 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5733 CallSeqStart.getNode()->getOperand(0), 5734 Flags, DAG, dl); 5735 // The MEMCPY must go outside the CALLSEQ_START..END. 5736 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5737 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5738 SDLoc(MemcpyCall)); 5739 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5740 NewCallSeqStart.getNode()); 5741 return NewCallSeqStart; 5742 } 5743 5744 SDValue PPCTargetLowering::LowerCall_64SVR4( 5745 SDValue Chain, SDValue Callee, CallFlags CFlags, 5746 const SmallVectorImpl<ISD::OutputArg> &Outs, 5747 const SmallVectorImpl<SDValue> &OutVals, 5748 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5749 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5750 const CallBase *CB) const { 5751 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5752 bool isLittleEndian = Subtarget.isLittleEndian(); 5753 unsigned NumOps = Outs.size(); 5754 bool IsSibCall = false; 5755 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5756 5757 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5758 unsigned PtrByteSize = 8; 5759 5760 MachineFunction &MF = DAG.getMachineFunction(); 5761 5762 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5763 IsSibCall = true; 5764 5765 // Mark this function as potentially containing a function that contains a 5766 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5767 // and restoring the callers stack pointer in this functions epilog. This is 5768 // done because by tail calling the called function might overwrite the value 5769 // in this function's (MF) stack pointer stack slot 0(SP). 5770 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5771 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5772 5773 assert(!(IsFastCall && CFlags.IsVarArg) && 5774 "fastcc not supported on varargs functions"); 5775 5776 // Count how many bytes are to be pushed on the stack, including the linkage 5777 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5778 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5779 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5780 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5781 unsigned NumBytes = LinkageSize; 5782 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5783 5784 static const MCPhysReg GPR[] = { 5785 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5786 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5787 }; 5788 static const MCPhysReg VR[] = { 5789 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5790 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5791 }; 5792 5793 const unsigned NumGPRs = array_lengthof(GPR); 5794 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5795 const unsigned NumVRs = array_lengthof(VR); 5796 5797 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5798 // can be passed to the callee in registers. 5799 // For the fast calling convention, there is another check below. 5800 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5801 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5802 if (!HasParameterArea) { 5803 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5804 unsigned AvailableFPRs = NumFPRs; 5805 unsigned AvailableVRs = NumVRs; 5806 unsigned NumBytesTmp = NumBytes; 5807 for (unsigned i = 0; i != NumOps; ++i) { 5808 if (Outs[i].Flags.isNest()) continue; 5809 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5810 PtrByteSize, LinkageSize, ParamAreaSize, 5811 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5812 HasParameterArea = true; 5813 } 5814 } 5815 5816 // When using the fast calling convention, we don't provide backing for 5817 // arguments that will be in registers. 5818 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5819 5820 // Avoid allocating parameter area for fastcc functions if all the arguments 5821 // can be passed in the registers. 5822 if (IsFastCall) 5823 HasParameterArea = false; 5824 5825 // Add up all the space actually used. 5826 for (unsigned i = 0; i != NumOps; ++i) { 5827 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5828 EVT ArgVT = Outs[i].VT; 5829 EVT OrigVT = Outs[i].ArgVT; 5830 5831 if (Flags.isNest()) 5832 continue; 5833 5834 if (IsFastCall) { 5835 if (Flags.isByVal()) { 5836 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5837 if (NumGPRsUsed > NumGPRs) 5838 HasParameterArea = true; 5839 } else { 5840 switch (ArgVT.getSimpleVT().SimpleTy) { 5841 default: llvm_unreachable("Unexpected ValueType for argument!"); 5842 case MVT::i1: 5843 case MVT::i32: 5844 case MVT::i64: 5845 if (++NumGPRsUsed <= NumGPRs) 5846 continue; 5847 break; 5848 case MVT::v4i32: 5849 case MVT::v8i16: 5850 case MVT::v16i8: 5851 case MVT::v2f64: 5852 case MVT::v2i64: 5853 case MVT::v1i128: 5854 case MVT::f128: 5855 if (++NumVRsUsed <= NumVRs) 5856 continue; 5857 break; 5858 case MVT::v4f32: 5859 if (++NumVRsUsed <= NumVRs) 5860 continue; 5861 break; 5862 case MVT::f32: 5863 case MVT::f64: 5864 if (++NumFPRsUsed <= NumFPRs) 5865 continue; 5866 break; 5867 } 5868 HasParameterArea = true; 5869 } 5870 } 5871 5872 /* Respect alignment of argument on the stack. */ 5873 auto Alignement = 5874 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5875 NumBytes = alignTo(NumBytes, Alignement); 5876 5877 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5878 if (Flags.isInConsecutiveRegsLast()) 5879 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5880 } 5881 5882 unsigned NumBytesActuallyUsed = NumBytes; 5883 5884 // In the old ELFv1 ABI, 5885 // the prolog code of the callee may store up to 8 GPR argument registers to 5886 // the stack, allowing va_start to index over them in memory if its varargs. 5887 // Because we cannot tell if this is needed on the caller side, we have to 5888 // conservatively assume that it is needed. As such, make sure we have at 5889 // least enough stack space for the caller to store the 8 GPRs. 5890 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5891 // really requires memory operands, e.g. a vararg function. 5892 if (HasParameterArea) 5893 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5894 else 5895 NumBytes = LinkageSize; 5896 5897 // Tail call needs the stack to be aligned. 5898 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5899 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5900 5901 int SPDiff = 0; 5902 5903 // Calculate by how many bytes the stack has to be adjusted in case of tail 5904 // call optimization. 5905 if (!IsSibCall) 5906 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5907 5908 // To protect arguments on the stack from being clobbered in a tail call, 5909 // force all the loads to happen before doing any other lowering. 5910 if (CFlags.IsTailCall) 5911 Chain = DAG.getStackArgumentTokenFactor(Chain); 5912 5913 // Adjust the stack pointer for the new arguments... 5914 // These operations are automatically eliminated by the prolog/epilog pass 5915 if (!IsSibCall) 5916 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5917 SDValue CallSeqStart = Chain; 5918 5919 // Load the return address and frame pointer so it can be move somewhere else 5920 // later. 5921 SDValue LROp, FPOp; 5922 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5923 5924 // Set up a copy of the stack pointer for use loading and storing any 5925 // arguments that may not fit in the registers available for argument 5926 // passing. 5927 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5928 5929 // Figure out which arguments are going to go in registers, and which in 5930 // memory. Also, if this is a vararg function, floating point operations 5931 // must be stored to our stack, and loaded into integer regs as well, if 5932 // any integer regs are available for argument passing. 5933 unsigned ArgOffset = LinkageSize; 5934 5935 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5936 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5937 5938 SmallVector<SDValue, 8> MemOpChains; 5939 for (unsigned i = 0; i != NumOps; ++i) { 5940 SDValue Arg = OutVals[i]; 5941 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5942 EVT ArgVT = Outs[i].VT; 5943 EVT OrigVT = Outs[i].ArgVT; 5944 5945 // PtrOff will be used to store the current argument to the stack if a 5946 // register cannot be found for it. 5947 SDValue PtrOff; 5948 5949 // We re-align the argument offset for each argument, except when using the 5950 // fast calling convention, when we need to make sure we do that only when 5951 // we'll actually use a stack slot. 5952 auto ComputePtrOff = [&]() { 5953 /* Respect alignment of argument on the stack. */ 5954 auto Alignment = 5955 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5956 ArgOffset = alignTo(ArgOffset, Alignment); 5957 5958 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5959 5960 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5961 }; 5962 5963 if (!IsFastCall) { 5964 ComputePtrOff(); 5965 5966 /* Compute GPR index associated with argument offset. */ 5967 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5968 GPR_idx = std::min(GPR_idx, NumGPRs); 5969 } 5970 5971 // Promote integers to 64-bit values. 5972 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5973 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5974 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5975 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5976 } 5977 5978 // FIXME memcpy is used way more than necessary. Correctness first. 5979 // Note: "by value" is code for passing a structure by value, not 5980 // basic types. 5981 if (Flags.isByVal()) { 5982 // Note: Size includes alignment padding, so 5983 // struct x { short a; char b; } 5984 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5985 // These are the proper values we need for right-justifying the 5986 // aggregate in a parameter register. 5987 unsigned Size = Flags.getByValSize(); 5988 5989 // An empty aggregate parameter takes up no storage and no 5990 // registers. 5991 if (Size == 0) 5992 continue; 5993 5994 if (IsFastCall) 5995 ComputePtrOff(); 5996 5997 // All aggregates smaller than 8 bytes must be passed right-justified. 5998 if (Size==1 || Size==2 || Size==4) { 5999 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6000 if (GPR_idx != NumGPRs) { 6001 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6002 MachinePointerInfo(), VT); 6003 MemOpChains.push_back(Load.getValue(1)); 6004 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6005 6006 ArgOffset += PtrByteSize; 6007 continue; 6008 } 6009 } 6010 6011 if (GPR_idx == NumGPRs && Size < 8) { 6012 SDValue AddPtr = PtrOff; 6013 if (!isLittleEndian) { 6014 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6015 PtrOff.getValueType()); 6016 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6017 } 6018 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6019 CallSeqStart, 6020 Flags, DAG, dl); 6021 ArgOffset += PtrByteSize; 6022 continue; 6023 } 6024 // Copy entire object into memory. There are cases where gcc-generated 6025 // code assumes it is there, even if it could be put entirely into 6026 // registers. (This is not what the doc says.) 6027 6028 // FIXME: The above statement is likely due to a misunderstanding of the 6029 // documents. All arguments must be copied into the parameter area BY 6030 // THE CALLEE in the event that the callee takes the address of any 6031 // formal argument. That has not yet been implemented. However, it is 6032 // reasonable to use the stack area as a staging area for the register 6033 // load. 6034 6035 // Skip this for small aggregates, as we will use the same slot for a 6036 // right-justified copy, below. 6037 if (Size >= 8) 6038 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6039 CallSeqStart, 6040 Flags, DAG, dl); 6041 6042 // When a register is available, pass a small aggregate right-justified. 6043 if (Size < 8 && GPR_idx != NumGPRs) { 6044 // The easiest way to get this right-justified in a register 6045 // is to copy the structure into the rightmost portion of a 6046 // local variable slot, then load the whole slot into the 6047 // register. 6048 // FIXME: The memcpy seems to produce pretty awful code for 6049 // small aggregates, particularly for packed ones. 6050 // FIXME: It would be preferable to use the slot in the 6051 // parameter save area instead of a new local variable. 6052 SDValue AddPtr = PtrOff; 6053 if (!isLittleEndian) { 6054 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6055 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6056 } 6057 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6058 CallSeqStart, 6059 Flags, DAG, dl); 6060 6061 // Load the slot into the register. 6062 SDValue Load = 6063 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6064 MemOpChains.push_back(Load.getValue(1)); 6065 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6066 6067 // Done with this argument. 6068 ArgOffset += PtrByteSize; 6069 continue; 6070 } 6071 6072 // For aggregates larger than PtrByteSize, copy the pieces of the 6073 // object that fit into registers from the parameter save area. 6074 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6075 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6076 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6077 if (GPR_idx != NumGPRs) { 6078 SDValue Load = 6079 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6080 MemOpChains.push_back(Load.getValue(1)); 6081 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6082 ArgOffset += PtrByteSize; 6083 } else { 6084 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6085 break; 6086 } 6087 } 6088 continue; 6089 } 6090 6091 switch (Arg.getSimpleValueType().SimpleTy) { 6092 default: llvm_unreachable("Unexpected ValueType for argument!"); 6093 case MVT::i1: 6094 case MVT::i32: 6095 case MVT::i64: 6096 if (Flags.isNest()) { 6097 // The 'nest' parameter, if any, is passed in R11. 6098 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6099 break; 6100 } 6101 6102 // These can be scalar arguments or elements of an integer array type 6103 // passed directly. Clang may use those instead of "byval" aggregate 6104 // types to avoid forcing arguments to memory unnecessarily. 6105 if (GPR_idx != NumGPRs) { 6106 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6107 } else { 6108 if (IsFastCall) 6109 ComputePtrOff(); 6110 6111 assert(HasParameterArea && 6112 "Parameter area must exist to pass an argument in memory."); 6113 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6114 true, CFlags.IsTailCall, false, MemOpChains, 6115 TailCallArguments, dl); 6116 if (IsFastCall) 6117 ArgOffset += PtrByteSize; 6118 } 6119 if (!IsFastCall) 6120 ArgOffset += PtrByteSize; 6121 break; 6122 case MVT::f32: 6123 case MVT::f64: { 6124 // These can be scalar arguments or elements of a float array type 6125 // passed directly. The latter are used to implement ELFv2 homogenous 6126 // float aggregates. 6127 6128 // Named arguments go into FPRs first, and once they overflow, the 6129 // remaining arguments go into GPRs and then the parameter save area. 6130 // Unnamed arguments for vararg functions always go to GPRs and 6131 // then the parameter save area. For now, put all arguments to vararg 6132 // routines always in both locations (FPR *and* GPR or stack slot). 6133 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6134 bool NeededLoad = false; 6135 6136 // First load the argument into the next available FPR. 6137 if (FPR_idx != NumFPRs) 6138 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6139 6140 // Next, load the argument into GPR or stack slot if needed. 6141 if (!NeedGPROrStack) 6142 ; 6143 else if (GPR_idx != NumGPRs && !IsFastCall) { 6144 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6145 // once we support fp <-> gpr moves. 6146 6147 // In the non-vararg case, this can only ever happen in the 6148 // presence of f32 array types, since otherwise we never run 6149 // out of FPRs before running out of GPRs. 6150 SDValue ArgVal; 6151 6152 // Double values are always passed in a single GPR. 6153 if (Arg.getValueType() != MVT::f32) { 6154 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6155 6156 // Non-array float values are extended and passed in a GPR. 6157 } else if (!Flags.isInConsecutiveRegs()) { 6158 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6159 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6160 6161 // If we have an array of floats, we collect every odd element 6162 // together with its predecessor into one GPR. 6163 } else if (ArgOffset % PtrByteSize != 0) { 6164 SDValue Lo, Hi; 6165 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6166 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6167 if (!isLittleEndian) 6168 std::swap(Lo, Hi); 6169 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6170 6171 // The final element, if even, goes into the first half of a GPR. 6172 } else if (Flags.isInConsecutiveRegsLast()) { 6173 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6174 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6175 if (!isLittleEndian) 6176 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6177 DAG.getConstant(32, dl, MVT::i32)); 6178 6179 // Non-final even elements are skipped; they will be handled 6180 // together the with subsequent argument on the next go-around. 6181 } else 6182 ArgVal = SDValue(); 6183 6184 if (ArgVal.getNode()) 6185 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6186 } else { 6187 if (IsFastCall) 6188 ComputePtrOff(); 6189 6190 // Single-precision floating-point values are mapped to the 6191 // second (rightmost) word of the stack doubleword. 6192 if (Arg.getValueType() == MVT::f32 && 6193 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6194 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6195 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6196 } 6197 6198 assert(HasParameterArea && 6199 "Parameter area must exist to pass an argument in memory."); 6200 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6201 true, CFlags.IsTailCall, false, MemOpChains, 6202 TailCallArguments, dl); 6203 6204 NeededLoad = true; 6205 } 6206 // When passing an array of floats, the array occupies consecutive 6207 // space in the argument area; only round up to the next doubleword 6208 // at the end of the array. Otherwise, each float takes 8 bytes. 6209 if (!IsFastCall || NeededLoad) { 6210 ArgOffset += (Arg.getValueType() == MVT::f32 && 6211 Flags.isInConsecutiveRegs()) ? 4 : 8; 6212 if (Flags.isInConsecutiveRegsLast()) 6213 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6214 } 6215 break; 6216 } 6217 case MVT::v4f32: 6218 case MVT::v4i32: 6219 case MVT::v8i16: 6220 case MVT::v16i8: 6221 case MVT::v2f64: 6222 case MVT::v2i64: 6223 case MVT::v1i128: 6224 case MVT::f128: 6225 // These can be scalar arguments or elements of a vector array type 6226 // passed directly. The latter are used to implement ELFv2 homogenous 6227 // vector aggregates. 6228 6229 // For a varargs call, named arguments go into VRs or on the stack as 6230 // usual; unnamed arguments always go to the stack or the corresponding 6231 // GPRs when within range. For now, we always put the value in both 6232 // locations (or even all three). 6233 if (CFlags.IsVarArg) { 6234 assert(HasParameterArea && 6235 "Parameter area must exist if we have a varargs call."); 6236 // We could elide this store in the case where the object fits 6237 // entirely in R registers. Maybe later. 6238 SDValue Store = 6239 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6240 MemOpChains.push_back(Store); 6241 if (VR_idx != NumVRs) { 6242 SDValue Load = 6243 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6244 MemOpChains.push_back(Load.getValue(1)); 6245 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6246 } 6247 ArgOffset += 16; 6248 for (unsigned i=0; i<16; i+=PtrByteSize) { 6249 if (GPR_idx == NumGPRs) 6250 break; 6251 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6252 DAG.getConstant(i, dl, PtrVT)); 6253 SDValue Load = 6254 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6255 MemOpChains.push_back(Load.getValue(1)); 6256 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6257 } 6258 break; 6259 } 6260 6261 // Non-varargs Altivec params go into VRs or on the stack. 6262 if (VR_idx != NumVRs) { 6263 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6264 } else { 6265 if (IsFastCall) 6266 ComputePtrOff(); 6267 6268 assert(HasParameterArea && 6269 "Parameter area must exist to pass an argument in memory."); 6270 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6271 true, CFlags.IsTailCall, true, MemOpChains, 6272 TailCallArguments, dl); 6273 if (IsFastCall) 6274 ArgOffset += 16; 6275 } 6276 6277 if (!IsFastCall) 6278 ArgOffset += 16; 6279 break; 6280 } 6281 } 6282 6283 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6284 "mismatch in size of parameter area"); 6285 (void)NumBytesActuallyUsed; 6286 6287 if (!MemOpChains.empty()) 6288 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6289 6290 // Check if this is an indirect call (MTCTR/BCTRL). 6291 // See prepareDescriptorIndirectCall and buildCallOperands for more 6292 // information about calls through function pointers in the 64-bit SVR4 ABI. 6293 if (CFlags.IsIndirect) { 6294 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6295 // caller in the TOC save area. 6296 if (isTOCSaveRestoreRequired(Subtarget)) { 6297 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6298 // Load r2 into a virtual register and store it to the TOC save area. 6299 setUsesTOCBasePtr(DAG); 6300 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6301 // TOC save area offset. 6302 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6303 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6304 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6305 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6306 MachinePointerInfo::getStack( 6307 DAG.getMachineFunction(), TOCSaveOffset)); 6308 } 6309 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6310 // This does not mean the MTCTR instruction must use R12; it's easier 6311 // to model this as an extra parameter, so do that. 6312 if (isELFv2ABI && !CFlags.IsPatchPoint) 6313 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6314 } 6315 6316 // Build a sequence of copy-to-reg nodes chained together with token chain 6317 // and flag operands which copy the outgoing args into the appropriate regs. 6318 SDValue InFlag; 6319 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6320 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6321 RegsToPass[i].second, InFlag); 6322 InFlag = Chain.getValue(1); 6323 } 6324 6325 if (CFlags.IsTailCall && !IsSibCall) 6326 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6327 TailCallArguments); 6328 6329 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6330 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6331 } 6332 6333 // Returns true when the shadow of a general purpose argument register 6334 // in the parameter save area is aligned to at least 'RequiredAlign'. 6335 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6336 assert(RequiredAlign.value() <= 16 && 6337 "Required alignment greater than stack alignment."); 6338 switch (Reg) { 6339 default: 6340 report_fatal_error("called on invalid register."); 6341 case PPC::R5: 6342 case PPC::R9: 6343 case PPC::X3: 6344 case PPC::X5: 6345 case PPC::X7: 6346 case PPC::X9: 6347 // These registers are 16 byte aligned which is the most strict aligment 6348 // we can support. 6349 return true; 6350 case PPC::R3: 6351 case PPC::R7: 6352 case PPC::X4: 6353 case PPC::X6: 6354 case PPC::X8: 6355 case PPC::X10: 6356 // The shadow of these registers in the PSA is 8 byte aligned. 6357 return RequiredAlign <= 8; 6358 case PPC::R4: 6359 case PPC::R6: 6360 case PPC::R8: 6361 case PPC::R10: 6362 return RequiredAlign <= 4; 6363 } 6364 } 6365 6366 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6367 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6368 CCState &S) { 6369 AIXCCState &State = static_cast<AIXCCState &>(S); 6370 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6371 State.getMachineFunction().getSubtarget()); 6372 const bool IsPPC64 = Subtarget.isPPC64(); 6373 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6374 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6375 6376 if (ValVT == MVT::f128) 6377 report_fatal_error("f128 is unimplemented on AIX."); 6378 6379 if (ArgFlags.isNest()) 6380 report_fatal_error("Nest arguments are unimplemented."); 6381 6382 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6383 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6384 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6385 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6386 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6387 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6388 6389 static const MCPhysReg VR[] = {// Vector registers. 6390 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6391 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6392 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6393 6394 if (ArgFlags.isByVal()) { 6395 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6396 report_fatal_error("Pass-by-value arguments with alignment greater than " 6397 "register width are not supported."); 6398 6399 const unsigned ByValSize = ArgFlags.getByValSize(); 6400 6401 // An empty aggregate parameter takes up no storage and no registers, 6402 // but needs a MemLoc for a stack slot for the formal arguments side. 6403 if (ByValSize == 0) { 6404 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6405 State.getNextStackOffset(), RegVT, 6406 LocInfo)); 6407 return false; 6408 } 6409 6410 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6411 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6412 for (const unsigned E = Offset + StackSize; Offset < E; 6413 Offset += PtrAlign.value()) { 6414 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6415 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6416 else { 6417 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6418 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6419 LocInfo)); 6420 break; 6421 } 6422 } 6423 return false; 6424 } 6425 6426 // Arguments always reserve parameter save area. 6427 switch (ValVT.SimpleTy) { 6428 default: 6429 report_fatal_error("Unhandled value type for argument."); 6430 case MVT::i64: 6431 // i64 arguments should have been split to i32 for PPC32. 6432 assert(IsPPC64 && "PPC32 should have split i64 values."); 6433 LLVM_FALLTHROUGH; 6434 case MVT::i1: 6435 case MVT::i32: { 6436 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6437 // AIX integer arguments are always passed in register width. 6438 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6439 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6440 : CCValAssign::LocInfo::ZExt; 6441 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6442 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6443 else 6444 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6445 6446 return false; 6447 } 6448 case MVT::f32: 6449 case MVT::f64: { 6450 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6451 const unsigned StoreSize = LocVT.getStoreSize(); 6452 // Floats are always 4-byte aligned in the PSA on AIX. 6453 // This includes f64 in 64-bit mode for ABI compatibility. 6454 const unsigned Offset = 6455 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6456 unsigned FReg = State.AllocateReg(FPR); 6457 if (FReg) 6458 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6459 6460 // Reserve and initialize GPRs or initialize the PSA as required. 6461 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6462 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6463 assert(FReg && "An FPR should be available when a GPR is reserved."); 6464 if (State.isVarArg()) { 6465 // Successfully reserved GPRs are only initialized for vararg calls. 6466 // Custom handling is required for: 6467 // f64 in PPC32 needs to be split into 2 GPRs. 6468 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6469 State.addLoc( 6470 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6471 } 6472 } else { 6473 // If there are insufficient GPRs, the PSA needs to be initialized. 6474 // Initialization occurs even if an FPR was initialized for 6475 // compatibility with the AIX XL compiler. The full memory for the 6476 // argument will be initialized even if a prior word is saved in GPR. 6477 // A custom memLoc is used when the argument also passes in FPR so 6478 // that the callee handling can skip over it easily. 6479 State.addLoc( 6480 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6481 LocInfo) 6482 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6483 break; 6484 } 6485 } 6486 6487 return false; 6488 } 6489 case MVT::v4f32: 6490 case MVT::v4i32: 6491 case MVT::v8i16: 6492 case MVT::v16i8: 6493 case MVT::v2i64: 6494 case MVT::v2f64: 6495 case MVT::v1i128: { 6496 const unsigned VecSize = 16; 6497 const Align VecAlign(VecSize); 6498 6499 if (!State.isVarArg()) { 6500 // If there are vector registers remaining we don't consume any stack 6501 // space. 6502 if (unsigned VReg = State.AllocateReg(VR)) { 6503 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6504 return false; 6505 } 6506 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6507 // might be allocated in the portion of the PSA that is shadowed by the 6508 // GPRs. 6509 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6510 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6511 return false; 6512 } 6513 6514 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6515 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6516 6517 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6518 // Burn any underaligned registers and their shadowed stack space until 6519 // we reach the required alignment. 6520 while (NextRegIndex != GPRs.size() && 6521 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6522 // Shadow allocate register and its stack shadow. 6523 unsigned Reg = State.AllocateReg(GPRs); 6524 State.AllocateStack(PtrSize, PtrAlign); 6525 assert(Reg && "Allocating register unexpectedly failed."); 6526 (void)Reg; 6527 NextRegIndex = State.getFirstUnallocated(GPRs); 6528 } 6529 6530 // Vectors that are passed as fixed arguments are handled differently. 6531 // They are passed in VRs if any are available (unlike arguments passed 6532 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6533 // functions) 6534 if (State.isFixed(ValNo)) { 6535 if (unsigned VReg = State.AllocateReg(VR)) { 6536 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6537 // Shadow allocate GPRs and stack space even though we pass in a VR. 6538 for (unsigned I = 0; I != VecSize; I += PtrSize) 6539 State.AllocateReg(GPRs); 6540 State.AllocateStack(VecSize, VecAlign); 6541 return false; 6542 } 6543 // No vector registers remain so pass on the stack. 6544 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6545 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6546 return false; 6547 } 6548 6549 // If all GPRS are consumed then we pass the argument fully on the stack. 6550 if (NextRegIndex == GPRs.size()) { 6551 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6552 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6553 return false; 6554 } 6555 6556 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6557 // half of the argument, and then need to pass the remaining half on the 6558 // stack. 6559 if (GPRs[NextRegIndex] == PPC::R9) { 6560 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6561 State.addLoc( 6562 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6563 6564 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6565 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6566 assert(FirstReg && SecondReg && 6567 "Allocating R9 or R10 unexpectedly failed."); 6568 State.addLoc( 6569 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6570 State.addLoc( 6571 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6572 return false; 6573 } 6574 6575 // We have enough GPRs to fully pass the vector argument, and we have 6576 // already consumed any underaligned registers. Start with the custom 6577 // MemLoc and then the custom RegLocs. 6578 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6579 State.addLoc( 6580 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6581 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6582 const unsigned Reg = State.AllocateReg(GPRs); 6583 assert(Reg && "Failed to allocated register for vararg vector argument"); 6584 State.addLoc( 6585 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6586 } 6587 return false; 6588 } 6589 } 6590 return true; 6591 } 6592 6593 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6594 bool IsPPC64) { 6595 assert((IsPPC64 || SVT != MVT::i64) && 6596 "i64 should have been split for 32-bit codegen."); 6597 6598 switch (SVT) { 6599 default: 6600 report_fatal_error("Unexpected value type for formal argument"); 6601 case MVT::i1: 6602 case MVT::i32: 6603 case MVT::i64: 6604 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6605 case MVT::f32: 6606 return &PPC::F4RCRegClass; 6607 case MVT::f64: 6608 return &PPC::F8RCRegClass; 6609 case MVT::v4f32: 6610 case MVT::v4i32: 6611 case MVT::v8i16: 6612 case MVT::v16i8: 6613 case MVT::v2i64: 6614 case MVT::v2f64: 6615 case MVT::v1i128: 6616 return &PPC::VRRCRegClass; 6617 } 6618 } 6619 6620 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6621 SelectionDAG &DAG, SDValue ArgValue, 6622 MVT LocVT, const SDLoc &dl) { 6623 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6624 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6625 6626 if (Flags.isSExt()) 6627 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6628 DAG.getValueType(ValVT)); 6629 else if (Flags.isZExt()) 6630 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6631 DAG.getValueType(ValVT)); 6632 6633 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6634 } 6635 6636 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6637 const unsigned LASize = FL->getLinkageSize(); 6638 6639 if (PPC::GPRCRegClass.contains(Reg)) { 6640 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6641 "Reg must be a valid argument register!"); 6642 return LASize + 4 * (Reg - PPC::R3); 6643 } 6644 6645 if (PPC::G8RCRegClass.contains(Reg)) { 6646 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6647 "Reg must be a valid argument register!"); 6648 return LASize + 8 * (Reg - PPC::X3); 6649 } 6650 6651 llvm_unreachable("Only general purpose registers expected."); 6652 } 6653 6654 // AIX ABI Stack Frame Layout: 6655 // 6656 // Low Memory +--------------------------------------------+ 6657 // SP +---> | Back chain | ---+ 6658 // | +--------------------------------------------+ | 6659 // | | Saved Condition Register | | 6660 // | +--------------------------------------------+ | 6661 // | | Saved Linkage Register | | 6662 // | +--------------------------------------------+ | Linkage Area 6663 // | | Reserved for compilers | | 6664 // | +--------------------------------------------+ | 6665 // | | Reserved for binders | | 6666 // | +--------------------------------------------+ | 6667 // | | Saved TOC pointer | ---+ 6668 // | +--------------------------------------------+ 6669 // | | Parameter save area | 6670 // | +--------------------------------------------+ 6671 // | | Alloca space | 6672 // | +--------------------------------------------+ 6673 // | | Local variable space | 6674 // | +--------------------------------------------+ 6675 // | | Float/int conversion temporary | 6676 // | +--------------------------------------------+ 6677 // | | Save area for AltiVec registers | 6678 // | +--------------------------------------------+ 6679 // | | AltiVec alignment padding | 6680 // | +--------------------------------------------+ 6681 // | | Save area for VRSAVE register | 6682 // | +--------------------------------------------+ 6683 // | | Save area for General Purpose registers | 6684 // | +--------------------------------------------+ 6685 // | | Save area for Floating Point registers | 6686 // | +--------------------------------------------+ 6687 // +---- | Back chain | 6688 // High Memory +--------------------------------------------+ 6689 // 6690 // Specifications: 6691 // AIX 7.2 Assembler Language Reference 6692 // Subroutine linkage convention 6693 6694 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6695 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6696 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6697 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6698 6699 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6700 CallConv == CallingConv::Fast) && 6701 "Unexpected calling convention!"); 6702 6703 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6704 report_fatal_error("Tail call support is unimplemented on AIX."); 6705 6706 if (useSoftFloat()) 6707 report_fatal_error("Soft float support is unimplemented on AIX."); 6708 6709 const PPCSubtarget &Subtarget = 6710 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6711 6712 const bool IsPPC64 = Subtarget.isPPC64(); 6713 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6714 6715 // Assign locations to all of the incoming arguments. 6716 SmallVector<CCValAssign, 16> ArgLocs; 6717 MachineFunction &MF = DAG.getMachineFunction(); 6718 MachineFrameInfo &MFI = MF.getFrameInfo(); 6719 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6720 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6721 6722 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6723 // Reserve space for the linkage area on the stack. 6724 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6725 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6726 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6727 6728 SmallVector<SDValue, 8> MemOps; 6729 6730 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6731 CCValAssign &VA = ArgLocs[I++]; 6732 MVT LocVT = VA.getLocVT(); 6733 MVT ValVT = VA.getValVT(); 6734 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6735 // For compatibility with the AIX XL compiler, the float args in the 6736 // parameter save area are initialized even if the argument is available 6737 // in register. The caller is required to initialize both the register 6738 // and memory, however, the callee can choose to expect it in either. 6739 // The memloc is dismissed here because the argument is retrieved from 6740 // the register. 6741 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6742 continue; 6743 6744 auto HandleMemLoc = [&]() { 6745 const unsigned LocSize = LocVT.getStoreSize(); 6746 const unsigned ValSize = ValVT.getStoreSize(); 6747 assert((ValSize <= LocSize) && 6748 "Object size is larger than size of MemLoc"); 6749 int CurArgOffset = VA.getLocMemOffset(); 6750 // Objects are right-justified because AIX is big-endian. 6751 if (LocSize > ValSize) 6752 CurArgOffset += LocSize - ValSize; 6753 // Potential tail calls could cause overwriting of argument stack slots. 6754 const bool IsImmutable = 6755 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6756 (CallConv == CallingConv::Fast)); 6757 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6758 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6759 SDValue ArgValue = 6760 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6761 InVals.push_back(ArgValue); 6762 }; 6763 6764 // Vector arguments to VaArg functions are passed both on the stack, and 6765 // in any available GPRs. Load the value from the stack and add the GPRs 6766 // as live ins. 6767 if (VA.isMemLoc() && VA.needsCustom()) { 6768 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6769 assert(isVarArg && "Only use custom memloc for vararg."); 6770 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6771 // matching custom RegLocs. 6772 const unsigned OriginalValNo = VA.getValNo(); 6773 (void)OriginalValNo; 6774 6775 auto HandleCustomVecRegLoc = [&]() { 6776 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6777 "Missing custom RegLoc."); 6778 VA = ArgLocs[I++]; 6779 assert(VA.getValVT().isVector() && 6780 "Unexpected Val type for custom RegLoc."); 6781 assert(VA.getValNo() == OriginalValNo && 6782 "ValNo mismatch between custom MemLoc and RegLoc."); 6783 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6784 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6785 }; 6786 6787 HandleMemLoc(); 6788 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6789 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6790 // R10. 6791 HandleCustomVecRegLoc(); 6792 HandleCustomVecRegLoc(); 6793 6794 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6795 // we passed the vector in R5, R6, R7 and R8. 6796 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6797 assert(!IsPPC64 && 6798 "Only 2 custom RegLocs expected for 64-bit codegen."); 6799 HandleCustomVecRegLoc(); 6800 HandleCustomVecRegLoc(); 6801 } 6802 6803 continue; 6804 } 6805 6806 if (VA.isRegLoc()) { 6807 if (VA.getValVT().isScalarInteger()) 6808 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6809 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) 6810 FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32 6811 ? PPCFunctionInfo::ShortFloatPoint 6812 : PPCFunctionInfo::LongFloatPoint); 6813 } 6814 6815 if (Flags.isByVal() && VA.isMemLoc()) { 6816 const unsigned Size = 6817 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 6818 PtrByteSize); 6819 const int FI = MF.getFrameInfo().CreateFixedObject( 6820 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 6821 /* IsAliased */ true); 6822 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6823 InVals.push_back(FIN); 6824 6825 continue; 6826 } 6827 6828 if (Flags.isByVal()) { 6829 assert(VA.isRegLoc() && "MemLocs should already be handled."); 6830 6831 const MCPhysReg ArgReg = VA.getLocReg(); 6832 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 6833 6834 if (Flags.getNonZeroByValAlign() > PtrByteSize) 6835 report_fatal_error("Over aligned byvals not supported yet."); 6836 6837 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 6838 const int FI = MF.getFrameInfo().CreateFixedObject( 6839 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 6840 /* IsAliased */ true); 6841 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6842 InVals.push_back(FIN); 6843 6844 // Add live ins for all the RegLocs for the same ByVal. 6845 const TargetRegisterClass *RegClass = 6846 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6847 6848 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 6849 unsigned Offset) { 6850 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 6851 // Since the callers side has left justified the aggregate in the 6852 // register, we can simply store the entire register into the stack 6853 // slot. 6854 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6855 // The store to the fixedstack object is needed becuase accessing a 6856 // field of the ByVal will use a gep and load. Ideally we will optimize 6857 // to extracting the value from the register directly, and elide the 6858 // stores when the arguments address is not taken, but that will need to 6859 // be future work. 6860 SDValue Store = DAG.getStore( 6861 CopyFrom.getValue(1), dl, CopyFrom, 6862 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 6863 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 6864 6865 MemOps.push_back(Store); 6866 }; 6867 6868 unsigned Offset = 0; 6869 HandleRegLoc(VA.getLocReg(), Offset); 6870 Offset += PtrByteSize; 6871 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 6872 Offset += PtrByteSize) { 6873 assert(ArgLocs[I].getValNo() == VA.getValNo() && 6874 "RegLocs should be for ByVal argument."); 6875 6876 const CCValAssign RL = ArgLocs[I++]; 6877 HandleRegLoc(RL.getLocReg(), Offset); 6878 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6879 } 6880 6881 if (Offset != StackSize) { 6882 assert(ArgLocs[I].getValNo() == VA.getValNo() && 6883 "Expected MemLoc for remaining bytes."); 6884 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 6885 // Consume the MemLoc.The InVal has already been emitted, so nothing 6886 // more needs to be done. 6887 ++I; 6888 } 6889 6890 continue; 6891 } 6892 6893 if (VA.isRegLoc() && !VA.needsCustom()) { 6894 MVT::SimpleValueType SVT = ValVT.SimpleTy; 6895 unsigned VReg = 6896 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6897 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6898 if (ValVT.isScalarInteger() && 6899 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 6900 ArgValue = 6901 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 6902 } 6903 InVals.push_back(ArgValue); 6904 continue; 6905 } 6906 if (VA.isMemLoc()) { 6907 HandleMemLoc(); 6908 continue; 6909 } 6910 } 6911 6912 // On AIX a minimum of 8 words is saved to the parameter save area. 6913 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 6914 // Area that is at least reserved in the caller of this function. 6915 unsigned CallerReservedArea = 6916 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 6917 6918 // Set the size that is at least reserved in caller of this function. Tail 6919 // call optimized function's reserved stack space needs to be aligned so 6920 // that taking the difference between two stack areas will result in an 6921 // aligned stack. 6922 CallerReservedArea = 6923 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 6924 FuncInfo->setMinReservedArea(CallerReservedArea); 6925 6926 if (isVarArg) { 6927 FuncInfo->setVarArgsFrameIndex( 6928 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 6929 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 6930 6931 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6932 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6933 6934 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6935 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6936 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 6937 6938 // The fixed integer arguments of a variadic function are stored to the 6939 // VarArgsFrameIndex on the stack so that they may be loaded by 6940 // dereferencing the result of va_next. 6941 for (unsigned GPRIndex = 6942 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 6943 GPRIndex < NumGPArgRegs; ++GPRIndex) { 6944 6945 const unsigned VReg = 6946 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 6947 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 6948 6949 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 6950 SDValue Store = 6951 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 6952 MemOps.push_back(Store); 6953 // Increment the address for the next argument to store. 6954 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 6955 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 6956 } 6957 } 6958 6959 if (!MemOps.empty()) 6960 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 6961 6962 return Chain; 6963 } 6964 6965 SDValue PPCTargetLowering::LowerCall_AIX( 6966 SDValue Chain, SDValue Callee, CallFlags CFlags, 6967 const SmallVectorImpl<ISD::OutputArg> &Outs, 6968 const SmallVectorImpl<SDValue> &OutVals, 6969 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6970 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6971 const CallBase *CB) const { 6972 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 6973 // AIX ABI stack frame layout. 6974 6975 assert((CFlags.CallConv == CallingConv::C || 6976 CFlags.CallConv == CallingConv::Cold || 6977 CFlags.CallConv == CallingConv::Fast) && 6978 "Unexpected calling convention!"); 6979 6980 if (CFlags.IsPatchPoint) 6981 report_fatal_error("This call type is unimplemented on AIX."); 6982 6983 const PPCSubtarget& Subtarget = 6984 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 6985 6986 MachineFunction &MF = DAG.getMachineFunction(); 6987 SmallVector<CCValAssign, 16> ArgLocs; 6988 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 6989 *DAG.getContext()); 6990 6991 // Reserve space for the linkage save area (LSA) on the stack. 6992 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 6993 // [SP][CR][LR][2 x reserved][TOC]. 6994 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 6995 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6996 const bool IsPPC64 = Subtarget.isPPC64(); 6997 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6998 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6999 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7000 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7001 7002 // The prolog code of the callee may store up to 8 GPR argument registers to 7003 // the stack, allowing va_start to index over them in memory if the callee 7004 // is variadic. 7005 // Because we cannot tell if this is needed on the caller side, we have to 7006 // conservatively assume that it is needed. As such, make sure we have at 7007 // least enough stack space for the caller to store the 8 GPRs. 7008 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7009 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7010 CCInfo.getNextStackOffset()); 7011 7012 // Adjust the stack pointer for the new arguments... 7013 // These operations are automatically eliminated by the prolog/epilog pass. 7014 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7015 SDValue CallSeqStart = Chain; 7016 7017 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7018 SmallVector<SDValue, 8> MemOpChains; 7019 7020 // Set up a copy of the stack pointer for loading and storing any 7021 // arguments that may not fit in the registers available for argument 7022 // passing. 7023 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7024 : DAG.getRegister(PPC::R1, MVT::i32); 7025 7026 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7027 const unsigned ValNo = ArgLocs[I].getValNo(); 7028 SDValue Arg = OutVals[ValNo]; 7029 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7030 7031 if (Flags.isByVal()) { 7032 const unsigned ByValSize = Flags.getByValSize(); 7033 7034 // Nothing to do for zero-sized ByVals on the caller side. 7035 if (!ByValSize) { 7036 ++I; 7037 continue; 7038 } 7039 7040 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7041 return DAG.getExtLoad( 7042 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7043 (LoadOffset != 0) 7044 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7045 : Arg, 7046 MachinePointerInfo(), VT); 7047 }; 7048 7049 unsigned LoadOffset = 0; 7050 7051 // Initialize registers, which are fully occupied by the by-val argument. 7052 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7053 SDValue Load = GetLoad(PtrVT, LoadOffset); 7054 MemOpChains.push_back(Load.getValue(1)); 7055 LoadOffset += PtrByteSize; 7056 const CCValAssign &ByValVA = ArgLocs[I++]; 7057 assert(ByValVA.getValNo() == ValNo && 7058 "Unexpected location for pass-by-value argument."); 7059 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7060 } 7061 7062 if (LoadOffset == ByValSize) 7063 continue; 7064 7065 // There must be one more loc to handle the remainder. 7066 assert(ArgLocs[I].getValNo() == ValNo && 7067 "Expected additional location for by-value argument."); 7068 7069 if (ArgLocs[I].isMemLoc()) { 7070 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7071 const CCValAssign &ByValVA = ArgLocs[I++]; 7072 ISD::ArgFlagsTy MemcpyFlags = Flags; 7073 // Only memcpy the bytes that don't pass in register. 7074 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7075 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7076 (LoadOffset != 0) 7077 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7078 : Arg, 7079 DAG.getObjectPtrOffset(dl, StackPtr, 7080 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7081 CallSeqStart, MemcpyFlags, DAG, dl); 7082 continue; 7083 } 7084 7085 // Initialize the final register residue. 7086 // Any residue that occupies the final by-val arg register must be 7087 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7088 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7089 // 2 and 1 byte loads. 7090 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7091 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7092 "Unexpected register residue for by-value argument."); 7093 SDValue ResidueVal; 7094 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7095 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7096 const MVT VT = 7097 N == 1 ? MVT::i8 7098 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7099 SDValue Load = GetLoad(VT, LoadOffset); 7100 MemOpChains.push_back(Load.getValue(1)); 7101 LoadOffset += N; 7102 Bytes += N; 7103 7104 // By-val arguments are passed left-justfied in register. 7105 // Every load here needs to be shifted, otherwise a full register load 7106 // should have been used. 7107 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7108 "Unexpected load emitted during handling of pass-by-value " 7109 "argument."); 7110 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7111 EVT ShiftAmountTy = 7112 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7113 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7114 SDValue ShiftedLoad = 7115 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7116 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7117 ShiftedLoad) 7118 : ShiftedLoad; 7119 } 7120 7121 const CCValAssign &ByValVA = ArgLocs[I++]; 7122 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7123 continue; 7124 } 7125 7126 CCValAssign &VA = ArgLocs[I++]; 7127 const MVT LocVT = VA.getLocVT(); 7128 const MVT ValVT = VA.getValVT(); 7129 7130 switch (VA.getLocInfo()) { 7131 default: 7132 report_fatal_error("Unexpected argument extension type."); 7133 case CCValAssign::Full: 7134 break; 7135 case CCValAssign::ZExt: 7136 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7137 break; 7138 case CCValAssign::SExt: 7139 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7140 break; 7141 } 7142 7143 if (VA.isRegLoc() && !VA.needsCustom()) { 7144 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7145 continue; 7146 } 7147 7148 // Vector arguments passed to VarArg functions need custom handling when 7149 // they are passed (at least partially) in GPRs. 7150 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7151 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7152 // Store value to its stack slot. 7153 SDValue PtrOff = 7154 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7155 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7156 SDValue Store = 7157 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7158 MemOpChains.push_back(Store); 7159 const unsigned OriginalValNo = VA.getValNo(); 7160 // Then load the GPRs from the stack 7161 unsigned LoadOffset = 0; 7162 auto HandleCustomVecRegLoc = [&]() { 7163 assert(I != E && "Unexpected end of CCvalAssigns."); 7164 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7165 "Expected custom RegLoc."); 7166 CCValAssign RegVA = ArgLocs[I++]; 7167 assert(RegVA.getValNo() == OriginalValNo && 7168 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7169 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7170 DAG.getConstant(LoadOffset, dl, PtrVT)); 7171 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7172 MemOpChains.push_back(Load.getValue(1)); 7173 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7174 LoadOffset += PtrByteSize; 7175 }; 7176 7177 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7178 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7179 // R10. 7180 HandleCustomVecRegLoc(); 7181 HandleCustomVecRegLoc(); 7182 7183 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7184 ArgLocs[I].getValNo() == OriginalValNo) { 7185 assert(!IsPPC64 && 7186 "Only 2 custom RegLocs expected for 64-bit codegen."); 7187 HandleCustomVecRegLoc(); 7188 HandleCustomVecRegLoc(); 7189 } 7190 7191 continue; 7192 } 7193 7194 if (VA.isMemLoc()) { 7195 SDValue PtrOff = 7196 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7197 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7198 MemOpChains.push_back( 7199 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7200 7201 continue; 7202 } 7203 7204 if (!ValVT.isFloatingPoint()) 7205 report_fatal_error( 7206 "Unexpected register handling for calling convention."); 7207 7208 // Custom handling is used for GPR initializations for vararg float 7209 // arguments. 7210 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7211 LocVT.isInteger() && 7212 "Custom register handling only expected for VarArg."); 7213 7214 SDValue ArgAsInt = 7215 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7216 7217 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7218 // f32 in 32-bit GPR 7219 // f64 in 64-bit GPR 7220 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7221 else if (Arg.getValueType().getFixedSizeInBits() < 7222 LocVT.getFixedSizeInBits()) 7223 // f32 in 64-bit GPR. 7224 RegsToPass.push_back(std::make_pair( 7225 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7226 else { 7227 // f64 in two 32-bit GPRs 7228 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7229 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7230 "Unexpected custom register for argument!"); 7231 CCValAssign &GPR1 = VA; 7232 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7233 DAG.getConstant(32, dl, MVT::i8)); 7234 RegsToPass.push_back(std::make_pair( 7235 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7236 7237 if (I != E) { 7238 // If only 1 GPR was available, there will only be one custom GPR and 7239 // the argument will also pass in memory. 7240 CCValAssign &PeekArg = ArgLocs[I]; 7241 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7242 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7243 CCValAssign &GPR2 = ArgLocs[I++]; 7244 RegsToPass.push_back(std::make_pair( 7245 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7246 } 7247 } 7248 } 7249 } 7250 7251 if (!MemOpChains.empty()) 7252 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7253 7254 // For indirect calls, we need to save the TOC base to the stack for 7255 // restoration after the call. 7256 if (CFlags.IsIndirect) { 7257 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7258 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7259 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7260 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7261 const unsigned TOCSaveOffset = 7262 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7263 7264 setUsesTOCBasePtr(DAG); 7265 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7266 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7267 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7268 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7269 Chain = DAG.getStore( 7270 Val.getValue(1), dl, Val, AddPtr, 7271 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7272 } 7273 7274 // Build a sequence of copy-to-reg nodes chained together with token chain 7275 // and flag operands which copy the outgoing args into the appropriate regs. 7276 SDValue InFlag; 7277 for (auto Reg : RegsToPass) { 7278 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7279 InFlag = Chain.getValue(1); 7280 } 7281 7282 const int SPDiff = 0; 7283 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7284 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7285 } 7286 7287 bool 7288 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7289 MachineFunction &MF, bool isVarArg, 7290 const SmallVectorImpl<ISD::OutputArg> &Outs, 7291 LLVMContext &Context) const { 7292 SmallVector<CCValAssign, 16> RVLocs; 7293 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7294 return CCInfo.CheckReturn( 7295 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7296 ? RetCC_PPC_Cold 7297 : RetCC_PPC); 7298 } 7299 7300 SDValue 7301 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7302 bool isVarArg, 7303 const SmallVectorImpl<ISD::OutputArg> &Outs, 7304 const SmallVectorImpl<SDValue> &OutVals, 7305 const SDLoc &dl, SelectionDAG &DAG) const { 7306 SmallVector<CCValAssign, 16> RVLocs; 7307 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7308 *DAG.getContext()); 7309 CCInfo.AnalyzeReturn(Outs, 7310 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7311 ? RetCC_PPC_Cold 7312 : RetCC_PPC); 7313 7314 SDValue Flag; 7315 SmallVector<SDValue, 4> RetOps(1, Chain); 7316 7317 // Copy the result values into the output registers. 7318 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7319 CCValAssign &VA = RVLocs[i]; 7320 assert(VA.isRegLoc() && "Can only return in registers!"); 7321 7322 SDValue Arg = OutVals[RealResIdx]; 7323 7324 switch (VA.getLocInfo()) { 7325 default: llvm_unreachable("Unknown loc info!"); 7326 case CCValAssign::Full: break; 7327 case CCValAssign::AExt: 7328 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7329 break; 7330 case CCValAssign::ZExt: 7331 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7332 break; 7333 case CCValAssign::SExt: 7334 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7335 break; 7336 } 7337 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7338 bool isLittleEndian = Subtarget.isLittleEndian(); 7339 // Legalize ret f64 -> ret 2 x i32. 7340 SDValue SVal = 7341 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7342 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7343 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7344 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7345 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7346 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7347 Flag = Chain.getValue(1); 7348 VA = RVLocs[++i]; // skip ahead to next loc 7349 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7350 } else 7351 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7352 Flag = Chain.getValue(1); 7353 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7354 } 7355 7356 RetOps[0] = Chain; // Update chain. 7357 7358 // Add the flag if we have it. 7359 if (Flag.getNode()) 7360 RetOps.push_back(Flag); 7361 7362 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7363 } 7364 7365 SDValue 7366 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7367 SelectionDAG &DAG) const { 7368 SDLoc dl(Op); 7369 7370 // Get the correct type for integers. 7371 EVT IntVT = Op.getValueType(); 7372 7373 // Get the inputs. 7374 SDValue Chain = Op.getOperand(0); 7375 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7376 // Build a DYNAREAOFFSET node. 7377 SDValue Ops[2] = {Chain, FPSIdx}; 7378 SDVTList VTs = DAG.getVTList(IntVT); 7379 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7380 } 7381 7382 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7383 SelectionDAG &DAG) const { 7384 // When we pop the dynamic allocation we need to restore the SP link. 7385 SDLoc dl(Op); 7386 7387 // Get the correct type for pointers. 7388 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7389 7390 // Construct the stack pointer operand. 7391 bool isPPC64 = Subtarget.isPPC64(); 7392 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7393 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7394 7395 // Get the operands for the STACKRESTORE. 7396 SDValue Chain = Op.getOperand(0); 7397 SDValue SaveSP = Op.getOperand(1); 7398 7399 // Load the old link SP. 7400 SDValue LoadLinkSP = 7401 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7402 7403 // Restore the stack pointer. 7404 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7405 7406 // Store the old link SP. 7407 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7408 } 7409 7410 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7411 MachineFunction &MF = DAG.getMachineFunction(); 7412 bool isPPC64 = Subtarget.isPPC64(); 7413 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7414 7415 // Get current frame pointer save index. The users of this index will be 7416 // primarily DYNALLOC instructions. 7417 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7418 int RASI = FI->getReturnAddrSaveIndex(); 7419 7420 // If the frame pointer save index hasn't been defined yet. 7421 if (!RASI) { 7422 // Find out what the fix offset of the frame pointer save area. 7423 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7424 // Allocate the frame index for frame pointer save area. 7425 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7426 // Save the result. 7427 FI->setReturnAddrSaveIndex(RASI); 7428 } 7429 return DAG.getFrameIndex(RASI, PtrVT); 7430 } 7431 7432 SDValue 7433 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7434 MachineFunction &MF = DAG.getMachineFunction(); 7435 bool isPPC64 = Subtarget.isPPC64(); 7436 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7437 7438 // Get current frame pointer save index. The users of this index will be 7439 // primarily DYNALLOC instructions. 7440 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7441 int FPSI = FI->getFramePointerSaveIndex(); 7442 7443 // If the frame pointer save index hasn't been defined yet. 7444 if (!FPSI) { 7445 // Find out what the fix offset of the frame pointer save area. 7446 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7447 // Allocate the frame index for frame pointer save area. 7448 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7449 // Save the result. 7450 FI->setFramePointerSaveIndex(FPSI); 7451 } 7452 return DAG.getFrameIndex(FPSI, PtrVT); 7453 } 7454 7455 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7456 SelectionDAG &DAG) const { 7457 MachineFunction &MF = DAG.getMachineFunction(); 7458 // Get the inputs. 7459 SDValue Chain = Op.getOperand(0); 7460 SDValue Size = Op.getOperand(1); 7461 SDLoc dl(Op); 7462 7463 // Get the correct type for pointers. 7464 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7465 // Negate the size. 7466 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7467 DAG.getConstant(0, dl, PtrVT), Size); 7468 // Construct a node for the frame pointer save index. 7469 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7470 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7471 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7472 if (hasInlineStackProbe(MF)) 7473 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7474 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7475 } 7476 7477 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7478 SelectionDAG &DAG) const { 7479 MachineFunction &MF = DAG.getMachineFunction(); 7480 7481 bool isPPC64 = Subtarget.isPPC64(); 7482 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7483 7484 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7485 return DAG.getFrameIndex(FI, PtrVT); 7486 } 7487 7488 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7489 SelectionDAG &DAG) const { 7490 SDLoc DL(Op); 7491 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7492 DAG.getVTList(MVT::i32, MVT::Other), 7493 Op.getOperand(0), Op.getOperand(1)); 7494 } 7495 7496 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7497 SelectionDAG &DAG) const { 7498 SDLoc DL(Op); 7499 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7500 Op.getOperand(0), Op.getOperand(1)); 7501 } 7502 7503 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7504 if (Op.getValueType().isVector()) 7505 return LowerVectorLoad(Op, DAG); 7506 7507 assert(Op.getValueType() == MVT::i1 && 7508 "Custom lowering only for i1 loads"); 7509 7510 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7511 7512 SDLoc dl(Op); 7513 LoadSDNode *LD = cast<LoadSDNode>(Op); 7514 7515 SDValue Chain = LD->getChain(); 7516 SDValue BasePtr = LD->getBasePtr(); 7517 MachineMemOperand *MMO = LD->getMemOperand(); 7518 7519 SDValue NewLD = 7520 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7521 BasePtr, MVT::i8, MMO); 7522 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7523 7524 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7525 return DAG.getMergeValues(Ops, dl); 7526 } 7527 7528 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7529 if (Op.getOperand(1).getValueType().isVector()) 7530 return LowerVectorStore(Op, DAG); 7531 7532 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7533 "Custom lowering only for i1 stores"); 7534 7535 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7536 7537 SDLoc dl(Op); 7538 StoreSDNode *ST = cast<StoreSDNode>(Op); 7539 7540 SDValue Chain = ST->getChain(); 7541 SDValue BasePtr = ST->getBasePtr(); 7542 SDValue Value = ST->getValue(); 7543 MachineMemOperand *MMO = ST->getMemOperand(); 7544 7545 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7546 Value); 7547 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7548 } 7549 7550 // FIXME: Remove this once the ANDI glue bug is fixed: 7551 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7552 assert(Op.getValueType() == MVT::i1 && 7553 "Custom lowering only for i1 results"); 7554 7555 SDLoc DL(Op); 7556 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7557 } 7558 7559 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7560 SelectionDAG &DAG) const { 7561 7562 // Implements a vector truncate that fits in a vector register as a shuffle. 7563 // We want to legalize vector truncates down to where the source fits in 7564 // a vector register (and target is therefore smaller than vector register 7565 // size). At that point legalization will try to custom lower the sub-legal 7566 // result and get here - where we can contain the truncate as a single target 7567 // operation. 7568 7569 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7570 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7571 // 7572 // We will implement it for big-endian ordering as this (where x denotes 7573 // undefined): 7574 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7575 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7576 // 7577 // The same operation in little-endian ordering will be: 7578 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7579 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7580 7581 EVT TrgVT = Op.getValueType(); 7582 assert(TrgVT.isVector() && "Vector type expected."); 7583 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7584 EVT EltVT = TrgVT.getVectorElementType(); 7585 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7586 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7587 !isPowerOf2_32(EltVT.getSizeInBits())) 7588 return SDValue(); 7589 7590 SDValue N1 = Op.getOperand(0); 7591 EVT SrcVT = N1.getValueType(); 7592 unsigned SrcSize = SrcVT.getSizeInBits(); 7593 if (SrcSize > 256 || 7594 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7595 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7596 return SDValue(); 7597 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7598 return SDValue(); 7599 7600 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7601 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7602 7603 SDLoc DL(Op); 7604 SDValue Op1, Op2; 7605 if (SrcSize == 256) { 7606 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7607 EVT SplitVT = 7608 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7609 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7610 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7611 DAG.getConstant(0, DL, VecIdxTy)); 7612 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7613 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7614 } 7615 else { 7616 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7617 Op2 = DAG.getUNDEF(WideVT); 7618 } 7619 7620 // First list the elements we want to keep. 7621 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7622 SmallVector<int, 16> ShuffV; 7623 if (Subtarget.isLittleEndian()) 7624 for (unsigned i = 0; i < TrgNumElts; ++i) 7625 ShuffV.push_back(i * SizeMult); 7626 else 7627 for (unsigned i = 1; i <= TrgNumElts; ++i) 7628 ShuffV.push_back(i * SizeMult - 1); 7629 7630 // Populate the remaining elements with undefs. 7631 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7632 // ShuffV.push_back(i + WideNumElts); 7633 ShuffV.push_back(WideNumElts + 1); 7634 7635 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7636 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7637 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7638 } 7639 7640 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7641 /// possible. 7642 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7643 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7644 EVT ResVT = Op.getValueType(); 7645 EVT CmpVT = Op.getOperand(0).getValueType(); 7646 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7647 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7648 SDLoc dl(Op); 7649 7650 // Without power9-vector, we don't have native instruction for f128 comparison. 7651 // Following transformation to libcall is needed for setcc: 7652 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7653 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7654 SDValue Z = DAG.getSetCC( 7655 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7656 LHS, RHS, CC); 7657 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7658 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7659 } 7660 7661 // Not FP, or using SPE? Not a fsel. 7662 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7663 Subtarget.hasSPE()) 7664 return Op; 7665 7666 SDNodeFlags Flags = Op.getNode()->getFlags(); 7667 7668 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7669 // presence of infinities. 7670 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7671 switch (CC) { 7672 default: 7673 break; 7674 case ISD::SETOGT: 7675 case ISD::SETGT: 7676 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7677 case ISD::SETOLT: 7678 case ISD::SETLT: 7679 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7680 } 7681 } 7682 7683 // We might be able to do better than this under some circumstances, but in 7684 // general, fsel-based lowering of select is a finite-math-only optimization. 7685 // For more information, see section F.3 of the 2.06 ISA specification. 7686 // With ISA 3.0 7687 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7688 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7689 return Op; 7690 7691 // If the RHS of the comparison is a 0.0, we don't need to do the 7692 // subtraction at all. 7693 SDValue Sel1; 7694 if (isFloatingPointZero(RHS)) 7695 switch (CC) { 7696 default: break; // SETUO etc aren't handled by fsel. 7697 case ISD::SETNE: 7698 std::swap(TV, FV); 7699 LLVM_FALLTHROUGH; 7700 case ISD::SETEQ: 7701 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7702 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7703 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7704 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7705 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7706 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7707 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7708 case ISD::SETULT: 7709 case ISD::SETLT: 7710 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7711 LLVM_FALLTHROUGH; 7712 case ISD::SETOGE: 7713 case ISD::SETGE: 7714 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7715 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7716 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7717 case ISD::SETUGT: 7718 case ISD::SETGT: 7719 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7720 LLVM_FALLTHROUGH; 7721 case ISD::SETOLE: 7722 case ISD::SETLE: 7723 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7724 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7725 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7726 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7727 } 7728 7729 SDValue Cmp; 7730 switch (CC) { 7731 default: break; // SETUO etc aren't handled by fsel. 7732 case ISD::SETNE: 7733 std::swap(TV, FV); 7734 LLVM_FALLTHROUGH; 7735 case ISD::SETEQ: 7736 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7737 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7738 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7739 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7740 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7741 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7742 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7743 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7744 case ISD::SETULT: 7745 case ISD::SETLT: 7746 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7747 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7748 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7749 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7750 case ISD::SETOGE: 7751 case ISD::SETGE: 7752 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7753 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7754 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7755 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7756 case ISD::SETUGT: 7757 case ISD::SETGT: 7758 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7759 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7760 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7761 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7762 case ISD::SETOLE: 7763 case ISD::SETLE: 7764 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7765 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7766 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7767 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7768 } 7769 return Op; 7770 } 7771 7772 static unsigned getPPCStrictOpcode(unsigned Opc) { 7773 switch (Opc) { 7774 default: 7775 llvm_unreachable("No strict version of this opcode!"); 7776 case PPCISD::FCTIDZ: 7777 return PPCISD::STRICT_FCTIDZ; 7778 case PPCISD::FCTIWZ: 7779 return PPCISD::STRICT_FCTIWZ; 7780 case PPCISD::FCTIDUZ: 7781 return PPCISD::STRICT_FCTIDUZ; 7782 case PPCISD::FCTIWUZ: 7783 return PPCISD::STRICT_FCTIWUZ; 7784 case PPCISD::FCFID: 7785 return PPCISD::STRICT_FCFID; 7786 case PPCISD::FCFIDU: 7787 return PPCISD::STRICT_FCFIDU; 7788 case PPCISD::FCFIDS: 7789 return PPCISD::STRICT_FCFIDS; 7790 case PPCISD::FCFIDUS: 7791 return PPCISD::STRICT_FCFIDUS; 7792 } 7793 } 7794 7795 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7796 const PPCSubtarget &Subtarget) { 7797 SDLoc dl(Op); 7798 bool IsStrict = Op->isStrictFPOpcode(); 7799 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7800 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7801 7802 // TODO: Any other flags to propagate? 7803 SDNodeFlags Flags; 7804 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7805 7806 // For strict nodes, source is the second operand. 7807 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7808 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 7809 assert(Src.getValueType().isFloatingPoint()); 7810 if (Src.getValueType() == MVT::f32) { 7811 if (IsStrict) { 7812 Src = 7813 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 7814 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 7815 Chain = Src.getValue(1); 7816 } else 7817 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7818 } 7819 SDValue Conv; 7820 unsigned Opc = ISD::DELETED_NODE; 7821 switch (Op.getSimpleValueType().SimpleTy) { 7822 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7823 case MVT::i32: 7824 Opc = IsSigned ? PPCISD::FCTIWZ 7825 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 7826 break; 7827 case MVT::i64: 7828 assert((IsSigned || Subtarget.hasFPCVT()) && 7829 "i64 FP_TO_UINT is supported only with FPCVT"); 7830 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 7831 } 7832 if (IsStrict) { 7833 Opc = getPPCStrictOpcode(Opc); 7834 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 7835 {Chain, Src}, Flags); 7836 } else { 7837 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 7838 } 7839 return Conv; 7840 } 7841 7842 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7843 SelectionDAG &DAG, 7844 const SDLoc &dl) const { 7845 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 7846 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7847 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7848 bool IsStrict = Op->isStrictFPOpcode(); 7849 7850 // Convert the FP value to an int value through memory. 7851 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7852 (IsSigned || Subtarget.hasFPCVT()); 7853 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7854 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7855 MachinePointerInfo MPI = 7856 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7857 7858 // Emit a store to the stack slot. 7859 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 7860 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 7861 if (i32Stack) { 7862 MachineFunction &MF = DAG.getMachineFunction(); 7863 Alignment = Align(4); 7864 MachineMemOperand *MMO = 7865 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 7866 SDValue Ops[] = { Chain, Tmp, FIPtr }; 7867 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7868 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7869 } else 7870 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 7871 7872 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7873 // add in a bias on big endian. 7874 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7875 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7876 DAG.getConstant(4, dl, FIPtr.getValueType())); 7877 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7878 } 7879 7880 RLI.Chain = Chain; 7881 RLI.Ptr = FIPtr; 7882 RLI.MPI = MPI; 7883 RLI.Alignment = Alignment; 7884 } 7885 7886 /// Custom lowers floating point to integer conversions to use 7887 /// the direct move instructions available in ISA 2.07 to avoid the 7888 /// need for load/store combinations. 7889 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7890 SelectionDAG &DAG, 7891 const SDLoc &dl) const { 7892 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 7893 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 7894 if (Op->isStrictFPOpcode()) 7895 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 7896 else 7897 return Mov; 7898 } 7899 7900 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7901 const SDLoc &dl) const { 7902 bool IsStrict = Op->isStrictFPOpcode(); 7903 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7904 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7905 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7906 EVT SrcVT = Src.getValueType(); 7907 EVT DstVT = Op.getValueType(); 7908 7909 // FP to INT conversions are legal for f128. 7910 if (SrcVT == MVT::f128) 7911 return Subtarget.hasP9Vector() ? Op : SDValue(); 7912 7913 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7914 // PPC (the libcall is not available). 7915 if (SrcVT == MVT::ppcf128) { 7916 if (DstVT == MVT::i32) { 7917 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 7918 // set other fast-math flags to FP operations in both strict and 7919 // non-strict cases. (FP_TO_SINT, FSUB) 7920 SDNodeFlags Flags; 7921 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7922 7923 if (IsSigned) { 7924 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 7925 DAG.getIntPtrConstant(0, dl)); 7926 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 7927 DAG.getIntPtrConstant(1, dl)); 7928 7929 // Add the two halves of the long double in round-to-zero mode, and use 7930 // a smaller FP_TO_SINT. 7931 if (IsStrict) { 7932 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 7933 DAG.getVTList(MVT::f64, MVT::Other), 7934 {Op.getOperand(0), Lo, Hi}, Flags); 7935 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 7936 DAG.getVTList(MVT::i32, MVT::Other), 7937 {Res.getValue(1), Res}, Flags); 7938 } else { 7939 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7940 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7941 } 7942 } else { 7943 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7944 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7945 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7946 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 7947 if (IsStrict) { 7948 // Sel = Src < 0x80000000 7949 // FltOfs = select Sel, 0.0, 0x80000000 7950 // IntOfs = select Sel, 0, 0x80000000 7951 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7952 SDValue Chain = Op.getOperand(0); 7953 EVT SetCCVT = 7954 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7955 EVT DstSetCCVT = 7956 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7957 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7958 Chain, true); 7959 Chain = Sel.getValue(1); 7960 7961 SDValue FltOfs = DAG.getSelect( 7962 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7963 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7964 7965 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 7966 DAG.getVTList(SrcVT, MVT::Other), 7967 {Chain, Src, FltOfs}, Flags); 7968 Chain = Val.getValue(1); 7969 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 7970 DAG.getVTList(DstVT, MVT::Other), 7971 {Chain, Val}, Flags); 7972 Chain = SInt.getValue(1); 7973 SDValue IntOfs = DAG.getSelect( 7974 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 7975 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7976 return DAG.getMergeValues({Result, Chain}, dl); 7977 } else { 7978 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7979 // FIXME: generated code sucks. 7980 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 7981 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7982 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 7983 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 7984 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 7985 } 7986 } 7987 } 7988 7989 return SDValue(); 7990 } 7991 7992 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7993 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7994 7995 ReuseLoadInfo RLI; 7996 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7997 7998 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7999 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8000 } 8001 8002 // We're trying to insert a regular store, S, and then a load, L. If the 8003 // incoming value, O, is a load, we might just be able to have our load use the 8004 // address used by O. However, we don't know if anything else will store to 8005 // that address before we can load from it. To prevent this situation, we need 8006 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8007 // the same chain operand as O, we create a token factor from the chain results 8008 // of O and L, and we replace all uses of O's chain result with that token 8009 // factor (see spliceIntoChain below for this last part). 8010 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8011 ReuseLoadInfo &RLI, 8012 SelectionDAG &DAG, 8013 ISD::LoadExtType ET) const { 8014 // Conservatively skip reusing for constrained FP nodes. 8015 if (Op->isStrictFPOpcode()) 8016 return false; 8017 8018 SDLoc dl(Op); 8019 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8020 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8021 if (ET == ISD::NON_EXTLOAD && 8022 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8023 isOperationLegalOrCustom(Op.getOpcode(), 8024 Op.getOperand(0).getValueType())) { 8025 8026 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8027 return true; 8028 } 8029 8030 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8031 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8032 LD->isNonTemporal()) 8033 return false; 8034 if (LD->getMemoryVT() != MemVT) 8035 return false; 8036 8037 // If the result of the load is an illegal type, then we can't build a 8038 // valid chain for reuse since the legalised loads and token factor node that 8039 // ties the legalised loads together uses a different output chain then the 8040 // illegal load. 8041 if (!isTypeLegal(LD->getValueType(0))) 8042 return false; 8043 8044 RLI.Ptr = LD->getBasePtr(); 8045 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8046 assert(LD->getAddressingMode() == ISD::PRE_INC && 8047 "Non-pre-inc AM on PPC?"); 8048 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8049 LD->getOffset()); 8050 } 8051 8052 RLI.Chain = LD->getChain(); 8053 RLI.MPI = LD->getPointerInfo(); 8054 RLI.IsDereferenceable = LD->isDereferenceable(); 8055 RLI.IsInvariant = LD->isInvariant(); 8056 RLI.Alignment = LD->getAlign(); 8057 RLI.AAInfo = LD->getAAInfo(); 8058 RLI.Ranges = LD->getRanges(); 8059 8060 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8061 return true; 8062 } 8063 8064 // Given the head of the old chain, ResChain, insert a token factor containing 8065 // it and NewResChain, and make users of ResChain now be users of that token 8066 // factor. 8067 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8068 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8069 SDValue NewResChain, 8070 SelectionDAG &DAG) const { 8071 if (!ResChain) 8072 return; 8073 8074 SDLoc dl(NewResChain); 8075 8076 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8077 NewResChain, DAG.getUNDEF(MVT::Other)); 8078 assert(TF.getNode() != NewResChain.getNode() && 8079 "A new TF really is required here"); 8080 8081 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8082 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8083 } 8084 8085 /// Analyze profitability of direct move 8086 /// prefer float load to int load plus direct move 8087 /// when there is no integer use of int load 8088 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8089 SDNode *Origin = Op.getOperand(0).getNode(); 8090 if (Origin->getOpcode() != ISD::LOAD) 8091 return true; 8092 8093 // If there is no LXSIBZX/LXSIHZX, like Power8, 8094 // prefer direct move if the memory size is 1 or 2 bytes. 8095 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8096 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8097 return true; 8098 8099 for (SDNode::use_iterator UI = Origin->use_begin(), 8100 UE = Origin->use_end(); 8101 UI != UE; ++UI) { 8102 8103 // Only look at the users of the loaded value. 8104 if (UI.getUse().get().getResNo() != 0) 8105 continue; 8106 8107 if (UI->getOpcode() != ISD::SINT_TO_FP && 8108 UI->getOpcode() != ISD::UINT_TO_FP && 8109 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8110 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8111 return true; 8112 } 8113 8114 return false; 8115 } 8116 8117 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8118 const PPCSubtarget &Subtarget, 8119 SDValue Chain = SDValue()) { 8120 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8121 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8122 SDLoc dl(Op); 8123 8124 // TODO: Any other flags to propagate? 8125 SDNodeFlags Flags; 8126 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8127 8128 // If we have FCFIDS, then use it when converting to single-precision. 8129 // Otherwise, convert to double-precision and then round. 8130 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8131 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8132 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8133 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8134 if (Op->isStrictFPOpcode()) { 8135 if (!Chain) 8136 Chain = Op.getOperand(0); 8137 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8138 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8139 } else 8140 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8141 } 8142 8143 /// Custom lowers integer to floating point conversions to use 8144 /// the direct move instructions available in ISA 2.07 to avoid the 8145 /// need for load/store combinations. 8146 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8147 SelectionDAG &DAG, 8148 const SDLoc &dl) const { 8149 assert((Op.getValueType() == MVT::f32 || 8150 Op.getValueType() == MVT::f64) && 8151 "Invalid floating point type as target of conversion"); 8152 assert(Subtarget.hasFPCVT() && 8153 "Int to FP conversions with direct moves require FPCVT"); 8154 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8155 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8156 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8157 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8158 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8159 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8160 return convertIntToFP(Op, Mov, DAG, Subtarget); 8161 } 8162 8163 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8164 8165 EVT VecVT = Vec.getValueType(); 8166 assert(VecVT.isVector() && "Expected a vector type."); 8167 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8168 8169 EVT EltVT = VecVT.getVectorElementType(); 8170 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8171 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8172 8173 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8174 SmallVector<SDValue, 16> Ops(NumConcat); 8175 Ops[0] = Vec; 8176 SDValue UndefVec = DAG.getUNDEF(VecVT); 8177 for (unsigned i = 1; i < NumConcat; ++i) 8178 Ops[i] = UndefVec; 8179 8180 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8181 } 8182 8183 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8184 const SDLoc &dl) const { 8185 bool IsStrict = Op->isStrictFPOpcode(); 8186 unsigned Opc = Op.getOpcode(); 8187 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8188 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8189 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8190 "Unexpected conversion type"); 8191 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8192 "Supports conversions to v2f64/v4f32 only."); 8193 8194 // TODO: Any other flags to propagate? 8195 SDNodeFlags Flags; 8196 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8197 8198 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8199 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8200 8201 SDValue Wide = widenVec(DAG, Src, dl); 8202 EVT WideVT = Wide.getValueType(); 8203 unsigned WideNumElts = WideVT.getVectorNumElements(); 8204 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8205 8206 SmallVector<int, 16> ShuffV; 8207 for (unsigned i = 0; i < WideNumElts; ++i) 8208 ShuffV.push_back(i + WideNumElts); 8209 8210 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8211 int SaveElts = FourEltRes ? 4 : 2; 8212 if (Subtarget.isLittleEndian()) 8213 for (int i = 0; i < SaveElts; i++) 8214 ShuffV[i * Stride] = i; 8215 else 8216 for (int i = 1; i <= SaveElts; i++) 8217 ShuffV[i * Stride - 1] = i - 1; 8218 8219 SDValue ShuffleSrc2 = 8220 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8221 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8222 8223 SDValue Extend; 8224 if (SignedConv) { 8225 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8226 EVT ExtVT = Src.getValueType(); 8227 if (Subtarget.hasP9Altivec()) 8228 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8229 IntermediateVT.getVectorNumElements()); 8230 8231 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8232 DAG.getValueType(ExtVT)); 8233 } else 8234 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8235 8236 if (IsStrict) 8237 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8238 {Op.getOperand(0), Extend}, Flags); 8239 8240 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8241 } 8242 8243 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8244 SelectionDAG &DAG) const { 8245 SDLoc dl(Op); 8246 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8247 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8248 bool IsStrict = Op->isStrictFPOpcode(); 8249 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8250 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8251 8252 // TODO: Any other flags to propagate? 8253 SDNodeFlags Flags; 8254 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8255 8256 EVT InVT = Src.getValueType(); 8257 EVT OutVT = Op.getValueType(); 8258 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8259 isOperationCustom(Op.getOpcode(), InVT)) 8260 return LowerINT_TO_FPVector(Op, DAG, dl); 8261 8262 // Conversions to f128 are legal. 8263 if (Op.getValueType() == MVT::f128) 8264 return Subtarget.hasP9Vector() ? Op : SDValue(); 8265 8266 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8267 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8268 return SDValue(); 8269 8270 if (Src.getValueType() == MVT::i1) { 8271 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8272 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8273 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8274 if (IsStrict) 8275 return DAG.getMergeValues({Sel, Chain}, dl); 8276 else 8277 return Sel; 8278 } 8279 8280 // If we have direct moves, we can do all the conversion, skip the store/load 8281 // however, without FPCVT we can't do most conversions. 8282 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8283 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8284 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8285 8286 assert((IsSigned || Subtarget.hasFPCVT()) && 8287 "UINT_TO_FP is supported only with FPCVT"); 8288 8289 if (Src.getValueType() == MVT::i64) { 8290 SDValue SINT = Src; 8291 // When converting to single-precision, we actually need to convert 8292 // to double-precision first and then round to single-precision. 8293 // To avoid double-rounding effects during that operation, we have 8294 // to prepare the input operand. Bits that might be truncated when 8295 // converting to double-precision are replaced by a bit that won't 8296 // be lost at this stage, but is below the single-precision rounding 8297 // position. 8298 // 8299 // However, if -enable-unsafe-fp-math is in effect, accept double 8300 // rounding to avoid the extra overhead. 8301 if (Op.getValueType() == MVT::f32 && 8302 !Subtarget.hasFPCVT() && 8303 !DAG.getTarget().Options.UnsafeFPMath) { 8304 8305 // Twiddle input to make sure the low 11 bits are zero. (If this 8306 // is the case, we are guaranteed the value will fit into the 53 bit 8307 // mantissa of an IEEE double-precision value without rounding.) 8308 // If any of those low 11 bits were not zero originally, make sure 8309 // bit 12 (value 2048) is set instead, so that the final rounding 8310 // to single-precision gets the correct result. 8311 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8312 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8313 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8314 Round, DAG.getConstant(2047, dl, MVT::i64)); 8315 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8316 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8317 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8318 8319 // However, we cannot use that value unconditionally: if the magnitude 8320 // of the input value is small, the bit-twiddling we did above might 8321 // end up visibly changing the output. Fortunately, in that case, we 8322 // don't need to twiddle bits since the original input will convert 8323 // exactly to double-precision floating-point already. Therefore, 8324 // construct a conditional to use the original value if the top 11 8325 // bits are all sign-bit copies, and use the rounded value computed 8326 // above otherwise. 8327 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8328 SINT, DAG.getConstant(53, dl, MVT::i32)); 8329 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8330 Cond, DAG.getConstant(1, dl, MVT::i64)); 8331 Cond = DAG.getSetCC( 8332 dl, 8333 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8334 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8335 8336 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8337 } 8338 8339 ReuseLoadInfo RLI; 8340 SDValue Bits; 8341 8342 MachineFunction &MF = DAG.getMachineFunction(); 8343 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8344 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8345 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8346 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8347 } else if (Subtarget.hasLFIWAX() && 8348 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8349 MachineMemOperand *MMO = 8350 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8351 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8352 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8353 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8354 DAG.getVTList(MVT::f64, MVT::Other), 8355 Ops, MVT::i32, MMO); 8356 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8357 } else if (Subtarget.hasFPCVT() && 8358 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8359 MachineMemOperand *MMO = 8360 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8361 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8362 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8363 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8364 DAG.getVTList(MVT::f64, MVT::Other), 8365 Ops, MVT::i32, MMO); 8366 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8367 } else if (((Subtarget.hasLFIWAX() && 8368 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8369 (Subtarget.hasFPCVT() && 8370 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8371 SINT.getOperand(0).getValueType() == MVT::i32) { 8372 MachineFrameInfo &MFI = MF.getFrameInfo(); 8373 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8374 8375 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8376 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8377 8378 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8379 MachinePointerInfo::getFixedStack( 8380 DAG.getMachineFunction(), FrameIdx)); 8381 Chain = Store; 8382 8383 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8384 "Expected an i32 store"); 8385 8386 RLI.Ptr = FIdx; 8387 RLI.Chain = Chain; 8388 RLI.MPI = 8389 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8390 RLI.Alignment = Align(4); 8391 8392 MachineMemOperand *MMO = 8393 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8394 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8395 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8396 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8397 PPCISD::LFIWZX : PPCISD::LFIWAX, 8398 dl, DAG.getVTList(MVT::f64, MVT::Other), 8399 Ops, MVT::i32, MMO); 8400 Chain = Bits.getValue(1); 8401 } else 8402 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8403 8404 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8405 if (IsStrict) 8406 Chain = FP.getValue(1); 8407 8408 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8409 if (IsStrict) 8410 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8411 DAG.getVTList(MVT::f32, MVT::Other), 8412 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8413 else 8414 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8415 DAG.getIntPtrConstant(0, dl)); 8416 } 8417 return FP; 8418 } 8419 8420 assert(Src.getValueType() == MVT::i32 && 8421 "Unhandled INT_TO_FP type in custom expander!"); 8422 // Since we only generate this in 64-bit mode, we can take advantage of 8423 // 64-bit registers. In particular, sign extend the input value into the 8424 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8425 // then lfd it and fcfid it. 8426 MachineFunction &MF = DAG.getMachineFunction(); 8427 MachineFrameInfo &MFI = MF.getFrameInfo(); 8428 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8429 8430 SDValue Ld; 8431 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8432 ReuseLoadInfo RLI; 8433 bool ReusingLoad; 8434 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8435 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8436 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8437 8438 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8439 MachinePointerInfo::getFixedStack( 8440 DAG.getMachineFunction(), FrameIdx)); 8441 Chain = Store; 8442 8443 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8444 "Expected an i32 store"); 8445 8446 RLI.Ptr = FIdx; 8447 RLI.Chain = Chain; 8448 RLI.MPI = 8449 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8450 RLI.Alignment = Align(4); 8451 } 8452 8453 MachineMemOperand *MMO = 8454 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8455 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8456 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8457 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8458 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8459 MVT::i32, MMO); 8460 Chain = Ld.getValue(1); 8461 if (ReusingLoad) 8462 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8463 } else { 8464 assert(Subtarget.isPPC64() && 8465 "i32->FP without LFIWAX supported only on PPC64"); 8466 8467 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8468 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8469 8470 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8471 8472 // STD the extended value into the stack slot. 8473 SDValue Store = DAG.getStore( 8474 Chain, dl, Ext64, FIdx, 8475 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8476 Chain = Store; 8477 8478 // Load the value as a double. 8479 Ld = DAG.getLoad( 8480 MVT::f64, dl, Chain, FIdx, 8481 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8482 Chain = Ld.getValue(1); 8483 } 8484 8485 // FCFID it and return it. 8486 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8487 if (IsStrict) 8488 Chain = FP.getValue(1); 8489 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8490 if (IsStrict) 8491 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8492 DAG.getVTList(MVT::f32, MVT::Other), 8493 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8494 else 8495 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8496 DAG.getIntPtrConstant(0, dl)); 8497 } 8498 return FP; 8499 } 8500 8501 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8502 SelectionDAG &DAG) const { 8503 SDLoc dl(Op); 8504 /* 8505 The rounding mode is in bits 30:31 of FPSR, and has the following 8506 settings: 8507 00 Round to nearest 8508 01 Round to 0 8509 10 Round to +inf 8510 11 Round to -inf 8511 8512 FLT_ROUNDS, on the other hand, expects the following: 8513 -1 Undefined 8514 0 Round to 0 8515 1 Round to nearest 8516 2 Round to +inf 8517 3 Round to -inf 8518 8519 To perform the conversion, we do: 8520 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8521 */ 8522 8523 MachineFunction &MF = DAG.getMachineFunction(); 8524 EVT VT = Op.getValueType(); 8525 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8526 8527 // Save FP Control Word to register 8528 SDValue Chain = Op.getOperand(0); 8529 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8530 Chain = MFFS.getValue(1); 8531 8532 SDValue CWD; 8533 if (isTypeLegal(MVT::i64)) { 8534 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8535 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8536 } else { 8537 // Save FP register to stack slot 8538 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8539 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8540 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8541 8542 // Load FP Control Word from low 32 bits of stack slot. 8543 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8544 "Stack slot adjustment is valid only on big endian subtargets!"); 8545 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8546 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8547 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8548 Chain = CWD.getValue(1); 8549 } 8550 8551 // Transform as necessary 8552 SDValue CWD1 = 8553 DAG.getNode(ISD::AND, dl, MVT::i32, 8554 CWD, DAG.getConstant(3, dl, MVT::i32)); 8555 SDValue CWD2 = 8556 DAG.getNode(ISD::SRL, dl, MVT::i32, 8557 DAG.getNode(ISD::AND, dl, MVT::i32, 8558 DAG.getNode(ISD::XOR, dl, MVT::i32, 8559 CWD, DAG.getConstant(3, dl, MVT::i32)), 8560 DAG.getConstant(3, dl, MVT::i32)), 8561 DAG.getConstant(1, dl, MVT::i32)); 8562 8563 SDValue RetVal = 8564 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8565 8566 RetVal = 8567 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8568 dl, VT, RetVal); 8569 8570 return DAG.getMergeValues({RetVal, Chain}, dl); 8571 } 8572 8573 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8574 EVT VT = Op.getValueType(); 8575 unsigned BitWidth = VT.getSizeInBits(); 8576 SDLoc dl(Op); 8577 assert(Op.getNumOperands() == 3 && 8578 VT == Op.getOperand(1).getValueType() && 8579 "Unexpected SHL!"); 8580 8581 // Expand into a bunch of logical ops. Note that these ops 8582 // depend on the PPC behavior for oversized shift amounts. 8583 SDValue Lo = Op.getOperand(0); 8584 SDValue Hi = Op.getOperand(1); 8585 SDValue Amt = Op.getOperand(2); 8586 EVT AmtVT = Amt.getValueType(); 8587 8588 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8589 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8590 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8591 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8592 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8593 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8594 DAG.getConstant(-BitWidth, dl, AmtVT)); 8595 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8596 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8597 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8598 SDValue OutOps[] = { OutLo, OutHi }; 8599 return DAG.getMergeValues(OutOps, dl); 8600 } 8601 8602 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8603 EVT VT = Op.getValueType(); 8604 SDLoc dl(Op); 8605 unsigned BitWidth = VT.getSizeInBits(); 8606 assert(Op.getNumOperands() == 3 && 8607 VT == Op.getOperand(1).getValueType() && 8608 "Unexpected SRL!"); 8609 8610 // Expand into a bunch of logical ops. Note that these ops 8611 // depend on the PPC behavior for oversized shift amounts. 8612 SDValue Lo = Op.getOperand(0); 8613 SDValue Hi = Op.getOperand(1); 8614 SDValue Amt = Op.getOperand(2); 8615 EVT AmtVT = Amt.getValueType(); 8616 8617 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8618 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8619 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8620 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8621 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8622 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8623 DAG.getConstant(-BitWidth, dl, AmtVT)); 8624 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8625 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8626 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8627 SDValue OutOps[] = { OutLo, OutHi }; 8628 return DAG.getMergeValues(OutOps, dl); 8629 } 8630 8631 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8632 SDLoc dl(Op); 8633 EVT VT = Op.getValueType(); 8634 unsigned BitWidth = VT.getSizeInBits(); 8635 assert(Op.getNumOperands() == 3 && 8636 VT == Op.getOperand(1).getValueType() && 8637 "Unexpected SRA!"); 8638 8639 // Expand into a bunch of logical ops, followed by a select_cc. 8640 SDValue Lo = Op.getOperand(0); 8641 SDValue Hi = Op.getOperand(1); 8642 SDValue Amt = Op.getOperand(2); 8643 EVT AmtVT = Amt.getValueType(); 8644 8645 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8646 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8647 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8648 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8649 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8650 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8651 DAG.getConstant(-BitWidth, dl, AmtVT)); 8652 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8653 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8654 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8655 Tmp4, Tmp6, ISD::SETLE); 8656 SDValue OutOps[] = { OutLo, OutHi }; 8657 return DAG.getMergeValues(OutOps, dl); 8658 } 8659 8660 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8661 SelectionDAG &DAG) const { 8662 SDLoc dl(Op); 8663 EVT VT = Op.getValueType(); 8664 unsigned BitWidth = VT.getSizeInBits(); 8665 8666 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8667 SDValue X = Op.getOperand(0); 8668 SDValue Y = Op.getOperand(1); 8669 SDValue Z = Op.getOperand(2); 8670 EVT AmtVT = Z.getValueType(); 8671 8672 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8673 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8674 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8675 // on PowerPC shift by BW being well defined. 8676 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8677 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8678 SDValue SubZ = 8679 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8680 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8681 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8682 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8683 } 8684 8685 //===----------------------------------------------------------------------===// 8686 // Vector related lowering. 8687 // 8688 8689 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8690 /// element size of SplatSize. Cast the result to VT. 8691 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8692 SelectionDAG &DAG, const SDLoc &dl) { 8693 static const MVT VTys[] = { // canonical VT to use for each size. 8694 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8695 }; 8696 8697 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8698 8699 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8700 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8701 SplatSize = 1; 8702 Val = 0xFF; 8703 } 8704 8705 EVT CanonicalVT = VTys[SplatSize-1]; 8706 8707 // Build a canonical splat for this value. 8708 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8709 } 8710 8711 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8712 /// specified intrinsic ID. 8713 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8714 const SDLoc &dl, EVT DestVT = MVT::Other) { 8715 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8716 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8717 DAG.getConstant(IID, dl, MVT::i32), Op); 8718 } 8719 8720 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8721 /// specified intrinsic ID. 8722 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8723 SelectionDAG &DAG, const SDLoc &dl, 8724 EVT DestVT = MVT::Other) { 8725 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8726 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8727 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8728 } 8729 8730 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8731 /// specified intrinsic ID. 8732 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8733 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8734 EVT DestVT = MVT::Other) { 8735 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8736 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8737 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8738 } 8739 8740 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8741 /// amount. The result has the specified value type. 8742 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8743 SelectionDAG &DAG, const SDLoc &dl) { 8744 // Force LHS/RHS to be the right type. 8745 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8746 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8747 8748 int Ops[16]; 8749 for (unsigned i = 0; i != 16; ++i) 8750 Ops[i] = i + Amt; 8751 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8752 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8753 } 8754 8755 /// Do we have an efficient pattern in a .td file for this node? 8756 /// 8757 /// \param V - pointer to the BuildVectorSDNode being matched 8758 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8759 /// 8760 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8761 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8762 /// the opposite is true (expansion is beneficial) are: 8763 /// - The node builds a vector out of integers that are not 32 or 64-bits 8764 /// - The node builds a vector out of constants 8765 /// - The node is a "load-and-splat" 8766 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8767 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8768 bool HasDirectMove, 8769 bool HasP8Vector) { 8770 EVT VecVT = V->getValueType(0); 8771 bool RightType = VecVT == MVT::v2f64 || 8772 (HasP8Vector && VecVT == MVT::v4f32) || 8773 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8774 if (!RightType) 8775 return false; 8776 8777 bool IsSplat = true; 8778 bool IsLoad = false; 8779 SDValue Op0 = V->getOperand(0); 8780 8781 // This function is called in a block that confirms the node is not a constant 8782 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8783 // different constants. 8784 if (V->isConstant()) 8785 return false; 8786 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8787 if (V->getOperand(i).isUndef()) 8788 return false; 8789 // We want to expand nodes that represent load-and-splat even if the 8790 // loaded value is a floating point truncation or conversion to int. 8791 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8792 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8793 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8794 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8795 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8796 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8797 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8798 IsLoad = true; 8799 // If the operands are different or the input is not a load and has more 8800 // uses than just this BV node, then it isn't a splat. 8801 if (V->getOperand(i) != Op0 || 8802 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8803 IsSplat = false; 8804 } 8805 return !(IsSplat && IsLoad); 8806 } 8807 8808 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8809 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8810 8811 SDLoc dl(Op); 8812 SDValue Op0 = Op->getOperand(0); 8813 8814 if ((Op.getValueType() != MVT::f128) || 8815 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8816 (Op0.getOperand(0).getValueType() != MVT::i64) || 8817 (Op0.getOperand(1).getValueType() != MVT::i64)) 8818 return SDValue(); 8819 8820 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8821 Op0.getOperand(1)); 8822 } 8823 8824 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 8825 const SDValue *InputLoad = &Op; 8826 if (InputLoad->getOpcode() == ISD::BITCAST) 8827 InputLoad = &InputLoad->getOperand(0); 8828 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 8829 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 8830 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 8831 InputLoad = &InputLoad->getOperand(0); 8832 } 8833 if (InputLoad->getOpcode() != ISD::LOAD) 8834 return nullptr; 8835 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8836 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8837 } 8838 8839 // Convert the argument APFloat to a single precision APFloat if there is no 8840 // loss in information during the conversion to single precision APFloat and the 8841 // resulting number is not a denormal number. Return true if successful. 8842 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 8843 APFloat APFloatToConvert = ArgAPFloat; 8844 bool LosesInfo = true; 8845 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 8846 &LosesInfo); 8847 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 8848 if (Success) 8849 ArgAPFloat = APFloatToConvert; 8850 return Success; 8851 } 8852 8853 // Bitcast the argument APInt to a double and convert it to a single precision 8854 // APFloat, bitcast the APFloat to an APInt and assign it to the original 8855 // argument if there is no loss in information during the conversion from 8856 // double to single precision APFloat and the resulting number is not a denormal 8857 // number. Return true if successful. 8858 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 8859 double DpValue = ArgAPInt.bitsToDouble(); 8860 APFloat APFloatDp(DpValue); 8861 bool Success = convertToNonDenormSingle(APFloatDp); 8862 if (Success) 8863 ArgAPInt = APFloatDp.bitcastToAPInt(); 8864 return Success; 8865 } 8866 8867 // Nondestructive check for convertTonNonDenormSingle. 8868 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 8869 // Only convert if it loses info, since XXSPLTIDP should 8870 // handle the other case. 8871 APFloat APFloatToConvert = ArgAPFloat; 8872 bool LosesInfo = true; 8873 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 8874 &LosesInfo); 8875 8876 return (!LosesInfo && !APFloatToConvert.isDenormal()); 8877 } 8878 8879 // If this is a case we can't handle, return null and let the default 8880 // expansion code take care of it. If we CAN select this case, and if it 8881 // selects to a single instruction, return Op. Otherwise, if we can codegen 8882 // this case more efficiently than a constant pool load, lower it to the 8883 // sequence of ops that should be used. 8884 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8885 SelectionDAG &DAG) const { 8886 SDLoc dl(Op); 8887 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8888 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8889 8890 // Check if this is a splat of a constant value. 8891 APInt APSplatBits, APSplatUndef; 8892 unsigned SplatBitSize; 8893 bool HasAnyUndefs; 8894 bool BVNIsConstantSplat = 8895 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8896 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 8897 8898 // If it is a splat of a double, check if we can shrink it to a 32 bit 8899 // non-denormal float which when converted back to double gives us the same 8900 // double. This is to exploit the XXSPLTIDP instruction. 8901 // If we lose precision, we use XXSPLTI32DX. 8902 if (BVNIsConstantSplat && (SplatBitSize == 64) && 8903 Subtarget.hasPrefixInstrs()) { 8904 // Check the type first to short-circuit so we don't modify APSplatBits if 8905 // this block isn't executed. 8906 if ((Op->getValueType(0) == MVT::v2f64) && 8907 convertToNonDenormSingle(APSplatBits)) { 8908 SDValue SplatNode = DAG.getNode( 8909 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 8910 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 8911 return DAG.getBitcast(Op.getValueType(), SplatNode); 8912 } else { 8913 // We may lose precision, so we have to use XXSPLTI32DX. 8914 8915 uint32_t Hi = 8916 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 8917 uint32_t Lo = 8918 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 8919 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 8920 8921 if (!Hi || !Lo) 8922 // If either load is 0, then we should generate XXLXOR to set to 0. 8923 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 8924 8925 if (Hi) 8926 SplatNode = DAG.getNode( 8927 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 8928 DAG.getTargetConstant(0, dl, MVT::i32), 8929 DAG.getTargetConstant(Hi, dl, MVT::i32)); 8930 8931 if (Lo) 8932 SplatNode = 8933 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 8934 DAG.getTargetConstant(1, dl, MVT::i32), 8935 DAG.getTargetConstant(Lo, dl, MVT::i32)); 8936 8937 return DAG.getBitcast(Op.getValueType(), SplatNode); 8938 } 8939 } 8940 8941 if (!BVNIsConstantSplat || SplatBitSize > 32) { 8942 8943 bool IsPermutedLoad = false; 8944 const SDValue *InputLoad = 8945 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 8946 // Handle load-and-splat patterns as we have instructions that will do this 8947 // in one go. 8948 if (InputLoad && DAG.isSplatValue(Op, true)) { 8949 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8950 8951 // We have handling for 4 and 8 byte elements. 8952 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8953 8954 // Checking for a single use of this load, we have to check for vector 8955 // width (128 bits) / ElementSize uses (since each operand of the 8956 // BUILD_VECTOR is a separate use of the value. 8957 unsigned NumUsesOfInputLD = 128 / ElementSize; 8958 for (SDValue BVInOp : Op->ops()) 8959 if (BVInOp.isUndef()) 8960 NumUsesOfInputLD--; 8961 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 8962 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 8963 ((Subtarget.hasVSX() && ElementSize == 64) || 8964 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8965 SDValue Ops[] = { 8966 LD->getChain(), // Chain 8967 LD->getBasePtr(), // Ptr 8968 DAG.getValueType(Op.getValueType()) // VT 8969 }; 8970 SDValue LdSplt = DAG.getMemIntrinsicNode( 8971 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8972 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8973 // Replace all uses of the output chain of the original load with the 8974 // output chain of the new load. 8975 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 8976 LdSplt.getValue(1)); 8977 return LdSplt; 8978 } 8979 } 8980 8981 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 8982 // 32-bits can be lowered to VSX instructions under certain conditions. 8983 // Without VSX, there is no pattern more efficient than expanding the node. 8984 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 8985 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8986 Subtarget.hasP8Vector())) 8987 return Op; 8988 return SDValue(); 8989 } 8990 8991 uint64_t SplatBits = APSplatBits.getZExtValue(); 8992 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 8993 unsigned SplatSize = SplatBitSize / 8; 8994 8995 // First, handle single instruction cases. 8996 8997 // All zeros? 8998 if (SplatBits == 0) { 8999 // Canonicalize all zero vectors to be v4i32. 9000 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9001 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9002 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9003 } 9004 return Op; 9005 } 9006 9007 // We have XXSPLTIW for constant splats four bytes wide. 9008 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9009 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9010 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9011 // turned into a 4-byte splat of 0xABABABAB. 9012 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9013 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9014 Op.getValueType(), DAG, dl); 9015 9016 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9017 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9018 dl); 9019 9020 // We have XXSPLTIB for constant splats one byte wide. 9021 if (Subtarget.hasP9Vector() && SplatSize == 1) 9022 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9023 dl); 9024 9025 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9026 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9027 (32-SplatBitSize)); 9028 if (SextVal >= -16 && SextVal <= 15) 9029 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9030 dl); 9031 9032 // Two instruction sequences. 9033 9034 // If this value is in the range [-32,30] and is even, use: 9035 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9036 // If this value is in the range [17,31] and is odd, use: 9037 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9038 // If this value is in the range [-31,-17] and is odd, use: 9039 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9040 // Note the last two are three-instruction sequences. 9041 if (SextVal >= -32 && SextVal <= 31) { 9042 // To avoid having these optimizations undone by constant folding, 9043 // we convert to a pseudo that will be expanded later into one of 9044 // the above forms. 9045 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9046 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9047 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9048 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9049 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9050 if (VT == Op.getValueType()) 9051 return RetVal; 9052 else 9053 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9054 } 9055 9056 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9057 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9058 // for fneg/fabs. 9059 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9060 // Make -1 and vspltisw -1: 9061 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9062 9063 // Make the VSLW intrinsic, computing 0x8000_0000. 9064 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9065 OnesV, DAG, dl); 9066 9067 // xor by OnesV to invert it. 9068 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9069 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9070 } 9071 9072 // Check to see if this is a wide variety of vsplti*, binop self cases. 9073 static const signed char SplatCsts[] = { 9074 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9075 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9076 }; 9077 9078 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9079 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9080 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9081 int i = SplatCsts[idx]; 9082 9083 // Figure out what shift amount will be used by altivec if shifted by i in 9084 // this splat size. 9085 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9086 9087 // vsplti + shl self. 9088 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9089 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9090 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9091 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9092 Intrinsic::ppc_altivec_vslw 9093 }; 9094 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9095 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9096 } 9097 9098 // vsplti + srl self. 9099 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9100 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9101 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9102 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9103 Intrinsic::ppc_altivec_vsrw 9104 }; 9105 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9106 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9107 } 9108 9109 // vsplti + rol self. 9110 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9111 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9112 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9113 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9114 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9115 Intrinsic::ppc_altivec_vrlw 9116 }; 9117 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9118 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9119 } 9120 9121 // t = vsplti c, result = vsldoi t, t, 1 9122 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9123 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9124 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9125 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9126 } 9127 // t = vsplti c, result = vsldoi t, t, 2 9128 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9129 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9130 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9131 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9132 } 9133 // t = vsplti c, result = vsldoi t, t, 3 9134 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9135 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9136 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9137 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9138 } 9139 } 9140 9141 return SDValue(); 9142 } 9143 9144 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9145 /// the specified operations to build the shuffle. 9146 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9147 SDValue RHS, SelectionDAG &DAG, 9148 const SDLoc &dl) { 9149 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9150 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9151 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9152 9153 enum { 9154 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9155 OP_VMRGHW, 9156 OP_VMRGLW, 9157 OP_VSPLTISW0, 9158 OP_VSPLTISW1, 9159 OP_VSPLTISW2, 9160 OP_VSPLTISW3, 9161 OP_VSLDOI4, 9162 OP_VSLDOI8, 9163 OP_VSLDOI12 9164 }; 9165 9166 if (OpNum == OP_COPY) { 9167 if (LHSID == (1*9+2)*9+3) return LHS; 9168 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9169 return RHS; 9170 } 9171 9172 SDValue OpLHS, OpRHS; 9173 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9174 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9175 9176 int ShufIdxs[16]; 9177 switch (OpNum) { 9178 default: llvm_unreachable("Unknown i32 permute!"); 9179 case OP_VMRGHW: 9180 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9181 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9182 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9183 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9184 break; 9185 case OP_VMRGLW: 9186 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9187 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9188 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9189 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9190 break; 9191 case OP_VSPLTISW0: 9192 for (unsigned i = 0; i != 16; ++i) 9193 ShufIdxs[i] = (i&3)+0; 9194 break; 9195 case OP_VSPLTISW1: 9196 for (unsigned i = 0; i != 16; ++i) 9197 ShufIdxs[i] = (i&3)+4; 9198 break; 9199 case OP_VSPLTISW2: 9200 for (unsigned i = 0; i != 16; ++i) 9201 ShufIdxs[i] = (i&3)+8; 9202 break; 9203 case OP_VSPLTISW3: 9204 for (unsigned i = 0; i != 16; ++i) 9205 ShufIdxs[i] = (i&3)+12; 9206 break; 9207 case OP_VSLDOI4: 9208 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9209 case OP_VSLDOI8: 9210 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9211 case OP_VSLDOI12: 9212 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9213 } 9214 EVT VT = OpLHS.getValueType(); 9215 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9216 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9217 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9218 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9219 } 9220 9221 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9222 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9223 /// SDValue. 9224 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9225 SelectionDAG &DAG) const { 9226 const unsigned BytesInVector = 16; 9227 bool IsLE = Subtarget.isLittleEndian(); 9228 SDLoc dl(N); 9229 SDValue V1 = N->getOperand(0); 9230 SDValue V2 = N->getOperand(1); 9231 unsigned ShiftElts = 0, InsertAtByte = 0; 9232 bool Swap = false; 9233 9234 // Shifts required to get the byte we want at element 7. 9235 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9236 0, 15, 14, 13, 12, 11, 10, 9}; 9237 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9238 1, 2, 3, 4, 5, 6, 7, 8}; 9239 9240 ArrayRef<int> Mask = N->getMask(); 9241 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9242 9243 // For each mask element, find out if we're just inserting something 9244 // from V2 into V1 or vice versa. 9245 // Possible permutations inserting an element from V2 into V1: 9246 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9247 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9248 // ... 9249 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9250 // Inserting from V1 into V2 will be similar, except mask range will be 9251 // [16,31]. 9252 9253 bool FoundCandidate = false; 9254 // If both vector operands for the shuffle are the same vector, the mask 9255 // will contain only elements from the first one and the second one will be 9256 // undef. 9257 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9258 // Go through the mask of half-words to find an element that's being moved 9259 // from one vector to the other. 9260 for (unsigned i = 0; i < BytesInVector; ++i) { 9261 unsigned CurrentElement = Mask[i]; 9262 // If 2nd operand is undefined, we should only look for element 7 in the 9263 // Mask. 9264 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9265 continue; 9266 9267 bool OtherElementsInOrder = true; 9268 // Examine the other elements in the Mask to see if they're in original 9269 // order. 9270 for (unsigned j = 0; j < BytesInVector; ++j) { 9271 if (j == i) 9272 continue; 9273 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9274 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9275 // in which we always assume we're always picking from the 1st operand. 9276 int MaskOffset = 9277 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9278 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9279 OtherElementsInOrder = false; 9280 break; 9281 } 9282 } 9283 // If other elements are in original order, we record the number of shifts 9284 // we need to get the element we want into element 7. Also record which byte 9285 // in the vector we should insert into. 9286 if (OtherElementsInOrder) { 9287 // If 2nd operand is undefined, we assume no shifts and no swapping. 9288 if (V2.isUndef()) { 9289 ShiftElts = 0; 9290 Swap = false; 9291 } else { 9292 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9293 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9294 : BigEndianShifts[CurrentElement & 0xF]; 9295 Swap = CurrentElement < BytesInVector; 9296 } 9297 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9298 FoundCandidate = true; 9299 break; 9300 } 9301 } 9302 9303 if (!FoundCandidate) 9304 return SDValue(); 9305 9306 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9307 // optionally with VECSHL if shift is required. 9308 if (Swap) 9309 std::swap(V1, V2); 9310 if (V2.isUndef()) 9311 V2 = V1; 9312 if (ShiftElts) { 9313 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9314 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9315 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9316 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9317 } 9318 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9319 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9320 } 9321 9322 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9323 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9324 /// SDValue. 9325 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9326 SelectionDAG &DAG) const { 9327 const unsigned NumHalfWords = 8; 9328 const unsigned BytesInVector = NumHalfWords * 2; 9329 // Check that the shuffle is on half-words. 9330 if (!isNByteElemShuffleMask(N, 2, 1)) 9331 return SDValue(); 9332 9333 bool IsLE = Subtarget.isLittleEndian(); 9334 SDLoc dl(N); 9335 SDValue V1 = N->getOperand(0); 9336 SDValue V2 = N->getOperand(1); 9337 unsigned ShiftElts = 0, InsertAtByte = 0; 9338 bool Swap = false; 9339 9340 // Shifts required to get the half-word we want at element 3. 9341 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9342 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9343 9344 uint32_t Mask = 0; 9345 uint32_t OriginalOrderLow = 0x1234567; 9346 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9347 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9348 // 32-bit space, only need 4-bit nibbles per element. 9349 for (unsigned i = 0; i < NumHalfWords; ++i) { 9350 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9351 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9352 } 9353 9354 // For each mask element, find out if we're just inserting something 9355 // from V2 into V1 or vice versa. Possible permutations inserting an element 9356 // from V2 into V1: 9357 // X, 1, 2, 3, 4, 5, 6, 7 9358 // 0, X, 2, 3, 4, 5, 6, 7 9359 // 0, 1, X, 3, 4, 5, 6, 7 9360 // 0, 1, 2, X, 4, 5, 6, 7 9361 // 0, 1, 2, 3, X, 5, 6, 7 9362 // 0, 1, 2, 3, 4, X, 6, 7 9363 // 0, 1, 2, 3, 4, 5, X, 7 9364 // 0, 1, 2, 3, 4, 5, 6, X 9365 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9366 9367 bool FoundCandidate = false; 9368 // Go through the mask of half-words to find an element that's being moved 9369 // from one vector to the other. 9370 for (unsigned i = 0; i < NumHalfWords; ++i) { 9371 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9372 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9373 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9374 uint32_t TargetOrder = 0x0; 9375 9376 // If both vector operands for the shuffle are the same vector, the mask 9377 // will contain only elements from the first one and the second one will be 9378 // undef. 9379 if (V2.isUndef()) { 9380 ShiftElts = 0; 9381 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9382 TargetOrder = OriginalOrderLow; 9383 Swap = false; 9384 // Skip if not the correct element or mask of other elements don't equal 9385 // to our expected order. 9386 if (MaskOneElt == VINSERTHSrcElem && 9387 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9388 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9389 FoundCandidate = true; 9390 break; 9391 } 9392 } else { // If both operands are defined. 9393 // Target order is [8,15] if the current mask is between [0,7]. 9394 TargetOrder = 9395 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9396 // Skip if mask of other elements don't equal our expected order. 9397 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9398 // We only need the last 3 bits for the number of shifts. 9399 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9400 : BigEndianShifts[MaskOneElt & 0x7]; 9401 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9402 Swap = MaskOneElt < NumHalfWords; 9403 FoundCandidate = true; 9404 break; 9405 } 9406 } 9407 } 9408 9409 if (!FoundCandidate) 9410 return SDValue(); 9411 9412 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9413 // optionally with VECSHL if shift is required. 9414 if (Swap) 9415 std::swap(V1, V2); 9416 if (V2.isUndef()) 9417 V2 = V1; 9418 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9419 if (ShiftElts) { 9420 // Double ShiftElts because we're left shifting on v16i8 type. 9421 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9422 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9423 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9424 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9425 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9426 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9427 } 9428 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9429 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9430 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9431 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9432 } 9433 9434 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9435 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9436 /// return the default SDValue. 9437 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9438 SelectionDAG &DAG) const { 9439 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9440 // to v16i8. Peek through the bitcasts to get the actual operands. 9441 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9442 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9443 9444 auto ShuffleMask = SVN->getMask(); 9445 SDValue VecShuffle(SVN, 0); 9446 SDLoc DL(SVN); 9447 9448 // Check that we have a four byte shuffle. 9449 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9450 return SDValue(); 9451 9452 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9453 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9454 std::swap(LHS, RHS); 9455 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9456 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9457 } 9458 9459 // Ensure that the RHS is a vector of constants. 9460 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9461 if (!BVN) 9462 return SDValue(); 9463 9464 // Check if RHS is a splat of 4-bytes (or smaller). 9465 APInt APSplatValue, APSplatUndef; 9466 unsigned SplatBitSize; 9467 bool HasAnyUndefs; 9468 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9469 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9470 SplatBitSize > 32) 9471 return SDValue(); 9472 9473 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9474 // The instruction splats a constant C into two words of the source vector 9475 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9476 // Thus we check that the shuffle mask is the equivalent of 9477 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9478 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9479 // within each word are consecutive, so we only need to check the first byte. 9480 SDValue Index; 9481 bool IsLE = Subtarget.isLittleEndian(); 9482 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9483 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9484 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9485 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9486 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9487 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9488 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9489 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9490 else 9491 return SDValue(); 9492 9493 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9494 // for XXSPLTI32DX. 9495 unsigned SplatVal = APSplatValue.getZExtValue(); 9496 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9497 SplatVal |= (SplatVal << SplatBitSize); 9498 9499 SDValue SplatNode = DAG.getNode( 9500 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9501 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9502 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9503 } 9504 9505 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9506 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9507 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9508 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9509 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9510 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9511 assert(Op.getValueType() == MVT::v1i128 && 9512 "Only set v1i128 as custom, other type shouldn't reach here!"); 9513 SDLoc dl(Op); 9514 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9515 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9516 unsigned SHLAmt = N1.getConstantOperandVal(0); 9517 if (SHLAmt % 8 == 0) { 9518 SmallVector<int, 16> Mask(16, 0); 9519 std::iota(Mask.begin(), Mask.end(), 0); 9520 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9521 if (SDValue Shuffle = 9522 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9523 DAG.getUNDEF(MVT::v16i8), Mask)) 9524 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9525 } 9526 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9527 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9528 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9529 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9530 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9531 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9532 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9533 } 9534 9535 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9536 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9537 /// return the code it can be lowered into. Worst case, it can always be 9538 /// lowered into a vperm. 9539 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9540 SelectionDAG &DAG) const { 9541 SDLoc dl(Op); 9542 SDValue V1 = Op.getOperand(0); 9543 SDValue V2 = Op.getOperand(1); 9544 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9545 9546 // Any nodes that were combined in the target-independent combiner prior 9547 // to vector legalization will not be sent to the target combine. Try to 9548 // combine it here. 9549 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9550 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9551 return NewShuffle; 9552 Op = NewShuffle; 9553 SVOp = cast<ShuffleVectorSDNode>(Op); 9554 V1 = Op.getOperand(0); 9555 V2 = Op.getOperand(1); 9556 } 9557 EVT VT = Op.getValueType(); 9558 bool isLittleEndian = Subtarget.isLittleEndian(); 9559 9560 unsigned ShiftElts, InsertAtByte; 9561 bool Swap = false; 9562 9563 // If this is a load-and-splat, we can do that with a single instruction 9564 // in some cases. However if the load has multiple uses, we don't want to 9565 // combine it because that will just produce multiple loads. 9566 bool IsPermutedLoad = false; 9567 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9568 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9569 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9570 InputLoad->hasOneUse()) { 9571 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9572 int SplatIdx = 9573 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9574 9575 // The splat index for permuted loads will be in the left half of the vector 9576 // which is strictly wider than the loaded value by 8 bytes. So we need to 9577 // adjust the splat index to point to the correct address in memory. 9578 if (IsPermutedLoad) { 9579 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9580 SplatIdx += IsFourByte ? 2 : 1; 9581 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9582 "Splat of a value outside of the loaded memory"); 9583 } 9584 9585 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9586 // For 4-byte load-and-splat, we need Power9. 9587 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9588 uint64_t Offset = 0; 9589 if (IsFourByte) 9590 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9591 else 9592 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9593 9594 SDValue BasePtr = LD->getBasePtr(); 9595 if (Offset != 0) 9596 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9597 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9598 SDValue Ops[] = { 9599 LD->getChain(), // Chain 9600 BasePtr, // BasePtr 9601 DAG.getValueType(Op.getValueType()) // VT 9602 }; 9603 SDVTList VTL = 9604 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9605 SDValue LdSplt = 9606 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9607 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9608 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9609 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9610 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9611 return LdSplt; 9612 } 9613 } 9614 if (Subtarget.hasP9Vector() && 9615 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9616 isLittleEndian)) { 9617 if (Swap) 9618 std::swap(V1, V2); 9619 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9620 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9621 if (ShiftElts) { 9622 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9623 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9624 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9625 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9626 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9627 } 9628 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9629 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9630 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9631 } 9632 9633 if (Subtarget.hasPrefixInstrs()) { 9634 SDValue SplatInsertNode; 9635 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9636 return SplatInsertNode; 9637 } 9638 9639 if (Subtarget.hasP9Altivec()) { 9640 SDValue NewISDNode; 9641 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9642 return NewISDNode; 9643 9644 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9645 return NewISDNode; 9646 } 9647 9648 if (Subtarget.hasVSX() && 9649 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9650 if (Swap) 9651 std::swap(V1, V2); 9652 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9653 SDValue Conv2 = 9654 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9655 9656 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9657 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9658 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9659 } 9660 9661 if (Subtarget.hasVSX() && 9662 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9663 if (Swap) 9664 std::swap(V1, V2); 9665 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9666 SDValue Conv2 = 9667 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9668 9669 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9670 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9671 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9672 } 9673 9674 if (Subtarget.hasP9Vector()) { 9675 if (PPC::isXXBRHShuffleMask(SVOp)) { 9676 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9677 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9678 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9679 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9680 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9681 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9682 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9683 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9684 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9685 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9686 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9687 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9688 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9689 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9690 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9691 } 9692 } 9693 9694 if (Subtarget.hasVSX()) { 9695 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9696 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9697 9698 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9699 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9700 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9701 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9702 } 9703 9704 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9705 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9706 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9707 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9708 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9709 } 9710 } 9711 9712 // Cases that are handled by instructions that take permute immediates 9713 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9714 // selected by the instruction selector. 9715 if (V2.isUndef()) { 9716 if (PPC::isSplatShuffleMask(SVOp, 1) || 9717 PPC::isSplatShuffleMask(SVOp, 2) || 9718 PPC::isSplatShuffleMask(SVOp, 4) || 9719 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9720 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9721 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9722 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9723 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9724 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9725 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9726 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9727 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9728 (Subtarget.hasP8Altivec() && ( 9729 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9730 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9731 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9732 return Op; 9733 } 9734 } 9735 9736 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9737 // and produce a fixed permutation. If any of these match, do not lower to 9738 // VPERM. 9739 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9740 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9741 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9742 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9743 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9744 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9745 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9746 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9747 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9748 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9749 (Subtarget.hasP8Altivec() && ( 9750 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9751 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9752 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9753 return Op; 9754 9755 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9756 // perfect shuffle table to emit an optimal matching sequence. 9757 ArrayRef<int> PermMask = SVOp->getMask(); 9758 9759 unsigned PFIndexes[4]; 9760 bool isFourElementShuffle = true; 9761 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9762 unsigned EltNo = 8; // Start out undef. 9763 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9764 if (PermMask[i*4+j] < 0) 9765 continue; // Undef, ignore it. 9766 9767 unsigned ByteSource = PermMask[i*4+j]; 9768 if ((ByteSource & 3) != j) { 9769 isFourElementShuffle = false; 9770 break; 9771 } 9772 9773 if (EltNo == 8) { 9774 EltNo = ByteSource/4; 9775 } else if (EltNo != ByteSource/4) { 9776 isFourElementShuffle = false; 9777 break; 9778 } 9779 } 9780 PFIndexes[i] = EltNo; 9781 } 9782 9783 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9784 // perfect shuffle vector to determine if it is cost effective to do this as 9785 // discrete instructions, or whether we should use a vperm. 9786 // For now, we skip this for little endian until such time as we have a 9787 // little-endian perfect shuffle table. 9788 if (isFourElementShuffle && !isLittleEndian) { 9789 // Compute the index in the perfect shuffle table. 9790 unsigned PFTableIndex = 9791 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9792 9793 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9794 unsigned Cost = (PFEntry >> 30); 9795 9796 // Determining when to avoid vperm is tricky. Many things affect the cost 9797 // of vperm, particularly how many times the perm mask needs to be computed. 9798 // For example, if the perm mask can be hoisted out of a loop or is already 9799 // used (perhaps because there are multiple permutes with the same shuffle 9800 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9801 // the loop requires an extra register. 9802 // 9803 // As a compromise, we only emit discrete instructions if the shuffle can be 9804 // generated in 3 or fewer operations. When we have loop information 9805 // available, if this block is within a loop, we should avoid using vperm 9806 // for 3-operation perms and use a constant pool load instead. 9807 if (Cost < 3) 9808 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9809 } 9810 9811 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9812 // vector that will get spilled to the constant pool. 9813 if (V2.isUndef()) V2 = V1; 9814 9815 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9816 // that it is in input element units, not in bytes. Convert now. 9817 9818 // For little endian, the order of the input vectors is reversed, and 9819 // the permutation mask is complemented with respect to 31. This is 9820 // necessary to produce proper semantics with the big-endian-biased vperm 9821 // instruction. 9822 EVT EltVT = V1.getValueType().getVectorElementType(); 9823 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9824 9825 SmallVector<SDValue, 16> ResultMask; 9826 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9827 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9828 9829 for (unsigned j = 0; j != BytesPerElement; ++j) 9830 if (isLittleEndian) 9831 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9832 dl, MVT::i32)); 9833 else 9834 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9835 MVT::i32)); 9836 } 9837 9838 ShufflesHandledWithVPERM++; 9839 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9840 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 9841 LLVM_DEBUG(SVOp->dump()); 9842 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 9843 LLVM_DEBUG(VPermMask.dump()); 9844 9845 if (isLittleEndian) 9846 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9847 V2, V1, VPermMask); 9848 else 9849 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9850 V1, V2, VPermMask); 9851 } 9852 9853 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9854 /// vector comparison. If it is, return true and fill in Opc/isDot with 9855 /// information about the intrinsic. 9856 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9857 bool &isDot, const PPCSubtarget &Subtarget) { 9858 unsigned IntrinsicID = 9859 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9860 CompareOpc = -1; 9861 isDot = false; 9862 switch (IntrinsicID) { 9863 default: 9864 return false; 9865 // Comparison predicates. 9866 case Intrinsic::ppc_altivec_vcmpbfp_p: 9867 CompareOpc = 966; 9868 isDot = true; 9869 break; 9870 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9871 CompareOpc = 198; 9872 isDot = true; 9873 break; 9874 case Intrinsic::ppc_altivec_vcmpequb_p: 9875 CompareOpc = 6; 9876 isDot = true; 9877 break; 9878 case Intrinsic::ppc_altivec_vcmpequh_p: 9879 CompareOpc = 70; 9880 isDot = true; 9881 break; 9882 case Intrinsic::ppc_altivec_vcmpequw_p: 9883 CompareOpc = 134; 9884 isDot = true; 9885 break; 9886 case Intrinsic::ppc_altivec_vcmpequd_p: 9887 if (Subtarget.hasP8Altivec()) { 9888 CompareOpc = 199; 9889 isDot = true; 9890 } else 9891 return false; 9892 break; 9893 case Intrinsic::ppc_altivec_vcmpneb_p: 9894 case Intrinsic::ppc_altivec_vcmpneh_p: 9895 case Intrinsic::ppc_altivec_vcmpnew_p: 9896 case Intrinsic::ppc_altivec_vcmpnezb_p: 9897 case Intrinsic::ppc_altivec_vcmpnezh_p: 9898 case Intrinsic::ppc_altivec_vcmpnezw_p: 9899 if (Subtarget.hasP9Altivec()) { 9900 switch (IntrinsicID) { 9901 default: 9902 llvm_unreachable("Unknown comparison intrinsic."); 9903 case Intrinsic::ppc_altivec_vcmpneb_p: 9904 CompareOpc = 7; 9905 break; 9906 case Intrinsic::ppc_altivec_vcmpneh_p: 9907 CompareOpc = 71; 9908 break; 9909 case Intrinsic::ppc_altivec_vcmpnew_p: 9910 CompareOpc = 135; 9911 break; 9912 case Intrinsic::ppc_altivec_vcmpnezb_p: 9913 CompareOpc = 263; 9914 break; 9915 case Intrinsic::ppc_altivec_vcmpnezh_p: 9916 CompareOpc = 327; 9917 break; 9918 case Intrinsic::ppc_altivec_vcmpnezw_p: 9919 CompareOpc = 391; 9920 break; 9921 } 9922 isDot = true; 9923 } else 9924 return false; 9925 break; 9926 case Intrinsic::ppc_altivec_vcmpgefp_p: 9927 CompareOpc = 454; 9928 isDot = true; 9929 break; 9930 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9931 CompareOpc = 710; 9932 isDot = true; 9933 break; 9934 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9935 CompareOpc = 774; 9936 isDot = true; 9937 break; 9938 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9939 CompareOpc = 838; 9940 isDot = true; 9941 break; 9942 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9943 CompareOpc = 902; 9944 isDot = true; 9945 break; 9946 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9947 if (Subtarget.hasP8Altivec()) { 9948 CompareOpc = 967; 9949 isDot = true; 9950 } else 9951 return false; 9952 break; 9953 case Intrinsic::ppc_altivec_vcmpgtub_p: 9954 CompareOpc = 518; 9955 isDot = true; 9956 break; 9957 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9958 CompareOpc = 582; 9959 isDot = true; 9960 break; 9961 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9962 CompareOpc = 646; 9963 isDot = true; 9964 break; 9965 case Intrinsic::ppc_altivec_vcmpgtud_p: 9966 if (Subtarget.hasP8Altivec()) { 9967 CompareOpc = 711; 9968 isDot = true; 9969 } else 9970 return false; 9971 break; 9972 9973 case Intrinsic::ppc_altivec_vcmpequq: 9974 case Intrinsic::ppc_altivec_vcmpgtsq: 9975 case Intrinsic::ppc_altivec_vcmpgtuq: 9976 if (!Subtarget.isISA3_1()) 9977 return false; 9978 switch (IntrinsicID) { 9979 default: 9980 llvm_unreachable("Unknown comparison intrinsic."); 9981 case Intrinsic::ppc_altivec_vcmpequq: 9982 CompareOpc = 455; 9983 break; 9984 case Intrinsic::ppc_altivec_vcmpgtsq: 9985 CompareOpc = 903; 9986 break; 9987 case Intrinsic::ppc_altivec_vcmpgtuq: 9988 CompareOpc = 647; 9989 break; 9990 } 9991 break; 9992 9993 // VSX predicate comparisons use the same infrastructure 9994 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9995 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9996 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9997 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9998 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9999 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10000 if (Subtarget.hasVSX()) { 10001 switch (IntrinsicID) { 10002 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10003 CompareOpc = 99; 10004 break; 10005 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10006 CompareOpc = 115; 10007 break; 10008 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10009 CompareOpc = 107; 10010 break; 10011 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10012 CompareOpc = 67; 10013 break; 10014 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10015 CompareOpc = 83; 10016 break; 10017 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10018 CompareOpc = 75; 10019 break; 10020 } 10021 isDot = true; 10022 } else 10023 return false; 10024 break; 10025 10026 // Normal Comparisons. 10027 case Intrinsic::ppc_altivec_vcmpbfp: 10028 CompareOpc = 966; 10029 break; 10030 case Intrinsic::ppc_altivec_vcmpeqfp: 10031 CompareOpc = 198; 10032 break; 10033 case Intrinsic::ppc_altivec_vcmpequb: 10034 CompareOpc = 6; 10035 break; 10036 case Intrinsic::ppc_altivec_vcmpequh: 10037 CompareOpc = 70; 10038 break; 10039 case Intrinsic::ppc_altivec_vcmpequw: 10040 CompareOpc = 134; 10041 break; 10042 case Intrinsic::ppc_altivec_vcmpequd: 10043 if (Subtarget.hasP8Altivec()) 10044 CompareOpc = 199; 10045 else 10046 return false; 10047 break; 10048 case Intrinsic::ppc_altivec_vcmpneb: 10049 case Intrinsic::ppc_altivec_vcmpneh: 10050 case Intrinsic::ppc_altivec_vcmpnew: 10051 case Intrinsic::ppc_altivec_vcmpnezb: 10052 case Intrinsic::ppc_altivec_vcmpnezh: 10053 case Intrinsic::ppc_altivec_vcmpnezw: 10054 if (Subtarget.hasP9Altivec()) 10055 switch (IntrinsicID) { 10056 default: 10057 llvm_unreachable("Unknown comparison intrinsic."); 10058 case Intrinsic::ppc_altivec_vcmpneb: 10059 CompareOpc = 7; 10060 break; 10061 case Intrinsic::ppc_altivec_vcmpneh: 10062 CompareOpc = 71; 10063 break; 10064 case Intrinsic::ppc_altivec_vcmpnew: 10065 CompareOpc = 135; 10066 break; 10067 case Intrinsic::ppc_altivec_vcmpnezb: 10068 CompareOpc = 263; 10069 break; 10070 case Intrinsic::ppc_altivec_vcmpnezh: 10071 CompareOpc = 327; 10072 break; 10073 case Intrinsic::ppc_altivec_vcmpnezw: 10074 CompareOpc = 391; 10075 break; 10076 } 10077 else 10078 return false; 10079 break; 10080 case Intrinsic::ppc_altivec_vcmpgefp: 10081 CompareOpc = 454; 10082 break; 10083 case Intrinsic::ppc_altivec_vcmpgtfp: 10084 CompareOpc = 710; 10085 break; 10086 case Intrinsic::ppc_altivec_vcmpgtsb: 10087 CompareOpc = 774; 10088 break; 10089 case Intrinsic::ppc_altivec_vcmpgtsh: 10090 CompareOpc = 838; 10091 break; 10092 case Intrinsic::ppc_altivec_vcmpgtsw: 10093 CompareOpc = 902; 10094 break; 10095 case Intrinsic::ppc_altivec_vcmpgtsd: 10096 if (Subtarget.hasP8Altivec()) 10097 CompareOpc = 967; 10098 else 10099 return false; 10100 break; 10101 case Intrinsic::ppc_altivec_vcmpgtub: 10102 CompareOpc = 518; 10103 break; 10104 case Intrinsic::ppc_altivec_vcmpgtuh: 10105 CompareOpc = 582; 10106 break; 10107 case Intrinsic::ppc_altivec_vcmpgtuw: 10108 CompareOpc = 646; 10109 break; 10110 case Intrinsic::ppc_altivec_vcmpgtud: 10111 if (Subtarget.hasP8Altivec()) 10112 CompareOpc = 711; 10113 else 10114 return false; 10115 break; 10116 case Intrinsic::ppc_altivec_vcmpequq_p: 10117 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10118 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10119 if (!Subtarget.isISA3_1()) 10120 return false; 10121 switch (IntrinsicID) { 10122 default: 10123 llvm_unreachable("Unknown comparison intrinsic."); 10124 case Intrinsic::ppc_altivec_vcmpequq_p: 10125 CompareOpc = 455; 10126 break; 10127 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10128 CompareOpc = 903; 10129 break; 10130 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10131 CompareOpc = 647; 10132 break; 10133 } 10134 isDot = true; 10135 break; 10136 } 10137 return true; 10138 } 10139 10140 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10141 /// lower, do it, otherwise return null. 10142 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10143 SelectionDAG &DAG) const { 10144 unsigned IntrinsicID = 10145 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10146 10147 SDLoc dl(Op); 10148 10149 switch (IntrinsicID) { 10150 case Intrinsic::thread_pointer: 10151 // Reads the thread pointer register, used for __builtin_thread_pointer. 10152 if (Subtarget.isPPC64()) 10153 return DAG.getRegister(PPC::X13, MVT::i64); 10154 return DAG.getRegister(PPC::R2, MVT::i32); 10155 10156 case Intrinsic::ppc_mma_disassemble_acc: 10157 case Intrinsic::ppc_vsx_disassemble_pair: { 10158 int NumVecs = 2; 10159 SDValue WideVec = Op.getOperand(1); 10160 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10161 NumVecs = 4; 10162 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10163 } 10164 SmallVector<SDValue, 4> RetOps; 10165 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10166 SDValue Extract = DAG.getNode( 10167 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10168 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10169 : VecNo, 10170 dl, getPointerTy(DAG.getDataLayout()))); 10171 RetOps.push_back(Extract); 10172 } 10173 return DAG.getMergeValues(RetOps, dl); 10174 } 10175 } 10176 10177 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10178 // opcode number of the comparison. 10179 int CompareOpc; 10180 bool isDot; 10181 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10182 return SDValue(); // Don't custom lower most intrinsics. 10183 10184 // If this is a non-dot comparison, make the VCMP node and we are done. 10185 if (!isDot) { 10186 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10187 Op.getOperand(1), Op.getOperand(2), 10188 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10189 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10190 } 10191 10192 // Create the PPCISD altivec 'dot' comparison node. 10193 SDValue Ops[] = { 10194 Op.getOperand(2), // LHS 10195 Op.getOperand(3), // RHS 10196 DAG.getConstant(CompareOpc, dl, MVT::i32) 10197 }; 10198 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10199 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10200 10201 // Now that we have the comparison, emit a copy from the CR to a GPR. 10202 // This is flagged to the above dot comparison. 10203 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10204 DAG.getRegister(PPC::CR6, MVT::i32), 10205 CompNode.getValue(1)); 10206 10207 // Unpack the result based on how the target uses it. 10208 unsigned BitNo; // Bit # of CR6. 10209 bool InvertBit; // Invert result? 10210 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10211 default: // Can't happen, don't crash on invalid number though. 10212 case 0: // Return the value of the EQ bit of CR6. 10213 BitNo = 0; InvertBit = false; 10214 break; 10215 case 1: // Return the inverted value of the EQ bit of CR6. 10216 BitNo = 0; InvertBit = true; 10217 break; 10218 case 2: // Return the value of the LT bit of CR6. 10219 BitNo = 2; InvertBit = false; 10220 break; 10221 case 3: // Return the inverted value of the LT bit of CR6. 10222 BitNo = 2; InvertBit = true; 10223 break; 10224 } 10225 10226 // Shift the bit into the low position. 10227 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10228 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10229 // Isolate the bit. 10230 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10231 DAG.getConstant(1, dl, MVT::i32)); 10232 10233 // If we are supposed to, toggle the bit. 10234 if (InvertBit) 10235 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10236 DAG.getConstant(1, dl, MVT::i32)); 10237 return Flags; 10238 } 10239 10240 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10241 SelectionDAG &DAG) const { 10242 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10243 // the beginning of the argument list. 10244 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10245 SDLoc DL(Op); 10246 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10247 case Intrinsic::ppc_cfence: { 10248 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10249 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10250 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10251 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10252 Op.getOperand(ArgStart + 1)), 10253 Op.getOperand(0)), 10254 0); 10255 } 10256 default: 10257 break; 10258 } 10259 return SDValue(); 10260 } 10261 10262 // Lower scalar BSWAP64 to xxbrd. 10263 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10264 SDLoc dl(Op); 10265 // MTVSRDD 10266 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10267 Op.getOperand(0)); 10268 // XXBRD 10269 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10270 // MFVSRD 10271 int VectorIndex = 0; 10272 if (Subtarget.isLittleEndian()) 10273 VectorIndex = 1; 10274 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10275 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10276 return Op; 10277 } 10278 10279 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10280 // compared to a value that is atomically loaded (atomic loads zero-extend). 10281 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10282 SelectionDAG &DAG) const { 10283 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10284 "Expecting an atomic compare-and-swap here."); 10285 SDLoc dl(Op); 10286 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10287 EVT MemVT = AtomicNode->getMemoryVT(); 10288 if (MemVT.getSizeInBits() >= 32) 10289 return Op; 10290 10291 SDValue CmpOp = Op.getOperand(2); 10292 // If this is already correctly zero-extended, leave it alone. 10293 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10294 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10295 return Op; 10296 10297 // Clear the high bits of the compare operand. 10298 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10299 SDValue NewCmpOp = 10300 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10301 DAG.getConstant(MaskVal, dl, MVT::i32)); 10302 10303 // Replace the existing compare operand with the properly zero-extended one. 10304 SmallVector<SDValue, 4> Ops; 10305 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10306 Ops.push_back(AtomicNode->getOperand(i)); 10307 Ops[2] = NewCmpOp; 10308 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10309 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10310 auto NodeTy = 10311 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10312 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10313 } 10314 10315 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10316 SelectionDAG &DAG) const { 10317 SDLoc dl(Op); 10318 // Create a stack slot that is 16-byte aligned. 10319 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10320 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10321 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10322 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10323 10324 // Store the input value into Value#0 of the stack slot. 10325 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10326 MachinePointerInfo()); 10327 // Load it out. 10328 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10329 } 10330 10331 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10332 SelectionDAG &DAG) const { 10333 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10334 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10335 10336 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10337 10338 EVT VT = Op.getValueType(); 10339 SDLoc dl(Op); 10340 SDValue V1 = Op.getOperand(0); 10341 SDValue V2 = Op.getOperand(1); 10342 SDValue V3 = Op.getOperand(2); 10343 10344 if (Subtarget.isISA3_1()) { 10345 // On P10, we have legal lowering for constant and variable indices for 10346 // integer vectors. 10347 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10348 VT == MVT::v2i64) 10349 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10350 // For f32 and f64 vectors, we have legal lowering for variable indices. 10351 // For f32 we also have legal lowering when the element is loaded from 10352 // memory. 10353 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10354 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10355 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10356 return SDValue(); 10357 } 10358 } 10359 10360 // Before P10, we have legal lowering for constant indices but not for 10361 // variable ones. 10362 if (!C) 10363 return SDValue(); 10364 10365 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10366 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10367 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10368 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10369 unsigned InsertAtElement = C->getZExtValue(); 10370 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10371 if (Subtarget.isLittleEndian()) { 10372 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10373 } 10374 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10375 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10376 } 10377 return Op; 10378 } 10379 10380 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10381 SelectionDAG &DAG) const { 10382 SDLoc dl(Op); 10383 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10384 SDValue LoadChain = LN->getChain(); 10385 SDValue BasePtr = LN->getBasePtr(); 10386 EVT VT = Op.getValueType(); 10387 10388 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10389 return Op; 10390 10391 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10392 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10393 // 2 or 4 vsx registers. 10394 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10395 "Type unsupported without MMA"); 10396 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10397 "Type unsupported without paired vector support"); 10398 Align Alignment = LN->getAlign(); 10399 SmallVector<SDValue, 4> Loads; 10400 SmallVector<SDValue, 4> LoadChains; 10401 unsigned NumVecs = VT.getSizeInBits() / 128; 10402 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10403 SDValue Load = 10404 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10405 LN->getPointerInfo().getWithOffset(Idx * 16), 10406 commonAlignment(Alignment, Idx * 16), 10407 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10408 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10409 DAG.getConstant(16, dl, BasePtr.getValueType())); 10410 Loads.push_back(Load); 10411 LoadChains.push_back(Load.getValue(1)); 10412 } 10413 if (Subtarget.isLittleEndian()) { 10414 std::reverse(Loads.begin(), Loads.end()); 10415 std::reverse(LoadChains.begin(), LoadChains.end()); 10416 } 10417 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10418 SDValue Value = 10419 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10420 dl, VT, Loads); 10421 SDValue RetOps[] = {Value, TF}; 10422 return DAG.getMergeValues(RetOps, dl); 10423 } 10424 10425 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10426 SelectionDAG &DAG) const { 10427 SDLoc dl(Op); 10428 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10429 SDValue StoreChain = SN->getChain(); 10430 SDValue BasePtr = SN->getBasePtr(); 10431 SDValue Value = SN->getValue(); 10432 EVT StoreVT = Value.getValueType(); 10433 10434 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10435 return Op; 10436 10437 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10438 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10439 // underlying registers individually. 10440 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10441 "Type unsupported without MMA"); 10442 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10443 "Type unsupported without paired vector support"); 10444 Align Alignment = SN->getAlign(); 10445 SmallVector<SDValue, 4> Stores; 10446 unsigned NumVecs = 2; 10447 if (StoreVT == MVT::v512i1) { 10448 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10449 NumVecs = 4; 10450 } 10451 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10452 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10453 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10454 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10455 SDValue Store = 10456 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10457 SN->getPointerInfo().getWithOffset(Idx * 16), 10458 commonAlignment(Alignment, Idx * 16), 10459 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10460 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10461 DAG.getConstant(16, dl, BasePtr.getValueType())); 10462 Stores.push_back(Store); 10463 } 10464 SDValue TF = DAG.getTokenFactor(dl, Stores); 10465 return TF; 10466 } 10467 10468 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10469 SDLoc dl(Op); 10470 if (Op.getValueType() == MVT::v4i32) { 10471 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10472 10473 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10474 // +16 as shift amt. 10475 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10476 SDValue RHSSwap = // = vrlw RHS, 16 10477 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10478 10479 // Shrinkify inputs to v8i16. 10480 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10481 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10482 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10483 10484 // Low parts multiplied together, generating 32-bit results (we ignore the 10485 // top parts). 10486 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10487 LHS, RHS, DAG, dl, MVT::v4i32); 10488 10489 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10490 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10491 // Shift the high parts up 16 bits. 10492 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10493 Neg16, DAG, dl); 10494 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10495 } else if (Op.getValueType() == MVT::v16i8) { 10496 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10497 bool isLittleEndian = Subtarget.isLittleEndian(); 10498 10499 // Multiply the even 8-bit parts, producing 16-bit sums. 10500 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10501 LHS, RHS, DAG, dl, MVT::v8i16); 10502 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10503 10504 // Multiply the odd 8-bit parts, producing 16-bit sums. 10505 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10506 LHS, RHS, DAG, dl, MVT::v8i16); 10507 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10508 10509 // Merge the results together. Because vmuleub and vmuloub are 10510 // instructions with a big-endian bias, we must reverse the 10511 // element numbering and reverse the meaning of "odd" and "even" 10512 // when generating little endian code. 10513 int Ops[16]; 10514 for (unsigned i = 0; i != 8; ++i) { 10515 if (isLittleEndian) { 10516 Ops[i*2 ] = 2*i; 10517 Ops[i*2+1] = 2*i+16; 10518 } else { 10519 Ops[i*2 ] = 2*i+1; 10520 Ops[i*2+1] = 2*i+1+16; 10521 } 10522 } 10523 if (isLittleEndian) 10524 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10525 else 10526 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10527 } else { 10528 llvm_unreachable("Unknown mul to lower!"); 10529 } 10530 } 10531 10532 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10533 bool IsStrict = Op->isStrictFPOpcode(); 10534 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10535 !Subtarget.hasP9Vector()) 10536 return SDValue(); 10537 10538 return Op; 10539 } 10540 10541 // Custom lowering for fpext vf32 to v2f64 10542 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10543 10544 assert(Op.getOpcode() == ISD::FP_EXTEND && 10545 "Should only be called for ISD::FP_EXTEND"); 10546 10547 // FIXME: handle extends from half precision float vectors on P9. 10548 // We only want to custom lower an extend from v2f32 to v2f64. 10549 if (Op.getValueType() != MVT::v2f64 || 10550 Op.getOperand(0).getValueType() != MVT::v2f32) 10551 return SDValue(); 10552 10553 SDLoc dl(Op); 10554 SDValue Op0 = Op.getOperand(0); 10555 10556 switch (Op0.getOpcode()) { 10557 default: 10558 return SDValue(); 10559 case ISD::EXTRACT_SUBVECTOR: { 10560 assert(Op0.getNumOperands() == 2 && 10561 isa<ConstantSDNode>(Op0->getOperand(1)) && 10562 "Node should have 2 operands with second one being a constant!"); 10563 10564 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10565 return SDValue(); 10566 10567 // Custom lower is only done for high or low doubleword. 10568 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10569 if (Idx % 2 != 0) 10570 return SDValue(); 10571 10572 // Since input is v4f32, at this point Idx is either 0 or 2. 10573 // Shift to get the doubleword position we want. 10574 int DWord = Idx >> 1; 10575 10576 // High and low word positions are different on little endian. 10577 if (Subtarget.isLittleEndian()) 10578 DWord ^= 0x1; 10579 10580 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10581 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10582 } 10583 case ISD::FADD: 10584 case ISD::FMUL: 10585 case ISD::FSUB: { 10586 SDValue NewLoad[2]; 10587 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10588 // Ensure both input are loads. 10589 SDValue LdOp = Op0.getOperand(i); 10590 if (LdOp.getOpcode() != ISD::LOAD) 10591 return SDValue(); 10592 // Generate new load node. 10593 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10594 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10595 NewLoad[i] = DAG.getMemIntrinsicNode( 10596 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10597 LD->getMemoryVT(), LD->getMemOperand()); 10598 } 10599 SDValue NewOp = 10600 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10601 NewLoad[1], Op0.getNode()->getFlags()); 10602 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10603 DAG.getConstant(0, dl, MVT::i32)); 10604 } 10605 case ISD::LOAD: { 10606 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10607 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10608 SDValue NewLd = DAG.getMemIntrinsicNode( 10609 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10610 LD->getMemoryVT(), LD->getMemOperand()); 10611 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10612 DAG.getConstant(0, dl, MVT::i32)); 10613 } 10614 } 10615 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10616 } 10617 10618 /// LowerOperation - Provide custom lowering hooks for some operations. 10619 /// 10620 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10621 switch (Op.getOpcode()) { 10622 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10623 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10624 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10625 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10626 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10627 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10628 case ISD::STRICT_FSETCC: 10629 case ISD::STRICT_FSETCCS: 10630 case ISD::SETCC: return LowerSETCC(Op, DAG); 10631 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10632 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10633 10634 // Variable argument lowering. 10635 case ISD::VASTART: return LowerVASTART(Op, DAG); 10636 case ISD::VAARG: return LowerVAARG(Op, DAG); 10637 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10638 10639 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10640 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10641 case ISD::GET_DYNAMIC_AREA_OFFSET: 10642 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10643 10644 // Exception handling lowering. 10645 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10646 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10647 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10648 10649 case ISD::LOAD: return LowerLOAD(Op, DAG); 10650 case ISD::STORE: return LowerSTORE(Op, DAG); 10651 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10652 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10653 case ISD::STRICT_FP_TO_UINT: 10654 case ISD::STRICT_FP_TO_SINT: 10655 case ISD::FP_TO_UINT: 10656 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10657 case ISD::STRICT_UINT_TO_FP: 10658 case ISD::STRICT_SINT_TO_FP: 10659 case ISD::UINT_TO_FP: 10660 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10661 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10662 10663 // Lower 64-bit shifts. 10664 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10665 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10666 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10667 10668 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10669 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10670 10671 // Vector-related lowering. 10672 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10673 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10674 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10675 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10676 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10677 case ISD::MUL: return LowerMUL(Op, DAG); 10678 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10679 case ISD::STRICT_FP_ROUND: 10680 case ISD::FP_ROUND: 10681 return LowerFP_ROUND(Op, DAG); 10682 case ISD::ROTL: return LowerROTL(Op, DAG); 10683 10684 // For counter-based loop handling. 10685 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10686 10687 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10688 10689 // Frame & Return address. 10690 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10691 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10692 10693 case ISD::INTRINSIC_VOID: 10694 return LowerINTRINSIC_VOID(Op, DAG); 10695 case ISD::BSWAP: 10696 return LowerBSWAP(Op, DAG); 10697 case ISD::ATOMIC_CMP_SWAP: 10698 return LowerATOMIC_CMP_SWAP(Op, DAG); 10699 } 10700 } 10701 10702 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10703 SmallVectorImpl<SDValue>&Results, 10704 SelectionDAG &DAG) const { 10705 SDLoc dl(N); 10706 switch (N->getOpcode()) { 10707 default: 10708 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10709 case ISD::READCYCLECOUNTER: { 10710 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10711 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10712 10713 Results.push_back( 10714 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10715 Results.push_back(RTB.getValue(2)); 10716 break; 10717 } 10718 case ISD::INTRINSIC_W_CHAIN: { 10719 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10720 Intrinsic::loop_decrement) 10721 break; 10722 10723 assert(N->getValueType(0) == MVT::i1 && 10724 "Unexpected result type for CTR decrement intrinsic"); 10725 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10726 N->getValueType(0)); 10727 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10728 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10729 N->getOperand(1)); 10730 10731 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10732 Results.push_back(NewInt.getValue(1)); 10733 break; 10734 } 10735 case ISD::VAARG: { 10736 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10737 return; 10738 10739 EVT VT = N->getValueType(0); 10740 10741 if (VT == MVT::i64) { 10742 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10743 10744 Results.push_back(NewNode); 10745 Results.push_back(NewNode.getValue(1)); 10746 } 10747 return; 10748 } 10749 case ISD::STRICT_FP_TO_SINT: 10750 case ISD::STRICT_FP_TO_UINT: 10751 case ISD::FP_TO_SINT: 10752 case ISD::FP_TO_UINT: 10753 // LowerFP_TO_INT() can only handle f32 and f64. 10754 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 10755 MVT::ppcf128) 10756 return; 10757 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10758 return; 10759 case ISD::TRUNCATE: { 10760 if (!N->getValueType(0).isVector()) 10761 return; 10762 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 10763 if (Lowered) 10764 Results.push_back(Lowered); 10765 return; 10766 } 10767 case ISD::FSHL: 10768 case ISD::FSHR: 10769 // Don't handle funnel shifts here. 10770 return; 10771 case ISD::BITCAST: 10772 // Don't handle bitcast here. 10773 return; 10774 case ISD::FP_EXTEND: 10775 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10776 if (Lowered) 10777 Results.push_back(Lowered); 10778 return; 10779 } 10780 } 10781 10782 //===----------------------------------------------------------------------===// 10783 // Other Lowering Code 10784 //===----------------------------------------------------------------------===// 10785 10786 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10787 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10788 Function *Func = Intrinsic::getDeclaration(M, Id); 10789 return Builder.CreateCall(Func, {}); 10790 } 10791 10792 // The mappings for emitLeading/TrailingFence is taken from 10793 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10794 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10795 Instruction *Inst, 10796 AtomicOrdering Ord) const { 10797 if (Ord == AtomicOrdering::SequentiallyConsistent) 10798 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10799 if (isReleaseOrStronger(Ord)) 10800 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10801 return nullptr; 10802 } 10803 10804 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10805 Instruction *Inst, 10806 AtomicOrdering Ord) const { 10807 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10808 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10809 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10810 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10811 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10812 return Builder.CreateCall( 10813 Intrinsic::getDeclaration( 10814 Builder.GetInsertBlock()->getParent()->getParent(), 10815 Intrinsic::ppc_cfence, {Inst->getType()}), 10816 {Inst}); 10817 // FIXME: Can use isync for rmw operation. 10818 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10819 } 10820 return nullptr; 10821 } 10822 10823 MachineBasicBlock * 10824 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10825 unsigned AtomicSize, 10826 unsigned BinOpcode, 10827 unsigned CmpOpcode, 10828 unsigned CmpPred) const { 10829 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10830 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10831 10832 auto LoadMnemonic = PPC::LDARX; 10833 auto StoreMnemonic = PPC::STDCX; 10834 switch (AtomicSize) { 10835 default: 10836 llvm_unreachable("Unexpected size of atomic entity"); 10837 case 1: 10838 LoadMnemonic = PPC::LBARX; 10839 StoreMnemonic = PPC::STBCX; 10840 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10841 break; 10842 case 2: 10843 LoadMnemonic = PPC::LHARX; 10844 StoreMnemonic = PPC::STHCX; 10845 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10846 break; 10847 case 4: 10848 LoadMnemonic = PPC::LWARX; 10849 StoreMnemonic = PPC::STWCX; 10850 break; 10851 case 8: 10852 LoadMnemonic = PPC::LDARX; 10853 StoreMnemonic = PPC::STDCX; 10854 break; 10855 } 10856 10857 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10858 MachineFunction *F = BB->getParent(); 10859 MachineFunction::iterator It = ++BB->getIterator(); 10860 10861 Register dest = MI.getOperand(0).getReg(); 10862 Register ptrA = MI.getOperand(1).getReg(); 10863 Register ptrB = MI.getOperand(2).getReg(); 10864 Register incr = MI.getOperand(3).getReg(); 10865 DebugLoc dl = MI.getDebugLoc(); 10866 10867 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10868 MachineBasicBlock *loop2MBB = 10869 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10870 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10871 F->insert(It, loopMBB); 10872 if (CmpOpcode) 10873 F->insert(It, loop2MBB); 10874 F->insert(It, exitMBB); 10875 exitMBB->splice(exitMBB->begin(), BB, 10876 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10877 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10878 10879 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10880 Register TmpReg = (!BinOpcode) ? incr : 10881 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10882 : &PPC::GPRCRegClass); 10883 10884 // thisMBB: 10885 // ... 10886 // fallthrough --> loopMBB 10887 BB->addSuccessor(loopMBB); 10888 10889 // loopMBB: 10890 // l[wd]arx dest, ptr 10891 // add r0, dest, incr 10892 // st[wd]cx. r0, ptr 10893 // bne- loopMBB 10894 // fallthrough --> exitMBB 10895 10896 // For max/min... 10897 // loopMBB: 10898 // l[wd]arx dest, ptr 10899 // cmpl?[wd] incr, dest 10900 // bgt exitMBB 10901 // loop2MBB: 10902 // st[wd]cx. dest, ptr 10903 // bne- loopMBB 10904 // fallthrough --> exitMBB 10905 10906 BB = loopMBB; 10907 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10908 .addReg(ptrA).addReg(ptrB); 10909 if (BinOpcode) 10910 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10911 if (CmpOpcode) { 10912 // Signed comparisons of byte or halfword values must be sign-extended. 10913 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10914 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10915 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10916 ExtReg).addReg(dest); 10917 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10918 .addReg(incr).addReg(ExtReg); 10919 } else 10920 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10921 .addReg(incr).addReg(dest); 10922 10923 BuildMI(BB, dl, TII->get(PPC::BCC)) 10924 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10925 BB->addSuccessor(loop2MBB); 10926 BB->addSuccessor(exitMBB); 10927 BB = loop2MBB; 10928 } 10929 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10930 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10931 BuildMI(BB, dl, TII->get(PPC::BCC)) 10932 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10933 BB->addSuccessor(loopMBB); 10934 BB->addSuccessor(exitMBB); 10935 10936 // exitMBB: 10937 // ... 10938 BB = exitMBB; 10939 return BB; 10940 } 10941 10942 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 10943 switch(MI.getOpcode()) { 10944 default: 10945 return false; 10946 case PPC::COPY: 10947 return TII->isSignExtended(MI); 10948 case PPC::LHA: 10949 case PPC::LHA8: 10950 case PPC::LHAU: 10951 case PPC::LHAU8: 10952 case PPC::LHAUX: 10953 case PPC::LHAUX8: 10954 case PPC::LHAX: 10955 case PPC::LHAX8: 10956 case PPC::LWA: 10957 case PPC::LWAUX: 10958 case PPC::LWAX: 10959 case PPC::LWAX_32: 10960 case PPC::LWA_32: 10961 case PPC::PLHA: 10962 case PPC::PLHA8: 10963 case PPC::PLHA8pc: 10964 case PPC::PLHApc: 10965 case PPC::PLWA: 10966 case PPC::PLWA8: 10967 case PPC::PLWA8pc: 10968 case PPC::PLWApc: 10969 case PPC::EXTSB: 10970 case PPC::EXTSB8: 10971 case PPC::EXTSB8_32_64: 10972 case PPC::EXTSB8_rec: 10973 case PPC::EXTSB_rec: 10974 case PPC::EXTSH: 10975 case PPC::EXTSH8: 10976 case PPC::EXTSH8_32_64: 10977 case PPC::EXTSH8_rec: 10978 case PPC::EXTSH_rec: 10979 case PPC::EXTSW: 10980 case PPC::EXTSWSLI: 10981 case PPC::EXTSWSLI_32_64: 10982 case PPC::EXTSWSLI_32_64_rec: 10983 case PPC::EXTSWSLI_rec: 10984 case PPC::EXTSW_32: 10985 case PPC::EXTSW_32_64: 10986 case PPC::EXTSW_32_64_rec: 10987 case PPC::EXTSW_rec: 10988 case PPC::SRAW: 10989 case PPC::SRAWI: 10990 case PPC::SRAWI_rec: 10991 case PPC::SRAW_rec: 10992 return true; 10993 } 10994 return false; 10995 } 10996 10997 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10998 MachineInstr &MI, MachineBasicBlock *BB, 10999 bool is8bit, // operation 11000 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11001 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11002 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11003 11004 // If this is a signed comparison and the value being compared is not known 11005 // to be sign extended, sign extend it here. 11006 DebugLoc dl = MI.getDebugLoc(); 11007 MachineFunction *F = BB->getParent(); 11008 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11009 Register incr = MI.getOperand(3).getReg(); 11010 bool IsSignExtended = Register::isVirtualRegister(incr) && 11011 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11012 11013 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11014 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11015 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11016 .addReg(MI.getOperand(3).getReg()); 11017 MI.getOperand(3).setReg(ValueReg); 11018 } 11019 // If we support part-word atomic mnemonics, just use them 11020 if (Subtarget.hasPartwordAtomics()) 11021 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11022 CmpPred); 11023 11024 // In 64 bit mode we have to use 64 bits for addresses, even though the 11025 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11026 // registers without caring whether they're 32 or 64, but here we're 11027 // doing actual arithmetic on the addresses. 11028 bool is64bit = Subtarget.isPPC64(); 11029 bool isLittleEndian = Subtarget.isLittleEndian(); 11030 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11031 11032 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11033 MachineFunction::iterator It = ++BB->getIterator(); 11034 11035 Register dest = MI.getOperand(0).getReg(); 11036 Register ptrA = MI.getOperand(1).getReg(); 11037 Register ptrB = MI.getOperand(2).getReg(); 11038 11039 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11040 MachineBasicBlock *loop2MBB = 11041 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11042 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11043 F->insert(It, loopMBB); 11044 if (CmpOpcode) 11045 F->insert(It, loop2MBB); 11046 F->insert(It, exitMBB); 11047 exitMBB->splice(exitMBB->begin(), BB, 11048 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11049 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11050 11051 const TargetRegisterClass *RC = 11052 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11053 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11054 11055 Register PtrReg = RegInfo.createVirtualRegister(RC); 11056 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11057 Register ShiftReg = 11058 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11059 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11060 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11061 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11062 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11063 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11064 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11065 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11066 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11067 Register Ptr1Reg; 11068 Register TmpReg = 11069 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11070 11071 // thisMBB: 11072 // ... 11073 // fallthrough --> loopMBB 11074 BB->addSuccessor(loopMBB); 11075 11076 // The 4-byte load must be aligned, while a char or short may be 11077 // anywhere in the word. Hence all this nasty bookkeeping code. 11078 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11079 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11080 // xori shift, shift1, 24 [16] 11081 // rlwinm ptr, ptr1, 0, 0, 29 11082 // slw incr2, incr, shift 11083 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11084 // slw mask, mask2, shift 11085 // loopMBB: 11086 // lwarx tmpDest, ptr 11087 // add tmp, tmpDest, incr2 11088 // andc tmp2, tmpDest, mask 11089 // and tmp3, tmp, mask 11090 // or tmp4, tmp3, tmp2 11091 // stwcx. tmp4, ptr 11092 // bne- loopMBB 11093 // fallthrough --> exitMBB 11094 // srw dest, tmpDest, shift 11095 if (ptrA != ZeroReg) { 11096 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11097 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11098 .addReg(ptrA) 11099 .addReg(ptrB); 11100 } else { 11101 Ptr1Reg = ptrB; 11102 } 11103 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11104 // mode. 11105 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11106 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11107 .addImm(3) 11108 .addImm(27) 11109 .addImm(is8bit ? 28 : 27); 11110 if (!isLittleEndian) 11111 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11112 .addReg(Shift1Reg) 11113 .addImm(is8bit ? 24 : 16); 11114 if (is64bit) 11115 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11116 .addReg(Ptr1Reg) 11117 .addImm(0) 11118 .addImm(61); 11119 else 11120 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11121 .addReg(Ptr1Reg) 11122 .addImm(0) 11123 .addImm(0) 11124 .addImm(29); 11125 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11126 if (is8bit) 11127 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11128 else { 11129 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11130 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11131 .addReg(Mask3Reg) 11132 .addImm(65535); 11133 } 11134 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11135 .addReg(Mask2Reg) 11136 .addReg(ShiftReg); 11137 11138 BB = loopMBB; 11139 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11140 .addReg(ZeroReg) 11141 .addReg(PtrReg); 11142 if (BinOpcode) 11143 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11144 .addReg(Incr2Reg) 11145 .addReg(TmpDestReg); 11146 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11147 .addReg(TmpDestReg) 11148 .addReg(MaskReg); 11149 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11150 if (CmpOpcode) { 11151 // For unsigned comparisons, we can directly compare the shifted values. 11152 // For signed comparisons we shift and sign extend. 11153 Register SReg = RegInfo.createVirtualRegister(GPRC); 11154 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11155 .addReg(TmpDestReg) 11156 .addReg(MaskReg); 11157 unsigned ValueReg = SReg; 11158 unsigned CmpReg = Incr2Reg; 11159 if (CmpOpcode == PPC::CMPW) { 11160 ValueReg = RegInfo.createVirtualRegister(GPRC); 11161 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11162 .addReg(SReg) 11163 .addReg(ShiftReg); 11164 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11165 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11166 .addReg(ValueReg); 11167 ValueReg = ValueSReg; 11168 CmpReg = incr; 11169 } 11170 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11171 .addReg(CmpReg) 11172 .addReg(ValueReg); 11173 BuildMI(BB, dl, TII->get(PPC::BCC)) 11174 .addImm(CmpPred) 11175 .addReg(PPC::CR0) 11176 .addMBB(exitMBB); 11177 BB->addSuccessor(loop2MBB); 11178 BB->addSuccessor(exitMBB); 11179 BB = loop2MBB; 11180 } 11181 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11182 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11183 .addReg(Tmp4Reg) 11184 .addReg(ZeroReg) 11185 .addReg(PtrReg); 11186 BuildMI(BB, dl, TII->get(PPC::BCC)) 11187 .addImm(PPC::PRED_NE) 11188 .addReg(PPC::CR0) 11189 .addMBB(loopMBB); 11190 BB->addSuccessor(loopMBB); 11191 BB->addSuccessor(exitMBB); 11192 11193 // exitMBB: 11194 // ... 11195 BB = exitMBB; 11196 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11197 .addReg(TmpDestReg) 11198 .addReg(ShiftReg); 11199 return BB; 11200 } 11201 11202 llvm::MachineBasicBlock * 11203 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11204 MachineBasicBlock *MBB) const { 11205 DebugLoc DL = MI.getDebugLoc(); 11206 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11207 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11208 11209 MachineFunction *MF = MBB->getParent(); 11210 MachineRegisterInfo &MRI = MF->getRegInfo(); 11211 11212 const BasicBlock *BB = MBB->getBasicBlock(); 11213 MachineFunction::iterator I = ++MBB->getIterator(); 11214 11215 Register DstReg = MI.getOperand(0).getReg(); 11216 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11217 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11218 Register mainDstReg = MRI.createVirtualRegister(RC); 11219 Register restoreDstReg = MRI.createVirtualRegister(RC); 11220 11221 MVT PVT = getPointerTy(MF->getDataLayout()); 11222 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11223 "Invalid Pointer Size!"); 11224 // For v = setjmp(buf), we generate 11225 // 11226 // thisMBB: 11227 // SjLjSetup mainMBB 11228 // bl mainMBB 11229 // v_restore = 1 11230 // b sinkMBB 11231 // 11232 // mainMBB: 11233 // buf[LabelOffset] = LR 11234 // v_main = 0 11235 // 11236 // sinkMBB: 11237 // v = phi(main, restore) 11238 // 11239 11240 MachineBasicBlock *thisMBB = MBB; 11241 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11242 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11243 MF->insert(I, mainMBB); 11244 MF->insert(I, sinkMBB); 11245 11246 MachineInstrBuilder MIB; 11247 11248 // Transfer the remainder of BB and its successor edges to sinkMBB. 11249 sinkMBB->splice(sinkMBB->begin(), MBB, 11250 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11251 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11252 11253 // Note that the structure of the jmp_buf used here is not compatible 11254 // with that used by libc, and is not designed to be. Specifically, it 11255 // stores only those 'reserved' registers that LLVM does not otherwise 11256 // understand how to spill. Also, by convention, by the time this 11257 // intrinsic is called, Clang has already stored the frame address in the 11258 // first slot of the buffer and stack address in the third. Following the 11259 // X86 target code, we'll store the jump address in the second slot. We also 11260 // need to save the TOC pointer (R2) to handle jumps between shared 11261 // libraries, and that will be stored in the fourth slot. The thread 11262 // identifier (R13) is not affected. 11263 11264 // thisMBB: 11265 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11266 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11267 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11268 11269 // Prepare IP either in reg. 11270 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11271 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11272 Register BufReg = MI.getOperand(1).getReg(); 11273 11274 if (Subtarget.is64BitELFABI()) { 11275 setUsesTOCBasePtr(*MBB->getParent()); 11276 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11277 .addReg(PPC::X2) 11278 .addImm(TOCOffset) 11279 .addReg(BufReg) 11280 .cloneMemRefs(MI); 11281 } 11282 11283 // Naked functions never have a base pointer, and so we use r1. For all 11284 // other functions, this decision must be delayed until during PEI. 11285 unsigned BaseReg; 11286 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11287 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11288 else 11289 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11290 11291 MIB = BuildMI(*thisMBB, MI, DL, 11292 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11293 .addReg(BaseReg) 11294 .addImm(BPOffset) 11295 .addReg(BufReg) 11296 .cloneMemRefs(MI); 11297 11298 // Setup 11299 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11300 MIB.addRegMask(TRI->getNoPreservedMask()); 11301 11302 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11303 11304 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11305 .addMBB(mainMBB); 11306 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11307 11308 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11309 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11310 11311 // mainMBB: 11312 // mainDstReg = 0 11313 MIB = 11314 BuildMI(mainMBB, DL, 11315 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11316 11317 // Store IP 11318 if (Subtarget.isPPC64()) { 11319 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11320 .addReg(LabelReg) 11321 .addImm(LabelOffset) 11322 .addReg(BufReg); 11323 } else { 11324 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11325 .addReg(LabelReg) 11326 .addImm(LabelOffset) 11327 .addReg(BufReg); 11328 } 11329 MIB.cloneMemRefs(MI); 11330 11331 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11332 mainMBB->addSuccessor(sinkMBB); 11333 11334 // sinkMBB: 11335 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11336 TII->get(PPC::PHI), DstReg) 11337 .addReg(mainDstReg).addMBB(mainMBB) 11338 .addReg(restoreDstReg).addMBB(thisMBB); 11339 11340 MI.eraseFromParent(); 11341 return sinkMBB; 11342 } 11343 11344 MachineBasicBlock * 11345 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11346 MachineBasicBlock *MBB) const { 11347 DebugLoc DL = MI.getDebugLoc(); 11348 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11349 11350 MachineFunction *MF = MBB->getParent(); 11351 MachineRegisterInfo &MRI = MF->getRegInfo(); 11352 11353 MVT PVT = getPointerTy(MF->getDataLayout()); 11354 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11355 "Invalid Pointer Size!"); 11356 11357 const TargetRegisterClass *RC = 11358 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11359 Register Tmp = MRI.createVirtualRegister(RC); 11360 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11361 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11362 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11363 unsigned BP = 11364 (PVT == MVT::i64) 11365 ? PPC::X30 11366 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11367 : PPC::R30); 11368 11369 MachineInstrBuilder MIB; 11370 11371 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11372 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11373 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11374 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11375 11376 Register BufReg = MI.getOperand(0).getReg(); 11377 11378 // Reload FP (the jumped-to function may not have had a 11379 // frame pointer, and if so, then its r31 will be restored 11380 // as necessary). 11381 if (PVT == MVT::i64) { 11382 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11383 .addImm(0) 11384 .addReg(BufReg); 11385 } else { 11386 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11387 .addImm(0) 11388 .addReg(BufReg); 11389 } 11390 MIB.cloneMemRefs(MI); 11391 11392 // Reload IP 11393 if (PVT == MVT::i64) { 11394 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11395 .addImm(LabelOffset) 11396 .addReg(BufReg); 11397 } else { 11398 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11399 .addImm(LabelOffset) 11400 .addReg(BufReg); 11401 } 11402 MIB.cloneMemRefs(MI); 11403 11404 // Reload SP 11405 if (PVT == MVT::i64) { 11406 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11407 .addImm(SPOffset) 11408 .addReg(BufReg); 11409 } else { 11410 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11411 .addImm(SPOffset) 11412 .addReg(BufReg); 11413 } 11414 MIB.cloneMemRefs(MI); 11415 11416 // Reload BP 11417 if (PVT == MVT::i64) { 11418 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11419 .addImm(BPOffset) 11420 .addReg(BufReg); 11421 } else { 11422 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11423 .addImm(BPOffset) 11424 .addReg(BufReg); 11425 } 11426 MIB.cloneMemRefs(MI); 11427 11428 // Reload TOC 11429 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11430 setUsesTOCBasePtr(*MBB->getParent()); 11431 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11432 .addImm(TOCOffset) 11433 .addReg(BufReg) 11434 .cloneMemRefs(MI); 11435 } 11436 11437 // Jump 11438 BuildMI(*MBB, MI, DL, 11439 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11440 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11441 11442 MI.eraseFromParent(); 11443 return MBB; 11444 } 11445 11446 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11447 // If the function specifically requests inline stack probes, emit them. 11448 if (MF.getFunction().hasFnAttribute("probe-stack")) 11449 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11450 "inline-asm"; 11451 return false; 11452 } 11453 11454 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11455 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11456 unsigned StackAlign = TFI->getStackAlignment(); 11457 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11458 "Unexpected stack alignment"); 11459 // The default stack probe size is 4096 if the function has no 11460 // stack-probe-size attribute. 11461 unsigned StackProbeSize = 4096; 11462 const Function &Fn = MF.getFunction(); 11463 if (Fn.hasFnAttribute("stack-probe-size")) 11464 Fn.getFnAttribute("stack-probe-size") 11465 .getValueAsString() 11466 .getAsInteger(0, StackProbeSize); 11467 // Round down to the stack alignment. 11468 StackProbeSize &= ~(StackAlign - 1); 11469 return StackProbeSize ? StackProbeSize : StackAlign; 11470 } 11471 11472 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11473 // into three phases. In the first phase, it uses pseudo instruction 11474 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11475 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11476 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11477 // MaxCallFrameSize so that it can calculate correct data area pointer. 11478 MachineBasicBlock * 11479 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11480 MachineBasicBlock *MBB) const { 11481 const bool isPPC64 = Subtarget.isPPC64(); 11482 MachineFunction *MF = MBB->getParent(); 11483 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11484 DebugLoc DL = MI.getDebugLoc(); 11485 const unsigned ProbeSize = getStackProbeSize(*MF); 11486 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11487 MachineRegisterInfo &MRI = MF->getRegInfo(); 11488 // The CFG of probing stack looks as 11489 // +-----+ 11490 // | MBB | 11491 // +--+--+ 11492 // | 11493 // +----v----+ 11494 // +--->+ TestMBB +---+ 11495 // | +----+----+ | 11496 // | | | 11497 // | +-----v----+ | 11498 // +---+ BlockMBB | | 11499 // +----------+ | 11500 // | 11501 // +---------+ | 11502 // | TailMBB +<--+ 11503 // +---------+ 11504 // In MBB, calculate previous frame pointer and final stack pointer. 11505 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11506 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11507 // TailMBB is spliced via \p MI. 11508 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11509 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11510 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11511 11512 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11513 MF->insert(MBBIter, TestMBB); 11514 MF->insert(MBBIter, BlockMBB); 11515 MF->insert(MBBIter, TailMBB); 11516 11517 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11518 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11519 11520 Register DstReg = MI.getOperand(0).getReg(); 11521 Register NegSizeReg = MI.getOperand(1).getReg(); 11522 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11523 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11524 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11525 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11526 11527 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11528 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11529 // NegSize. 11530 unsigned ProbeOpc; 11531 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11532 ProbeOpc = 11533 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11534 else 11535 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11536 // and NegSizeReg will be allocated in the same phyreg to avoid 11537 // redundant copy when NegSizeReg has only one use which is current MI and 11538 // will be replaced by PREPARE_PROBED_ALLOCA then. 11539 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11540 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11541 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11542 .addDef(ActualNegSizeReg) 11543 .addReg(NegSizeReg) 11544 .add(MI.getOperand(2)) 11545 .add(MI.getOperand(3)); 11546 11547 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11548 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11549 FinalStackPtr) 11550 .addReg(SPReg) 11551 .addReg(ActualNegSizeReg); 11552 11553 // Materialize a scratch register for update. 11554 int64_t NegProbeSize = -(int64_t)ProbeSize; 11555 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11556 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11557 if (!isInt<16>(NegProbeSize)) { 11558 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11559 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11560 .addImm(NegProbeSize >> 16); 11561 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11562 ScratchReg) 11563 .addReg(TempReg) 11564 .addImm(NegProbeSize & 0xFFFF); 11565 } else 11566 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11567 .addImm(NegProbeSize); 11568 11569 { 11570 // Probing leading residual part. 11571 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11572 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11573 .addReg(ActualNegSizeReg) 11574 .addReg(ScratchReg); 11575 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11576 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11577 .addReg(Div) 11578 .addReg(ScratchReg); 11579 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11580 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11581 .addReg(Mul) 11582 .addReg(ActualNegSizeReg); 11583 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11584 .addReg(FramePointer) 11585 .addReg(SPReg) 11586 .addReg(NegMod); 11587 } 11588 11589 { 11590 // Remaining part should be multiple of ProbeSize. 11591 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11592 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11593 .addReg(SPReg) 11594 .addReg(FinalStackPtr); 11595 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11596 .addImm(PPC::PRED_EQ) 11597 .addReg(CmpResult) 11598 .addMBB(TailMBB); 11599 TestMBB->addSuccessor(BlockMBB); 11600 TestMBB->addSuccessor(TailMBB); 11601 } 11602 11603 { 11604 // Touch the block. 11605 // |P...|P...|P... 11606 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11607 .addReg(FramePointer) 11608 .addReg(SPReg) 11609 .addReg(ScratchReg); 11610 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11611 BlockMBB->addSuccessor(TestMBB); 11612 } 11613 11614 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11615 // DYNAREAOFFSET pseudo instruction to get the future result. 11616 Register MaxCallFrameSizeReg = 11617 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11618 BuildMI(TailMBB, DL, 11619 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11620 MaxCallFrameSizeReg) 11621 .add(MI.getOperand(2)) 11622 .add(MI.getOperand(3)); 11623 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11624 .addReg(SPReg) 11625 .addReg(MaxCallFrameSizeReg); 11626 11627 // Splice instructions after MI to TailMBB. 11628 TailMBB->splice(TailMBB->end(), MBB, 11629 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11630 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11631 MBB->addSuccessor(TestMBB); 11632 11633 // Delete the pseudo instruction. 11634 MI.eraseFromParent(); 11635 11636 ++NumDynamicAllocaProbed; 11637 return TailMBB; 11638 } 11639 11640 MachineBasicBlock * 11641 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11642 MachineBasicBlock *BB) const { 11643 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11644 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11645 if (Subtarget.is64BitELFABI() && 11646 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11647 !Subtarget.isUsingPCRelativeCalls()) { 11648 // Call lowering should have added an r2 operand to indicate a dependence 11649 // on the TOC base pointer value. It can't however, because there is no 11650 // way to mark the dependence as implicit there, and so the stackmap code 11651 // will confuse it with a regular operand. Instead, add the dependence 11652 // here. 11653 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11654 } 11655 11656 return emitPatchPoint(MI, BB); 11657 } 11658 11659 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11660 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11661 return emitEHSjLjSetJmp(MI, BB); 11662 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11663 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11664 return emitEHSjLjLongJmp(MI, BB); 11665 } 11666 11667 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11668 11669 // To "insert" these instructions we actually have to insert their 11670 // control-flow patterns. 11671 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11672 MachineFunction::iterator It = ++BB->getIterator(); 11673 11674 MachineFunction *F = BB->getParent(); 11675 11676 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11677 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11678 MI.getOpcode() == PPC::SELECT_I8) { 11679 SmallVector<MachineOperand, 2> Cond; 11680 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11681 MI.getOpcode() == PPC::SELECT_CC_I8) 11682 Cond.push_back(MI.getOperand(4)); 11683 else 11684 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11685 Cond.push_back(MI.getOperand(1)); 11686 11687 DebugLoc dl = MI.getDebugLoc(); 11688 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11689 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11690 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11691 MI.getOpcode() == PPC::SELECT_CC_F8 || 11692 MI.getOpcode() == PPC::SELECT_CC_F16 || 11693 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11694 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11695 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11696 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11697 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11698 MI.getOpcode() == PPC::SELECT_CC_SPE || 11699 MI.getOpcode() == PPC::SELECT_F4 || 11700 MI.getOpcode() == PPC::SELECT_F8 || 11701 MI.getOpcode() == PPC::SELECT_F16 || 11702 MI.getOpcode() == PPC::SELECT_SPE || 11703 MI.getOpcode() == PPC::SELECT_SPE4 || 11704 MI.getOpcode() == PPC::SELECT_VRRC || 11705 MI.getOpcode() == PPC::SELECT_VSFRC || 11706 MI.getOpcode() == PPC::SELECT_VSSRC || 11707 MI.getOpcode() == PPC::SELECT_VSRC) { 11708 // The incoming instruction knows the destination vreg to set, the 11709 // condition code register to branch on, the true/false values to 11710 // select between, and a branch opcode to use. 11711 11712 // thisMBB: 11713 // ... 11714 // TrueVal = ... 11715 // cmpTY ccX, r1, r2 11716 // bCC copy1MBB 11717 // fallthrough --> copy0MBB 11718 MachineBasicBlock *thisMBB = BB; 11719 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11720 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11721 DebugLoc dl = MI.getDebugLoc(); 11722 F->insert(It, copy0MBB); 11723 F->insert(It, sinkMBB); 11724 11725 // Transfer the remainder of BB and its successor edges to sinkMBB. 11726 sinkMBB->splice(sinkMBB->begin(), BB, 11727 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11728 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11729 11730 // Next, add the true and fallthrough blocks as its successors. 11731 BB->addSuccessor(copy0MBB); 11732 BB->addSuccessor(sinkMBB); 11733 11734 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11735 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11736 MI.getOpcode() == PPC::SELECT_F16 || 11737 MI.getOpcode() == PPC::SELECT_SPE4 || 11738 MI.getOpcode() == PPC::SELECT_SPE || 11739 MI.getOpcode() == PPC::SELECT_VRRC || 11740 MI.getOpcode() == PPC::SELECT_VSFRC || 11741 MI.getOpcode() == PPC::SELECT_VSSRC || 11742 MI.getOpcode() == PPC::SELECT_VSRC) { 11743 BuildMI(BB, dl, TII->get(PPC::BC)) 11744 .addReg(MI.getOperand(1).getReg()) 11745 .addMBB(sinkMBB); 11746 } else { 11747 unsigned SelectPred = MI.getOperand(4).getImm(); 11748 BuildMI(BB, dl, TII->get(PPC::BCC)) 11749 .addImm(SelectPred) 11750 .addReg(MI.getOperand(1).getReg()) 11751 .addMBB(sinkMBB); 11752 } 11753 11754 // copy0MBB: 11755 // %FalseValue = ... 11756 // # fallthrough to sinkMBB 11757 BB = copy0MBB; 11758 11759 // Update machine-CFG edges 11760 BB->addSuccessor(sinkMBB); 11761 11762 // sinkMBB: 11763 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11764 // ... 11765 BB = sinkMBB; 11766 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11767 .addReg(MI.getOperand(3).getReg()) 11768 .addMBB(copy0MBB) 11769 .addReg(MI.getOperand(2).getReg()) 11770 .addMBB(thisMBB); 11771 } else if (MI.getOpcode() == PPC::ReadTB) { 11772 // To read the 64-bit time-base register on a 32-bit target, we read the 11773 // two halves. Should the counter have wrapped while it was being read, we 11774 // need to try again. 11775 // ... 11776 // readLoop: 11777 // mfspr Rx,TBU # load from TBU 11778 // mfspr Ry,TB # load from TB 11779 // mfspr Rz,TBU # load from TBU 11780 // cmpw crX,Rx,Rz # check if 'old'='new' 11781 // bne readLoop # branch if they're not equal 11782 // ... 11783 11784 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11785 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11786 DebugLoc dl = MI.getDebugLoc(); 11787 F->insert(It, readMBB); 11788 F->insert(It, sinkMBB); 11789 11790 // Transfer the remainder of BB and its successor edges to sinkMBB. 11791 sinkMBB->splice(sinkMBB->begin(), BB, 11792 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11793 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11794 11795 BB->addSuccessor(readMBB); 11796 BB = readMBB; 11797 11798 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11799 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11800 Register LoReg = MI.getOperand(0).getReg(); 11801 Register HiReg = MI.getOperand(1).getReg(); 11802 11803 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11804 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11805 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11806 11807 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11808 11809 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11810 .addReg(HiReg) 11811 .addReg(ReadAgainReg); 11812 BuildMI(BB, dl, TII->get(PPC::BCC)) 11813 .addImm(PPC::PRED_NE) 11814 .addReg(CmpReg) 11815 .addMBB(readMBB); 11816 11817 BB->addSuccessor(readMBB); 11818 BB->addSuccessor(sinkMBB); 11819 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11820 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11821 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11822 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11823 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11824 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11825 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11826 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11827 11828 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11829 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11830 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11831 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11832 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11833 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11834 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11835 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11836 11837 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11838 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11839 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11840 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11841 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11842 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11843 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11844 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11845 11846 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11847 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11848 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11849 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11850 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11851 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11852 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11853 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11854 11855 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11856 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11857 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11858 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11859 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11860 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11861 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11862 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11863 11864 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11865 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11866 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11867 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11868 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11869 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11870 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11871 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11872 11873 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11874 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11875 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11876 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11877 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11878 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11879 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11880 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11881 11882 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11883 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11884 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11885 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11886 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11887 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11888 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11889 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11890 11891 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11892 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11893 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11894 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11895 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11896 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11897 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11898 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11899 11900 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11901 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11902 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11903 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11904 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11905 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11906 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11907 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11908 11909 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11910 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11911 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11912 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11913 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11914 BB = EmitAtomicBinary(MI, BB, 4, 0); 11915 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11916 BB = EmitAtomicBinary(MI, BB, 8, 0); 11917 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11918 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11919 (Subtarget.hasPartwordAtomics() && 11920 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11921 (Subtarget.hasPartwordAtomics() && 11922 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11923 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11924 11925 auto LoadMnemonic = PPC::LDARX; 11926 auto StoreMnemonic = PPC::STDCX; 11927 switch (MI.getOpcode()) { 11928 default: 11929 llvm_unreachable("Compare and swap of unknown size"); 11930 case PPC::ATOMIC_CMP_SWAP_I8: 11931 LoadMnemonic = PPC::LBARX; 11932 StoreMnemonic = PPC::STBCX; 11933 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11934 break; 11935 case PPC::ATOMIC_CMP_SWAP_I16: 11936 LoadMnemonic = PPC::LHARX; 11937 StoreMnemonic = PPC::STHCX; 11938 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11939 break; 11940 case PPC::ATOMIC_CMP_SWAP_I32: 11941 LoadMnemonic = PPC::LWARX; 11942 StoreMnemonic = PPC::STWCX; 11943 break; 11944 case PPC::ATOMIC_CMP_SWAP_I64: 11945 LoadMnemonic = PPC::LDARX; 11946 StoreMnemonic = PPC::STDCX; 11947 break; 11948 } 11949 Register dest = MI.getOperand(0).getReg(); 11950 Register ptrA = MI.getOperand(1).getReg(); 11951 Register ptrB = MI.getOperand(2).getReg(); 11952 Register oldval = MI.getOperand(3).getReg(); 11953 Register newval = MI.getOperand(4).getReg(); 11954 DebugLoc dl = MI.getDebugLoc(); 11955 11956 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11957 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11958 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11959 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11960 F->insert(It, loop1MBB); 11961 F->insert(It, loop2MBB); 11962 F->insert(It, midMBB); 11963 F->insert(It, exitMBB); 11964 exitMBB->splice(exitMBB->begin(), BB, 11965 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11966 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11967 11968 // thisMBB: 11969 // ... 11970 // fallthrough --> loopMBB 11971 BB->addSuccessor(loop1MBB); 11972 11973 // loop1MBB: 11974 // l[bhwd]arx dest, ptr 11975 // cmp[wd] dest, oldval 11976 // bne- midMBB 11977 // loop2MBB: 11978 // st[bhwd]cx. newval, ptr 11979 // bne- loopMBB 11980 // b exitBB 11981 // midMBB: 11982 // st[bhwd]cx. dest, ptr 11983 // exitBB: 11984 BB = loop1MBB; 11985 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11986 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11987 .addReg(oldval) 11988 .addReg(dest); 11989 BuildMI(BB, dl, TII->get(PPC::BCC)) 11990 .addImm(PPC::PRED_NE) 11991 .addReg(PPC::CR0) 11992 .addMBB(midMBB); 11993 BB->addSuccessor(loop2MBB); 11994 BB->addSuccessor(midMBB); 11995 11996 BB = loop2MBB; 11997 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11998 .addReg(newval) 11999 .addReg(ptrA) 12000 .addReg(ptrB); 12001 BuildMI(BB, dl, TII->get(PPC::BCC)) 12002 .addImm(PPC::PRED_NE) 12003 .addReg(PPC::CR0) 12004 .addMBB(loop1MBB); 12005 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12006 BB->addSuccessor(loop1MBB); 12007 BB->addSuccessor(exitMBB); 12008 12009 BB = midMBB; 12010 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12011 .addReg(dest) 12012 .addReg(ptrA) 12013 .addReg(ptrB); 12014 BB->addSuccessor(exitMBB); 12015 12016 // exitMBB: 12017 // ... 12018 BB = exitMBB; 12019 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12020 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12021 // We must use 64-bit registers for addresses when targeting 64-bit, 12022 // since we're actually doing arithmetic on them. Other registers 12023 // can be 32-bit. 12024 bool is64bit = Subtarget.isPPC64(); 12025 bool isLittleEndian = Subtarget.isLittleEndian(); 12026 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12027 12028 Register dest = MI.getOperand(0).getReg(); 12029 Register ptrA = MI.getOperand(1).getReg(); 12030 Register ptrB = MI.getOperand(2).getReg(); 12031 Register oldval = MI.getOperand(3).getReg(); 12032 Register newval = MI.getOperand(4).getReg(); 12033 DebugLoc dl = MI.getDebugLoc(); 12034 12035 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12036 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12037 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12038 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12039 F->insert(It, loop1MBB); 12040 F->insert(It, loop2MBB); 12041 F->insert(It, midMBB); 12042 F->insert(It, exitMBB); 12043 exitMBB->splice(exitMBB->begin(), BB, 12044 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12045 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12046 12047 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12048 const TargetRegisterClass *RC = 12049 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12050 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12051 12052 Register PtrReg = RegInfo.createVirtualRegister(RC); 12053 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12054 Register ShiftReg = 12055 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12056 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12057 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12058 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12059 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12060 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12061 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12062 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12063 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12064 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12065 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12066 Register Ptr1Reg; 12067 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12068 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12069 // thisMBB: 12070 // ... 12071 // fallthrough --> loopMBB 12072 BB->addSuccessor(loop1MBB); 12073 12074 // The 4-byte load must be aligned, while a char or short may be 12075 // anywhere in the word. Hence all this nasty bookkeeping code. 12076 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12077 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12078 // xori shift, shift1, 24 [16] 12079 // rlwinm ptr, ptr1, 0, 0, 29 12080 // slw newval2, newval, shift 12081 // slw oldval2, oldval,shift 12082 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12083 // slw mask, mask2, shift 12084 // and newval3, newval2, mask 12085 // and oldval3, oldval2, mask 12086 // loop1MBB: 12087 // lwarx tmpDest, ptr 12088 // and tmp, tmpDest, mask 12089 // cmpw tmp, oldval3 12090 // bne- midMBB 12091 // loop2MBB: 12092 // andc tmp2, tmpDest, mask 12093 // or tmp4, tmp2, newval3 12094 // stwcx. tmp4, ptr 12095 // bne- loop1MBB 12096 // b exitBB 12097 // midMBB: 12098 // stwcx. tmpDest, ptr 12099 // exitBB: 12100 // srw dest, tmpDest, shift 12101 if (ptrA != ZeroReg) { 12102 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12103 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12104 .addReg(ptrA) 12105 .addReg(ptrB); 12106 } else { 12107 Ptr1Reg = ptrB; 12108 } 12109 12110 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12111 // mode. 12112 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12113 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12114 .addImm(3) 12115 .addImm(27) 12116 .addImm(is8bit ? 28 : 27); 12117 if (!isLittleEndian) 12118 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12119 .addReg(Shift1Reg) 12120 .addImm(is8bit ? 24 : 16); 12121 if (is64bit) 12122 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12123 .addReg(Ptr1Reg) 12124 .addImm(0) 12125 .addImm(61); 12126 else 12127 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12128 .addReg(Ptr1Reg) 12129 .addImm(0) 12130 .addImm(0) 12131 .addImm(29); 12132 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12133 .addReg(newval) 12134 .addReg(ShiftReg); 12135 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12136 .addReg(oldval) 12137 .addReg(ShiftReg); 12138 if (is8bit) 12139 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12140 else { 12141 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12142 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12143 .addReg(Mask3Reg) 12144 .addImm(65535); 12145 } 12146 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12147 .addReg(Mask2Reg) 12148 .addReg(ShiftReg); 12149 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12150 .addReg(NewVal2Reg) 12151 .addReg(MaskReg); 12152 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12153 .addReg(OldVal2Reg) 12154 .addReg(MaskReg); 12155 12156 BB = loop1MBB; 12157 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12158 .addReg(ZeroReg) 12159 .addReg(PtrReg); 12160 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12161 .addReg(TmpDestReg) 12162 .addReg(MaskReg); 12163 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12164 .addReg(TmpReg) 12165 .addReg(OldVal3Reg); 12166 BuildMI(BB, dl, TII->get(PPC::BCC)) 12167 .addImm(PPC::PRED_NE) 12168 .addReg(PPC::CR0) 12169 .addMBB(midMBB); 12170 BB->addSuccessor(loop2MBB); 12171 BB->addSuccessor(midMBB); 12172 12173 BB = loop2MBB; 12174 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12175 .addReg(TmpDestReg) 12176 .addReg(MaskReg); 12177 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12178 .addReg(Tmp2Reg) 12179 .addReg(NewVal3Reg); 12180 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12181 .addReg(Tmp4Reg) 12182 .addReg(ZeroReg) 12183 .addReg(PtrReg); 12184 BuildMI(BB, dl, TII->get(PPC::BCC)) 12185 .addImm(PPC::PRED_NE) 12186 .addReg(PPC::CR0) 12187 .addMBB(loop1MBB); 12188 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12189 BB->addSuccessor(loop1MBB); 12190 BB->addSuccessor(exitMBB); 12191 12192 BB = midMBB; 12193 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12194 .addReg(TmpDestReg) 12195 .addReg(ZeroReg) 12196 .addReg(PtrReg); 12197 BB->addSuccessor(exitMBB); 12198 12199 // exitMBB: 12200 // ... 12201 BB = exitMBB; 12202 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12203 .addReg(TmpReg) 12204 .addReg(ShiftReg); 12205 } else if (MI.getOpcode() == PPC::FADDrtz) { 12206 // This pseudo performs an FADD with rounding mode temporarily forced 12207 // to round-to-zero. We emit this via custom inserter since the FPSCR 12208 // is not modeled at the SelectionDAG level. 12209 Register Dest = MI.getOperand(0).getReg(); 12210 Register Src1 = MI.getOperand(1).getReg(); 12211 Register Src2 = MI.getOperand(2).getReg(); 12212 DebugLoc dl = MI.getDebugLoc(); 12213 12214 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12215 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12216 12217 // Save FPSCR value. 12218 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12219 12220 // Set rounding mode to round-to-zero. 12221 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12222 .addImm(31) 12223 .addReg(PPC::RM, RegState::ImplicitDefine); 12224 12225 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12226 .addImm(30) 12227 .addReg(PPC::RM, RegState::ImplicitDefine); 12228 12229 // Perform addition. 12230 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12231 .addReg(Src1) 12232 .addReg(Src2); 12233 if (MI.getFlag(MachineInstr::NoFPExcept)) 12234 MIB.setMIFlag(MachineInstr::NoFPExcept); 12235 12236 // Restore FPSCR value. 12237 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12238 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12239 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12240 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12241 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12242 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12243 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12244 ? PPC::ANDI8_rec 12245 : PPC::ANDI_rec; 12246 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12247 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12248 12249 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12250 Register Dest = RegInfo.createVirtualRegister( 12251 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12252 12253 DebugLoc Dl = MI.getDebugLoc(); 12254 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12255 .addReg(MI.getOperand(1).getReg()) 12256 .addImm(1); 12257 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12258 MI.getOperand(0).getReg()) 12259 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12260 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12261 DebugLoc Dl = MI.getDebugLoc(); 12262 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12263 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12264 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12265 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12266 MI.getOperand(0).getReg()) 12267 .addReg(CRReg); 12268 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12269 DebugLoc Dl = MI.getDebugLoc(); 12270 unsigned Imm = MI.getOperand(1).getImm(); 12271 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12272 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12273 MI.getOperand(0).getReg()) 12274 .addReg(PPC::CR0EQ); 12275 } else if (MI.getOpcode() == PPC::SETRNDi) { 12276 DebugLoc dl = MI.getDebugLoc(); 12277 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12278 12279 // Save FPSCR value. 12280 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12281 12282 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12283 // the following settings: 12284 // 00 Round to nearest 12285 // 01 Round to 0 12286 // 10 Round to +inf 12287 // 11 Round to -inf 12288 12289 // When the operand is immediate, using the two least significant bits of 12290 // the immediate to set the bits 62:63 of FPSCR. 12291 unsigned Mode = MI.getOperand(1).getImm(); 12292 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12293 .addImm(31) 12294 .addReg(PPC::RM, RegState::ImplicitDefine); 12295 12296 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12297 .addImm(30) 12298 .addReg(PPC::RM, RegState::ImplicitDefine); 12299 } else if (MI.getOpcode() == PPC::SETRND) { 12300 DebugLoc dl = MI.getDebugLoc(); 12301 12302 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12303 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12304 // If the target doesn't have DirectMove, we should use stack to do the 12305 // conversion, because the target doesn't have the instructions like mtvsrd 12306 // or mfvsrd to do this conversion directly. 12307 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12308 if (Subtarget.hasDirectMove()) { 12309 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12310 .addReg(SrcReg); 12311 } else { 12312 // Use stack to do the register copy. 12313 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12314 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12315 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12316 if (RC == &PPC::F8RCRegClass) { 12317 // Copy register from F8RCRegClass to G8RCRegclass. 12318 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12319 "Unsupported RegClass."); 12320 12321 StoreOp = PPC::STFD; 12322 LoadOp = PPC::LD; 12323 } else { 12324 // Copy register from G8RCRegClass to F8RCRegclass. 12325 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12326 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12327 "Unsupported RegClass."); 12328 } 12329 12330 MachineFrameInfo &MFI = F->getFrameInfo(); 12331 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12332 12333 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12334 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12335 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12336 MFI.getObjectAlign(FrameIdx)); 12337 12338 // Store the SrcReg into the stack. 12339 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12340 .addReg(SrcReg) 12341 .addImm(0) 12342 .addFrameIndex(FrameIdx) 12343 .addMemOperand(MMOStore); 12344 12345 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12346 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12347 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12348 MFI.getObjectAlign(FrameIdx)); 12349 12350 // Load from the stack where SrcReg is stored, and save to DestReg, 12351 // so we have done the RegClass conversion from RegClass::SrcReg to 12352 // RegClass::DestReg. 12353 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12354 .addImm(0) 12355 .addFrameIndex(FrameIdx) 12356 .addMemOperand(MMOLoad); 12357 } 12358 }; 12359 12360 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12361 12362 // Save FPSCR value. 12363 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12364 12365 // When the operand is gprc register, use two least significant bits of the 12366 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12367 // 12368 // copy OldFPSCRTmpReg, OldFPSCRReg 12369 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12370 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12371 // copy NewFPSCRReg, NewFPSCRTmpReg 12372 // mtfsf 255, NewFPSCRReg 12373 MachineOperand SrcOp = MI.getOperand(1); 12374 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12375 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12376 12377 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12378 12379 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12380 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12381 12382 // The first operand of INSERT_SUBREG should be a register which has 12383 // subregisters, we only care about its RegClass, so we should use an 12384 // IMPLICIT_DEF register. 12385 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12386 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12387 .addReg(ImDefReg) 12388 .add(SrcOp) 12389 .addImm(1); 12390 12391 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12392 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12393 .addReg(OldFPSCRTmpReg) 12394 .addReg(ExtSrcReg) 12395 .addImm(0) 12396 .addImm(62); 12397 12398 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12399 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12400 12401 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12402 // bits of FPSCR. 12403 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12404 .addImm(255) 12405 .addReg(NewFPSCRReg) 12406 .addImm(0) 12407 .addImm(0); 12408 } else if (MI.getOpcode() == PPC::SETFLM) { 12409 DebugLoc Dl = MI.getDebugLoc(); 12410 12411 // Result of setflm is previous FPSCR content, so we need to save it first. 12412 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12413 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12414 12415 // Put bits in 32:63 to FPSCR. 12416 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12417 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12418 .addImm(255) 12419 .addReg(NewFPSCRReg) 12420 .addImm(0) 12421 .addImm(0); 12422 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12423 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12424 return emitProbedAlloca(MI, BB); 12425 } else { 12426 llvm_unreachable("Unexpected instr type to insert"); 12427 } 12428 12429 MI.eraseFromParent(); // The pseudo instruction is gone now. 12430 return BB; 12431 } 12432 12433 //===----------------------------------------------------------------------===// 12434 // Target Optimization Hooks 12435 //===----------------------------------------------------------------------===// 12436 12437 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12438 // For the estimates, convergence is quadratic, so we essentially double the 12439 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12440 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12441 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12442 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12443 if (VT.getScalarType() == MVT::f64) 12444 RefinementSteps++; 12445 return RefinementSteps; 12446 } 12447 12448 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12449 const DenormalMode &Mode) const { 12450 // We only have VSX Vector Test for software Square Root. 12451 EVT VT = Op.getValueType(); 12452 if (!isTypeLegal(MVT::i1) || 12453 (VT != MVT::f64 && 12454 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12455 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12456 12457 SDLoc DL(Op); 12458 // The output register of FTSQRT is CR field. 12459 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12460 // ftsqrt BF,FRB 12461 // Let e_b be the unbiased exponent of the double-precision 12462 // floating-point operand in register FRB. 12463 // fe_flag is set to 1 if either of the following conditions occurs. 12464 // - The double-precision floating-point operand in register FRB is a zero, 12465 // a NaN, or an infinity, or a negative value. 12466 // - e_b is less than or equal to -970. 12467 // Otherwise fe_flag is set to 0. 12468 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12469 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12470 // exponent is less than -970) 12471 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12472 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12473 FTSQRT, SRIdxVal), 12474 0); 12475 } 12476 12477 SDValue 12478 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12479 SelectionDAG &DAG) const { 12480 // We only have VSX Vector Square Root. 12481 EVT VT = Op.getValueType(); 12482 if (VT != MVT::f64 && 12483 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12484 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12485 12486 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12487 } 12488 12489 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12490 int Enabled, int &RefinementSteps, 12491 bool &UseOneConstNR, 12492 bool Reciprocal) const { 12493 EVT VT = Operand.getValueType(); 12494 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12495 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12496 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12497 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12498 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12499 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12500 12501 // The Newton-Raphson computation with a single constant does not provide 12502 // enough accuracy on some CPUs. 12503 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12504 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12505 } 12506 return SDValue(); 12507 } 12508 12509 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12510 int Enabled, 12511 int &RefinementSteps) const { 12512 EVT VT = Operand.getValueType(); 12513 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12514 (VT == MVT::f64 && Subtarget.hasFRE()) || 12515 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12516 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12517 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12518 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12519 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12520 } 12521 return SDValue(); 12522 } 12523 12524 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12525 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12526 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12527 // enabled for division), this functionality is redundant with the default 12528 // combiner logic (once the division -> reciprocal/multiply transformation 12529 // has taken place). As a result, this matters more for older cores than for 12530 // newer ones. 12531 12532 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12533 // reciprocal if there are two or more FDIVs (for embedded cores with only 12534 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12535 switch (Subtarget.getCPUDirective()) { 12536 default: 12537 return 3; 12538 case PPC::DIR_440: 12539 case PPC::DIR_A2: 12540 case PPC::DIR_E500: 12541 case PPC::DIR_E500mc: 12542 case PPC::DIR_E5500: 12543 return 2; 12544 } 12545 } 12546 12547 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12548 // collapsed, and so we need to look through chains of them. 12549 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12550 int64_t& Offset, SelectionDAG &DAG) { 12551 if (DAG.isBaseWithConstantOffset(Loc)) { 12552 Base = Loc.getOperand(0); 12553 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12554 12555 // The base might itself be a base plus an offset, and if so, accumulate 12556 // that as well. 12557 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12558 } 12559 } 12560 12561 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12562 unsigned Bytes, int Dist, 12563 SelectionDAG &DAG) { 12564 if (VT.getSizeInBits() / 8 != Bytes) 12565 return false; 12566 12567 SDValue BaseLoc = Base->getBasePtr(); 12568 if (Loc.getOpcode() == ISD::FrameIndex) { 12569 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12570 return false; 12571 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12572 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12573 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12574 int FS = MFI.getObjectSize(FI); 12575 int BFS = MFI.getObjectSize(BFI); 12576 if (FS != BFS || FS != (int)Bytes) return false; 12577 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12578 } 12579 12580 SDValue Base1 = Loc, Base2 = BaseLoc; 12581 int64_t Offset1 = 0, Offset2 = 0; 12582 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12583 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12584 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12585 return true; 12586 12587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12588 const GlobalValue *GV1 = nullptr; 12589 const GlobalValue *GV2 = nullptr; 12590 Offset1 = 0; 12591 Offset2 = 0; 12592 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12593 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12594 if (isGA1 && isGA2 && GV1 == GV2) 12595 return Offset1 == (Offset2 + Dist*Bytes); 12596 return false; 12597 } 12598 12599 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12600 // not enforce equality of the chain operands. 12601 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12602 unsigned Bytes, int Dist, 12603 SelectionDAG &DAG) { 12604 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12605 EVT VT = LS->getMemoryVT(); 12606 SDValue Loc = LS->getBasePtr(); 12607 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12608 } 12609 12610 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12611 EVT VT; 12612 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12613 default: return false; 12614 case Intrinsic::ppc_altivec_lvx: 12615 case Intrinsic::ppc_altivec_lvxl: 12616 case Intrinsic::ppc_vsx_lxvw4x: 12617 case Intrinsic::ppc_vsx_lxvw4x_be: 12618 VT = MVT::v4i32; 12619 break; 12620 case Intrinsic::ppc_vsx_lxvd2x: 12621 case Intrinsic::ppc_vsx_lxvd2x_be: 12622 VT = MVT::v2f64; 12623 break; 12624 case Intrinsic::ppc_altivec_lvebx: 12625 VT = MVT::i8; 12626 break; 12627 case Intrinsic::ppc_altivec_lvehx: 12628 VT = MVT::i16; 12629 break; 12630 case Intrinsic::ppc_altivec_lvewx: 12631 VT = MVT::i32; 12632 break; 12633 } 12634 12635 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12636 } 12637 12638 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12639 EVT VT; 12640 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12641 default: return false; 12642 case Intrinsic::ppc_altivec_stvx: 12643 case Intrinsic::ppc_altivec_stvxl: 12644 case Intrinsic::ppc_vsx_stxvw4x: 12645 VT = MVT::v4i32; 12646 break; 12647 case Intrinsic::ppc_vsx_stxvd2x: 12648 VT = MVT::v2f64; 12649 break; 12650 case Intrinsic::ppc_vsx_stxvw4x_be: 12651 VT = MVT::v4i32; 12652 break; 12653 case Intrinsic::ppc_vsx_stxvd2x_be: 12654 VT = MVT::v2f64; 12655 break; 12656 case Intrinsic::ppc_altivec_stvebx: 12657 VT = MVT::i8; 12658 break; 12659 case Intrinsic::ppc_altivec_stvehx: 12660 VT = MVT::i16; 12661 break; 12662 case Intrinsic::ppc_altivec_stvewx: 12663 VT = MVT::i32; 12664 break; 12665 } 12666 12667 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12668 } 12669 12670 return false; 12671 } 12672 12673 // Return true is there is a nearyby consecutive load to the one provided 12674 // (regardless of alignment). We search up and down the chain, looking though 12675 // token factors and other loads (but nothing else). As a result, a true result 12676 // indicates that it is safe to create a new consecutive load adjacent to the 12677 // load provided. 12678 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12679 SDValue Chain = LD->getChain(); 12680 EVT VT = LD->getMemoryVT(); 12681 12682 SmallSet<SDNode *, 16> LoadRoots; 12683 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12684 SmallSet<SDNode *, 16> Visited; 12685 12686 // First, search up the chain, branching to follow all token-factor operands. 12687 // If we find a consecutive load, then we're done, otherwise, record all 12688 // nodes just above the top-level loads and token factors. 12689 while (!Queue.empty()) { 12690 SDNode *ChainNext = Queue.pop_back_val(); 12691 if (!Visited.insert(ChainNext).second) 12692 continue; 12693 12694 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12695 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12696 return true; 12697 12698 if (!Visited.count(ChainLD->getChain().getNode())) 12699 Queue.push_back(ChainLD->getChain().getNode()); 12700 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12701 for (const SDUse &O : ChainNext->ops()) 12702 if (!Visited.count(O.getNode())) 12703 Queue.push_back(O.getNode()); 12704 } else 12705 LoadRoots.insert(ChainNext); 12706 } 12707 12708 // Second, search down the chain, starting from the top-level nodes recorded 12709 // in the first phase. These top-level nodes are the nodes just above all 12710 // loads and token factors. Starting with their uses, recursively look though 12711 // all loads (just the chain uses) and token factors to find a consecutive 12712 // load. 12713 Visited.clear(); 12714 Queue.clear(); 12715 12716 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12717 IE = LoadRoots.end(); I != IE; ++I) { 12718 Queue.push_back(*I); 12719 12720 while (!Queue.empty()) { 12721 SDNode *LoadRoot = Queue.pop_back_val(); 12722 if (!Visited.insert(LoadRoot).second) 12723 continue; 12724 12725 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12726 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12727 return true; 12728 12729 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12730 UE = LoadRoot->use_end(); UI != UE; ++UI) 12731 if (((isa<MemSDNode>(*UI) && 12732 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12733 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12734 Queue.push_back(*UI); 12735 } 12736 } 12737 12738 return false; 12739 } 12740 12741 /// This function is called when we have proved that a SETCC node can be replaced 12742 /// by subtraction (and other supporting instructions) so that the result of 12743 /// comparison is kept in a GPR instead of CR. This function is purely for 12744 /// codegen purposes and has some flags to guide the codegen process. 12745 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12746 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12747 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12748 12749 // Zero extend the operands to the largest legal integer. Originally, they 12750 // must be of a strictly smaller size. 12751 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12752 DAG.getConstant(Size, DL, MVT::i32)); 12753 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12754 DAG.getConstant(Size, DL, MVT::i32)); 12755 12756 // Swap if needed. Depends on the condition code. 12757 if (Swap) 12758 std::swap(Op0, Op1); 12759 12760 // Subtract extended integers. 12761 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12762 12763 // Move the sign bit to the least significant position and zero out the rest. 12764 // Now the least significant bit carries the result of original comparison. 12765 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12766 DAG.getConstant(Size - 1, DL, MVT::i32)); 12767 auto Final = Shifted; 12768 12769 // Complement the result if needed. Based on the condition code. 12770 if (Complement) 12771 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12772 DAG.getConstant(1, DL, MVT::i64)); 12773 12774 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12775 } 12776 12777 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12778 DAGCombinerInfo &DCI) const { 12779 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12780 12781 SelectionDAG &DAG = DCI.DAG; 12782 SDLoc DL(N); 12783 12784 // Size of integers being compared has a critical role in the following 12785 // analysis, so we prefer to do this when all types are legal. 12786 if (!DCI.isAfterLegalizeDAG()) 12787 return SDValue(); 12788 12789 // If all users of SETCC extend its value to a legal integer type 12790 // then we replace SETCC with a subtraction 12791 for (SDNode::use_iterator UI = N->use_begin(), 12792 UE = N->use_end(); UI != UE; ++UI) { 12793 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12794 return SDValue(); 12795 } 12796 12797 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12798 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12799 12800 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12801 12802 if (OpSize < Size) { 12803 switch (CC) { 12804 default: break; 12805 case ISD::SETULT: 12806 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12807 case ISD::SETULE: 12808 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12809 case ISD::SETUGT: 12810 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12811 case ISD::SETUGE: 12812 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12813 } 12814 } 12815 12816 return SDValue(); 12817 } 12818 12819 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12820 DAGCombinerInfo &DCI) const { 12821 SelectionDAG &DAG = DCI.DAG; 12822 SDLoc dl(N); 12823 12824 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12825 // If we're tracking CR bits, we need to be careful that we don't have: 12826 // trunc(binary-ops(zext(x), zext(y))) 12827 // or 12828 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12829 // such that we're unnecessarily moving things into GPRs when it would be 12830 // better to keep them in CR bits. 12831 12832 // Note that trunc here can be an actual i1 trunc, or can be the effective 12833 // truncation that comes from a setcc or select_cc. 12834 if (N->getOpcode() == ISD::TRUNCATE && 12835 N->getValueType(0) != MVT::i1) 12836 return SDValue(); 12837 12838 if (N->getOperand(0).getValueType() != MVT::i32 && 12839 N->getOperand(0).getValueType() != MVT::i64) 12840 return SDValue(); 12841 12842 if (N->getOpcode() == ISD::SETCC || 12843 N->getOpcode() == ISD::SELECT_CC) { 12844 // If we're looking at a comparison, then we need to make sure that the 12845 // high bits (all except for the first) don't matter the result. 12846 ISD::CondCode CC = 12847 cast<CondCodeSDNode>(N->getOperand( 12848 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12849 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12850 12851 if (ISD::isSignedIntSetCC(CC)) { 12852 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12853 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12854 return SDValue(); 12855 } else if (ISD::isUnsignedIntSetCC(CC)) { 12856 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12857 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12858 !DAG.MaskedValueIsZero(N->getOperand(1), 12859 APInt::getHighBitsSet(OpBits, OpBits-1))) 12860 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12861 : SDValue()); 12862 } else { 12863 // This is neither a signed nor an unsigned comparison, just make sure 12864 // that the high bits are equal. 12865 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12866 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12867 12868 // We don't really care about what is known about the first bit (if 12869 // anything), so pretend that it is known zero for both to ensure they can 12870 // be compared as constants. 12871 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 12872 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 12873 12874 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 12875 Op1Known.getConstant() != Op2Known.getConstant()) 12876 return SDValue(); 12877 } 12878 } 12879 12880 // We now know that the higher-order bits are irrelevant, we just need to 12881 // make sure that all of the intermediate operations are bit operations, and 12882 // all inputs are extensions. 12883 if (N->getOperand(0).getOpcode() != ISD::AND && 12884 N->getOperand(0).getOpcode() != ISD::OR && 12885 N->getOperand(0).getOpcode() != ISD::XOR && 12886 N->getOperand(0).getOpcode() != ISD::SELECT && 12887 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12888 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12889 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12890 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12891 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12892 return SDValue(); 12893 12894 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12895 N->getOperand(1).getOpcode() != ISD::AND && 12896 N->getOperand(1).getOpcode() != ISD::OR && 12897 N->getOperand(1).getOpcode() != ISD::XOR && 12898 N->getOperand(1).getOpcode() != ISD::SELECT && 12899 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12900 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12901 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12902 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12903 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12904 return SDValue(); 12905 12906 SmallVector<SDValue, 4> Inputs; 12907 SmallVector<SDValue, 8> BinOps, PromOps; 12908 SmallPtrSet<SDNode *, 16> Visited; 12909 12910 for (unsigned i = 0; i < 2; ++i) { 12911 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12912 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12913 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12914 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12915 isa<ConstantSDNode>(N->getOperand(i))) 12916 Inputs.push_back(N->getOperand(i)); 12917 else 12918 BinOps.push_back(N->getOperand(i)); 12919 12920 if (N->getOpcode() == ISD::TRUNCATE) 12921 break; 12922 } 12923 12924 // Visit all inputs, collect all binary operations (and, or, xor and 12925 // select) that are all fed by extensions. 12926 while (!BinOps.empty()) { 12927 SDValue BinOp = BinOps.pop_back_val(); 12928 12929 if (!Visited.insert(BinOp.getNode()).second) 12930 continue; 12931 12932 PromOps.push_back(BinOp); 12933 12934 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12935 // The condition of the select is not promoted. 12936 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12937 continue; 12938 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12939 continue; 12940 12941 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12942 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12943 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12944 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12945 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12946 Inputs.push_back(BinOp.getOperand(i)); 12947 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12948 BinOp.getOperand(i).getOpcode() == ISD::OR || 12949 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12950 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12951 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12952 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12953 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12954 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12955 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12956 BinOps.push_back(BinOp.getOperand(i)); 12957 } else { 12958 // We have an input that is not an extension or another binary 12959 // operation; we'll abort this transformation. 12960 return SDValue(); 12961 } 12962 } 12963 } 12964 12965 // Make sure that this is a self-contained cluster of operations (which 12966 // is not quite the same thing as saying that everything has only one 12967 // use). 12968 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12969 if (isa<ConstantSDNode>(Inputs[i])) 12970 continue; 12971 12972 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12973 UE = Inputs[i].getNode()->use_end(); 12974 UI != UE; ++UI) { 12975 SDNode *User = *UI; 12976 if (User != N && !Visited.count(User)) 12977 return SDValue(); 12978 12979 // Make sure that we're not going to promote the non-output-value 12980 // operand(s) or SELECT or SELECT_CC. 12981 // FIXME: Although we could sometimes handle this, and it does occur in 12982 // practice that one of the condition inputs to the select is also one of 12983 // the outputs, we currently can't deal with this. 12984 if (User->getOpcode() == ISD::SELECT) { 12985 if (User->getOperand(0) == Inputs[i]) 12986 return SDValue(); 12987 } else if (User->getOpcode() == ISD::SELECT_CC) { 12988 if (User->getOperand(0) == Inputs[i] || 12989 User->getOperand(1) == Inputs[i]) 12990 return SDValue(); 12991 } 12992 } 12993 } 12994 12995 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12996 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12997 UE = PromOps[i].getNode()->use_end(); 12998 UI != UE; ++UI) { 12999 SDNode *User = *UI; 13000 if (User != N && !Visited.count(User)) 13001 return SDValue(); 13002 13003 // Make sure that we're not going to promote the non-output-value 13004 // operand(s) or SELECT or SELECT_CC. 13005 // FIXME: Although we could sometimes handle this, and it does occur in 13006 // practice that one of the condition inputs to the select is also one of 13007 // the outputs, we currently can't deal with this. 13008 if (User->getOpcode() == ISD::SELECT) { 13009 if (User->getOperand(0) == PromOps[i]) 13010 return SDValue(); 13011 } else if (User->getOpcode() == ISD::SELECT_CC) { 13012 if (User->getOperand(0) == PromOps[i] || 13013 User->getOperand(1) == PromOps[i]) 13014 return SDValue(); 13015 } 13016 } 13017 } 13018 13019 // Replace all inputs with the extension operand. 13020 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13021 // Constants may have users outside the cluster of to-be-promoted nodes, 13022 // and so we need to replace those as we do the promotions. 13023 if (isa<ConstantSDNode>(Inputs[i])) 13024 continue; 13025 else 13026 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13027 } 13028 13029 std::list<HandleSDNode> PromOpHandles; 13030 for (auto &PromOp : PromOps) 13031 PromOpHandles.emplace_back(PromOp); 13032 13033 // Replace all operations (these are all the same, but have a different 13034 // (i1) return type). DAG.getNode will validate that the types of 13035 // a binary operator match, so go through the list in reverse so that 13036 // we've likely promoted both operands first. Any intermediate truncations or 13037 // extensions disappear. 13038 while (!PromOpHandles.empty()) { 13039 SDValue PromOp = PromOpHandles.back().getValue(); 13040 PromOpHandles.pop_back(); 13041 13042 if (PromOp.getOpcode() == ISD::TRUNCATE || 13043 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13044 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13045 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13046 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13047 PromOp.getOperand(0).getValueType() != MVT::i1) { 13048 // The operand is not yet ready (see comment below). 13049 PromOpHandles.emplace_front(PromOp); 13050 continue; 13051 } 13052 13053 SDValue RepValue = PromOp.getOperand(0); 13054 if (isa<ConstantSDNode>(RepValue)) 13055 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13056 13057 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13058 continue; 13059 } 13060 13061 unsigned C; 13062 switch (PromOp.getOpcode()) { 13063 default: C = 0; break; 13064 case ISD::SELECT: C = 1; break; 13065 case ISD::SELECT_CC: C = 2; break; 13066 } 13067 13068 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13069 PromOp.getOperand(C).getValueType() != MVT::i1) || 13070 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13071 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13072 // The to-be-promoted operands of this node have not yet been 13073 // promoted (this should be rare because we're going through the 13074 // list backward, but if one of the operands has several users in 13075 // this cluster of to-be-promoted nodes, it is possible). 13076 PromOpHandles.emplace_front(PromOp); 13077 continue; 13078 } 13079 13080 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13081 PromOp.getNode()->op_end()); 13082 13083 // If there are any constant inputs, make sure they're replaced now. 13084 for (unsigned i = 0; i < 2; ++i) 13085 if (isa<ConstantSDNode>(Ops[C+i])) 13086 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13087 13088 DAG.ReplaceAllUsesOfValueWith(PromOp, 13089 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13090 } 13091 13092 // Now we're left with the initial truncation itself. 13093 if (N->getOpcode() == ISD::TRUNCATE) 13094 return N->getOperand(0); 13095 13096 // Otherwise, this is a comparison. The operands to be compared have just 13097 // changed type (to i1), but everything else is the same. 13098 return SDValue(N, 0); 13099 } 13100 13101 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13102 DAGCombinerInfo &DCI) const { 13103 SelectionDAG &DAG = DCI.DAG; 13104 SDLoc dl(N); 13105 13106 // If we're tracking CR bits, we need to be careful that we don't have: 13107 // zext(binary-ops(trunc(x), trunc(y))) 13108 // or 13109 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13110 // such that we're unnecessarily moving things into CR bits that can more 13111 // efficiently stay in GPRs. Note that if we're not certain that the high 13112 // bits are set as required by the final extension, we still may need to do 13113 // some masking to get the proper behavior. 13114 13115 // This same functionality is important on PPC64 when dealing with 13116 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13117 // the return values of functions. Because it is so similar, it is handled 13118 // here as well. 13119 13120 if (N->getValueType(0) != MVT::i32 && 13121 N->getValueType(0) != MVT::i64) 13122 return SDValue(); 13123 13124 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13125 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13126 return SDValue(); 13127 13128 if (N->getOperand(0).getOpcode() != ISD::AND && 13129 N->getOperand(0).getOpcode() != ISD::OR && 13130 N->getOperand(0).getOpcode() != ISD::XOR && 13131 N->getOperand(0).getOpcode() != ISD::SELECT && 13132 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13133 return SDValue(); 13134 13135 SmallVector<SDValue, 4> Inputs; 13136 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13137 SmallPtrSet<SDNode *, 16> Visited; 13138 13139 // Visit all inputs, collect all binary operations (and, or, xor and 13140 // select) that are all fed by truncations. 13141 while (!BinOps.empty()) { 13142 SDValue BinOp = BinOps.pop_back_val(); 13143 13144 if (!Visited.insert(BinOp.getNode()).second) 13145 continue; 13146 13147 PromOps.push_back(BinOp); 13148 13149 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13150 // The condition of the select is not promoted. 13151 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13152 continue; 13153 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13154 continue; 13155 13156 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13157 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13158 Inputs.push_back(BinOp.getOperand(i)); 13159 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13160 BinOp.getOperand(i).getOpcode() == ISD::OR || 13161 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13162 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13163 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13164 BinOps.push_back(BinOp.getOperand(i)); 13165 } else { 13166 // We have an input that is not a truncation or another binary 13167 // operation; we'll abort this transformation. 13168 return SDValue(); 13169 } 13170 } 13171 } 13172 13173 // The operands of a select that must be truncated when the select is 13174 // promoted because the operand is actually part of the to-be-promoted set. 13175 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13176 13177 // Make sure that this is a self-contained cluster of operations (which 13178 // is not quite the same thing as saying that everything has only one 13179 // use). 13180 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13181 if (isa<ConstantSDNode>(Inputs[i])) 13182 continue; 13183 13184 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13185 UE = Inputs[i].getNode()->use_end(); 13186 UI != UE; ++UI) { 13187 SDNode *User = *UI; 13188 if (User != N && !Visited.count(User)) 13189 return SDValue(); 13190 13191 // If we're going to promote the non-output-value operand(s) or SELECT or 13192 // SELECT_CC, record them for truncation. 13193 if (User->getOpcode() == ISD::SELECT) { 13194 if (User->getOperand(0) == Inputs[i]) 13195 SelectTruncOp[0].insert(std::make_pair(User, 13196 User->getOperand(0).getValueType())); 13197 } else if (User->getOpcode() == ISD::SELECT_CC) { 13198 if (User->getOperand(0) == Inputs[i]) 13199 SelectTruncOp[0].insert(std::make_pair(User, 13200 User->getOperand(0).getValueType())); 13201 if (User->getOperand(1) == Inputs[i]) 13202 SelectTruncOp[1].insert(std::make_pair(User, 13203 User->getOperand(1).getValueType())); 13204 } 13205 } 13206 } 13207 13208 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13209 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13210 UE = PromOps[i].getNode()->use_end(); 13211 UI != UE; ++UI) { 13212 SDNode *User = *UI; 13213 if (User != N && !Visited.count(User)) 13214 return SDValue(); 13215 13216 // If we're going to promote the non-output-value operand(s) or SELECT or 13217 // SELECT_CC, record them for truncation. 13218 if (User->getOpcode() == ISD::SELECT) { 13219 if (User->getOperand(0) == PromOps[i]) 13220 SelectTruncOp[0].insert(std::make_pair(User, 13221 User->getOperand(0).getValueType())); 13222 } else if (User->getOpcode() == ISD::SELECT_CC) { 13223 if (User->getOperand(0) == PromOps[i]) 13224 SelectTruncOp[0].insert(std::make_pair(User, 13225 User->getOperand(0).getValueType())); 13226 if (User->getOperand(1) == PromOps[i]) 13227 SelectTruncOp[1].insert(std::make_pair(User, 13228 User->getOperand(1).getValueType())); 13229 } 13230 } 13231 } 13232 13233 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13234 bool ReallyNeedsExt = false; 13235 if (N->getOpcode() != ISD::ANY_EXTEND) { 13236 // If all of the inputs are not already sign/zero extended, then 13237 // we'll still need to do that at the end. 13238 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13239 if (isa<ConstantSDNode>(Inputs[i])) 13240 continue; 13241 13242 unsigned OpBits = 13243 Inputs[i].getOperand(0).getValueSizeInBits(); 13244 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13245 13246 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13247 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13248 APInt::getHighBitsSet(OpBits, 13249 OpBits-PromBits))) || 13250 (N->getOpcode() == ISD::SIGN_EXTEND && 13251 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13252 (OpBits-(PromBits-1)))) { 13253 ReallyNeedsExt = true; 13254 break; 13255 } 13256 } 13257 } 13258 13259 // Replace all inputs, either with the truncation operand, or a 13260 // truncation or extension to the final output type. 13261 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13262 // Constant inputs need to be replaced with the to-be-promoted nodes that 13263 // use them because they might have users outside of the cluster of 13264 // promoted nodes. 13265 if (isa<ConstantSDNode>(Inputs[i])) 13266 continue; 13267 13268 SDValue InSrc = Inputs[i].getOperand(0); 13269 if (Inputs[i].getValueType() == N->getValueType(0)) 13270 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13271 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13272 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13273 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13274 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13275 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13276 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13277 else 13278 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13279 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13280 } 13281 13282 std::list<HandleSDNode> PromOpHandles; 13283 for (auto &PromOp : PromOps) 13284 PromOpHandles.emplace_back(PromOp); 13285 13286 // Replace all operations (these are all the same, but have a different 13287 // (promoted) return type). DAG.getNode will validate that the types of 13288 // a binary operator match, so go through the list in reverse so that 13289 // we've likely promoted both operands first. 13290 while (!PromOpHandles.empty()) { 13291 SDValue PromOp = PromOpHandles.back().getValue(); 13292 PromOpHandles.pop_back(); 13293 13294 unsigned C; 13295 switch (PromOp.getOpcode()) { 13296 default: C = 0; break; 13297 case ISD::SELECT: C = 1; break; 13298 case ISD::SELECT_CC: C = 2; break; 13299 } 13300 13301 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13302 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13303 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13304 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13305 // The to-be-promoted operands of this node have not yet been 13306 // promoted (this should be rare because we're going through the 13307 // list backward, but if one of the operands has several users in 13308 // this cluster of to-be-promoted nodes, it is possible). 13309 PromOpHandles.emplace_front(PromOp); 13310 continue; 13311 } 13312 13313 // For SELECT and SELECT_CC nodes, we do a similar check for any 13314 // to-be-promoted comparison inputs. 13315 if (PromOp.getOpcode() == ISD::SELECT || 13316 PromOp.getOpcode() == ISD::SELECT_CC) { 13317 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13318 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13319 (SelectTruncOp[1].count(PromOp.getNode()) && 13320 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13321 PromOpHandles.emplace_front(PromOp); 13322 continue; 13323 } 13324 } 13325 13326 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13327 PromOp.getNode()->op_end()); 13328 13329 // If this node has constant inputs, then they'll need to be promoted here. 13330 for (unsigned i = 0; i < 2; ++i) { 13331 if (!isa<ConstantSDNode>(Ops[C+i])) 13332 continue; 13333 if (Ops[C+i].getValueType() == N->getValueType(0)) 13334 continue; 13335 13336 if (N->getOpcode() == ISD::SIGN_EXTEND) 13337 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13338 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13339 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13340 else 13341 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13342 } 13343 13344 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13345 // truncate them again to the original value type. 13346 if (PromOp.getOpcode() == ISD::SELECT || 13347 PromOp.getOpcode() == ISD::SELECT_CC) { 13348 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13349 if (SI0 != SelectTruncOp[0].end()) 13350 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13351 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13352 if (SI1 != SelectTruncOp[1].end()) 13353 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13354 } 13355 13356 DAG.ReplaceAllUsesOfValueWith(PromOp, 13357 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13358 } 13359 13360 // Now we're left with the initial extension itself. 13361 if (!ReallyNeedsExt) 13362 return N->getOperand(0); 13363 13364 // To zero extend, just mask off everything except for the first bit (in the 13365 // i1 case). 13366 if (N->getOpcode() == ISD::ZERO_EXTEND) 13367 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13368 DAG.getConstant(APInt::getLowBitsSet( 13369 N->getValueSizeInBits(0), PromBits), 13370 dl, N->getValueType(0))); 13371 13372 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13373 "Invalid extension type"); 13374 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13375 SDValue ShiftCst = 13376 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13377 return DAG.getNode( 13378 ISD::SRA, dl, N->getValueType(0), 13379 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13380 ShiftCst); 13381 } 13382 13383 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13384 DAGCombinerInfo &DCI) const { 13385 assert(N->getOpcode() == ISD::SETCC && 13386 "Should be called with a SETCC node"); 13387 13388 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13389 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13390 SDValue LHS = N->getOperand(0); 13391 SDValue RHS = N->getOperand(1); 13392 13393 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13394 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13395 LHS.hasOneUse()) 13396 std::swap(LHS, RHS); 13397 13398 // x == 0-y --> x+y == 0 13399 // x != 0-y --> x+y != 0 13400 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13401 RHS.hasOneUse()) { 13402 SDLoc DL(N); 13403 SelectionDAG &DAG = DCI.DAG; 13404 EVT VT = N->getValueType(0); 13405 EVT OpVT = LHS.getValueType(); 13406 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13407 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13408 } 13409 } 13410 13411 return DAGCombineTruncBoolExt(N, DCI); 13412 } 13413 13414 // Is this an extending load from an f32 to an f64? 13415 static bool isFPExtLoad(SDValue Op) { 13416 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13417 return LD->getExtensionType() == ISD::EXTLOAD && 13418 Op.getValueType() == MVT::f64; 13419 return false; 13420 } 13421 13422 /// Reduces the number of fp-to-int conversion when building a vector. 13423 /// 13424 /// If this vector is built out of floating to integer conversions, 13425 /// transform it to a vector built out of floating point values followed by a 13426 /// single floating to integer conversion of the vector. 13427 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13428 /// becomes (fptosi (build_vector ($A, $B, ...))) 13429 SDValue PPCTargetLowering:: 13430 combineElementTruncationToVectorTruncation(SDNode *N, 13431 DAGCombinerInfo &DCI) const { 13432 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13433 "Should be called with a BUILD_VECTOR node"); 13434 13435 SelectionDAG &DAG = DCI.DAG; 13436 SDLoc dl(N); 13437 13438 SDValue FirstInput = N->getOperand(0); 13439 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13440 "The input operand must be an fp-to-int conversion."); 13441 13442 // This combine happens after legalization so the fp_to_[su]i nodes are 13443 // already converted to PPCSISD nodes. 13444 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13445 if (FirstConversion == PPCISD::FCTIDZ || 13446 FirstConversion == PPCISD::FCTIDUZ || 13447 FirstConversion == PPCISD::FCTIWZ || 13448 FirstConversion == PPCISD::FCTIWUZ) { 13449 bool IsSplat = true; 13450 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13451 FirstConversion == PPCISD::FCTIWUZ; 13452 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13453 SmallVector<SDValue, 4> Ops; 13454 EVT TargetVT = N->getValueType(0); 13455 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13456 SDValue NextOp = N->getOperand(i); 13457 if (NextOp.getOpcode() != PPCISD::MFVSR) 13458 return SDValue(); 13459 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13460 if (NextConversion != FirstConversion) 13461 return SDValue(); 13462 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13463 // This is not valid if the input was originally double precision. It is 13464 // also not profitable to do unless this is an extending load in which 13465 // case doing this combine will allow us to combine consecutive loads. 13466 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13467 return SDValue(); 13468 if (N->getOperand(i) != FirstInput) 13469 IsSplat = false; 13470 } 13471 13472 // If this is a splat, we leave it as-is since there will be only a single 13473 // fp-to-int conversion followed by a splat of the integer. This is better 13474 // for 32-bit and smaller ints and neutral for 64-bit ints. 13475 if (IsSplat) 13476 return SDValue(); 13477 13478 // Now that we know we have the right type of node, get its operands 13479 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13480 SDValue In = N->getOperand(i).getOperand(0); 13481 if (Is32Bit) { 13482 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13483 // here, we know that all inputs are extending loads so this is safe). 13484 if (In.isUndef()) 13485 Ops.push_back(DAG.getUNDEF(SrcVT)); 13486 else { 13487 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13488 MVT::f32, In.getOperand(0), 13489 DAG.getIntPtrConstant(1, dl)); 13490 Ops.push_back(Trunc); 13491 } 13492 } else 13493 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13494 } 13495 13496 unsigned Opcode; 13497 if (FirstConversion == PPCISD::FCTIDZ || 13498 FirstConversion == PPCISD::FCTIWZ) 13499 Opcode = ISD::FP_TO_SINT; 13500 else 13501 Opcode = ISD::FP_TO_UINT; 13502 13503 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13504 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13505 return DAG.getNode(Opcode, dl, TargetVT, BV); 13506 } 13507 return SDValue(); 13508 } 13509 13510 /// Reduce the number of loads when building a vector. 13511 /// 13512 /// Building a vector out of multiple loads can be converted to a load 13513 /// of the vector type if the loads are consecutive. If the loads are 13514 /// consecutive but in descending order, a shuffle is added at the end 13515 /// to reorder the vector. 13516 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13517 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13518 "Should be called with a BUILD_VECTOR node"); 13519 13520 SDLoc dl(N); 13521 13522 // Return early for non byte-sized type, as they can't be consecutive. 13523 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13524 return SDValue(); 13525 13526 bool InputsAreConsecutiveLoads = true; 13527 bool InputsAreReverseConsecutive = true; 13528 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13529 SDValue FirstInput = N->getOperand(0); 13530 bool IsRoundOfExtLoad = false; 13531 13532 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13533 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13534 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13535 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13536 } 13537 // Not a build vector of (possibly fp_rounded) loads. 13538 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13539 N->getNumOperands() == 1) 13540 return SDValue(); 13541 13542 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13543 // If any inputs are fp_round(extload), they all must be. 13544 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13545 return SDValue(); 13546 13547 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13548 N->getOperand(i); 13549 if (NextInput.getOpcode() != ISD::LOAD) 13550 return SDValue(); 13551 13552 SDValue PreviousInput = 13553 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13554 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13555 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13556 13557 // If any inputs are fp_round(extload), they all must be. 13558 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13559 return SDValue(); 13560 13561 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13562 InputsAreConsecutiveLoads = false; 13563 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13564 InputsAreReverseConsecutive = false; 13565 13566 // Exit early if the loads are neither consecutive nor reverse consecutive. 13567 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13568 return SDValue(); 13569 } 13570 13571 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13572 "The loads cannot be both consecutive and reverse consecutive."); 13573 13574 SDValue FirstLoadOp = 13575 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13576 SDValue LastLoadOp = 13577 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13578 N->getOperand(N->getNumOperands()-1); 13579 13580 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13581 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13582 if (InputsAreConsecutiveLoads) { 13583 assert(LD1 && "Input needs to be a LoadSDNode."); 13584 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13585 LD1->getBasePtr(), LD1->getPointerInfo(), 13586 LD1->getAlignment()); 13587 } 13588 if (InputsAreReverseConsecutive) { 13589 assert(LDL && "Input needs to be a LoadSDNode."); 13590 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13591 LDL->getBasePtr(), LDL->getPointerInfo(), 13592 LDL->getAlignment()); 13593 SmallVector<int, 16> Ops; 13594 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13595 Ops.push_back(i); 13596 13597 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13598 DAG.getUNDEF(N->getValueType(0)), Ops); 13599 } 13600 return SDValue(); 13601 } 13602 13603 // This function adds the required vector_shuffle needed to get 13604 // the elements of the vector extract in the correct position 13605 // as specified by the CorrectElems encoding. 13606 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13607 SDValue Input, uint64_t Elems, 13608 uint64_t CorrectElems) { 13609 SDLoc dl(N); 13610 13611 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13612 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13613 13614 // Knowing the element indices being extracted from the original 13615 // vector and the order in which they're being inserted, just put 13616 // them at element indices required for the instruction. 13617 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13618 if (DAG.getDataLayout().isLittleEndian()) 13619 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13620 else 13621 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13622 CorrectElems = CorrectElems >> 8; 13623 Elems = Elems >> 8; 13624 } 13625 13626 SDValue Shuffle = 13627 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13628 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13629 13630 EVT VT = N->getValueType(0); 13631 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13632 13633 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13634 Input.getValueType().getVectorElementType(), 13635 VT.getVectorNumElements()); 13636 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13637 DAG.getValueType(ExtVT)); 13638 } 13639 13640 // Look for build vector patterns where input operands come from sign 13641 // extended vector_extract elements of specific indices. If the correct indices 13642 // aren't used, add a vector shuffle to fix up the indices and create 13643 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13644 // during instruction selection. 13645 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13646 // This array encodes the indices that the vector sign extend instructions 13647 // extract from when extending from one type to another for both BE and LE. 13648 // The right nibble of each byte corresponds to the LE incides. 13649 // and the left nibble of each byte corresponds to the BE incides. 13650 // For example: 0x3074B8FC byte->word 13651 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13652 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13653 // For example: 0x000070F8 byte->double word 13654 // For LE: the allowed indices are: 0x0,0x8 13655 // For BE: the allowed indices are: 0x7,0xF 13656 uint64_t TargetElems[] = { 13657 0x3074B8FC, // b->w 13658 0x000070F8, // b->d 13659 0x10325476, // h->w 13660 0x00003074, // h->d 13661 0x00001032, // w->d 13662 }; 13663 13664 uint64_t Elems = 0; 13665 int Index; 13666 SDValue Input; 13667 13668 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13669 if (!Op) 13670 return false; 13671 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13672 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13673 return false; 13674 13675 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13676 // of the right width. 13677 SDValue Extract = Op.getOperand(0); 13678 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13679 Extract = Extract.getOperand(0); 13680 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13681 return false; 13682 13683 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13684 if (!ExtOp) 13685 return false; 13686 13687 Index = ExtOp->getZExtValue(); 13688 if (Input && Input != Extract.getOperand(0)) 13689 return false; 13690 13691 if (!Input) 13692 Input = Extract.getOperand(0); 13693 13694 Elems = Elems << 8; 13695 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13696 Elems |= Index; 13697 13698 return true; 13699 }; 13700 13701 // If the build vector operands aren't sign extended vector extracts, 13702 // of the same input vector, then return. 13703 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13704 if (!isSExtOfVecExtract(N->getOperand(i))) { 13705 return SDValue(); 13706 } 13707 } 13708 13709 // If the vector extract indicies are not correct, add the appropriate 13710 // vector_shuffle. 13711 int TgtElemArrayIdx; 13712 int InputSize = Input.getValueType().getScalarSizeInBits(); 13713 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13714 if (InputSize + OutputSize == 40) 13715 TgtElemArrayIdx = 0; 13716 else if (InputSize + OutputSize == 72) 13717 TgtElemArrayIdx = 1; 13718 else if (InputSize + OutputSize == 48) 13719 TgtElemArrayIdx = 2; 13720 else if (InputSize + OutputSize == 80) 13721 TgtElemArrayIdx = 3; 13722 else if (InputSize + OutputSize == 96) 13723 TgtElemArrayIdx = 4; 13724 else 13725 return SDValue(); 13726 13727 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13728 CorrectElems = DAG.getDataLayout().isLittleEndian() 13729 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13730 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13731 if (Elems != CorrectElems) { 13732 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13733 } 13734 13735 // Regular lowering will catch cases where a shuffle is not needed. 13736 return SDValue(); 13737 } 13738 13739 // Look for the pattern of a load from a narrow width to i128, feeding 13740 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13741 // (LXVRZX). This node represents a zero extending load that will be matched 13742 // to the Load VSX Vector Rightmost instructions. 13743 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13744 SDLoc DL(N); 13745 13746 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13747 if (N->getValueType(0) != MVT::v1i128) 13748 return SDValue(); 13749 13750 SDValue Operand = N->getOperand(0); 13751 // Proceed with the transformation if the operand to the BUILD_VECTOR 13752 // is a load instruction. 13753 if (Operand.getOpcode() != ISD::LOAD) 13754 return SDValue(); 13755 13756 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 13757 EVT MemoryType = LD->getMemoryVT(); 13758 13759 // This transformation is only valid if the we are loading either a byte, 13760 // halfword, word, or doubleword. 13761 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13762 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13763 13764 // Ensure that the load from the narrow width is being zero extended to i128. 13765 if (!ValidLDType || 13766 (LD->getExtensionType() != ISD::ZEXTLOAD && 13767 LD->getExtensionType() != ISD::EXTLOAD)) 13768 return SDValue(); 13769 13770 SDValue LoadOps[] = { 13771 LD->getChain(), LD->getBasePtr(), 13772 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13773 13774 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13775 DAG.getVTList(MVT::v1i128, MVT::Other), 13776 LoadOps, MemoryType, LD->getMemOperand()); 13777 } 13778 13779 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13780 DAGCombinerInfo &DCI) const { 13781 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13782 "Should be called with a BUILD_VECTOR node"); 13783 13784 SelectionDAG &DAG = DCI.DAG; 13785 SDLoc dl(N); 13786 13787 if (!Subtarget.hasVSX()) 13788 return SDValue(); 13789 13790 // The target independent DAG combiner will leave a build_vector of 13791 // float-to-int conversions intact. We can generate MUCH better code for 13792 // a float-to-int conversion of a vector of floats. 13793 SDValue FirstInput = N->getOperand(0); 13794 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13795 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13796 if (Reduced) 13797 return Reduced; 13798 } 13799 13800 // If we're building a vector out of consecutive loads, just load that 13801 // vector type. 13802 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13803 if (Reduced) 13804 return Reduced; 13805 13806 // If we're building a vector out of extended elements from another vector 13807 // we have P9 vector integer extend instructions. The code assumes legal 13808 // input types (i.e. it can't handle things like v4i16) so do not run before 13809 // legalization. 13810 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13811 Reduced = combineBVOfVecSExt(N, DAG); 13812 if (Reduced) 13813 return Reduced; 13814 } 13815 13816 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 13817 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 13818 // is a load from <valid narrow width> to i128. 13819 if (Subtarget.isISA3_1()) { 13820 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 13821 if (BVOfZLoad) 13822 return BVOfZLoad; 13823 } 13824 13825 if (N->getValueType(0) != MVT::v2f64) 13826 return SDValue(); 13827 13828 // Looking for: 13829 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13830 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13831 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13832 return SDValue(); 13833 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13834 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13835 return SDValue(); 13836 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13837 return SDValue(); 13838 13839 SDValue Ext1 = FirstInput.getOperand(0); 13840 SDValue Ext2 = N->getOperand(1).getOperand(0); 13841 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13842 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13843 return SDValue(); 13844 13845 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13846 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13847 if (!Ext1Op || !Ext2Op) 13848 return SDValue(); 13849 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13850 Ext1.getOperand(0) != Ext2.getOperand(0)) 13851 return SDValue(); 13852 13853 int FirstElem = Ext1Op->getZExtValue(); 13854 int SecondElem = Ext2Op->getZExtValue(); 13855 int SubvecIdx; 13856 if (FirstElem == 0 && SecondElem == 1) 13857 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13858 else if (FirstElem == 2 && SecondElem == 3) 13859 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13860 else 13861 return SDValue(); 13862 13863 SDValue SrcVec = Ext1.getOperand(0); 13864 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13865 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13866 return DAG.getNode(NodeType, dl, MVT::v2f64, 13867 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13868 } 13869 13870 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13871 DAGCombinerInfo &DCI) const { 13872 assert((N->getOpcode() == ISD::SINT_TO_FP || 13873 N->getOpcode() == ISD::UINT_TO_FP) && 13874 "Need an int -> FP conversion node here"); 13875 13876 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13877 return SDValue(); 13878 13879 SelectionDAG &DAG = DCI.DAG; 13880 SDLoc dl(N); 13881 SDValue Op(N, 0); 13882 13883 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13884 // from the hardware. 13885 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13886 return SDValue(); 13887 if (!Op.getOperand(0).getValueType().isSimple()) 13888 return SDValue(); 13889 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13890 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13891 return SDValue(); 13892 13893 SDValue FirstOperand(Op.getOperand(0)); 13894 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13895 (FirstOperand.getValueType() == MVT::i8 || 13896 FirstOperand.getValueType() == MVT::i16); 13897 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13898 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13899 bool DstDouble = Op.getValueType() == MVT::f64; 13900 unsigned ConvOp = Signed ? 13901 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13902 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13903 SDValue WidthConst = 13904 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13905 dl, false); 13906 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13907 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13908 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13909 DAG.getVTList(MVT::f64, MVT::Other), 13910 Ops, MVT::i8, LDN->getMemOperand()); 13911 13912 // For signed conversion, we need to sign-extend the value in the VSR 13913 if (Signed) { 13914 SDValue ExtOps[] = { Ld, WidthConst }; 13915 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13916 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13917 } else 13918 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13919 } 13920 13921 13922 // For i32 intermediate values, unfortunately, the conversion functions 13923 // leave the upper 32 bits of the value are undefined. Within the set of 13924 // scalar instructions, we have no method for zero- or sign-extending the 13925 // value. Thus, we cannot handle i32 intermediate values here. 13926 if (Op.getOperand(0).getValueType() == MVT::i32) 13927 return SDValue(); 13928 13929 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13930 "UINT_TO_FP is supported only with FPCVT"); 13931 13932 // If we have FCFIDS, then use it when converting to single-precision. 13933 // Otherwise, convert to double-precision and then round. 13934 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13935 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13936 : PPCISD::FCFIDS) 13937 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13938 : PPCISD::FCFID); 13939 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13940 ? MVT::f32 13941 : MVT::f64; 13942 13943 // If we're converting from a float, to an int, and back to a float again, 13944 // then we don't need the store/load pair at all. 13945 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13946 Subtarget.hasFPCVT()) || 13947 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13948 SDValue Src = Op.getOperand(0).getOperand(0); 13949 if (Src.getValueType() == MVT::f32) { 13950 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13951 DCI.AddToWorklist(Src.getNode()); 13952 } else if (Src.getValueType() != MVT::f64) { 13953 // Make sure that we don't pick up a ppc_fp128 source value. 13954 return SDValue(); 13955 } 13956 13957 unsigned FCTOp = 13958 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13959 PPCISD::FCTIDUZ; 13960 13961 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13962 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13963 13964 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13965 FP = DAG.getNode(ISD::FP_ROUND, dl, 13966 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13967 DCI.AddToWorklist(FP.getNode()); 13968 } 13969 13970 return FP; 13971 } 13972 13973 return SDValue(); 13974 } 13975 13976 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13977 // builtins) into loads with swaps. 13978 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13979 DAGCombinerInfo &DCI) const { 13980 SelectionDAG &DAG = DCI.DAG; 13981 SDLoc dl(N); 13982 SDValue Chain; 13983 SDValue Base; 13984 MachineMemOperand *MMO; 13985 13986 switch (N->getOpcode()) { 13987 default: 13988 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13989 case ISD::LOAD: { 13990 LoadSDNode *LD = cast<LoadSDNode>(N); 13991 Chain = LD->getChain(); 13992 Base = LD->getBasePtr(); 13993 MMO = LD->getMemOperand(); 13994 // If the MMO suggests this isn't a load of a full vector, leave 13995 // things alone. For a built-in, we have to make the change for 13996 // correctness, so if there is a size problem that will be a bug. 13997 if (MMO->getSize() < 16) 13998 return SDValue(); 13999 break; 14000 } 14001 case ISD::INTRINSIC_W_CHAIN: { 14002 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14003 Chain = Intrin->getChain(); 14004 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14005 // us what we want. Get operand 2 instead. 14006 Base = Intrin->getOperand(2); 14007 MMO = Intrin->getMemOperand(); 14008 break; 14009 } 14010 } 14011 14012 MVT VecTy = N->getValueType(0).getSimpleVT(); 14013 14014 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14015 // aligned and the type is a vector with elements up to 4 bytes 14016 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14017 VecTy.getScalarSizeInBits() <= 32) { 14018 return SDValue(); 14019 } 14020 14021 SDValue LoadOps[] = { Chain, Base }; 14022 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14023 DAG.getVTList(MVT::v2f64, MVT::Other), 14024 LoadOps, MVT::v2f64, MMO); 14025 14026 DCI.AddToWorklist(Load.getNode()); 14027 Chain = Load.getValue(1); 14028 SDValue Swap = DAG.getNode( 14029 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14030 DCI.AddToWorklist(Swap.getNode()); 14031 14032 // Add a bitcast if the resulting load type doesn't match v2f64. 14033 if (VecTy != MVT::v2f64) { 14034 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14035 DCI.AddToWorklist(N.getNode()); 14036 // Package {bitcast value, swap's chain} to match Load's shape. 14037 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14038 N, Swap.getValue(1)); 14039 } 14040 14041 return Swap; 14042 } 14043 14044 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14045 // builtins) into stores with swaps. 14046 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14047 DAGCombinerInfo &DCI) const { 14048 SelectionDAG &DAG = DCI.DAG; 14049 SDLoc dl(N); 14050 SDValue Chain; 14051 SDValue Base; 14052 unsigned SrcOpnd; 14053 MachineMemOperand *MMO; 14054 14055 switch (N->getOpcode()) { 14056 default: 14057 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14058 case ISD::STORE: { 14059 StoreSDNode *ST = cast<StoreSDNode>(N); 14060 Chain = ST->getChain(); 14061 Base = ST->getBasePtr(); 14062 MMO = ST->getMemOperand(); 14063 SrcOpnd = 1; 14064 // If the MMO suggests this isn't a store of a full vector, leave 14065 // things alone. For a built-in, we have to make the change for 14066 // correctness, so if there is a size problem that will be a bug. 14067 if (MMO->getSize() < 16) 14068 return SDValue(); 14069 break; 14070 } 14071 case ISD::INTRINSIC_VOID: { 14072 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14073 Chain = Intrin->getChain(); 14074 // Intrin->getBasePtr() oddly does not get what we want. 14075 Base = Intrin->getOperand(3); 14076 MMO = Intrin->getMemOperand(); 14077 SrcOpnd = 2; 14078 break; 14079 } 14080 } 14081 14082 SDValue Src = N->getOperand(SrcOpnd); 14083 MVT VecTy = Src.getValueType().getSimpleVT(); 14084 14085 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14086 // aligned and the type is a vector with elements up to 4 bytes 14087 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14088 VecTy.getScalarSizeInBits() <= 32) { 14089 return SDValue(); 14090 } 14091 14092 // All stores are done as v2f64 and possible bit cast. 14093 if (VecTy != MVT::v2f64) { 14094 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14095 DCI.AddToWorklist(Src.getNode()); 14096 } 14097 14098 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14099 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14100 DCI.AddToWorklist(Swap.getNode()); 14101 Chain = Swap.getValue(1); 14102 SDValue StoreOps[] = { Chain, Swap, Base }; 14103 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14104 DAG.getVTList(MVT::Other), 14105 StoreOps, VecTy, MMO); 14106 DCI.AddToWorklist(Store.getNode()); 14107 return Store; 14108 } 14109 14110 // Handle DAG combine for STORE (FP_TO_INT F). 14111 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14112 DAGCombinerInfo &DCI) const { 14113 14114 SelectionDAG &DAG = DCI.DAG; 14115 SDLoc dl(N); 14116 unsigned Opcode = N->getOperand(1).getOpcode(); 14117 14118 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14119 && "Not a FP_TO_INT Instruction!"); 14120 14121 SDValue Val = N->getOperand(1).getOperand(0); 14122 EVT Op1VT = N->getOperand(1).getValueType(); 14123 EVT ResVT = Val.getValueType(); 14124 14125 if (!isTypeLegal(ResVT)) 14126 return SDValue(); 14127 14128 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14129 bool ValidTypeForStoreFltAsInt = 14130 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14131 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14132 14133 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14134 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14135 return SDValue(); 14136 14137 // Extend f32 values to f64 14138 if (ResVT.getScalarSizeInBits() == 32) { 14139 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14140 DCI.AddToWorklist(Val.getNode()); 14141 } 14142 14143 // Set signed or unsigned conversion opcode. 14144 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14145 PPCISD::FP_TO_SINT_IN_VSR : 14146 PPCISD::FP_TO_UINT_IN_VSR; 14147 14148 Val = DAG.getNode(ConvOpcode, 14149 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14150 DCI.AddToWorklist(Val.getNode()); 14151 14152 // Set number of bytes being converted. 14153 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14154 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14155 DAG.getIntPtrConstant(ByteSize, dl, false), 14156 DAG.getValueType(Op1VT) }; 14157 14158 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14159 DAG.getVTList(MVT::Other), Ops, 14160 cast<StoreSDNode>(N)->getMemoryVT(), 14161 cast<StoreSDNode>(N)->getMemOperand()); 14162 14163 DCI.AddToWorklist(Val.getNode()); 14164 return Val; 14165 } 14166 14167 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14168 // Check that the source of the element keeps flipping 14169 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14170 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14171 for (int i = 1, e = Mask.size(); i < e; i++) { 14172 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14173 return false; 14174 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14175 return false; 14176 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14177 } 14178 return true; 14179 } 14180 14181 static bool isSplatBV(SDValue Op) { 14182 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14183 return false; 14184 SDValue FirstOp; 14185 14186 // Find first non-undef input. 14187 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14188 FirstOp = Op.getOperand(i); 14189 if (!FirstOp.isUndef()) 14190 break; 14191 } 14192 14193 // All inputs are undef or the same as the first non-undef input. 14194 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14195 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14196 return false; 14197 return true; 14198 } 14199 14200 static SDValue isScalarToVec(SDValue Op) { 14201 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14202 return Op; 14203 if (Op.getOpcode() != ISD::BITCAST) 14204 return SDValue(); 14205 Op = Op.getOperand(0); 14206 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14207 return Op; 14208 return SDValue(); 14209 } 14210 14211 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14212 int LHSMaxIdx, int RHSMinIdx, 14213 int RHSMaxIdx, int HalfVec) { 14214 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14215 int Idx = ShuffV[i]; 14216 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14217 ShuffV[i] += HalfVec; 14218 } 14219 } 14220 14221 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14222 // the original is: 14223 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14224 // In such a case, just change the shuffle mask to extract the element 14225 // from the permuted index. 14226 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14227 SDLoc dl(OrigSToV); 14228 EVT VT = OrigSToV.getValueType(); 14229 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14230 "Expecting a SCALAR_TO_VECTOR here"); 14231 SDValue Input = OrigSToV.getOperand(0); 14232 14233 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14234 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14235 SDValue OrigVector = Input.getOperand(0); 14236 14237 // Can't handle non-const element indices or different vector types 14238 // for the input to the extract and the output of the scalar_to_vector. 14239 if (Idx && VT == OrigVector.getValueType()) { 14240 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14241 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14242 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14243 } 14244 } 14245 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14246 OrigSToV.getOperand(0)); 14247 } 14248 14249 // On little endian subtargets, combine shuffles such as: 14250 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14251 // into: 14252 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14253 // because the latter can be matched to a single instruction merge. 14254 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14255 // to put the value into element zero. Adjust the shuffle mask so that the 14256 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14257 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14258 SelectionDAG &DAG) const { 14259 SDValue LHS = SVN->getOperand(0); 14260 SDValue RHS = SVN->getOperand(1); 14261 auto Mask = SVN->getMask(); 14262 int NumElts = LHS.getValueType().getVectorNumElements(); 14263 SDValue Res(SVN, 0); 14264 SDLoc dl(SVN); 14265 14266 // None of these combines are useful on big endian systems since the ISA 14267 // already has a big endian bias. 14268 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14269 return Res; 14270 14271 // If this is not a shuffle of a shuffle and the first element comes from 14272 // the second vector, canonicalize to the commuted form. This will make it 14273 // more likely to match one of the single instruction patterns. 14274 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14275 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14276 std::swap(LHS, RHS); 14277 Res = DAG.getCommutedVectorShuffle(*SVN); 14278 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14279 } 14280 14281 // Adjust the shuffle mask if either input vector comes from a 14282 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14283 // form (to prevent the need for a swap). 14284 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14285 SDValue SToVLHS = isScalarToVec(LHS); 14286 SDValue SToVRHS = isScalarToVec(RHS); 14287 if (SToVLHS || SToVRHS) { 14288 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14289 : SToVRHS.getValueType().getVectorNumElements(); 14290 int NumEltsOut = ShuffV.size(); 14291 14292 // Initially assume that neither input is permuted. These will be adjusted 14293 // accordingly if either input is. 14294 int LHSMaxIdx = -1; 14295 int RHSMinIdx = -1; 14296 int RHSMaxIdx = -1; 14297 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14298 14299 // Get the permuted scalar to vector nodes for the source(s) that come from 14300 // ISD::SCALAR_TO_VECTOR. 14301 if (SToVLHS) { 14302 // Set up the values for the shuffle vector fixup. 14303 LHSMaxIdx = NumEltsOut / NumEltsIn; 14304 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14305 if (SToVLHS.getValueType() != LHS.getValueType()) 14306 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14307 LHS = SToVLHS; 14308 } 14309 if (SToVRHS) { 14310 RHSMinIdx = NumEltsOut; 14311 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14312 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14313 if (SToVRHS.getValueType() != RHS.getValueType()) 14314 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14315 RHS = SToVRHS; 14316 } 14317 14318 // Fix up the shuffle mask to reflect where the desired element actually is. 14319 // The minimum and maximum indices that correspond to element zero for both 14320 // the LHS and RHS are computed and will control which shuffle mask entries 14321 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14322 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14323 // HalfVec to refer to the corresponding element in the permuted vector. 14324 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14325 HalfVec); 14326 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14327 14328 // We may have simplified away the shuffle. We won't be able to do anything 14329 // further with it here. 14330 if (!isa<ShuffleVectorSDNode>(Res)) 14331 return Res; 14332 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14333 } 14334 14335 // The common case after we commuted the shuffle is that the RHS is a splat 14336 // and we have elements coming in from the splat at indices that are not 14337 // conducive to using a merge. 14338 // Example: 14339 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14340 if (!isSplatBV(RHS)) 14341 return Res; 14342 14343 // We are looking for a mask such that all even elements are from 14344 // one vector and all odd elements from the other. 14345 if (!isAlternatingShuffMask(Mask, NumElts)) 14346 return Res; 14347 14348 // Adjust the mask so we are pulling in the same index from the splat 14349 // as the index from the interesting vector in consecutive elements. 14350 // Example (even elements from first vector): 14351 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14352 if (Mask[0] < NumElts) 14353 for (int i = 1, e = Mask.size(); i < e; i += 2) 14354 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14355 // Example (odd elements from first vector): 14356 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14357 else 14358 for (int i = 0, e = Mask.size(); i < e; i += 2) 14359 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14360 14361 // If the RHS has undefs, we need to remove them since we may have created 14362 // a shuffle that adds those instead of the splat value. 14363 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14364 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14365 14366 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14367 return Res; 14368 } 14369 14370 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14371 LSBaseSDNode *LSBase, 14372 DAGCombinerInfo &DCI) const { 14373 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14374 "Not a reverse memop pattern!"); 14375 14376 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14377 auto Mask = SVN->getMask(); 14378 int i = 0; 14379 auto I = Mask.rbegin(); 14380 auto E = Mask.rend(); 14381 14382 for (; I != E; ++I) { 14383 if (*I != i) 14384 return false; 14385 i++; 14386 } 14387 return true; 14388 }; 14389 14390 SelectionDAG &DAG = DCI.DAG; 14391 EVT VT = SVN->getValueType(0); 14392 14393 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14394 return SDValue(); 14395 14396 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14397 // See comment in PPCVSXSwapRemoval.cpp. 14398 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14399 if (!Subtarget.hasP9Vector()) 14400 return SDValue(); 14401 14402 if(!IsElementReverse(SVN)) 14403 return SDValue(); 14404 14405 if (LSBase->getOpcode() == ISD::LOAD) { 14406 SDLoc dl(SVN); 14407 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14408 return DAG.getMemIntrinsicNode( 14409 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14410 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14411 } 14412 14413 if (LSBase->getOpcode() == ISD::STORE) { 14414 SDLoc dl(LSBase); 14415 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14416 LSBase->getBasePtr()}; 14417 return DAG.getMemIntrinsicNode( 14418 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14419 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14420 } 14421 14422 llvm_unreachable("Expected a load or store node here"); 14423 } 14424 14425 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14426 DAGCombinerInfo &DCI) const { 14427 SelectionDAG &DAG = DCI.DAG; 14428 SDLoc dl(N); 14429 switch (N->getOpcode()) { 14430 default: break; 14431 case ISD::ADD: 14432 return combineADD(N, DCI); 14433 case ISD::SHL: 14434 return combineSHL(N, DCI); 14435 case ISD::SRA: 14436 return combineSRA(N, DCI); 14437 case ISD::SRL: 14438 return combineSRL(N, DCI); 14439 case ISD::MUL: 14440 return combineMUL(N, DCI); 14441 case ISD::FMA: 14442 case PPCISD::FNMSUB: 14443 return combineFMALike(N, DCI); 14444 case PPCISD::SHL: 14445 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14446 return N->getOperand(0); 14447 break; 14448 case PPCISD::SRL: 14449 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14450 return N->getOperand(0); 14451 break; 14452 case PPCISD::SRA: 14453 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14454 if (C->isNullValue() || // 0 >>s V -> 0. 14455 C->isAllOnesValue()) // -1 >>s V -> -1. 14456 return N->getOperand(0); 14457 } 14458 break; 14459 case ISD::SIGN_EXTEND: 14460 case ISD::ZERO_EXTEND: 14461 case ISD::ANY_EXTEND: 14462 return DAGCombineExtBoolTrunc(N, DCI); 14463 case ISD::TRUNCATE: 14464 return combineTRUNCATE(N, DCI); 14465 case ISD::SETCC: 14466 if (SDValue CSCC = combineSetCC(N, DCI)) 14467 return CSCC; 14468 LLVM_FALLTHROUGH; 14469 case ISD::SELECT_CC: 14470 return DAGCombineTruncBoolExt(N, DCI); 14471 case ISD::SINT_TO_FP: 14472 case ISD::UINT_TO_FP: 14473 return combineFPToIntToFP(N, DCI); 14474 case ISD::VECTOR_SHUFFLE: 14475 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14476 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14477 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14478 } 14479 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14480 case ISD::STORE: { 14481 14482 EVT Op1VT = N->getOperand(1).getValueType(); 14483 unsigned Opcode = N->getOperand(1).getOpcode(); 14484 14485 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14486 SDValue Val= combineStoreFPToInt(N, DCI); 14487 if (Val) 14488 return Val; 14489 } 14490 14491 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14492 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14493 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14494 if (Val) 14495 return Val; 14496 } 14497 14498 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14499 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14500 N->getOperand(1).getNode()->hasOneUse() && 14501 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14502 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14503 14504 // STBRX can only handle simple types and it makes no sense to store less 14505 // two bytes in byte-reversed order. 14506 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14507 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14508 break; 14509 14510 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14511 // Do an any-extend to 32-bits if this is a half-word input. 14512 if (BSwapOp.getValueType() == MVT::i16) 14513 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14514 14515 // If the type of BSWAP operand is wider than stored memory width 14516 // it need to be shifted to the right side before STBRX. 14517 if (Op1VT.bitsGT(mVT)) { 14518 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14519 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14520 DAG.getConstant(Shift, dl, MVT::i32)); 14521 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14522 if (Op1VT == MVT::i64) 14523 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14524 } 14525 14526 SDValue Ops[] = { 14527 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14528 }; 14529 return 14530 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14531 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14532 cast<StoreSDNode>(N)->getMemOperand()); 14533 } 14534 14535 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14536 // So it can increase the chance of CSE constant construction. 14537 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14538 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14539 // Need to sign-extended to 64-bits to handle negative values. 14540 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14541 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14542 MemVT.getSizeInBits()); 14543 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14544 14545 // DAG.getTruncStore() can't be used here because it doesn't accept 14546 // the general (base + offset) addressing mode. 14547 // So we use UpdateNodeOperands and setTruncatingStore instead. 14548 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14549 N->getOperand(3)); 14550 cast<StoreSDNode>(N)->setTruncatingStore(true); 14551 return SDValue(N, 0); 14552 } 14553 14554 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14555 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14556 if (Op1VT.isSimple()) { 14557 MVT StoreVT = Op1VT.getSimpleVT(); 14558 if (Subtarget.needsSwapsForVSXMemOps() && 14559 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14560 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14561 return expandVSXStoreForLE(N, DCI); 14562 } 14563 break; 14564 } 14565 case ISD::LOAD: { 14566 LoadSDNode *LD = cast<LoadSDNode>(N); 14567 EVT VT = LD->getValueType(0); 14568 14569 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14570 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14571 if (VT.isSimple()) { 14572 MVT LoadVT = VT.getSimpleVT(); 14573 if (Subtarget.needsSwapsForVSXMemOps() && 14574 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14575 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14576 return expandVSXLoadForLE(N, DCI); 14577 } 14578 14579 // We sometimes end up with a 64-bit integer load, from which we extract 14580 // two single-precision floating-point numbers. This happens with 14581 // std::complex<float>, and other similar structures, because of the way we 14582 // canonicalize structure copies. However, if we lack direct moves, 14583 // then the final bitcasts from the extracted integer values to the 14584 // floating-point numbers turn into store/load pairs. Even with direct moves, 14585 // just loading the two floating-point numbers is likely better. 14586 auto ReplaceTwoFloatLoad = [&]() { 14587 if (VT != MVT::i64) 14588 return false; 14589 14590 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14591 LD->isVolatile()) 14592 return false; 14593 14594 // We're looking for a sequence like this: 14595 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14596 // t16: i64 = srl t13, Constant:i32<32> 14597 // t17: i32 = truncate t16 14598 // t18: f32 = bitcast t17 14599 // t19: i32 = truncate t13 14600 // t20: f32 = bitcast t19 14601 14602 if (!LD->hasNUsesOfValue(2, 0)) 14603 return false; 14604 14605 auto UI = LD->use_begin(); 14606 while (UI.getUse().getResNo() != 0) ++UI; 14607 SDNode *Trunc = *UI++; 14608 while (UI.getUse().getResNo() != 0) ++UI; 14609 SDNode *RightShift = *UI; 14610 if (Trunc->getOpcode() != ISD::TRUNCATE) 14611 std::swap(Trunc, RightShift); 14612 14613 if (Trunc->getOpcode() != ISD::TRUNCATE || 14614 Trunc->getValueType(0) != MVT::i32 || 14615 !Trunc->hasOneUse()) 14616 return false; 14617 if (RightShift->getOpcode() != ISD::SRL || 14618 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14619 RightShift->getConstantOperandVal(1) != 32 || 14620 !RightShift->hasOneUse()) 14621 return false; 14622 14623 SDNode *Trunc2 = *RightShift->use_begin(); 14624 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14625 Trunc2->getValueType(0) != MVT::i32 || 14626 !Trunc2->hasOneUse()) 14627 return false; 14628 14629 SDNode *Bitcast = *Trunc->use_begin(); 14630 SDNode *Bitcast2 = *Trunc2->use_begin(); 14631 14632 if (Bitcast->getOpcode() != ISD::BITCAST || 14633 Bitcast->getValueType(0) != MVT::f32) 14634 return false; 14635 if (Bitcast2->getOpcode() != ISD::BITCAST || 14636 Bitcast2->getValueType(0) != MVT::f32) 14637 return false; 14638 14639 if (Subtarget.isLittleEndian()) 14640 std::swap(Bitcast, Bitcast2); 14641 14642 // Bitcast has the second float (in memory-layout order) and Bitcast2 14643 // has the first one. 14644 14645 SDValue BasePtr = LD->getBasePtr(); 14646 if (LD->isIndexed()) { 14647 assert(LD->getAddressingMode() == ISD::PRE_INC && 14648 "Non-pre-inc AM on PPC?"); 14649 BasePtr = 14650 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14651 LD->getOffset()); 14652 } 14653 14654 auto MMOFlags = 14655 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14656 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14657 LD->getPointerInfo(), LD->getAlignment(), 14658 MMOFlags, LD->getAAInfo()); 14659 SDValue AddPtr = 14660 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14661 BasePtr, DAG.getIntPtrConstant(4, dl)); 14662 SDValue FloatLoad2 = DAG.getLoad( 14663 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14664 LD->getPointerInfo().getWithOffset(4), 14665 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14666 14667 if (LD->isIndexed()) { 14668 // Note that DAGCombine should re-form any pre-increment load(s) from 14669 // what is produced here if that makes sense. 14670 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14671 } 14672 14673 DCI.CombineTo(Bitcast2, FloatLoad); 14674 DCI.CombineTo(Bitcast, FloatLoad2); 14675 14676 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14677 SDValue(FloatLoad2.getNode(), 1)); 14678 return true; 14679 }; 14680 14681 if (ReplaceTwoFloatLoad()) 14682 return SDValue(N, 0); 14683 14684 EVT MemVT = LD->getMemoryVT(); 14685 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14686 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14687 if (LD->isUnindexed() && VT.isVector() && 14688 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14689 // P8 and later hardware should just use LOAD. 14690 !Subtarget.hasP8Vector() && 14691 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14692 VT == MVT::v4f32))) && 14693 LD->getAlign() < ABIAlignment) { 14694 // This is a type-legal unaligned Altivec load. 14695 SDValue Chain = LD->getChain(); 14696 SDValue Ptr = LD->getBasePtr(); 14697 bool isLittleEndian = Subtarget.isLittleEndian(); 14698 14699 // This implements the loading of unaligned vectors as described in 14700 // the venerable Apple Velocity Engine overview. Specifically: 14701 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14702 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14703 // 14704 // The general idea is to expand a sequence of one or more unaligned 14705 // loads into an alignment-based permutation-control instruction (lvsl 14706 // or lvsr), a series of regular vector loads (which always truncate 14707 // their input address to an aligned address), and a series of 14708 // permutations. The results of these permutations are the requested 14709 // loaded values. The trick is that the last "extra" load is not taken 14710 // from the address you might suspect (sizeof(vector) bytes after the 14711 // last requested load), but rather sizeof(vector) - 1 bytes after the 14712 // last requested vector. The point of this is to avoid a page fault if 14713 // the base address happened to be aligned. This works because if the 14714 // base address is aligned, then adding less than a full vector length 14715 // will cause the last vector in the sequence to be (re)loaded. 14716 // Otherwise, the next vector will be fetched as you might suspect was 14717 // necessary. 14718 14719 // We might be able to reuse the permutation generation from 14720 // a different base address offset from this one by an aligned amount. 14721 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14722 // optimization later. 14723 Intrinsic::ID Intr, IntrLD, IntrPerm; 14724 MVT PermCntlTy, PermTy, LDTy; 14725 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14726 : Intrinsic::ppc_altivec_lvsl; 14727 IntrLD = Intrinsic::ppc_altivec_lvx; 14728 IntrPerm = Intrinsic::ppc_altivec_vperm; 14729 PermCntlTy = MVT::v16i8; 14730 PermTy = MVT::v4i32; 14731 LDTy = MVT::v4i32; 14732 14733 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14734 14735 // Create the new MMO for the new base load. It is like the original MMO, 14736 // but represents an area in memory almost twice the vector size centered 14737 // on the original address. If the address is unaligned, we might start 14738 // reading up to (sizeof(vector)-1) bytes below the address of the 14739 // original unaligned load. 14740 MachineFunction &MF = DAG.getMachineFunction(); 14741 MachineMemOperand *BaseMMO = 14742 MF.getMachineMemOperand(LD->getMemOperand(), 14743 -(long)MemVT.getStoreSize()+1, 14744 2*MemVT.getStoreSize()-1); 14745 14746 // Create the new base load. 14747 SDValue LDXIntID = 14748 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14749 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14750 SDValue BaseLoad = 14751 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14752 DAG.getVTList(PermTy, MVT::Other), 14753 BaseLoadOps, LDTy, BaseMMO); 14754 14755 // Note that the value of IncOffset (which is provided to the next 14756 // load's pointer info offset value, and thus used to calculate the 14757 // alignment), and the value of IncValue (which is actually used to 14758 // increment the pointer value) are different! This is because we 14759 // require the next load to appear to be aligned, even though it 14760 // is actually offset from the base pointer by a lesser amount. 14761 int IncOffset = VT.getSizeInBits() / 8; 14762 int IncValue = IncOffset; 14763 14764 // Walk (both up and down) the chain looking for another load at the real 14765 // (aligned) offset (the alignment of the other load does not matter in 14766 // this case). If found, then do not use the offset reduction trick, as 14767 // that will prevent the loads from being later combined (as they would 14768 // otherwise be duplicates). 14769 if (!findConsecutiveLoad(LD, DAG)) 14770 --IncValue; 14771 14772 SDValue Increment = 14773 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14774 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14775 14776 MachineMemOperand *ExtraMMO = 14777 MF.getMachineMemOperand(LD->getMemOperand(), 14778 1, 2*MemVT.getStoreSize()-1); 14779 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14780 SDValue ExtraLoad = 14781 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14782 DAG.getVTList(PermTy, MVT::Other), 14783 ExtraLoadOps, LDTy, ExtraMMO); 14784 14785 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14786 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14787 14788 // Because vperm has a big-endian bias, we must reverse the order 14789 // of the input vectors and complement the permute control vector 14790 // when generating little endian code. We have already handled the 14791 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14792 // and ExtraLoad here. 14793 SDValue Perm; 14794 if (isLittleEndian) 14795 Perm = BuildIntrinsicOp(IntrPerm, 14796 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14797 else 14798 Perm = BuildIntrinsicOp(IntrPerm, 14799 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14800 14801 if (VT != PermTy) 14802 Perm = Subtarget.hasAltivec() 14803 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14804 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14805 DAG.getTargetConstant(1, dl, MVT::i64)); 14806 // second argument is 1 because this rounding 14807 // is always exact. 14808 14809 // The output of the permutation is our loaded result, the TokenFactor is 14810 // our new chain. 14811 DCI.CombineTo(N, Perm, TF); 14812 return SDValue(N, 0); 14813 } 14814 } 14815 break; 14816 case ISD::INTRINSIC_WO_CHAIN: { 14817 bool isLittleEndian = Subtarget.isLittleEndian(); 14818 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14819 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14820 : Intrinsic::ppc_altivec_lvsl); 14821 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 14822 SDValue Add = N->getOperand(1); 14823 14824 int Bits = 4 /* 16 byte alignment */; 14825 14826 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14827 APInt::getAllOnesValue(Bits /* alignment */) 14828 .zext(Add.getScalarValueSizeInBits()))) { 14829 SDNode *BasePtr = Add->getOperand(0).getNode(); 14830 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14831 UE = BasePtr->use_end(); 14832 UI != UE; ++UI) { 14833 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14834 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 14835 IID) { 14836 // We've found another LVSL/LVSR, and this address is an aligned 14837 // multiple of that one. The results will be the same, so use the 14838 // one we've just found instead. 14839 14840 return SDValue(*UI, 0); 14841 } 14842 } 14843 } 14844 14845 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14846 SDNode *BasePtr = Add->getOperand(0).getNode(); 14847 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14848 UE = BasePtr->use_end(); UI != UE; ++UI) { 14849 if (UI->getOpcode() == ISD::ADD && 14850 isa<ConstantSDNode>(UI->getOperand(1)) && 14851 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14852 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14853 (1ULL << Bits) == 0) { 14854 SDNode *OtherAdd = *UI; 14855 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14856 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14857 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14858 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14859 return SDValue(*VI, 0); 14860 } 14861 } 14862 } 14863 } 14864 } 14865 } 14866 14867 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14868 // Expose the vabsduw/h/b opportunity for down stream 14869 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14870 (IID == Intrinsic::ppc_altivec_vmaxsw || 14871 IID == Intrinsic::ppc_altivec_vmaxsh || 14872 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14873 SDValue V1 = N->getOperand(1); 14874 SDValue V2 = N->getOperand(2); 14875 if ((V1.getSimpleValueType() == MVT::v4i32 || 14876 V1.getSimpleValueType() == MVT::v8i16 || 14877 V1.getSimpleValueType() == MVT::v16i8) && 14878 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14879 // (0-a, a) 14880 if (V1.getOpcode() == ISD::SUB && 14881 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14882 V1.getOperand(1) == V2) { 14883 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14884 } 14885 // (a, 0-a) 14886 if (V2.getOpcode() == ISD::SUB && 14887 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14888 V2.getOperand(1) == V1) { 14889 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14890 } 14891 // (x-y, y-x) 14892 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14893 V1.getOperand(0) == V2.getOperand(1) && 14894 V1.getOperand(1) == V2.getOperand(0)) { 14895 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14896 } 14897 } 14898 } 14899 } 14900 14901 break; 14902 case ISD::INTRINSIC_W_CHAIN: 14903 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14904 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14905 if (Subtarget.needsSwapsForVSXMemOps()) { 14906 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14907 default: 14908 break; 14909 case Intrinsic::ppc_vsx_lxvw4x: 14910 case Intrinsic::ppc_vsx_lxvd2x: 14911 return expandVSXLoadForLE(N, DCI); 14912 } 14913 } 14914 break; 14915 case ISD::INTRINSIC_VOID: 14916 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14917 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14918 if (Subtarget.needsSwapsForVSXMemOps()) { 14919 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14920 default: 14921 break; 14922 case Intrinsic::ppc_vsx_stxvw4x: 14923 case Intrinsic::ppc_vsx_stxvd2x: 14924 return expandVSXStoreForLE(N, DCI); 14925 } 14926 } 14927 break; 14928 case ISD::BSWAP: 14929 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14930 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14931 N->getOperand(0).hasOneUse() && 14932 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14933 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14934 N->getValueType(0) == MVT::i64))) { 14935 SDValue Load = N->getOperand(0); 14936 LoadSDNode *LD = cast<LoadSDNode>(Load); 14937 // Create the byte-swapping load. 14938 SDValue Ops[] = { 14939 LD->getChain(), // Chain 14940 LD->getBasePtr(), // Ptr 14941 DAG.getValueType(N->getValueType(0)) // VT 14942 }; 14943 SDValue BSLoad = 14944 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14945 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14946 MVT::i64 : MVT::i32, MVT::Other), 14947 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14948 14949 // If this is an i16 load, insert the truncate. 14950 SDValue ResVal = BSLoad; 14951 if (N->getValueType(0) == MVT::i16) 14952 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14953 14954 // First, combine the bswap away. This makes the value produced by the 14955 // load dead. 14956 DCI.CombineTo(N, ResVal); 14957 14958 // Next, combine the load away, we give it a bogus result value but a real 14959 // chain result. The result value is dead because the bswap is dead. 14960 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14961 14962 // Return N so it doesn't get rechecked! 14963 return SDValue(N, 0); 14964 } 14965 break; 14966 case PPCISD::VCMP: 14967 // If a VCMP_rec node already exists with exactly the same operands as this 14968 // node, use its result instead of this node (VCMP_rec computes both a CR6 14969 // and a normal output). 14970 // 14971 if (!N->getOperand(0).hasOneUse() && 14972 !N->getOperand(1).hasOneUse() && 14973 !N->getOperand(2).hasOneUse()) { 14974 14975 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 14976 SDNode *VCMPrecNode = nullptr; 14977 14978 SDNode *LHSN = N->getOperand(0).getNode(); 14979 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14980 UI != E; ++UI) 14981 if (UI->getOpcode() == PPCISD::VCMP_rec && 14982 UI->getOperand(1) == N->getOperand(1) && 14983 UI->getOperand(2) == N->getOperand(2) && 14984 UI->getOperand(0) == N->getOperand(0)) { 14985 VCMPrecNode = *UI; 14986 break; 14987 } 14988 14989 // If there is no VCMP_rec node, or if the flag value has a single use, 14990 // don't transform this. 14991 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 14992 break; 14993 14994 // Look at the (necessarily single) use of the flag value. If it has a 14995 // chain, this transformation is more complex. Note that multiple things 14996 // could use the value result, which we should ignore. 14997 SDNode *FlagUser = nullptr; 14998 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 14999 FlagUser == nullptr; ++UI) { 15000 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15001 SDNode *User = *UI; 15002 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15003 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15004 FlagUser = User; 15005 break; 15006 } 15007 } 15008 } 15009 15010 // If the user is a MFOCRF instruction, we know this is safe. 15011 // Otherwise we give up for right now. 15012 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15013 return SDValue(VCMPrecNode, 0); 15014 } 15015 break; 15016 case ISD::BRCOND: { 15017 SDValue Cond = N->getOperand(1); 15018 SDValue Target = N->getOperand(2); 15019 15020 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15021 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15022 Intrinsic::loop_decrement) { 15023 15024 // We now need to make the intrinsic dead (it cannot be instruction 15025 // selected). 15026 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15027 assert(Cond.getNode()->hasOneUse() && 15028 "Counter decrement has more than one use"); 15029 15030 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15031 N->getOperand(0), Target); 15032 } 15033 } 15034 break; 15035 case ISD::BR_CC: { 15036 // If this is a branch on an altivec predicate comparison, lower this so 15037 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15038 // lowering is done pre-legalize, because the legalizer lowers the predicate 15039 // compare down to code that is difficult to reassemble. 15040 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15041 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15042 15043 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15044 // value. If so, pass-through the AND to get to the intrinsic. 15045 if (LHS.getOpcode() == ISD::AND && 15046 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15047 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15048 Intrinsic::loop_decrement && 15049 isa<ConstantSDNode>(LHS.getOperand(1)) && 15050 !isNullConstant(LHS.getOperand(1))) 15051 LHS = LHS.getOperand(0); 15052 15053 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15054 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15055 Intrinsic::loop_decrement && 15056 isa<ConstantSDNode>(RHS)) { 15057 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15058 "Counter decrement comparison is not EQ or NE"); 15059 15060 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15061 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15062 (CC == ISD::SETNE && !Val); 15063 15064 // We now need to make the intrinsic dead (it cannot be instruction 15065 // selected). 15066 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15067 assert(LHS.getNode()->hasOneUse() && 15068 "Counter decrement has more than one use"); 15069 15070 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15071 N->getOperand(0), N->getOperand(4)); 15072 } 15073 15074 int CompareOpc; 15075 bool isDot; 15076 15077 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15078 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15079 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15080 assert(isDot && "Can't compare against a vector result!"); 15081 15082 // If this is a comparison against something other than 0/1, then we know 15083 // that the condition is never/always true. 15084 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15085 if (Val != 0 && Val != 1) { 15086 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15087 return N->getOperand(0); 15088 // Always !=, turn it into an unconditional branch. 15089 return DAG.getNode(ISD::BR, dl, MVT::Other, 15090 N->getOperand(0), N->getOperand(4)); 15091 } 15092 15093 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15094 15095 // Create the PPCISD altivec 'dot' comparison node. 15096 SDValue Ops[] = { 15097 LHS.getOperand(2), // LHS of compare 15098 LHS.getOperand(3), // RHS of compare 15099 DAG.getConstant(CompareOpc, dl, MVT::i32) 15100 }; 15101 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15102 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15103 15104 // Unpack the result based on how the target uses it. 15105 PPC::Predicate CompOpc; 15106 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15107 default: // Can't happen, don't crash on invalid number though. 15108 case 0: // Branch on the value of the EQ bit of CR6. 15109 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15110 break; 15111 case 1: // Branch on the inverted value of the EQ bit of CR6. 15112 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15113 break; 15114 case 2: // Branch on the value of the LT bit of CR6. 15115 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15116 break; 15117 case 3: // Branch on the inverted value of the LT bit of CR6. 15118 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15119 break; 15120 } 15121 15122 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15123 DAG.getConstant(CompOpc, dl, MVT::i32), 15124 DAG.getRegister(PPC::CR6, MVT::i32), 15125 N->getOperand(4), CompNode.getValue(1)); 15126 } 15127 break; 15128 } 15129 case ISD::BUILD_VECTOR: 15130 return DAGCombineBuildVector(N, DCI); 15131 case ISD::ABS: 15132 return combineABS(N, DCI); 15133 case ISD::VSELECT: 15134 return combineVSelect(N, DCI); 15135 } 15136 15137 return SDValue(); 15138 } 15139 15140 SDValue 15141 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15142 SelectionDAG &DAG, 15143 SmallVectorImpl<SDNode *> &Created) const { 15144 // fold (sdiv X, pow2) 15145 EVT VT = N->getValueType(0); 15146 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15147 return SDValue(); 15148 if ((VT != MVT::i32 && VT != MVT::i64) || 15149 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15150 return SDValue(); 15151 15152 SDLoc DL(N); 15153 SDValue N0 = N->getOperand(0); 15154 15155 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15156 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15157 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15158 15159 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15160 Created.push_back(Op.getNode()); 15161 15162 if (IsNegPow2) { 15163 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15164 Created.push_back(Op.getNode()); 15165 } 15166 15167 return Op; 15168 } 15169 15170 //===----------------------------------------------------------------------===// 15171 // Inline Assembly Support 15172 //===----------------------------------------------------------------------===// 15173 15174 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15175 KnownBits &Known, 15176 const APInt &DemandedElts, 15177 const SelectionDAG &DAG, 15178 unsigned Depth) const { 15179 Known.resetAll(); 15180 switch (Op.getOpcode()) { 15181 default: break; 15182 case PPCISD::LBRX: { 15183 // lhbrx is known to have the top bits cleared out. 15184 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15185 Known.Zero = 0xFFFF0000; 15186 break; 15187 } 15188 case ISD::INTRINSIC_WO_CHAIN: { 15189 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15190 default: break; 15191 case Intrinsic::ppc_altivec_vcmpbfp_p: 15192 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15193 case Intrinsic::ppc_altivec_vcmpequb_p: 15194 case Intrinsic::ppc_altivec_vcmpequh_p: 15195 case Intrinsic::ppc_altivec_vcmpequw_p: 15196 case Intrinsic::ppc_altivec_vcmpequd_p: 15197 case Intrinsic::ppc_altivec_vcmpequq_p: 15198 case Intrinsic::ppc_altivec_vcmpgefp_p: 15199 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15200 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15201 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15202 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15203 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15204 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15205 case Intrinsic::ppc_altivec_vcmpgtub_p: 15206 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15207 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15208 case Intrinsic::ppc_altivec_vcmpgtud_p: 15209 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15210 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15211 break; 15212 } 15213 } 15214 } 15215 } 15216 15217 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15218 switch (Subtarget.getCPUDirective()) { 15219 default: break; 15220 case PPC::DIR_970: 15221 case PPC::DIR_PWR4: 15222 case PPC::DIR_PWR5: 15223 case PPC::DIR_PWR5X: 15224 case PPC::DIR_PWR6: 15225 case PPC::DIR_PWR6X: 15226 case PPC::DIR_PWR7: 15227 case PPC::DIR_PWR8: 15228 case PPC::DIR_PWR9: 15229 case PPC::DIR_PWR10: 15230 case PPC::DIR_PWR_FUTURE: { 15231 if (!ML) 15232 break; 15233 15234 if (!DisableInnermostLoopAlign32) { 15235 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15236 // so that we can decrease cache misses and branch-prediction misses. 15237 // Actual alignment of the loop will depend on the hotness check and other 15238 // logic in alignBlocks. 15239 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15240 return Align(32); 15241 } 15242 15243 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15244 15245 // For small loops (between 5 and 8 instructions), align to a 32-byte 15246 // boundary so that the entire loop fits in one instruction-cache line. 15247 uint64_t LoopSize = 0; 15248 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15249 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15250 LoopSize += TII->getInstSizeInBytes(*J); 15251 if (LoopSize > 32) 15252 break; 15253 } 15254 15255 if (LoopSize > 16 && LoopSize <= 32) 15256 return Align(32); 15257 15258 break; 15259 } 15260 } 15261 15262 return TargetLowering::getPrefLoopAlignment(ML); 15263 } 15264 15265 /// getConstraintType - Given a constraint, return the type of 15266 /// constraint it is for this target. 15267 PPCTargetLowering::ConstraintType 15268 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15269 if (Constraint.size() == 1) { 15270 switch (Constraint[0]) { 15271 default: break; 15272 case 'b': 15273 case 'r': 15274 case 'f': 15275 case 'd': 15276 case 'v': 15277 case 'y': 15278 return C_RegisterClass; 15279 case 'Z': 15280 // FIXME: While Z does indicate a memory constraint, it specifically 15281 // indicates an r+r address (used in conjunction with the 'y' modifier 15282 // in the replacement string). Currently, we're forcing the base 15283 // register to be r0 in the asm printer (which is interpreted as zero) 15284 // and forming the complete address in the second register. This is 15285 // suboptimal. 15286 return C_Memory; 15287 } 15288 } else if (Constraint == "wc") { // individual CR bits. 15289 return C_RegisterClass; 15290 } else if (Constraint == "wa" || Constraint == "wd" || 15291 Constraint == "wf" || Constraint == "ws" || 15292 Constraint == "wi" || Constraint == "ww") { 15293 return C_RegisterClass; // VSX registers. 15294 } 15295 return TargetLowering::getConstraintType(Constraint); 15296 } 15297 15298 /// Examine constraint type and operand type and determine a weight value. 15299 /// This object must already have been set up with the operand type 15300 /// and the current alternative constraint selected. 15301 TargetLowering::ConstraintWeight 15302 PPCTargetLowering::getSingleConstraintMatchWeight( 15303 AsmOperandInfo &info, const char *constraint) const { 15304 ConstraintWeight weight = CW_Invalid; 15305 Value *CallOperandVal = info.CallOperandVal; 15306 // If we don't have a value, we can't do a match, 15307 // but allow it at the lowest weight. 15308 if (!CallOperandVal) 15309 return CW_Default; 15310 Type *type = CallOperandVal->getType(); 15311 15312 // Look at the constraint type. 15313 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15314 return CW_Register; // an individual CR bit. 15315 else if ((StringRef(constraint) == "wa" || 15316 StringRef(constraint) == "wd" || 15317 StringRef(constraint) == "wf") && 15318 type->isVectorTy()) 15319 return CW_Register; 15320 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15321 return CW_Register; // just hold 64-bit integers data. 15322 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15323 return CW_Register; 15324 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15325 return CW_Register; 15326 15327 switch (*constraint) { 15328 default: 15329 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15330 break; 15331 case 'b': 15332 if (type->isIntegerTy()) 15333 weight = CW_Register; 15334 break; 15335 case 'f': 15336 if (type->isFloatTy()) 15337 weight = CW_Register; 15338 break; 15339 case 'd': 15340 if (type->isDoubleTy()) 15341 weight = CW_Register; 15342 break; 15343 case 'v': 15344 if (type->isVectorTy()) 15345 weight = CW_Register; 15346 break; 15347 case 'y': 15348 weight = CW_Register; 15349 break; 15350 case 'Z': 15351 weight = CW_Memory; 15352 break; 15353 } 15354 return weight; 15355 } 15356 15357 std::pair<unsigned, const TargetRegisterClass *> 15358 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15359 StringRef Constraint, 15360 MVT VT) const { 15361 if (Constraint.size() == 1) { 15362 // GCC RS6000 Constraint Letters 15363 switch (Constraint[0]) { 15364 case 'b': // R1-R31 15365 if (VT == MVT::i64 && Subtarget.isPPC64()) 15366 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15367 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15368 case 'r': // R0-R31 15369 if (VT == MVT::i64 && Subtarget.isPPC64()) 15370 return std::make_pair(0U, &PPC::G8RCRegClass); 15371 return std::make_pair(0U, &PPC::GPRCRegClass); 15372 // 'd' and 'f' constraints are both defined to be "the floating point 15373 // registers", where one is for 32-bit and the other for 64-bit. We don't 15374 // really care overly much here so just give them all the same reg classes. 15375 case 'd': 15376 case 'f': 15377 if (Subtarget.hasSPE()) { 15378 if (VT == MVT::f32 || VT == MVT::i32) 15379 return std::make_pair(0U, &PPC::GPRCRegClass); 15380 if (VT == MVT::f64 || VT == MVT::i64) 15381 return std::make_pair(0U, &PPC::SPERCRegClass); 15382 } else { 15383 if (VT == MVT::f32 || VT == MVT::i32) 15384 return std::make_pair(0U, &PPC::F4RCRegClass); 15385 if (VT == MVT::f64 || VT == MVT::i64) 15386 return std::make_pair(0U, &PPC::F8RCRegClass); 15387 } 15388 break; 15389 case 'v': 15390 if (Subtarget.hasAltivec()) 15391 return std::make_pair(0U, &PPC::VRRCRegClass); 15392 break; 15393 case 'y': // crrc 15394 return std::make_pair(0U, &PPC::CRRCRegClass); 15395 } 15396 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15397 // An individual CR bit. 15398 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15399 } else if ((Constraint == "wa" || Constraint == "wd" || 15400 Constraint == "wf" || Constraint == "wi") && 15401 Subtarget.hasVSX()) { 15402 return std::make_pair(0U, &PPC::VSRCRegClass); 15403 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15404 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15405 return std::make_pair(0U, &PPC::VSSRCRegClass); 15406 else 15407 return std::make_pair(0U, &PPC::VSFRCRegClass); 15408 } 15409 15410 // Handle special cases of physical registers that are not properly handled 15411 // by the base class. 15412 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15413 // If we name a VSX register, we can't defer to the base class because it 15414 // will not recognize the correct register (their names will be VSL{0-31} 15415 // and V{0-31} so they won't match). So we match them here. 15416 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15417 int VSNum = atoi(Constraint.data() + 3); 15418 assert(VSNum >= 0 && VSNum <= 63 && 15419 "Attempted to access a vsr out of range"); 15420 if (VSNum < 32) 15421 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15422 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15423 } 15424 15425 // For float registers, we can't defer to the base class as it will match 15426 // the SPILLTOVSRRC class. 15427 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15428 int RegNum = atoi(Constraint.data() + 2); 15429 if (RegNum > 31 || RegNum < 0) 15430 report_fatal_error("Invalid floating point register number"); 15431 if (VT == MVT::f32 || VT == MVT::i32) 15432 return Subtarget.hasSPE() 15433 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15434 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15435 if (VT == MVT::f64 || VT == MVT::i64) 15436 return Subtarget.hasSPE() 15437 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15438 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15439 } 15440 } 15441 15442 std::pair<unsigned, const TargetRegisterClass *> R = 15443 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15444 15445 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15446 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15447 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15448 // register. 15449 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15450 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15451 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15452 PPC::GPRCRegClass.contains(R.first)) 15453 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15454 PPC::sub_32, &PPC::G8RCRegClass), 15455 &PPC::G8RCRegClass); 15456 15457 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15458 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15459 R.first = PPC::CR0; 15460 R.second = &PPC::CRRCRegClass; 15461 } 15462 // FIXME: This warning should ideally be emitted in the front end. 15463 const auto &TM = getTargetMachine(); 15464 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 15465 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 15466 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 15467 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 15468 errs() << "warning: vector registers 20 to 32 are reserved in the " 15469 "default AIX AltiVec ABI and cannot be used\n"; 15470 } 15471 15472 return R; 15473 } 15474 15475 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15476 /// vector. If it is invalid, don't add anything to Ops. 15477 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15478 std::string &Constraint, 15479 std::vector<SDValue>&Ops, 15480 SelectionDAG &DAG) const { 15481 SDValue Result; 15482 15483 // Only support length 1 constraints. 15484 if (Constraint.length() > 1) return; 15485 15486 char Letter = Constraint[0]; 15487 switch (Letter) { 15488 default: break; 15489 case 'I': 15490 case 'J': 15491 case 'K': 15492 case 'L': 15493 case 'M': 15494 case 'N': 15495 case 'O': 15496 case 'P': { 15497 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15498 if (!CST) return; // Must be an immediate to match. 15499 SDLoc dl(Op); 15500 int64_t Value = CST->getSExtValue(); 15501 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15502 // numbers are printed as such. 15503 switch (Letter) { 15504 default: llvm_unreachable("Unknown constraint letter!"); 15505 case 'I': // "I" is a signed 16-bit constant. 15506 if (isInt<16>(Value)) 15507 Result = DAG.getTargetConstant(Value, dl, TCVT); 15508 break; 15509 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15510 if (isShiftedUInt<16, 16>(Value)) 15511 Result = DAG.getTargetConstant(Value, dl, TCVT); 15512 break; 15513 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15514 if (isShiftedInt<16, 16>(Value)) 15515 Result = DAG.getTargetConstant(Value, dl, TCVT); 15516 break; 15517 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15518 if (isUInt<16>(Value)) 15519 Result = DAG.getTargetConstant(Value, dl, TCVT); 15520 break; 15521 case 'M': // "M" is a constant that is greater than 31. 15522 if (Value > 31) 15523 Result = DAG.getTargetConstant(Value, dl, TCVT); 15524 break; 15525 case 'N': // "N" is a positive constant that is an exact power of two. 15526 if (Value > 0 && isPowerOf2_64(Value)) 15527 Result = DAG.getTargetConstant(Value, dl, TCVT); 15528 break; 15529 case 'O': // "O" is the constant zero. 15530 if (Value == 0) 15531 Result = DAG.getTargetConstant(Value, dl, TCVT); 15532 break; 15533 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15534 if (isInt<16>(-Value)) 15535 Result = DAG.getTargetConstant(Value, dl, TCVT); 15536 break; 15537 } 15538 break; 15539 } 15540 } 15541 15542 if (Result.getNode()) { 15543 Ops.push_back(Result); 15544 return; 15545 } 15546 15547 // Handle standard constraint letters. 15548 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15549 } 15550 15551 // isLegalAddressingMode - Return true if the addressing mode represented 15552 // by AM is legal for this target, for a load/store of the specified type. 15553 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15554 const AddrMode &AM, Type *Ty, 15555 unsigned AS, 15556 Instruction *I) const { 15557 // Vector type r+i form is supported since power9 as DQ form. We don't check 15558 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15559 // imm form is preferred and the offset can be adjusted to use imm form later 15560 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15561 // max offset to check legal addressing mode, we should be a little aggressive 15562 // to contain other offsets for that LSRUse. 15563 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15564 return false; 15565 15566 // PPC allows a sign-extended 16-bit immediate field. 15567 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15568 return false; 15569 15570 // No global is ever allowed as a base. 15571 if (AM.BaseGV) 15572 return false; 15573 15574 // PPC only support r+r, 15575 switch (AM.Scale) { 15576 case 0: // "r+i" or just "i", depending on HasBaseReg. 15577 break; 15578 case 1: 15579 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15580 return false; 15581 // Otherwise we have r+r or r+i. 15582 break; 15583 case 2: 15584 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15585 return false; 15586 // Allow 2*r as r+r. 15587 break; 15588 default: 15589 // No other scales are supported. 15590 return false; 15591 } 15592 15593 return true; 15594 } 15595 15596 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15597 SelectionDAG &DAG) const { 15598 MachineFunction &MF = DAG.getMachineFunction(); 15599 MachineFrameInfo &MFI = MF.getFrameInfo(); 15600 MFI.setReturnAddressIsTaken(true); 15601 15602 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15603 return SDValue(); 15604 15605 SDLoc dl(Op); 15606 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15607 15608 // Make sure the function does not optimize away the store of the RA to 15609 // the stack. 15610 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15611 FuncInfo->setLRStoreRequired(); 15612 bool isPPC64 = Subtarget.isPPC64(); 15613 auto PtrVT = getPointerTy(MF.getDataLayout()); 15614 15615 if (Depth > 0) { 15616 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15617 SDValue Offset = 15618 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15619 isPPC64 ? MVT::i64 : MVT::i32); 15620 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15621 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15622 MachinePointerInfo()); 15623 } 15624 15625 // Just load the return address off the stack. 15626 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15627 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15628 MachinePointerInfo()); 15629 } 15630 15631 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15632 SelectionDAG &DAG) const { 15633 SDLoc dl(Op); 15634 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15635 15636 MachineFunction &MF = DAG.getMachineFunction(); 15637 MachineFrameInfo &MFI = MF.getFrameInfo(); 15638 MFI.setFrameAddressIsTaken(true); 15639 15640 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15641 bool isPPC64 = PtrVT == MVT::i64; 15642 15643 // Naked functions never have a frame pointer, and so we use r1. For all 15644 // other functions, this decision must be delayed until during PEI. 15645 unsigned FrameReg; 15646 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15647 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15648 else 15649 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15650 15651 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15652 PtrVT); 15653 while (Depth--) 15654 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15655 FrameAddr, MachinePointerInfo()); 15656 return FrameAddr; 15657 } 15658 15659 // FIXME? Maybe this could be a TableGen attribute on some registers and 15660 // this table could be generated automatically from RegInfo. 15661 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15662 const MachineFunction &MF) const { 15663 bool isPPC64 = Subtarget.isPPC64(); 15664 15665 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15666 if (!is64Bit && VT != LLT::scalar(32)) 15667 report_fatal_error("Invalid register global variable type"); 15668 15669 Register Reg = StringSwitch<Register>(RegName) 15670 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15671 .Case("r2", isPPC64 ? Register() : PPC::R2) 15672 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15673 .Default(Register()); 15674 15675 if (Reg) 15676 return Reg; 15677 report_fatal_error("Invalid register name global variable"); 15678 } 15679 15680 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15681 // 32-bit SVR4 ABI access everything as got-indirect. 15682 if (Subtarget.is32BitELFABI()) 15683 return true; 15684 15685 // AIX accesses everything indirectly through the TOC, which is similar to 15686 // the GOT. 15687 if (Subtarget.isAIXABI()) 15688 return true; 15689 15690 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15691 // If it is small or large code model, module locals are accessed 15692 // indirectly by loading their address from .toc/.got. 15693 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15694 return true; 15695 15696 // JumpTable and BlockAddress are accessed as got-indirect. 15697 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15698 return true; 15699 15700 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15701 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15702 15703 return false; 15704 } 15705 15706 bool 15707 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15708 // The PowerPC target isn't yet aware of offsets. 15709 return false; 15710 } 15711 15712 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15713 const CallInst &I, 15714 MachineFunction &MF, 15715 unsigned Intrinsic) const { 15716 switch (Intrinsic) { 15717 case Intrinsic::ppc_altivec_lvx: 15718 case Intrinsic::ppc_altivec_lvxl: 15719 case Intrinsic::ppc_altivec_lvebx: 15720 case Intrinsic::ppc_altivec_lvehx: 15721 case Intrinsic::ppc_altivec_lvewx: 15722 case Intrinsic::ppc_vsx_lxvd2x: 15723 case Intrinsic::ppc_vsx_lxvw4x: 15724 case Intrinsic::ppc_vsx_lxvd2x_be: 15725 case Intrinsic::ppc_vsx_lxvw4x_be: 15726 case Intrinsic::ppc_vsx_lxvl: 15727 case Intrinsic::ppc_vsx_lxvll: { 15728 EVT VT; 15729 switch (Intrinsic) { 15730 case Intrinsic::ppc_altivec_lvebx: 15731 VT = MVT::i8; 15732 break; 15733 case Intrinsic::ppc_altivec_lvehx: 15734 VT = MVT::i16; 15735 break; 15736 case Intrinsic::ppc_altivec_lvewx: 15737 VT = MVT::i32; 15738 break; 15739 case Intrinsic::ppc_vsx_lxvd2x: 15740 case Intrinsic::ppc_vsx_lxvd2x_be: 15741 VT = MVT::v2f64; 15742 break; 15743 default: 15744 VT = MVT::v4i32; 15745 break; 15746 } 15747 15748 Info.opc = ISD::INTRINSIC_W_CHAIN; 15749 Info.memVT = VT; 15750 Info.ptrVal = I.getArgOperand(0); 15751 Info.offset = -VT.getStoreSize()+1; 15752 Info.size = 2*VT.getStoreSize()-1; 15753 Info.align = Align(1); 15754 Info.flags = MachineMemOperand::MOLoad; 15755 return true; 15756 } 15757 case Intrinsic::ppc_altivec_stvx: 15758 case Intrinsic::ppc_altivec_stvxl: 15759 case Intrinsic::ppc_altivec_stvebx: 15760 case Intrinsic::ppc_altivec_stvehx: 15761 case Intrinsic::ppc_altivec_stvewx: 15762 case Intrinsic::ppc_vsx_stxvd2x: 15763 case Intrinsic::ppc_vsx_stxvw4x: 15764 case Intrinsic::ppc_vsx_stxvd2x_be: 15765 case Intrinsic::ppc_vsx_stxvw4x_be: 15766 case Intrinsic::ppc_vsx_stxvl: 15767 case Intrinsic::ppc_vsx_stxvll: { 15768 EVT VT; 15769 switch (Intrinsic) { 15770 case Intrinsic::ppc_altivec_stvebx: 15771 VT = MVT::i8; 15772 break; 15773 case Intrinsic::ppc_altivec_stvehx: 15774 VT = MVT::i16; 15775 break; 15776 case Intrinsic::ppc_altivec_stvewx: 15777 VT = MVT::i32; 15778 break; 15779 case Intrinsic::ppc_vsx_stxvd2x: 15780 case Intrinsic::ppc_vsx_stxvd2x_be: 15781 VT = MVT::v2f64; 15782 break; 15783 default: 15784 VT = MVT::v4i32; 15785 break; 15786 } 15787 15788 Info.opc = ISD::INTRINSIC_VOID; 15789 Info.memVT = VT; 15790 Info.ptrVal = I.getArgOperand(1); 15791 Info.offset = -VT.getStoreSize()+1; 15792 Info.size = 2*VT.getStoreSize()-1; 15793 Info.align = Align(1); 15794 Info.flags = MachineMemOperand::MOStore; 15795 return true; 15796 } 15797 default: 15798 break; 15799 } 15800 15801 return false; 15802 } 15803 15804 /// It returns EVT::Other if the type should be determined using generic 15805 /// target-independent logic. 15806 EVT PPCTargetLowering::getOptimalMemOpType( 15807 const MemOp &Op, const AttributeList &FuncAttributes) const { 15808 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15809 // We should use Altivec/VSX loads and stores when available. For unaligned 15810 // addresses, unaligned VSX loads are only fast starting with the P8. 15811 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15812 (Op.isAligned(Align(16)) || 15813 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15814 return MVT::v4i32; 15815 } 15816 15817 if (Subtarget.isPPC64()) { 15818 return MVT::i64; 15819 } 15820 15821 return MVT::i32; 15822 } 15823 15824 /// Returns true if it is beneficial to convert a load of a constant 15825 /// to just the constant itself. 15826 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15827 Type *Ty) const { 15828 assert(Ty->isIntegerTy()); 15829 15830 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15831 return !(BitSize == 0 || BitSize > 64); 15832 } 15833 15834 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15835 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15836 return false; 15837 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15838 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15839 return NumBits1 == 64 && NumBits2 == 32; 15840 } 15841 15842 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15843 if (!VT1.isInteger() || !VT2.isInteger()) 15844 return false; 15845 unsigned NumBits1 = VT1.getSizeInBits(); 15846 unsigned NumBits2 = VT2.getSizeInBits(); 15847 return NumBits1 == 64 && NumBits2 == 32; 15848 } 15849 15850 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15851 // Generally speaking, zexts are not free, but they are free when they can be 15852 // folded with other operations. 15853 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15854 EVT MemVT = LD->getMemoryVT(); 15855 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15856 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15857 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15858 LD->getExtensionType() == ISD::ZEXTLOAD)) 15859 return true; 15860 } 15861 15862 // FIXME: Add other cases... 15863 // - 32-bit shifts with a zext to i64 15864 // - zext after ctlz, bswap, etc. 15865 // - zext after and by a constant mask 15866 15867 return TargetLowering::isZExtFree(Val, VT2); 15868 } 15869 15870 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15871 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15872 "invalid fpext types"); 15873 // Extending to float128 is not free. 15874 if (DestVT == MVT::f128) 15875 return false; 15876 return true; 15877 } 15878 15879 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15880 return isInt<16>(Imm) || isUInt<16>(Imm); 15881 } 15882 15883 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15884 return isInt<16>(Imm) || isUInt<16>(Imm); 15885 } 15886 15887 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 15888 MachineMemOperand::Flags, 15889 bool *Fast) const { 15890 if (DisablePPCUnaligned) 15891 return false; 15892 15893 // PowerPC supports unaligned memory access for simple non-vector types. 15894 // Although accessing unaligned addresses is not as efficient as accessing 15895 // aligned addresses, it is generally more efficient than manual expansion, 15896 // and generally only traps for software emulation when crossing page 15897 // boundaries. 15898 15899 if (!VT.isSimple()) 15900 return false; 15901 15902 if (VT.isFloatingPoint() && !VT.isVector() && 15903 !Subtarget.allowsUnalignedFPAccess()) 15904 return false; 15905 15906 if (VT.getSimpleVT().isVector()) { 15907 if (Subtarget.hasVSX()) { 15908 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15909 VT != MVT::v4f32 && VT != MVT::v4i32) 15910 return false; 15911 } else { 15912 return false; 15913 } 15914 } 15915 15916 if (VT == MVT::ppcf128) 15917 return false; 15918 15919 if (Fast) 15920 *Fast = true; 15921 15922 return true; 15923 } 15924 15925 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 15926 SDValue C) const { 15927 // Check integral scalar types. 15928 if (!VT.isScalarInteger()) 15929 return false; 15930 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 15931 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 15932 return false; 15933 // This transformation will generate >= 2 operations. But the following 15934 // cases will generate <= 2 instructions during ISEL. So exclude them. 15935 // 1. If the constant multiplier fits 16 bits, it can be handled by one 15936 // HW instruction, ie. MULLI 15937 // 2. If the multiplier after shifted fits 16 bits, an extra shift 15938 // instruction is needed than case 1, ie. MULLI and RLDICR 15939 int64_t Imm = ConstNode->getSExtValue(); 15940 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 15941 Imm >>= Shift; 15942 if (isInt<16>(Imm)) 15943 return false; 15944 uint64_t UImm = static_cast<uint64_t>(Imm); 15945 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 15946 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 15947 return true; 15948 } 15949 return false; 15950 } 15951 15952 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15953 EVT VT) const { 15954 return isFMAFasterThanFMulAndFAdd( 15955 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15956 } 15957 15958 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15959 Type *Ty) const { 15960 switch (Ty->getScalarType()->getTypeID()) { 15961 case Type::FloatTyID: 15962 case Type::DoubleTyID: 15963 return true; 15964 case Type::FP128TyID: 15965 return Subtarget.hasP9Vector(); 15966 default: 15967 return false; 15968 } 15969 } 15970 15971 // FIXME: add more patterns which are not profitable to hoist. 15972 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15973 if (!I->hasOneUse()) 15974 return true; 15975 15976 Instruction *User = I->user_back(); 15977 assert(User && "A single use instruction with no uses."); 15978 15979 switch (I->getOpcode()) { 15980 case Instruction::FMul: { 15981 // Don't break FMA, PowerPC prefers FMA. 15982 if (User->getOpcode() != Instruction::FSub && 15983 User->getOpcode() != Instruction::FAdd) 15984 return true; 15985 15986 const TargetOptions &Options = getTargetMachine().Options; 15987 const Function *F = I->getFunction(); 15988 const DataLayout &DL = F->getParent()->getDataLayout(); 15989 Type *Ty = User->getOperand(0)->getType(); 15990 15991 return !( 15992 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15993 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15994 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15995 } 15996 case Instruction::Load: { 15997 // Don't break "store (load float*)" pattern, this pattern will be combined 15998 // to "store (load int32)" in later InstCombine pass. See function 15999 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16000 // cycles than loading a 32 bit integer. 16001 LoadInst *LI = cast<LoadInst>(I); 16002 // For the loads that combineLoadToOperationType does nothing, like 16003 // ordered load, it should be profitable to hoist them. 16004 // For swifterror load, it can only be used for pointer to pointer type, so 16005 // later type check should get rid of this case. 16006 if (!LI->isUnordered()) 16007 return true; 16008 16009 if (User->getOpcode() != Instruction::Store) 16010 return true; 16011 16012 if (I->getType()->getTypeID() != Type::FloatTyID) 16013 return true; 16014 16015 return false; 16016 } 16017 default: 16018 return true; 16019 } 16020 return true; 16021 } 16022 16023 const MCPhysReg * 16024 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16025 // LR is a callee-save register, but we must treat it as clobbered by any call 16026 // site. Hence we include LR in the scratch registers, which are in turn added 16027 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16028 // to CTR, which is used by any indirect call. 16029 static const MCPhysReg ScratchRegs[] = { 16030 PPC::X12, PPC::LR8, PPC::CTR8, 0 16031 }; 16032 16033 return ScratchRegs; 16034 } 16035 16036 Register PPCTargetLowering::getExceptionPointerRegister( 16037 const Constant *PersonalityFn) const { 16038 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16039 } 16040 16041 Register PPCTargetLowering::getExceptionSelectorRegister( 16042 const Constant *PersonalityFn) const { 16043 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16044 } 16045 16046 bool 16047 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16048 EVT VT , unsigned DefinedValues) const { 16049 if (VT == MVT::v2i64) 16050 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16051 16052 if (Subtarget.hasVSX()) 16053 return true; 16054 16055 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16056 } 16057 16058 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16059 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16060 return TargetLowering::getSchedulingPreference(N); 16061 16062 return Sched::ILP; 16063 } 16064 16065 // Create a fast isel object. 16066 FastISel * 16067 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16068 const TargetLibraryInfo *LibInfo) const { 16069 return PPC::createFastISel(FuncInfo, LibInfo); 16070 } 16071 16072 // 'Inverted' means the FMA opcode after negating one multiplicand. 16073 // For example, (fma -a b c) = (fnmsub a b c) 16074 static unsigned invertFMAOpcode(unsigned Opc) { 16075 switch (Opc) { 16076 default: 16077 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16078 case ISD::FMA: 16079 return PPCISD::FNMSUB; 16080 case PPCISD::FNMSUB: 16081 return ISD::FMA; 16082 } 16083 } 16084 16085 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16086 bool LegalOps, bool OptForSize, 16087 NegatibleCost &Cost, 16088 unsigned Depth) const { 16089 if (Depth > SelectionDAG::MaxRecursionDepth) 16090 return SDValue(); 16091 16092 unsigned Opc = Op.getOpcode(); 16093 EVT VT = Op.getValueType(); 16094 SDNodeFlags Flags = Op.getNode()->getFlags(); 16095 16096 switch (Opc) { 16097 case PPCISD::FNMSUB: 16098 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16099 break; 16100 16101 const TargetOptions &Options = getTargetMachine().Options; 16102 SDValue N0 = Op.getOperand(0); 16103 SDValue N1 = Op.getOperand(1); 16104 SDValue N2 = Op.getOperand(2); 16105 SDLoc Loc(Op); 16106 16107 NegatibleCost N2Cost = NegatibleCost::Expensive; 16108 SDValue NegN2 = 16109 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16110 16111 if (!NegN2) 16112 return SDValue(); 16113 16114 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16115 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16116 // These transformations may change sign of zeroes. For example, 16117 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16118 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16119 // Try and choose the cheaper one to negate. 16120 NegatibleCost N0Cost = NegatibleCost::Expensive; 16121 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16122 N0Cost, Depth + 1); 16123 16124 NegatibleCost N1Cost = NegatibleCost::Expensive; 16125 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16126 N1Cost, Depth + 1); 16127 16128 if (NegN0 && N0Cost <= N1Cost) { 16129 Cost = std::min(N0Cost, N2Cost); 16130 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16131 } else if (NegN1) { 16132 Cost = std::min(N1Cost, N2Cost); 16133 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16134 } 16135 } 16136 16137 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16138 if (isOperationLegal(ISD::FMA, VT)) { 16139 Cost = N2Cost; 16140 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16141 } 16142 16143 break; 16144 } 16145 16146 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16147 Cost, Depth); 16148 } 16149 16150 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16151 bool PPCTargetLowering::useLoadStackGuardNode() const { 16152 if (!Subtarget.isTargetLinux()) 16153 return TargetLowering::useLoadStackGuardNode(); 16154 return true; 16155 } 16156 16157 // Override to disable global variable loading on Linux. 16158 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16159 if (!Subtarget.isTargetLinux()) 16160 return TargetLowering::insertSSPDeclarations(M); 16161 } 16162 16163 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16164 bool ForCodeSize) const { 16165 if (!VT.isSimple() || !Subtarget.hasVSX()) 16166 return false; 16167 16168 switch(VT.getSimpleVT().SimpleTy) { 16169 default: 16170 // For FP types that are currently not supported by PPC backend, return 16171 // false. Examples: f16, f80. 16172 return false; 16173 case MVT::f32: 16174 case MVT::f64: 16175 if (Subtarget.hasPrefixInstrs()) { 16176 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16177 return true; 16178 } 16179 LLVM_FALLTHROUGH; 16180 case MVT::ppcf128: 16181 return Imm.isPosZero(); 16182 } 16183 } 16184 16185 // For vector shift operation op, fold 16186 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16187 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16188 SelectionDAG &DAG) { 16189 SDValue N0 = N->getOperand(0); 16190 SDValue N1 = N->getOperand(1); 16191 EVT VT = N0.getValueType(); 16192 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16193 unsigned Opcode = N->getOpcode(); 16194 unsigned TargetOpcode; 16195 16196 switch (Opcode) { 16197 default: 16198 llvm_unreachable("Unexpected shift operation"); 16199 case ISD::SHL: 16200 TargetOpcode = PPCISD::SHL; 16201 break; 16202 case ISD::SRL: 16203 TargetOpcode = PPCISD::SRL; 16204 break; 16205 case ISD::SRA: 16206 TargetOpcode = PPCISD::SRA; 16207 break; 16208 } 16209 16210 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16211 N1->getOpcode() == ISD::AND) 16212 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16213 if (Mask->getZExtValue() == OpSizeInBits - 1) 16214 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16215 16216 return SDValue(); 16217 } 16218 16219 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16220 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16221 return Value; 16222 16223 SDValue N0 = N->getOperand(0); 16224 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16225 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16226 N0.getOpcode() != ISD::SIGN_EXTEND || 16227 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16228 N->getValueType(0) != MVT::i64) 16229 return SDValue(); 16230 16231 // We can't save an operation here if the value is already extended, and 16232 // the existing shift is easier to combine. 16233 SDValue ExtsSrc = N0.getOperand(0); 16234 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16235 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16236 return SDValue(); 16237 16238 SDLoc DL(N0); 16239 SDValue ShiftBy = SDValue(CN1, 0); 16240 // We want the shift amount to be i32 on the extswli, but the shift could 16241 // have an i64. 16242 if (ShiftBy.getValueType() == MVT::i64) 16243 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16244 16245 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16246 ShiftBy); 16247 } 16248 16249 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16250 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16251 return Value; 16252 16253 return SDValue(); 16254 } 16255 16256 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16257 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16258 return Value; 16259 16260 return SDValue(); 16261 } 16262 16263 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16264 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16265 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16266 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16267 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16268 const PPCSubtarget &Subtarget) { 16269 if (!Subtarget.isPPC64()) 16270 return SDValue(); 16271 16272 SDValue LHS = N->getOperand(0); 16273 SDValue RHS = N->getOperand(1); 16274 16275 auto isZextOfCompareWithConstant = [](SDValue Op) { 16276 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16277 Op.getValueType() != MVT::i64) 16278 return false; 16279 16280 SDValue Cmp = Op.getOperand(0); 16281 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16282 Cmp.getOperand(0).getValueType() != MVT::i64) 16283 return false; 16284 16285 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16286 int64_t NegConstant = 0 - Constant->getSExtValue(); 16287 // Due to the limitations of the addi instruction, 16288 // -C is required to be [-32768, 32767]. 16289 return isInt<16>(NegConstant); 16290 } 16291 16292 return false; 16293 }; 16294 16295 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16296 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16297 16298 // If there is a pattern, canonicalize a zext operand to the RHS. 16299 if (LHSHasPattern && !RHSHasPattern) 16300 std::swap(LHS, RHS); 16301 else if (!LHSHasPattern && !RHSHasPattern) 16302 return SDValue(); 16303 16304 SDLoc DL(N); 16305 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16306 SDValue Cmp = RHS.getOperand(0); 16307 SDValue Z = Cmp.getOperand(0); 16308 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16309 16310 assert(Constant && "Constant Should not be a null pointer."); 16311 int64_t NegConstant = 0 - Constant->getSExtValue(); 16312 16313 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16314 default: break; 16315 case ISD::SETNE: { 16316 // when C == 0 16317 // --> addze X, (addic Z, -1).carry 16318 // / 16319 // add X, (zext(setne Z, C))-- 16320 // \ when -32768 <= -C <= 32767 && C != 0 16321 // --> addze X, (addic (addi Z, -C), -1).carry 16322 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16323 DAG.getConstant(NegConstant, DL, MVT::i64)); 16324 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16325 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16326 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16327 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16328 SDValue(Addc.getNode(), 1)); 16329 } 16330 case ISD::SETEQ: { 16331 // when C == 0 16332 // --> addze X, (subfic Z, 0).carry 16333 // / 16334 // add X, (zext(sete Z, C))-- 16335 // \ when -32768 <= -C <= 32767 && C != 0 16336 // --> addze X, (subfic (addi Z, -C), 0).carry 16337 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16338 DAG.getConstant(NegConstant, DL, MVT::i64)); 16339 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16340 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16341 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16342 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16343 SDValue(Subc.getNode(), 1)); 16344 } 16345 } 16346 16347 return SDValue(); 16348 } 16349 16350 // Transform 16351 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16352 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16353 // In this case both C1 and C2 must be known constants. 16354 // C1+C2 must fit into a 34 bit signed integer. 16355 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16356 const PPCSubtarget &Subtarget) { 16357 if (!Subtarget.isUsingPCRelativeCalls()) 16358 return SDValue(); 16359 16360 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16361 // If we find that node try to cast the Global Address and the Constant. 16362 SDValue LHS = N->getOperand(0); 16363 SDValue RHS = N->getOperand(1); 16364 16365 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16366 std::swap(LHS, RHS); 16367 16368 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16369 return SDValue(); 16370 16371 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16372 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16373 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16374 16375 // Check that both casts succeeded. 16376 if (!GSDN || !ConstNode) 16377 return SDValue(); 16378 16379 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16380 SDLoc DL(GSDN); 16381 16382 // The signed int offset needs to fit in 34 bits. 16383 if (!isInt<34>(NewOffset)) 16384 return SDValue(); 16385 16386 // The new global address is a copy of the old global address except 16387 // that it has the updated Offset. 16388 SDValue GA = 16389 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16390 NewOffset, GSDN->getTargetFlags()); 16391 SDValue MatPCRel = 16392 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16393 return MatPCRel; 16394 } 16395 16396 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16397 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16398 return Value; 16399 16400 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16401 return Value; 16402 16403 return SDValue(); 16404 } 16405 16406 // Detect TRUNCATE operations on bitcasts of float128 values. 16407 // What we are looking for here is the situtation where we extract a subset 16408 // of bits from a 128 bit float. 16409 // This can be of two forms: 16410 // 1) BITCAST of f128 feeding TRUNCATE 16411 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16412 // The reason this is required is because we do not have a legal i128 type 16413 // and so we want to prevent having to store the f128 and then reload part 16414 // of it. 16415 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16416 DAGCombinerInfo &DCI) const { 16417 // If we are using CRBits then try that first. 16418 if (Subtarget.useCRBits()) { 16419 // Check if CRBits did anything and return that if it did. 16420 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16421 return CRTruncValue; 16422 } 16423 16424 SDLoc dl(N); 16425 SDValue Op0 = N->getOperand(0); 16426 16427 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16428 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16429 EVT VT = N->getValueType(0); 16430 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16431 return SDValue(); 16432 SDValue Sub = Op0.getOperand(0); 16433 if (Sub.getOpcode() == ISD::SUB) { 16434 SDValue SubOp0 = Sub.getOperand(0); 16435 SDValue SubOp1 = Sub.getOperand(1); 16436 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16437 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16438 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16439 SubOp1.getOperand(0), 16440 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16441 } 16442 } 16443 } 16444 16445 // Looking for a truncate of i128 to i64. 16446 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16447 return SDValue(); 16448 16449 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16450 16451 // SRL feeding TRUNCATE. 16452 if (Op0.getOpcode() == ISD::SRL) { 16453 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16454 // The right shift has to be by 64 bits. 16455 if (!ConstNode || ConstNode->getZExtValue() != 64) 16456 return SDValue(); 16457 16458 // Switch the element number to extract. 16459 EltToExtract = EltToExtract ? 0 : 1; 16460 // Update Op0 past the SRL. 16461 Op0 = Op0.getOperand(0); 16462 } 16463 16464 // BITCAST feeding a TRUNCATE possibly via SRL. 16465 if (Op0.getOpcode() == ISD::BITCAST && 16466 Op0.getValueType() == MVT::i128 && 16467 Op0.getOperand(0).getValueType() == MVT::f128) { 16468 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16469 return DCI.DAG.getNode( 16470 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16471 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16472 } 16473 return SDValue(); 16474 } 16475 16476 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16477 SelectionDAG &DAG = DCI.DAG; 16478 16479 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16480 if (!ConstOpOrElement) 16481 return SDValue(); 16482 16483 // An imul is usually smaller than the alternative sequence for legal type. 16484 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16485 isOperationLegal(ISD::MUL, N->getValueType(0))) 16486 return SDValue(); 16487 16488 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16489 switch (this->Subtarget.getCPUDirective()) { 16490 default: 16491 // TODO: enhance the condition for subtarget before pwr8 16492 return false; 16493 case PPC::DIR_PWR8: 16494 // type mul add shl 16495 // scalar 4 1 1 16496 // vector 7 2 2 16497 return true; 16498 case PPC::DIR_PWR9: 16499 case PPC::DIR_PWR10: 16500 case PPC::DIR_PWR_FUTURE: 16501 // type mul add shl 16502 // scalar 5 2 2 16503 // vector 7 2 2 16504 16505 // The cycle RATIO of related operations are showed as a table above. 16506 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16507 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16508 // are 4, it is always profitable; but for 3 instrs patterns 16509 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16510 // So we should only do it for vector type. 16511 return IsAddOne && IsNeg ? VT.isVector() : true; 16512 } 16513 }; 16514 16515 EVT VT = N->getValueType(0); 16516 SDLoc DL(N); 16517 16518 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16519 bool IsNeg = MulAmt.isNegative(); 16520 APInt MulAmtAbs = MulAmt.abs(); 16521 16522 if ((MulAmtAbs - 1).isPowerOf2()) { 16523 // (mul x, 2^N + 1) => (add (shl x, N), x) 16524 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16525 16526 if (!IsProfitable(IsNeg, true, VT)) 16527 return SDValue(); 16528 16529 SDValue Op0 = N->getOperand(0); 16530 SDValue Op1 = 16531 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16532 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16533 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16534 16535 if (!IsNeg) 16536 return Res; 16537 16538 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16539 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16540 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16541 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16542 16543 if (!IsProfitable(IsNeg, false, VT)) 16544 return SDValue(); 16545 16546 SDValue Op0 = N->getOperand(0); 16547 SDValue Op1 = 16548 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16549 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16550 16551 if (!IsNeg) 16552 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16553 else 16554 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16555 16556 } else { 16557 return SDValue(); 16558 } 16559 } 16560 16561 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16562 // in combiner since we need to check SD flags and other subtarget features. 16563 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16564 DAGCombinerInfo &DCI) const { 16565 SDValue N0 = N->getOperand(0); 16566 SDValue N1 = N->getOperand(1); 16567 SDValue N2 = N->getOperand(2); 16568 SDNodeFlags Flags = N->getFlags(); 16569 EVT VT = N->getValueType(0); 16570 SelectionDAG &DAG = DCI.DAG; 16571 const TargetOptions &Options = getTargetMachine().Options; 16572 unsigned Opc = N->getOpcode(); 16573 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16574 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16575 SDLoc Loc(N); 16576 16577 if (!isOperationLegal(ISD::FMA, VT)) 16578 return SDValue(); 16579 16580 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16581 // since (fnmsub a b c)=-0 while c-ab=+0. 16582 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16583 return SDValue(); 16584 16585 // (fma (fneg a) b c) => (fnmsub a b c) 16586 // (fnmsub (fneg a) b c) => (fma a b c) 16587 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16588 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16589 16590 // (fma a (fneg b) c) => (fnmsub a b c) 16591 // (fnmsub a (fneg b) c) => (fma a b c) 16592 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16593 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16594 16595 return SDValue(); 16596 } 16597 16598 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16599 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16600 if (!Subtarget.is64BitELFABI()) 16601 return false; 16602 16603 // If not a tail call then no need to proceed. 16604 if (!CI->isTailCall()) 16605 return false; 16606 16607 // If sibling calls have been disabled and tail-calls aren't guaranteed 16608 // there is no reason to duplicate. 16609 auto &TM = getTargetMachine(); 16610 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16611 return false; 16612 16613 // Can't tail call a function called indirectly, or if it has variadic args. 16614 const Function *Callee = CI->getCalledFunction(); 16615 if (!Callee || Callee->isVarArg()) 16616 return false; 16617 16618 // Make sure the callee and caller calling conventions are eligible for tco. 16619 const Function *Caller = CI->getParent()->getParent(); 16620 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16621 CI->getCallingConv())) 16622 return false; 16623 16624 // If the function is local then we have a good chance at tail-calling it 16625 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16626 } 16627 16628 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16629 if (!Subtarget.hasVSX()) 16630 return false; 16631 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16632 return true; 16633 return VT == MVT::f32 || VT == MVT::f64 || 16634 VT == MVT::v4f32 || VT == MVT::v2f64; 16635 } 16636 16637 bool PPCTargetLowering:: 16638 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16639 const Value *Mask = AndI.getOperand(1); 16640 // If the mask is suitable for andi. or andis. we should sink the and. 16641 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16642 // Can't handle constants wider than 64-bits. 16643 if (CI->getBitWidth() > 64) 16644 return false; 16645 int64_t ConstVal = CI->getZExtValue(); 16646 return isUInt<16>(ConstVal) || 16647 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16648 } 16649 16650 // For non-constant masks, we can always use the record-form and. 16651 return true; 16652 } 16653 16654 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16655 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16656 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16657 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16658 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16659 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16660 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16661 assert(Subtarget.hasP9Altivec() && 16662 "Only combine this when P9 altivec supported!"); 16663 EVT VT = N->getValueType(0); 16664 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16665 return SDValue(); 16666 16667 SelectionDAG &DAG = DCI.DAG; 16668 SDLoc dl(N); 16669 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16670 // Even for signed integers, if it's known to be positive (as signed 16671 // integer) due to zero-extended inputs. 16672 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16673 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16674 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16675 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16676 (SubOpcd1 == ISD::ZERO_EXTEND || 16677 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16678 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16679 N->getOperand(0)->getOperand(0), 16680 N->getOperand(0)->getOperand(1), 16681 DAG.getTargetConstant(0, dl, MVT::i32)); 16682 } 16683 16684 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16685 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16686 N->getOperand(0).hasOneUse()) { 16687 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16688 N->getOperand(0)->getOperand(0), 16689 N->getOperand(0)->getOperand(1), 16690 DAG.getTargetConstant(1, dl, MVT::i32)); 16691 } 16692 } 16693 16694 return SDValue(); 16695 } 16696 16697 // For type v4i32/v8ii16/v16i8, transform 16698 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16699 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16700 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16701 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16702 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16703 DAGCombinerInfo &DCI) const { 16704 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16705 assert(Subtarget.hasP9Altivec() && 16706 "Only combine this when P9 altivec supported!"); 16707 16708 SelectionDAG &DAG = DCI.DAG; 16709 SDLoc dl(N); 16710 SDValue Cond = N->getOperand(0); 16711 SDValue TrueOpnd = N->getOperand(1); 16712 SDValue FalseOpnd = N->getOperand(2); 16713 EVT VT = N->getOperand(1).getValueType(); 16714 16715 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16716 FalseOpnd.getOpcode() != ISD::SUB) 16717 return SDValue(); 16718 16719 // ABSD only available for type v4i32/v8i16/v16i8 16720 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16721 return SDValue(); 16722 16723 // At least to save one more dependent computation 16724 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16725 return SDValue(); 16726 16727 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16728 16729 // Can only handle unsigned comparison here 16730 switch (CC) { 16731 default: 16732 return SDValue(); 16733 case ISD::SETUGT: 16734 case ISD::SETUGE: 16735 break; 16736 case ISD::SETULT: 16737 case ISD::SETULE: 16738 std::swap(TrueOpnd, FalseOpnd); 16739 break; 16740 } 16741 16742 SDValue CmpOpnd1 = Cond.getOperand(0); 16743 SDValue CmpOpnd2 = Cond.getOperand(1); 16744 16745 // SETCC CmpOpnd1 CmpOpnd2 cond 16746 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16747 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16748 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16749 TrueOpnd.getOperand(1) == CmpOpnd2 && 16750 FalseOpnd.getOperand(0) == CmpOpnd2 && 16751 FalseOpnd.getOperand(1) == CmpOpnd1) { 16752 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16753 CmpOpnd1, CmpOpnd2, 16754 DAG.getTargetConstant(0, dl, MVT::i32)); 16755 } 16756 16757 return SDValue(); 16758 } 16759