1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 // TODO - Remove this option if soft fp128 has been fully supported . 125 static cl::opt<bool> 126 EnableSoftFP128("enable-soft-fp128", 127 cl::desc("temp option to enable soft fp128"), cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 // EFPU2 APU only supports f32 155 if (!Subtarget.hasEFPU2()) 156 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 157 } else { 158 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 159 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 160 } 161 } 162 163 // Match BITREVERSE to customized fast code sequence in the td file. 164 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 165 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 166 167 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 168 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 169 170 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 171 for (MVT VT : MVT::integer_valuetypes()) { 172 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 173 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 174 } 175 176 if (Subtarget.isISA3_0()) { 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 179 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 180 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 181 } else { 182 // No extending loads from f16 or HW conversions back and forth. 183 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 184 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 185 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 187 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 188 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 189 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 190 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 191 } 192 193 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 194 195 // PowerPC has pre-inc load and store's. 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 199 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 200 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 205 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 206 if (!Subtarget.hasSPE()) { 207 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 209 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 210 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 211 } 212 213 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 214 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 215 for (MVT VT : ScalarIntVTs) { 216 setOperationAction(ISD::ADDC, VT, Legal); 217 setOperationAction(ISD::ADDE, VT, Legal); 218 setOperationAction(ISD::SUBC, VT, Legal); 219 setOperationAction(ISD::SUBE, VT, Legal); 220 } 221 222 if (Subtarget.useCRBits()) { 223 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 224 225 if (isPPC64 || Subtarget.hasFPCVT()) { 226 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 227 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 228 isPPC64 ? MVT::i64 : MVT::i32); 229 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 230 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 231 isPPC64 ? MVT::i64 : MVT::i32); 232 233 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 234 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 235 isPPC64 ? MVT::i64 : MVT::i32); 236 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 240 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 241 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 242 isPPC64 ? MVT::i64 : MVT::i32); 243 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 244 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 247 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 248 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 249 isPPC64 ? MVT::i64 : MVT::i32); 250 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 } else { 254 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 255 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 256 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 257 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 258 } 259 260 // PowerPC does not support direct load/store of condition registers. 261 setOperationAction(ISD::LOAD, MVT::i1, Custom); 262 setOperationAction(ISD::STORE, MVT::i1, Custom); 263 264 // FIXME: Remove this once the ANDI glue bug is fixed: 265 if (ANDIGlueBug) 266 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 267 268 for (MVT VT : MVT::integer_valuetypes()) { 269 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 270 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 271 setTruncStoreAction(VT, MVT::i1, Expand); 272 } 273 274 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 275 } 276 277 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 278 // PPC (the libcall is not available). 279 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 280 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 281 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 282 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 283 284 // We do not currently implement these libm ops for PowerPC. 285 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 286 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 287 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 288 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 289 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 290 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 291 292 // PowerPC has no SREM/UREM instructions unless we are on P9 293 // On P9 we may use a hardware instruction to compute the remainder. 294 // When the result of both the remainder and the division is required it is 295 // more efficient to compute the remainder from the result of the division 296 // rather than use the remainder instruction. The instructions are legalized 297 // directly because the DivRemPairsPass performs the transformation at the IR 298 // level. 299 if (Subtarget.isISA3_0()) { 300 setOperationAction(ISD::SREM, MVT::i32, Legal); 301 setOperationAction(ISD::UREM, MVT::i32, Legal); 302 setOperationAction(ISD::SREM, MVT::i64, Legal); 303 setOperationAction(ISD::UREM, MVT::i64, Legal); 304 } else { 305 setOperationAction(ISD::SREM, MVT::i32, Expand); 306 setOperationAction(ISD::UREM, MVT::i32, Expand); 307 setOperationAction(ISD::SREM, MVT::i64, Expand); 308 setOperationAction(ISD::UREM, MVT::i64, Expand); 309 } 310 311 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 312 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 313 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 314 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 315 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 316 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 317 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 318 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 319 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 320 321 // Handle constrained floating-point operations of scalar. 322 // TODO: Handle SPE specific operation. 323 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 324 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 325 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 327 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 328 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 329 330 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 331 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 332 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 333 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 334 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 335 if (Subtarget.hasVSX()) { 336 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 338 } 339 340 if (Subtarget.hasFSQRT()) { 341 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 343 } 344 345 if (Subtarget.hasFPRND()) { 346 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 347 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 348 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 349 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 350 351 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 352 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 353 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 354 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 355 } 356 357 // We don't support sin/cos/sqrt/fmod/pow 358 setOperationAction(ISD::FSIN , MVT::f64, Expand); 359 setOperationAction(ISD::FCOS , MVT::f64, Expand); 360 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 361 setOperationAction(ISD::FREM , MVT::f64, Expand); 362 setOperationAction(ISD::FPOW , MVT::f64, Expand); 363 setOperationAction(ISD::FSIN , MVT::f32, Expand); 364 setOperationAction(ISD::FCOS , MVT::f32, Expand); 365 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 366 setOperationAction(ISD::FREM , MVT::f32, Expand); 367 setOperationAction(ISD::FPOW , MVT::f32, Expand); 368 if (Subtarget.hasSPE()) { 369 setOperationAction(ISD::FMA , MVT::f64, Expand); 370 setOperationAction(ISD::FMA , MVT::f32, Expand); 371 } else { 372 setOperationAction(ISD::FMA , MVT::f64, Legal); 373 setOperationAction(ISD::FMA , MVT::f32, Legal); 374 } 375 376 if (Subtarget.hasSPE()) 377 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 378 379 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 380 381 // If we're enabling GP optimizations, use hardware square root 382 if (!Subtarget.hasFSQRT() && 383 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 384 Subtarget.hasFRE())) 385 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 386 387 if (!Subtarget.hasFSQRT() && 388 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 389 Subtarget.hasFRES())) 390 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 391 392 if (Subtarget.hasFCPSGN()) { 393 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 394 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 395 } else { 396 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 397 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 398 } 399 400 if (Subtarget.hasFPRND()) { 401 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 402 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 403 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 404 setOperationAction(ISD::FROUND, MVT::f64, Legal); 405 406 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 407 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 408 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 409 setOperationAction(ISD::FROUND, MVT::f32, Legal); 410 } 411 412 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 413 // to speed up scalar BSWAP64. 414 // CTPOP or CTTZ were introduced in P8/P9 respectively 415 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 416 if (Subtarget.hasP9Vector()) 417 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 418 else 419 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 420 if (Subtarget.isISA3_0()) { 421 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 422 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 423 } else { 424 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 425 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 426 } 427 428 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 429 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 430 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 431 } else { 432 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 433 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 434 } 435 436 // PowerPC does not have ROTR 437 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 438 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 439 440 if (!Subtarget.useCRBits()) { 441 // PowerPC does not have Select 442 setOperationAction(ISD::SELECT, MVT::i32, Expand); 443 setOperationAction(ISD::SELECT, MVT::i64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f32, Expand); 445 setOperationAction(ISD::SELECT, MVT::f64, Expand); 446 } 447 448 // PowerPC wants to turn select_cc of FP into fsel when possible. 449 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 450 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 451 452 // PowerPC wants to optimize integer setcc a bit 453 if (!Subtarget.useCRBits()) 454 setOperationAction(ISD::SETCC, MVT::i32, Custom); 455 456 if (Subtarget.hasFPU()) { 457 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 458 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 459 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 460 461 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 462 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 463 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 464 } 465 466 // PowerPC does not have BRCOND which requires SetCC 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 469 470 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 471 472 if (Subtarget.hasSPE()) { 473 // SPE has built-in conversions 474 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 475 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 476 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 477 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 478 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 479 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 480 } else { 481 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 482 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 483 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 484 485 // PowerPC does not have [U|S]INT_TO_FP 486 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 487 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 488 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 489 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 490 } 491 492 if (Subtarget.hasDirectMove() && isPPC64) { 493 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 494 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 495 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 496 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 497 if (TM.Options.UnsafeFPMath) { 498 setOperationAction(ISD::LRINT, MVT::f64, Legal); 499 setOperationAction(ISD::LRINT, MVT::f32, Legal); 500 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 501 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 502 setOperationAction(ISD::LROUND, MVT::f64, Legal); 503 setOperationAction(ISD::LROUND, MVT::f32, Legal); 504 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 505 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 506 } 507 } else { 508 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 509 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 510 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 511 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 512 } 513 514 // We cannot sextinreg(i1). Expand to shifts. 515 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 516 517 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 518 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 519 // support continuation, user-level threading, and etc.. As a result, no 520 // other SjLj exception interfaces are implemented and please don't build 521 // your own exception handling based on them. 522 // LLVM/Clang supports zero-cost DWARF exception handling. 523 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 524 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 525 526 // We want to legalize GlobalAddress and ConstantPool nodes into the 527 // appropriate instructions to materialize the address. 528 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 529 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 530 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 531 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 532 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 533 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 534 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 535 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 536 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 537 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 538 539 // TRAP is legal. 540 setOperationAction(ISD::TRAP, MVT::Other, Legal); 541 542 // TRAMPOLINE is custom lowered. 543 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 544 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 545 546 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 547 setOperationAction(ISD::VASTART , MVT::Other, Custom); 548 549 if (Subtarget.is64BitELFABI()) { 550 // VAARG always uses double-word chunks, so promote anything smaller. 551 setOperationAction(ISD::VAARG, MVT::i1, Promote); 552 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 553 setOperationAction(ISD::VAARG, MVT::i8, Promote); 554 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 555 setOperationAction(ISD::VAARG, MVT::i16, Promote); 556 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 557 setOperationAction(ISD::VAARG, MVT::i32, Promote); 558 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 559 setOperationAction(ISD::VAARG, MVT::Other, Expand); 560 } else if (Subtarget.is32BitELFABI()) { 561 // VAARG is custom lowered with the 32-bit SVR4 ABI. 562 setOperationAction(ISD::VAARG, MVT::Other, Custom); 563 setOperationAction(ISD::VAARG, MVT::i64, Custom); 564 } else 565 setOperationAction(ISD::VAARG, MVT::Other, Expand); 566 567 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 568 if (Subtarget.is32BitELFABI()) 569 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 570 else 571 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 572 573 // Use the default implementation. 574 setOperationAction(ISD::VAEND , MVT::Other, Expand); 575 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 576 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 577 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 578 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 579 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 580 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 581 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 582 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 583 584 // We want to custom lower some of our intrinsics. 585 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 586 587 // To handle counter-based loop conditions. 588 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 589 590 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 591 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 592 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 593 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 594 595 // Comparisons that require checking two conditions. 596 if (Subtarget.hasSPE()) { 597 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 598 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 599 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 600 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 601 } 602 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 603 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 604 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 605 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 606 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 607 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 608 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 609 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 610 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 611 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 612 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 613 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 614 615 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 616 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 617 618 if (Subtarget.has64BitSupport()) { 619 // They also have instructions for converting between i64 and fp. 620 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 621 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 622 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 623 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 624 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 625 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 626 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 627 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 628 // This is just the low 32 bits of a (signed) fp->i64 conversion. 629 // We cannot do this with Promote because i64 is not a legal type. 630 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 631 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 632 633 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 634 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 635 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 636 } 637 } else { 638 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 639 if (Subtarget.hasSPE()) { 640 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 641 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 642 } else { 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 644 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 645 } 646 } 647 648 // With the instructions enabled under FPCVT, we can do everything. 649 if (Subtarget.hasFPCVT()) { 650 if (Subtarget.has64BitSupport()) { 651 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 652 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 653 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 654 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 655 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 656 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 657 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 658 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 659 } 660 661 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 662 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 663 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 664 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 665 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 666 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 667 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 668 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 669 } 670 671 if (Subtarget.use64BitRegs()) { 672 // 64-bit PowerPC implementations can support i64 types directly 673 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 674 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 675 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 676 // 64-bit PowerPC wants to expand i128 shifts itself. 677 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 678 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 679 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 680 } else { 681 // 32-bit PowerPC wants to expand i64 shifts itself. 682 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 683 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 684 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 685 } 686 687 // PowerPC has better expansions for funnel shifts than the generic 688 // TargetLowering::expandFunnelShift. 689 if (Subtarget.has64BitSupport()) { 690 setOperationAction(ISD::FSHL, MVT::i64, Custom); 691 setOperationAction(ISD::FSHR, MVT::i64, Custom); 692 } 693 setOperationAction(ISD::FSHL, MVT::i32, Custom); 694 setOperationAction(ISD::FSHR, MVT::i32, Custom); 695 696 if (Subtarget.hasVSX()) { 697 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 698 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 699 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 700 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 701 } 702 703 if (Subtarget.hasAltivec()) { 704 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 705 setOperationAction(ISD::SADDSAT, VT, Legal); 706 setOperationAction(ISD::SSUBSAT, VT, Legal); 707 setOperationAction(ISD::UADDSAT, VT, Legal); 708 setOperationAction(ISD::USUBSAT, VT, Legal); 709 } 710 // First set operation action for all vector types to expand. Then we 711 // will selectively turn on ones that can be effectively codegen'd. 712 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 713 // add/sub are legal for all supported vector VT's. 714 setOperationAction(ISD::ADD, VT, Legal); 715 setOperationAction(ISD::SUB, VT, Legal); 716 717 // For v2i64, these are only valid with P8Vector. This is corrected after 718 // the loop. 719 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 720 setOperationAction(ISD::SMAX, VT, Legal); 721 setOperationAction(ISD::SMIN, VT, Legal); 722 setOperationAction(ISD::UMAX, VT, Legal); 723 setOperationAction(ISD::UMIN, VT, Legal); 724 } 725 else { 726 setOperationAction(ISD::SMAX, VT, Expand); 727 setOperationAction(ISD::SMIN, VT, Expand); 728 setOperationAction(ISD::UMAX, VT, Expand); 729 setOperationAction(ISD::UMIN, VT, Expand); 730 } 731 732 if (Subtarget.hasVSX()) { 733 setOperationAction(ISD::FMAXNUM, VT, Legal); 734 setOperationAction(ISD::FMINNUM, VT, Legal); 735 } 736 737 // Vector instructions introduced in P8 738 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 739 setOperationAction(ISD::CTPOP, VT, Legal); 740 setOperationAction(ISD::CTLZ, VT, Legal); 741 } 742 else { 743 setOperationAction(ISD::CTPOP, VT, Expand); 744 setOperationAction(ISD::CTLZ, VT, Expand); 745 } 746 747 // Vector instructions introduced in P9 748 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 749 setOperationAction(ISD::CTTZ, VT, Legal); 750 else 751 setOperationAction(ISD::CTTZ, VT, Expand); 752 753 // We promote all shuffles to v16i8. 754 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 755 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 756 757 // We promote all non-typed operations to v4i32. 758 setOperationAction(ISD::AND , VT, Promote); 759 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 760 setOperationAction(ISD::OR , VT, Promote); 761 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 762 setOperationAction(ISD::XOR , VT, Promote); 763 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 764 setOperationAction(ISD::LOAD , VT, Promote); 765 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 766 setOperationAction(ISD::SELECT, VT, Promote); 767 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 768 setOperationAction(ISD::VSELECT, VT, Legal); 769 setOperationAction(ISD::SELECT_CC, VT, Promote); 770 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 771 setOperationAction(ISD::STORE, VT, Promote); 772 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 773 774 // No other operations are legal. 775 setOperationAction(ISD::MUL , VT, Expand); 776 setOperationAction(ISD::SDIV, VT, Expand); 777 setOperationAction(ISD::SREM, VT, Expand); 778 setOperationAction(ISD::UDIV, VT, Expand); 779 setOperationAction(ISD::UREM, VT, Expand); 780 setOperationAction(ISD::FDIV, VT, Expand); 781 setOperationAction(ISD::FREM, VT, Expand); 782 setOperationAction(ISD::FNEG, VT, Expand); 783 setOperationAction(ISD::FSQRT, VT, Expand); 784 setOperationAction(ISD::FLOG, VT, Expand); 785 setOperationAction(ISD::FLOG10, VT, Expand); 786 setOperationAction(ISD::FLOG2, VT, Expand); 787 setOperationAction(ISD::FEXP, VT, Expand); 788 setOperationAction(ISD::FEXP2, VT, Expand); 789 setOperationAction(ISD::FSIN, VT, Expand); 790 setOperationAction(ISD::FCOS, VT, Expand); 791 setOperationAction(ISD::FABS, VT, Expand); 792 setOperationAction(ISD::FFLOOR, VT, Expand); 793 setOperationAction(ISD::FCEIL, VT, Expand); 794 setOperationAction(ISD::FTRUNC, VT, Expand); 795 setOperationAction(ISD::FRINT, VT, Expand); 796 setOperationAction(ISD::FNEARBYINT, VT, Expand); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 798 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 799 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 800 setOperationAction(ISD::MULHU, VT, Expand); 801 setOperationAction(ISD::MULHS, VT, Expand); 802 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 803 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 804 setOperationAction(ISD::UDIVREM, VT, Expand); 805 setOperationAction(ISD::SDIVREM, VT, Expand); 806 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 807 setOperationAction(ISD::FPOW, VT, Expand); 808 setOperationAction(ISD::BSWAP, VT, Expand); 809 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 810 setOperationAction(ISD::ROTL, VT, Expand); 811 setOperationAction(ISD::ROTR, VT, Expand); 812 813 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 814 setTruncStoreAction(VT, InnerVT, Expand); 815 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 816 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 817 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 818 } 819 } 820 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 821 if (!Subtarget.hasP8Vector()) { 822 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 823 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 824 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 825 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 826 } 827 828 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 829 // with merges, splats, etc. 830 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 831 832 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 833 // are cheap, so handle them before they get expanded to scalar. 834 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 835 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 836 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 837 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 838 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 839 840 setOperationAction(ISD::AND , MVT::v4i32, Legal); 841 setOperationAction(ISD::OR , MVT::v4i32, Legal); 842 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 843 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 844 setOperationAction(ISD::SELECT, MVT::v4i32, 845 Subtarget.useCRBits() ? Legal : Expand); 846 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 847 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 848 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 849 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 850 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 851 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 852 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 853 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 854 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 855 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 856 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 857 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 858 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 859 860 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 861 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 862 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 863 if (Subtarget.hasAltivec()) 864 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 865 setOperationAction(ISD::ROTL, VT, Legal); 866 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 867 if (Subtarget.hasP8Altivec()) 868 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 869 870 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 871 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 872 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 873 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 874 875 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 876 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 877 878 if (Subtarget.hasVSX()) { 879 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 880 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 881 } 882 883 if (Subtarget.hasP8Altivec()) 884 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 885 else 886 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 887 888 if (Subtarget.isISA3_1()) { 889 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 890 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 891 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 892 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 893 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 894 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 895 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 896 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 897 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 898 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 899 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 900 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 901 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 902 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 903 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 904 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 905 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 906 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 907 } 908 909 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 910 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 911 912 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 913 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 914 915 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 916 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 917 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 918 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 919 920 // Altivec does not contain unordered floating-point compare instructions 921 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 922 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 923 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 924 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 925 926 if (Subtarget.hasVSX()) { 927 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 928 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 929 if (Subtarget.hasP8Vector()) { 930 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 931 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 932 } 933 if (Subtarget.hasDirectMove() && isPPC64) { 934 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 935 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 936 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 937 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 938 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 939 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 940 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 941 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 942 } 943 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 944 945 // The nearbyint variants are not allowed to raise the inexact exception 946 // so we can only code-gen them with unsafe math. 947 if (TM.Options.UnsafeFPMath) { 948 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 949 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 950 } 951 952 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 953 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 954 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 955 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 956 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 957 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 958 setOperationAction(ISD::FROUND, MVT::f64, Legal); 959 setOperationAction(ISD::FRINT, MVT::f64, Legal); 960 961 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 962 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 963 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 964 setOperationAction(ISD::FROUND, MVT::f32, Legal); 965 setOperationAction(ISD::FRINT, MVT::f32, Legal); 966 967 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 968 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 969 970 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 971 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 972 973 // Share the Altivec comparison restrictions. 974 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 975 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 976 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 977 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 978 979 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 980 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 981 982 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 983 984 if (Subtarget.hasP8Vector()) 985 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 986 987 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 988 989 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 990 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 991 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 992 993 if (Subtarget.hasP8Altivec()) { 994 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 995 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 996 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 997 998 // 128 bit shifts can be accomplished via 3 instructions for SHL and 999 // SRL, but not for SRA because of the instructions available: 1000 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1001 // doing 1002 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1003 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1004 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1005 1006 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1007 } 1008 else { 1009 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1010 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1011 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1012 1013 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1014 1015 // VSX v2i64 only supports non-arithmetic operations. 1016 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1017 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1018 } 1019 1020 if (Subtarget.isISA3_1()) 1021 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1022 else 1023 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1024 1025 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1026 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1027 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1028 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1029 1030 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1031 1032 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1033 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1034 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1035 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1036 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1037 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1038 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1039 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1040 1041 // Custom handling for partial vectors of integers converted to 1042 // floating point. We already have optimal handling for v2i32 through 1043 // the DAG combine, so those aren't necessary. 1044 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1045 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1046 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1047 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1048 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1049 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1050 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1051 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1052 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1053 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1054 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1055 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1056 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1057 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1058 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1059 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1060 1061 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1062 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1063 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1064 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1065 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1066 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1067 1068 if (Subtarget.hasDirectMove()) 1069 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1070 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1071 1072 // Handle constrained floating-point operations of vector. 1073 // The predictor is `hasVSX` because altivec instruction has 1074 // no exception but VSX vector instruction has. 1075 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1076 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1077 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1078 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1079 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1080 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1081 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1082 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1083 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1084 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1085 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1086 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1087 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1088 1089 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1090 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1091 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1092 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1093 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1094 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1095 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1096 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1097 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1098 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1099 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1100 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1101 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1102 1103 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1104 } 1105 1106 if (Subtarget.hasP8Altivec()) { 1107 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1108 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1109 } 1110 1111 if (Subtarget.hasP9Vector()) { 1112 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1113 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1114 1115 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1116 // SRL, but not for SRA because of the instructions available: 1117 // VS{RL} and VS{RL}O. 1118 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1119 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1120 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1121 1122 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1123 setOperationAction(ISD::FADD, MVT::f128, Legal); 1124 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1125 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1126 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1127 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1128 // No extending loads to f128 on PPC. 1129 for (MVT FPT : MVT::fp_valuetypes()) 1130 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1131 setOperationAction(ISD::FMA, MVT::f128, Legal); 1132 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1133 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1134 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1135 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1136 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1137 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1138 1139 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1140 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1141 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1142 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1143 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1144 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1145 1146 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1147 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1148 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1149 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1150 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1151 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1152 // No implementation for these ops for PowerPC. 1153 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1154 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1155 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1156 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1157 setOperationAction(ISD::FREM, MVT::f128, Expand); 1158 1159 // Handle constrained floating-point operations of fp128 1160 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1161 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1162 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1163 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1164 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1165 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1166 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1167 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1168 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1169 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1170 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1171 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1172 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1173 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1174 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1175 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1176 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1177 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1178 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1179 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1180 } else if (Subtarget.hasAltivec() && EnableSoftFP128) { 1181 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1182 1183 for (MVT FPT : MVT::fp_valuetypes()) 1184 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1185 1186 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1187 setOperationAction(ISD::STORE, MVT::f128, Promote); 1188 1189 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1190 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1191 1192 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1193 // fp_to_uint and int_to_fp. 1194 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1195 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1196 1197 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1198 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1199 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1200 setOperationAction(ISD::FABS, MVT::f128, Expand); 1201 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1202 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1203 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1204 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1205 setOperationAction(ISD::FREM, MVT::f128, Expand); 1206 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1207 setOperationAction(ISD::FMA, MVT::f128, Expand); 1208 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1209 1210 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1211 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1212 1213 // Expand the fp_extend if the target type is fp128. 1214 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1215 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1216 1217 // Expand the fp_round if the source type is fp128. 1218 for (MVT VT : {MVT::f32, MVT::f64}) { 1219 setOperationAction(ISD::FP_ROUND, VT, Custom); 1220 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1221 } 1222 } 1223 1224 if (Subtarget.hasP9Altivec()) { 1225 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1226 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1227 1228 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1229 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1230 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1231 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1232 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1234 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1235 } 1236 1237 if (Subtarget.isISA3_1()) { 1238 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1239 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 1240 } 1241 } 1242 1243 if (Subtarget.pairedVectorMemops()) { 1244 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1245 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1246 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1247 } 1248 if (Subtarget.hasMMA()) { 1249 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1250 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1251 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1252 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1253 } 1254 1255 if (Subtarget.has64BitSupport()) 1256 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1257 1258 if (Subtarget.isISA3_1()) 1259 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1260 1261 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1262 1263 if (!isPPC64) { 1264 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1265 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1266 } 1267 1268 setBooleanContents(ZeroOrOneBooleanContent); 1269 1270 if (Subtarget.hasAltivec()) { 1271 // Altivec instructions set fields to all zeros or all ones. 1272 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1273 } 1274 1275 if (!isPPC64) { 1276 // These libcalls are not available in 32-bit. 1277 setLibcallName(RTLIB::SHL_I128, nullptr); 1278 setLibcallName(RTLIB::SRL_I128, nullptr); 1279 setLibcallName(RTLIB::SRA_I128, nullptr); 1280 } 1281 1282 if (!isPPC64) 1283 setMaxAtomicSizeInBitsSupported(32); 1284 1285 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1286 1287 // We have target-specific dag combine patterns for the following nodes: 1288 setTargetDAGCombine(ISD::ADD); 1289 setTargetDAGCombine(ISD::SHL); 1290 setTargetDAGCombine(ISD::SRA); 1291 setTargetDAGCombine(ISD::SRL); 1292 setTargetDAGCombine(ISD::MUL); 1293 setTargetDAGCombine(ISD::FMA); 1294 setTargetDAGCombine(ISD::SINT_TO_FP); 1295 setTargetDAGCombine(ISD::BUILD_VECTOR); 1296 if (Subtarget.hasFPCVT()) 1297 setTargetDAGCombine(ISD::UINT_TO_FP); 1298 setTargetDAGCombine(ISD::LOAD); 1299 setTargetDAGCombine(ISD::STORE); 1300 setTargetDAGCombine(ISD::BR_CC); 1301 if (Subtarget.useCRBits()) 1302 setTargetDAGCombine(ISD::BRCOND); 1303 setTargetDAGCombine(ISD::BSWAP); 1304 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1305 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1306 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1307 1308 setTargetDAGCombine(ISD::SIGN_EXTEND); 1309 setTargetDAGCombine(ISD::ZERO_EXTEND); 1310 setTargetDAGCombine(ISD::ANY_EXTEND); 1311 1312 setTargetDAGCombine(ISD::TRUNCATE); 1313 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1314 1315 1316 if (Subtarget.useCRBits()) { 1317 setTargetDAGCombine(ISD::TRUNCATE); 1318 setTargetDAGCombine(ISD::SETCC); 1319 setTargetDAGCombine(ISD::SELECT_CC); 1320 } 1321 1322 if (Subtarget.hasP9Altivec()) { 1323 setTargetDAGCombine(ISD::ABS); 1324 setTargetDAGCombine(ISD::VSELECT); 1325 } 1326 1327 setLibcallName(RTLIB::LOG_F128, "logf128"); 1328 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1329 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1330 setLibcallName(RTLIB::EXP_F128, "expf128"); 1331 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1332 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1333 setLibcallName(RTLIB::COS_F128, "cosf128"); 1334 setLibcallName(RTLIB::POW_F128, "powf128"); 1335 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1336 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1337 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1338 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1339 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1340 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1341 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1342 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1343 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1344 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1345 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1346 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1347 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1348 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1349 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1350 1351 // With 32 condition bits, we don't need to sink (and duplicate) compares 1352 // aggressively in CodeGenPrep. 1353 if (Subtarget.useCRBits()) { 1354 setHasMultipleConditionRegisters(); 1355 setJumpIsExpensive(); 1356 } 1357 1358 setMinFunctionAlignment(Align(4)); 1359 1360 switch (Subtarget.getCPUDirective()) { 1361 default: break; 1362 case PPC::DIR_970: 1363 case PPC::DIR_A2: 1364 case PPC::DIR_E500: 1365 case PPC::DIR_E500mc: 1366 case PPC::DIR_E5500: 1367 case PPC::DIR_PWR4: 1368 case PPC::DIR_PWR5: 1369 case PPC::DIR_PWR5X: 1370 case PPC::DIR_PWR6: 1371 case PPC::DIR_PWR6X: 1372 case PPC::DIR_PWR7: 1373 case PPC::DIR_PWR8: 1374 case PPC::DIR_PWR9: 1375 case PPC::DIR_PWR10: 1376 case PPC::DIR_PWR_FUTURE: 1377 setPrefLoopAlignment(Align(16)); 1378 setPrefFunctionAlignment(Align(16)); 1379 break; 1380 } 1381 1382 if (Subtarget.enableMachineScheduler()) 1383 setSchedulingPreference(Sched::Source); 1384 else 1385 setSchedulingPreference(Sched::Hybrid); 1386 1387 computeRegisterProperties(STI.getRegisterInfo()); 1388 1389 // The Freescale cores do better with aggressive inlining of memcpy and 1390 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1391 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1392 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1393 MaxStoresPerMemset = 32; 1394 MaxStoresPerMemsetOptSize = 16; 1395 MaxStoresPerMemcpy = 32; 1396 MaxStoresPerMemcpyOptSize = 8; 1397 MaxStoresPerMemmove = 32; 1398 MaxStoresPerMemmoveOptSize = 8; 1399 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1400 // The A2 also benefits from (very) aggressive inlining of memcpy and 1401 // friends. The overhead of a the function call, even when warm, can be 1402 // over one hundred cycles. 1403 MaxStoresPerMemset = 128; 1404 MaxStoresPerMemcpy = 128; 1405 MaxStoresPerMemmove = 128; 1406 MaxLoadsPerMemcmp = 128; 1407 } else { 1408 MaxLoadsPerMemcmp = 8; 1409 MaxLoadsPerMemcmpOptSize = 4; 1410 } 1411 1412 IsStrictFPEnabled = true; 1413 1414 // Let the subtarget (CPU) decide if a predictable select is more expensive 1415 // than the corresponding branch. This information is used in CGP to decide 1416 // when to convert selects into branches. 1417 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1418 } 1419 1420 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1421 /// the desired ByVal argument alignment. 1422 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1423 if (MaxAlign == MaxMaxAlign) 1424 return; 1425 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1426 if (MaxMaxAlign >= 32 && 1427 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1428 MaxAlign = Align(32); 1429 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1430 MaxAlign < 16) 1431 MaxAlign = Align(16); 1432 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1433 Align EltAlign; 1434 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1435 if (EltAlign > MaxAlign) 1436 MaxAlign = EltAlign; 1437 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1438 for (auto *EltTy : STy->elements()) { 1439 Align EltAlign; 1440 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1441 if (EltAlign > MaxAlign) 1442 MaxAlign = EltAlign; 1443 if (MaxAlign == MaxMaxAlign) 1444 break; 1445 } 1446 } 1447 } 1448 1449 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1450 /// function arguments in the caller parameter area. 1451 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1452 const DataLayout &DL) const { 1453 // 16byte and wider vectors are passed on 16byte boundary. 1454 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1455 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1456 if (Subtarget.hasAltivec()) 1457 getMaxByValAlign(Ty, Alignment, Align(16)); 1458 return Alignment.value(); 1459 } 1460 1461 bool PPCTargetLowering::useSoftFloat() const { 1462 return Subtarget.useSoftFloat(); 1463 } 1464 1465 bool PPCTargetLowering::hasSPE() const { 1466 return Subtarget.hasSPE(); 1467 } 1468 1469 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1470 return VT.isScalarInteger(); 1471 } 1472 1473 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1474 switch ((PPCISD::NodeType)Opcode) { 1475 case PPCISD::FIRST_NUMBER: break; 1476 case PPCISD::FSEL: return "PPCISD::FSEL"; 1477 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1478 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1479 case PPCISD::FCFID: return "PPCISD::FCFID"; 1480 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1481 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1482 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1483 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1484 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1485 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1486 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1487 case PPCISD::FP_TO_UINT_IN_VSR: 1488 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1489 case PPCISD::FP_TO_SINT_IN_VSR: 1490 return "PPCISD::FP_TO_SINT_IN_VSR"; 1491 case PPCISD::FRE: return "PPCISD::FRE"; 1492 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1493 case PPCISD::FTSQRT: 1494 return "PPCISD::FTSQRT"; 1495 case PPCISD::FSQRT: 1496 return "PPCISD::FSQRT"; 1497 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1498 case PPCISD::VPERM: return "PPCISD::VPERM"; 1499 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1500 case PPCISD::XXSPLTI_SP_TO_DP: 1501 return "PPCISD::XXSPLTI_SP_TO_DP"; 1502 case PPCISD::XXSPLTI32DX: 1503 return "PPCISD::XXSPLTI32DX"; 1504 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1505 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1506 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1507 case PPCISD::CMPB: return "PPCISD::CMPB"; 1508 case PPCISD::Hi: return "PPCISD::Hi"; 1509 case PPCISD::Lo: return "PPCISD::Lo"; 1510 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1511 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1512 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1513 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1514 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1515 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1516 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1517 case PPCISD::SRL: return "PPCISD::SRL"; 1518 case PPCISD::SRA: return "PPCISD::SRA"; 1519 case PPCISD::SHL: return "PPCISD::SHL"; 1520 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1521 case PPCISD::CALL: return "PPCISD::CALL"; 1522 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1523 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1524 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1525 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1526 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1527 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1528 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1529 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1530 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1531 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1532 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1533 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1534 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1535 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1536 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1537 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1538 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1539 case PPCISD::ANDI_rec_1_EQ_BIT: 1540 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1541 case PPCISD::ANDI_rec_1_GT_BIT: 1542 return "PPCISD::ANDI_rec_1_GT_BIT"; 1543 case PPCISD::VCMP: return "PPCISD::VCMP"; 1544 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1545 case PPCISD::LBRX: return "PPCISD::LBRX"; 1546 case PPCISD::STBRX: return "PPCISD::STBRX"; 1547 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1548 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1549 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1550 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1551 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1552 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1553 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1554 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1555 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1556 case PPCISD::ST_VSR_SCAL_INT: 1557 return "PPCISD::ST_VSR_SCAL_INT"; 1558 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1559 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1560 case PPCISD::BDZ: return "PPCISD::BDZ"; 1561 case PPCISD::MFFS: return "PPCISD::MFFS"; 1562 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1563 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1564 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1565 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1566 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1567 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1568 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1569 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1570 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1571 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1572 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1573 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1574 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1575 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1576 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1577 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1578 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1579 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1580 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1581 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1582 case PPCISD::PADDI_DTPREL: 1583 return "PPCISD::PADDI_DTPREL"; 1584 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1585 case PPCISD::SC: return "PPCISD::SC"; 1586 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1587 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1588 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1589 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1590 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1591 case PPCISD::VABSD: return "PPCISD::VABSD"; 1592 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1593 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1594 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1595 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1596 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1597 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1598 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1599 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1600 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1601 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1602 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1603 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1604 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1605 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1606 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1607 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1608 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1609 case PPCISD::STRICT_FADDRTZ: 1610 return "PPCISD::STRICT_FADDRTZ"; 1611 case PPCISD::STRICT_FCTIDZ: 1612 return "PPCISD::STRICT_FCTIDZ"; 1613 case PPCISD::STRICT_FCTIWZ: 1614 return "PPCISD::STRICT_FCTIWZ"; 1615 case PPCISD::STRICT_FCTIDUZ: 1616 return "PPCISD::STRICT_FCTIDUZ"; 1617 case PPCISD::STRICT_FCTIWUZ: 1618 return "PPCISD::STRICT_FCTIWUZ"; 1619 case PPCISD::STRICT_FCFID: 1620 return "PPCISD::STRICT_FCFID"; 1621 case PPCISD::STRICT_FCFIDU: 1622 return "PPCISD::STRICT_FCFIDU"; 1623 case PPCISD::STRICT_FCFIDS: 1624 return "PPCISD::STRICT_FCFIDS"; 1625 case PPCISD::STRICT_FCFIDUS: 1626 return "PPCISD::STRICT_FCFIDUS"; 1627 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1628 } 1629 return nullptr; 1630 } 1631 1632 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1633 EVT VT) const { 1634 if (!VT.isVector()) 1635 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1636 1637 return VT.changeVectorElementTypeToInteger(); 1638 } 1639 1640 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1641 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1642 return true; 1643 } 1644 1645 //===----------------------------------------------------------------------===// 1646 // Node matching predicates, for use by the tblgen matching code. 1647 //===----------------------------------------------------------------------===// 1648 1649 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1650 static bool isFloatingPointZero(SDValue Op) { 1651 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1652 return CFP->getValueAPF().isZero(); 1653 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1654 // Maybe this has already been legalized into the constant pool? 1655 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1656 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1657 return CFP->getValueAPF().isZero(); 1658 } 1659 return false; 1660 } 1661 1662 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1663 /// true if Op is undef or if it matches the specified value. 1664 static bool isConstantOrUndef(int Op, int Val) { 1665 return Op < 0 || Op == Val; 1666 } 1667 1668 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1669 /// VPKUHUM instruction. 1670 /// The ShuffleKind distinguishes between big-endian operations with 1671 /// two different inputs (0), either-endian operations with two identical 1672 /// inputs (1), and little-endian operations with two different inputs (2). 1673 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1674 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1675 SelectionDAG &DAG) { 1676 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1677 if (ShuffleKind == 0) { 1678 if (IsLE) 1679 return false; 1680 for (unsigned i = 0; i != 16; ++i) 1681 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1682 return false; 1683 } else if (ShuffleKind == 2) { 1684 if (!IsLE) 1685 return false; 1686 for (unsigned i = 0; i != 16; ++i) 1687 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1688 return false; 1689 } else if (ShuffleKind == 1) { 1690 unsigned j = IsLE ? 0 : 1; 1691 for (unsigned i = 0; i != 8; ++i) 1692 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1693 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1694 return false; 1695 } 1696 return true; 1697 } 1698 1699 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1700 /// VPKUWUM instruction. 1701 /// The ShuffleKind distinguishes between big-endian operations with 1702 /// two different inputs (0), either-endian operations with two identical 1703 /// inputs (1), and little-endian operations with two different inputs (2). 1704 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1705 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1706 SelectionDAG &DAG) { 1707 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1708 if (ShuffleKind == 0) { 1709 if (IsLE) 1710 return false; 1711 for (unsigned i = 0; i != 16; i += 2) 1712 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1713 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1714 return false; 1715 } else if (ShuffleKind == 2) { 1716 if (!IsLE) 1717 return false; 1718 for (unsigned i = 0; i != 16; i += 2) 1719 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1720 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1721 return false; 1722 } else if (ShuffleKind == 1) { 1723 unsigned j = IsLE ? 0 : 2; 1724 for (unsigned i = 0; i != 8; i += 2) 1725 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1726 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1727 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1728 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1729 return false; 1730 } 1731 return true; 1732 } 1733 1734 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1735 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1736 /// current subtarget. 1737 /// 1738 /// The ShuffleKind distinguishes between big-endian operations with 1739 /// two different inputs (0), either-endian operations with two identical 1740 /// inputs (1), and little-endian operations with two different inputs (2). 1741 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1742 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1743 SelectionDAG &DAG) { 1744 const PPCSubtarget& Subtarget = 1745 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1746 if (!Subtarget.hasP8Vector()) 1747 return false; 1748 1749 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1750 if (ShuffleKind == 0) { 1751 if (IsLE) 1752 return false; 1753 for (unsigned i = 0; i != 16; i += 4) 1754 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1755 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1756 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1757 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1758 return false; 1759 } else if (ShuffleKind == 2) { 1760 if (!IsLE) 1761 return false; 1762 for (unsigned i = 0; i != 16; i += 4) 1763 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1764 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1765 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1766 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1767 return false; 1768 } else if (ShuffleKind == 1) { 1769 unsigned j = IsLE ? 0 : 4; 1770 for (unsigned i = 0; i != 8; i += 4) 1771 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1772 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1773 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1774 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1775 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1776 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1777 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1778 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1779 return false; 1780 } 1781 return true; 1782 } 1783 1784 /// isVMerge - Common function, used to match vmrg* shuffles. 1785 /// 1786 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1787 unsigned LHSStart, unsigned RHSStart) { 1788 if (N->getValueType(0) != MVT::v16i8) 1789 return false; 1790 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1791 "Unsupported merge size!"); 1792 1793 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1794 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1795 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1796 LHSStart+j+i*UnitSize) || 1797 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1798 RHSStart+j+i*UnitSize)) 1799 return false; 1800 } 1801 return true; 1802 } 1803 1804 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1805 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1806 /// The ShuffleKind distinguishes between big-endian merges with two 1807 /// different inputs (0), either-endian merges with two identical inputs (1), 1808 /// and little-endian merges with two different inputs (2). For the latter, 1809 /// the input operands are swapped (see PPCInstrAltivec.td). 1810 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1811 unsigned ShuffleKind, SelectionDAG &DAG) { 1812 if (DAG.getDataLayout().isLittleEndian()) { 1813 if (ShuffleKind == 1) // unary 1814 return isVMerge(N, UnitSize, 0, 0); 1815 else if (ShuffleKind == 2) // swapped 1816 return isVMerge(N, UnitSize, 0, 16); 1817 else 1818 return false; 1819 } else { 1820 if (ShuffleKind == 1) // unary 1821 return isVMerge(N, UnitSize, 8, 8); 1822 else if (ShuffleKind == 0) // normal 1823 return isVMerge(N, UnitSize, 8, 24); 1824 else 1825 return false; 1826 } 1827 } 1828 1829 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1830 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1831 /// The ShuffleKind distinguishes between big-endian merges with two 1832 /// different inputs (0), either-endian merges with two identical inputs (1), 1833 /// and little-endian merges with two different inputs (2). For the latter, 1834 /// the input operands are swapped (see PPCInstrAltivec.td). 1835 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1836 unsigned ShuffleKind, SelectionDAG &DAG) { 1837 if (DAG.getDataLayout().isLittleEndian()) { 1838 if (ShuffleKind == 1) // unary 1839 return isVMerge(N, UnitSize, 8, 8); 1840 else if (ShuffleKind == 2) // swapped 1841 return isVMerge(N, UnitSize, 8, 24); 1842 else 1843 return false; 1844 } else { 1845 if (ShuffleKind == 1) // unary 1846 return isVMerge(N, UnitSize, 0, 0); 1847 else if (ShuffleKind == 0) // normal 1848 return isVMerge(N, UnitSize, 0, 16); 1849 else 1850 return false; 1851 } 1852 } 1853 1854 /** 1855 * Common function used to match vmrgew and vmrgow shuffles 1856 * 1857 * The indexOffset determines whether to look for even or odd words in 1858 * the shuffle mask. This is based on the of the endianness of the target 1859 * machine. 1860 * - Little Endian: 1861 * - Use offset of 0 to check for odd elements 1862 * - Use offset of 4 to check for even elements 1863 * - Big Endian: 1864 * - Use offset of 0 to check for even elements 1865 * - Use offset of 4 to check for odd elements 1866 * A detailed description of the vector element ordering for little endian and 1867 * big endian can be found at 1868 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1869 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1870 * compiler differences mean to you 1871 * 1872 * The mask to the shuffle vector instruction specifies the indices of the 1873 * elements from the two input vectors to place in the result. The elements are 1874 * numbered in array-access order, starting with the first vector. These vectors 1875 * are always of type v16i8, thus each vector will contain 16 elements of size 1876 * 8. More info on the shuffle vector can be found in the 1877 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1878 * Language Reference. 1879 * 1880 * The RHSStartValue indicates whether the same input vectors are used (unary) 1881 * or two different input vectors are used, based on the following: 1882 * - If the instruction uses the same vector for both inputs, the range of the 1883 * indices will be 0 to 15. In this case, the RHSStart value passed should 1884 * be 0. 1885 * - If the instruction has two different vectors then the range of the 1886 * indices will be 0 to 31. In this case, the RHSStart value passed should 1887 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1888 * to 31 specify elements in the second vector). 1889 * 1890 * \param[in] N The shuffle vector SD Node to analyze 1891 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1892 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1893 * vector to the shuffle_vector instruction 1894 * \return true iff this shuffle vector represents an even or odd word merge 1895 */ 1896 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1897 unsigned RHSStartValue) { 1898 if (N->getValueType(0) != MVT::v16i8) 1899 return false; 1900 1901 for (unsigned i = 0; i < 2; ++i) 1902 for (unsigned j = 0; j < 4; ++j) 1903 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1904 i*RHSStartValue+j+IndexOffset) || 1905 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1906 i*RHSStartValue+j+IndexOffset+8)) 1907 return false; 1908 return true; 1909 } 1910 1911 /** 1912 * Determine if the specified shuffle mask is suitable for the vmrgew or 1913 * vmrgow instructions. 1914 * 1915 * \param[in] N The shuffle vector SD Node to analyze 1916 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1917 * \param[in] ShuffleKind Identify the type of merge: 1918 * - 0 = big-endian merge with two different inputs; 1919 * - 1 = either-endian merge with two identical inputs; 1920 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1921 * little-endian merges). 1922 * \param[in] DAG The current SelectionDAG 1923 * \return true iff this shuffle mask 1924 */ 1925 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1926 unsigned ShuffleKind, SelectionDAG &DAG) { 1927 if (DAG.getDataLayout().isLittleEndian()) { 1928 unsigned indexOffset = CheckEven ? 4 : 0; 1929 if (ShuffleKind == 1) // Unary 1930 return isVMerge(N, indexOffset, 0); 1931 else if (ShuffleKind == 2) // swapped 1932 return isVMerge(N, indexOffset, 16); 1933 else 1934 return false; 1935 } 1936 else { 1937 unsigned indexOffset = CheckEven ? 0 : 4; 1938 if (ShuffleKind == 1) // Unary 1939 return isVMerge(N, indexOffset, 0); 1940 else if (ShuffleKind == 0) // Normal 1941 return isVMerge(N, indexOffset, 16); 1942 else 1943 return false; 1944 } 1945 return false; 1946 } 1947 1948 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1949 /// amount, otherwise return -1. 1950 /// The ShuffleKind distinguishes between big-endian operations with two 1951 /// different inputs (0), either-endian operations with two identical inputs 1952 /// (1), and little-endian operations with two different inputs (2). For the 1953 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1954 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1955 SelectionDAG &DAG) { 1956 if (N->getValueType(0) != MVT::v16i8) 1957 return -1; 1958 1959 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1960 1961 // Find the first non-undef value in the shuffle mask. 1962 unsigned i; 1963 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1964 /*search*/; 1965 1966 if (i == 16) return -1; // all undef. 1967 1968 // Otherwise, check to see if the rest of the elements are consecutively 1969 // numbered from this value. 1970 unsigned ShiftAmt = SVOp->getMaskElt(i); 1971 if (ShiftAmt < i) return -1; 1972 1973 ShiftAmt -= i; 1974 bool isLE = DAG.getDataLayout().isLittleEndian(); 1975 1976 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1977 // Check the rest of the elements to see if they are consecutive. 1978 for (++i; i != 16; ++i) 1979 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1980 return -1; 1981 } else if (ShuffleKind == 1) { 1982 // Check the rest of the elements to see if they are consecutive. 1983 for (++i; i != 16; ++i) 1984 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1985 return -1; 1986 } else 1987 return -1; 1988 1989 if (isLE) 1990 ShiftAmt = 16 - ShiftAmt; 1991 1992 return ShiftAmt; 1993 } 1994 1995 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1996 /// specifies a splat of a single element that is suitable for input to 1997 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1998 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1999 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2000 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2001 2002 // The consecutive indices need to specify an element, not part of two 2003 // different elements. So abandon ship early if this isn't the case. 2004 if (N->getMaskElt(0) % EltSize != 0) 2005 return false; 2006 2007 // This is a splat operation if each element of the permute is the same, and 2008 // if the value doesn't reference the second vector. 2009 unsigned ElementBase = N->getMaskElt(0); 2010 2011 // FIXME: Handle UNDEF elements too! 2012 if (ElementBase >= 16) 2013 return false; 2014 2015 // Check that the indices are consecutive, in the case of a multi-byte element 2016 // splatted with a v16i8 mask. 2017 for (unsigned i = 1; i != EltSize; ++i) 2018 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2019 return false; 2020 2021 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2022 if (N->getMaskElt(i) < 0) continue; 2023 for (unsigned j = 0; j != EltSize; ++j) 2024 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2025 return false; 2026 } 2027 return true; 2028 } 2029 2030 /// Check that the mask is shuffling N byte elements. Within each N byte 2031 /// element of the mask, the indices could be either in increasing or 2032 /// decreasing order as long as they are consecutive. 2033 /// \param[in] N the shuffle vector SD Node to analyze 2034 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2035 /// Word/DoubleWord/QuadWord). 2036 /// \param[in] StepLen the delta indices number among the N byte element, if 2037 /// the mask is in increasing/decreasing order then it is 1/-1. 2038 /// \return true iff the mask is shuffling N byte elements. 2039 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2040 int StepLen) { 2041 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2042 "Unexpected element width."); 2043 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2044 2045 unsigned NumOfElem = 16 / Width; 2046 unsigned MaskVal[16]; // Width is never greater than 16 2047 for (unsigned i = 0; i < NumOfElem; ++i) { 2048 MaskVal[0] = N->getMaskElt(i * Width); 2049 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2050 return false; 2051 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2052 return false; 2053 } 2054 2055 for (unsigned int j = 1; j < Width; ++j) { 2056 MaskVal[j] = N->getMaskElt(i * Width + j); 2057 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2058 return false; 2059 } 2060 } 2061 } 2062 2063 return true; 2064 } 2065 2066 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2067 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2068 if (!isNByteElemShuffleMask(N, 4, 1)) 2069 return false; 2070 2071 // Now we look at mask elements 0,4,8,12 2072 unsigned M0 = N->getMaskElt(0) / 4; 2073 unsigned M1 = N->getMaskElt(4) / 4; 2074 unsigned M2 = N->getMaskElt(8) / 4; 2075 unsigned M3 = N->getMaskElt(12) / 4; 2076 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2077 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2078 2079 // Below, let H and L be arbitrary elements of the shuffle mask 2080 // where H is in the range [4,7] and L is in the range [0,3]. 2081 // H, 1, 2, 3 or L, 5, 6, 7 2082 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2083 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2084 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2085 InsertAtByte = IsLE ? 12 : 0; 2086 Swap = M0 < 4; 2087 return true; 2088 } 2089 // 0, H, 2, 3 or 4, L, 6, 7 2090 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2091 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2092 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2093 InsertAtByte = IsLE ? 8 : 4; 2094 Swap = M1 < 4; 2095 return true; 2096 } 2097 // 0, 1, H, 3 or 4, 5, L, 7 2098 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2099 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2100 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2101 InsertAtByte = IsLE ? 4 : 8; 2102 Swap = M2 < 4; 2103 return true; 2104 } 2105 // 0, 1, 2, H or 4, 5, 6, L 2106 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2107 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2108 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2109 InsertAtByte = IsLE ? 0 : 12; 2110 Swap = M3 < 4; 2111 return true; 2112 } 2113 2114 // If both vector operands for the shuffle are the same vector, the mask will 2115 // contain only elements from the first one and the second one will be undef. 2116 if (N->getOperand(1).isUndef()) { 2117 ShiftElts = 0; 2118 Swap = true; 2119 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2120 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2121 InsertAtByte = IsLE ? 12 : 0; 2122 return true; 2123 } 2124 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2125 InsertAtByte = IsLE ? 8 : 4; 2126 return true; 2127 } 2128 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2129 InsertAtByte = IsLE ? 4 : 8; 2130 return true; 2131 } 2132 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2133 InsertAtByte = IsLE ? 0 : 12; 2134 return true; 2135 } 2136 } 2137 2138 return false; 2139 } 2140 2141 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2142 bool &Swap, bool IsLE) { 2143 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2144 // Ensure each byte index of the word is consecutive. 2145 if (!isNByteElemShuffleMask(N, 4, 1)) 2146 return false; 2147 2148 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2149 unsigned M0 = N->getMaskElt(0) / 4; 2150 unsigned M1 = N->getMaskElt(4) / 4; 2151 unsigned M2 = N->getMaskElt(8) / 4; 2152 unsigned M3 = N->getMaskElt(12) / 4; 2153 2154 // If both vector operands for the shuffle are the same vector, the mask will 2155 // contain only elements from the first one and the second one will be undef. 2156 if (N->getOperand(1).isUndef()) { 2157 assert(M0 < 4 && "Indexing into an undef vector?"); 2158 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2159 return false; 2160 2161 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2162 Swap = false; 2163 return true; 2164 } 2165 2166 // Ensure each word index of the ShuffleVector Mask is consecutive. 2167 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2168 return false; 2169 2170 if (IsLE) { 2171 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2172 // Input vectors don't need to be swapped if the leading element 2173 // of the result is one of the 3 left elements of the second vector 2174 // (or if there is no shift to be done at all). 2175 Swap = false; 2176 ShiftElts = (8 - M0) % 8; 2177 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2178 // Input vectors need to be swapped if the leading element 2179 // of the result is one of the 3 left elements of the first vector 2180 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2181 Swap = true; 2182 ShiftElts = (4 - M0) % 4; 2183 } 2184 2185 return true; 2186 } else { // BE 2187 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2188 // Input vectors don't need to be swapped if the leading element 2189 // of the result is one of the 4 elements of the first vector. 2190 Swap = false; 2191 ShiftElts = M0; 2192 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2193 // Input vectors need to be swapped if the leading element 2194 // of the result is one of the 4 elements of the right vector. 2195 Swap = true; 2196 ShiftElts = M0 - 4; 2197 } 2198 2199 return true; 2200 } 2201 } 2202 2203 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2204 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2205 2206 if (!isNByteElemShuffleMask(N, Width, -1)) 2207 return false; 2208 2209 for (int i = 0; i < 16; i += Width) 2210 if (N->getMaskElt(i) != i + Width - 1) 2211 return false; 2212 2213 return true; 2214 } 2215 2216 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2217 return isXXBRShuffleMaskHelper(N, 2); 2218 } 2219 2220 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2221 return isXXBRShuffleMaskHelper(N, 4); 2222 } 2223 2224 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2225 return isXXBRShuffleMaskHelper(N, 8); 2226 } 2227 2228 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2229 return isXXBRShuffleMaskHelper(N, 16); 2230 } 2231 2232 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2233 /// if the inputs to the instruction should be swapped and set \p DM to the 2234 /// value for the immediate. 2235 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2236 /// AND element 0 of the result comes from the first input (LE) or second input 2237 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2238 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2239 /// mask. 2240 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2241 bool &Swap, bool IsLE) { 2242 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2243 2244 // Ensure each byte index of the double word is consecutive. 2245 if (!isNByteElemShuffleMask(N, 8, 1)) 2246 return false; 2247 2248 unsigned M0 = N->getMaskElt(0) / 8; 2249 unsigned M1 = N->getMaskElt(8) / 8; 2250 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2251 2252 // If both vector operands for the shuffle are the same vector, the mask will 2253 // contain only elements from the first one and the second one will be undef. 2254 if (N->getOperand(1).isUndef()) { 2255 if ((M0 | M1) < 2) { 2256 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2257 Swap = false; 2258 return true; 2259 } else 2260 return false; 2261 } 2262 2263 if (IsLE) { 2264 if (M0 > 1 && M1 < 2) { 2265 Swap = false; 2266 } else if (M0 < 2 && M1 > 1) { 2267 M0 = (M0 + 2) % 4; 2268 M1 = (M1 + 2) % 4; 2269 Swap = true; 2270 } else 2271 return false; 2272 2273 // Note: if control flow comes here that means Swap is already set above 2274 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2275 return true; 2276 } else { // BE 2277 if (M0 < 2 && M1 > 1) { 2278 Swap = false; 2279 } else if (M0 > 1 && M1 < 2) { 2280 M0 = (M0 + 2) % 4; 2281 M1 = (M1 + 2) % 4; 2282 Swap = true; 2283 } else 2284 return false; 2285 2286 // Note: if control flow comes here that means Swap is already set above 2287 DM = (M0 << 1) + (M1 & 1); 2288 return true; 2289 } 2290 } 2291 2292 2293 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2294 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2295 /// elements are counted from the left of the vector register). 2296 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2297 SelectionDAG &DAG) { 2298 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2299 assert(isSplatShuffleMask(SVOp, EltSize)); 2300 if (DAG.getDataLayout().isLittleEndian()) 2301 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2302 else 2303 return SVOp->getMaskElt(0) / EltSize; 2304 } 2305 2306 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2307 /// by using a vspltis[bhw] instruction of the specified element size, return 2308 /// the constant being splatted. The ByteSize field indicates the number of 2309 /// bytes of each element [124] -> [bhw]. 2310 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2311 SDValue OpVal(nullptr, 0); 2312 2313 // If ByteSize of the splat is bigger than the element size of the 2314 // build_vector, then we have a case where we are checking for a splat where 2315 // multiple elements of the buildvector are folded together into a single 2316 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2317 unsigned EltSize = 16/N->getNumOperands(); 2318 if (EltSize < ByteSize) { 2319 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2320 SDValue UniquedVals[4]; 2321 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2322 2323 // See if all of the elements in the buildvector agree across. 2324 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2325 if (N->getOperand(i).isUndef()) continue; 2326 // If the element isn't a constant, bail fully out. 2327 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2328 2329 if (!UniquedVals[i&(Multiple-1)].getNode()) 2330 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2331 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2332 return SDValue(); // no match. 2333 } 2334 2335 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2336 // either constant or undef values that are identical for each chunk. See 2337 // if these chunks can form into a larger vspltis*. 2338 2339 // Check to see if all of the leading entries are either 0 or -1. If 2340 // neither, then this won't fit into the immediate field. 2341 bool LeadingZero = true; 2342 bool LeadingOnes = true; 2343 for (unsigned i = 0; i != Multiple-1; ++i) { 2344 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2345 2346 LeadingZero &= isNullConstant(UniquedVals[i]); 2347 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2348 } 2349 // Finally, check the least significant entry. 2350 if (LeadingZero) { 2351 if (!UniquedVals[Multiple-1].getNode()) 2352 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2353 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2354 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2355 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2356 } 2357 if (LeadingOnes) { 2358 if (!UniquedVals[Multiple-1].getNode()) 2359 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2360 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2361 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2362 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2363 } 2364 2365 return SDValue(); 2366 } 2367 2368 // Check to see if this buildvec has a single non-undef value in its elements. 2369 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2370 if (N->getOperand(i).isUndef()) continue; 2371 if (!OpVal.getNode()) 2372 OpVal = N->getOperand(i); 2373 else if (OpVal != N->getOperand(i)) 2374 return SDValue(); 2375 } 2376 2377 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2378 2379 unsigned ValSizeInBytes = EltSize; 2380 uint64_t Value = 0; 2381 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2382 Value = CN->getZExtValue(); 2383 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2384 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2385 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2386 } 2387 2388 // If the splat value is larger than the element value, then we can never do 2389 // this splat. The only case that we could fit the replicated bits into our 2390 // immediate field for would be zero, and we prefer to use vxor for it. 2391 if (ValSizeInBytes < ByteSize) return SDValue(); 2392 2393 // If the element value is larger than the splat value, check if it consists 2394 // of a repeated bit pattern of size ByteSize. 2395 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2396 return SDValue(); 2397 2398 // Properly sign extend the value. 2399 int MaskVal = SignExtend32(Value, ByteSize * 8); 2400 2401 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2402 if (MaskVal == 0) return SDValue(); 2403 2404 // Finally, if this value fits in a 5 bit sext field, return it 2405 if (SignExtend32<5>(MaskVal) == MaskVal) 2406 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2407 return SDValue(); 2408 } 2409 2410 //===----------------------------------------------------------------------===// 2411 // Addressing Mode Selection 2412 //===----------------------------------------------------------------------===// 2413 2414 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2415 /// or 64-bit immediate, and if the value can be accurately represented as a 2416 /// sign extension from a 16-bit value. If so, this returns true and the 2417 /// immediate. 2418 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2419 if (!isa<ConstantSDNode>(N)) 2420 return false; 2421 2422 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2423 if (N->getValueType(0) == MVT::i32) 2424 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2425 else 2426 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2427 } 2428 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2429 return isIntS16Immediate(Op.getNode(), Imm); 2430 } 2431 2432 2433 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2434 /// be represented as an indexed [r+r] operation. 2435 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2436 SDValue &Index, 2437 SelectionDAG &DAG) const { 2438 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2439 UI != E; ++UI) { 2440 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2441 if (Memop->getMemoryVT() == MVT::f64) { 2442 Base = N.getOperand(0); 2443 Index = N.getOperand(1); 2444 return true; 2445 } 2446 } 2447 } 2448 return false; 2449 } 2450 2451 /// isIntS34Immediate - This method tests if value of node given can be 2452 /// accurately represented as a sign extension from a 34-bit value. If so, 2453 /// this returns true and the immediate. 2454 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2455 if (!isa<ConstantSDNode>(N)) 2456 return false; 2457 2458 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2459 return isInt<34>(Imm); 2460 } 2461 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2462 return isIntS34Immediate(Op.getNode(), Imm); 2463 } 2464 2465 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2466 /// can be represented as an indexed [r+r] operation. Returns false if it 2467 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2468 /// non-zero and N can be represented by a base register plus a signed 16-bit 2469 /// displacement, make a more precise judgement by checking (displacement % \p 2470 /// EncodingAlignment). 2471 bool PPCTargetLowering::SelectAddressRegReg( 2472 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2473 MaybeAlign EncodingAlignment) const { 2474 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2475 // a [pc+imm]. 2476 if (SelectAddressPCRel(N, Base)) 2477 return false; 2478 2479 int16_t Imm = 0; 2480 if (N.getOpcode() == ISD::ADD) { 2481 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2482 // SPE load/store can only handle 8-bit offsets. 2483 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2484 return true; 2485 if (isIntS16Immediate(N.getOperand(1), Imm) && 2486 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2487 return false; // r+i 2488 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2489 return false; // r+i 2490 2491 Base = N.getOperand(0); 2492 Index = N.getOperand(1); 2493 return true; 2494 } else if (N.getOpcode() == ISD::OR) { 2495 if (isIntS16Immediate(N.getOperand(1), Imm) && 2496 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2497 return false; // r+i can fold it if we can. 2498 2499 // If this is an or of disjoint bitfields, we can codegen this as an add 2500 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2501 // disjoint. 2502 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2503 2504 if (LHSKnown.Zero.getBoolValue()) { 2505 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2506 // If all of the bits are known zero on the LHS or RHS, the add won't 2507 // carry. 2508 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2509 Base = N.getOperand(0); 2510 Index = N.getOperand(1); 2511 return true; 2512 } 2513 } 2514 } 2515 2516 return false; 2517 } 2518 2519 // If we happen to be doing an i64 load or store into a stack slot that has 2520 // less than a 4-byte alignment, then the frame-index elimination may need to 2521 // use an indexed load or store instruction (because the offset may not be a 2522 // multiple of 4). The extra register needed to hold the offset comes from the 2523 // register scavenger, and it is possible that the scavenger will need to use 2524 // an emergency spill slot. As a result, we need to make sure that a spill slot 2525 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2526 // stack slot. 2527 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2528 // FIXME: This does not handle the LWA case. 2529 if (VT != MVT::i64) 2530 return; 2531 2532 // NOTE: We'll exclude negative FIs here, which come from argument 2533 // lowering, because there are no known test cases triggering this problem 2534 // using packed structures (or similar). We can remove this exclusion if 2535 // we find such a test case. The reason why this is so test-case driven is 2536 // because this entire 'fixup' is only to prevent crashes (from the 2537 // register scavenger) on not-really-valid inputs. For example, if we have: 2538 // %a = alloca i1 2539 // %b = bitcast i1* %a to i64* 2540 // store i64* a, i64 b 2541 // then the store should really be marked as 'align 1', but is not. If it 2542 // were marked as 'align 1' then the indexed form would have been 2543 // instruction-selected initially, and the problem this 'fixup' is preventing 2544 // won't happen regardless. 2545 if (FrameIdx < 0) 2546 return; 2547 2548 MachineFunction &MF = DAG.getMachineFunction(); 2549 MachineFrameInfo &MFI = MF.getFrameInfo(); 2550 2551 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2552 return; 2553 2554 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2555 FuncInfo->setHasNonRISpills(); 2556 } 2557 2558 /// Returns true if the address N can be represented by a base register plus 2559 /// a signed 16-bit displacement [r+imm], and if it is not better 2560 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2561 /// displacements that are multiples of that value. 2562 bool PPCTargetLowering::SelectAddressRegImm( 2563 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2564 MaybeAlign EncodingAlignment) const { 2565 // FIXME dl should come from parent load or store, not from address 2566 SDLoc dl(N); 2567 2568 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2569 // a [pc+imm]. 2570 if (SelectAddressPCRel(N, Base)) 2571 return false; 2572 2573 // If this can be more profitably realized as r+r, fail. 2574 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2575 return false; 2576 2577 if (N.getOpcode() == ISD::ADD) { 2578 int16_t imm = 0; 2579 if (isIntS16Immediate(N.getOperand(1), imm) && 2580 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2581 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2582 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2583 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2584 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2585 } else { 2586 Base = N.getOperand(0); 2587 } 2588 return true; // [r+i] 2589 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2590 // Match LOAD (ADD (X, Lo(G))). 2591 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2592 && "Cannot handle constant offsets yet!"); 2593 Disp = N.getOperand(1).getOperand(0); // The global address. 2594 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2595 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2596 Disp.getOpcode() == ISD::TargetConstantPool || 2597 Disp.getOpcode() == ISD::TargetJumpTable); 2598 Base = N.getOperand(0); 2599 return true; // [&g+r] 2600 } 2601 } else if (N.getOpcode() == ISD::OR) { 2602 int16_t imm = 0; 2603 if (isIntS16Immediate(N.getOperand(1), imm) && 2604 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2605 // If this is an or of disjoint bitfields, we can codegen this as an add 2606 // (for better address arithmetic) if the LHS and RHS of the OR are 2607 // provably disjoint. 2608 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2609 2610 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2611 // If all of the bits are known zero on the LHS or RHS, the add won't 2612 // carry. 2613 if (FrameIndexSDNode *FI = 2614 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2615 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2616 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2617 } else { 2618 Base = N.getOperand(0); 2619 } 2620 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2621 return true; 2622 } 2623 } 2624 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2625 // Loading from a constant address. 2626 2627 // If this address fits entirely in a 16-bit sext immediate field, codegen 2628 // this as "d, 0" 2629 int16_t Imm; 2630 if (isIntS16Immediate(CN, Imm) && 2631 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2632 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2633 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2634 CN->getValueType(0)); 2635 return true; 2636 } 2637 2638 // Handle 32-bit sext immediates with LIS + addr mode. 2639 if ((CN->getValueType(0) == MVT::i32 || 2640 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2641 (!EncodingAlignment || 2642 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2643 int Addr = (int)CN->getZExtValue(); 2644 2645 // Otherwise, break this down into an LIS + disp. 2646 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2647 2648 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2649 MVT::i32); 2650 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2651 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2652 return true; 2653 } 2654 } 2655 2656 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2657 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2658 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2659 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2660 } else 2661 Base = N; 2662 return true; // [r+0] 2663 } 2664 2665 /// Similar to the 16-bit case but for instructions that take a 34-bit 2666 /// displacement field (prefixed loads/stores). 2667 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2668 SDValue &Base, 2669 SelectionDAG &DAG) const { 2670 // Only on 64-bit targets. 2671 if (N.getValueType() != MVT::i64) 2672 return false; 2673 2674 SDLoc dl(N); 2675 int64_t Imm = 0; 2676 2677 if (N.getOpcode() == ISD::ADD) { 2678 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2679 return false; 2680 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2681 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2682 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2683 else 2684 Base = N.getOperand(0); 2685 return true; 2686 } 2687 2688 if (N.getOpcode() == ISD::OR) { 2689 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2690 return false; 2691 // If this is an or of disjoint bitfields, we can codegen this as an add 2692 // (for better address arithmetic) if the LHS and RHS of the OR are 2693 // provably disjoint. 2694 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2695 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2696 return false; 2697 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2698 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2699 else 2700 Base = N.getOperand(0); 2701 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2702 return true; 2703 } 2704 2705 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2706 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2707 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2708 return true; 2709 } 2710 2711 return false; 2712 } 2713 2714 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2715 /// represented as an indexed [r+r] operation. 2716 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2717 SDValue &Index, 2718 SelectionDAG &DAG) const { 2719 // Check to see if we can easily represent this as an [r+r] address. This 2720 // will fail if it thinks that the address is more profitably represented as 2721 // reg+imm, e.g. where imm = 0. 2722 if (SelectAddressRegReg(N, Base, Index, DAG)) 2723 return true; 2724 2725 // If the address is the result of an add, we will utilize the fact that the 2726 // address calculation includes an implicit add. However, we can reduce 2727 // register pressure if we do not materialize a constant just for use as the 2728 // index register. We only get rid of the add if it is not an add of a 2729 // value and a 16-bit signed constant and both have a single use. 2730 int16_t imm = 0; 2731 if (N.getOpcode() == ISD::ADD && 2732 (!isIntS16Immediate(N.getOperand(1), imm) || 2733 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2734 Base = N.getOperand(0); 2735 Index = N.getOperand(1); 2736 return true; 2737 } 2738 2739 // Otherwise, do it the hard way, using R0 as the base register. 2740 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2741 N.getValueType()); 2742 Index = N; 2743 return true; 2744 } 2745 2746 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2747 Ty *PCRelCand = dyn_cast<Ty>(N); 2748 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2749 } 2750 2751 /// Returns true if this address is a PC Relative address. 2752 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2753 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2754 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2755 // This is a materialize PC Relative node. Always select this as PC Relative. 2756 Base = N; 2757 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2758 return true; 2759 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2760 isValidPCRelNode<GlobalAddressSDNode>(N) || 2761 isValidPCRelNode<JumpTableSDNode>(N) || 2762 isValidPCRelNode<BlockAddressSDNode>(N)) 2763 return true; 2764 return false; 2765 } 2766 2767 /// Returns true if we should use a direct load into vector instruction 2768 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2769 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2770 2771 // If there are any other uses other than scalar to vector, then we should 2772 // keep it as a scalar load -> direct move pattern to prevent multiple 2773 // loads. 2774 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2775 if (!LD) 2776 return false; 2777 2778 EVT MemVT = LD->getMemoryVT(); 2779 if (!MemVT.isSimple()) 2780 return false; 2781 switch(MemVT.getSimpleVT().SimpleTy) { 2782 case MVT::i64: 2783 break; 2784 case MVT::i32: 2785 if (!ST.hasP8Vector()) 2786 return false; 2787 break; 2788 case MVT::i16: 2789 case MVT::i8: 2790 if (!ST.hasP9Vector()) 2791 return false; 2792 break; 2793 default: 2794 return false; 2795 } 2796 2797 SDValue LoadedVal(N, 0); 2798 if (!LoadedVal.hasOneUse()) 2799 return false; 2800 2801 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2802 UI != UE; ++UI) 2803 if (UI.getUse().get().getResNo() == 0 && 2804 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2805 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2806 return false; 2807 2808 return true; 2809 } 2810 2811 /// getPreIndexedAddressParts - returns true by value, base pointer and 2812 /// offset pointer and addressing mode by reference if the node's address 2813 /// can be legally represented as pre-indexed load / store address. 2814 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2815 SDValue &Offset, 2816 ISD::MemIndexedMode &AM, 2817 SelectionDAG &DAG) const { 2818 if (DisablePPCPreinc) return false; 2819 2820 bool isLoad = true; 2821 SDValue Ptr; 2822 EVT VT; 2823 unsigned Alignment; 2824 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2825 Ptr = LD->getBasePtr(); 2826 VT = LD->getMemoryVT(); 2827 Alignment = LD->getAlignment(); 2828 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2829 Ptr = ST->getBasePtr(); 2830 VT = ST->getMemoryVT(); 2831 Alignment = ST->getAlignment(); 2832 isLoad = false; 2833 } else 2834 return false; 2835 2836 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2837 // instructions because we can fold these into a more efficient instruction 2838 // instead, (such as LXSD). 2839 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2840 return false; 2841 } 2842 2843 // PowerPC doesn't have preinc load/store instructions for vectors 2844 if (VT.isVector()) 2845 return false; 2846 2847 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2848 // Common code will reject creating a pre-inc form if the base pointer 2849 // is a frame index, or if N is a store and the base pointer is either 2850 // the same as or a predecessor of the value being stored. Check for 2851 // those situations here, and try with swapped Base/Offset instead. 2852 bool Swap = false; 2853 2854 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2855 Swap = true; 2856 else if (!isLoad) { 2857 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2858 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2859 Swap = true; 2860 } 2861 2862 if (Swap) 2863 std::swap(Base, Offset); 2864 2865 AM = ISD::PRE_INC; 2866 return true; 2867 } 2868 2869 // LDU/STU can only handle immediates that are a multiple of 4. 2870 if (VT != MVT::i64) { 2871 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2872 return false; 2873 } else { 2874 // LDU/STU need an address with at least 4-byte alignment. 2875 if (Alignment < 4) 2876 return false; 2877 2878 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2879 return false; 2880 } 2881 2882 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2883 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2884 // sext i32 to i64 when addr mode is r+i. 2885 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2886 LD->getExtensionType() == ISD::SEXTLOAD && 2887 isa<ConstantSDNode>(Offset)) 2888 return false; 2889 } 2890 2891 AM = ISD::PRE_INC; 2892 return true; 2893 } 2894 2895 //===----------------------------------------------------------------------===// 2896 // LowerOperation implementation 2897 //===----------------------------------------------------------------------===// 2898 2899 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2900 /// and LoOpFlags to the target MO flags. 2901 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2902 unsigned &HiOpFlags, unsigned &LoOpFlags, 2903 const GlobalValue *GV = nullptr) { 2904 HiOpFlags = PPCII::MO_HA; 2905 LoOpFlags = PPCII::MO_LO; 2906 2907 // Don't use the pic base if not in PIC relocation model. 2908 if (IsPIC) { 2909 HiOpFlags |= PPCII::MO_PIC_FLAG; 2910 LoOpFlags |= PPCII::MO_PIC_FLAG; 2911 } 2912 } 2913 2914 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2915 SelectionDAG &DAG) { 2916 SDLoc DL(HiPart); 2917 EVT PtrVT = HiPart.getValueType(); 2918 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2919 2920 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2921 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2922 2923 // With PIC, the first instruction is actually "GR+hi(&G)". 2924 if (isPIC) 2925 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2926 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2927 2928 // Generate non-pic code that has direct accesses to the constant pool. 2929 // The address of the global is just (hi(&g)+lo(&g)). 2930 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2931 } 2932 2933 static void setUsesTOCBasePtr(MachineFunction &MF) { 2934 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2935 FuncInfo->setUsesTOCBasePtr(); 2936 } 2937 2938 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2939 setUsesTOCBasePtr(DAG.getMachineFunction()); 2940 } 2941 2942 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2943 SDValue GA) const { 2944 const bool Is64Bit = Subtarget.isPPC64(); 2945 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2946 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2947 : Subtarget.isAIXABI() 2948 ? DAG.getRegister(PPC::R2, VT) 2949 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2950 SDValue Ops[] = { GA, Reg }; 2951 return DAG.getMemIntrinsicNode( 2952 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2953 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2954 MachineMemOperand::MOLoad); 2955 } 2956 2957 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2958 SelectionDAG &DAG) const { 2959 EVT PtrVT = Op.getValueType(); 2960 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2961 const Constant *C = CP->getConstVal(); 2962 2963 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2964 // The actual address of the GlobalValue is stored in the TOC. 2965 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2966 if (Subtarget.isUsingPCRelativeCalls()) { 2967 SDLoc DL(CP); 2968 EVT Ty = getPointerTy(DAG.getDataLayout()); 2969 SDValue ConstPool = DAG.getTargetConstantPool( 2970 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2971 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2972 } 2973 setUsesTOCBasePtr(DAG); 2974 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2975 return getTOCEntry(DAG, SDLoc(CP), GA); 2976 } 2977 2978 unsigned MOHiFlag, MOLoFlag; 2979 bool IsPIC = isPositionIndependent(); 2980 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2981 2982 if (IsPIC && Subtarget.isSVR4ABI()) { 2983 SDValue GA = 2984 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2985 return getTOCEntry(DAG, SDLoc(CP), GA); 2986 } 2987 2988 SDValue CPIHi = 2989 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2990 SDValue CPILo = 2991 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2992 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2993 } 2994 2995 // For 64-bit PowerPC, prefer the more compact relative encodings. 2996 // This trades 32 bits per jump table entry for one or two instructions 2997 // on the jump site. 2998 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2999 if (isJumpTableRelative()) 3000 return MachineJumpTableInfo::EK_LabelDifference32; 3001 3002 return TargetLowering::getJumpTableEncoding(); 3003 } 3004 3005 bool PPCTargetLowering::isJumpTableRelative() const { 3006 if (UseAbsoluteJumpTables) 3007 return false; 3008 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3009 return true; 3010 return TargetLowering::isJumpTableRelative(); 3011 } 3012 3013 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3014 SelectionDAG &DAG) const { 3015 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3016 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3017 3018 switch (getTargetMachine().getCodeModel()) { 3019 case CodeModel::Small: 3020 case CodeModel::Medium: 3021 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3022 default: 3023 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3024 getPointerTy(DAG.getDataLayout())); 3025 } 3026 } 3027 3028 const MCExpr * 3029 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3030 unsigned JTI, 3031 MCContext &Ctx) const { 3032 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3033 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3034 3035 switch (getTargetMachine().getCodeModel()) { 3036 case CodeModel::Small: 3037 case CodeModel::Medium: 3038 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3039 default: 3040 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3041 } 3042 } 3043 3044 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3045 EVT PtrVT = Op.getValueType(); 3046 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3047 3048 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3049 if (Subtarget.isUsingPCRelativeCalls()) { 3050 SDLoc DL(JT); 3051 EVT Ty = getPointerTy(DAG.getDataLayout()); 3052 SDValue GA = 3053 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3054 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3055 return MatAddr; 3056 } 3057 3058 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3059 // The actual address of the GlobalValue is stored in the TOC. 3060 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3061 setUsesTOCBasePtr(DAG); 3062 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3063 return getTOCEntry(DAG, SDLoc(JT), GA); 3064 } 3065 3066 unsigned MOHiFlag, MOLoFlag; 3067 bool IsPIC = isPositionIndependent(); 3068 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3069 3070 if (IsPIC && Subtarget.isSVR4ABI()) { 3071 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3072 PPCII::MO_PIC_FLAG); 3073 return getTOCEntry(DAG, SDLoc(GA), GA); 3074 } 3075 3076 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3077 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3078 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3079 } 3080 3081 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3082 SelectionDAG &DAG) const { 3083 EVT PtrVT = Op.getValueType(); 3084 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3085 const BlockAddress *BA = BASDN->getBlockAddress(); 3086 3087 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3088 if (Subtarget.isUsingPCRelativeCalls()) { 3089 SDLoc DL(BASDN); 3090 EVT Ty = getPointerTy(DAG.getDataLayout()); 3091 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3092 PPCII::MO_PCREL_FLAG); 3093 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3094 return MatAddr; 3095 } 3096 3097 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3098 // The actual BlockAddress is stored in the TOC. 3099 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3100 setUsesTOCBasePtr(DAG); 3101 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3102 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3103 } 3104 3105 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3106 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3107 return getTOCEntry( 3108 DAG, SDLoc(BASDN), 3109 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3110 3111 unsigned MOHiFlag, MOLoFlag; 3112 bool IsPIC = isPositionIndependent(); 3113 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3114 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3115 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3116 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3117 } 3118 3119 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3120 SelectionDAG &DAG) const { 3121 if (Subtarget.isAIXABI()) 3122 return LowerGlobalTLSAddressAIX(Op, DAG); 3123 3124 return LowerGlobalTLSAddressLinux(Op, DAG); 3125 } 3126 3127 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3128 SelectionDAG &DAG) const { 3129 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3130 3131 if (DAG.getTarget().useEmulatedTLS()) 3132 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3133 3134 SDLoc dl(GA); 3135 const GlobalValue *GV = GA->getGlobal(); 3136 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3137 3138 // The general-dynamic model is the only access model supported for now, so 3139 // all the GlobalTLSAddress nodes are lowered with this model. 3140 // We need to generate two TOC entries, one for the variable offset, one for 3141 // the region handle. The global address for the TOC entry of the region 3142 // handle is created with the MO_TLSGD_FLAG flag so we can easily identify 3143 // this entry and add the right relocation. 3144 SDValue VariableOffsetTGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3145 SDValue RegionHandleTGA = 3146 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3147 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3148 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3149 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3150 RegionHandle); 3151 } 3152 3153 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3154 SelectionDAG &DAG) const { 3155 // FIXME: TLS addresses currently use medium model code sequences, 3156 // which is the most useful form. Eventually support for small and 3157 // large models could be added if users need it, at the cost of 3158 // additional complexity. 3159 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3160 if (DAG.getTarget().useEmulatedTLS()) 3161 return LowerToTLSEmulatedModel(GA, DAG); 3162 3163 SDLoc dl(GA); 3164 const GlobalValue *GV = GA->getGlobal(); 3165 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3166 bool is64bit = Subtarget.isPPC64(); 3167 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3168 PICLevel::Level picLevel = M->getPICLevel(); 3169 3170 const TargetMachine &TM = getTargetMachine(); 3171 TLSModel::Model Model = TM.getTLSModel(GV); 3172 3173 if (Model == TLSModel::LocalExec) { 3174 if (Subtarget.isUsingPCRelativeCalls()) { 3175 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3176 SDValue TGA = DAG.getTargetGlobalAddress( 3177 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3178 SDValue MatAddr = 3179 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3180 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3181 } 3182 3183 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3184 PPCII::MO_TPREL_HA); 3185 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3186 PPCII::MO_TPREL_LO); 3187 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3188 : DAG.getRegister(PPC::R2, MVT::i32); 3189 3190 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3191 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3192 } 3193 3194 if (Model == TLSModel::InitialExec) { 3195 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3196 SDValue TGA = DAG.getTargetGlobalAddress( 3197 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3198 SDValue TGATLS = DAG.getTargetGlobalAddress( 3199 GV, dl, PtrVT, 0, 3200 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3201 SDValue TPOffset; 3202 if (IsPCRel) { 3203 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3204 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3205 MachinePointerInfo()); 3206 } else { 3207 SDValue GOTPtr; 3208 if (is64bit) { 3209 setUsesTOCBasePtr(DAG); 3210 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3211 GOTPtr = 3212 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3213 } else { 3214 if (!TM.isPositionIndependent()) 3215 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3216 else if (picLevel == PICLevel::SmallPIC) 3217 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3218 else 3219 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3220 } 3221 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3222 } 3223 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3224 } 3225 3226 if (Model == TLSModel::GeneralDynamic) { 3227 if (Subtarget.isUsingPCRelativeCalls()) { 3228 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3229 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3230 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3231 } 3232 3233 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3234 SDValue GOTPtr; 3235 if (is64bit) { 3236 setUsesTOCBasePtr(DAG); 3237 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3238 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3239 GOTReg, TGA); 3240 } else { 3241 if (picLevel == PICLevel::SmallPIC) 3242 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3243 else 3244 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3245 } 3246 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3247 GOTPtr, TGA, TGA); 3248 } 3249 3250 if (Model == TLSModel::LocalDynamic) { 3251 if (Subtarget.isUsingPCRelativeCalls()) { 3252 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3253 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3254 SDValue MatPCRel = 3255 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3256 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3257 } 3258 3259 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3260 SDValue GOTPtr; 3261 if (is64bit) { 3262 setUsesTOCBasePtr(DAG); 3263 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3264 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3265 GOTReg, TGA); 3266 } else { 3267 if (picLevel == PICLevel::SmallPIC) 3268 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3269 else 3270 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3271 } 3272 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3273 PtrVT, GOTPtr, TGA, TGA); 3274 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3275 PtrVT, TLSAddr, TGA); 3276 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3277 } 3278 3279 llvm_unreachable("Unknown TLS model!"); 3280 } 3281 3282 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3283 SelectionDAG &DAG) const { 3284 EVT PtrVT = Op.getValueType(); 3285 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3286 SDLoc DL(GSDN); 3287 const GlobalValue *GV = GSDN->getGlobal(); 3288 3289 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3290 // The actual address of the GlobalValue is stored in the TOC. 3291 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3292 if (Subtarget.isUsingPCRelativeCalls()) { 3293 EVT Ty = getPointerTy(DAG.getDataLayout()); 3294 if (isAccessedAsGotIndirect(Op)) { 3295 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3296 PPCII::MO_PCREL_FLAG | 3297 PPCII::MO_GOT_FLAG); 3298 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3299 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3300 MachinePointerInfo()); 3301 return Load; 3302 } else { 3303 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3304 PPCII::MO_PCREL_FLAG); 3305 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3306 } 3307 } 3308 setUsesTOCBasePtr(DAG); 3309 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3310 return getTOCEntry(DAG, DL, GA); 3311 } 3312 3313 unsigned MOHiFlag, MOLoFlag; 3314 bool IsPIC = isPositionIndependent(); 3315 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3316 3317 if (IsPIC && Subtarget.isSVR4ABI()) { 3318 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3319 GSDN->getOffset(), 3320 PPCII::MO_PIC_FLAG); 3321 return getTOCEntry(DAG, DL, GA); 3322 } 3323 3324 SDValue GAHi = 3325 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3326 SDValue GALo = 3327 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3328 3329 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3330 } 3331 3332 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3333 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3334 SDLoc dl(Op); 3335 3336 if (Op.getValueType() == MVT::v2i64) { 3337 // When the operands themselves are v2i64 values, we need to do something 3338 // special because VSX has no underlying comparison operations for these. 3339 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3340 // Equality can be handled by casting to the legal type for Altivec 3341 // comparisons, everything else needs to be expanded. 3342 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3343 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3344 DAG.getSetCC(dl, MVT::v4i32, 3345 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3346 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3347 CC)); 3348 } 3349 3350 return SDValue(); 3351 } 3352 3353 // We handle most of these in the usual way. 3354 return Op; 3355 } 3356 3357 // If we're comparing for equality to zero, expose the fact that this is 3358 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3359 // fold the new nodes. 3360 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3361 return V; 3362 3363 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3364 // Leave comparisons against 0 and -1 alone for now, since they're usually 3365 // optimized. FIXME: revisit this when we can custom lower all setcc 3366 // optimizations. 3367 if (C->isAllOnesValue() || C->isNullValue()) 3368 return SDValue(); 3369 } 3370 3371 // If we have an integer seteq/setne, turn it into a compare against zero 3372 // by xor'ing the rhs with the lhs, which is faster than setting a 3373 // condition register, reading it back out, and masking the correct bit. The 3374 // normal approach here uses sub to do this instead of xor. Using xor exposes 3375 // the result to other bit-twiddling opportunities. 3376 EVT LHSVT = Op.getOperand(0).getValueType(); 3377 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3378 EVT VT = Op.getValueType(); 3379 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3380 Op.getOperand(1)); 3381 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3382 } 3383 return SDValue(); 3384 } 3385 3386 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3387 SDNode *Node = Op.getNode(); 3388 EVT VT = Node->getValueType(0); 3389 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3390 SDValue InChain = Node->getOperand(0); 3391 SDValue VAListPtr = Node->getOperand(1); 3392 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3393 SDLoc dl(Node); 3394 3395 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3396 3397 // gpr_index 3398 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3399 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3400 InChain = GprIndex.getValue(1); 3401 3402 if (VT == MVT::i64) { 3403 // Check if GprIndex is even 3404 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3405 DAG.getConstant(1, dl, MVT::i32)); 3406 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3407 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3408 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3409 DAG.getConstant(1, dl, MVT::i32)); 3410 // Align GprIndex to be even if it isn't 3411 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3412 GprIndex); 3413 } 3414 3415 // fpr index is 1 byte after gpr 3416 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3417 DAG.getConstant(1, dl, MVT::i32)); 3418 3419 // fpr 3420 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3421 FprPtr, MachinePointerInfo(SV), MVT::i8); 3422 InChain = FprIndex.getValue(1); 3423 3424 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3425 DAG.getConstant(8, dl, MVT::i32)); 3426 3427 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3428 DAG.getConstant(4, dl, MVT::i32)); 3429 3430 // areas 3431 SDValue OverflowArea = 3432 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3433 InChain = OverflowArea.getValue(1); 3434 3435 SDValue RegSaveArea = 3436 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3437 InChain = RegSaveArea.getValue(1); 3438 3439 // select overflow_area if index > 8 3440 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3441 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3442 3443 // adjustment constant gpr_index * 4/8 3444 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3445 VT.isInteger() ? GprIndex : FprIndex, 3446 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3447 MVT::i32)); 3448 3449 // OurReg = RegSaveArea + RegConstant 3450 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3451 RegConstant); 3452 3453 // Floating types are 32 bytes into RegSaveArea 3454 if (VT.isFloatingPoint()) 3455 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3456 DAG.getConstant(32, dl, MVT::i32)); 3457 3458 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3459 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3460 VT.isInteger() ? GprIndex : FprIndex, 3461 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3462 MVT::i32)); 3463 3464 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3465 VT.isInteger() ? VAListPtr : FprPtr, 3466 MachinePointerInfo(SV), MVT::i8); 3467 3468 // determine if we should load from reg_save_area or overflow_area 3469 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3470 3471 // increase overflow_area by 4/8 if gpr/fpr > 8 3472 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3473 DAG.getConstant(VT.isInteger() ? 4 : 8, 3474 dl, MVT::i32)); 3475 3476 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3477 OverflowAreaPlusN); 3478 3479 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3480 MachinePointerInfo(), MVT::i32); 3481 3482 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3483 } 3484 3485 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3486 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3487 3488 // We have to copy the entire va_list struct: 3489 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3490 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3491 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3492 false, true, false, MachinePointerInfo(), 3493 MachinePointerInfo()); 3494 } 3495 3496 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3497 SelectionDAG &DAG) const { 3498 if (Subtarget.isAIXABI()) 3499 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3500 3501 return Op.getOperand(0); 3502 } 3503 3504 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3505 SelectionDAG &DAG) const { 3506 if (Subtarget.isAIXABI()) 3507 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3508 3509 SDValue Chain = Op.getOperand(0); 3510 SDValue Trmp = Op.getOperand(1); // trampoline 3511 SDValue FPtr = Op.getOperand(2); // nested function 3512 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3513 SDLoc dl(Op); 3514 3515 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3516 bool isPPC64 = (PtrVT == MVT::i64); 3517 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3518 3519 TargetLowering::ArgListTy Args; 3520 TargetLowering::ArgListEntry Entry; 3521 3522 Entry.Ty = IntPtrTy; 3523 Entry.Node = Trmp; Args.push_back(Entry); 3524 3525 // TrampSize == (isPPC64 ? 48 : 40); 3526 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3527 isPPC64 ? MVT::i64 : MVT::i32); 3528 Args.push_back(Entry); 3529 3530 Entry.Node = FPtr; Args.push_back(Entry); 3531 Entry.Node = Nest; Args.push_back(Entry); 3532 3533 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3534 TargetLowering::CallLoweringInfo CLI(DAG); 3535 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3536 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3537 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3538 3539 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3540 return CallResult.second; 3541 } 3542 3543 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3544 MachineFunction &MF = DAG.getMachineFunction(); 3545 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3546 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3547 3548 SDLoc dl(Op); 3549 3550 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3551 // vastart just stores the address of the VarArgsFrameIndex slot into the 3552 // memory location argument. 3553 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3554 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3555 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3556 MachinePointerInfo(SV)); 3557 } 3558 3559 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3560 // We suppose the given va_list is already allocated. 3561 // 3562 // typedef struct { 3563 // char gpr; /* index into the array of 8 GPRs 3564 // * stored in the register save area 3565 // * gpr=0 corresponds to r3, 3566 // * gpr=1 to r4, etc. 3567 // */ 3568 // char fpr; /* index into the array of 8 FPRs 3569 // * stored in the register save area 3570 // * fpr=0 corresponds to f1, 3571 // * fpr=1 to f2, etc. 3572 // */ 3573 // char *overflow_arg_area; 3574 // /* location on stack that holds 3575 // * the next overflow argument 3576 // */ 3577 // char *reg_save_area; 3578 // /* where r3:r10 and f1:f8 (if saved) 3579 // * are stored 3580 // */ 3581 // } va_list[1]; 3582 3583 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3584 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3585 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3586 PtrVT); 3587 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3588 PtrVT); 3589 3590 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3591 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3592 3593 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3594 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3595 3596 uint64_t FPROffset = 1; 3597 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3598 3599 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3600 3601 // Store first byte : number of int regs 3602 SDValue firstStore = 3603 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3604 MachinePointerInfo(SV), MVT::i8); 3605 uint64_t nextOffset = FPROffset; 3606 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3607 ConstFPROffset); 3608 3609 // Store second byte : number of float regs 3610 SDValue secondStore = 3611 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3612 MachinePointerInfo(SV, nextOffset), MVT::i8); 3613 nextOffset += StackOffset; 3614 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3615 3616 // Store second word : arguments given on stack 3617 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3618 MachinePointerInfo(SV, nextOffset)); 3619 nextOffset += FrameOffset; 3620 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3621 3622 // Store third word : arguments given in registers 3623 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3624 MachinePointerInfo(SV, nextOffset)); 3625 } 3626 3627 /// FPR - The set of FP registers that should be allocated for arguments 3628 /// on Darwin and AIX. 3629 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3630 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3631 PPC::F11, PPC::F12, PPC::F13}; 3632 3633 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3634 /// the stack. 3635 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3636 unsigned PtrByteSize) { 3637 unsigned ArgSize = ArgVT.getStoreSize(); 3638 if (Flags.isByVal()) 3639 ArgSize = Flags.getByValSize(); 3640 3641 // Round up to multiples of the pointer size, except for array members, 3642 // which are always packed. 3643 if (!Flags.isInConsecutiveRegs()) 3644 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3645 3646 return ArgSize; 3647 } 3648 3649 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3650 /// on the stack. 3651 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3652 ISD::ArgFlagsTy Flags, 3653 unsigned PtrByteSize) { 3654 Align Alignment(PtrByteSize); 3655 3656 // Altivec parameters are padded to a 16 byte boundary. 3657 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3658 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3659 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3660 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3661 Alignment = Align(16); 3662 3663 // ByVal parameters are aligned as requested. 3664 if (Flags.isByVal()) { 3665 auto BVAlign = Flags.getNonZeroByValAlign(); 3666 if (BVAlign > PtrByteSize) { 3667 if (BVAlign.value() % PtrByteSize != 0) 3668 llvm_unreachable( 3669 "ByVal alignment is not a multiple of the pointer size"); 3670 3671 Alignment = BVAlign; 3672 } 3673 } 3674 3675 // Array members are always packed to their original alignment. 3676 if (Flags.isInConsecutiveRegs()) { 3677 // If the array member was split into multiple registers, the first 3678 // needs to be aligned to the size of the full type. (Except for 3679 // ppcf128, which is only aligned as its f64 components.) 3680 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3681 Alignment = Align(OrigVT.getStoreSize()); 3682 else 3683 Alignment = Align(ArgVT.getStoreSize()); 3684 } 3685 3686 return Alignment; 3687 } 3688 3689 /// CalculateStackSlotUsed - Return whether this argument will use its 3690 /// stack slot (instead of being passed in registers). ArgOffset, 3691 /// AvailableFPRs, and AvailableVRs must hold the current argument 3692 /// position, and will be updated to account for this argument. 3693 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3694 unsigned PtrByteSize, unsigned LinkageSize, 3695 unsigned ParamAreaSize, unsigned &ArgOffset, 3696 unsigned &AvailableFPRs, 3697 unsigned &AvailableVRs) { 3698 bool UseMemory = false; 3699 3700 // Respect alignment of argument on the stack. 3701 Align Alignment = 3702 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3703 ArgOffset = alignTo(ArgOffset, Alignment); 3704 // If there's no space left in the argument save area, we must 3705 // use memory (this check also catches zero-sized arguments). 3706 if (ArgOffset >= LinkageSize + ParamAreaSize) 3707 UseMemory = true; 3708 3709 // Allocate argument on the stack. 3710 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3711 if (Flags.isInConsecutiveRegsLast()) 3712 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3713 // If we overran the argument save area, we must use memory 3714 // (this check catches arguments passed partially in memory) 3715 if (ArgOffset > LinkageSize + ParamAreaSize) 3716 UseMemory = true; 3717 3718 // However, if the argument is actually passed in an FPR or a VR, 3719 // we don't use memory after all. 3720 if (!Flags.isByVal()) { 3721 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3722 if (AvailableFPRs > 0) { 3723 --AvailableFPRs; 3724 return false; 3725 } 3726 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3727 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3728 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3729 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3730 if (AvailableVRs > 0) { 3731 --AvailableVRs; 3732 return false; 3733 } 3734 } 3735 3736 return UseMemory; 3737 } 3738 3739 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3740 /// ensure minimum alignment required for target. 3741 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3742 unsigned NumBytes) { 3743 return alignTo(NumBytes, Lowering->getStackAlign()); 3744 } 3745 3746 SDValue PPCTargetLowering::LowerFormalArguments( 3747 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3748 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3749 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3750 if (Subtarget.isAIXABI()) 3751 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3752 InVals); 3753 if (Subtarget.is64BitELFABI()) 3754 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3755 InVals); 3756 assert(Subtarget.is32BitELFABI()); 3757 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3758 InVals); 3759 } 3760 3761 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3762 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3763 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3764 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3765 3766 // 32-bit SVR4 ABI Stack Frame Layout: 3767 // +-----------------------------------+ 3768 // +--> | Back chain | 3769 // | +-----------------------------------+ 3770 // | | Floating-point register save area | 3771 // | +-----------------------------------+ 3772 // | | General register save area | 3773 // | +-----------------------------------+ 3774 // | | CR save word | 3775 // | +-----------------------------------+ 3776 // | | VRSAVE save word | 3777 // | +-----------------------------------+ 3778 // | | Alignment padding | 3779 // | +-----------------------------------+ 3780 // | | Vector register save area | 3781 // | +-----------------------------------+ 3782 // | | Local variable space | 3783 // | +-----------------------------------+ 3784 // | | Parameter list area | 3785 // | +-----------------------------------+ 3786 // | | LR save word | 3787 // | +-----------------------------------+ 3788 // SP--> +--- | Back chain | 3789 // +-----------------------------------+ 3790 // 3791 // Specifications: 3792 // System V Application Binary Interface PowerPC Processor Supplement 3793 // AltiVec Technology Programming Interface Manual 3794 3795 MachineFunction &MF = DAG.getMachineFunction(); 3796 MachineFrameInfo &MFI = MF.getFrameInfo(); 3797 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3798 3799 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3800 // Potential tail calls could cause overwriting of argument stack slots. 3801 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3802 (CallConv == CallingConv::Fast)); 3803 const Align PtrAlign(4); 3804 3805 // Assign locations to all of the incoming arguments. 3806 SmallVector<CCValAssign, 16> ArgLocs; 3807 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3808 *DAG.getContext()); 3809 3810 // Reserve space for the linkage area on the stack. 3811 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3812 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3813 if (useSoftFloat()) 3814 CCInfo.PreAnalyzeFormalArguments(Ins); 3815 3816 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3817 CCInfo.clearWasPPCF128(); 3818 3819 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3820 CCValAssign &VA = ArgLocs[i]; 3821 3822 // Arguments stored in registers. 3823 if (VA.isRegLoc()) { 3824 const TargetRegisterClass *RC; 3825 EVT ValVT = VA.getValVT(); 3826 3827 switch (ValVT.getSimpleVT().SimpleTy) { 3828 default: 3829 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3830 case MVT::i1: 3831 case MVT::i32: 3832 RC = &PPC::GPRCRegClass; 3833 break; 3834 case MVT::f32: 3835 if (Subtarget.hasP8Vector()) 3836 RC = &PPC::VSSRCRegClass; 3837 else if (Subtarget.hasSPE()) 3838 RC = &PPC::GPRCRegClass; 3839 else 3840 RC = &PPC::F4RCRegClass; 3841 break; 3842 case MVT::f64: 3843 if (Subtarget.hasVSX()) 3844 RC = &PPC::VSFRCRegClass; 3845 else if (Subtarget.hasSPE()) 3846 // SPE passes doubles in GPR pairs. 3847 RC = &PPC::GPRCRegClass; 3848 else 3849 RC = &PPC::F8RCRegClass; 3850 break; 3851 case MVT::v16i8: 3852 case MVT::v8i16: 3853 case MVT::v4i32: 3854 RC = &PPC::VRRCRegClass; 3855 break; 3856 case MVT::v4f32: 3857 RC = &PPC::VRRCRegClass; 3858 break; 3859 case MVT::v2f64: 3860 case MVT::v2i64: 3861 RC = &PPC::VRRCRegClass; 3862 break; 3863 } 3864 3865 SDValue ArgValue; 3866 // Transform the arguments stored in physical registers into 3867 // virtual ones. 3868 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3869 assert(i + 1 < e && "No second half of double precision argument"); 3870 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3871 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3872 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3873 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3874 if (!Subtarget.isLittleEndian()) 3875 std::swap (ArgValueLo, ArgValueHi); 3876 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3877 ArgValueHi); 3878 } else { 3879 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3880 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3881 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3882 if (ValVT == MVT::i1) 3883 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3884 } 3885 3886 InVals.push_back(ArgValue); 3887 } else { 3888 // Argument stored in memory. 3889 assert(VA.isMemLoc()); 3890 3891 // Get the extended size of the argument type in stack 3892 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3893 // Get the actual size of the argument type 3894 unsigned ObjSize = VA.getValVT().getStoreSize(); 3895 unsigned ArgOffset = VA.getLocMemOffset(); 3896 // Stack objects in PPC32 are right justified. 3897 ArgOffset += ArgSize - ObjSize; 3898 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3899 3900 // Create load nodes to retrieve arguments from the stack. 3901 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3902 InVals.push_back( 3903 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3904 } 3905 } 3906 3907 // Assign locations to all of the incoming aggregate by value arguments. 3908 // Aggregates passed by value are stored in the local variable space of the 3909 // caller's stack frame, right above the parameter list area. 3910 SmallVector<CCValAssign, 16> ByValArgLocs; 3911 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3912 ByValArgLocs, *DAG.getContext()); 3913 3914 // Reserve stack space for the allocations in CCInfo. 3915 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3916 3917 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3918 3919 // Area that is at least reserved in the caller of this function. 3920 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3921 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3922 3923 // Set the size that is at least reserved in caller of this function. Tail 3924 // call optimized function's reserved stack space needs to be aligned so that 3925 // taking the difference between two stack areas will result in an aligned 3926 // stack. 3927 MinReservedArea = 3928 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3929 FuncInfo->setMinReservedArea(MinReservedArea); 3930 3931 SmallVector<SDValue, 8> MemOps; 3932 3933 // If the function takes variable number of arguments, make a frame index for 3934 // the start of the first vararg value... for expansion of llvm.va_start. 3935 if (isVarArg) { 3936 static const MCPhysReg GPArgRegs[] = { 3937 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3938 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3939 }; 3940 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3941 3942 static const MCPhysReg FPArgRegs[] = { 3943 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3944 PPC::F8 3945 }; 3946 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3947 3948 if (useSoftFloat() || hasSPE()) 3949 NumFPArgRegs = 0; 3950 3951 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3952 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3953 3954 // Make room for NumGPArgRegs and NumFPArgRegs. 3955 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3956 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3957 3958 FuncInfo->setVarArgsStackOffset( 3959 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3960 CCInfo.getNextStackOffset(), true)); 3961 3962 FuncInfo->setVarArgsFrameIndex( 3963 MFI.CreateStackObject(Depth, Align(8), false)); 3964 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3965 3966 // The fixed integer arguments of a variadic function are stored to the 3967 // VarArgsFrameIndex on the stack so that they may be loaded by 3968 // dereferencing the result of va_next. 3969 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3970 // Get an existing live-in vreg, or add a new one. 3971 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3972 if (!VReg) 3973 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3974 3975 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3976 SDValue Store = 3977 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3978 MemOps.push_back(Store); 3979 // Increment the address by four for the next argument to store 3980 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3981 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3982 } 3983 3984 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3985 // is set. 3986 // The double arguments are stored to the VarArgsFrameIndex 3987 // on the stack. 3988 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3989 // Get an existing live-in vreg, or add a new one. 3990 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3991 if (!VReg) 3992 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3993 3994 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3995 SDValue Store = 3996 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3997 MemOps.push_back(Store); 3998 // Increment the address by eight for the next argument to store 3999 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4000 PtrVT); 4001 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4002 } 4003 } 4004 4005 if (!MemOps.empty()) 4006 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4007 4008 return Chain; 4009 } 4010 4011 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4012 // value to MVT::i64 and then truncate to the correct register size. 4013 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4014 EVT ObjectVT, SelectionDAG &DAG, 4015 SDValue ArgVal, 4016 const SDLoc &dl) const { 4017 if (Flags.isSExt()) 4018 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4019 DAG.getValueType(ObjectVT)); 4020 else if (Flags.isZExt()) 4021 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4022 DAG.getValueType(ObjectVT)); 4023 4024 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4025 } 4026 4027 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4028 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4029 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4030 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4031 // TODO: add description of PPC stack frame format, or at least some docs. 4032 // 4033 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4034 bool isLittleEndian = Subtarget.isLittleEndian(); 4035 MachineFunction &MF = DAG.getMachineFunction(); 4036 MachineFrameInfo &MFI = MF.getFrameInfo(); 4037 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4038 4039 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4040 "fastcc not supported on varargs functions"); 4041 4042 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4043 // Potential tail calls could cause overwriting of argument stack slots. 4044 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4045 (CallConv == CallingConv::Fast)); 4046 unsigned PtrByteSize = 8; 4047 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4048 4049 static const MCPhysReg GPR[] = { 4050 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4051 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4052 }; 4053 static const MCPhysReg VR[] = { 4054 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4055 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4056 }; 4057 4058 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4059 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4060 const unsigned Num_VR_Regs = array_lengthof(VR); 4061 4062 // Do a first pass over the arguments to determine whether the ABI 4063 // guarantees that our caller has allocated the parameter save area 4064 // on its stack frame. In the ELFv1 ABI, this is always the case; 4065 // in the ELFv2 ABI, it is true if this is a vararg function or if 4066 // any parameter is located in a stack slot. 4067 4068 bool HasParameterArea = !isELFv2ABI || isVarArg; 4069 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4070 unsigned NumBytes = LinkageSize; 4071 unsigned AvailableFPRs = Num_FPR_Regs; 4072 unsigned AvailableVRs = Num_VR_Regs; 4073 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4074 if (Ins[i].Flags.isNest()) 4075 continue; 4076 4077 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4078 PtrByteSize, LinkageSize, ParamAreaSize, 4079 NumBytes, AvailableFPRs, AvailableVRs)) 4080 HasParameterArea = true; 4081 } 4082 4083 // Add DAG nodes to load the arguments or copy them out of registers. On 4084 // entry to a function on PPC, the arguments start after the linkage area, 4085 // although the first ones are often in registers. 4086 4087 unsigned ArgOffset = LinkageSize; 4088 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4089 SmallVector<SDValue, 8> MemOps; 4090 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4091 unsigned CurArgIdx = 0; 4092 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4093 SDValue ArgVal; 4094 bool needsLoad = false; 4095 EVT ObjectVT = Ins[ArgNo].VT; 4096 EVT OrigVT = Ins[ArgNo].ArgVT; 4097 unsigned ObjSize = ObjectVT.getStoreSize(); 4098 unsigned ArgSize = ObjSize; 4099 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4100 if (Ins[ArgNo].isOrigArg()) { 4101 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4102 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4103 } 4104 // We re-align the argument offset for each argument, except when using the 4105 // fast calling convention, when we need to make sure we do that only when 4106 // we'll actually use a stack slot. 4107 unsigned CurArgOffset; 4108 Align Alignment; 4109 auto ComputeArgOffset = [&]() { 4110 /* Respect alignment of argument on the stack. */ 4111 Alignment = 4112 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4113 ArgOffset = alignTo(ArgOffset, Alignment); 4114 CurArgOffset = ArgOffset; 4115 }; 4116 4117 if (CallConv != CallingConv::Fast) { 4118 ComputeArgOffset(); 4119 4120 /* Compute GPR index associated with argument offset. */ 4121 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4122 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4123 } 4124 4125 // FIXME the codegen can be much improved in some cases. 4126 // We do not have to keep everything in memory. 4127 if (Flags.isByVal()) { 4128 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4129 4130 if (CallConv == CallingConv::Fast) 4131 ComputeArgOffset(); 4132 4133 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4134 ObjSize = Flags.getByValSize(); 4135 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4136 // Empty aggregate parameters do not take up registers. Examples: 4137 // struct { } a; 4138 // union { } b; 4139 // int c[0]; 4140 // etc. However, we have to provide a place-holder in InVals, so 4141 // pretend we have an 8-byte item at the current address for that 4142 // purpose. 4143 if (!ObjSize) { 4144 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4145 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4146 InVals.push_back(FIN); 4147 continue; 4148 } 4149 4150 // Create a stack object covering all stack doublewords occupied 4151 // by the argument. If the argument is (fully or partially) on 4152 // the stack, or if the argument is fully in registers but the 4153 // caller has allocated the parameter save anyway, we can refer 4154 // directly to the caller's stack frame. Otherwise, create a 4155 // local copy in our own frame. 4156 int FI; 4157 if (HasParameterArea || 4158 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4159 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4160 else 4161 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4162 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4163 4164 // Handle aggregates smaller than 8 bytes. 4165 if (ObjSize < PtrByteSize) { 4166 // The value of the object is its address, which differs from the 4167 // address of the enclosing doubleword on big-endian systems. 4168 SDValue Arg = FIN; 4169 if (!isLittleEndian) { 4170 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4171 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4172 } 4173 InVals.push_back(Arg); 4174 4175 if (GPR_idx != Num_GPR_Regs) { 4176 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4177 FuncInfo->addLiveInAttr(VReg, Flags); 4178 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4179 SDValue Store; 4180 4181 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4182 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4183 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4184 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4185 MachinePointerInfo(&*FuncArg), ObjType); 4186 } else { 4187 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4188 // store the whole register as-is to the parameter save area 4189 // slot. 4190 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4191 MachinePointerInfo(&*FuncArg)); 4192 } 4193 4194 MemOps.push_back(Store); 4195 } 4196 // Whether we copied from a register or not, advance the offset 4197 // into the parameter save area by a full doubleword. 4198 ArgOffset += PtrByteSize; 4199 continue; 4200 } 4201 4202 // The value of the object is its address, which is the address of 4203 // its first stack doubleword. 4204 InVals.push_back(FIN); 4205 4206 // Store whatever pieces of the object are in registers to memory. 4207 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4208 if (GPR_idx == Num_GPR_Regs) 4209 break; 4210 4211 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4212 FuncInfo->addLiveInAttr(VReg, Flags); 4213 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4214 SDValue Addr = FIN; 4215 if (j) { 4216 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4217 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4218 } 4219 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4220 MachinePointerInfo(&*FuncArg, j)); 4221 MemOps.push_back(Store); 4222 ++GPR_idx; 4223 } 4224 ArgOffset += ArgSize; 4225 continue; 4226 } 4227 4228 switch (ObjectVT.getSimpleVT().SimpleTy) { 4229 default: llvm_unreachable("Unhandled argument type!"); 4230 case MVT::i1: 4231 case MVT::i32: 4232 case MVT::i64: 4233 if (Flags.isNest()) { 4234 // The 'nest' parameter, if any, is passed in R11. 4235 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4236 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4237 4238 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4239 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4240 4241 break; 4242 } 4243 4244 // These can be scalar arguments or elements of an integer array type 4245 // passed directly. Clang may use those instead of "byval" aggregate 4246 // types to avoid forcing arguments to memory unnecessarily. 4247 if (GPR_idx != Num_GPR_Regs) { 4248 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4249 FuncInfo->addLiveInAttr(VReg, Flags); 4250 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4251 4252 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4253 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4254 // value to MVT::i64 and then truncate to the correct register size. 4255 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4256 } else { 4257 if (CallConv == CallingConv::Fast) 4258 ComputeArgOffset(); 4259 4260 needsLoad = true; 4261 ArgSize = PtrByteSize; 4262 } 4263 if (CallConv != CallingConv::Fast || needsLoad) 4264 ArgOffset += 8; 4265 break; 4266 4267 case MVT::f32: 4268 case MVT::f64: 4269 // These can be scalar arguments or elements of a float array type 4270 // passed directly. The latter are used to implement ELFv2 homogenous 4271 // float aggregates. 4272 if (FPR_idx != Num_FPR_Regs) { 4273 unsigned VReg; 4274 4275 if (ObjectVT == MVT::f32) 4276 VReg = MF.addLiveIn(FPR[FPR_idx], 4277 Subtarget.hasP8Vector() 4278 ? &PPC::VSSRCRegClass 4279 : &PPC::F4RCRegClass); 4280 else 4281 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4282 ? &PPC::VSFRCRegClass 4283 : &PPC::F8RCRegClass); 4284 4285 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4286 ++FPR_idx; 4287 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4288 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4289 // once we support fp <-> gpr moves. 4290 4291 // This can only ever happen in the presence of f32 array types, 4292 // since otherwise we never run out of FPRs before running out 4293 // of GPRs. 4294 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4295 FuncInfo->addLiveInAttr(VReg, Flags); 4296 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4297 4298 if (ObjectVT == MVT::f32) { 4299 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4300 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4301 DAG.getConstant(32, dl, MVT::i32)); 4302 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4303 } 4304 4305 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4306 } else { 4307 if (CallConv == CallingConv::Fast) 4308 ComputeArgOffset(); 4309 4310 needsLoad = true; 4311 } 4312 4313 // When passing an array of floats, the array occupies consecutive 4314 // space in the argument area; only round up to the next doubleword 4315 // at the end of the array. Otherwise, each float takes 8 bytes. 4316 if (CallConv != CallingConv::Fast || needsLoad) { 4317 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4318 ArgOffset += ArgSize; 4319 if (Flags.isInConsecutiveRegsLast()) 4320 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4321 } 4322 break; 4323 case MVT::v4f32: 4324 case MVT::v4i32: 4325 case MVT::v8i16: 4326 case MVT::v16i8: 4327 case MVT::v2f64: 4328 case MVT::v2i64: 4329 case MVT::v1i128: 4330 case MVT::f128: 4331 // These can be scalar arguments or elements of a vector array type 4332 // passed directly. The latter are used to implement ELFv2 homogenous 4333 // vector aggregates. 4334 if (VR_idx != Num_VR_Regs) { 4335 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4336 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4337 ++VR_idx; 4338 } else { 4339 if (CallConv == CallingConv::Fast) 4340 ComputeArgOffset(); 4341 needsLoad = true; 4342 } 4343 if (CallConv != CallingConv::Fast || needsLoad) 4344 ArgOffset += 16; 4345 break; 4346 } 4347 4348 // We need to load the argument to a virtual register if we determined 4349 // above that we ran out of physical registers of the appropriate type. 4350 if (needsLoad) { 4351 if (ObjSize < ArgSize && !isLittleEndian) 4352 CurArgOffset += ArgSize - ObjSize; 4353 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4354 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4355 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4356 } 4357 4358 InVals.push_back(ArgVal); 4359 } 4360 4361 // Area that is at least reserved in the caller of this function. 4362 unsigned MinReservedArea; 4363 if (HasParameterArea) 4364 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4365 else 4366 MinReservedArea = LinkageSize; 4367 4368 // Set the size that is at least reserved in caller of this function. Tail 4369 // call optimized functions' reserved stack space needs to be aligned so that 4370 // taking the difference between two stack areas will result in an aligned 4371 // stack. 4372 MinReservedArea = 4373 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4374 FuncInfo->setMinReservedArea(MinReservedArea); 4375 4376 // If the function takes variable number of arguments, make a frame index for 4377 // the start of the first vararg value... for expansion of llvm.va_start. 4378 // On ELFv2ABI spec, it writes: 4379 // C programs that are intended to be *portable* across different compilers 4380 // and architectures must use the header file <stdarg.h> to deal with variable 4381 // argument lists. 4382 if (isVarArg && MFI.hasVAStart()) { 4383 int Depth = ArgOffset; 4384 4385 FuncInfo->setVarArgsFrameIndex( 4386 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4387 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4388 4389 // If this function is vararg, store any remaining integer argument regs 4390 // to their spots on the stack so that they may be loaded by dereferencing 4391 // the result of va_next. 4392 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4393 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4394 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4395 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4396 SDValue Store = 4397 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4398 MemOps.push_back(Store); 4399 // Increment the address by four for the next argument to store 4400 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4401 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4402 } 4403 } 4404 4405 if (!MemOps.empty()) 4406 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4407 4408 return Chain; 4409 } 4410 4411 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4412 /// adjusted to accommodate the arguments for the tailcall. 4413 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4414 unsigned ParamSize) { 4415 4416 if (!isTailCall) return 0; 4417 4418 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4419 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4420 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4421 // Remember only if the new adjustment is bigger. 4422 if (SPDiff < FI->getTailCallSPDelta()) 4423 FI->setTailCallSPDelta(SPDiff); 4424 4425 return SPDiff; 4426 } 4427 4428 static bool isFunctionGlobalAddress(SDValue Callee); 4429 4430 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4431 const TargetMachine &TM) { 4432 // It does not make sense to call callsShareTOCBase() with a caller that 4433 // is PC Relative since PC Relative callers do not have a TOC. 4434 #ifndef NDEBUG 4435 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4436 assert(!STICaller->isUsingPCRelativeCalls() && 4437 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4438 #endif 4439 4440 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4441 // don't have enough information to determine if the caller and callee share 4442 // the same TOC base, so we have to pessimistically assume they don't for 4443 // correctness. 4444 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4445 if (!G) 4446 return false; 4447 4448 const GlobalValue *GV = G->getGlobal(); 4449 4450 // If the callee is preemptable, then the static linker will use a plt-stub 4451 // which saves the toc to the stack, and needs a nop after the call 4452 // instruction to convert to a toc-restore. 4453 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4454 return false; 4455 4456 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4457 // We may need a TOC restore in the situation where the caller requires a 4458 // valid TOC but the callee is PC Relative and does not. 4459 const Function *F = dyn_cast<Function>(GV); 4460 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4461 4462 // If we have an Alias we can try to get the function from there. 4463 if (Alias) { 4464 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4465 F = dyn_cast<Function>(GlobalObj); 4466 } 4467 4468 // If we still have no valid function pointer we do not have enough 4469 // information to determine if the callee uses PC Relative calls so we must 4470 // assume that it does. 4471 if (!F) 4472 return false; 4473 4474 // If the callee uses PC Relative we cannot guarantee that the callee won't 4475 // clobber the TOC of the caller and so we must assume that the two 4476 // functions do not share a TOC base. 4477 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4478 if (STICallee->isUsingPCRelativeCalls()) 4479 return false; 4480 4481 // If the GV is not a strong definition then we need to assume it can be 4482 // replaced by another function at link time. The function that replaces 4483 // it may not share the same TOC as the caller since the callee may be 4484 // replaced by a PC Relative version of the same function. 4485 if (!GV->isStrongDefinitionForLinker()) 4486 return false; 4487 4488 // The medium and large code models are expected to provide a sufficiently 4489 // large TOC to provide all data addressing needs of a module with a 4490 // single TOC. 4491 if (CodeModel::Medium == TM.getCodeModel() || 4492 CodeModel::Large == TM.getCodeModel()) 4493 return true; 4494 4495 // Any explicitly-specified sections and section prefixes must also match. 4496 // Also, if we're using -ffunction-sections, then each function is always in 4497 // a different section (the same is true for COMDAT functions). 4498 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4499 GV->getSection() != Caller->getSection()) 4500 return false; 4501 if (const auto *F = dyn_cast<Function>(GV)) { 4502 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4503 return false; 4504 } 4505 4506 return true; 4507 } 4508 4509 static bool 4510 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4511 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4512 assert(Subtarget.is64BitELFABI()); 4513 4514 const unsigned PtrByteSize = 8; 4515 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4516 4517 static const MCPhysReg GPR[] = { 4518 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4519 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4520 }; 4521 static const MCPhysReg VR[] = { 4522 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4523 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4524 }; 4525 4526 const unsigned NumGPRs = array_lengthof(GPR); 4527 const unsigned NumFPRs = 13; 4528 const unsigned NumVRs = array_lengthof(VR); 4529 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4530 4531 unsigned NumBytes = LinkageSize; 4532 unsigned AvailableFPRs = NumFPRs; 4533 unsigned AvailableVRs = NumVRs; 4534 4535 for (const ISD::OutputArg& Param : Outs) { 4536 if (Param.Flags.isNest()) continue; 4537 4538 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4539 LinkageSize, ParamAreaSize, NumBytes, 4540 AvailableFPRs, AvailableVRs)) 4541 return true; 4542 } 4543 return false; 4544 } 4545 4546 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4547 if (CB.arg_size() != CallerFn->arg_size()) 4548 return false; 4549 4550 auto CalleeArgIter = CB.arg_begin(); 4551 auto CalleeArgEnd = CB.arg_end(); 4552 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4553 4554 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4555 const Value* CalleeArg = *CalleeArgIter; 4556 const Value* CallerArg = &(*CallerArgIter); 4557 if (CalleeArg == CallerArg) 4558 continue; 4559 4560 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4561 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4562 // } 4563 // 1st argument of callee is undef and has the same type as caller. 4564 if (CalleeArg->getType() == CallerArg->getType() && 4565 isa<UndefValue>(CalleeArg)) 4566 continue; 4567 4568 return false; 4569 } 4570 4571 return true; 4572 } 4573 4574 // Returns true if TCO is possible between the callers and callees 4575 // calling conventions. 4576 static bool 4577 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4578 CallingConv::ID CalleeCC) { 4579 // Tail calls are possible with fastcc and ccc. 4580 auto isTailCallableCC = [] (CallingConv::ID CC){ 4581 return CC == CallingConv::C || CC == CallingConv::Fast; 4582 }; 4583 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4584 return false; 4585 4586 // We can safely tail call both fastcc and ccc callees from a c calling 4587 // convention caller. If the caller is fastcc, we may have less stack space 4588 // than a non-fastcc caller with the same signature so disable tail-calls in 4589 // that case. 4590 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4591 } 4592 4593 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4594 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4595 const SmallVectorImpl<ISD::OutputArg> &Outs, 4596 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4597 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4598 4599 if (DisableSCO && !TailCallOpt) return false; 4600 4601 // Variadic argument functions are not supported. 4602 if (isVarArg) return false; 4603 4604 auto &Caller = DAG.getMachineFunction().getFunction(); 4605 // Check that the calling conventions are compatible for tco. 4606 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4607 return false; 4608 4609 // Caller contains any byval parameter is not supported. 4610 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4611 return false; 4612 4613 // Callee contains any byval parameter is not supported, too. 4614 // Note: This is a quick work around, because in some cases, e.g. 4615 // caller's stack size > callee's stack size, we are still able to apply 4616 // sibling call optimization. For example, gcc is able to do SCO for caller1 4617 // in the following example, but not for caller2. 4618 // struct test { 4619 // long int a; 4620 // char ary[56]; 4621 // } gTest; 4622 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4623 // b->a = v.a; 4624 // return 0; 4625 // } 4626 // void caller1(struct test a, struct test c, struct test *b) { 4627 // callee(gTest, b); } 4628 // void caller2(struct test *b) { callee(gTest, b); } 4629 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4630 return false; 4631 4632 // If callee and caller use different calling conventions, we cannot pass 4633 // parameters on stack since offsets for the parameter area may be different. 4634 if (Caller.getCallingConv() != CalleeCC && 4635 needStackSlotPassParameters(Subtarget, Outs)) 4636 return false; 4637 4638 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4639 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4640 // callee potentially have different TOC bases then we cannot tail call since 4641 // we need to restore the TOC pointer after the call. 4642 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4643 // We cannot guarantee this for indirect calls or calls to external functions. 4644 // When PC-Relative addressing is used, the concept of the TOC is no longer 4645 // applicable so this check is not required. 4646 // Check first for indirect calls. 4647 if (!Subtarget.isUsingPCRelativeCalls() && 4648 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4649 return false; 4650 4651 // Check if we share the TOC base. 4652 if (!Subtarget.isUsingPCRelativeCalls() && 4653 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4654 return false; 4655 4656 // TCO allows altering callee ABI, so we don't have to check further. 4657 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4658 return true; 4659 4660 if (DisableSCO) return false; 4661 4662 // If callee use the same argument list that caller is using, then we can 4663 // apply SCO on this case. If it is not, then we need to check if callee needs 4664 // stack for passing arguments. 4665 // PC Relative tail calls may not have a CallBase. 4666 // If there is no CallBase we cannot verify if we have the same argument 4667 // list so assume that we don't have the same argument list. 4668 if (CB && !hasSameArgumentList(&Caller, *CB) && 4669 needStackSlotPassParameters(Subtarget, Outs)) 4670 return false; 4671 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4672 return false; 4673 4674 return true; 4675 } 4676 4677 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4678 /// for tail call optimization. Targets which want to do tail call 4679 /// optimization should implement this function. 4680 bool 4681 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4682 CallingConv::ID CalleeCC, 4683 bool isVarArg, 4684 const SmallVectorImpl<ISD::InputArg> &Ins, 4685 SelectionDAG& DAG) const { 4686 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4687 return false; 4688 4689 // Variable argument functions are not supported. 4690 if (isVarArg) 4691 return false; 4692 4693 MachineFunction &MF = DAG.getMachineFunction(); 4694 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4695 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4696 // Functions containing by val parameters are not supported. 4697 for (unsigned i = 0; i != Ins.size(); i++) { 4698 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4699 if (Flags.isByVal()) return false; 4700 } 4701 4702 // Non-PIC/GOT tail calls are supported. 4703 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4704 return true; 4705 4706 // At the moment we can only do local tail calls (in same module, hidden 4707 // or protected) if we are generating PIC. 4708 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4709 return G->getGlobal()->hasHiddenVisibility() 4710 || G->getGlobal()->hasProtectedVisibility(); 4711 } 4712 4713 return false; 4714 } 4715 4716 /// isCallCompatibleAddress - Return the immediate to use if the specified 4717 /// 32-bit value is representable in the immediate field of a BxA instruction. 4718 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4719 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4720 if (!C) return nullptr; 4721 4722 int Addr = C->getZExtValue(); 4723 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4724 SignExtend32<26>(Addr) != Addr) 4725 return nullptr; // Top 6 bits have to be sext of immediate. 4726 4727 return DAG 4728 .getConstant( 4729 (int)C->getZExtValue() >> 2, SDLoc(Op), 4730 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4731 .getNode(); 4732 } 4733 4734 namespace { 4735 4736 struct TailCallArgumentInfo { 4737 SDValue Arg; 4738 SDValue FrameIdxOp; 4739 int FrameIdx = 0; 4740 4741 TailCallArgumentInfo() = default; 4742 }; 4743 4744 } // end anonymous namespace 4745 4746 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4747 static void StoreTailCallArgumentsToStackSlot( 4748 SelectionDAG &DAG, SDValue Chain, 4749 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4750 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4751 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4752 SDValue Arg = TailCallArgs[i].Arg; 4753 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4754 int FI = TailCallArgs[i].FrameIdx; 4755 // Store relative to framepointer. 4756 MemOpChains.push_back(DAG.getStore( 4757 Chain, dl, Arg, FIN, 4758 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4759 } 4760 } 4761 4762 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4763 /// the appropriate stack slot for the tail call optimized function call. 4764 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4765 SDValue OldRetAddr, SDValue OldFP, 4766 int SPDiff, const SDLoc &dl) { 4767 if (SPDiff) { 4768 // Calculate the new stack slot for the return address. 4769 MachineFunction &MF = DAG.getMachineFunction(); 4770 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4771 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4772 bool isPPC64 = Subtarget.isPPC64(); 4773 int SlotSize = isPPC64 ? 8 : 4; 4774 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4775 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4776 NewRetAddrLoc, true); 4777 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4778 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4779 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4780 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4781 } 4782 return Chain; 4783 } 4784 4785 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4786 /// the position of the argument. 4787 static void 4788 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4789 SDValue Arg, int SPDiff, unsigned ArgOffset, 4790 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4791 int Offset = ArgOffset + SPDiff; 4792 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4793 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4794 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4795 SDValue FIN = DAG.getFrameIndex(FI, VT); 4796 TailCallArgumentInfo Info; 4797 Info.Arg = Arg; 4798 Info.FrameIdxOp = FIN; 4799 Info.FrameIdx = FI; 4800 TailCallArguments.push_back(Info); 4801 } 4802 4803 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4804 /// stack slot. Returns the chain as result and the loaded frame pointers in 4805 /// LROpOut/FPOpout. Used when tail calling. 4806 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4807 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4808 SDValue &FPOpOut, const SDLoc &dl) const { 4809 if (SPDiff) { 4810 // Load the LR and FP stack slot for later adjusting. 4811 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4812 LROpOut = getReturnAddrFrameIndex(DAG); 4813 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4814 Chain = SDValue(LROpOut.getNode(), 1); 4815 } 4816 return Chain; 4817 } 4818 4819 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4820 /// by "Src" to address "Dst" of size "Size". Alignment information is 4821 /// specified by the specific parameter attribute. The copy will be passed as 4822 /// a byval function parameter. 4823 /// Sometimes what we are copying is the end of a larger object, the part that 4824 /// does not fit in registers. 4825 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4826 SDValue Chain, ISD::ArgFlagsTy Flags, 4827 SelectionDAG &DAG, const SDLoc &dl) { 4828 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4829 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4830 Flags.getNonZeroByValAlign(), false, false, false, 4831 MachinePointerInfo(), MachinePointerInfo()); 4832 } 4833 4834 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4835 /// tail calls. 4836 static void LowerMemOpCallTo( 4837 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4838 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4839 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4840 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4841 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4842 if (!isTailCall) { 4843 if (isVector) { 4844 SDValue StackPtr; 4845 if (isPPC64) 4846 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4847 else 4848 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4849 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4850 DAG.getConstant(ArgOffset, dl, PtrVT)); 4851 } 4852 MemOpChains.push_back( 4853 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4854 // Calculate and remember argument location. 4855 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4856 TailCallArguments); 4857 } 4858 4859 static void 4860 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4861 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4862 SDValue FPOp, 4863 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4864 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4865 // might overwrite each other in case of tail call optimization. 4866 SmallVector<SDValue, 8> MemOpChains2; 4867 // Do not flag preceding copytoreg stuff together with the following stuff. 4868 InFlag = SDValue(); 4869 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4870 MemOpChains2, dl); 4871 if (!MemOpChains2.empty()) 4872 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4873 4874 // Store the return address to the appropriate stack slot. 4875 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4876 4877 // Emit callseq_end just before tailcall node. 4878 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4879 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4880 InFlag = Chain.getValue(1); 4881 } 4882 4883 // Is this global address that of a function that can be called by name? (as 4884 // opposed to something that must hold a descriptor for an indirect call). 4885 static bool isFunctionGlobalAddress(SDValue Callee) { 4886 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4887 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4888 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4889 return false; 4890 4891 return G->getGlobal()->getValueType()->isFunctionTy(); 4892 } 4893 4894 return false; 4895 } 4896 4897 SDValue PPCTargetLowering::LowerCallResult( 4898 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4899 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4900 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4901 SmallVector<CCValAssign, 16> RVLocs; 4902 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4903 *DAG.getContext()); 4904 4905 CCRetInfo.AnalyzeCallResult( 4906 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4907 ? RetCC_PPC_Cold 4908 : RetCC_PPC); 4909 4910 // Copy all of the result registers out of their specified physreg. 4911 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4912 CCValAssign &VA = RVLocs[i]; 4913 assert(VA.isRegLoc() && "Can only return in registers!"); 4914 4915 SDValue Val; 4916 4917 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 4918 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4919 InFlag); 4920 Chain = Lo.getValue(1); 4921 InFlag = Lo.getValue(2); 4922 VA = RVLocs[++i]; // skip ahead to next loc 4923 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4924 InFlag); 4925 Chain = Hi.getValue(1); 4926 InFlag = Hi.getValue(2); 4927 if (!Subtarget.isLittleEndian()) 4928 std::swap (Lo, Hi); 4929 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 4930 } else { 4931 Val = DAG.getCopyFromReg(Chain, dl, 4932 VA.getLocReg(), VA.getLocVT(), InFlag); 4933 Chain = Val.getValue(1); 4934 InFlag = Val.getValue(2); 4935 } 4936 4937 switch (VA.getLocInfo()) { 4938 default: llvm_unreachable("Unknown loc info!"); 4939 case CCValAssign::Full: break; 4940 case CCValAssign::AExt: 4941 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4942 break; 4943 case CCValAssign::ZExt: 4944 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4945 DAG.getValueType(VA.getValVT())); 4946 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4947 break; 4948 case CCValAssign::SExt: 4949 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4950 DAG.getValueType(VA.getValVT())); 4951 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4952 break; 4953 } 4954 4955 InVals.push_back(Val); 4956 } 4957 4958 return Chain; 4959 } 4960 4961 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 4962 const PPCSubtarget &Subtarget, bool isPatchPoint) { 4963 // PatchPoint calls are not indirect. 4964 if (isPatchPoint) 4965 return false; 4966 4967 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 4968 return false; 4969 4970 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 4971 // becuase the immediate function pointer points to a descriptor instead of 4972 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 4973 // pointer immediate points to the global entry point, while the BLA would 4974 // need to jump to the local entry point (see rL211174). 4975 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 4976 isBLACompatibleAddress(Callee, DAG)) 4977 return false; 4978 4979 return true; 4980 } 4981 4982 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 4983 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 4984 return Subtarget.isAIXABI() || 4985 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 4986 } 4987 4988 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 4989 const Function &Caller, 4990 const SDValue &Callee, 4991 const PPCSubtarget &Subtarget, 4992 const TargetMachine &TM) { 4993 if (CFlags.IsTailCall) 4994 return PPCISD::TC_RETURN; 4995 4996 // This is a call through a function pointer. 4997 if (CFlags.IsIndirect) { 4998 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 4999 // indirect calls. The save of the caller's TOC pointer to the stack will be 5000 // inserted into the DAG as part of call lowering. The restore of the TOC 5001 // pointer is modeled by using a pseudo instruction for the call opcode that 5002 // represents the 2 instruction sequence of an indirect branch and link, 5003 // immediately followed by a load of the TOC pointer from the the stack save 5004 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5005 // as it is not saved or used. 5006 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5007 : PPCISD::BCTRL; 5008 } 5009 5010 if (Subtarget.isUsingPCRelativeCalls()) { 5011 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5012 return PPCISD::CALL_NOTOC; 5013 } 5014 5015 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5016 // immediately following the call instruction if the caller and callee may 5017 // have different TOC bases. At link time if the linker determines the calls 5018 // may not share a TOC base, the call is redirected to a trampoline inserted 5019 // by the linker. The trampoline will (among other things) save the callers 5020 // TOC pointer at an ABI designated offset in the linkage area and the linker 5021 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5022 // into gpr2. 5023 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5024 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5025 : PPCISD::CALL_NOP; 5026 5027 return PPCISD::CALL; 5028 } 5029 5030 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5031 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5032 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5033 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5034 return SDValue(Dest, 0); 5035 5036 // Returns true if the callee is local, and false otherwise. 5037 auto isLocalCallee = [&]() { 5038 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5039 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5040 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5041 5042 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5043 !dyn_cast_or_null<GlobalIFunc>(GV); 5044 }; 5045 5046 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5047 // a static relocation model causes some versions of GNU LD (2.17.50, at 5048 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5049 // built with secure-PLT. 5050 bool UsePlt = 5051 Subtarget.is32BitELFABI() && !isLocalCallee() && 5052 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5053 5054 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5055 const TargetMachine &TM = Subtarget.getTargetMachine(); 5056 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5057 MCSymbolXCOFF *S = 5058 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5059 5060 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5061 return DAG.getMCSymbol(S, PtrVT); 5062 }; 5063 5064 if (isFunctionGlobalAddress(Callee)) { 5065 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5066 5067 if (Subtarget.isAIXABI()) { 5068 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5069 return getAIXFuncEntryPointSymbolSDNode(GV); 5070 } 5071 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5072 UsePlt ? PPCII::MO_PLT : 0); 5073 } 5074 5075 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5076 const char *SymName = S->getSymbol(); 5077 if (Subtarget.isAIXABI()) { 5078 // If there exists a user-declared function whose name is the same as the 5079 // ExternalSymbol's, then we pick up the user-declared version. 5080 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5081 if (const Function *F = 5082 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5083 return getAIXFuncEntryPointSymbolSDNode(F); 5084 5085 // On AIX, direct function calls reference the symbol for the function's 5086 // entry point, which is named by prepending a "." before the function's 5087 // C-linkage name. A Qualname is returned here because an external 5088 // function entry point is a csect with XTY_ER property. 5089 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5090 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5091 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5092 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5093 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5094 return Sec->getQualNameSymbol(); 5095 }; 5096 5097 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5098 } 5099 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5100 UsePlt ? PPCII::MO_PLT : 0); 5101 } 5102 5103 // No transformation needed. 5104 assert(Callee.getNode() && "What no callee?"); 5105 return Callee; 5106 } 5107 5108 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5109 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5110 "Expected a CALLSEQ_STARTSDNode."); 5111 5112 // The last operand is the chain, except when the node has glue. If the node 5113 // has glue, then the last operand is the glue, and the chain is the second 5114 // last operand. 5115 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5116 if (LastValue.getValueType() != MVT::Glue) 5117 return LastValue; 5118 5119 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5120 } 5121 5122 // Creates the node that moves a functions address into the count register 5123 // to prepare for an indirect call instruction. 5124 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5125 SDValue &Glue, SDValue &Chain, 5126 const SDLoc &dl) { 5127 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5128 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5129 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5130 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5131 // The glue is the second value produced. 5132 Glue = Chain.getValue(1); 5133 } 5134 5135 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5136 SDValue &Glue, SDValue &Chain, 5137 SDValue CallSeqStart, 5138 const CallBase *CB, const SDLoc &dl, 5139 bool hasNest, 5140 const PPCSubtarget &Subtarget) { 5141 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5142 // entry point, but to the function descriptor (the function entry point 5143 // address is part of the function descriptor though). 5144 // The function descriptor is a three doubleword structure with the 5145 // following fields: function entry point, TOC base address and 5146 // environment pointer. 5147 // Thus for a call through a function pointer, the following actions need 5148 // to be performed: 5149 // 1. Save the TOC of the caller in the TOC save area of its stack 5150 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5151 // 2. Load the address of the function entry point from the function 5152 // descriptor. 5153 // 3. Load the TOC of the callee from the function descriptor into r2. 5154 // 4. Load the environment pointer from the function descriptor into 5155 // r11. 5156 // 5. Branch to the function entry point address. 5157 // 6. On return of the callee, the TOC of the caller needs to be 5158 // restored (this is done in FinishCall()). 5159 // 5160 // The loads are scheduled at the beginning of the call sequence, and the 5161 // register copies are flagged together to ensure that no other 5162 // operations can be scheduled in between. E.g. without flagging the 5163 // copies together, a TOC access in the caller could be scheduled between 5164 // the assignment of the callee TOC and the branch to the callee, which leads 5165 // to incorrect code. 5166 5167 // Start by loading the function address from the descriptor. 5168 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5169 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5170 ? (MachineMemOperand::MODereferenceable | 5171 MachineMemOperand::MOInvariant) 5172 : MachineMemOperand::MONone; 5173 5174 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5175 5176 // Registers used in building the DAG. 5177 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5178 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5179 5180 // Offsets of descriptor members. 5181 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5182 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5183 5184 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5185 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5186 5187 // One load for the functions entry point address. 5188 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5189 Alignment, MMOFlags); 5190 5191 // One for loading the TOC anchor for the module that contains the called 5192 // function. 5193 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5194 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5195 SDValue TOCPtr = 5196 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5197 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5198 5199 // One for loading the environment pointer. 5200 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5201 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5202 SDValue LoadEnvPtr = 5203 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5204 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5205 5206 5207 // Then copy the newly loaded TOC anchor to the TOC pointer. 5208 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5209 Chain = TOCVal.getValue(0); 5210 Glue = TOCVal.getValue(1); 5211 5212 // If the function call has an explicit 'nest' parameter, it takes the 5213 // place of the environment pointer. 5214 assert((!hasNest || !Subtarget.isAIXABI()) && 5215 "Nest parameter is not supported on AIX."); 5216 if (!hasNest) { 5217 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5218 Chain = EnvVal.getValue(0); 5219 Glue = EnvVal.getValue(1); 5220 } 5221 5222 // The rest of the indirect call sequence is the same as the non-descriptor 5223 // DAG. 5224 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5225 } 5226 5227 static void 5228 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5229 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5230 SelectionDAG &DAG, 5231 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5232 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5233 const PPCSubtarget &Subtarget) { 5234 const bool IsPPC64 = Subtarget.isPPC64(); 5235 // MVT for a general purpose register. 5236 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5237 5238 // First operand is always the chain. 5239 Ops.push_back(Chain); 5240 5241 // If it's a direct call pass the callee as the second operand. 5242 if (!CFlags.IsIndirect) 5243 Ops.push_back(Callee); 5244 else { 5245 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5246 5247 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5248 // on the stack (this would have been done in `LowerCall_64SVR4` or 5249 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5250 // represents both the indirect branch and a load that restores the TOC 5251 // pointer from the linkage area. The operand for the TOC restore is an add 5252 // of the TOC save offset to the stack pointer. This must be the second 5253 // operand: after the chain input but before any other variadic arguments. 5254 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5255 // saved or used. 5256 if (isTOCSaveRestoreRequired(Subtarget)) { 5257 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5258 5259 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5260 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5261 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5262 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5263 Ops.push_back(AddTOC); 5264 } 5265 5266 // Add the register used for the environment pointer. 5267 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5268 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5269 RegVT)); 5270 5271 5272 // Add CTR register as callee so a bctr can be emitted later. 5273 if (CFlags.IsTailCall) 5274 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5275 } 5276 5277 // If this is a tail call add stack pointer delta. 5278 if (CFlags.IsTailCall) 5279 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5280 5281 // Add argument registers to the end of the list so that they are known live 5282 // into the call. 5283 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5284 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5285 RegsToPass[i].second.getValueType())); 5286 5287 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5288 // no way to mark dependencies as implicit here. 5289 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5290 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5291 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5292 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5293 5294 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5295 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5296 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5297 5298 // Add a register mask operand representing the call-preserved registers. 5299 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5300 const uint32_t *Mask = 5301 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5302 assert(Mask && "Missing call preserved mask for calling convention"); 5303 Ops.push_back(DAG.getRegisterMask(Mask)); 5304 5305 // If the glue is valid, it is the last operand. 5306 if (Glue.getNode()) 5307 Ops.push_back(Glue); 5308 } 5309 5310 SDValue PPCTargetLowering::FinishCall( 5311 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5312 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5313 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5314 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5315 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5316 5317 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5318 Subtarget.isAIXABI()) 5319 setUsesTOCBasePtr(DAG); 5320 5321 unsigned CallOpc = 5322 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5323 Subtarget, DAG.getTarget()); 5324 5325 if (!CFlags.IsIndirect) 5326 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5327 else if (Subtarget.usesFunctionDescriptors()) 5328 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5329 dl, CFlags.HasNest, Subtarget); 5330 else 5331 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5332 5333 // Build the operand list for the call instruction. 5334 SmallVector<SDValue, 8> Ops; 5335 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5336 SPDiff, Subtarget); 5337 5338 // Emit tail call. 5339 if (CFlags.IsTailCall) { 5340 // Indirect tail call when using PC Relative calls do not have the same 5341 // constraints. 5342 assert(((Callee.getOpcode() == ISD::Register && 5343 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5344 Callee.getOpcode() == ISD::TargetExternalSymbol || 5345 Callee.getOpcode() == ISD::TargetGlobalAddress || 5346 isa<ConstantSDNode>(Callee) || 5347 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5348 "Expecting a global address, external symbol, absolute value, " 5349 "register or an indirect tail call when PC Relative calls are " 5350 "used."); 5351 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5352 assert(CallOpc == PPCISD::TC_RETURN && 5353 "Unexpected call opcode for a tail call."); 5354 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5355 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5356 } 5357 5358 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5359 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5360 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5361 Glue = Chain.getValue(1); 5362 5363 // When performing tail call optimization the callee pops its arguments off 5364 // the stack. Account for this here so these bytes can be pushed back on in 5365 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5366 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5367 getTargetMachine().Options.GuaranteedTailCallOpt) 5368 ? NumBytes 5369 : 0; 5370 5371 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5372 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5373 Glue, dl); 5374 Glue = Chain.getValue(1); 5375 5376 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5377 DAG, InVals); 5378 } 5379 5380 SDValue 5381 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5382 SmallVectorImpl<SDValue> &InVals) const { 5383 SelectionDAG &DAG = CLI.DAG; 5384 SDLoc &dl = CLI.DL; 5385 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5386 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5387 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5388 SDValue Chain = CLI.Chain; 5389 SDValue Callee = CLI.Callee; 5390 bool &isTailCall = CLI.IsTailCall; 5391 CallingConv::ID CallConv = CLI.CallConv; 5392 bool isVarArg = CLI.IsVarArg; 5393 bool isPatchPoint = CLI.IsPatchPoint; 5394 const CallBase *CB = CLI.CB; 5395 5396 if (isTailCall) { 5397 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5398 isTailCall = false; 5399 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5400 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5401 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5402 else 5403 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5404 Ins, DAG); 5405 if (isTailCall) { 5406 ++NumTailCalls; 5407 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5408 ++NumSiblingCalls; 5409 5410 // PC Relative calls no longer guarantee that the callee is a Global 5411 // Address Node. The callee could be an indirect tail call in which 5412 // case the SDValue for the callee could be a load (to load the address 5413 // of a function pointer) or it may be a register copy (to move the 5414 // address of the callee from a function parameter into a virtual 5415 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5416 assert((Subtarget.isUsingPCRelativeCalls() || 5417 isa<GlobalAddressSDNode>(Callee)) && 5418 "Callee should be an llvm::Function object."); 5419 5420 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5421 << "\nTCO callee: "); 5422 LLVM_DEBUG(Callee.dump()); 5423 } 5424 } 5425 5426 if (!isTailCall && CB && CB->isMustTailCall()) 5427 report_fatal_error("failed to perform tail call elimination on a call " 5428 "site marked musttail"); 5429 5430 // When long calls (i.e. indirect calls) are always used, calls are always 5431 // made via function pointer. If we have a function name, first translate it 5432 // into a pointer. 5433 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5434 !isTailCall) 5435 Callee = LowerGlobalAddress(Callee, DAG); 5436 5437 CallFlags CFlags( 5438 CallConv, isTailCall, isVarArg, isPatchPoint, 5439 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5440 // hasNest 5441 Subtarget.is64BitELFABI() && 5442 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5443 CLI.NoMerge); 5444 5445 if (Subtarget.isAIXABI()) 5446 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5447 InVals, CB); 5448 5449 assert(Subtarget.isSVR4ABI()); 5450 if (Subtarget.isPPC64()) 5451 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5452 InVals, CB); 5453 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5454 InVals, CB); 5455 } 5456 5457 SDValue PPCTargetLowering::LowerCall_32SVR4( 5458 SDValue Chain, SDValue Callee, CallFlags CFlags, 5459 const SmallVectorImpl<ISD::OutputArg> &Outs, 5460 const SmallVectorImpl<SDValue> &OutVals, 5461 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5462 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5463 const CallBase *CB) const { 5464 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5465 // of the 32-bit SVR4 ABI stack frame layout. 5466 5467 const CallingConv::ID CallConv = CFlags.CallConv; 5468 const bool IsVarArg = CFlags.IsVarArg; 5469 const bool IsTailCall = CFlags.IsTailCall; 5470 5471 assert((CallConv == CallingConv::C || 5472 CallConv == CallingConv::Cold || 5473 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5474 5475 const Align PtrAlign(4); 5476 5477 MachineFunction &MF = DAG.getMachineFunction(); 5478 5479 // Mark this function as potentially containing a function that contains a 5480 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5481 // and restoring the callers stack pointer in this functions epilog. This is 5482 // done because by tail calling the called function might overwrite the value 5483 // in this function's (MF) stack pointer stack slot 0(SP). 5484 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5485 CallConv == CallingConv::Fast) 5486 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5487 5488 // Count how many bytes are to be pushed on the stack, including the linkage 5489 // area, parameter list area and the part of the local variable space which 5490 // contains copies of aggregates which are passed by value. 5491 5492 // Assign locations to all of the outgoing arguments. 5493 SmallVector<CCValAssign, 16> ArgLocs; 5494 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5495 5496 // Reserve space for the linkage area on the stack. 5497 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5498 PtrAlign); 5499 if (useSoftFloat()) 5500 CCInfo.PreAnalyzeCallOperands(Outs); 5501 5502 if (IsVarArg) { 5503 // Handle fixed and variable vector arguments differently. 5504 // Fixed vector arguments go into registers as long as registers are 5505 // available. Variable vector arguments always go into memory. 5506 unsigned NumArgs = Outs.size(); 5507 5508 for (unsigned i = 0; i != NumArgs; ++i) { 5509 MVT ArgVT = Outs[i].VT; 5510 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5511 bool Result; 5512 5513 if (Outs[i].IsFixed) { 5514 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5515 CCInfo); 5516 } else { 5517 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5518 ArgFlags, CCInfo); 5519 } 5520 5521 if (Result) { 5522 #ifndef NDEBUG 5523 errs() << "Call operand #" << i << " has unhandled type " 5524 << EVT(ArgVT).getEVTString() << "\n"; 5525 #endif 5526 llvm_unreachable(nullptr); 5527 } 5528 } 5529 } else { 5530 // All arguments are treated the same. 5531 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5532 } 5533 CCInfo.clearWasPPCF128(); 5534 5535 // Assign locations to all of the outgoing aggregate by value arguments. 5536 SmallVector<CCValAssign, 16> ByValArgLocs; 5537 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5538 5539 // Reserve stack space for the allocations in CCInfo. 5540 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5541 5542 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5543 5544 // Size of the linkage area, parameter list area and the part of the local 5545 // space variable where copies of aggregates which are passed by value are 5546 // stored. 5547 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5548 5549 // Calculate by how many bytes the stack has to be adjusted in case of tail 5550 // call optimization. 5551 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5552 5553 // Adjust the stack pointer for the new arguments... 5554 // These operations are automatically eliminated by the prolog/epilog pass 5555 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5556 SDValue CallSeqStart = Chain; 5557 5558 // Load the return address and frame pointer so it can be moved somewhere else 5559 // later. 5560 SDValue LROp, FPOp; 5561 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5562 5563 // Set up a copy of the stack pointer for use loading and storing any 5564 // arguments that may not fit in the registers available for argument 5565 // passing. 5566 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5567 5568 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5569 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5570 SmallVector<SDValue, 8> MemOpChains; 5571 5572 bool seenFloatArg = false; 5573 // Walk the register/memloc assignments, inserting copies/loads. 5574 // i - Tracks the index into the list of registers allocated for the call 5575 // RealArgIdx - Tracks the index into the list of actual function arguments 5576 // j - Tracks the index into the list of byval arguments 5577 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5578 i != e; 5579 ++i, ++RealArgIdx) { 5580 CCValAssign &VA = ArgLocs[i]; 5581 SDValue Arg = OutVals[RealArgIdx]; 5582 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5583 5584 if (Flags.isByVal()) { 5585 // Argument is an aggregate which is passed by value, thus we need to 5586 // create a copy of it in the local variable space of the current stack 5587 // frame (which is the stack frame of the caller) and pass the address of 5588 // this copy to the callee. 5589 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5590 CCValAssign &ByValVA = ByValArgLocs[j++]; 5591 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5592 5593 // Memory reserved in the local variable space of the callers stack frame. 5594 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5595 5596 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5597 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5598 StackPtr, PtrOff); 5599 5600 // Create a copy of the argument in the local area of the current 5601 // stack frame. 5602 SDValue MemcpyCall = 5603 CreateCopyOfByValArgument(Arg, PtrOff, 5604 CallSeqStart.getNode()->getOperand(0), 5605 Flags, DAG, dl); 5606 5607 // This must go outside the CALLSEQ_START..END. 5608 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5609 SDLoc(MemcpyCall)); 5610 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5611 NewCallSeqStart.getNode()); 5612 Chain = CallSeqStart = NewCallSeqStart; 5613 5614 // Pass the address of the aggregate copy on the stack either in a 5615 // physical register or in the parameter list area of the current stack 5616 // frame to the callee. 5617 Arg = PtrOff; 5618 } 5619 5620 // When useCRBits() is true, there can be i1 arguments. 5621 // It is because getRegisterType(MVT::i1) => MVT::i1, 5622 // and for other integer types getRegisterType() => MVT::i32. 5623 // Extend i1 and ensure callee will get i32. 5624 if (Arg.getValueType() == MVT::i1) 5625 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5626 dl, MVT::i32, Arg); 5627 5628 if (VA.isRegLoc()) { 5629 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5630 // Put argument in a physical register. 5631 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5632 bool IsLE = Subtarget.isLittleEndian(); 5633 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5634 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5635 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5636 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5637 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5638 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5639 SVal.getValue(0))); 5640 } else 5641 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5642 } else { 5643 // Put argument in the parameter list area of the current stack frame. 5644 assert(VA.isMemLoc()); 5645 unsigned LocMemOffset = VA.getLocMemOffset(); 5646 5647 if (!IsTailCall) { 5648 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5649 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5650 StackPtr, PtrOff); 5651 5652 MemOpChains.push_back( 5653 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5654 } else { 5655 // Calculate and remember argument location. 5656 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5657 TailCallArguments); 5658 } 5659 } 5660 } 5661 5662 if (!MemOpChains.empty()) 5663 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5664 5665 // Build a sequence of copy-to-reg nodes chained together with token chain 5666 // and flag operands which copy the outgoing args into the appropriate regs. 5667 SDValue InFlag; 5668 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5669 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5670 RegsToPass[i].second, InFlag); 5671 InFlag = Chain.getValue(1); 5672 } 5673 5674 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5675 // registers. 5676 if (IsVarArg) { 5677 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5678 SDValue Ops[] = { Chain, InFlag }; 5679 5680 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5681 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5682 5683 InFlag = Chain.getValue(1); 5684 } 5685 5686 if (IsTailCall) 5687 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5688 TailCallArguments); 5689 5690 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5691 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5692 } 5693 5694 // Copy an argument into memory, being careful to do this outside the 5695 // call sequence for the call to which the argument belongs. 5696 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5697 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5698 SelectionDAG &DAG, const SDLoc &dl) const { 5699 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5700 CallSeqStart.getNode()->getOperand(0), 5701 Flags, DAG, dl); 5702 // The MEMCPY must go outside the CALLSEQ_START..END. 5703 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5704 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5705 SDLoc(MemcpyCall)); 5706 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5707 NewCallSeqStart.getNode()); 5708 return NewCallSeqStart; 5709 } 5710 5711 SDValue PPCTargetLowering::LowerCall_64SVR4( 5712 SDValue Chain, SDValue Callee, CallFlags CFlags, 5713 const SmallVectorImpl<ISD::OutputArg> &Outs, 5714 const SmallVectorImpl<SDValue> &OutVals, 5715 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5716 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5717 const CallBase *CB) const { 5718 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5719 bool isLittleEndian = Subtarget.isLittleEndian(); 5720 unsigned NumOps = Outs.size(); 5721 bool IsSibCall = false; 5722 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5723 5724 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5725 unsigned PtrByteSize = 8; 5726 5727 MachineFunction &MF = DAG.getMachineFunction(); 5728 5729 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5730 IsSibCall = true; 5731 5732 // Mark this function as potentially containing a function that contains a 5733 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5734 // and restoring the callers stack pointer in this functions epilog. This is 5735 // done because by tail calling the called function might overwrite the value 5736 // in this function's (MF) stack pointer stack slot 0(SP). 5737 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5738 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5739 5740 assert(!(IsFastCall && CFlags.IsVarArg) && 5741 "fastcc not supported on varargs functions"); 5742 5743 // Count how many bytes are to be pushed on the stack, including the linkage 5744 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5745 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5746 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5747 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5748 unsigned NumBytes = LinkageSize; 5749 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5750 5751 static const MCPhysReg GPR[] = { 5752 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5753 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5754 }; 5755 static const MCPhysReg VR[] = { 5756 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5757 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5758 }; 5759 5760 const unsigned NumGPRs = array_lengthof(GPR); 5761 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5762 const unsigned NumVRs = array_lengthof(VR); 5763 5764 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5765 // can be passed to the callee in registers. 5766 // For the fast calling convention, there is another check below. 5767 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5768 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5769 if (!HasParameterArea) { 5770 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5771 unsigned AvailableFPRs = NumFPRs; 5772 unsigned AvailableVRs = NumVRs; 5773 unsigned NumBytesTmp = NumBytes; 5774 for (unsigned i = 0; i != NumOps; ++i) { 5775 if (Outs[i].Flags.isNest()) continue; 5776 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5777 PtrByteSize, LinkageSize, ParamAreaSize, 5778 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5779 HasParameterArea = true; 5780 } 5781 } 5782 5783 // When using the fast calling convention, we don't provide backing for 5784 // arguments that will be in registers. 5785 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5786 5787 // Avoid allocating parameter area for fastcc functions if all the arguments 5788 // can be passed in the registers. 5789 if (IsFastCall) 5790 HasParameterArea = false; 5791 5792 // Add up all the space actually used. 5793 for (unsigned i = 0; i != NumOps; ++i) { 5794 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5795 EVT ArgVT = Outs[i].VT; 5796 EVT OrigVT = Outs[i].ArgVT; 5797 5798 if (Flags.isNest()) 5799 continue; 5800 5801 if (IsFastCall) { 5802 if (Flags.isByVal()) { 5803 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5804 if (NumGPRsUsed > NumGPRs) 5805 HasParameterArea = true; 5806 } else { 5807 switch (ArgVT.getSimpleVT().SimpleTy) { 5808 default: llvm_unreachable("Unexpected ValueType for argument!"); 5809 case MVT::i1: 5810 case MVT::i32: 5811 case MVT::i64: 5812 if (++NumGPRsUsed <= NumGPRs) 5813 continue; 5814 break; 5815 case MVT::v4i32: 5816 case MVT::v8i16: 5817 case MVT::v16i8: 5818 case MVT::v2f64: 5819 case MVT::v2i64: 5820 case MVT::v1i128: 5821 case MVT::f128: 5822 if (++NumVRsUsed <= NumVRs) 5823 continue; 5824 break; 5825 case MVT::v4f32: 5826 if (++NumVRsUsed <= NumVRs) 5827 continue; 5828 break; 5829 case MVT::f32: 5830 case MVT::f64: 5831 if (++NumFPRsUsed <= NumFPRs) 5832 continue; 5833 break; 5834 } 5835 HasParameterArea = true; 5836 } 5837 } 5838 5839 /* Respect alignment of argument on the stack. */ 5840 auto Alignement = 5841 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5842 NumBytes = alignTo(NumBytes, Alignement); 5843 5844 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5845 if (Flags.isInConsecutiveRegsLast()) 5846 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5847 } 5848 5849 unsigned NumBytesActuallyUsed = NumBytes; 5850 5851 // In the old ELFv1 ABI, 5852 // the prolog code of the callee may store up to 8 GPR argument registers to 5853 // the stack, allowing va_start to index over them in memory if its varargs. 5854 // Because we cannot tell if this is needed on the caller side, we have to 5855 // conservatively assume that it is needed. As such, make sure we have at 5856 // least enough stack space for the caller to store the 8 GPRs. 5857 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5858 // really requires memory operands, e.g. a vararg function. 5859 if (HasParameterArea) 5860 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5861 else 5862 NumBytes = LinkageSize; 5863 5864 // Tail call needs the stack to be aligned. 5865 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5866 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5867 5868 int SPDiff = 0; 5869 5870 // Calculate by how many bytes the stack has to be adjusted in case of tail 5871 // call optimization. 5872 if (!IsSibCall) 5873 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5874 5875 // To protect arguments on the stack from being clobbered in a tail call, 5876 // force all the loads to happen before doing any other lowering. 5877 if (CFlags.IsTailCall) 5878 Chain = DAG.getStackArgumentTokenFactor(Chain); 5879 5880 // Adjust the stack pointer for the new arguments... 5881 // These operations are automatically eliminated by the prolog/epilog pass 5882 if (!IsSibCall) 5883 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5884 SDValue CallSeqStart = Chain; 5885 5886 // Load the return address and frame pointer so it can be move somewhere else 5887 // later. 5888 SDValue LROp, FPOp; 5889 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5890 5891 // Set up a copy of the stack pointer for use loading and storing any 5892 // arguments that may not fit in the registers available for argument 5893 // passing. 5894 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5895 5896 // Figure out which arguments are going to go in registers, and which in 5897 // memory. Also, if this is a vararg function, floating point operations 5898 // must be stored to our stack, and loaded into integer regs as well, if 5899 // any integer regs are available for argument passing. 5900 unsigned ArgOffset = LinkageSize; 5901 5902 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5903 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5904 5905 SmallVector<SDValue, 8> MemOpChains; 5906 for (unsigned i = 0; i != NumOps; ++i) { 5907 SDValue Arg = OutVals[i]; 5908 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5909 EVT ArgVT = Outs[i].VT; 5910 EVT OrigVT = Outs[i].ArgVT; 5911 5912 // PtrOff will be used to store the current argument to the stack if a 5913 // register cannot be found for it. 5914 SDValue PtrOff; 5915 5916 // We re-align the argument offset for each argument, except when using the 5917 // fast calling convention, when we need to make sure we do that only when 5918 // we'll actually use a stack slot. 5919 auto ComputePtrOff = [&]() { 5920 /* Respect alignment of argument on the stack. */ 5921 auto Alignment = 5922 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5923 ArgOffset = alignTo(ArgOffset, Alignment); 5924 5925 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5926 5927 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5928 }; 5929 5930 if (!IsFastCall) { 5931 ComputePtrOff(); 5932 5933 /* Compute GPR index associated with argument offset. */ 5934 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5935 GPR_idx = std::min(GPR_idx, NumGPRs); 5936 } 5937 5938 // Promote integers to 64-bit values. 5939 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5940 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5941 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5942 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5943 } 5944 5945 // FIXME memcpy is used way more than necessary. Correctness first. 5946 // Note: "by value" is code for passing a structure by value, not 5947 // basic types. 5948 if (Flags.isByVal()) { 5949 // Note: Size includes alignment padding, so 5950 // struct x { short a; char b; } 5951 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5952 // These are the proper values we need for right-justifying the 5953 // aggregate in a parameter register. 5954 unsigned Size = Flags.getByValSize(); 5955 5956 // An empty aggregate parameter takes up no storage and no 5957 // registers. 5958 if (Size == 0) 5959 continue; 5960 5961 if (IsFastCall) 5962 ComputePtrOff(); 5963 5964 // All aggregates smaller than 8 bytes must be passed right-justified. 5965 if (Size==1 || Size==2 || Size==4) { 5966 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5967 if (GPR_idx != NumGPRs) { 5968 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5969 MachinePointerInfo(), VT); 5970 MemOpChains.push_back(Load.getValue(1)); 5971 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5972 5973 ArgOffset += PtrByteSize; 5974 continue; 5975 } 5976 } 5977 5978 if (GPR_idx == NumGPRs && Size < 8) { 5979 SDValue AddPtr = PtrOff; 5980 if (!isLittleEndian) { 5981 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5982 PtrOff.getValueType()); 5983 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5984 } 5985 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5986 CallSeqStart, 5987 Flags, DAG, dl); 5988 ArgOffset += PtrByteSize; 5989 continue; 5990 } 5991 // Copy entire object into memory. There are cases where gcc-generated 5992 // code assumes it is there, even if it could be put entirely into 5993 // registers. (This is not what the doc says.) 5994 5995 // FIXME: The above statement is likely due to a misunderstanding of the 5996 // documents. All arguments must be copied into the parameter area BY 5997 // THE CALLEE in the event that the callee takes the address of any 5998 // formal argument. That has not yet been implemented. However, it is 5999 // reasonable to use the stack area as a staging area for the register 6000 // load. 6001 6002 // Skip this for small aggregates, as we will use the same slot for a 6003 // right-justified copy, below. 6004 if (Size >= 8) 6005 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6006 CallSeqStart, 6007 Flags, DAG, dl); 6008 6009 // When a register is available, pass a small aggregate right-justified. 6010 if (Size < 8 && GPR_idx != NumGPRs) { 6011 // The easiest way to get this right-justified in a register 6012 // is to copy the structure into the rightmost portion of a 6013 // local variable slot, then load the whole slot into the 6014 // register. 6015 // FIXME: The memcpy seems to produce pretty awful code for 6016 // small aggregates, particularly for packed ones. 6017 // FIXME: It would be preferable to use the slot in the 6018 // parameter save area instead of a new local variable. 6019 SDValue AddPtr = PtrOff; 6020 if (!isLittleEndian) { 6021 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6022 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6023 } 6024 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6025 CallSeqStart, 6026 Flags, DAG, dl); 6027 6028 // Load the slot into the register. 6029 SDValue Load = 6030 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6031 MemOpChains.push_back(Load.getValue(1)); 6032 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6033 6034 // Done with this argument. 6035 ArgOffset += PtrByteSize; 6036 continue; 6037 } 6038 6039 // For aggregates larger than PtrByteSize, copy the pieces of the 6040 // object that fit into registers from the parameter save area. 6041 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6042 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6043 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6044 if (GPR_idx != NumGPRs) { 6045 SDValue Load = 6046 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6047 MemOpChains.push_back(Load.getValue(1)); 6048 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6049 ArgOffset += PtrByteSize; 6050 } else { 6051 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6052 break; 6053 } 6054 } 6055 continue; 6056 } 6057 6058 switch (Arg.getSimpleValueType().SimpleTy) { 6059 default: llvm_unreachable("Unexpected ValueType for argument!"); 6060 case MVT::i1: 6061 case MVT::i32: 6062 case MVT::i64: 6063 if (Flags.isNest()) { 6064 // The 'nest' parameter, if any, is passed in R11. 6065 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6066 break; 6067 } 6068 6069 // These can be scalar arguments or elements of an integer array type 6070 // passed directly. Clang may use those instead of "byval" aggregate 6071 // types to avoid forcing arguments to memory unnecessarily. 6072 if (GPR_idx != NumGPRs) { 6073 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6074 } else { 6075 if (IsFastCall) 6076 ComputePtrOff(); 6077 6078 assert(HasParameterArea && 6079 "Parameter area must exist to pass an argument in memory."); 6080 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6081 true, CFlags.IsTailCall, false, MemOpChains, 6082 TailCallArguments, dl); 6083 if (IsFastCall) 6084 ArgOffset += PtrByteSize; 6085 } 6086 if (!IsFastCall) 6087 ArgOffset += PtrByteSize; 6088 break; 6089 case MVT::f32: 6090 case MVT::f64: { 6091 // These can be scalar arguments or elements of a float array type 6092 // passed directly. The latter are used to implement ELFv2 homogenous 6093 // float aggregates. 6094 6095 // Named arguments go into FPRs first, and once they overflow, the 6096 // remaining arguments go into GPRs and then the parameter save area. 6097 // Unnamed arguments for vararg functions always go to GPRs and 6098 // then the parameter save area. For now, put all arguments to vararg 6099 // routines always in both locations (FPR *and* GPR or stack slot). 6100 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6101 bool NeededLoad = false; 6102 6103 // First load the argument into the next available FPR. 6104 if (FPR_idx != NumFPRs) 6105 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6106 6107 // Next, load the argument into GPR or stack slot if needed. 6108 if (!NeedGPROrStack) 6109 ; 6110 else if (GPR_idx != NumGPRs && !IsFastCall) { 6111 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6112 // once we support fp <-> gpr moves. 6113 6114 // In the non-vararg case, this can only ever happen in the 6115 // presence of f32 array types, since otherwise we never run 6116 // out of FPRs before running out of GPRs. 6117 SDValue ArgVal; 6118 6119 // Double values are always passed in a single GPR. 6120 if (Arg.getValueType() != MVT::f32) { 6121 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6122 6123 // Non-array float values are extended and passed in a GPR. 6124 } else if (!Flags.isInConsecutiveRegs()) { 6125 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6126 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6127 6128 // If we have an array of floats, we collect every odd element 6129 // together with its predecessor into one GPR. 6130 } else if (ArgOffset % PtrByteSize != 0) { 6131 SDValue Lo, Hi; 6132 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6133 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6134 if (!isLittleEndian) 6135 std::swap(Lo, Hi); 6136 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6137 6138 // The final element, if even, goes into the first half of a GPR. 6139 } else if (Flags.isInConsecutiveRegsLast()) { 6140 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6141 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6142 if (!isLittleEndian) 6143 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6144 DAG.getConstant(32, dl, MVT::i32)); 6145 6146 // Non-final even elements are skipped; they will be handled 6147 // together the with subsequent argument on the next go-around. 6148 } else 6149 ArgVal = SDValue(); 6150 6151 if (ArgVal.getNode()) 6152 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6153 } else { 6154 if (IsFastCall) 6155 ComputePtrOff(); 6156 6157 // Single-precision floating-point values are mapped to the 6158 // second (rightmost) word of the stack doubleword. 6159 if (Arg.getValueType() == MVT::f32 && 6160 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6161 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6162 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6163 } 6164 6165 assert(HasParameterArea && 6166 "Parameter area must exist to pass an argument in memory."); 6167 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6168 true, CFlags.IsTailCall, false, MemOpChains, 6169 TailCallArguments, dl); 6170 6171 NeededLoad = true; 6172 } 6173 // When passing an array of floats, the array occupies consecutive 6174 // space in the argument area; only round up to the next doubleword 6175 // at the end of the array. Otherwise, each float takes 8 bytes. 6176 if (!IsFastCall || NeededLoad) { 6177 ArgOffset += (Arg.getValueType() == MVT::f32 && 6178 Flags.isInConsecutiveRegs()) ? 4 : 8; 6179 if (Flags.isInConsecutiveRegsLast()) 6180 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6181 } 6182 break; 6183 } 6184 case MVT::v4f32: 6185 case MVT::v4i32: 6186 case MVT::v8i16: 6187 case MVT::v16i8: 6188 case MVT::v2f64: 6189 case MVT::v2i64: 6190 case MVT::v1i128: 6191 case MVT::f128: 6192 // These can be scalar arguments or elements of a vector array type 6193 // passed directly. The latter are used to implement ELFv2 homogenous 6194 // vector aggregates. 6195 6196 // For a varargs call, named arguments go into VRs or on the stack as 6197 // usual; unnamed arguments always go to the stack or the corresponding 6198 // GPRs when within range. For now, we always put the value in both 6199 // locations (or even all three). 6200 if (CFlags.IsVarArg) { 6201 assert(HasParameterArea && 6202 "Parameter area must exist if we have a varargs call."); 6203 // We could elide this store in the case where the object fits 6204 // entirely in R registers. Maybe later. 6205 SDValue Store = 6206 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6207 MemOpChains.push_back(Store); 6208 if (VR_idx != NumVRs) { 6209 SDValue Load = 6210 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6211 MemOpChains.push_back(Load.getValue(1)); 6212 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6213 } 6214 ArgOffset += 16; 6215 for (unsigned i=0; i<16; i+=PtrByteSize) { 6216 if (GPR_idx == NumGPRs) 6217 break; 6218 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6219 DAG.getConstant(i, dl, PtrVT)); 6220 SDValue Load = 6221 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6222 MemOpChains.push_back(Load.getValue(1)); 6223 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6224 } 6225 break; 6226 } 6227 6228 // Non-varargs Altivec params go into VRs or on the stack. 6229 if (VR_idx != NumVRs) { 6230 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6231 } else { 6232 if (IsFastCall) 6233 ComputePtrOff(); 6234 6235 assert(HasParameterArea && 6236 "Parameter area must exist to pass an argument in memory."); 6237 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6238 true, CFlags.IsTailCall, true, MemOpChains, 6239 TailCallArguments, dl); 6240 if (IsFastCall) 6241 ArgOffset += 16; 6242 } 6243 6244 if (!IsFastCall) 6245 ArgOffset += 16; 6246 break; 6247 } 6248 } 6249 6250 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6251 "mismatch in size of parameter area"); 6252 (void)NumBytesActuallyUsed; 6253 6254 if (!MemOpChains.empty()) 6255 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6256 6257 // Check if this is an indirect call (MTCTR/BCTRL). 6258 // See prepareDescriptorIndirectCall and buildCallOperands for more 6259 // information about calls through function pointers in the 64-bit SVR4 ABI. 6260 if (CFlags.IsIndirect) { 6261 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6262 // caller in the TOC save area. 6263 if (isTOCSaveRestoreRequired(Subtarget)) { 6264 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6265 // Load r2 into a virtual register and store it to the TOC save area. 6266 setUsesTOCBasePtr(DAG); 6267 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6268 // TOC save area offset. 6269 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6270 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6271 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6272 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6273 MachinePointerInfo::getStack( 6274 DAG.getMachineFunction(), TOCSaveOffset)); 6275 } 6276 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6277 // This does not mean the MTCTR instruction must use R12; it's easier 6278 // to model this as an extra parameter, so do that. 6279 if (isELFv2ABI && !CFlags.IsPatchPoint) 6280 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6281 } 6282 6283 // Build a sequence of copy-to-reg nodes chained together with token chain 6284 // and flag operands which copy the outgoing args into the appropriate regs. 6285 SDValue InFlag; 6286 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6287 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6288 RegsToPass[i].second, InFlag); 6289 InFlag = Chain.getValue(1); 6290 } 6291 6292 if (CFlags.IsTailCall && !IsSibCall) 6293 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6294 TailCallArguments); 6295 6296 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6297 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6298 } 6299 6300 // Returns true when the shadow of a general purpose argument register 6301 // in the parameter save area is aligned to at least 'RequiredAlign'. 6302 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6303 assert(RequiredAlign.value() <= 16 && 6304 "Required alignment greater than stack alignment."); 6305 switch (Reg) { 6306 default: 6307 report_fatal_error("called on invalid register."); 6308 case PPC::R5: 6309 case PPC::R9: 6310 case PPC::X3: 6311 case PPC::X5: 6312 case PPC::X7: 6313 case PPC::X9: 6314 // These registers are 16 byte aligned which is the most strict aligment 6315 // we can support. 6316 return true; 6317 case PPC::R3: 6318 case PPC::R7: 6319 case PPC::X4: 6320 case PPC::X6: 6321 case PPC::X8: 6322 case PPC::X10: 6323 // The shadow of these registers in the PSA is 8 byte aligned. 6324 return RequiredAlign <= 8; 6325 case PPC::R4: 6326 case PPC::R6: 6327 case PPC::R8: 6328 case PPC::R10: 6329 return RequiredAlign <= 4; 6330 } 6331 } 6332 6333 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6334 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6335 CCState &S) { 6336 AIXCCState &State = static_cast<AIXCCState &>(S); 6337 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6338 State.getMachineFunction().getSubtarget()); 6339 const bool IsPPC64 = Subtarget.isPPC64(); 6340 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6341 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6342 6343 if (ValVT == MVT::f128) 6344 report_fatal_error("f128 is unimplemented on AIX."); 6345 6346 if (ArgFlags.isNest()) 6347 report_fatal_error("Nest arguments are unimplemented."); 6348 6349 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6350 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6351 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6352 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6353 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6354 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6355 6356 static const MCPhysReg VR[] = {// Vector registers. 6357 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6358 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6359 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6360 6361 if (ArgFlags.isByVal()) { 6362 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6363 report_fatal_error("Pass-by-value arguments with alignment greater than " 6364 "register width are not supported."); 6365 6366 const unsigned ByValSize = ArgFlags.getByValSize(); 6367 6368 // An empty aggregate parameter takes up no storage and no registers, 6369 // but needs a MemLoc for a stack slot for the formal arguments side. 6370 if (ByValSize == 0) { 6371 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6372 State.getNextStackOffset(), RegVT, 6373 LocInfo)); 6374 return false; 6375 } 6376 6377 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6378 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6379 for (const unsigned E = Offset + StackSize; Offset < E; 6380 Offset += PtrAlign.value()) { 6381 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6382 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6383 else { 6384 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6385 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6386 LocInfo)); 6387 break; 6388 } 6389 } 6390 return false; 6391 } 6392 6393 // Arguments always reserve parameter save area. 6394 switch (ValVT.SimpleTy) { 6395 default: 6396 report_fatal_error("Unhandled value type for argument."); 6397 case MVT::i64: 6398 // i64 arguments should have been split to i32 for PPC32. 6399 assert(IsPPC64 && "PPC32 should have split i64 values."); 6400 LLVM_FALLTHROUGH; 6401 case MVT::i1: 6402 case MVT::i32: { 6403 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6404 // AIX integer arguments are always passed in register width. 6405 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6406 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6407 : CCValAssign::LocInfo::ZExt; 6408 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6409 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6410 else 6411 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6412 6413 return false; 6414 } 6415 case MVT::f32: 6416 case MVT::f64: { 6417 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6418 const unsigned StoreSize = LocVT.getStoreSize(); 6419 // Floats are always 4-byte aligned in the PSA on AIX. 6420 // This includes f64 in 64-bit mode for ABI compatibility. 6421 const unsigned Offset = 6422 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6423 unsigned FReg = State.AllocateReg(FPR); 6424 if (FReg) 6425 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6426 6427 // Reserve and initialize GPRs or initialize the PSA as required. 6428 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6429 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6430 assert(FReg && "An FPR should be available when a GPR is reserved."); 6431 if (State.isVarArg()) { 6432 // Successfully reserved GPRs are only initialized for vararg calls. 6433 // Custom handling is required for: 6434 // f64 in PPC32 needs to be split into 2 GPRs. 6435 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6436 State.addLoc( 6437 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6438 } 6439 } else { 6440 // If there are insufficient GPRs, the PSA needs to be initialized. 6441 // Initialization occurs even if an FPR was initialized for 6442 // compatibility with the AIX XL compiler. The full memory for the 6443 // argument will be initialized even if a prior word is saved in GPR. 6444 // A custom memLoc is used when the argument also passes in FPR so 6445 // that the callee handling can skip over it easily. 6446 State.addLoc( 6447 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6448 LocInfo) 6449 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6450 break; 6451 } 6452 } 6453 6454 return false; 6455 } 6456 case MVT::v4f32: 6457 case MVT::v4i32: 6458 case MVT::v8i16: 6459 case MVT::v16i8: 6460 case MVT::v2i64: 6461 case MVT::v2f64: 6462 case MVT::v1i128: { 6463 const unsigned VecSize = 16; 6464 const Align VecAlign(VecSize); 6465 6466 if (!State.isVarArg()) { 6467 // If there are vector registers remaining we don't consume any stack 6468 // space. 6469 if (unsigned VReg = State.AllocateReg(VR)) { 6470 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6471 return false; 6472 } 6473 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6474 // might be allocated in the portion of the PSA that is shadowed by the 6475 // GPRs. 6476 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6477 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6478 return false; 6479 } 6480 6481 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6482 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6483 6484 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6485 // Burn any underaligned registers and their shadowed stack space until 6486 // we reach the required alignment. 6487 while (NextRegIndex != GPRs.size() && 6488 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6489 // Shadow allocate register and its stack shadow. 6490 unsigned Reg = State.AllocateReg(GPRs); 6491 State.AllocateStack(PtrSize, PtrAlign); 6492 assert(Reg && "Allocating register unexpectedly failed."); 6493 (void)Reg; 6494 NextRegIndex = State.getFirstUnallocated(GPRs); 6495 } 6496 6497 // Vectors that are passed as fixed arguments are handled differently. 6498 // They are passed in VRs if any are available (unlike arguments passed 6499 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6500 // functions) 6501 if (State.isFixed(ValNo)) { 6502 if (unsigned VReg = State.AllocateReg(VR)) { 6503 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6504 // Shadow allocate GPRs and stack space even though we pass in a VR. 6505 for (unsigned I = 0; I != VecSize; I += PtrSize) 6506 State.AllocateReg(GPRs); 6507 State.AllocateStack(VecSize, VecAlign); 6508 return false; 6509 } 6510 // No vector registers remain so pass on the stack. 6511 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6512 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6513 return false; 6514 } 6515 6516 // If all GPRS are consumed then we pass the argument fully on the stack. 6517 if (NextRegIndex == GPRs.size()) { 6518 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6519 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6520 return false; 6521 } 6522 6523 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6524 // half of the argument, and then need to pass the remaining half on the 6525 // stack. 6526 if (GPRs[NextRegIndex] == PPC::R9) { 6527 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6528 State.addLoc( 6529 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6530 6531 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6532 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6533 assert(FirstReg && SecondReg && 6534 "Allocating R9 or R10 unexpectedly failed."); 6535 State.addLoc( 6536 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6537 State.addLoc( 6538 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6539 return false; 6540 } 6541 6542 // We have enough GPRs to fully pass the vector argument, and we have 6543 // already consumed any underaligned registers. Start with the custom 6544 // MemLoc and then the custom RegLocs. 6545 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6546 State.addLoc( 6547 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6548 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6549 const unsigned Reg = State.AllocateReg(GPRs); 6550 assert(Reg && "Failed to allocated register for vararg vector argument"); 6551 State.addLoc( 6552 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6553 } 6554 return false; 6555 } 6556 } 6557 return true; 6558 } 6559 6560 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6561 bool IsPPC64) { 6562 assert((IsPPC64 || SVT != MVT::i64) && 6563 "i64 should have been split for 32-bit codegen."); 6564 6565 switch (SVT) { 6566 default: 6567 report_fatal_error("Unexpected value type for formal argument"); 6568 case MVT::i1: 6569 case MVT::i32: 6570 case MVT::i64: 6571 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6572 case MVT::f32: 6573 return &PPC::F4RCRegClass; 6574 case MVT::f64: 6575 return &PPC::F8RCRegClass; 6576 case MVT::v4f32: 6577 case MVT::v4i32: 6578 case MVT::v8i16: 6579 case MVT::v16i8: 6580 case MVT::v2i64: 6581 case MVT::v2f64: 6582 case MVT::v1i128: 6583 return &PPC::VRRCRegClass; 6584 } 6585 } 6586 6587 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6588 SelectionDAG &DAG, SDValue ArgValue, 6589 MVT LocVT, const SDLoc &dl) { 6590 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6591 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6592 6593 if (Flags.isSExt()) 6594 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6595 DAG.getValueType(ValVT)); 6596 else if (Flags.isZExt()) 6597 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6598 DAG.getValueType(ValVT)); 6599 6600 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6601 } 6602 6603 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6604 const unsigned LASize = FL->getLinkageSize(); 6605 6606 if (PPC::GPRCRegClass.contains(Reg)) { 6607 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6608 "Reg must be a valid argument register!"); 6609 return LASize + 4 * (Reg - PPC::R3); 6610 } 6611 6612 if (PPC::G8RCRegClass.contains(Reg)) { 6613 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6614 "Reg must be a valid argument register!"); 6615 return LASize + 8 * (Reg - PPC::X3); 6616 } 6617 6618 llvm_unreachable("Only general purpose registers expected."); 6619 } 6620 6621 // AIX ABI Stack Frame Layout: 6622 // 6623 // Low Memory +--------------------------------------------+ 6624 // SP +---> | Back chain | ---+ 6625 // | +--------------------------------------------+ | 6626 // | | Saved Condition Register | | 6627 // | +--------------------------------------------+ | 6628 // | | Saved Linkage Register | | 6629 // | +--------------------------------------------+ | Linkage Area 6630 // | | Reserved for compilers | | 6631 // | +--------------------------------------------+ | 6632 // | | Reserved for binders | | 6633 // | +--------------------------------------------+ | 6634 // | | Saved TOC pointer | ---+ 6635 // | +--------------------------------------------+ 6636 // | | Parameter save area | 6637 // | +--------------------------------------------+ 6638 // | | Alloca space | 6639 // | +--------------------------------------------+ 6640 // | | Local variable space | 6641 // | +--------------------------------------------+ 6642 // | | Float/int conversion temporary | 6643 // | +--------------------------------------------+ 6644 // | | Save area for AltiVec registers | 6645 // | +--------------------------------------------+ 6646 // | | AltiVec alignment padding | 6647 // | +--------------------------------------------+ 6648 // | | Save area for VRSAVE register | 6649 // | +--------------------------------------------+ 6650 // | | Save area for General Purpose registers | 6651 // | +--------------------------------------------+ 6652 // | | Save area for Floating Point registers | 6653 // | +--------------------------------------------+ 6654 // +---- | Back chain | 6655 // High Memory +--------------------------------------------+ 6656 // 6657 // Specifications: 6658 // AIX 7.2 Assembler Language Reference 6659 // Subroutine linkage convention 6660 6661 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6662 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6663 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6664 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6665 6666 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6667 CallConv == CallingConv::Fast) && 6668 "Unexpected calling convention!"); 6669 6670 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6671 report_fatal_error("Tail call support is unimplemented on AIX."); 6672 6673 if (useSoftFloat()) 6674 report_fatal_error("Soft float support is unimplemented on AIX."); 6675 6676 const PPCSubtarget &Subtarget = 6677 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6678 6679 const bool IsPPC64 = Subtarget.isPPC64(); 6680 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6681 6682 // Assign locations to all of the incoming arguments. 6683 SmallVector<CCValAssign, 16> ArgLocs; 6684 MachineFunction &MF = DAG.getMachineFunction(); 6685 MachineFrameInfo &MFI = MF.getFrameInfo(); 6686 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6687 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6688 6689 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6690 // Reserve space for the linkage area on the stack. 6691 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6692 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6693 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6694 6695 SmallVector<SDValue, 8> MemOps; 6696 6697 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6698 CCValAssign &VA = ArgLocs[I++]; 6699 MVT LocVT = VA.getLocVT(); 6700 MVT ValVT = VA.getValVT(); 6701 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6702 // For compatibility with the AIX XL compiler, the float args in the 6703 // parameter save area are initialized even if the argument is available 6704 // in register. The caller is required to initialize both the register 6705 // and memory, however, the callee can choose to expect it in either. 6706 // The memloc is dismissed here because the argument is retrieved from 6707 // the register. 6708 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6709 continue; 6710 6711 auto HandleMemLoc = [&]() { 6712 const unsigned LocSize = LocVT.getStoreSize(); 6713 const unsigned ValSize = ValVT.getStoreSize(); 6714 assert((ValSize <= LocSize) && 6715 "Object size is larger than size of MemLoc"); 6716 int CurArgOffset = VA.getLocMemOffset(); 6717 // Objects are right-justified because AIX is big-endian. 6718 if (LocSize > ValSize) 6719 CurArgOffset += LocSize - ValSize; 6720 // Potential tail calls could cause overwriting of argument stack slots. 6721 const bool IsImmutable = 6722 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6723 (CallConv == CallingConv::Fast)); 6724 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6725 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6726 SDValue ArgValue = 6727 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6728 InVals.push_back(ArgValue); 6729 }; 6730 6731 // Vector arguments to VaArg functions are passed both on the stack, and 6732 // in any available GPRs. Load the value from the stack and add the GPRs 6733 // as live ins. 6734 if (VA.isMemLoc() && VA.needsCustom()) { 6735 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6736 assert(isVarArg && "Only use custom memloc for vararg."); 6737 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6738 // matching custom RegLocs. 6739 const unsigned OriginalValNo = VA.getValNo(); 6740 (void)OriginalValNo; 6741 6742 auto HandleCustomVecRegLoc = [&]() { 6743 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6744 "Missing custom RegLoc."); 6745 VA = ArgLocs[I++]; 6746 assert(VA.getValVT().isVector() && 6747 "Unexpected Val type for custom RegLoc."); 6748 assert(VA.getValNo() == OriginalValNo && 6749 "ValNo mismatch between custom MemLoc and RegLoc."); 6750 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6751 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6752 }; 6753 6754 HandleMemLoc(); 6755 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6756 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6757 // R10. 6758 HandleCustomVecRegLoc(); 6759 HandleCustomVecRegLoc(); 6760 6761 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6762 // we passed the vector in R5, R6, R7 and R8. 6763 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6764 assert(!IsPPC64 && 6765 "Only 2 custom RegLocs expected for 64-bit codegen."); 6766 HandleCustomVecRegLoc(); 6767 HandleCustomVecRegLoc(); 6768 } 6769 6770 continue; 6771 } 6772 6773 if (VA.isRegLoc()) { 6774 if (VA.getValVT().isScalarInteger()) 6775 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6776 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) 6777 FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32 6778 ? PPCFunctionInfo::ShortFloatPoint 6779 : PPCFunctionInfo::LongFloatPoint); 6780 } 6781 6782 if (Flags.isByVal() && VA.isMemLoc()) { 6783 const unsigned Size = 6784 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 6785 PtrByteSize); 6786 const int FI = MF.getFrameInfo().CreateFixedObject( 6787 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 6788 /* IsAliased */ true); 6789 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6790 InVals.push_back(FIN); 6791 6792 continue; 6793 } 6794 6795 if (Flags.isByVal()) { 6796 assert(VA.isRegLoc() && "MemLocs should already be handled."); 6797 6798 const MCPhysReg ArgReg = VA.getLocReg(); 6799 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 6800 6801 if (Flags.getNonZeroByValAlign() > PtrByteSize) 6802 report_fatal_error("Over aligned byvals not supported yet."); 6803 6804 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 6805 const int FI = MF.getFrameInfo().CreateFixedObject( 6806 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 6807 /* IsAliased */ true); 6808 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6809 InVals.push_back(FIN); 6810 6811 // Add live ins for all the RegLocs for the same ByVal. 6812 const TargetRegisterClass *RegClass = 6813 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6814 6815 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 6816 unsigned Offset) { 6817 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 6818 // Since the callers side has left justified the aggregate in the 6819 // register, we can simply store the entire register into the stack 6820 // slot. 6821 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6822 // The store to the fixedstack object is needed becuase accessing a 6823 // field of the ByVal will use a gep and load. Ideally we will optimize 6824 // to extracting the value from the register directly, and elide the 6825 // stores when the arguments address is not taken, but that will need to 6826 // be future work. 6827 SDValue Store = DAG.getStore( 6828 CopyFrom.getValue(1), dl, CopyFrom, 6829 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 6830 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 6831 6832 MemOps.push_back(Store); 6833 }; 6834 6835 unsigned Offset = 0; 6836 HandleRegLoc(VA.getLocReg(), Offset); 6837 Offset += PtrByteSize; 6838 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 6839 Offset += PtrByteSize) { 6840 assert(ArgLocs[I].getValNo() == VA.getValNo() && 6841 "RegLocs should be for ByVal argument."); 6842 6843 const CCValAssign RL = ArgLocs[I++]; 6844 HandleRegLoc(RL.getLocReg(), Offset); 6845 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6846 } 6847 6848 if (Offset != StackSize) { 6849 assert(ArgLocs[I].getValNo() == VA.getValNo() && 6850 "Expected MemLoc for remaining bytes."); 6851 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 6852 // Consume the MemLoc.The InVal has already been emitted, so nothing 6853 // more needs to be done. 6854 ++I; 6855 } 6856 6857 continue; 6858 } 6859 6860 if (VA.isRegLoc() && !VA.needsCustom()) { 6861 MVT::SimpleValueType SVT = ValVT.SimpleTy; 6862 unsigned VReg = 6863 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6864 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6865 if (ValVT.isScalarInteger() && 6866 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 6867 ArgValue = 6868 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 6869 } 6870 InVals.push_back(ArgValue); 6871 continue; 6872 } 6873 if (VA.isMemLoc()) { 6874 HandleMemLoc(); 6875 continue; 6876 } 6877 } 6878 6879 // On AIX a minimum of 8 words is saved to the parameter save area. 6880 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 6881 // Area that is at least reserved in the caller of this function. 6882 unsigned CallerReservedArea = 6883 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 6884 6885 // Set the size that is at least reserved in caller of this function. Tail 6886 // call optimized function's reserved stack space needs to be aligned so 6887 // that taking the difference between two stack areas will result in an 6888 // aligned stack. 6889 CallerReservedArea = 6890 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 6891 FuncInfo->setMinReservedArea(CallerReservedArea); 6892 6893 if (isVarArg) { 6894 FuncInfo->setVarArgsFrameIndex( 6895 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 6896 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 6897 6898 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6899 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6900 6901 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6902 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6903 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 6904 6905 // The fixed integer arguments of a variadic function are stored to the 6906 // VarArgsFrameIndex on the stack so that they may be loaded by 6907 // dereferencing the result of va_next. 6908 for (unsigned GPRIndex = 6909 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 6910 GPRIndex < NumGPArgRegs; ++GPRIndex) { 6911 6912 const unsigned VReg = 6913 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 6914 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 6915 6916 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 6917 SDValue Store = 6918 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 6919 MemOps.push_back(Store); 6920 // Increment the address for the next argument to store. 6921 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 6922 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 6923 } 6924 } 6925 6926 if (!MemOps.empty()) 6927 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 6928 6929 return Chain; 6930 } 6931 6932 SDValue PPCTargetLowering::LowerCall_AIX( 6933 SDValue Chain, SDValue Callee, CallFlags CFlags, 6934 const SmallVectorImpl<ISD::OutputArg> &Outs, 6935 const SmallVectorImpl<SDValue> &OutVals, 6936 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6937 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6938 const CallBase *CB) const { 6939 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 6940 // AIX ABI stack frame layout. 6941 6942 assert((CFlags.CallConv == CallingConv::C || 6943 CFlags.CallConv == CallingConv::Cold || 6944 CFlags.CallConv == CallingConv::Fast) && 6945 "Unexpected calling convention!"); 6946 6947 if (CFlags.IsPatchPoint) 6948 report_fatal_error("This call type is unimplemented on AIX."); 6949 6950 const PPCSubtarget& Subtarget = 6951 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 6952 6953 MachineFunction &MF = DAG.getMachineFunction(); 6954 SmallVector<CCValAssign, 16> ArgLocs; 6955 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 6956 *DAG.getContext()); 6957 6958 // Reserve space for the linkage save area (LSA) on the stack. 6959 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 6960 // [SP][CR][LR][2 x reserved][TOC]. 6961 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 6962 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6963 const bool IsPPC64 = Subtarget.isPPC64(); 6964 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6965 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6966 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6967 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 6968 6969 // The prolog code of the callee may store up to 8 GPR argument registers to 6970 // the stack, allowing va_start to index over them in memory if the callee 6971 // is variadic. 6972 // Because we cannot tell if this is needed on the caller side, we have to 6973 // conservatively assume that it is needed. As such, make sure we have at 6974 // least enough stack space for the caller to store the 8 GPRs. 6975 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 6976 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 6977 CCInfo.getNextStackOffset()); 6978 6979 // Adjust the stack pointer for the new arguments... 6980 // These operations are automatically eliminated by the prolog/epilog pass. 6981 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6982 SDValue CallSeqStart = Chain; 6983 6984 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6985 SmallVector<SDValue, 8> MemOpChains; 6986 6987 // Set up a copy of the stack pointer for loading and storing any 6988 // arguments that may not fit in the registers available for argument 6989 // passing. 6990 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 6991 : DAG.getRegister(PPC::R1, MVT::i32); 6992 6993 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 6994 const unsigned ValNo = ArgLocs[I].getValNo(); 6995 SDValue Arg = OutVals[ValNo]; 6996 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 6997 6998 if (Flags.isByVal()) { 6999 const unsigned ByValSize = Flags.getByValSize(); 7000 7001 // Nothing to do for zero-sized ByVals on the caller side. 7002 if (!ByValSize) { 7003 ++I; 7004 continue; 7005 } 7006 7007 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7008 return DAG.getExtLoad( 7009 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7010 (LoadOffset != 0) 7011 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7012 : Arg, 7013 MachinePointerInfo(), VT); 7014 }; 7015 7016 unsigned LoadOffset = 0; 7017 7018 // Initialize registers, which are fully occupied by the by-val argument. 7019 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7020 SDValue Load = GetLoad(PtrVT, LoadOffset); 7021 MemOpChains.push_back(Load.getValue(1)); 7022 LoadOffset += PtrByteSize; 7023 const CCValAssign &ByValVA = ArgLocs[I++]; 7024 assert(ByValVA.getValNo() == ValNo && 7025 "Unexpected location for pass-by-value argument."); 7026 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7027 } 7028 7029 if (LoadOffset == ByValSize) 7030 continue; 7031 7032 // There must be one more loc to handle the remainder. 7033 assert(ArgLocs[I].getValNo() == ValNo && 7034 "Expected additional location for by-value argument."); 7035 7036 if (ArgLocs[I].isMemLoc()) { 7037 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7038 const CCValAssign &ByValVA = ArgLocs[I++]; 7039 ISD::ArgFlagsTy MemcpyFlags = Flags; 7040 // Only memcpy the bytes that don't pass in register. 7041 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7042 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7043 (LoadOffset != 0) 7044 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7045 : Arg, 7046 DAG.getObjectPtrOffset(dl, StackPtr, 7047 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7048 CallSeqStart, MemcpyFlags, DAG, dl); 7049 continue; 7050 } 7051 7052 // Initialize the final register residue. 7053 // Any residue that occupies the final by-val arg register must be 7054 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7055 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7056 // 2 and 1 byte loads. 7057 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7058 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7059 "Unexpected register residue for by-value argument."); 7060 SDValue ResidueVal; 7061 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7062 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7063 const MVT VT = 7064 N == 1 ? MVT::i8 7065 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7066 SDValue Load = GetLoad(VT, LoadOffset); 7067 MemOpChains.push_back(Load.getValue(1)); 7068 LoadOffset += N; 7069 Bytes += N; 7070 7071 // By-val arguments are passed left-justfied in register. 7072 // Every load here needs to be shifted, otherwise a full register load 7073 // should have been used. 7074 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7075 "Unexpected load emitted during handling of pass-by-value " 7076 "argument."); 7077 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7078 EVT ShiftAmountTy = 7079 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7080 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7081 SDValue ShiftedLoad = 7082 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7083 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7084 ShiftedLoad) 7085 : ShiftedLoad; 7086 } 7087 7088 const CCValAssign &ByValVA = ArgLocs[I++]; 7089 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7090 continue; 7091 } 7092 7093 CCValAssign &VA = ArgLocs[I++]; 7094 const MVT LocVT = VA.getLocVT(); 7095 const MVT ValVT = VA.getValVT(); 7096 7097 switch (VA.getLocInfo()) { 7098 default: 7099 report_fatal_error("Unexpected argument extension type."); 7100 case CCValAssign::Full: 7101 break; 7102 case CCValAssign::ZExt: 7103 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7104 break; 7105 case CCValAssign::SExt: 7106 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7107 break; 7108 } 7109 7110 if (VA.isRegLoc() && !VA.needsCustom()) { 7111 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7112 continue; 7113 } 7114 7115 // Vector arguments passed to VarArg functions need custom handling when 7116 // they are passed (at least partially) in GPRs. 7117 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7118 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7119 // Store value to its stack slot. 7120 SDValue PtrOff = 7121 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7122 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7123 SDValue Store = 7124 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7125 MemOpChains.push_back(Store); 7126 const unsigned OriginalValNo = VA.getValNo(); 7127 // Then load the GPRs from the stack 7128 unsigned LoadOffset = 0; 7129 auto HandleCustomVecRegLoc = [&]() { 7130 assert(I != E && "Unexpected end of CCvalAssigns."); 7131 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7132 "Expected custom RegLoc."); 7133 CCValAssign RegVA = ArgLocs[I++]; 7134 assert(RegVA.getValNo() == OriginalValNo && 7135 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7136 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7137 DAG.getConstant(LoadOffset, dl, PtrVT)); 7138 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7139 MemOpChains.push_back(Load.getValue(1)); 7140 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7141 LoadOffset += PtrByteSize; 7142 }; 7143 7144 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7145 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7146 // R10. 7147 HandleCustomVecRegLoc(); 7148 HandleCustomVecRegLoc(); 7149 7150 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7151 ArgLocs[I].getValNo() == OriginalValNo) { 7152 assert(!IsPPC64 && 7153 "Only 2 custom RegLocs expected for 64-bit codegen."); 7154 HandleCustomVecRegLoc(); 7155 HandleCustomVecRegLoc(); 7156 } 7157 7158 continue; 7159 } 7160 7161 if (VA.isMemLoc()) { 7162 SDValue PtrOff = 7163 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7164 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7165 MemOpChains.push_back( 7166 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7167 7168 continue; 7169 } 7170 7171 if (!ValVT.isFloatingPoint()) 7172 report_fatal_error( 7173 "Unexpected register handling for calling convention."); 7174 7175 // Custom handling is used for GPR initializations for vararg float 7176 // arguments. 7177 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7178 LocVT.isInteger() && 7179 "Custom register handling only expected for VarArg."); 7180 7181 SDValue ArgAsInt = 7182 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7183 7184 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7185 // f32 in 32-bit GPR 7186 // f64 in 64-bit GPR 7187 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7188 else if (Arg.getValueType().getFixedSizeInBits() < 7189 LocVT.getFixedSizeInBits()) 7190 // f32 in 64-bit GPR. 7191 RegsToPass.push_back(std::make_pair( 7192 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7193 else { 7194 // f64 in two 32-bit GPRs 7195 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7196 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7197 "Unexpected custom register for argument!"); 7198 CCValAssign &GPR1 = VA; 7199 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7200 DAG.getConstant(32, dl, MVT::i8)); 7201 RegsToPass.push_back(std::make_pair( 7202 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7203 7204 if (I != E) { 7205 // If only 1 GPR was available, there will only be one custom GPR and 7206 // the argument will also pass in memory. 7207 CCValAssign &PeekArg = ArgLocs[I]; 7208 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7209 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7210 CCValAssign &GPR2 = ArgLocs[I++]; 7211 RegsToPass.push_back(std::make_pair( 7212 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7213 } 7214 } 7215 } 7216 } 7217 7218 if (!MemOpChains.empty()) 7219 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7220 7221 // For indirect calls, we need to save the TOC base to the stack for 7222 // restoration after the call. 7223 if (CFlags.IsIndirect) { 7224 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7225 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7226 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7227 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7228 const unsigned TOCSaveOffset = 7229 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7230 7231 setUsesTOCBasePtr(DAG); 7232 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7233 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7234 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7235 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7236 Chain = DAG.getStore( 7237 Val.getValue(1), dl, Val, AddPtr, 7238 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7239 } 7240 7241 // Build a sequence of copy-to-reg nodes chained together with token chain 7242 // and flag operands which copy the outgoing args into the appropriate regs. 7243 SDValue InFlag; 7244 for (auto Reg : RegsToPass) { 7245 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7246 InFlag = Chain.getValue(1); 7247 } 7248 7249 const int SPDiff = 0; 7250 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7251 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7252 } 7253 7254 bool 7255 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7256 MachineFunction &MF, bool isVarArg, 7257 const SmallVectorImpl<ISD::OutputArg> &Outs, 7258 LLVMContext &Context) const { 7259 SmallVector<CCValAssign, 16> RVLocs; 7260 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7261 return CCInfo.CheckReturn( 7262 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7263 ? RetCC_PPC_Cold 7264 : RetCC_PPC); 7265 } 7266 7267 SDValue 7268 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7269 bool isVarArg, 7270 const SmallVectorImpl<ISD::OutputArg> &Outs, 7271 const SmallVectorImpl<SDValue> &OutVals, 7272 const SDLoc &dl, SelectionDAG &DAG) const { 7273 SmallVector<CCValAssign, 16> RVLocs; 7274 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7275 *DAG.getContext()); 7276 CCInfo.AnalyzeReturn(Outs, 7277 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7278 ? RetCC_PPC_Cold 7279 : RetCC_PPC); 7280 7281 SDValue Flag; 7282 SmallVector<SDValue, 4> RetOps(1, Chain); 7283 7284 // Copy the result values into the output registers. 7285 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7286 CCValAssign &VA = RVLocs[i]; 7287 assert(VA.isRegLoc() && "Can only return in registers!"); 7288 7289 SDValue Arg = OutVals[RealResIdx]; 7290 7291 switch (VA.getLocInfo()) { 7292 default: llvm_unreachable("Unknown loc info!"); 7293 case CCValAssign::Full: break; 7294 case CCValAssign::AExt: 7295 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7296 break; 7297 case CCValAssign::ZExt: 7298 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7299 break; 7300 case CCValAssign::SExt: 7301 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7302 break; 7303 } 7304 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7305 bool isLittleEndian = Subtarget.isLittleEndian(); 7306 // Legalize ret f64 -> ret 2 x i32. 7307 SDValue SVal = 7308 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7309 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7310 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7311 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7312 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7313 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7314 Flag = Chain.getValue(1); 7315 VA = RVLocs[++i]; // skip ahead to next loc 7316 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7317 } else 7318 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7319 Flag = Chain.getValue(1); 7320 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7321 } 7322 7323 RetOps[0] = Chain; // Update chain. 7324 7325 // Add the flag if we have it. 7326 if (Flag.getNode()) 7327 RetOps.push_back(Flag); 7328 7329 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7330 } 7331 7332 SDValue 7333 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7334 SelectionDAG &DAG) const { 7335 SDLoc dl(Op); 7336 7337 // Get the correct type for integers. 7338 EVT IntVT = Op.getValueType(); 7339 7340 // Get the inputs. 7341 SDValue Chain = Op.getOperand(0); 7342 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7343 // Build a DYNAREAOFFSET node. 7344 SDValue Ops[2] = {Chain, FPSIdx}; 7345 SDVTList VTs = DAG.getVTList(IntVT); 7346 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7347 } 7348 7349 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7350 SelectionDAG &DAG) const { 7351 // When we pop the dynamic allocation we need to restore the SP link. 7352 SDLoc dl(Op); 7353 7354 // Get the correct type for pointers. 7355 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7356 7357 // Construct the stack pointer operand. 7358 bool isPPC64 = Subtarget.isPPC64(); 7359 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7360 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7361 7362 // Get the operands for the STACKRESTORE. 7363 SDValue Chain = Op.getOperand(0); 7364 SDValue SaveSP = Op.getOperand(1); 7365 7366 // Load the old link SP. 7367 SDValue LoadLinkSP = 7368 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7369 7370 // Restore the stack pointer. 7371 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7372 7373 // Store the old link SP. 7374 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7375 } 7376 7377 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7378 MachineFunction &MF = DAG.getMachineFunction(); 7379 bool isPPC64 = Subtarget.isPPC64(); 7380 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7381 7382 // Get current frame pointer save index. The users of this index will be 7383 // primarily DYNALLOC instructions. 7384 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7385 int RASI = FI->getReturnAddrSaveIndex(); 7386 7387 // If the frame pointer save index hasn't been defined yet. 7388 if (!RASI) { 7389 // Find out what the fix offset of the frame pointer save area. 7390 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7391 // Allocate the frame index for frame pointer save area. 7392 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7393 // Save the result. 7394 FI->setReturnAddrSaveIndex(RASI); 7395 } 7396 return DAG.getFrameIndex(RASI, PtrVT); 7397 } 7398 7399 SDValue 7400 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7401 MachineFunction &MF = DAG.getMachineFunction(); 7402 bool isPPC64 = Subtarget.isPPC64(); 7403 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7404 7405 // Get current frame pointer save index. The users of this index will be 7406 // primarily DYNALLOC instructions. 7407 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7408 int FPSI = FI->getFramePointerSaveIndex(); 7409 7410 // If the frame pointer save index hasn't been defined yet. 7411 if (!FPSI) { 7412 // Find out what the fix offset of the frame pointer save area. 7413 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7414 // Allocate the frame index for frame pointer save area. 7415 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7416 // Save the result. 7417 FI->setFramePointerSaveIndex(FPSI); 7418 } 7419 return DAG.getFrameIndex(FPSI, PtrVT); 7420 } 7421 7422 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7423 SelectionDAG &DAG) const { 7424 MachineFunction &MF = DAG.getMachineFunction(); 7425 // Get the inputs. 7426 SDValue Chain = Op.getOperand(0); 7427 SDValue Size = Op.getOperand(1); 7428 SDLoc dl(Op); 7429 7430 // Get the correct type for pointers. 7431 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7432 // Negate the size. 7433 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7434 DAG.getConstant(0, dl, PtrVT), Size); 7435 // Construct a node for the frame pointer save index. 7436 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7437 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7438 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7439 if (hasInlineStackProbe(MF)) 7440 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7441 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7442 } 7443 7444 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7445 SelectionDAG &DAG) const { 7446 MachineFunction &MF = DAG.getMachineFunction(); 7447 7448 bool isPPC64 = Subtarget.isPPC64(); 7449 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7450 7451 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7452 return DAG.getFrameIndex(FI, PtrVT); 7453 } 7454 7455 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7456 SelectionDAG &DAG) const { 7457 SDLoc DL(Op); 7458 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7459 DAG.getVTList(MVT::i32, MVT::Other), 7460 Op.getOperand(0), Op.getOperand(1)); 7461 } 7462 7463 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7464 SelectionDAG &DAG) const { 7465 SDLoc DL(Op); 7466 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7467 Op.getOperand(0), Op.getOperand(1)); 7468 } 7469 7470 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7471 if (Op.getValueType().isVector()) 7472 return LowerVectorLoad(Op, DAG); 7473 7474 assert(Op.getValueType() == MVT::i1 && 7475 "Custom lowering only for i1 loads"); 7476 7477 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7478 7479 SDLoc dl(Op); 7480 LoadSDNode *LD = cast<LoadSDNode>(Op); 7481 7482 SDValue Chain = LD->getChain(); 7483 SDValue BasePtr = LD->getBasePtr(); 7484 MachineMemOperand *MMO = LD->getMemOperand(); 7485 7486 SDValue NewLD = 7487 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7488 BasePtr, MVT::i8, MMO); 7489 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7490 7491 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7492 return DAG.getMergeValues(Ops, dl); 7493 } 7494 7495 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7496 if (Op.getOperand(1).getValueType().isVector()) 7497 return LowerVectorStore(Op, DAG); 7498 7499 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7500 "Custom lowering only for i1 stores"); 7501 7502 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7503 7504 SDLoc dl(Op); 7505 StoreSDNode *ST = cast<StoreSDNode>(Op); 7506 7507 SDValue Chain = ST->getChain(); 7508 SDValue BasePtr = ST->getBasePtr(); 7509 SDValue Value = ST->getValue(); 7510 MachineMemOperand *MMO = ST->getMemOperand(); 7511 7512 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7513 Value); 7514 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7515 } 7516 7517 // FIXME: Remove this once the ANDI glue bug is fixed: 7518 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7519 assert(Op.getValueType() == MVT::i1 && 7520 "Custom lowering only for i1 results"); 7521 7522 SDLoc DL(Op); 7523 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7524 } 7525 7526 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7527 SelectionDAG &DAG) const { 7528 7529 // Implements a vector truncate that fits in a vector register as a shuffle. 7530 // We want to legalize vector truncates down to where the source fits in 7531 // a vector register (and target is therefore smaller than vector register 7532 // size). At that point legalization will try to custom lower the sub-legal 7533 // result and get here - where we can contain the truncate as a single target 7534 // operation. 7535 7536 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7537 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7538 // 7539 // We will implement it for big-endian ordering as this (where x denotes 7540 // undefined): 7541 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7542 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7543 // 7544 // The same operation in little-endian ordering will be: 7545 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7546 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7547 7548 EVT TrgVT = Op.getValueType(); 7549 assert(TrgVT.isVector() && "Vector type expected."); 7550 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7551 EVT EltVT = TrgVT.getVectorElementType(); 7552 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7553 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7554 !isPowerOf2_32(EltVT.getSizeInBits())) 7555 return SDValue(); 7556 7557 SDValue N1 = Op.getOperand(0); 7558 EVT SrcVT = N1.getValueType(); 7559 unsigned SrcSize = SrcVT.getSizeInBits(); 7560 if (SrcSize > 256 || 7561 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7562 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7563 return SDValue(); 7564 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7565 return SDValue(); 7566 7567 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7568 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7569 7570 SDLoc DL(Op); 7571 SDValue Op1, Op2; 7572 if (SrcSize == 256) { 7573 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7574 EVT SplitVT = 7575 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7576 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7577 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7578 DAG.getConstant(0, DL, VecIdxTy)); 7579 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7580 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7581 } 7582 else { 7583 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7584 Op2 = DAG.getUNDEF(WideVT); 7585 } 7586 7587 // First list the elements we want to keep. 7588 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7589 SmallVector<int, 16> ShuffV; 7590 if (Subtarget.isLittleEndian()) 7591 for (unsigned i = 0; i < TrgNumElts; ++i) 7592 ShuffV.push_back(i * SizeMult); 7593 else 7594 for (unsigned i = 1; i <= TrgNumElts; ++i) 7595 ShuffV.push_back(i * SizeMult - 1); 7596 7597 // Populate the remaining elements with undefs. 7598 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7599 // ShuffV.push_back(i + WideNumElts); 7600 ShuffV.push_back(WideNumElts + 1); 7601 7602 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7603 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7604 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7605 } 7606 7607 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7608 /// possible. 7609 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7610 // Not FP, or using SPE? Not a fsel. 7611 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7612 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 7613 return Op; 7614 7615 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7616 7617 EVT ResVT = Op.getValueType(); 7618 EVT CmpVT = Op.getOperand(0).getValueType(); 7619 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7620 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7621 SDLoc dl(Op); 7622 SDNodeFlags Flags = Op.getNode()->getFlags(); 7623 7624 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7625 // presence of infinities. 7626 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7627 switch (CC) { 7628 default: 7629 break; 7630 case ISD::SETOGT: 7631 case ISD::SETGT: 7632 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7633 case ISD::SETOLT: 7634 case ISD::SETLT: 7635 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7636 } 7637 } 7638 7639 // We might be able to do better than this under some circumstances, but in 7640 // general, fsel-based lowering of select is a finite-math-only optimization. 7641 // For more information, see section F.3 of the 2.06 ISA specification. 7642 // With ISA 3.0 7643 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7644 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7645 return Op; 7646 7647 // If the RHS of the comparison is a 0.0, we don't need to do the 7648 // subtraction at all. 7649 SDValue Sel1; 7650 if (isFloatingPointZero(RHS)) 7651 switch (CC) { 7652 default: break; // SETUO etc aren't handled by fsel. 7653 case ISD::SETNE: 7654 std::swap(TV, FV); 7655 LLVM_FALLTHROUGH; 7656 case ISD::SETEQ: 7657 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7658 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7659 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7660 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7661 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7662 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7663 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7664 case ISD::SETULT: 7665 case ISD::SETLT: 7666 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7667 LLVM_FALLTHROUGH; 7668 case ISD::SETOGE: 7669 case ISD::SETGE: 7670 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7671 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7672 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7673 case ISD::SETUGT: 7674 case ISD::SETGT: 7675 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7676 LLVM_FALLTHROUGH; 7677 case ISD::SETOLE: 7678 case ISD::SETLE: 7679 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7680 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7681 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7682 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7683 } 7684 7685 SDValue Cmp; 7686 switch (CC) { 7687 default: break; // SETUO etc aren't handled by fsel. 7688 case ISD::SETNE: 7689 std::swap(TV, FV); 7690 LLVM_FALLTHROUGH; 7691 case ISD::SETEQ: 7692 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7693 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7694 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7695 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7696 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7697 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7698 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7699 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7700 case ISD::SETULT: 7701 case ISD::SETLT: 7702 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7703 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7704 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7705 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7706 case ISD::SETOGE: 7707 case ISD::SETGE: 7708 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7709 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7710 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7711 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7712 case ISD::SETUGT: 7713 case ISD::SETGT: 7714 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7715 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7716 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7717 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7718 case ISD::SETOLE: 7719 case ISD::SETLE: 7720 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7721 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7722 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7723 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7724 } 7725 return Op; 7726 } 7727 7728 static unsigned getPPCStrictOpcode(unsigned Opc) { 7729 switch (Opc) { 7730 default: 7731 llvm_unreachable("No strict version of this opcode!"); 7732 case PPCISD::FCTIDZ: 7733 return PPCISD::STRICT_FCTIDZ; 7734 case PPCISD::FCTIWZ: 7735 return PPCISD::STRICT_FCTIWZ; 7736 case PPCISD::FCTIDUZ: 7737 return PPCISD::STRICT_FCTIDUZ; 7738 case PPCISD::FCTIWUZ: 7739 return PPCISD::STRICT_FCTIWUZ; 7740 case PPCISD::FCFID: 7741 return PPCISD::STRICT_FCFID; 7742 case PPCISD::FCFIDU: 7743 return PPCISD::STRICT_FCFIDU; 7744 case PPCISD::FCFIDS: 7745 return PPCISD::STRICT_FCFIDS; 7746 case PPCISD::FCFIDUS: 7747 return PPCISD::STRICT_FCFIDUS; 7748 } 7749 } 7750 7751 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7752 const PPCSubtarget &Subtarget) { 7753 SDLoc dl(Op); 7754 bool IsStrict = Op->isStrictFPOpcode(); 7755 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7756 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7757 7758 // TODO: Any other flags to propagate? 7759 SDNodeFlags Flags; 7760 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7761 7762 // For strict nodes, source is the second operand. 7763 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7764 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 7765 assert(Src.getValueType().isFloatingPoint()); 7766 if (Src.getValueType() == MVT::f32) { 7767 if (IsStrict) { 7768 Src = 7769 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 7770 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 7771 Chain = Src.getValue(1); 7772 } else 7773 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7774 } 7775 SDValue Conv; 7776 unsigned Opc = ISD::DELETED_NODE; 7777 switch (Op.getSimpleValueType().SimpleTy) { 7778 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7779 case MVT::i32: 7780 Opc = IsSigned ? PPCISD::FCTIWZ 7781 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 7782 break; 7783 case MVT::i64: 7784 assert((IsSigned || Subtarget.hasFPCVT()) && 7785 "i64 FP_TO_UINT is supported only with FPCVT"); 7786 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 7787 } 7788 if (IsStrict) { 7789 Opc = getPPCStrictOpcode(Opc); 7790 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 7791 {Chain, Src}, Flags); 7792 } else { 7793 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 7794 } 7795 return Conv; 7796 } 7797 7798 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7799 SelectionDAG &DAG, 7800 const SDLoc &dl) const { 7801 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 7802 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7803 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7804 bool IsStrict = Op->isStrictFPOpcode(); 7805 7806 // Convert the FP value to an int value through memory. 7807 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7808 (IsSigned || Subtarget.hasFPCVT()); 7809 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7810 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7811 MachinePointerInfo MPI = 7812 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7813 7814 // Emit a store to the stack slot. 7815 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 7816 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 7817 if (i32Stack) { 7818 MachineFunction &MF = DAG.getMachineFunction(); 7819 Alignment = Align(4); 7820 MachineMemOperand *MMO = 7821 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 7822 SDValue Ops[] = { Chain, Tmp, FIPtr }; 7823 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7824 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7825 } else 7826 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 7827 7828 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7829 // add in a bias on big endian. 7830 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7831 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7832 DAG.getConstant(4, dl, FIPtr.getValueType())); 7833 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7834 } 7835 7836 RLI.Chain = Chain; 7837 RLI.Ptr = FIPtr; 7838 RLI.MPI = MPI; 7839 RLI.Alignment = Alignment; 7840 } 7841 7842 /// Custom lowers floating point to integer conversions to use 7843 /// the direct move instructions available in ISA 2.07 to avoid the 7844 /// need for load/store combinations. 7845 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7846 SelectionDAG &DAG, 7847 const SDLoc &dl) const { 7848 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 7849 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 7850 if (Op->isStrictFPOpcode()) 7851 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 7852 else 7853 return Mov; 7854 } 7855 7856 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7857 const SDLoc &dl) const { 7858 bool IsStrict = Op->isStrictFPOpcode(); 7859 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7860 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7861 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7862 EVT SrcVT = Src.getValueType(); 7863 EVT DstVT = Op.getValueType(); 7864 7865 // FP to INT conversions are legal for f128. 7866 if (SrcVT == MVT::f128) 7867 return Subtarget.hasP9Vector() ? Op : SDValue(); 7868 7869 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7870 // PPC (the libcall is not available). 7871 if (SrcVT == MVT::ppcf128) { 7872 if (DstVT == MVT::i32) { 7873 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 7874 // set other fast-math flags to FP operations in both strict and 7875 // non-strict cases. (FP_TO_SINT, FSUB) 7876 SDNodeFlags Flags; 7877 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7878 7879 if (IsSigned) { 7880 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 7881 DAG.getIntPtrConstant(0, dl)); 7882 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 7883 DAG.getIntPtrConstant(1, dl)); 7884 7885 // Add the two halves of the long double in round-to-zero mode, and use 7886 // a smaller FP_TO_SINT. 7887 if (IsStrict) { 7888 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 7889 DAG.getVTList(MVT::f64, MVT::Other), 7890 {Op.getOperand(0), Lo, Hi}, Flags); 7891 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 7892 DAG.getVTList(MVT::i32, MVT::Other), 7893 {Res.getValue(1), Res}, Flags); 7894 } else { 7895 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7896 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7897 } 7898 } else { 7899 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7900 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7901 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7902 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 7903 if (IsStrict) { 7904 // Sel = Src < 0x80000000 7905 // FltOfs = select Sel, 0.0, 0x80000000 7906 // IntOfs = select Sel, 0, 0x80000000 7907 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7908 SDValue Chain = Op.getOperand(0); 7909 EVT SetCCVT = 7910 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7911 EVT DstSetCCVT = 7912 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7913 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7914 Chain, true); 7915 Chain = Sel.getValue(1); 7916 7917 SDValue FltOfs = DAG.getSelect( 7918 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7919 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7920 7921 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 7922 DAG.getVTList(SrcVT, MVT::Other), 7923 {Chain, Src, FltOfs}, Flags); 7924 Chain = Val.getValue(1); 7925 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 7926 DAG.getVTList(DstVT, MVT::Other), 7927 {Chain, Val}, Flags); 7928 Chain = SInt.getValue(1); 7929 SDValue IntOfs = DAG.getSelect( 7930 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 7931 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7932 return DAG.getMergeValues({Result, Chain}, dl); 7933 } else { 7934 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7935 // FIXME: generated code sucks. 7936 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 7937 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7938 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 7939 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 7940 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 7941 } 7942 } 7943 } 7944 7945 return SDValue(); 7946 } 7947 7948 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7949 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7950 7951 ReuseLoadInfo RLI; 7952 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7953 7954 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7955 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7956 } 7957 7958 // We're trying to insert a regular store, S, and then a load, L. If the 7959 // incoming value, O, is a load, we might just be able to have our load use the 7960 // address used by O. However, we don't know if anything else will store to 7961 // that address before we can load from it. To prevent this situation, we need 7962 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7963 // the same chain operand as O, we create a token factor from the chain results 7964 // of O and L, and we replace all uses of O's chain result with that token 7965 // factor (see spliceIntoChain below for this last part). 7966 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7967 ReuseLoadInfo &RLI, 7968 SelectionDAG &DAG, 7969 ISD::LoadExtType ET) const { 7970 // Conservatively skip reusing for constrained FP nodes. 7971 if (Op->isStrictFPOpcode()) 7972 return false; 7973 7974 SDLoc dl(Op); 7975 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 7976 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 7977 if (ET == ISD::NON_EXTLOAD && 7978 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 7979 isOperationLegalOrCustom(Op.getOpcode(), 7980 Op.getOperand(0).getValueType())) { 7981 7982 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7983 return true; 7984 } 7985 7986 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7987 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7988 LD->isNonTemporal()) 7989 return false; 7990 if (LD->getMemoryVT() != MemVT) 7991 return false; 7992 7993 // If the result of the load is an illegal type, then we can't build a 7994 // valid chain for reuse since the legalised loads and token factor node that 7995 // ties the legalised loads together uses a different output chain then the 7996 // illegal load. 7997 if (!isTypeLegal(LD->getValueType(0))) 7998 return false; 7999 8000 RLI.Ptr = LD->getBasePtr(); 8001 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8002 assert(LD->getAddressingMode() == ISD::PRE_INC && 8003 "Non-pre-inc AM on PPC?"); 8004 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8005 LD->getOffset()); 8006 } 8007 8008 RLI.Chain = LD->getChain(); 8009 RLI.MPI = LD->getPointerInfo(); 8010 RLI.IsDereferenceable = LD->isDereferenceable(); 8011 RLI.IsInvariant = LD->isInvariant(); 8012 RLI.Alignment = LD->getAlign(); 8013 RLI.AAInfo = LD->getAAInfo(); 8014 RLI.Ranges = LD->getRanges(); 8015 8016 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8017 return true; 8018 } 8019 8020 // Given the head of the old chain, ResChain, insert a token factor containing 8021 // it and NewResChain, and make users of ResChain now be users of that token 8022 // factor. 8023 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8024 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8025 SDValue NewResChain, 8026 SelectionDAG &DAG) const { 8027 if (!ResChain) 8028 return; 8029 8030 SDLoc dl(NewResChain); 8031 8032 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8033 NewResChain, DAG.getUNDEF(MVT::Other)); 8034 assert(TF.getNode() != NewResChain.getNode() && 8035 "A new TF really is required here"); 8036 8037 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8038 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8039 } 8040 8041 /// Analyze profitability of direct move 8042 /// prefer float load to int load plus direct move 8043 /// when there is no integer use of int load 8044 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8045 SDNode *Origin = Op.getOperand(0).getNode(); 8046 if (Origin->getOpcode() != ISD::LOAD) 8047 return true; 8048 8049 // If there is no LXSIBZX/LXSIHZX, like Power8, 8050 // prefer direct move if the memory size is 1 or 2 bytes. 8051 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8052 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8053 return true; 8054 8055 for (SDNode::use_iterator UI = Origin->use_begin(), 8056 UE = Origin->use_end(); 8057 UI != UE; ++UI) { 8058 8059 // Only look at the users of the loaded value. 8060 if (UI.getUse().get().getResNo() != 0) 8061 continue; 8062 8063 if (UI->getOpcode() != ISD::SINT_TO_FP && 8064 UI->getOpcode() != ISD::UINT_TO_FP && 8065 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8066 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8067 return true; 8068 } 8069 8070 return false; 8071 } 8072 8073 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8074 const PPCSubtarget &Subtarget, 8075 SDValue Chain = SDValue()) { 8076 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8077 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8078 SDLoc dl(Op); 8079 8080 // TODO: Any other flags to propagate? 8081 SDNodeFlags Flags; 8082 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8083 8084 // If we have FCFIDS, then use it when converting to single-precision. 8085 // Otherwise, convert to double-precision and then round. 8086 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8087 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8088 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8089 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8090 if (Op->isStrictFPOpcode()) { 8091 if (!Chain) 8092 Chain = Op.getOperand(0); 8093 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8094 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8095 } else 8096 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8097 } 8098 8099 /// Custom lowers integer to floating point conversions to use 8100 /// the direct move instructions available in ISA 2.07 to avoid the 8101 /// need for load/store combinations. 8102 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8103 SelectionDAG &DAG, 8104 const SDLoc &dl) const { 8105 assert((Op.getValueType() == MVT::f32 || 8106 Op.getValueType() == MVT::f64) && 8107 "Invalid floating point type as target of conversion"); 8108 assert(Subtarget.hasFPCVT() && 8109 "Int to FP conversions with direct moves require FPCVT"); 8110 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8111 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8112 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8113 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8114 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8115 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8116 return convertIntToFP(Op, Mov, DAG, Subtarget); 8117 } 8118 8119 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8120 8121 EVT VecVT = Vec.getValueType(); 8122 assert(VecVT.isVector() && "Expected a vector type."); 8123 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8124 8125 EVT EltVT = VecVT.getVectorElementType(); 8126 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8127 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8128 8129 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8130 SmallVector<SDValue, 16> Ops(NumConcat); 8131 Ops[0] = Vec; 8132 SDValue UndefVec = DAG.getUNDEF(VecVT); 8133 for (unsigned i = 1; i < NumConcat; ++i) 8134 Ops[i] = UndefVec; 8135 8136 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8137 } 8138 8139 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8140 const SDLoc &dl) const { 8141 bool IsStrict = Op->isStrictFPOpcode(); 8142 unsigned Opc = Op.getOpcode(); 8143 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8144 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8145 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8146 "Unexpected conversion type"); 8147 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8148 "Supports conversions to v2f64/v4f32 only."); 8149 8150 // TODO: Any other flags to propagate? 8151 SDNodeFlags Flags; 8152 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8153 8154 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8155 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8156 8157 SDValue Wide = widenVec(DAG, Src, dl); 8158 EVT WideVT = Wide.getValueType(); 8159 unsigned WideNumElts = WideVT.getVectorNumElements(); 8160 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8161 8162 SmallVector<int, 16> ShuffV; 8163 for (unsigned i = 0; i < WideNumElts; ++i) 8164 ShuffV.push_back(i + WideNumElts); 8165 8166 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8167 int SaveElts = FourEltRes ? 4 : 2; 8168 if (Subtarget.isLittleEndian()) 8169 for (int i = 0; i < SaveElts; i++) 8170 ShuffV[i * Stride] = i; 8171 else 8172 for (int i = 1; i <= SaveElts; i++) 8173 ShuffV[i * Stride - 1] = i - 1; 8174 8175 SDValue ShuffleSrc2 = 8176 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8177 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8178 8179 SDValue Extend; 8180 if (SignedConv) { 8181 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8182 EVT ExtVT = Src.getValueType(); 8183 if (Subtarget.hasP9Altivec()) 8184 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8185 IntermediateVT.getVectorNumElements()); 8186 8187 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8188 DAG.getValueType(ExtVT)); 8189 } else 8190 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8191 8192 if (IsStrict) 8193 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8194 {Op.getOperand(0), Extend}, Flags); 8195 8196 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8197 } 8198 8199 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8200 SelectionDAG &DAG) const { 8201 SDLoc dl(Op); 8202 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8203 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8204 bool IsStrict = Op->isStrictFPOpcode(); 8205 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8206 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8207 8208 // TODO: Any other flags to propagate? 8209 SDNodeFlags Flags; 8210 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8211 8212 EVT InVT = Src.getValueType(); 8213 EVT OutVT = Op.getValueType(); 8214 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8215 isOperationCustom(Op.getOpcode(), InVT)) 8216 return LowerINT_TO_FPVector(Op, DAG, dl); 8217 8218 // Conversions to f128 are legal. 8219 if (Op.getValueType() == MVT::f128) 8220 return Subtarget.hasP9Vector() ? Op : SDValue(); 8221 8222 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8223 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8224 return SDValue(); 8225 8226 if (Src.getValueType() == MVT::i1) { 8227 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8228 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8229 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8230 if (IsStrict) 8231 return DAG.getMergeValues({Sel, Chain}, dl); 8232 else 8233 return Sel; 8234 } 8235 8236 // If we have direct moves, we can do all the conversion, skip the store/load 8237 // however, without FPCVT we can't do most conversions. 8238 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8239 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8240 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8241 8242 assert((IsSigned || Subtarget.hasFPCVT()) && 8243 "UINT_TO_FP is supported only with FPCVT"); 8244 8245 if (Src.getValueType() == MVT::i64) { 8246 SDValue SINT = Src; 8247 // When converting to single-precision, we actually need to convert 8248 // to double-precision first and then round to single-precision. 8249 // To avoid double-rounding effects during that operation, we have 8250 // to prepare the input operand. Bits that might be truncated when 8251 // converting to double-precision are replaced by a bit that won't 8252 // be lost at this stage, but is below the single-precision rounding 8253 // position. 8254 // 8255 // However, if -enable-unsafe-fp-math is in effect, accept double 8256 // rounding to avoid the extra overhead. 8257 if (Op.getValueType() == MVT::f32 && 8258 !Subtarget.hasFPCVT() && 8259 !DAG.getTarget().Options.UnsafeFPMath) { 8260 8261 // Twiddle input to make sure the low 11 bits are zero. (If this 8262 // is the case, we are guaranteed the value will fit into the 53 bit 8263 // mantissa of an IEEE double-precision value without rounding.) 8264 // If any of those low 11 bits were not zero originally, make sure 8265 // bit 12 (value 2048) is set instead, so that the final rounding 8266 // to single-precision gets the correct result. 8267 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8268 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8269 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8270 Round, DAG.getConstant(2047, dl, MVT::i64)); 8271 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8272 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8273 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8274 8275 // However, we cannot use that value unconditionally: if the magnitude 8276 // of the input value is small, the bit-twiddling we did above might 8277 // end up visibly changing the output. Fortunately, in that case, we 8278 // don't need to twiddle bits since the original input will convert 8279 // exactly to double-precision floating-point already. Therefore, 8280 // construct a conditional to use the original value if the top 11 8281 // bits are all sign-bit copies, and use the rounded value computed 8282 // above otherwise. 8283 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8284 SINT, DAG.getConstant(53, dl, MVT::i32)); 8285 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8286 Cond, DAG.getConstant(1, dl, MVT::i64)); 8287 Cond = DAG.getSetCC( 8288 dl, 8289 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8290 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8291 8292 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8293 } 8294 8295 ReuseLoadInfo RLI; 8296 SDValue Bits; 8297 8298 MachineFunction &MF = DAG.getMachineFunction(); 8299 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8300 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8301 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8302 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8303 } else if (Subtarget.hasLFIWAX() && 8304 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8305 MachineMemOperand *MMO = 8306 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8307 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8308 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8309 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8310 DAG.getVTList(MVT::f64, MVT::Other), 8311 Ops, MVT::i32, MMO); 8312 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8313 } else if (Subtarget.hasFPCVT() && 8314 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8315 MachineMemOperand *MMO = 8316 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8317 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8318 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8319 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8320 DAG.getVTList(MVT::f64, MVT::Other), 8321 Ops, MVT::i32, MMO); 8322 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8323 } else if (((Subtarget.hasLFIWAX() && 8324 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8325 (Subtarget.hasFPCVT() && 8326 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8327 SINT.getOperand(0).getValueType() == MVT::i32) { 8328 MachineFrameInfo &MFI = MF.getFrameInfo(); 8329 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8330 8331 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8332 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8333 8334 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8335 MachinePointerInfo::getFixedStack( 8336 DAG.getMachineFunction(), FrameIdx)); 8337 Chain = Store; 8338 8339 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8340 "Expected an i32 store"); 8341 8342 RLI.Ptr = FIdx; 8343 RLI.Chain = Chain; 8344 RLI.MPI = 8345 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8346 RLI.Alignment = Align(4); 8347 8348 MachineMemOperand *MMO = 8349 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8350 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8351 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8352 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8353 PPCISD::LFIWZX : PPCISD::LFIWAX, 8354 dl, DAG.getVTList(MVT::f64, MVT::Other), 8355 Ops, MVT::i32, MMO); 8356 Chain = Bits.getValue(1); 8357 } else 8358 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8359 8360 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8361 if (IsStrict) 8362 Chain = FP.getValue(1); 8363 8364 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8365 if (IsStrict) 8366 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8367 DAG.getVTList(MVT::f32, MVT::Other), 8368 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8369 else 8370 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8371 DAG.getIntPtrConstant(0, dl)); 8372 } 8373 return FP; 8374 } 8375 8376 assert(Src.getValueType() == MVT::i32 && 8377 "Unhandled INT_TO_FP type in custom expander!"); 8378 // Since we only generate this in 64-bit mode, we can take advantage of 8379 // 64-bit registers. In particular, sign extend the input value into the 8380 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8381 // then lfd it and fcfid it. 8382 MachineFunction &MF = DAG.getMachineFunction(); 8383 MachineFrameInfo &MFI = MF.getFrameInfo(); 8384 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8385 8386 SDValue Ld; 8387 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8388 ReuseLoadInfo RLI; 8389 bool ReusingLoad; 8390 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8391 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8392 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8393 8394 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8395 MachinePointerInfo::getFixedStack( 8396 DAG.getMachineFunction(), FrameIdx)); 8397 Chain = Store; 8398 8399 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8400 "Expected an i32 store"); 8401 8402 RLI.Ptr = FIdx; 8403 RLI.Chain = Chain; 8404 RLI.MPI = 8405 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8406 RLI.Alignment = Align(4); 8407 } 8408 8409 MachineMemOperand *MMO = 8410 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8411 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8412 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8413 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8414 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8415 MVT::i32, MMO); 8416 Chain = Ld.getValue(1); 8417 if (ReusingLoad) 8418 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8419 } else { 8420 assert(Subtarget.isPPC64() && 8421 "i32->FP without LFIWAX supported only on PPC64"); 8422 8423 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8424 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8425 8426 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8427 8428 // STD the extended value into the stack slot. 8429 SDValue Store = DAG.getStore( 8430 Chain, dl, Ext64, FIdx, 8431 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8432 Chain = Store; 8433 8434 // Load the value as a double. 8435 Ld = DAG.getLoad( 8436 MVT::f64, dl, Chain, FIdx, 8437 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8438 Chain = Ld.getValue(1); 8439 } 8440 8441 // FCFID it and return it. 8442 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8443 if (IsStrict) 8444 Chain = FP.getValue(1); 8445 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8446 if (IsStrict) 8447 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8448 DAG.getVTList(MVT::f32, MVT::Other), 8449 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8450 else 8451 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8452 DAG.getIntPtrConstant(0, dl)); 8453 } 8454 return FP; 8455 } 8456 8457 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8458 SelectionDAG &DAG) const { 8459 SDLoc dl(Op); 8460 /* 8461 The rounding mode is in bits 30:31 of FPSR, and has the following 8462 settings: 8463 00 Round to nearest 8464 01 Round to 0 8465 10 Round to +inf 8466 11 Round to -inf 8467 8468 FLT_ROUNDS, on the other hand, expects the following: 8469 -1 Undefined 8470 0 Round to 0 8471 1 Round to nearest 8472 2 Round to +inf 8473 3 Round to -inf 8474 8475 To perform the conversion, we do: 8476 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8477 */ 8478 8479 MachineFunction &MF = DAG.getMachineFunction(); 8480 EVT VT = Op.getValueType(); 8481 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8482 8483 // Save FP Control Word to register 8484 SDValue Chain = Op.getOperand(0); 8485 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8486 Chain = MFFS.getValue(1); 8487 8488 SDValue CWD; 8489 if (isTypeLegal(MVT::i64)) { 8490 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8491 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8492 } else { 8493 // Save FP register to stack slot 8494 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8495 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8496 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8497 8498 // Load FP Control Word from low 32 bits of stack slot. 8499 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8500 "Stack slot adjustment is valid only on big endian subtargets!"); 8501 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8502 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8503 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8504 Chain = CWD.getValue(1); 8505 } 8506 8507 // Transform as necessary 8508 SDValue CWD1 = 8509 DAG.getNode(ISD::AND, dl, MVT::i32, 8510 CWD, DAG.getConstant(3, dl, MVT::i32)); 8511 SDValue CWD2 = 8512 DAG.getNode(ISD::SRL, dl, MVT::i32, 8513 DAG.getNode(ISD::AND, dl, MVT::i32, 8514 DAG.getNode(ISD::XOR, dl, MVT::i32, 8515 CWD, DAG.getConstant(3, dl, MVT::i32)), 8516 DAG.getConstant(3, dl, MVT::i32)), 8517 DAG.getConstant(1, dl, MVT::i32)); 8518 8519 SDValue RetVal = 8520 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8521 8522 RetVal = 8523 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8524 dl, VT, RetVal); 8525 8526 return DAG.getMergeValues({RetVal, Chain}, dl); 8527 } 8528 8529 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8530 EVT VT = Op.getValueType(); 8531 unsigned BitWidth = VT.getSizeInBits(); 8532 SDLoc dl(Op); 8533 assert(Op.getNumOperands() == 3 && 8534 VT == Op.getOperand(1).getValueType() && 8535 "Unexpected SHL!"); 8536 8537 // Expand into a bunch of logical ops. Note that these ops 8538 // depend on the PPC behavior for oversized shift amounts. 8539 SDValue Lo = Op.getOperand(0); 8540 SDValue Hi = Op.getOperand(1); 8541 SDValue Amt = Op.getOperand(2); 8542 EVT AmtVT = Amt.getValueType(); 8543 8544 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8545 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8546 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8547 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8548 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8549 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8550 DAG.getConstant(-BitWidth, dl, AmtVT)); 8551 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8552 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8553 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8554 SDValue OutOps[] = { OutLo, OutHi }; 8555 return DAG.getMergeValues(OutOps, dl); 8556 } 8557 8558 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8559 EVT VT = Op.getValueType(); 8560 SDLoc dl(Op); 8561 unsigned BitWidth = VT.getSizeInBits(); 8562 assert(Op.getNumOperands() == 3 && 8563 VT == Op.getOperand(1).getValueType() && 8564 "Unexpected SRL!"); 8565 8566 // Expand into a bunch of logical ops. Note that these ops 8567 // depend on the PPC behavior for oversized shift amounts. 8568 SDValue Lo = Op.getOperand(0); 8569 SDValue Hi = Op.getOperand(1); 8570 SDValue Amt = Op.getOperand(2); 8571 EVT AmtVT = Amt.getValueType(); 8572 8573 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8574 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8575 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8576 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8577 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8578 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8579 DAG.getConstant(-BitWidth, dl, AmtVT)); 8580 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8581 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8582 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8583 SDValue OutOps[] = { OutLo, OutHi }; 8584 return DAG.getMergeValues(OutOps, dl); 8585 } 8586 8587 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8588 SDLoc dl(Op); 8589 EVT VT = Op.getValueType(); 8590 unsigned BitWidth = VT.getSizeInBits(); 8591 assert(Op.getNumOperands() == 3 && 8592 VT == Op.getOperand(1).getValueType() && 8593 "Unexpected SRA!"); 8594 8595 // Expand into a bunch of logical ops, followed by a select_cc. 8596 SDValue Lo = Op.getOperand(0); 8597 SDValue Hi = Op.getOperand(1); 8598 SDValue Amt = Op.getOperand(2); 8599 EVT AmtVT = Amt.getValueType(); 8600 8601 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8602 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8603 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8604 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8605 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8606 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8607 DAG.getConstant(-BitWidth, dl, AmtVT)); 8608 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8609 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8610 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8611 Tmp4, Tmp6, ISD::SETLE); 8612 SDValue OutOps[] = { OutLo, OutHi }; 8613 return DAG.getMergeValues(OutOps, dl); 8614 } 8615 8616 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8617 SelectionDAG &DAG) const { 8618 SDLoc dl(Op); 8619 EVT VT = Op.getValueType(); 8620 unsigned BitWidth = VT.getSizeInBits(); 8621 8622 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8623 SDValue X = Op.getOperand(0); 8624 SDValue Y = Op.getOperand(1); 8625 SDValue Z = Op.getOperand(2); 8626 EVT AmtVT = Z.getValueType(); 8627 8628 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8629 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8630 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8631 // on PowerPC shift by BW being well defined. 8632 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8633 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8634 SDValue SubZ = 8635 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8636 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8637 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8638 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8639 } 8640 8641 //===----------------------------------------------------------------------===// 8642 // Vector related lowering. 8643 // 8644 8645 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8646 /// element size of SplatSize. Cast the result to VT. 8647 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8648 SelectionDAG &DAG, const SDLoc &dl) { 8649 static const MVT VTys[] = { // canonical VT to use for each size. 8650 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8651 }; 8652 8653 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8654 8655 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8656 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8657 SplatSize = 1; 8658 Val = 0xFF; 8659 } 8660 8661 EVT CanonicalVT = VTys[SplatSize-1]; 8662 8663 // Build a canonical splat for this value. 8664 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8665 } 8666 8667 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8668 /// specified intrinsic ID. 8669 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8670 const SDLoc &dl, EVT DestVT = MVT::Other) { 8671 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8672 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8673 DAG.getConstant(IID, dl, MVT::i32), Op); 8674 } 8675 8676 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8677 /// specified intrinsic ID. 8678 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8679 SelectionDAG &DAG, const SDLoc &dl, 8680 EVT DestVT = MVT::Other) { 8681 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8682 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8683 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8684 } 8685 8686 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8687 /// specified intrinsic ID. 8688 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8689 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8690 EVT DestVT = MVT::Other) { 8691 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8692 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8693 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8694 } 8695 8696 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8697 /// amount. The result has the specified value type. 8698 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8699 SelectionDAG &DAG, const SDLoc &dl) { 8700 // Force LHS/RHS to be the right type. 8701 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8702 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8703 8704 int Ops[16]; 8705 for (unsigned i = 0; i != 16; ++i) 8706 Ops[i] = i + Amt; 8707 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8708 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8709 } 8710 8711 /// Do we have an efficient pattern in a .td file for this node? 8712 /// 8713 /// \param V - pointer to the BuildVectorSDNode being matched 8714 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8715 /// 8716 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8717 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8718 /// the opposite is true (expansion is beneficial) are: 8719 /// - The node builds a vector out of integers that are not 32 or 64-bits 8720 /// - The node builds a vector out of constants 8721 /// - The node is a "load-and-splat" 8722 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8723 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8724 bool HasDirectMove, 8725 bool HasP8Vector) { 8726 EVT VecVT = V->getValueType(0); 8727 bool RightType = VecVT == MVT::v2f64 || 8728 (HasP8Vector && VecVT == MVT::v4f32) || 8729 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8730 if (!RightType) 8731 return false; 8732 8733 bool IsSplat = true; 8734 bool IsLoad = false; 8735 SDValue Op0 = V->getOperand(0); 8736 8737 // This function is called in a block that confirms the node is not a constant 8738 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8739 // different constants. 8740 if (V->isConstant()) 8741 return false; 8742 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8743 if (V->getOperand(i).isUndef()) 8744 return false; 8745 // We want to expand nodes that represent load-and-splat even if the 8746 // loaded value is a floating point truncation or conversion to int. 8747 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8748 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8749 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8750 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8751 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8752 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8753 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8754 IsLoad = true; 8755 // If the operands are different or the input is not a load and has more 8756 // uses than just this BV node, then it isn't a splat. 8757 if (V->getOperand(i) != Op0 || 8758 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8759 IsSplat = false; 8760 } 8761 return !(IsSplat && IsLoad); 8762 } 8763 8764 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8765 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8766 8767 SDLoc dl(Op); 8768 SDValue Op0 = Op->getOperand(0); 8769 8770 if ((Op.getValueType() != MVT::f128) || 8771 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8772 (Op0.getOperand(0).getValueType() != MVT::i64) || 8773 (Op0.getOperand(1).getValueType() != MVT::i64)) 8774 return SDValue(); 8775 8776 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8777 Op0.getOperand(1)); 8778 } 8779 8780 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 8781 const SDValue *InputLoad = &Op; 8782 if (InputLoad->getOpcode() == ISD::BITCAST) 8783 InputLoad = &InputLoad->getOperand(0); 8784 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 8785 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 8786 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 8787 InputLoad = &InputLoad->getOperand(0); 8788 } 8789 if (InputLoad->getOpcode() != ISD::LOAD) 8790 return nullptr; 8791 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8792 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8793 } 8794 8795 // Convert the argument APFloat to a single precision APFloat if there is no 8796 // loss in information during the conversion to single precision APFloat and the 8797 // resulting number is not a denormal number. Return true if successful. 8798 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 8799 APFloat APFloatToConvert = ArgAPFloat; 8800 bool LosesInfo = true; 8801 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 8802 &LosesInfo); 8803 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 8804 if (Success) 8805 ArgAPFloat = APFloatToConvert; 8806 return Success; 8807 } 8808 8809 // Bitcast the argument APInt to a double and convert it to a single precision 8810 // APFloat, bitcast the APFloat to an APInt and assign it to the original 8811 // argument if there is no loss in information during the conversion from 8812 // double to single precision APFloat and the resulting number is not a denormal 8813 // number. Return true if successful. 8814 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 8815 double DpValue = ArgAPInt.bitsToDouble(); 8816 APFloat APFloatDp(DpValue); 8817 bool Success = convertToNonDenormSingle(APFloatDp); 8818 if (Success) 8819 ArgAPInt = APFloatDp.bitcastToAPInt(); 8820 return Success; 8821 } 8822 8823 // If this is a case we can't handle, return null and let the default 8824 // expansion code take care of it. If we CAN select this case, and if it 8825 // selects to a single instruction, return Op. Otherwise, if we can codegen 8826 // this case more efficiently than a constant pool load, lower it to the 8827 // sequence of ops that should be used. 8828 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8829 SelectionDAG &DAG) const { 8830 SDLoc dl(Op); 8831 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8832 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8833 8834 // Check if this is a splat of a constant value. 8835 APInt APSplatBits, APSplatUndef; 8836 unsigned SplatBitSize; 8837 bool HasAnyUndefs; 8838 bool BVNIsConstantSplat = 8839 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8840 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 8841 8842 // If it is a splat of a double, check if we can shrink it to a 32 bit 8843 // non-denormal float which when converted back to double gives us the same 8844 // double. This is to exploit the XXSPLTIDP instruction. 8845 // If we lose precision, we use XXSPLTI32DX. 8846 if (BVNIsConstantSplat && (SplatBitSize == 64) && 8847 Subtarget.hasPrefixInstrs()) { 8848 // Check the type first to short-circuit so we don't modify APSplatBits if 8849 // this block isn't executed. 8850 if ((Op->getValueType(0) == MVT::v2f64) && 8851 convertToNonDenormSingle(APSplatBits)) { 8852 SDValue SplatNode = DAG.getNode( 8853 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 8854 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 8855 return DAG.getBitcast(Op.getValueType(), SplatNode); 8856 } else { 8857 // We may lose precision, so we have to use XXSPLTI32DX. 8858 8859 uint32_t Hi = 8860 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 8861 uint32_t Lo = 8862 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 8863 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 8864 8865 if (!Hi || !Lo) 8866 // If either load is 0, then we should generate XXLXOR to set to 0. 8867 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 8868 8869 if (Hi) 8870 SplatNode = DAG.getNode( 8871 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 8872 DAG.getTargetConstant(0, dl, MVT::i32), 8873 DAG.getTargetConstant(Hi, dl, MVT::i32)); 8874 8875 if (Lo) 8876 SplatNode = 8877 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 8878 DAG.getTargetConstant(1, dl, MVT::i32), 8879 DAG.getTargetConstant(Lo, dl, MVT::i32)); 8880 8881 return DAG.getBitcast(Op.getValueType(), SplatNode); 8882 } 8883 } 8884 8885 if (!BVNIsConstantSplat || SplatBitSize > 32) { 8886 8887 bool IsPermutedLoad = false; 8888 const SDValue *InputLoad = 8889 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 8890 // Handle load-and-splat patterns as we have instructions that will do this 8891 // in one go. 8892 if (InputLoad && DAG.isSplatValue(Op, true)) { 8893 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8894 8895 // We have handling for 4 and 8 byte elements. 8896 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8897 8898 // Checking for a single use of this load, we have to check for vector 8899 // width (128 bits) / ElementSize uses (since each operand of the 8900 // BUILD_VECTOR is a separate use of the value. 8901 unsigned NumUsesOfInputLD = 128 / ElementSize; 8902 for (SDValue BVInOp : Op->ops()) 8903 if (BVInOp.isUndef()) 8904 NumUsesOfInputLD--; 8905 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 8906 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 8907 ((Subtarget.hasVSX() && ElementSize == 64) || 8908 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8909 SDValue Ops[] = { 8910 LD->getChain(), // Chain 8911 LD->getBasePtr(), // Ptr 8912 DAG.getValueType(Op.getValueType()) // VT 8913 }; 8914 SDValue LdSplt = DAG.getMemIntrinsicNode( 8915 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8916 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8917 // Replace all uses of the output chain of the original load with the 8918 // output chain of the new load. 8919 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 8920 LdSplt.getValue(1)); 8921 return LdSplt; 8922 } 8923 } 8924 8925 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 8926 // 32-bits can be lowered to VSX instructions under certain conditions. 8927 // Without VSX, there is no pattern more efficient than expanding the node. 8928 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 8929 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8930 Subtarget.hasP8Vector())) 8931 return Op; 8932 return SDValue(); 8933 } 8934 8935 uint64_t SplatBits = APSplatBits.getZExtValue(); 8936 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 8937 unsigned SplatSize = SplatBitSize / 8; 8938 8939 // First, handle single instruction cases. 8940 8941 // All zeros? 8942 if (SplatBits == 0) { 8943 // Canonicalize all zero vectors to be v4i32. 8944 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8945 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8946 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8947 } 8948 return Op; 8949 } 8950 8951 // We have XXSPLTIW for constant splats four bytes wide. 8952 // Given vector length is a multiple of 4, 2-byte splats can be replaced 8953 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 8954 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 8955 // turned into a 4-byte splat of 0xABABABAB. 8956 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 8957 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 8958 Op.getValueType(), DAG, dl); 8959 8960 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 8961 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8962 dl); 8963 8964 // We have XXSPLTIB for constant splats one byte wide. 8965 if (Subtarget.hasP9Vector() && SplatSize == 1) 8966 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8967 dl); 8968 8969 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8970 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8971 (32-SplatBitSize)); 8972 if (SextVal >= -16 && SextVal <= 15) 8973 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 8974 dl); 8975 8976 // Two instruction sequences. 8977 8978 // If this value is in the range [-32,30] and is even, use: 8979 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8980 // If this value is in the range [17,31] and is odd, use: 8981 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8982 // If this value is in the range [-31,-17] and is odd, use: 8983 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8984 // Note the last two are three-instruction sequences. 8985 if (SextVal >= -32 && SextVal <= 31) { 8986 // To avoid having these optimizations undone by constant folding, 8987 // we convert to a pseudo that will be expanded later into one of 8988 // the above forms. 8989 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8990 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8991 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8992 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8993 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8994 if (VT == Op.getValueType()) 8995 return RetVal; 8996 else 8997 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8998 } 8999 9000 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9001 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9002 // for fneg/fabs. 9003 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9004 // Make -1 and vspltisw -1: 9005 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9006 9007 // Make the VSLW intrinsic, computing 0x8000_0000. 9008 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9009 OnesV, DAG, dl); 9010 9011 // xor by OnesV to invert it. 9012 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9013 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9014 } 9015 9016 // Check to see if this is a wide variety of vsplti*, binop self cases. 9017 static const signed char SplatCsts[] = { 9018 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9019 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9020 }; 9021 9022 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9023 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9024 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9025 int i = SplatCsts[idx]; 9026 9027 // Figure out what shift amount will be used by altivec if shifted by i in 9028 // this splat size. 9029 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9030 9031 // vsplti + shl self. 9032 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9033 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9034 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9035 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9036 Intrinsic::ppc_altivec_vslw 9037 }; 9038 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9039 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9040 } 9041 9042 // vsplti + srl self. 9043 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9044 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9045 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9046 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9047 Intrinsic::ppc_altivec_vsrw 9048 }; 9049 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9050 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9051 } 9052 9053 // vsplti + rol self. 9054 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9055 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9056 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9057 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9058 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9059 Intrinsic::ppc_altivec_vrlw 9060 }; 9061 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9062 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9063 } 9064 9065 // t = vsplti c, result = vsldoi t, t, 1 9066 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9067 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9068 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9069 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9070 } 9071 // t = vsplti c, result = vsldoi t, t, 2 9072 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9073 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9074 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9075 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9076 } 9077 // t = vsplti c, result = vsldoi t, t, 3 9078 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9079 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9080 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9081 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9082 } 9083 } 9084 9085 return SDValue(); 9086 } 9087 9088 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9089 /// the specified operations to build the shuffle. 9090 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9091 SDValue RHS, SelectionDAG &DAG, 9092 const SDLoc &dl) { 9093 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9094 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9095 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9096 9097 enum { 9098 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9099 OP_VMRGHW, 9100 OP_VMRGLW, 9101 OP_VSPLTISW0, 9102 OP_VSPLTISW1, 9103 OP_VSPLTISW2, 9104 OP_VSPLTISW3, 9105 OP_VSLDOI4, 9106 OP_VSLDOI8, 9107 OP_VSLDOI12 9108 }; 9109 9110 if (OpNum == OP_COPY) { 9111 if (LHSID == (1*9+2)*9+3) return LHS; 9112 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9113 return RHS; 9114 } 9115 9116 SDValue OpLHS, OpRHS; 9117 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9118 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9119 9120 int ShufIdxs[16]; 9121 switch (OpNum) { 9122 default: llvm_unreachable("Unknown i32 permute!"); 9123 case OP_VMRGHW: 9124 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9125 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9126 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9127 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9128 break; 9129 case OP_VMRGLW: 9130 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9131 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9132 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9133 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9134 break; 9135 case OP_VSPLTISW0: 9136 for (unsigned i = 0; i != 16; ++i) 9137 ShufIdxs[i] = (i&3)+0; 9138 break; 9139 case OP_VSPLTISW1: 9140 for (unsigned i = 0; i != 16; ++i) 9141 ShufIdxs[i] = (i&3)+4; 9142 break; 9143 case OP_VSPLTISW2: 9144 for (unsigned i = 0; i != 16; ++i) 9145 ShufIdxs[i] = (i&3)+8; 9146 break; 9147 case OP_VSPLTISW3: 9148 for (unsigned i = 0; i != 16; ++i) 9149 ShufIdxs[i] = (i&3)+12; 9150 break; 9151 case OP_VSLDOI4: 9152 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9153 case OP_VSLDOI8: 9154 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9155 case OP_VSLDOI12: 9156 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9157 } 9158 EVT VT = OpLHS.getValueType(); 9159 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9160 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9161 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9162 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9163 } 9164 9165 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9166 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9167 /// SDValue. 9168 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9169 SelectionDAG &DAG) const { 9170 const unsigned BytesInVector = 16; 9171 bool IsLE = Subtarget.isLittleEndian(); 9172 SDLoc dl(N); 9173 SDValue V1 = N->getOperand(0); 9174 SDValue V2 = N->getOperand(1); 9175 unsigned ShiftElts = 0, InsertAtByte = 0; 9176 bool Swap = false; 9177 9178 // Shifts required to get the byte we want at element 7. 9179 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9180 0, 15, 14, 13, 12, 11, 10, 9}; 9181 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9182 1, 2, 3, 4, 5, 6, 7, 8}; 9183 9184 ArrayRef<int> Mask = N->getMask(); 9185 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9186 9187 // For each mask element, find out if we're just inserting something 9188 // from V2 into V1 or vice versa. 9189 // Possible permutations inserting an element from V2 into V1: 9190 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9191 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9192 // ... 9193 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9194 // Inserting from V1 into V2 will be similar, except mask range will be 9195 // [16,31]. 9196 9197 bool FoundCandidate = false; 9198 // If both vector operands for the shuffle are the same vector, the mask 9199 // will contain only elements from the first one and the second one will be 9200 // undef. 9201 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9202 // Go through the mask of half-words to find an element that's being moved 9203 // from one vector to the other. 9204 for (unsigned i = 0; i < BytesInVector; ++i) { 9205 unsigned CurrentElement = Mask[i]; 9206 // If 2nd operand is undefined, we should only look for element 7 in the 9207 // Mask. 9208 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9209 continue; 9210 9211 bool OtherElementsInOrder = true; 9212 // Examine the other elements in the Mask to see if they're in original 9213 // order. 9214 for (unsigned j = 0; j < BytesInVector; ++j) { 9215 if (j == i) 9216 continue; 9217 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9218 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9219 // in which we always assume we're always picking from the 1st operand. 9220 int MaskOffset = 9221 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9222 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9223 OtherElementsInOrder = false; 9224 break; 9225 } 9226 } 9227 // If other elements are in original order, we record the number of shifts 9228 // we need to get the element we want into element 7. Also record which byte 9229 // in the vector we should insert into. 9230 if (OtherElementsInOrder) { 9231 // If 2nd operand is undefined, we assume no shifts and no swapping. 9232 if (V2.isUndef()) { 9233 ShiftElts = 0; 9234 Swap = false; 9235 } else { 9236 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9237 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9238 : BigEndianShifts[CurrentElement & 0xF]; 9239 Swap = CurrentElement < BytesInVector; 9240 } 9241 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9242 FoundCandidate = true; 9243 break; 9244 } 9245 } 9246 9247 if (!FoundCandidate) 9248 return SDValue(); 9249 9250 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9251 // optionally with VECSHL if shift is required. 9252 if (Swap) 9253 std::swap(V1, V2); 9254 if (V2.isUndef()) 9255 V2 = V1; 9256 if (ShiftElts) { 9257 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9258 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9259 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9260 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9261 } 9262 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9263 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9264 } 9265 9266 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9267 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9268 /// SDValue. 9269 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9270 SelectionDAG &DAG) const { 9271 const unsigned NumHalfWords = 8; 9272 const unsigned BytesInVector = NumHalfWords * 2; 9273 // Check that the shuffle is on half-words. 9274 if (!isNByteElemShuffleMask(N, 2, 1)) 9275 return SDValue(); 9276 9277 bool IsLE = Subtarget.isLittleEndian(); 9278 SDLoc dl(N); 9279 SDValue V1 = N->getOperand(0); 9280 SDValue V2 = N->getOperand(1); 9281 unsigned ShiftElts = 0, InsertAtByte = 0; 9282 bool Swap = false; 9283 9284 // Shifts required to get the half-word we want at element 3. 9285 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9286 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9287 9288 uint32_t Mask = 0; 9289 uint32_t OriginalOrderLow = 0x1234567; 9290 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9291 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9292 // 32-bit space, only need 4-bit nibbles per element. 9293 for (unsigned i = 0; i < NumHalfWords; ++i) { 9294 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9295 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9296 } 9297 9298 // For each mask element, find out if we're just inserting something 9299 // from V2 into V1 or vice versa. Possible permutations inserting an element 9300 // from V2 into V1: 9301 // X, 1, 2, 3, 4, 5, 6, 7 9302 // 0, X, 2, 3, 4, 5, 6, 7 9303 // 0, 1, X, 3, 4, 5, 6, 7 9304 // 0, 1, 2, X, 4, 5, 6, 7 9305 // 0, 1, 2, 3, X, 5, 6, 7 9306 // 0, 1, 2, 3, 4, X, 6, 7 9307 // 0, 1, 2, 3, 4, 5, X, 7 9308 // 0, 1, 2, 3, 4, 5, 6, X 9309 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9310 9311 bool FoundCandidate = false; 9312 // Go through the mask of half-words to find an element that's being moved 9313 // from one vector to the other. 9314 for (unsigned i = 0; i < NumHalfWords; ++i) { 9315 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9316 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9317 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9318 uint32_t TargetOrder = 0x0; 9319 9320 // If both vector operands for the shuffle are the same vector, the mask 9321 // will contain only elements from the first one and the second one will be 9322 // undef. 9323 if (V2.isUndef()) { 9324 ShiftElts = 0; 9325 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9326 TargetOrder = OriginalOrderLow; 9327 Swap = false; 9328 // Skip if not the correct element or mask of other elements don't equal 9329 // to our expected order. 9330 if (MaskOneElt == VINSERTHSrcElem && 9331 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9332 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9333 FoundCandidate = true; 9334 break; 9335 } 9336 } else { // If both operands are defined. 9337 // Target order is [8,15] if the current mask is between [0,7]. 9338 TargetOrder = 9339 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9340 // Skip if mask of other elements don't equal our expected order. 9341 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9342 // We only need the last 3 bits for the number of shifts. 9343 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9344 : BigEndianShifts[MaskOneElt & 0x7]; 9345 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9346 Swap = MaskOneElt < NumHalfWords; 9347 FoundCandidate = true; 9348 break; 9349 } 9350 } 9351 } 9352 9353 if (!FoundCandidate) 9354 return SDValue(); 9355 9356 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9357 // optionally with VECSHL if shift is required. 9358 if (Swap) 9359 std::swap(V1, V2); 9360 if (V2.isUndef()) 9361 V2 = V1; 9362 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9363 if (ShiftElts) { 9364 // Double ShiftElts because we're left shifting on v16i8 type. 9365 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9366 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9367 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9368 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9369 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9370 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9371 } 9372 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9373 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9374 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9375 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9376 } 9377 9378 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9379 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9380 /// return the default SDValue. 9381 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9382 SelectionDAG &DAG) const { 9383 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9384 // to v16i8. Peek through the bitcasts to get the actual operands. 9385 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9386 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9387 9388 auto ShuffleMask = SVN->getMask(); 9389 SDValue VecShuffle(SVN, 0); 9390 SDLoc DL(SVN); 9391 9392 // Check that we have a four byte shuffle. 9393 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9394 return SDValue(); 9395 9396 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9397 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9398 std::swap(LHS, RHS); 9399 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9400 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9401 } 9402 9403 // Ensure that the RHS is a vector of constants. 9404 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9405 if (!BVN) 9406 return SDValue(); 9407 9408 // Check if RHS is a splat of 4-bytes (or smaller). 9409 APInt APSplatValue, APSplatUndef; 9410 unsigned SplatBitSize; 9411 bool HasAnyUndefs; 9412 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9413 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9414 SplatBitSize > 32) 9415 return SDValue(); 9416 9417 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9418 // The instruction splats a constant C into two words of the source vector 9419 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9420 // Thus we check that the shuffle mask is the equivalent of 9421 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9422 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9423 // within each word are consecutive, so we only need to check the first byte. 9424 SDValue Index; 9425 bool IsLE = Subtarget.isLittleEndian(); 9426 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9427 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9428 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9429 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9430 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9431 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9432 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9433 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9434 else 9435 return SDValue(); 9436 9437 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9438 // for XXSPLTI32DX. 9439 unsigned SplatVal = APSplatValue.getZExtValue(); 9440 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9441 SplatVal |= (SplatVal << SplatBitSize); 9442 9443 SDValue SplatNode = DAG.getNode( 9444 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9445 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9446 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9447 } 9448 9449 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9450 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9451 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9452 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9453 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9454 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9455 assert(Op.getValueType() == MVT::v1i128 && 9456 "Only set v1i128 as custom, other type shouldn't reach here!"); 9457 SDLoc dl(Op); 9458 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9459 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9460 unsigned SHLAmt = N1.getConstantOperandVal(0); 9461 if (SHLAmt % 8 == 0) { 9462 SmallVector<int, 16> Mask(16, 0); 9463 std::iota(Mask.begin(), Mask.end(), 0); 9464 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9465 if (SDValue Shuffle = 9466 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9467 DAG.getUNDEF(MVT::v16i8), Mask)) 9468 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9469 } 9470 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9471 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9472 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9473 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9474 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9475 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9476 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9477 } 9478 9479 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9480 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9481 /// return the code it can be lowered into. Worst case, it can always be 9482 /// lowered into a vperm. 9483 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9484 SelectionDAG &DAG) const { 9485 SDLoc dl(Op); 9486 SDValue V1 = Op.getOperand(0); 9487 SDValue V2 = Op.getOperand(1); 9488 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9489 9490 // Any nodes that were combined in the target-independent combiner prior 9491 // to vector legalization will not be sent to the target combine. Try to 9492 // combine it here. 9493 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9494 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9495 return NewShuffle; 9496 Op = NewShuffle; 9497 SVOp = cast<ShuffleVectorSDNode>(Op); 9498 V1 = Op.getOperand(0); 9499 V2 = Op.getOperand(1); 9500 } 9501 EVT VT = Op.getValueType(); 9502 bool isLittleEndian = Subtarget.isLittleEndian(); 9503 9504 unsigned ShiftElts, InsertAtByte; 9505 bool Swap = false; 9506 9507 // If this is a load-and-splat, we can do that with a single instruction 9508 // in some cases. However if the load has multiple uses, we don't want to 9509 // combine it because that will just produce multiple loads. 9510 bool IsPermutedLoad = false; 9511 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9512 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9513 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9514 InputLoad->hasOneUse()) { 9515 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9516 int SplatIdx = 9517 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9518 9519 // The splat index for permuted loads will be in the left half of the vector 9520 // which is strictly wider than the loaded value by 8 bytes. So we need to 9521 // adjust the splat index to point to the correct address in memory. 9522 if (IsPermutedLoad) { 9523 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9524 SplatIdx += IsFourByte ? 2 : 1; 9525 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9526 "Splat of a value outside of the loaded memory"); 9527 } 9528 9529 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9530 // For 4-byte load-and-splat, we need Power9. 9531 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9532 uint64_t Offset = 0; 9533 if (IsFourByte) 9534 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9535 else 9536 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9537 9538 SDValue BasePtr = LD->getBasePtr(); 9539 if (Offset != 0) 9540 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9541 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9542 SDValue Ops[] = { 9543 LD->getChain(), // Chain 9544 BasePtr, // BasePtr 9545 DAG.getValueType(Op.getValueType()) // VT 9546 }; 9547 SDVTList VTL = 9548 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9549 SDValue LdSplt = 9550 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9551 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9552 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9553 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9554 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9555 return LdSplt; 9556 } 9557 } 9558 if (Subtarget.hasP9Vector() && 9559 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9560 isLittleEndian)) { 9561 if (Swap) 9562 std::swap(V1, V2); 9563 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9564 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9565 if (ShiftElts) { 9566 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9567 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9568 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9569 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9570 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9571 } 9572 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9573 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9574 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9575 } 9576 9577 if (Subtarget.hasPrefixInstrs()) { 9578 SDValue SplatInsertNode; 9579 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9580 return SplatInsertNode; 9581 } 9582 9583 if (Subtarget.hasP9Altivec()) { 9584 SDValue NewISDNode; 9585 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9586 return NewISDNode; 9587 9588 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9589 return NewISDNode; 9590 } 9591 9592 if (Subtarget.hasVSX() && 9593 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9594 if (Swap) 9595 std::swap(V1, V2); 9596 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9597 SDValue Conv2 = 9598 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9599 9600 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9601 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9602 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9603 } 9604 9605 if (Subtarget.hasVSX() && 9606 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9607 if (Swap) 9608 std::swap(V1, V2); 9609 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9610 SDValue Conv2 = 9611 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9612 9613 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9614 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9615 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9616 } 9617 9618 if (Subtarget.hasP9Vector()) { 9619 if (PPC::isXXBRHShuffleMask(SVOp)) { 9620 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9621 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9622 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9623 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9624 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9625 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9626 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9627 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9628 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9629 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9630 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9631 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9632 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9633 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9634 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9635 } 9636 } 9637 9638 if (Subtarget.hasVSX()) { 9639 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9640 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9641 9642 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9643 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9644 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9645 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9646 } 9647 9648 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9649 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9650 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9651 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9652 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9653 } 9654 } 9655 9656 // Cases that are handled by instructions that take permute immediates 9657 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9658 // selected by the instruction selector. 9659 if (V2.isUndef()) { 9660 if (PPC::isSplatShuffleMask(SVOp, 1) || 9661 PPC::isSplatShuffleMask(SVOp, 2) || 9662 PPC::isSplatShuffleMask(SVOp, 4) || 9663 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9664 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9665 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9666 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9667 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9668 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9669 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9670 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9671 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9672 (Subtarget.hasP8Altivec() && ( 9673 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9674 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9675 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9676 return Op; 9677 } 9678 } 9679 9680 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9681 // and produce a fixed permutation. If any of these match, do not lower to 9682 // VPERM. 9683 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9684 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9685 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9686 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9687 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9688 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9689 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9690 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9691 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9692 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9693 (Subtarget.hasP8Altivec() && ( 9694 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9695 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9696 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9697 return Op; 9698 9699 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9700 // perfect shuffle table to emit an optimal matching sequence. 9701 ArrayRef<int> PermMask = SVOp->getMask(); 9702 9703 unsigned PFIndexes[4]; 9704 bool isFourElementShuffle = true; 9705 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9706 unsigned EltNo = 8; // Start out undef. 9707 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9708 if (PermMask[i*4+j] < 0) 9709 continue; // Undef, ignore it. 9710 9711 unsigned ByteSource = PermMask[i*4+j]; 9712 if ((ByteSource & 3) != j) { 9713 isFourElementShuffle = false; 9714 break; 9715 } 9716 9717 if (EltNo == 8) { 9718 EltNo = ByteSource/4; 9719 } else if (EltNo != ByteSource/4) { 9720 isFourElementShuffle = false; 9721 break; 9722 } 9723 } 9724 PFIndexes[i] = EltNo; 9725 } 9726 9727 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9728 // perfect shuffle vector to determine if it is cost effective to do this as 9729 // discrete instructions, or whether we should use a vperm. 9730 // For now, we skip this for little endian until such time as we have a 9731 // little-endian perfect shuffle table. 9732 if (isFourElementShuffle && !isLittleEndian) { 9733 // Compute the index in the perfect shuffle table. 9734 unsigned PFTableIndex = 9735 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9736 9737 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9738 unsigned Cost = (PFEntry >> 30); 9739 9740 // Determining when to avoid vperm is tricky. Many things affect the cost 9741 // of vperm, particularly how many times the perm mask needs to be computed. 9742 // For example, if the perm mask can be hoisted out of a loop or is already 9743 // used (perhaps because there are multiple permutes with the same shuffle 9744 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9745 // the loop requires an extra register. 9746 // 9747 // As a compromise, we only emit discrete instructions if the shuffle can be 9748 // generated in 3 or fewer operations. When we have loop information 9749 // available, if this block is within a loop, we should avoid using vperm 9750 // for 3-operation perms and use a constant pool load instead. 9751 if (Cost < 3) 9752 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9753 } 9754 9755 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9756 // vector that will get spilled to the constant pool. 9757 if (V2.isUndef()) V2 = V1; 9758 9759 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9760 // that it is in input element units, not in bytes. Convert now. 9761 9762 // For little endian, the order of the input vectors is reversed, and 9763 // the permutation mask is complemented with respect to 31. This is 9764 // necessary to produce proper semantics with the big-endian-biased vperm 9765 // instruction. 9766 EVT EltVT = V1.getValueType().getVectorElementType(); 9767 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9768 9769 SmallVector<SDValue, 16> ResultMask; 9770 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9771 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9772 9773 for (unsigned j = 0; j != BytesPerElement; ++j) 9774 if (isLittleEndian) 9775 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9776 dl, MVT::i32)); 9777 else 9778 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9779 MVT::i32)); 9780 } 9781 9782 ShufflesHandledWithVPERM++; 9783 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9784 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 9785 LLVM_DEBUG(SVOp->dump()); 9786 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 9787 LLVM_DEBUG(VPermMask.dump()); 9788 9789 if (isLittleEndian) 9790 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9791 V2, V1, VPermMask); 9792 else 9793 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9794 V1, V2, VPermMask); 9795 } 9796 9797 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9798 /// vector comparison. If it is, return true and fill in Opc/isDot with 9799 /// information about the intrinsic. 9800 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9801 bool &isDot, const PPCSubtarget &Subtarget) { 9802 unsigned IntrinsicID = 9803 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9804 CompareOpc = -1; 9805 isDot = false; 9806 switch (IntrinsicID) { 9807 default: 9808 return false; 9809 // Comparison predicates. 9810 case Intrinsic::ppc_altivec_vcmpbfp_p: 9811 CompareOpc = 966; 9812 isDot = true; 9813 break; 9814 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9815 CompareOpc = 198; 9816 isDot = true; 9817 break; 9818 case Intrinsic::ppc_altivec_vcmpequb_p: 9819 CompareOpc = 6; 9820 isDot = true; 9821 break; 9822 case Intrinsic::ppc_altivec_vcmpequh_p: 9823 CompareOpc = 70; 9824 isDot = true; 9825 break; 9826 case Intrinsic::ppc_altivec_vcmpequw_p: 9827 CompareOpc = 134; 9828 isDot = true; 9829 break; 9830 case Intrinsic::ppc_altivec_vcmpequd_p: 9831 if (Subtarget.hasP8Altivec()) { 9832 CompareOpc = 199; 9833 isDot = true; 9834 } else 9835 return false; 9836 break; 9837 case Intrinsic::ppc_altivec_vcmpneb_p: 9838 case Intrinsic::ppc_altivec_vcmpneh_p: 9839 case Intrinsic::ppc_altivec_vcmpnew_p: 9840 case Intrinsic::ppc_altivec_vcmpnezb_p: 9841 case Intrinsic::ppc_altivec_vcmpnezh_p: 9842 case Intrinsic::ppc_altivec_vcmpnezw_p: 9843 if (Subtarget.hasP9Altivec()) { 9844 switch (IntrinsicID) { 9845 default: 9846 llvm_unreachable("Unknown comparison intrinsic."); 9847 case Intrinsic::ppc_altivec_vcmpneb_p: 9848 CompareOpc = 7; 9849 break; 9850 case Intrinsic::ppc_altivec_vcmpneh_p: 9851 CompareOpc = 71; 9852 break; 9853 case Intrinsic::ppc_altivec_vcmpnew_p: 9854 CompareOpc = 135; 9855 break; 9856 case Intrinsic::ppc_altivec_vcmpnezb_p: 9857 CompareOpc = 263; 9858 break; 9859 case Intrinsic::ppc_altivec_vcmpnezh_p: 9860 CompareOpc = 327; 9861 break; 9862 case Intrinsic::ppc_altivec_vcmpnezw_p: 9863 CompareOpc = 391; 9864 break; 9865 } 9866 isDot = true; 9867 } else 9868 return false; 9869 break; 9870 case Intrinsic::ppc_altivec_vcmpgefp_p: 9871 CompareOpc = 454; 9872 isDot = true; 9873 break; 9874 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9875 CompareOpc = 710; 9876 isDot = true; 9877 break; 9878 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9879 CompareOpc = 774; 9880 isDot = true; 9881 break; 9882 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9883 CompareOpc = 838; 9884 isDot = true; 9885 break; 9886 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9887 CompareOpc = 902; 9888 isDot = true; 9889 break; 9890 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9891 if (Subtarget.hasP8Altivec()) { 9892 CompareOpc = 967; 9893 isDot = true; 9894 } else 9895 return false; 9896 break; 9897 case Intrinsic::ppc_altivec_vcmpgtub_p: 9898 CompareOpc = 518; 9899 isDot = true; 9900 break; 9901 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9902 CompareOpc = 582; 9903 isDot = true; 9904 break; 9905 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9906 CompareOpc = 646; 9907 isDot = true; 9908 break; 9909 case Intrinsic::ppc_altivec_vcmpgtud_p: 9910 if (Subtarget.hasP8Altivec()) { 9911 CompareOpc = 711; 9912 isDot = true; 9913 } else 9914 return false; 9915 break; 9916 9917 case Intrinsic::ppc_altivec_vcmpequq: 9918 case Intrinsic::ppc_altivec_vcmpgtsq: 9919 case Intrinsic::ppc_altivec_vcmpgtuq: 9920 if (!Subtarget.isISA3_1()) 9921 return false; 9922 switch (IntrinsicID) { 9923 default: 9924 llvm_unreachable("Unknown comparison intrinsic."); 9925 case Intrinsic::ppc_altivec_vcmpequq: 9926 CompareOpc = 455; 9927 break; 9928 case Intrinsic::ppc_altivec_vcmpgtsq: 9929 CompareOpc = 903; 9930 break; 9931 case Intrinsic::ppc_altivec_vcmpgtuq: 9932 CompareOpc = 647; 9933 break; 9934 } 9935 break; 9936 9937 // VSX predicate comparisons use the same infrastructure 9938 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9939 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9940 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9941 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9942 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9943 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9944 if (Subtarget.hasVSX()) { 9945 switch (IntrinsicID) { 9946 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9947 CompareOpc = 99; 9948 break; 9949 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9950 CompareOpc = 115; 9951 break; 9952 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9953 CompareOpc = 107; 9954 break; 9955 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9956 CompareOpc = 67; 9957 break; 9958 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9959 CompareOpc = 83; 9960 break; 9961 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9962 CompareOpc = 75; 9963 break; 9964 } 9965 isDot = true; 9966 } else 9967 return false; 9968 break; 9969 9970 // Normal Comparisons. 9971 case Intrinsic::ppc_altivec_vcmpbfp: 9972 CompareOpc = 966; 9973 break; 9974 case Intrinsic::ppc_altivec_vcmpeqfp: 9975 CompareOpc = 198; 9976 break; 9977 case Intrinsic::ppc_altivec_vcmpequb: 9978 CompareOpc = 6; 9979 break; 9980 case Intrinsic::ppc_altivec_vcmpequh: 9981 CompareOpc = 70; 9982 break; 9983 case Intrinsic::ppc_altivec_vcmpequw: 9984 CompareOpc = 134; 9985 break; 9986 case Intrinsic::ppc_altivec_vcmpequd: 9987 if (Subtarget.hasP8Altivec()) 9988 CompareOpc = 199; 9989 else 9990 return false; 9991 break; 9992 case Intrinsic::ppc_altivec_vcmpneb: 9993 case Intrinsic::ppc_altivec_vcmpneh: 9994 case Intrinsic::ppc_altivec_vcmpnew: 9995 case Intrinsic::ppc_altivec_vcmpnezb: 9996 case Intrinsic::ppc_altivec_vcmpnezh: 9997 case Intrinsic::ppc_altivec_vcmpnezw: 9998 if (Subtarget.hasP9Altivec()) 9999 switch (IntrinsicID) { 10000 default: 10001 llvm_unreachable("Unknown comparison intrinsic."); 10002 case Intrinsic::ppc_altivec_vcmpneb: 10003 CompareOpc = 7; 10004 break; 10005 case Intrinsic::ppc_altivec_vcmpneh: 10006 CompareOpc = 71; 10007 break; 10008 case Intrinsic::ppc_altivec_vcmpnew: 10009 CompareOpc = 135; 10010 break; 10011 case Intrinsic::ppc_altivec_vcmpnezb: 10012 CompareOpc = 263; 10013 break; 10014 case Intrinsic::ppc_altivec_vcmpnezh: 10015 CompareOpc = 327; 10016 break; 10017 case Intrinsic::ppc_altivec_vcmpnezw: 10018 CompareOpc = 391; 10019 break; 10020 } 10021 else 10022 return false; 10023 break; 10024 case Intrinsic::ppc_altivec_vcmpgefp: 10025 CompareOpc = 454; 10026 break; 10027 case Intrinsic::ppc_altivec_vcmpgtfp: 10028 CompareOpc = 710; 10029 break; 10030 case Intrinsic::ppc_altivec_vcmpgtsb: 10031 CompareOpc = 774; 10032 break; 10033 case Intrinsic::ppc_altivec_vcmpgtsh: 10034 CompareOpc = 838; 10035 break; 10036 case Intrinsic::ppc_altivec_vcmpgtsw: 10037 CompareOpc = 902; 10038 break; 10039 case Intrinsic::ppc_altivec_vcmpgtsd: 10040 if (Subtarget.hasP8Altivec()) 10041 CompareOpc = 967; 10042 else 10043 return false; 10044 break; 10045 case Intrinsic::ppc_altivec_vcmpgtub: 10046 CompareOpc = 518; 10047 break; 10048 case Intrinsic::ppc_altivec_vcmpgtuh: 10049 CompareOpc = 582; 10050 break; 10051 case Intrinsic::ppc_altivec_vcmpgtuw: 10052 CompareOpc = 646; 10053 break; 10054 case Intrinsic::ppc_altivec_vcmpgtud: 10055 if (Subtarget.hasP8Altivec()) 10056 CompareOpc = 711; 10057 else 10058 return false; 10059 break; 10060 case Intrinsic::ppc_altivec_vcmpequq_p: 10061 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10062 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10063 if (!Subtarget.isISA3_1()) 10064 return false; 10065 switch (IntrinsicID) { 10066 default: 10067 llvm_unreachable("Unknown comparison intrinsic."); 10068 case Intrinsic::ppc_altivec_vcmpequq_p: 10069 CompareOpc = 455; 10070 break; 10071 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10072 CompareOpc = 903; 10073 break; 10074 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10075 CompareOpc = 647; 10076 break; 10077 } 10078 isDot = true; 10079 break; 10080 } 10081 return true; 10082 } 10083 10084 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10085 /// lower, do it, otherwise return null. 10086 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10087 SelectionDAG &DAG) const { 10088 unsigned IntrinsicID = 10089 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10090 10091 SDLoc dl(Op); 10092 10093 switch (IntrinsicID) { 10094 case Intrinsic::thread_pointer: 10095 // Reads the thread pointer register, used for __builtin_thread_pointer. 10096 if (Subtarget.isPPC64()) 10097 return DAG.getRegister(PPC::X13, MVT::i64); 10098 return DAG.getRegister(PPC::R2, MVT::i32); 10099 10100 case Intrinsic::ppc_mma_disassemble_acc: 10101 case Intrinsic::ppc_vsx_disassemble_pair: { 10102 int NumVecs = 2; 10103 SDValue WideVec = Op.getOperand(1); 10104 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10105 NumVecs = 4; 10106 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10107 } 10108 SmallVector<SDValue, 4> RetOps; 10109 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10110 SDValue Extract = DAG.getNode( 10111 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10112 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10113 : VecNo, 10114 dl, MVT::i64)); 10115 RetOps.push_back(Extract); 10116 } 10117 return DAG.getMergeValues(RetOps, dl); 10118 } 10119 } 10120 10121 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10122 // opcode number of the comparison. 10123 int CompareOpc; 10124 bool isDot; 10125 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10126 return SDValue(); // Don't custom lower most intrinsics. 10127 10128 // If this is a non-dot comparison, make the VCMP node and we are done. 10129 if (!isDot) { 10130 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10131 Op.getOperand(1), Op.getOperand(2), 10132 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10133 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10134 } 10135 10136 // Create the PPCISD altivec 'dot' comparison node. 10137 SDValue Ops[] = { 10138 Op.getOperand(2), // LHS 10139 Op.getOperand(3), // RHS 10140 DAG.getConstant(CompareOpc, dl, MVT::i32) 10141 }; 10142 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10143 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10144 10145 // Now that we have the comparison, emit a copy from the CR to a GPR. 10146 // This is flagged to the above dot comparison. 10147 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10148 DAG.getRegister(PPC::CR6, MVT::i32), 10149 CompNode.getValue(1)); 10150 10151 // Unpack the result based on how the target uses it. 10152 unsigned BitNo; // Bit # of CR6. 10153 bool InvertBit; // Invert result? 10154 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10155 default: // Can't happen, don't crash on invalid number though. 10156 case 0: // Return the value of the EQ bit of CR6. 10157 BitNo = 0; InvertBit = false; 10158 break; 10159 case 1: // Return the inverted value of the EQ bit of CR6. 10160 BitNo = 0; InvertBit = true; 10161 break; 10162 case 2: // Return the value of the LT bit of CR6. 10163 BitNo = 2; InvertBit = false; 10164 break; 10165 case 3: // Return the inverted value of the LT bit of CR6. 10166 BitNo = 2; InvertBit = true; 10167 break; 10168 } 10169 10170 // Shift the bit into the low position. 10171 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10172 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10173 // Isolate the bit. 10174 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10175 DAG.getConstant(1, dl, MVT::i32)); 10176 10177 // If we are supposed to, toggle the bit. 10178 if (InvertBit) 10179 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10180 DAG.getConstant(1, dl, MVT::i32)); 10181 return Flags; 10182 } 10183 10184 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10185 SelectionDAG &DAG) const { 10186 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10187 // the beginning of the argument list. 10188 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10189 SDLoc DL(Op); 10190 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10191 case Intrinsic::ppc_cfence: { 10192 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10193 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10194 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10195 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10196 Op.getOperand(ArgStart + 1)), 10197 Op.getOperand(0)), 10198 0); 10199 } 10200 default: 10201 break; 10202 } 10203 return SDValue(); 10204 } 10205 10206 // Lower scalar BSWAP64 to xxbrd. 10207 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10208 SDLoc dl(Op); 10209 // MTVSRDD 10210 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10211 Op.getOperand(0)); 10212 // XXBRD 10213 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10214 // MFVSRD 10215 int VectorIndex = 0; 10216 if (Subtarget.isLittleEndian()) 10217 VectorIndex = 1; 10218 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10219 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10220 return Op; 10221 } 10222 10223 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10224 // compared to a value that is atomically loaded (atomic loads zero-extend). 10225 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10226 SelectionDAG &DAG) const { 10227 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10228 "Expecting an atomic compare-and-swap here."); 10229 SDLoc dl(Op); 10230 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10231 EVT MemVT = AtomicNode->getMemoryVT(); 10232 if (MemVT.getSizeInBits() >= 32) 10233 return Op; 10234 10235 SDValue CmpOp = Op.getOperand(2); 10236 // If this is already correctly zero-extended, leave it alone. 10237 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10238 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10239 return Op; 10240 10241 // Clear the high bits of the compare operand. 10242 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10243 SDValue NewCmpOp = 10244 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10245 DAG.getConstant(MaskVal, dl, MVT::i32)); 10246 10247 // Replace the existing compare operand with the properly zero-extended one. 10248 SmallVector<SDValue, 4> Ops; 10249 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10250 Ops.push_back(AtomicNode->getOperand(i)); 10251 Ops[2] = NewCmpOp; 10252 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10253 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10254 auto NodeTy = 10255 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10256 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10257 } 10258 10259 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10260 SelectionDAG &DAG) const { 10261 SDLoc dl(Op); 10262 // Create a stack slot that is 16-byte aligned. 10263 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10264 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10265 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10266 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10267 10268 // Store the input value into Value#0 of the stack slot. 10269 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10270 MachinePointerInfo()); 10271 // Load it out. 10272 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10273 } 10274 10275 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10276 SelectionDAG &DAG) const { 10277 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10278 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10279 10280 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10281 10282 EVT VT = Op.getValueType(); 10283 SDLoc dl(Op); 10284 SDValue V1 = Op.getOperand(0); 10285 SDValue V2 = Op.getOperand(1); 10286 SDValue V3 = Op.getOperand(2); 10287 10288 if (Subtarget.isISA3_1()) { 10289 // On P10, we have legal lowering for constant and variable indices for 10290 // integer vectors. 10291 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10292 VT == MVT::v2i64) 10293 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10294 // For f32 and f64 vectors, we have legal lowering for variable indices. 10295 // For f32 we also have legal lowering when the element is loaded from 10296 // memory. 10297 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10298 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10299 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10300 return SDValue(); 10301 } 10302 } 10303 10304 // Before P10, we have legal lowering for constant indices but not for 10305 // variable ones. 10306 if (!C) 10307 return SDValue(); 10308 10309 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10310 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10311 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10312 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10313 unsigned InsertAtElement = C->getZExtValue(); 10314 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10315 if (Subtarget.isLittleEndian()) { 10316 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10317 } 10318 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10319 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10320 } 10321 return Op; 10322 } 10323 10324 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10325 SelectionDAG &DAG) const { 10326 SDLoc dl(Op); 10327 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10328 SDValue LoadChain = LN->getChain(); 10329 SDValue BasePtr = LN->getBasePtr(); 10330 EVT VT = Op.getValueType(); 10331 10332 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10333 return Op; 10334 10335 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10336 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10337 // 2 or 4 vsx registers. 10338 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10339 "Type unsupported without MMA"); 10340 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10341 "Type unsupported without paired vector support"); 10342 Align Alignment = LN->getAlign(); 10343 SmallVector<SDValue, 4> Loads; 10344 SmallVector<SDValue, 4> LoadChains; 10345 unsigned NumVecs = VT.getSizeInBits() / 128; 10346 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10347 SDValue Load = 10348 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10349 LN->getPointerInfo().getWithOffset(Idx * 16), 10350 commonAlignment(Alignment, Idx * 16), 10351 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10352 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10353 DAG.getConstant(16, dl, BasePtr.getValueType())); 10354 Loads.push_back(Load); 10355 LoadChains.push_back(Load.getValue(1)); 10356 } 10357 if (Subtarget.isLittleEndian()) { 10358 std::reverse(Loads.begin(), Loads.end()); 10359 std::reverse(LoadChains.begin(), LoadChains.end()); 10360 } 10361 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10362 SDValue Value = 10363 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10364 dl, VT, Loads); 10365 SDValue RetOps[] = {Value, TF}; 10366 return DAG.getMergeValues(RetOps, dl); 10367 } 10368 10369 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10370 SelectionDAG &DAG) const { 10371 SDLoc dl(Op); 10372 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10373 SDValue StoreChain = SN->getChain(); 10374 SDValue BasePtr = SN->getBasePtr(); 10375 SDValue Value = SN->getValue(); 10376 EVT StoreVT = Value.getValueType(); 10377 10378 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10379 return Op; 10380 10381 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10382 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10383 // underlying registers individually. 10384 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10385 "Type unsupported without MMA"); 10386 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10387 "Type unsupported without paired vector support"); 10388 Align Alignment = SN->getAlign(); 10389 SmallVector<SDValue, 4> Stores; 10390 unsigned NumVecs = 2; 10391 if (StoreVT == MVT::v512i1) { 10392 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10393 NumVecs = 4; 10394 } 10395 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10396 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10397 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10398 DAG.getConstant(VecNum, dl, MVT::i64)); 10399 SDValue Store = 10400 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10401 SN->getPointerInfo().getWithOffset(Idx * 16), 10402 commonAlignment(Alignment, Idx * 16), 10403 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10404 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10405 DAG.getConstant(16, dl, BasePtr.getValueType())); 10406 Stores.push_back(Store); 10407 } 10408 SDValue TF = DAG.getTokenFactor(dl, Stores); 10409 return TF; 10410 } 10411 10412 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10413 SDLoc dl(Op); 10414 if (Op.getValueType() == MVT::v4i32) { 10415 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10416 10417 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10418 // +16 as shift amt. 10419 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10420 SDValue RHSSwap = // = vrlw RHS, 16 10421 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10422 10423 // Shrinkify inputs to v8i16. 10424 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10425 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10426 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10427 10428 // Low parts multiplied together, generating 32-bit results (we ignore the 10429 // top parts). 10430 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10431 LHS, RHS, DAG, dl, MVT::v4i32); 10432 10433 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10434 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10435 // Shift the high parts up 16 bits. 10436 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10437 Neg16, DAG, dl); 10438 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10439 } else if (Op.getValueType() == MVT::v16i8) { 10440 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10441 bool isLittleEndian = Subtarget.isLittleEndian(); 10442 10443 // Multiply the even 8-bit parts, producing 16-bit sums. 10444 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10445 LHS, RHS, DAG, dl, MVT::v8i16); 10446 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10447 10448 // Multiply the odd 8-bit parts, producing 16-bit sums. 10449 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10450 LHS, RHS, DAG, dl, MVT::v8i16); 10451 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10452 10453 // Merge the results together. Because vmuleub and vmuloub are 10454 // instructions with a big-endian bias, we must reverse the 10455 // element numbering and reverse the meaning of "odd" and "even" 10456 // when generating little endian code. 10457 int Ops[16]; 10458 for (unsigned i = 0; i != 8; ++i) { 10459 if (isLittleEndian) { 10460 Ops[i*2 ] = 2*i; 10461 Ops[i*2+1] = 2*i+16; 10462 } else { 10463 Ops[i*2 ] = 2*i+1; 10464 Ops[i*2+1] = 2*i+1+16; 10465 } 10466 } 10467 if (isLittleEndian) 10468 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10469 else 10470 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10471 } else { 10472 llvm_unreachable("Unknown mul to lower!"); 10473 } 10474 } 10475 10476 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10477 bool IsStrict = Op->isStrictFPOpcode(); 10478 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10479 !Subtarget.hasP9Vector()) 10480 return SDValue(); 10481 10482 return Op; 10483 } 10484 10485 // Custom lowering for fpext vf32 to v2f64 10486 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10487 10488 assert(Op.getOpcode() == ISD::FP_EXTEND && 10489 "Should only be called for ISD::FP_EXTEND"); 10490 10491 // FIXME: handle extends from half precision float vectors on P9. 10492 // We only want to custom lower an extend from v2f32 to v2f64. 10493 if (Op.getValueType() != MVT::v2f64 || 10494 Op.getOperand(0).getValueType() != MVT::v2f32) 10495 return SDValue(); 10496 10497 SDLoc dl(Op); 10498 SDValue Op0 = Op.getOperand(0); 10499 10500 switch (Op0.getOpcode()) { 10501 default: 10502 return SDValue(); 10503 case ISD::EXTRACT_SUBVECTOR: { 10504 assert(Op0.getNumOperands() == 2 && 10505 isa<ConstantSDNode>(Op0->getOperand(1)) && 10506 "Node should have 2 operands with second one being a constant!"); 10507 10508 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10509 return SDValue(); 10510 10511 // Custom lower is only done for high or low doubleword. 10512 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10513 if (Idx % 2 != 0) 10514 return SDValue(); 10515 10516 // Since input is v4f32, at this point Idx is either 0 or 2. 10517 // Shift to get the doubleword position we want. 10518 int DWord = Idx >> 1; 10519 10520 // High and low word positions are different on little endian. 10521 if (Subtarget.isLittleEndian()) 10522 DWord ^= 0x1; 10523 10524 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10525 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10526 } 10527 case ISD::FADD: 10528 case ISD::FMUL: 10529 case ISD::FSUB: { 10530 SDValue NewLoad[2]; 10531 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10532 // Ensure both input are loads. 10533 SDValue LdOp = Op0.getOperand(i); 10534 if (LdOp.getOpcode() != ISD::LOAD) 10535 return SDValue(); 10536 // Generate new load node. 10537 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10538 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10539 NewLoad[i] = DAG.getMemIntrinsicNode( 10540 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10541 LD->getMemoryVT(), LD->getMemOperand()); 10542 } 10543 SDValue NewOp = 10544 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10545 NewLoad[1], Op0.getNode()->getFlags()); 10546 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10547 DAG.getConstant(0, dl, MVT::i32)); 10548 } 10549 case ISD::LOAD: { 10550 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10551 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10552 SDValue NewLd = DAG.getMemIntrinsicNode( 10553 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10554 LD->getMemoryVT(), LD->getMemOperand()); 10555 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10556 DAG.getConstant(0, dl, MVT::i32)); 10557 } 10558 } 10559 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10560 } 10561 10562 /// LowerOperation - Provide custom lowering hooks for some operations. 10563 /// 10564 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10565 switch (Op.getOpcode()) { 10566 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10567 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10568 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10569 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10570 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10571 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10572 case ISD::SETCC: return LowerSETCC(Op, DAG); 10573 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10574 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10575 10576 // Variable argument lowering. 10577 case ISD::VASTART: return LowerVASTART(Op, DAG); 10578 case ISD::VAARG: return LowerVAARG(Op, DAG); 10579 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10580 10581 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10582 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10583 case ISD::GET_DYNAMIC_AREA_OFFSET: 10584 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10585 10586 // Exception handling lowering. 10587 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10588 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10589 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10590 10591 case ISD::LOAD: return LowerLOAD(Op, DAG); 10592 case ISD::STORE: return LowerSTORE(Op, DAG); 10593 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10594 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10595 case ISD::STRICT_FP_TO_UINT: 10596 case ISD::STRICT_FP_TO_SINT: 10597 case ISD::FP_TO_UINT: 10598 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10599 case ISD::STRICT_UINT_TO_FP: 10600 case ISD::STRICT_SINT_TO_FP: 10601 case ISD::UINT_TO_FP: 10602 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10603 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10604 10605 // Lower 64-bit shifts. 10606 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10607 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10608 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10609 10610 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10611 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10612 10613 // Vector-related lowering. 10614 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10615 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10616 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10617 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10618 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10619 case ISD::MUL: return LowerMUL(Op, DAG); 10620 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10621 case ISD::STRICT_FP_ROUND: 10622 case ISD::FP_ROUND: 10623 return LowerFP_ROUND(Op, DAG); 10624 case ISD::ROTL: return LowerROTL(Op, DAG); 10625 10626 // For counter-based loop handling. 10627 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10628 10629 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10630 10631 // Frame & Return address. 10632 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10633 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10634 10635 case ISD::INTRINSIC_VOID: 10636 return LowerINTRINSIC_VOID(Op, DAG); 10637 case ISD::BSWAP: 10638 return LowerBSWAP(Op, DAG); 10639 case ISD::ATOMIC_CMP_SWAP: 10640 return LowerATOMIC_CMP_SWAP(Op, DAG); 10641 } 10642 } 10643 10644 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10645 SmallVectorImpl<SDValue>&Results, 10646 SelectionDAG &DAG) const { 10647 SDLoc dl(N); 10648 switch (N->getOpcode()) { 10649 default: 10650 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10651 case ISD::READCYCLECOUNTER: { 10652 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10653 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10654 10655 Results.push_back( 10656 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10657 Results.push_back(RTB.getValue(2)); 10658 break; 10659 } 10660 case ISD::INTRINSIC_W_CHAIN: { 10661 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10662 Intrinsic::loop_decrement) 10663 break; 10664 10665 assert(N->getValueType(0) == MVT::i1 && 10666 "Unexpected result type for CTR decrement intrinsic"); 10667 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10668 N->getValueType(0)); 10669 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10670 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10671 N->getOperand(1)); 10672 10673 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10674 Results.push_back(NewInt.getValue(1)); 10675 break; 10676 } 10677 case ISD::VAARG: { 10678 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10679 return; 10680 10681 EVT VT = N->getValueType(0); 10682 10683 if (VT == MVT::i64) { 10684 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10685 10686 Results.push_back(NewNode); 10687 Results.push_back(NewNode.getValue(1)); 10688 } 10689 return; 10690 } 10691 case ISD::STRICT_FP_TO_SINT: 10692 case ISD::STRICT_FP_TO_UINT: 10693 case ISD::FP_TO_SINT: 10694 case ISD::FP_TO_UINT: 10695 // LowerFP_TO_INT() can only handle f32 and f64. 10696 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 10697 MVT::ppcf128) 10698 return; 10699 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10700 return; 10701 case ISD::TRUNCATE: { 10702 if (!N->getValueType(0).isVector()) 10703 return; 10704 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 10705 if (Lowered) 10706 Results.push_back(Lowered); 10707 return; 10708 } 10709 case ISD::FSHL: 10710 case ISD::FSHR: 10711 // Don't handle funnel shifts here. 10712 return; 10713 case ISD::BITCAST: 10714 // Don't handle bitcast here. 10715 return; 10716 case ISD::FP_EXTEND: 10717 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10718 if (Lowered) 10719 Results.push_back(Lowered); 10720 return; 10721 } 10722 } 10723 10724 //===----------------------------------------------------------------------===// 10725 // Other Lowering Code 10726 //===----------------------------------------------------------------------===// 10727 10728 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10729 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10730 Function *Func = Intrinsic::getDeclaration(M, Id); 10731 return Builder.CreateCall(Func, {}); 10732 } 10733 10734 // The mappings for emitLeading/TrailingFence is taken from 10735 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10736 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10737 Instruction *Inst, 10738 AtomicOrdering Ord) const { 10739 if (Ord == AtomicOrdering::SequentiallyConsistent) 10740 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10741 if (isReleaseOrStronger(Ord)) 10742 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10743 return nullptr; 10744 } 10745 10746 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10747 Instruction *Inst, 10748 AtomicOrdering Ord) const { 10749 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10750 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10751 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10752 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10753 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10754 return Builder.CreateCall( 10755 Intrinsic::getDeclaration( 10756 Builder.GetInsertBlock()->getParent()->getParent(), 10757 Intrinsic::ppc_cfence, {Inst->getType()}), 10758 {Inst}); 10759 // FIXME: Can use isync for rmw operation. 10760 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10761 } 10762 return nullptr; 10763 } 10764 10765 MachineBasicBlock * 10766 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10767 unsigned AtomicSize, 10768 unsigned BinOpcode, 10769 unsigned CmpOpcode, 10770 unsigned CmpPred) const { 10771 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10772 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10773 10774 auto LoadMnemonic = PPC::LDARX; 10775 auto StoreMnemonic = PPC::STDCX; 10776 switch (AtomicSize) { 10777 default: 10778 llvm_unreachable("Unexpected size of atomic entity"); 10779 case 1: 10780 LoadMnemonic = PPC::LBARX; 10781 StoreMnemonic = PPC::STBCX; 10782 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10783 break; 10784 case 2: 10785 LoadMnemonic = PPC::LHARX; 10786 StoreMnemonic = PPC::STHCX; 10787 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10788 break; 10789 case 4: 10790 LoadMnemonic = PPC::LWARX; 10791 StoreMnemonic = PPC::STWCX; 10792 break; 10793 case 8: 10794 LoadMnemonic = PPC::LDARX; 10795 StoreMnemonic = PPC::STDCX; 10796 break; 10797 } 10798 10799 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10800 MachineFunction *F = BB->getParent(); 10801 MachineFunction::iterator It = ++BB->getIterator(); 10802 10803 Register dest = MI.getOperand(0).getReg(); 10804 Register ptrA = MI.getOperand(1).getReg(); 10805 Register ptrB = MI.getOperand(2).getReg(); 10806 Register incr = MI.getOperand(3).getReg(); 10807 DebugLoc dl = MI.getDebugLoc(); 10808 10809 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10810 MachineBasicBlock *loop2MBB = 10811 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10812 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10813 F->insert(It, loopMBB); 10814 if (CmpOpcode) 10815 F->insert(It, loop2MBB); 10816 F->insert(It, exitMBB); 10817 exitMBB->splice(exitMBB->begin(), BB, 10818 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10819 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10820 10821 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10822 Register TmpReg = (!BinOpcode) ? incr : 10823 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10824 : &PPC::GPRCRegClass); 10825 10826 // thisMBB: 10827 // ... 10828 // fallthrough --> loopMBB 10829 BB->addSuccessor(loopMBB); 10830 10831 // loopMBB: 10832 // l[wd]arx dest, ptr 10833 // add r0, dest, incr 10834 // st[wd]cx. r0, ptr 10835 // bne- loopMBB 10836 // fallthrough --> exitMBB 10837 10838 // For max/min... 10839 // loopMBB: 10840 // l[wd]arx dest, ptr 10841 // cmpl?[wd] incr, dest 10842 // bgt exitMBB 10843 // loop2MBB: 10844 // st[wd]cx. dest, ptr 10845 // bne- loopMBB 10846 // fallthrough --> exitMBB 10847 10848 BB = loopMBB; 10849 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10850 .addReg(ptrA).addReg(ptrB); 10851 if (BinOpcode) 10852 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10853 if (CmpOpcode) { 10854 // Signed comparisons of byte or halfword values must be sign-extended. 10855 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10856 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10857 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10858 ExtReg).addReg(dest); 10859 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10860 .addReg(incr).addReg(ExtReg); 10861 } else 10862 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10863 .addReg(incr).addReg(dest); 10864 10865 BuildMI(BB, dl, TII->get(PPC::BCC)) 10866 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10867 BB->addSuccessor(loop2MBB); 10868 BB->addSuccessor(exitMBB); 10869 BB = loop2MBB; 10870 } 10871 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10872 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10873 BuildMI(BB, dl, TII->get(PPC::BCC)) 10874 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10875 BB->addSuccessor(loopMBB); 10876 BB->addSuccessor(exitMBB); 10877 10878 // exitMBB: 10879 // ... 10880 BB = exitMBB; 10881 return BB; 10882 } 10883 10884 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 10885 switch(MI.getOpcode()) { 10886 default: 10887 return false; 10888 case PPC::COPY: 10889 return TII->isSignExtended(MI); 10890 case PPC::LHA: 10891 case PPC::LHA8: 10892 case PPC::LHAU: 10893 case PPC::LHAU8: 10894 case PPC::LHAUX: 10895 case PPC::LHAUX8: 10896 case PPC::LHAX: 10897 case PPC::LHAX8: 10898 case PPC::LWA: 10899 case PPC::LWAUX: 10900 case PPC::LWAX: 10901 case PPC::LWAX_32: 10902 case PPC::LWA_32: 10903 case PPC::PLHA: 10904 case PPC::PLHA8: 10905 case PPC::PLHA8pc: 10906 case PPC::PLHApc: 10907 case PPC::PLWA: 10908 case PPC::PLWA8: 10909 case PPC::PLWA8pc: 10910 case PPC::PLWApc: 10911 case PPC::EXTSB: 10912 case PPC::EXTSB8: 10913 case PPC::EXTSB8_32_64: 10914 case PPC::EXTSB8_rec: 10915 case PPC::EXTSB_rec: 10916 case PPC::EXTSH: 10917 case PPC::EXTSH8: 10918 case PPC::EXTSH8_32_64: 10919 case PPC::EXTSH8_rec: 10920 case PPC::EXTSH_rec: 10921 case PPC::EXTSW: 10922 case PPC::EXTSWSLI: 10923 case PPC::EXTSWSLI_32_64: 10924 case PPC::EXTSWSLI_32_64_rec: 10925 case PPC::EXTSWSLI_rec: 10926 case PPC::EXTSW_32: 10927 case PPC::EXTSW_32_64: 10928 case PPC::EXTSW_32_64_rec: 10929 case PPC::EXTSW_rec: 10930 case PPC::SRAW: 10931 case PPC::SRAWI: 10932 case PPC::SRAWI_rec: 10933 case PPC::SRAW_rec: 10934 return true; 10935 } 10936 return false; 10937 } 10938 10939 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10940 MachineInstr &MI, MachineBasicBlock *BB, 10941 bool is8bit, // operation 10942 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10943 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10944 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10945 10946 // If this is a signed comparison and the value being compared is not known 10947 // to be sign extended, sign extend it here. 10948 DebugLoc dl = MI.getDebugLoc(); 10949 MachineFunction *F = BB->getParent(); 10950 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10951 Register incr = MI.getOperand(3).getReg(); 10952 bool IsSignExtended = Register::isVirtualRegister(incr) && 10953 isSignExtended(*RegInfo.getVRegDef(incr), TII); 10954 10955 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 10956 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10957 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 10958 .addReg(MI.getOperand(3).getReg()); 10959 MI.getOperand(3).setReg(ValueReg); 10960 } 10961 // If we support part-word atomic mnemonics, just use them 10962 if (Subtarget.hasPartwordAtomics()) 10963 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10964 CmpPred); 10965 10966 // In 64 bit mode we have to use 64 bits for addresses, even though the 10967 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10968 // registers without caring whether they're 32 or 64, but here we're 10969 // doing actual arithmetic on the addresses. 10970 bool is64bit = Subtarget.isPPC64(); 10971 bool isLittleEndian = Subtarget.isLittleEndian(); 10972 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10973 10974 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10975 MachineFunction::iterator It = ++BB->getIterator(); 10976 10977 Register dest = MI.getOperand(0).getReg(); 10978 Register ptrA = MI.getOperand(1).getReg(); 10979 Register ptrB = MI.getOperand(2).getReg(); 10980 10981 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10982 MachineBasicBlock *loop2MBB = 10983 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10984 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10985 F->insert(It, loopMBB); 10986 if (CmpOpcode) 10987 F->insert(It, loop2MBB); 10988 F->insert(It, exitMBB); 10989 exitMBB->splice(exitMBB->begin(), BB, 10990 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10991 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10992 10993 const TargetRegisterClass *RC = 10994 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10995 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10996 10997 Register PtrReg = RegInfo.createVirtualRegister(RC); 10998 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10999 Register ShiftReg = 11000 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11001 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11002 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11003 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11004 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11005 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11006 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11007 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11008 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11009 Register Ptr1Reg; 11010 Register TmpReg = 11011 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11012 11013 // thisMBB: 11014 // ... 11015 // fallthrough --> loopMBB 11016 BB->addSuccessor(loopMBB); 11017 11018 // The 4-byte load must be aligned, while a char or short may be 11019 // anywhere in the word. Hence all this nasty bookkeeping code. 11020 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11021 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11022 // xori shift, shift1, 24 [16] 11023 // rlwinm ptr, ptr1, 0, 0, 29 11024 // slw incr2, incr, shift 11025 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11026 // slw mask, mask2, shift 11027 // loopMBB: 11028 // lwarx tmpDest, ptr 11029 // add tmp, tmpDest, incr2 11030 // andc tmp2, tmpDest, mask 11031 // and tmp3, tmp, mask 11032 // or tmp4, tmp3, tmp2 11033 // stwcx. tmp4, ptr 11034 // bne- loopMBB 11035 // fallthrough --> exitMBB 11036 // srw dest, tmpDest, shift 11037 if (ptrA != ZeroReg) { 11038 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11039 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11040 .addReg(ptrA) 11041 .addReg(ptrB); 11042 } else { 11043 Ptr1Reg = ptrB; 11044 } 11045 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11046 // mode. 11047 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11048 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11049 .addImm(3) 11050 .addImm(27) 11051 .addImm(is8bit ? 28 : 27); 11052 if (!isLittleEndian) 11053 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11054 .addReg(Shift1Reg) 11055 .addImm(is8bit ? 24 : 16); 11056 if (is64bit) 11057 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11058 .addReg(Ptr1Reg) 11059 .addImm(0) 11060 .addImm(61); 11061 else 11062 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11063 .addReg(Ptr1Reg) 11064 .addImm(0) 11065 .addImm(0) 11066 .addImm(29); 11067 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11068 if (is8bit) 11069 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11070 else { 11071 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11072 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11073 .addReg(Mask3Reg) 11074 .addImm(65535); 11075 } 11076 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11077 .addReg(Mask2Reg) 11078 .addReg(ShiftReg); 11079 11080 BB = loopMBB; 11081 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11082 .addReg(ZeroReg) 11083 .addReg(PtrReg); 11084 if (BinOpcode) 11085 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11086 .addReg(Incr2Reg) 11087 .addReg(TmpDestReg); 11088 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11089 .addReg(TmpDestReg) 11090 .addReg(MaskReg); 11091 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11092 if (CmpOpcode) { 11093 // For unsigned comparisons, we can directly compare the shifted values. 11094 // For signed comparisons we shift and sign extend. 11095 Register SReg = RegInfo.createVirtualRegister(GPRC); 11096 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11097 .addReg(TmpDestReg) 11098 .addReg(MaskReg); 11099 unsigned ValueReg = SReg; 11100 unsigned CmpReg = Incr2Reg; 11101 if (CmpOpcode == PPC::CMPW) { 11102 ValueReg = RegInfo.createVirtualRegister(GPRC); 11103 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11104 .addReg(SReg) 11105 .addReg(ShiftReg); 11106 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11107 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11108 .addReg(ValueReg); 11109 ValueReg = ValueSReg; 11110 CmpReg = incr; 11111 } 11112 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11113 .addReg(CmpReg) 11114 .addReg(ValueReg); 11115 BuildMI(BB, dl, TII->get(PPC::BCC)) 11116 .addImm(CmpPred) 11117 .addReg(PPC::CR0) 11118 .addMBB(exitMBB); 11119 BB->addSuccessor(loop2MBB); 11120 BB->addSuccessor(exitMBB); 11121 BB = loop2MBB; 11122 } 11123 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11124 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11125 .addReg(Tmp4Reg) 11126 .addReg(ZeroReg) 11127 .addReg(PtrReg); 11128 BuildMI(BB, dl, TII->get(PPC::BCC)) 11129 .addImm(PPC::PRED_NE) 11130 .addReg(PPC::CR0) 11131 .addMBB(loopMBB); 11132 BB->addSuccessor(loopMBB); 11133 BB->addSuccessor(exitMBB); 11134 11135 // exitMBB: 11136 // ... 11137 BB = exitMBB; 11138 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11139 .addReg(TmpDestReg) 11140 .addReg(ShiftReg); 11141 return BB; 11142 } 11143 11144 llvm::MachineBasicBlock * 11145 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11146 MachineBasicBlock *MBB) const { 11147 DebugLoc DL = MI.getDebugLoc(); 11148 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11149 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11150 11151 MachineFunction *MF = MBB->getParent(); 11152 MachineRegisterInfo &MRI = MF->getRegInfo(); 11153 11154 const BasicBlock *BB = MBB->getBasicBlock(); 11155 MachineFunction::iterator I = ++MBB->getIterator(); 11156 11157 Register DstReg = MI.getOperand(0).getReg(); 11158 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11159 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11160 Register mainDstReg = MRI.createVirtualRegister(RC); 11161 Register restoreDstReg = MRI.createVirtualRegister(RC); 11162 11163 MVT PVT = getPointerTy(MF->getDataLayout()); 11164 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11165 "Invalid Pointer Size!"); 11166 // For v = setjmp(buf), we generate 11167 // 11168 // thisMBB: 11169 // SjLjSetup mainMBB 11170 // bl mainMBB 11171 // v_restore = 1 11172 // b sinkMBB 11173 // 11174 // mainMBB: 11175 // buf[LabelOffset] = LR 11176 // v_main = 0 11177 // 11178 // sinkMBB: 11179 // v = phi(main, restore) 11180 // 11181 11182 MachineBasicBlock *thisMBB = MBB; 11183 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11184 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11185 MF->insert(I, mainMBB); 11186 MF->insert(I, sinkMBB); 11187 11188 MachineInstrBuilder MIB; 11189 11190 // Transfer the remainder of BB and its successor edges to sinkMBB. 11191 sinkMBB->splice(sinkMBB->begin(), MBB, 11192 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11193 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11194 11195 // Note that the structure of the jmp_buf used here is not compatible 11196 // with that used by libc, and is not designed to be. Specifically, it 11197 // stores only those 'reserved' registers that LLVM does not otherwise 11198 // understand how to spill. Also, by convention, by the time this 11199 // intrinsic is called, Clang has already stored the frame address in the 11200 // first slot of the buffer and stack address in the third. Following the 11201 // X86 target code, we'll store the jump address in the second slot. We also 11202 // need to save the TOC pointer (R2) to handle jumps between shared 11203 // libraries, and that will be stored in the fourth slot. The thread 11204 // identifier (R13) is not affected. 11205 11206 // thisMBB: 11207 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11208 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11209 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11210 11211 // Prepare IP either in reg. 11212 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11213 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11214 Register BufReg = MI.getOperand(1).getReg(); 11215 11216 if (Subtarget.is64BitELFABI()) { 11217 setUsesTOCBasePtr(*MBB->getParent()); 11218 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11219 .addReg(PPC::X2) 11220 .addImm(TOCOffset) 11221 .addReg(BufReg) 11222 .cloneMemRefs(MI); 11223 } 11224 11225 // Naked functions never have a base pointer, and so we use r1. For all 11226 // other functions, this decision must be delayed until during PEI. 11227 unsigned BaseReg; 11228 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11229 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11230 else 11231 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11232 11233 MIB = BuildMI(*thisMBB, MI, DL, 11234 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11235 .addReg(BaseReg) 11236 .addImm(BPOffset) 11237 .addReg(BufReg) 11238 .cloneMemRefs(MI); 11239 11240 // Setup 11241 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11242 MIB.addRegMask(TRI->getNoPreservedMask()); 11243 11244 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11245 11246 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11247 .addMBB(mainMBB); 11248 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11249 11250 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11251 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11252 11253 // mainMBB: 11254 // mainDstReg = 0 11255 MIB = 11256 BuildMI(mainMBB, DL, 11257 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11258 11259 // Store IP 11260 if (Subtarget.isPPC64()) { 11261 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11262 .addReg(LabelReg) 11263 .addImm(LabelOffset) 11264 .addReg(BufReg); 11265 } else { 11266 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11267 .addReg(LabelReg) 11268 .addImm(LabelOffset) 11269 .addReg(BufReg); 11270 } 11271 MIB.cloneMemRefs(MI); 11272 11273 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11274 mainMBB->addSuccessor(sinkMBB); 11275 11276 // sinkMBB: 11277 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11278 TII->get(PPC::PHI), DstReg) 11279 .addReg(mainDstReg).addMBB(mainMBB) 11280 .addReg(restoreDstReg).addMBB(thisMBB); 11281 11282 MI.eraseFromParent(); 11283 return sinkMBB; 11284 } 11285 11286 MachineBasicBlock * 11287 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11288 MachineBasicBlock *MBB) const { 11289 DebugLoc DL = MI.getDebugLoc(); 11290 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11291 11292 MachineFunction *MF = MBB->getParent(); 11293 MachineRegisterInfo &MRI = MF->getRegInfo(); 11294 11295 MVT PVT = getPointerTy(MF->getDataLayout()); 11296 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11297 "Invalid Pointer Size!"); 11298 11299 const TargetRegisterClass *RC = 11300 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11301 Register Tmp = MRI.createVirtualRegister(RC); 11302 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11303 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11304 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11305 unsigned BP = 11306 (PVT == MVT::i64) 11307 ? PPC::X30 11308 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11309 : PPC::R30); 11310 11311 MachineInstrBuilder MIB; 11312 11313 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11314 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11315 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11316 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11317 11318 Register BufReg = MI.getOperand(0).getReg(); 11319 11320 // Reload FP (the jumped-to function may not have had a 11321 // frame pointer, and if so, then its r31 will be restored 11322 // as necessary). 11323 if (PVT == MVT::i64) { 11324 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11325 .addImm(0) 11326 .addReg(BufReg); 11327 } else { 11328 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11329 .addImm(0) 11330 .addReg(BufReg); 11331 } 11332 MIB.cloneMemRefs(MI); 11333 11334 // Reload IP 11335 if (PVT == MVT::i64) { 11336 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11337 .addImm(LabelOffset) 11338 .addReg(BufReg); 11339 } else { 11340 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11341 .addImm(LabelOffset) 11342 .addReg(BufReg); 11343 } 11344 MIB.cloneMemRefs(MI); 11345 11346 // Reload SP 11347 if (PVT == MVT::i64) { 11348 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11349 .addImm(SPOffset) 11350 .addReg(BufReg); 11351 } else { 11352 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11353 .addImm(SPOffset) 11354 .addReg(BufReg); 11355 } 11356 MIB.cloneMemRefs(MI); 11357 11358 // Reload BP 11359 if (PVT == MVT::i64) { 11360 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11361 .addImm(BPOffset) 11362 .addReg(BufReg); 11363 } else { 11364 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11365 .addImm(BPOffset) 11366 .addReg(BufReg); 11367 } 11368 MIB.cloneMemRefs(MI); 11369 11370 // Reload TOC 11371 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11372 setUsesTOCBasePtr(*MBB->getParent()); 11373 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11374 .addImm(TOCOffset) 11375 .addReg(BufReg) 11376 .cloneMemRefs(MI); 11377 } 11378 11379 // Jump 11380 BuildMI(*MBB, MI, DL, 11381 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11382 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11383 11384 MI.eraseFromParent(); 11385 return MBB; 11386 } 11387 11388 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11389 // If the function specifically requests inline stack probes, emit them. 11390 if (MF.getFunction().hasFnAttribute("probe-stack")) 11391 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11392 "inline-asm"; 11393 return false; 11394 } 11395 11396 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11397 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11398 unsigned StackAlign = TFI->getStackAlignment(); 11399 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11400 "Unexpected stack alignment"); 11401 // The default stack probe size is 4096 if the function has no 11402 // stack-probe-size attribute. 11403 unsigned StackProbeSize = 4096; 11404 const Function &Fn = MF.getFunction(); 11405 if (Fn.hasFnAttribute("stack-probe-size")) 11406 Fn.getFnAttribute("stack-probe-size") 11407 .getValueAsString() 11408 .getAsInteger(0, StackProbeSize); 11409 // Round down to the stack alignment. 11410 StackProbeSize &= ~(StackAlign - 1); 11411 return StackProbeSize ? StackProbeSize : StackAlign; 11412 } 11413 11414 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11415 // into three phases. In the first phase, it uses pseudo instruction 11416 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11417 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11418 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11419 // MaxCallFrameSize so that it can calculate correct data area pointer. 11420 MachineBasicBlock * 11421 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11422 MachineBasicBlock *MBB) const { 11423 const bool isPPC64 = Subtarget.isPPC64(); 11424 MachineFunction *MF = MBB->getParent(); 11425 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11426 DebugLoc DL = MI.getDebugLoc(); 11427 const unsigned ProbeSize = getStackProbeSize(*MF); 11428 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11429 MachineRegisterInfo &MRI = MF->getRegInfo(); 11430 // The CFG of probing stack looks as 11431 // +-----+ 11432 // | MBB | 11433 // +--+--+ 11434 // | 11435 // +----v----+ 11436 // +--->+ TestMBB +---+ 11437 // | +----+----+ | 11438 // | | | 11439 // | +-----v----+ | 11440 // +---+ BlockMBB | | 11441 // +----------+ | 11442 // | 11443 // +---------+ | 11444 // | TailMBB +<--+ 11445 // +---------+ 11446 // In MBB, calculate previous frame pointer and final stack pointer. 11447 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11448 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11449 // TailMBB is spliced via \p MI. 11450 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11451 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11452 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11453 11454 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11455 MF->insert(MBBIter, TestMBB); 11456 MF->insert(MBBIter, BlockMBB); 11457 MF->insert(MBBIter, TailMBB); 11458 11459 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11460 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11461 11462 Register DstReg = MI.getOperand(0).getReg(); 11463 Register NegSizeReg = MI.getOperand(1).getReg(); 11464 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11465 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11466 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11467 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11468 11469 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11470 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11471 // NegSize. 11472 unsigned ProbeOpc; 11473 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11474 ProbeOpc = 11475 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11476 else 11477 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11478 // and NegSizeReg will be allocated in the same phyreg to avoid 11479 // redundant copy when NegSizeReg has only one use which is current MI and 11480 // will be replaced by PREPARE_PROBED_ALLOCA then. 11481 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11482 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11483 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11484 .addDef(ActualNegSizeReg) 11485 .addReg(NegSizeReg) 11486 .add(MI.getOperand(2)) 11487 .add(MI.getOperand(3)); 11488 11489 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11490 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11491 FinalStackPtr) 11492 .addReg(SPReg) 11493 .addReg(ActualNegSizeReg); 11494 11495 // Materialize a scratch register for update. 11496 int64_t NegProbeSize = -(int64_t)ProbeSize; 11497 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11498 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11499 if (!isInt<16>(NegProbeSize)) { 11500 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11501 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11502 .addImm(NegProbeSize >> 16); 11503 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11504 ScratchReg) 11505 .addReg(TempReg) 11506 .addImm(NegProbeSize & 0xFFFF); 11507 } else 11508 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11509 .addImm(NegProbeSize); 11510 11511 { 11512 // Probing leading residual part. 11513 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11514 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11515 .addReg(ActualNegSizeReg) 11516 .addReg(ScratchReg); 11517 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11518 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11519 .addReg(Div) 11520 .addReg(ScratchReg); 11521 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11522 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11523 .addReg(Mul) 11524 .addReg(ActualNegSizeReg); 11525 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11526 .addReg(FramePointer) 11527 .addReg(SPReg) 11528 .addReg(NegMod); 11529 } 11530 11531 { 11532 // Remaining part should be multiple of ProbeSize. 11533 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11534 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11535 .addReg(SPReg) 11536 .addReg(FinalStackPtr); 11537 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11538 .addImm(PPC::PRED_EQ) 11539 .addReg(CmpResult) 11540 .addMBB(TailMBB); 11541 TestMBB->addSuccessor(BlockMBB); 11542 TestMBB->addSuccessor(TailMBB); 11543 } 11544 11545 { 11546 // Touch the block. 11547 // |P...|P...|P... 11548 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11549 .addReg(FramePointer) 11550 .addReg(SPReg) 11551 .addReg(ScratchReg); 11552 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11553 BlockMBB->addSuccessor(TestMBB); 11554 } 11555 11556 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11557 // DYNAREAOFFSET pseudo instruction to get the future result. 11558 Register MaxCallFrameSizeReg = 11559 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11560 BuildMI(TailMBB, DL, 11561 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11562 MaxCallFrameSizeReg) 11563 .add(MI.getOperand(2)) 11564 .add(MI.getOperand(3)); 11565 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11566 .addReg(SPReg) 11567 .addReg(MaxCallFrameSizeReg); 11568 11569 // Splice instructions after MI to TailMBB. 11570 TailMBB->splice(TailMBB->end(), MBB, 11571 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11572 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11573 MBB->addSuccessor(TestMBB); 11574 11575 // Delete the pseudo instruction. 11576 MI.eraseFromParent(); 11577 11578 ++NumDynamicAllocaProbed; 11579 return TailMBB; 11580 } 11581 11582 MachineBasicBlock * 11583 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11584 MachineBasicBlock *BB) const { 11585 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11586 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11587 if (Subtarget.is64BitELFABI() && 11588 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11589 !Subtarget.isUsingPCRelativeCalls()) { 11590 // Call lowering should have added an r2 operand to indicate a dependence 11591 // on the TOC base pointer value. It can't however, because there is no 11592 // way to mark the dependence as implicit there, and so the stackmap code 11593 // will confuse it with a regular operand. Instead, add the dependence 11594 // here. 11595 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11596 } 11597 11598 return emitPatchPoint(MI, BB); 11599 } 11600 11601 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11602 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11603 return emitEHSjLjSetJmp(MI, BB); 11604 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11605 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11606 return emitEHSjLjLongJmp(MI, BB); 11607 } 11608 11609 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11610 11611 // To "insert" these instructions we actually have to insert their 11612 // control-flow patterns. 11613 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11614 MachineFunction::iterator It = ++BB->getIterator(); 11615 11616 MachineFunction *F = BB->getParent(); 11617 11618 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11619 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11620 MI.getOpcode() == PPC::SELECT_I8) { 11621 SmallVector<MachineOperand, 2> Cond; 11622 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11623 MI.getOpcode() == PPC::SELECT_CC_I8) 11624 Cond.push_back(MI.getOperand(4)); 11625 else 11626 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11627 Cond.push_back(MI.getOperand(1)); 11628 11629 DebugLoc dl = MI.getDebugLoc(); 11630 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11631 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11632 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11633 MI.getOpcode() == PPC::SELECT_CC_F8 || 11634 MI.getOpcode() == PPC::SELECT_CC_F16 || 11635 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11636 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11637 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11638 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11639 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11640 MI.getOpcode() == PPC::SELECT_CC_SPE || 11641 MI.getOpcode() == PPC::SELECT_F4 || 11642 MI.getOpcode() == PPC::SELECT_F8 || 11643 MI.getOpcode() == PPC::SELECT_F16 || 11644 MI.getOpcode() == PPC::SELECT_SPE || 11645 MI.getOpcode() == PPC::SELECT_SPE4 || 11646 MI.getOpcode() == PPC::SELECT_VRRC || 11647 MI.getOpcode() == PPC::SELECT_VSFRC || 11648 MI.getOpcode() == PPC::SELECT_VSSRC || 11649 MI.getOpcode() == PPC::SELECT_VSRC) { 11650 // The incoming instruction knows the destination vreg to set, the 11651 // condition code register to branch on, the true/false values to 11652 // select between, and a branch opcode to use. 11653 11654 // thisMBB: 11655 // ... 11656 // TrueVal = ... 11657 // cmpTY ccX, r1, r2 11658 // bCC copy1MBB 11659 // fallthrough --> copy0MBB 11660 MachineBasicBlock *thisMBB = BB; 11661 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11662 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11663 DebugLoc dl = MI.getDebugLoc(); 11664 F->insert(It, copy0MBB); 11665 F->insert(It, sinkMBB); 11666 11667 // Transfer the remainder of BB and its successor edges to sinkMBB. 11668 sinkMBB->splice(sinkMBB->begin(), BB, 11669 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11670 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11671 11672 // Next, add the true and fallthrough blocks as its successors. 11673 BB->addSuccessor(copy0MBB); 11674 BB->addSuccessor(sinkMBB); 11675 11676 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11677 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11678 MI.getOpcode() == PPC::SELECT_F16 || 11679 MI.getOpcode() == PPC::SELECT_SPE4 || 11680 MI.getOpcode() == PPC::SELECT_SPE || 11681 MI.getOpcode() == PPC::SELECT_VRRC || 11682 MI.getOpcode() == PPC::SELECT_VSFRC || 11683 MI.getOpcode() == PPC::SELECT_VSSRC || 11684 MI.getOpcode() == PPC::SELECT_VSRC) { 11685 BuildMI(BB, dl, TII->get(PPC::BC)) 11686 .addReg(MI.getOperand(1).getReg()) 11687 .addMBB(sinkMBB); 11688 } else { 11689 unsigned SelectPred = MI.getOperand(4).getImm(); 11690 BuildMI(BB, dl, TII->get(PPC::BCC)) 11691 .addImm(SelectPred) 11692 .addReg(MI.getOperand(1).getReg()) 11693 .addMBB(sinkMBB); 11694 } 11695 11696 // copy0MBB: 11697 // %FalseValue = ... 11698 // # fallthrough to sinkMBB 11699 BB = copy0MBB; 11700 11701 // Update machine-CFG edges 11702 BB->addSuccessor(sinkMBB); 11703 11704 // sinkMBB: 11705 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11706 // ... 11707 BB = sinkMBB; 11708 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11709 .addReg(MI.getOperand(3).getReg()) 11710 .addMBB(copy0MBB) 11711 .addReg(MI.getOperand(2).getReg()) 11712 .addMBB(thisMBB); 11713 } else if (MI.getOpcode() == PPC::ReadTB) { 11714 // To read the 64-bit time-base register on a 32-bit target, we read the 11715 // two halves. Should the counter have wrapped while it was being read, we 11716 // need to try again. 11717 // ... 11718 // readLoop: 11719 // mfspr Rx,TBU # load from TBU 11720 // mfspr Ry,TB # load from TB 11721 // mfspr Rz,TBU # load from TBU 11722 // cmpw crX,Rx,Rz # check if 'old'='new' 11723 // bne readLoop # branch if they're not equal 11724 // ... 11725 11726 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11727 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11728 DebugLoc dl = MI.getDebugLoc(); 11729 F->insert(It, readMBB); 11730 F->insert(It, sinkMBB); 11731 11732 // Transfer the remainder of BB and its successor edges to sinkMBB. 11733 sinkMBB->splice(sinkMBB->begin(), BB, 11734 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11735 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11736 11737 BB->addSuccessor(readMBB); 11738 BB = readMBB; 11739 11740 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11741 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11742 Register LoReg = MI.getOperand(0).getReg(); 11743 Register HiReg = MI.getOperand(1).getReg(); 11744 11745 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11746 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11747 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11748 11749 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11750 11751 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11752 .addReg(HiReg) 11753 .addReg(ReadAgainReg); 11754 BuildMI(BB, dl, TII->get(PPC::BCC)) 11755 .addImm(PPC::PRED_NE) 11756 .addReg(CmpReg) 11757 .addMBB(readMBB); 11758 11759 BB->addSuccessor(readMBB); 11760 BB->addSuccessor(sinkMBB); 11761 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11762 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11763 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11764 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11765 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11766 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11767 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11768 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11769 11770 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11771 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11772 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11773 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11774 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11775 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11776 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11777 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11778 11779 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11780 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11781 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11782 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11783 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11784 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11785 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11786 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11787 11788 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11789 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11790 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11791 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11792 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11793 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11794 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11795 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11796 11797 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11798 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11799 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11800 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11801 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11802 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11803 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11804 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11805 11806 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11807 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11808 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11809 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11810 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11811 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11812 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11813 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11814 11815 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11816 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11817 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11818 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11819 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11820 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11821 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11822 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11823 11824 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11825 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11826 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11827 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11828 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11829 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11830 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11831 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11832 11833 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11834 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11835 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11836 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11837 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11838 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11839 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11840 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11841 11842 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11843 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11844 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11845 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11846 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11847 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11848 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11849 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11850 11851 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11852 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11853 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11854 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11855 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11856 BB = EmitAtomicBinary(MI, BB, 4, 0); 11857 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11858 BB = EmitAtomicBinary(MI, BB, 8, 0); 11859 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11860 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11861 (Subtarget.hasPartwordAtomics() && 11862 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11863 (Subtarget.hasPartwordAtomics() && 11864 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11865 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11866 11867 auto LoadMnemonic = PPC::LDARX; 11868 auto StoreMnemonic = PPC::STDCX; 11869 switch (MI.getOpcode()) { 11870 default: 11871 llvm_unreachable("Compare and swap of unknown size"); 11872 case PPC::ATOMIC_CMP_SWAP_I8: 11873 LoadMnemonic = PPC::LBARX; 11874 StoreMnemonic = PPC::STBCX; 11875 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11876 break; 11877 case PPC::ATOMIC_CMP_SWAP_I16: 11878 LoadMnemonic = PPC::LHARX; 11879 StoreMnemonic = PPC::STHCX; 11880 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11881 break; 11882 case PPC::ATOMIC_CMP_SWAP_I32: 11883 LoadMnemonic = PPC::LWARX; 11884 StoreMnemonic = PPC::STWCX; 11885 break; 11886 case PPC::ATOMIC_CMP_SWAP_I64: 11887 LoadMnemonic = PPC::LDARX; 11888 StoreMnemonic = PPC::STDCX; 11889 break; 11890 } 11891 Register dest = MI.getOperand(0).getReg(); 11892 Register ptrA = MI.getOperand(1).getReg(); 11893 Register ptrB = MI.getOperand(2).getReg(); 11894 Register oldval = MI.getOperand(3).getReg(); 11895 Register newval = MI.getOperand(4).getReg(); 11896 DebugLoc dl = MI.getDebugLoc(); 11897 11898 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11899 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11900 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11901 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11902 F->insert(It, loop1MBB); 11903 F->insert(It, loop2MBB); 11904 F->insert(It, midMBB); 11905 F->insert(It, exitMBB); 11906 exitMBB->splice(exitMBB->begin(), BB, 11907 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11908 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11909 11910 // thisMBB: 11911 // ... 11912 // fallthrough --> loopMBB 11913 BB->addSuccessor(loop1MBB); 11914 11915 // loop1MBB: 11916 // l[bhwd]arx dest, ptr 11917 // cmp[wd] dest, oldval 11918 // bne- midMBB 11919 // loop2MBB: 11920 // st[bhwd]cx. newval, ptr 11921 // bne- loopMBB 11922 // b exitBB 11923 // midMBB: 11924 // st[bhwd]cx. dest, ptr 11925 // exitBB: 11926 BB = loop1MBB; 11927 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11928 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11929 .addReg(oldval) 11930 .addReg(dest); 11931 BuildMI(BB, dl, TII->get(PPC::BCC)) 11932 .addImm(PPC::PRED_NE) 11933 .addReg(PPC::CR0) 11934 .addMBB(midMBB); 11935 BB->addSuccessor(loop2MBB); 11936 BB->addSuccessor(midMBB); 11937 11938 BB = loop2MBB; 11939 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11940 .addReg(newval) 11941 .addReg(ptrA) 11942 .addReg(ptrB); 11943 BuildMI(BB, dl, TII->get(PPC::BCC)) 11944 .addImm(PPC::PRED_NE) 11945 .addReg(PPC::CR0) 11946 .addMBB(loop1MBB); 11947 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11948 BB->addSuccessor(loop1MBB); 11949 BB->addSuccessor(exitMBB); 11950 11951 BB = midMBB; 11952 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11953 .addReg(dest) 11954 .addReg(ptrA) 11955 .addReg(ptrB); 11956 BB->addSuccessor(exitMBB); 11957 11958 // exitMBB: 11959 // ... 11960 BB = exitMBB; 11961 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11962 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11963 // We must use 64-bit registers for addresses when targeting 64-bit, 11964 // since we're actually doing arithmetic on them. Other registers 11965 // can be 32-bit. 11966 bool is64bit = Subtarget.isPPC64(); 11967 bool isLittleEndian = Subtarget.isLittleEndian(); 11968 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11969 11970 Register dest = MI.getOperand(0).getReg(); 11971 Register ptrA = MI.getOperand(1).getReg(); 11972 Register ptrB = MI.getOperand(2).getReg(); 11973 Register oldval = MI.getOperand(3).getReg(); 11974 Register newval = MI.getOperand(4).getReg(); 11975 DebugLoc dl = MI.getDebugLoc(); 11976 11977 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11978 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11979 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11980 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11981 F->insert(It, loop1MBB); 11982 F->insert(It, loop2MBB); 11983 F->insert(It, midMBB); 11984 F->insert(It, exitMBB); 11985 exitMBB->splice(exitMBB->begin(), BB, 11986 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11987 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11988 11989 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11990 const TargetRegisterClass *RC = 11991 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11992 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11993 11994 Register PtrReg = RegInfo.createVirtualRegister(RC); 11995 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11996 Register ShiftReg = 11997 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11998 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11999 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12000 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12001 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12002 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12003 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12004 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12005 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12006 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12007 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12008 Register Ptr1Reg; 12009 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12010 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12011 // thisMBB: 12012 // ... 12013 // fallthrough --> loopMBB 12014 BB->addSuccessor(loop1MBB); 12015 12016 // The 4-byte load must be aligned, while a char or short may be 12017 // anywhere in the word. Hence all this nasty bookkeeping code. 12018 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12019 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12020 // xori shift, shift1, 24 [16] 12021 // rlwinm ptr, ptr1, 0, 0, 29 12022 // slw newval2, newval, shift 12023 // slw oldval2, oldval,shift 12024 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12025 // slw mask, mask2, shift 12026 // and newval3, newval2, mask 12027 // and oldval3, oldval2, mask 12028 // loop1MBB: 12029 // lwarx tmpDest, ptr 12030 // and tmp, tmpDest, mask 12031 // cmpw tmp, oldval3 12032 // bne- midMBB 12033 // loop2MBB: 12034 // andc tmp2, tmpDest, mask 12035 // or tmp4, tmp2, newval3 12036 // stwcx. tmp4, ptr 12037 // bne- loop1MBB 12038 // b exitBB 12039 // midMBB: 12040 // stwcx. tmpDest, ptr 12041 // exitBB: 12042 // srw dest, tmpDest, shift 12043 if (ptrA != ZeroReg) { 12044 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12045 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12046 .addReg(ptrA) 12047 .addReg(ptrB); 12048 } else { 12049 Ptr1Reg = ptrB; 12050 } 12051 12052 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12053 // mode. 12054 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12055 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12056 .addImm(3) 12057 .addImm(27) 12058 .addImm(is8bit ? 28 : 27); 12059 if (!isLittleEndian) 12060 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12061 .addReg(Shift1Reg) 12062 .addImm(is8bit ? 24 : 16); 12063 if (is64bit) 12064 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12065 .addReg(Ptr1Reg) 12066 .addImm(0) 12067 .addImm(61); 12068 else 12069 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12070 .addReg(Ptr1Reg) 12071 .addImm(0) 12072 .addImm(0) 12073 .addImm(29); 12074 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12075 .addReg(newval) 12076 .addReg(ShiftReg); 12077 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12078 .addReg(oldval) 12079 .addReg(ShiftReg); 12080 if (is8bit) 12081 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12082 else { 12083 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12084 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12085 .addReg(Mask3Reg) 12086 .addImm(65535); 12087 } 12088 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12089 .addReg(Mask2Reg) 12090 .addReg(ShiftReg); 12091 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12092 .addReg(NewVal2Reg) 12093 .addReg(MaskReg); 12094 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12095 .addReg(OldVal2Reg) 12096 .addReg(MaskReg); 12097 12098 BB = loop1MBB; 12099 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12100 .addReg(ZeroReg) 12101 .addReg(PtrReg); 12102 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12103 .addReg(TmpDestReg) 12104 .addReg(MaskReg); 12105 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12106 .addReg(TmpReg) 12107 .addReg(OldVal3Reg); 12108 BuildMI(BB, dl, TII->get(PPC::BCC)) 12109 .addImm(PPC::PRED_NE) 12110 .addReg(PPC::CR0) 12111 .addMBB(midMBB); 12112 BB->addSuccessor(loop2MBB); 12113 BB->addSuccessor(midMBB); 12114 12115 BB = loop2MBB; 12116 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12117 .addReg(TmpDestReg) 12118 .addReg(MaskReg); 12119 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12120 .addReg(Tmp2Reg) 12121 .addReg(NewVal3Reg); 12122 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12123 .addReg(Tmp4Reg) 12124 .addReg(ZeroReg) 12125 .addReg(PtrReg); 12126 BuildMI(BB, dl, TII->get(PPC::BCC)) 12127 .addImm(PPC::PRED_NE) 12128 .addReg(PPC::CR0) 12129 .addMBB(loop1MBB); 12130 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12131 BB->addSuccessor(loop1MBB); 12132 BB->addSuccessor(exitMBB); 12133 12134 BB = midMBB; 12135 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12136 .addReg(TmpDestReg) 12137 .addReg(ZeroReg) 12138 .addReg(PtrReg); 12139 BB->addSuccessor(exitMBB); 12140 12141 // exitMBB: 12142 // ... 12143 BB = exitMBB; 12144 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12145 .addReg(TmpReg) 12146 .addReg(ShiftReg); 12147 } else if (MI.getOpcode() == PPC::FADDrtz) { 12148 // This pseudo performs an FADD with rounding mode temporarily forced 12149 // to round-to-zero. We emit this via custom inserter since the FPSCR 12150 // is not modeled at the SelectionDAG level. 12151 Register Dest = MI.getOperand(0).getReg(); 12152 Register Src1 = MI.getOperand(1).getReg(); 12153 Register Src2 = MI.getOperand(2).getReg(); 12154 DebugLoc dl = MI.getDebugLoc(); 12155 12156 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12157 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12158 12159 // Save FPSCR value. 12160 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12161 12162 // Set rounding mode to round-to-zero. 12163 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12164 .addImm(31) 12165 .addReg(PPC::RM, RegState::ImplicitDefine); 12166 12167 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12168 .addImm(30) 12169 .addReg(PPC::RM, RegState::ImplicitDefine); 12170 12171 // Perform addition. 12172 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12173 .addReg(Src1) 12174 .addReg(Src2); 12175 if (MI.getFlag(MachineInstr::NoFPExcept)) 12176 MIB.setMIFlag(MachineInstr::NoFPExcept); 12177 12178 // Restore FPSCR value. 12179 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12180 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12181 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12182 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12183 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12184 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12185 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12186 ? PPC::ANDI8_rec 12187 : PPC::ANDI_rec; 12188 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12189 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12190 12191 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12192 Register Dest = RegInfo.createVirtualRegister( 12193 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12194 12195 DebugLoc Dl = MI.getDebugLoc(); 12196 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12197 .addReg(MI.getOperand(1).getReg()) 12198 .addImm(1); 12199 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12200 MI.getOperand(0).getReg()) 12201 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12202 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12203 DebugLoc Dl = MI.getDebugLoc(); 12204 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12205 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12206 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12207 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12208 MI.getOperand(0).getReg()) 12209 .addReg(CRReg); 12210 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12211 DebugLoc Dl = MI.getDebugLoc(); 12212 unsigned Imm = MI.getOperand(1).getImm(); 12213 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12214 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12215 MI.getOperand(0).getReg()) 12216 .addReg(PPC::CR0EQ); 12217 } else if (MI.getOpcode() == PPC::SETRNDi) { 12218 DebugLoc dl = MI.getDebugLoc(); 12219 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12220 12221 // Save FPSCR value. 12222 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12223 12224 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12225 // the following settings: 12226 // 00 Round to nearest 12227 // 01 Round to 0 12228 // 10 Round to +inf 12229 // 11 Round to -inf 12230 12231 // When the operand is immediate, using the two least significant bits of 12232 // the immediate to set the bits 62:63 of FPSCR. 12233 unsigned Mode = MI.getOperand(1).getImm(); 12234 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12235 .addImm(31) 12236 .addReg(PPC::RM, RegState::ImplicitDefine); 12237 12238 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12239 .addImm(30) 12240 .addReg(PPC::RM, RegState::ImplicitDefine); 12241 } else if (MI.getOpcode() == PPC::SETRND) { 12242 DebugLoc dl = MI.getDebugLoc(); 12243 12244 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12245 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12246 // If the target doesn't have DirectMove, we should use stack to do the 12247 // conversion, because the target doesn't have the instructions like mtvsrd 12248 // or mfvsrd to do this conversion directly. 12249 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12250 if (Subtarget.hasDirectMove()) { 12251 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12252 .addReg(SrcReg); 12253 } else { 12254 // Use stack to do the register copy. 12255 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12256 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12257 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12258 if (RC == &PPC::F8RCRegClass) { 12259 // Copy register from F8RCRegClass to G8RCRegclass. 12260 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12261 "Unsupported RegClass."); 12262 12263 StoreOp = PPC::STFD; 12264 LoadOp = PPC::LD; 12265 } else { 12266 // Copy register from G8RCRegClass to F8RCRegclass. 12267 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12268 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12269 "Unsupported RegClass."); 12270 } 12271 12272 MachineFrameInfo &MFI = F->getFrameInfo(); 12273 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12274 12275 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12276 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12277 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12278 MFI.getObjectAlign(FrameIdx)); 12279 12280 // Store the SrcReg into the stack. 12281 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12282 .addReg(SrcReg) 12283 .addImm(0) 12284 .addFrameIndex(FrameIdx) 12285 .addMemOperand(MMOStore); 12286 12287 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12288 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12289 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12290 MFI.getObjectAlign(FrameIdx)); 12291 12292 // Load from the stack where SrcReg is stored, and save to DestReg, 12293 // so we have done the RegClass conversion from RegClass::SrcReg to 12294 // RegClass::DestReg. 12295 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12296 .addImm(0) 12297 .addFrameIndex(FrameIdx) 12298 .addMemOperand(MMOLoad); 12299 } 12300 }; 12301 12302 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12303 12304 // Save FPSCR value. 12305 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12306 12307 // When the operand is gprc register, use two least significant bits of the 12308 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12309 // 12310 // copy OldFPSCRTmpReg, OldFPSCRReg 12311 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12312 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12313 // copy NewFPSCRReg, NewFPSCRTmpReg 12314 // mtfsf 255, NewFPSCRReg 12315 MachineOperand SrcOp = MI.getOperand(1); 12316 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12317 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12318 12319 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12320 12321 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12322 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12323 12324 // The first operand of INSERT_SUBREG should be a register which has 12325 // subregisters, we only care about its RegClass, so we should use an 12326 // IMPLICIT_DEF register. 12327 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12328 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12329 .addReg(ImDefReg) 12330 .add(SrcOp) 12331 .addImm(1); 12332 12333 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12334 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12335 .addReg(OldFPSCRTmpReg) 12336 .addReg(ExtSrcReg) 12337 .addImm(0) 12338 .addImm(62); 12339 12340 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12341 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12342 12343 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12344 // bits of FPSCR. 12345 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12346 .addImm(255) 12347 .addReg(NewFPSCRReg) 12348 .addImm(0) 12349 .addImm(0); 12350 } else if (MI.getOpcode() == PPC::SETFLM) { 12351 DebugLoc Dl = MI.getDebugLoc(); 12352 12353 // Result of setflm is previous FPSCR content, so we need to save it first. 12354 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12355 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12356 12357 // Put bits in 32:63 to FPSCR. 12358 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12359 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12360 .addImm(255) 12361 .addReg(NewFPSCRReg) 12362 .addImm(0) 12363 .addImm(0); 12364 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12365 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12366 return emitProbedAlloca(MI, BB); 12367 } else { 12368 llvm_unreachable("Unexpected instr type to insert"); 12369 } 12370 12371 MI.eraseFromParent(); // The pseudo instruction is gone now. 12372 return BB; 12373 } 12374 12375 //===----------------------------------------------------------------------===// 12376 // Target Optimization Hooks 12377 //===----------------------------------------------------------------------===// 12378 12379 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12380 // For the estimates, convergence is quadratic, so we essentially double the 12381 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12382 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12383 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12384 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12385 if (VT.getScalarType() == MVT::f64) 12386 RefinementSteps++; 12387 return RefinementSteps; 12388 } 12389 12390 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12391 const DenormalMode &Mode) const { 12392 // We only have VSX Vector Test for software Square Root. 12393 EVT VT = Op.getValueType(); 12394 if (!isTypeLegal(MVT::i1) || 12395 (VT != MVT::f64 && 12396 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12397 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12398 12399 SDLoc DL(Op); 12400 // The output register of FTSQRT is CR field. 12401 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12402 // ftsqrt BF,FRB 12403 // Let e_b be the unbiased exponent of the double-precision 12404 // floating-point operand in register FRB. 12405 // fe_flag is set to 1 if either of the following conditions occurs. 12406 // - The double-precision floating-point operand in register FRB is a zero, 12407 // a NaN, or an infinity, or a negative value. 12408 // - e_b is less than or equal to -970. 12409 // Otherwise fe_flag is set to 0. 12410 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12411 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12412 // exponent is less than -970) 12413 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12414 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12415 FTSQRT, SRIdxVal), 12416 0); 12417 } 12418 12419 SDValue 12420 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12421 SelectionDAG &DAG) const { 12422 // We only have VSX Vector Square Root. 12423 EVT VT = Op.getValueType(); 12424 if (VT != MVT::f64 && 12425 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12426 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12427 12428 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12429 } 12430 12431 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12432 int Enabled, int &RefinementSteps, 12433 bool &UseOneConstNR, 12434 bool Reciprocal) const { 12435 EVT VT = Operand.getValueType(); 12436 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12437 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12438 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12439 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12440 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12441 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12442 12443 // The Newton-Raphson computation with a single constant does not provide 12444 // enough accuracy on some CPUs. 12445 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12446 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12447 } 12448 return SDValue(); 12449 } 12450 12451 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12452 int Enabled, 12453 int &RefinementSteps) const { 12454 EVT VT = Operand.getValueType(); 12455 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12456 (VT == MVT::f64 && Subtarget.hasFRE()) || 12457 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12458 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12459 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12460 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12461 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12462 } 12463 return SDValue(); 12464 } 12465 12466 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12467 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12468 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12469 // enabled for division), this functionality is redundant with the default 12470 // combiner logic (once the division -> reciprocal/multiply transformation 12471 // has taken place). As a result, this matters more for older cores than for 12472 // newer ones. 12473 12474 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12475 // reciprocal if there are two or more FDIVs (for embedded cores with only 12476 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12477 switch (Subtarget.getCPUDirective()) { 12478 default: 12479 return 3; 12480 case PPC::DIR_440: 12481 case PPC::DIR_A2: 12482 case PPC::DIR_E500: 12483 case PPC::DIR_E500mc: 12484 case PPC::DIR_E5500: 12485 return 2; 12486 } 12487 } 12488 12489 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12490 // collapsed, and so we need to look through chains of them. 12491 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12492 int64_t& Offset, SelectionDAG &DAG) { 12493 if (DAG.isBaseWithConstantOffset(Loc)) { 12494 Base = Loc.getOperand(0); 12495 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12496 12497 // The base might itself be a base plus an offset, and if so, accumulate 12498 // that as well. 12499 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12500 } 12501 } 12502 12503 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12504 unsigned Bytes, int Dist, 12505 SelectionDAG &DAG) { 12506 if (VT.getSizeInBits() / 8 != Bytes) 12507 return false; 12508 12509 SDValue BaseLoc = Base->getBasePtr(); 12510 if (Loc.getOpcode() == ISD::FrameIndex) { 12511 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12512 return false; 12513 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12514 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12515 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12516 int FS = MFI.getObjectSize(FI); 12517 int BFS = MFI.getObjectSize(BFI); 12518 if (FS != BFS || FS != (int)Bytes) return false; 12519 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12520 } 12521 12522 SDValue Base1 = Loc, Base2 = BaseLoc; 12523 int64_t Offset1 = 0, Offset2 = 0; 12524 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12525 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12526 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12527 return true; 12528 12529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12530 const GlobalValue *GV1 = nullptr; 12531 const GlobalValue *GV2 = nullptr; 12532 Offset1 = 0; 12533 Offset2 = 0; 12534 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12535 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12536 if (isGA1 && isGA2 && GV1 == GV2) 12537 return Offset1 == (Offset2 + Dist*Bytes); 12538 return false; 12539 } 12540 12541 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12542 // not enforce equality of the chain operands. 12543 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12544 unsigned Bytes, int Dist, 12545 SelectionDAG &DAG) { 12546 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12547 EVT VT = LS->getMemoryVT(); 12548 SDValue Loc = LS->getBasePtr(); 12549 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12550 } 12551 12552 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12553 EVT VT; 12554 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12555 default: return false; 12556 case Intrinsic::ppc_altivec_lvx: 12557 case Intrinsic::ppc_altivec_lvxl: 12558 case Intrinsic::ppc_vsx_lxvw4x: 12559 case Intrinsic::ppc_vsx_lxvw4x_be: 12560 VT = MVT::v4i32; 12561 break; 12562 case Intrinsic::ppc_vsx_lxvd2x: 12563 case Intrinsic::ppc_vsx_lxvd2x_be: 12564 VT = MVT::v2f64; 12565 break; 12566 case Intrinsic::ppc_altivec_lvebx: 12567 VT = MVT::i8; 12568 break; 12569 case Intrinsic::ppc_altivec_lvehx: 12570 VT = MVT::i16; 12571 break; 12572 case Intrinsic::ppc_altivec_lvewx: 12573 VT = MVT::i32; 12574 break; 12575 } 12576 12577 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12578 } 12579 12580 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12581 EVT VT; 12582 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12583 default: return false; 12584 case Intrinsic::ppc_altivec_stvx: 12585 case Intrinsic::ppc_altivec_stvxl: 12586 case Intrinsic::ppc_vsx_stxvw4x: 12587 VT = MVT::v4i32; 12588 break; 12589 case Intrinsic::ppc_vsx_stxvd2x: 12590 VT = MVT::v2f64; 12591 break; 12592 case Intrinsic::ppc_vsx_stxvw4x_be: 12593 VT = MVT::v4i32; 12594 break; 12595 case Intrinsic::ppc_vsx_stxvd2x_be: 12596 VT = MVT::v2f64; 12597 break; 12598 case Intrinsic::ppc_altivec_stvebx: 12599 VT = MVT::i8; 12600 break; 12601 case Intrinsic::ppc_altivec_stvehx: 12602 VT = MVT::i16; 12603 break; 12604 case Intrinsic::ppc_altivec_stvewx: 12605 VT = MVT::i32; 12606 break; 12607 } 12608 12609 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12610 } 12611 12612 return false; 12613 } 12614 12615 // Return true is there is a nearyby consecutive load to the one provided 12616 // (regardless of alignment). We search up and down the chain, looking though 12617 // token factors and other loads (but nothing else). As a result, a true result 12618 // indicates that it is safe to create a new consecutive load adjacent to the 12619 // load provided. 12620 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12621 SDValue Chain = LD->getChain(); 12622 EVT VT = LD->getMemoryVT(); 12623 12624 SmallSet<SDNode *, 16> LoadRoots; 12625 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12626 SmallSet<SDNode *, 16> Visited; 12627 12628 // First, search up the chain, branching to follow all token-factor operands. 12629 // If we find a consecutive load, then we're done, otherwise, record all 12630 // nodes just above the top-level loads and token factors. 12631 while (!Queue.empty()) { 12632 SDNode *ChainNext = Queue.pop_back_val(); 12633 if (!Visited.insert(ChainNext).second) 12634 continue; 12635 12636 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12637 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12638 return true; 12639 12640 if (!Visited.count(ChainLD->getChain().getNode())) 12641 Queue.push_back(ChainLD->getChain().getNode()); 12642 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12643 for (const SDUse &O : ChainNext->ops()) 12644 if (!Visited.count(O.getNode())) 12645 Queue.push_back(O.getNode()); 12646 } else 12647 LoadRoots.insert(ChainNext); 12648 } 12649 12650 // Second, search down the chain, starting from the top-level nodes recorded 12651 // in the first phase. These top-level nodes are the nodes just above all 12652 // loads and token factors. Starting with their uses, recursively look though 12653 // all loads (just the chain uses) and token factors to find a consecutive 12654 // load. 12655 Visited.clear(); 12656 Queue.clear(); 12657 12658 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12659 IE = LoadRoots.end(); I != IE; ++I) { 12660 Queue.push_back(*I); 12661 12662 while (!Queue.empty()) { 12663 SDNode *LoadRoot = Queue.pop_back_val(); 12664 if (!Visited.insert(LoadRoot).second) 12665 continue; 12666 12667 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12668 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12669 return true; 12670 12671 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12672 UE = LoadRoot->use_end(); UI != UE; ++UI) 12673 if (((isa<MemSDNode>(*UI) && 12674 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12675 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12676 Queue.push_back(*UI); 12677 } 12678 } 12679 12680 return false; 12681 } 12682 12683 /// This function is called when we have proved that a SETCC node can be replaced 12684 /// by subtraction (and other supporting instructions) so that the result of 12685 /// comparison is kept in a GPR instead of CR. This function is purely for 12686 /// codegen purposes and has some flags to guide the codegen process. 12687 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12688 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12689 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12690 12691 // Zero extend the operands to the largest legal integer. Originally, they 12692 // must be of a strictly smaller size. 12693 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12694 DAG.getConstant(Size, DL, MVT::i32)); 12695 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12696 DAG.getConstant(Size, DL, MVT::i32)); 12697 12698 // Swap if needed. Depends on the condition code. 12699 if (Swap) 12700 std::swap(Op0, Op1); 12701 12702 // Subtract extended integers. 12703 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12704 12705 // Move the sign bit to the least significant position and zero out the rest. 12706 // Now the least significant bit carries the result of original comparison. 12707 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12708 DAG.getConstant(Size - 1, DL, MVT::i32)); 12709 auto Final = Shifted; 12710 12711 // Complement the result if needed. Based on the condition code. 12712 if (Complement) 12713 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12714 DAG.getConstant(1, DL, MVT::i64)); 12715 12716 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12717 } 12718 12719 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12720 DAGCombinerInfo &DCI) const { 12721 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12722 12723 SelectionDAG &DAG = DCI.DAG; 12724 SDLoc DL(N); 12725 12726 // Size of integers being compared has a critical role in the following 12727 // analysis, so we prefer to do this when all types are legal. 12728 if (!DCI.isAfterLegalizeDAG()) 12729 return SDValue(); 12730 12731 // If all users of SETCC extend its value to a legal integer type 12732 // then we replace SETCC with a subtraction 12733 for (SDNode::use_iterator UI = N->use_begin(), 12734 UE = N->use_end(); UI != UE; ++UI) { 12735 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12736 return SDValue(); 12737 } 12738 12739 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12740 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12741 12742 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12743 12744 if (OpSize < Size) { 12745 switch (CC) { 12746 default: break; 12747 case ISD::SETULT: 12748 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12749 case ISD::SETULE: 12750 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12751 case ISD::SETUGT: 12752 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12753 case ISD::SETUGE: 12754 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12755 } 12756 } 12757 12758 return SDValue(); 12759 } 12760 12761 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12762 DAGCombinerInfo &DCI) const { 12763 SelectionDAG &DAG = DCI.DAG; 12764 SDLoc dl(N); 12765 12766 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12767 // If we're tracking CR bits, we need to be careful that we don't have: 12768 // trunc(binary-ops(zext(x), zext(y))) 12769 // or 12770 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12771 // such that we're unnecessarily moving things into GPRs when it would be 12772 // better to keep them in CR bits. 12773 12774 // Note that trunc here can be an actual i1 trunc, or can be the effective 12775 // truncation that comes from a setcc or select_cc. 12776 if (N->getOpcode() == ISD::TRUNCATE && 12777 N->getValueType(0) != MVT::i1) 12778 return SDValue(); 12779 12780 if (N->getOperand(0).getValueType() != MVT::i32 && 12781 N->getOperand(0).getValueType() != MVT::i64) 12782 return SDValue(); 12783 12784 if (N->getOpcode() == ISD::SETCC || 12785 N->getOpcode() == ISD::SELECT_CC) { 12786 // If we're looking at a comparison, then we need to make sure that the 12787 // high bits (all except for the first) don't matter the result. 12788 ISD::CondCode CC = 12789 cast<CondCodeSDNode>(N->getOperand( 12790 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12791 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12792 12793 if (ISD::isSignedIntSetCC(CC)) { 12794 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12795 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12796 return SDValue(); 12797 } else if (ISD::isUnsignedIntSetCC(CC)) { 12798 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12799 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12800 !DAG.MaskedValueIsZero(N->getOperand(1), 12801 APInt::getHighBitsSet(OpBits, OpBits-1))) 12802 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12803 : SDValue()); 12804 } else { 12805 // This is neither a signed nor an unsigned comparison, just make sure 12806 // that the high bits are equal. 12807 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12808 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12809 12810 // We don't really care about what is known about the first bit (if 12811 // anything), so pretend that it is known zero for both to ensure they can 12812 // be compared as constants. 12813 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 12814 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 12815 12816 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 12817 Op1Known.getConstant() != Op2Known.getConstant()) 12818 return SDValue(); 12819 } 12820 } 12821 12822 // We now know that the higher-order bits are irrelevant, we just need to 12823 // make sure that all of the intermediate operations are bit operations, and 12824 // all inputs are extensions. 12825 if (N->getOperand(0).getOpcode() != ISD::AND && 12826 N->getOperand(0).getOpcode() != ISD::OR && 12827 N->getOperand(0).getOpcode() != ISD::XOR && 12828 N->getOperand(0).getOpcode() != ISD::SELECT && 12829 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12830 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12831 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12832 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12833 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12834 return SDValue(); 12835 12836 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12837 N->getOperand(1).getOpcode() != ISD::AND && 12838 N->getOperand(1).getOpcode() != ISD::OR && 12839 N->getOperand(1).getOpcode() != ISD::XOR && 12840 N->getOperand(1).getOpcode() != ISD::SELECT && 12841 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12842 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12843 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12844 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12845 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12846 return SDValue(); 12847 12848 SmallVector<SDValue, 4> Inputs; 12849 SmallVector<SDValue, 8> BinOps, PromOps; 12850 SmallPtrSet<SDNode *, 16> Visited; 12851 12852 for (unsigned i = 0; i < 2; ++i) { 12853 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12854 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12855 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12856 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12857 isa<ConstantSDNode>(N->getOperand(i))) 12858 Inputs.push_back(N->getOperand(i)); 12859 else 12860 BinOps.push_back(N->getOperand(i)); 12861 12862 if (N->getOpcode() == ISD::TRUNCATE) 12863 break; 12864 } 12865 12866 // Visit all inputs, collect all binary operations (and, or, xor and 12867 // select) that are all fed by extensions. 12868 while (!BinOps.empty()) { 12869 SDValue BinOp = BinOps.pop_back_val(); 12870 12871 if (!Visited.insert(BinOp.getNode()).second) 12872 continue; 12873 12874 PromOps.push_back(BinOp); 12875 12876 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12877 // The condition of the select is not promoted. 12878 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12879 continue; 12880 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12881 continue; 12882 12883 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12884 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12885 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12886 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12887 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12888 Inputs.push_back(BinOp.getOperand(i)); 12889 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12890 BinOp.getOperand(i).getOpcode() == ISD::OR || 12891 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12892 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12893 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12894 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12895 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12896 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12897 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12898 BinOps.push_back(BinOp.getOperand(i)); 12899 } else { 12900 // We have an input that is not an extension or another binary 12901 // operation; we'll abort this transformation. 12902 return SDValue(); 12903 } 12904 } 12905 } 12906 12907 // Make sure that this is a self-contained cluster of operations (which 12908 // is not quite the same thing as saying that everything has only one 12909 // use). 12910 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12911 if (isa<ConstantSDNode>(Inputs[i])) 12912 continue; 12913 12914 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12915 UE = Inputs[i].getNode()->use_end(); 12916 UI != UE; ++UI) { 12917 SDNode *User = *UI; 12918 if (User != N && !Visited.count(User)) 12919 return SDValue(); 12920 12921 // Make sure that we're not going to promote the non-output-value 12922 // operand(s) or SELECT or SELECT_CC. 12923 // FIXME: Although we could sometimes handle this, and it does occur in 12924 // practice that one of the condition inputs to the select is also one of 12925 // the outputs, we currently can't deal with this. 12926 if (User->getOpcode() == ISD::SELECT) { 12927 if (User->getOperand(0) == Inputs[i]) 12928 return SDValue(); 12929 } else if (User->getOpcode() == ISD::SELECT_CC) { 12930 if (User->getOperand(0) == Inputs[i] || 12931 User->getOperand(1) == Inputs[i]) 12932 return SDValue(); 12933 } 12934 } 12935 } 12936 12937 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12938 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12939 UE = PromOps[i].getNode()->use_end(); 12940 UI != UE; ++UI) { 12941 SDNode *User = *UI; 12942 if (User != N && !Visited.count(User)) 12943 return SDValue(); 12944 12945 // Make sure that we're not going to promote the non-output-value 12946 // operand(s) or SELECT or SELECT_CC. 12947 // FIXME: Although we could sometimes handle this, and it does occur in 12948 // practice that one of the condition inputs to the select is also one of 12949 // the outputs, we currently can't deal with this. 12950 if (User->getOpcode() == ISD::SELECT) { 12951 if (User->getOperand(0) == PromOps[i]) 12952 return SDValue(); 12953 } else if (User->getOpcode() == ISD::SELECT_CC) { 12954 if (User->getOperand(0) == PromOps[i] || 12955 User->getOperand(1) == PromOps[i]) 12956 return SDValue(); 12957 } 12958 } 12959 } 12960 12961 // Replace all inputs with the extension operand. 12962 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12963 // Constants may have users outside the cluster of to-be-promoted nodes, 12964 // and so we need to replace those as we do the promotions. 12965 if (isa<ConstantSDNode>(Inputs[i])) 12966 continue; 12967 else 12968 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12969 } 12970 12971 std::list<HandleSDNode> PromOpHandles; 12972 for (auto &PromOp : PromOps) 12973 PromOpHandles.emplace_back(PromOp); 12974 12975 // Replace all operations (these are all the same, but have a different 12976 // (i1) return type). DAG.getNode will validate that the types of 12977 // a binary operator match, so go through the list in reverse so that 12978 // we've likely promoted both operands first. Any intermediate truncations or 12979 // extensions disappear. 12980 while (!PromOpHandles.empty()) { 12981 SDValue PromOp = PromOpHandles.back().getValue(); 12982 PromOpHandles.pop_back(); 12983 12984 if (PromOp.getOpcode() == ISD::TRUNCATE || 12985 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12986 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12987 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12988 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12989 PromOp.getOperand(0).getValueType() != MVT::i1) { 12990 // The operand is not yet ready (see comment below). 12991 PromOpHandles.emplace_front(PromOp); 12992 continue; 12993 } 12994 12995 SDValue RepValue = PromOp.getOperand(0); 12996 if (isa<ConstantSDNode>(RepValue)) 12997 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12998 12999 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13000 continue; 13001 } 13002 13003 unsigned C; 13004 switch (PromOp.getOpcode()) { 13005 default: C = 0; break; 13006 case ISD::SELECT: C = 1; break; 13007 case ISD::SELECT_CC: C = 2; break; 13008 } 13009 13010 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13011 PromOp.getOperand(C).getValueType() != MVT::i1) || 13012 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13013 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13014 // The to-be-promoted operands of this node have not yet been 13015 // promoted (this should be rare because we're going through the 13016 // list backward, but if one of the operands has several users in 13017 // this cluster of to-be-promoted nodes, it is possible). 13018 PromOpHandles.emplace_front(PromOp); 13019 continue; 13020 } 13021 13022 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13023 PromOp.getNode()->op_end()); 13024 13025 // If there are any constant inputs, make sure they're replaced now. 13026 for (unsigned i = 0; i < 2; ++i) 13027 if (isa<ConstantSDNode>(Ops[C+i])) 13028 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13029 13030 DAG.ReplaceAllUsesOfValueWith(PromOp, 13031 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13032 } 13033 13034 // Now we're left with the initial truncation itself. 13035 if (N->getOpcode() == ISD::TRUNCATE) 13036 return N->getOperand(0); 13037 13038 // Otherwise, this is a comparison. The operands to be compared have just 13039 // changed type (to i1), but everything else is the same. 13040 return SDValue(N, 0); 13041 } 13042 13043 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13044 DAGCombinerInfo &DCI) const { 13045 SelectionDAG &DAG = DCI.DAG; 13046 SDLoc dl(N); 13047 13048 // If we're tracking CR bits, we need to be careful that we don't have: 13049 // zext(binary-ops(trunc(x), trunc(y))) 13050 // or 13051 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13052 // such that we're unnecessarily moving things into CR bits that can more 13053 // efficiently stay in GPRs. Note that if we're not certain that the high 13054 // bits are set as required by the final extension, we still may need to do 13055 // some masking to get the proper behavior. 13056 13057 // This same functionality is important on PPC64 when dealing with 13058 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13059 // the return values of functions. Because it is so similar, it is handled 13060 // here as well. 13061 13062 if (N->getValueType(0) != MVT::i32 && 13063 N->getValueType(0) != MVT::i64) 13064 return SDValue(); 13065 13066 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13067 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13068 return SDValue(); 13069 13070 if (N->getOperand(0).getOpcode() != ISD::AND && 13071 N->getOperand(0).getOpcode() != ISD::OR && 13072 N->getOperand(0).getOpcode() != ISD::XOR && 13073 N->getOperand(0).getOpcode() != ISD::SELECT && 13074 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13075 return SDValue(); 13076 13077 SmallVector<SDValue, 4> Inputs; 13078 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13079 SmallPtrSet<SDNode *, 16> Visited; 13080 13081 // Visit all inputs, collect all binary operations (and, or, xor and 13082 // select) that are all fed by truncations. 13083 while (!BinOps.empty()) { 13084 SDValue BinOp = BinOps.pop_back_val(); 13085 13086 if (!Visited.insert(BinOp.getNode()).second) 13087 continue; 13088 13089 PromOps.push_back(BinOp); 13090 13091 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13092 // The condition of the select is not promoted. 13093 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13094 continue; 13095 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13096 continue; 13097 13098 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13099 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13100 Inputs.push_back(BinOp.getOperand(i)); 13101 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13102 BinOp.getOperand(i).getOpcode() == ISD::OR || 13103 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13104 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13105 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13106 BinOps.push_back(BinOp.getOperand(i)); 13107 } else { 13108 // We have an input that is not a truncation or another binary 13109 // operation; we'll abort this transformation. 13110 return SDValue(); 13111 } 13112 } 13113 } 13114 13115 // The operands of a select that must be truncated when the select is 13116 // promoted because the operand is actually part of the to-be-promoted set. 13117 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13118 13119 // Make sure that this is a self-contained cluster of operations (which 13120 // is not quite the same thing as saying that everything has only one 13121 // use). 13122 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13123 if (isa<ConstantSDNode>(Inputs[i])) 13124 continue; 13125 13126 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13127 UE = Inputs[i].getNode()->use_end(); 13128 UI != UE; ++UI) { 13129 SDNode *User = *UI; 13130 if (User != N && !Visited.count(User)) 13131 return SDValue(); 13132 13133 // If we're going to promote the non-output-value operand(s) or SELECT or 13134 // SELECT_CC, record them for truncation. 13135 if (User->getOpcode() == ISD::SELECT) { 13136 if (User->getOperand(0) == Inputs[i]) 13137 SelectTruncOp[0].insert(std::make_pair(User, 13138 User->getOperand(0).getValueType())); 13139 } else if (User->getOpcode() == ISD::SELECT_CC) { 13140 if (User->getOperand(0) == Inputs[i]) 13141 SelectTruncOp[0].insert(std::make_pair(User, 13142 User->getOperand(0).getValueType())); 13143 if (User->getOperand(1) == Inputs[i]) 13144 SelectTruncOp[1].insert(std::make_pair(User, 13145 User->getOperand(1).getValueType())); 13146 } 13147 } 13148 } 13149 13150 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13151 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13152 UE = PromOps[i].getNode()->use_end(); 13153 UI != UE; ++UI) { 13154 SDNode *User = *UI; 13155 if (User != N && !Visited.count(User)) 13156 return SDValue(); 13157 13158 // If we're going to promote the non-output-value operand(s) or SELECT or 13159 // SELECT_CC, record them for truncation. 13160 if (User->getOpcode() == ISD::SELECT) { 13161 if (User->getOperand(0) == PromOps[i]) 13162 SelectTruncOp[0].insert(std::make_pair(User, 13163 User->getOperand(0).getValueType())); 13164 } else if (User->getOpcode() == ISD::SELECT_CC) { 13165 if (User->getOperand(0) == PromOps[i]) 13166 SelectTruncOp[0].insert(std::make_pair(User, 13167 User->getOperand(0).getValueType())); 13168 if (User->getOperand(1) == PromOps[i]) 13169 SelectTruncOp[1].insert(std::make_pair(User, 13170 User->getOperand(1).getValueType())); 13171 } 13172 } 13173 } 13174 13175 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13176 bool ReallyNeedsExt = false; 13177 if (N->getOpcode() != ISD::ANY_EXTEND) { 13178 // If all of the inputs are not already sign/zero extended, then 13179 // we'll still need to do that at the end. 13180 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13181 if (isa<ConstantSDNode>(Inputs[i])) 13182 continue; 13183 13184 unsigned OpBits = 13185 Inputs[i].getOperand(0).getValueSizeInBits(); 13186 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13187 13188 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13189 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13190 APInt::getHighBitsSet(OpBits, 13191 OpBits-PromBits))) || 13192 (N->getOpcode() == ISD::SIGN_EXTEND && 13193 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13194 (OpBits-(PromBits-1)))) { 13195 ReallyNeedsExt = true; 13196 break; 13197 } 13198 } 13199 } 13200 13201 // Replace all inputs, either with the truncation operand, or a 13202 // truncation or extension to the final output type. 13203 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13204 // Constant inputs need to be replaced with the to-be-promoted nodes that 13205 // use them because they might have users outside of the cluster of 13206 // promoted nodes. 13207 if (isa<ConstantSDNode>(Inputs[i])) 13208 continue; 13209 13210 SDValue InSrc = Inputs[i].getOperand(0); 13211 if (Inputs[i].getValueType() == N->getValueType(0)) 13212 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13213 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13214 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13215 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13216 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13217 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13218 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13219 else 13220 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13221 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13222 } 13223 13224 std::list<HandleSDNode> PromOpHandles; 13225 for (auto &PromOp : PromOps) 13226 PromOpHandles.emplace_back(PromOp); 13227 13228 // Replace all operations (these are all the same, but have a different 13229 // (promoted) return type). DAG.getNode will validate that the types of 13230 // a binary operator match, so go through the list in reverse so that 13231 // we've likely promoted both operands first. 13232 while (!PromOpHandles.empty()) { 13233 SDValue PromOp = PromOpHandles.back().getValue(); 13234 PromOpHandles.pop_back(); 13235 13236 unsigned C; 13237 switch (PromOp.getOpcode()) { 13238 default: C = 0; break; 13239 case ISD::SELECT: C = 1; break; 13240 case ISD::SELECT_CC: C = 2; break; 13241 } 13242 13243 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13244 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13245 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13246 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13247 // The to-be-promoted operands of this node have not yet been 13248 // promoted (this should be rare because we're going through the 13249 // list backward, but if one of the operands has several users in 13250 // this cluster of to-be-promoted nodes, it is possible). 13251 PromOpHandles.emplace_front(PromOp); 13252 continue; 13253 } 13254 13255 // For SELECT and SELECT_CC nodes, we do a similar check for any 13256 // to-be-promoted comparison inputs. 13257 if (PromOp.getOpcode() == ISD::SELECT || 13258 PromOp.getOpcode() == ISD::SELECT_CC) { 13259 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13260 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13261 (SelectTruncOp[1].count(PromOp.getNode()) && 13262 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13263 PromOpHandles.emplace_front(PromOp); 13264 continue; 13265 } 13266 } 13267 13268 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13269 PromOp.getNode()->op_end()); 13270 13271 // If this node has constant inputs, then they'll need to be promoted here. 13272 for (unsigned i = 0; i < 2; ++i) { 13273 if (!isa<ConstantSDNode>(Ops[C+i])) 13274 continue; 13275 if (Ops[C+i].getValueType() == N->getValueType(0)) 13276 continue; 13277 13278 if (N->getOpcode() == ISD::SIGN_EXTEND) 13279 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13280 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13281 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13282 else 13283 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13284 } 13285 13286 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13287 // truncate them again to the original value type. 13288 if (PromOp.getOpcode() == ISD::SELECT || 13289 PromOp.getOpcode() == ISD::SELECT_CC) { 13290 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13291 if (SI0 != SelectTruncOp[0].end()) 13292 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13293 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13294 if (SI1 != SelectTruncOp[1].end()) 13295 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13296 } 13297 13298 DAG.ReplaceAllUsesOfValueWith(PromOp, 13299 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13300 } 13301 13302 // Now we're left with the initial extension itself. 13303 if (!ReallyNeedsExt) 13304 return N->getOperand(0); 13305 13306 // To zero extend, just mask off everything except for the first bit (in the 13307 // i1 case). 13308 if (N->getOpcode() == ISD::ZERO_EXTEND) 13309 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13310 DAG.getConstant(APInt::getLowBitsSet( 13311 N->getValueSizeInBits(0), PromBits), 13312 dl, N->getValueType(0))); 13313 13314 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13315 "Invalid extension type"); 13316 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13317 SDValue ShiftCst = 13318 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13319 return DAG.getNode( 13320 ISD::SRA, dl, N->getValueType(0), 13321 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13322 ShiftCst); 13323 } 13324 13325 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13326 DAGCombinerInfo &DCI) const { 13327 assert(N->getOpcode() == ISD::SETCC && 13328 "Should be called with a SETCC node"); 13329 13330 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13331 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13332 SDValue LHS = N->getOperand(0); 13333 SDValue RHS = N->getOperand(1); 13334 13335 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13336 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13337 LHS.hasOneUse()) 13338 std::swap(LHS, RHS); 13339 13340 // x == 0-y --> x+y == 0 13341 // x != 0-y --> x+y != 0 13342 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13343 RHS.hasOneUse()) { 13344 SDLoc DL(N); 13345 SelectionDAG &DAG = DCI.DAG; 13346 EVT VT = N->getValueType(0); 13347 EVT OpVT = LHS.getValueType(); 13348 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13349 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13350 } 13351 } 13352 13353 return DAGCombineTruncBoolExt(N, DCI); 13354 } 13355 13356 // Is this an extending load from an f32 to an f64? 13357 static bool isFPExtLoad(SDValue Op) { 13358 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13359 return LD->getExtensionType() == ISD::EXTLOAD && 13360 Op.getValueType() == MVT::f64; 13361 return false; 13362 } 13363 13364 /// Reduces the number of fp-to-int conversion when building a vector. 13365 /// 13366 /// If this vector is built out of floating to integer conversions, 13367 /// transform it to a vector built out of floating point values followed by a 13368 /// single floating to integer conversion of the vector. 13369 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13370 /// becomes (fptosi (build_vector ($A, $B, ...))) 13371 SDValue PPCTargetLowering:: 13372 combineElementTruncationToVectorTruncation(SDNode *N, 13373 DAGCombinerInfo &DCI) const { 13374 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13375 "Should be called with a BUILD_VECTOR node"); 13376 13377 SelectionDAG &DAG = DCI.DAG; 13378 SDLoc dl(N); 13379 13380 SDValue FirstInput = N->getOperand(0); 13381 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13382 "The input operand must be an fp-to-int conversion."); 13383 13384 // This combine happens after legalization so the fp_to_[su]i nodes are 13385 // already converted to PPCSISD nodes. 13386 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13387 if (FirstConversion == PPCISD::FCTIDZ || 13388 FirstConversion == PPCISD::FCTIDUZ || 13389 FirstConversion == PPCISD::FCTIWZ || 13390 FirstConversion == PPCISD::FCTIWUZ) { 13391 bool IsSplat = true; 13392 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13393 FirstConversion == PPCISD::FCTIWUZ; 13394 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13395 SmallVector<SDValue, 4> Ops; 13396 EVT TargetVT = N->getValueType(0); 13397 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13398 SDValue NextOp = N->getOperand(i); 13399 if (NextOp.getOpcode() != PPCISD::MFVSR) 13400 return SDValue(); 13401 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13402 if (NextConversion != FirstConversion) 13403 return SDValue(); 13404 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13405 // This is not valid if the input was originally double precision. It is 13406 // also not profitable to do unless this is an extending load in which 13407 // case doing this combine will allow us to combine consecutive loads. 13408 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13409 return SDValue(); 13410 if (N->getOperand(i) != FirstInput) 13411 IsSplat = false; 13412 } 13413 13414 // If this is a splat, we leave it as-is since there will be only a single 13415 // fp-to-int conversion followed by a splat of the integer. This is better 13416 // for 32-bit and smaller ints and neutral for 64-bit ints. 13417 if (IsSplat) 13418 return SDValue(); 13419 13420 // Now that we know we have the right type of node, get its operands 13421 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13422 SDValue In = N->getOperand(i).getOperand(0); 13423 if (Is32Bit) { 13424 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13425 // here, we know that all inputs are extending loads so this is safe). 13426 if (In.isUndef()) 13427 Ops.push_back(DAG.getUNDEF(SrcVT)); 13428 else { 13429 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13430 MVT::f32, In.getOperand(0), 13431 DAG.getIntPtrConstant(1, dl)); 13432 Ops.push_back(Trunc); 13433 } 13434 } else 13435 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13436 } 13437 13438 unsigned Opcode; 13439 if (FirstConversion == PPCISD::FCTIDZ || 13440 FirstConversion == PPCISD::FCTIWZ) 13441 Opcode = ISD::FP_TO_SINT; 13442 else 13443 Opcode = ISD::FP_TO_UINT; 13444 13445 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13446 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13447 return DAG.getNode(Opcode, dl, TargetVT, BV); 13448 } 13449 return SDValue(); 13450 } 13451 13452 /// Reduce the number of loads when building a vector. 13453 /// 13454 /// Building a vector out of multiple loads can be converted to a load 13455 /// of the vector type if the loads are consecutive. If the loads are 13456 /// consecutive but in descending order, a shuffle is added at the end 13457 /// to reorder the vector. 13458 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13459 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13460 "Should be called with a BUILD_VECTOR node"); 13461 13462 SDLoc dl(N); 13463 13464 // Return early for non byte-sized type, as they can't be consecutive. 13465 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13466 return SDValue(); 13467 13468 bool InputsAreConsecutiveLoads = true; 13469 bool InputsAreReverseConsecutive = true; 13470 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13471 SDValue FirstInput = N->getOperand(0); 13472 bool IsRoundOfExtLoad = false; 13473 13474 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13475 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13476 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13477 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13478 } 13479 // Not a build vector of (possibly fp_rounded) loads. 13480 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13481 N->getNumOperands() == 1) 13482 return SDValue(); 13483 13484 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13485 // If any inputs are fp_round(extload), they all must be. 13486 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13487 return SDValue(); 13488 13489 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13490 N->getOperand(i); 13491 if (NextInput.getOpcode() != ISD::LOAD) 13492 return SDValue(); 13493 13494 SDValue PreviousInput = 13495 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13496 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13497 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13498 13499 // If any inputs are fp_round(extload), they all must be. 13500 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13501 return SDValue(); 13502 13503 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13504 InputsAreConsecutiveLoads = false; 13505 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13506 InputsAreReverseConsecutive = false; 13507 13508 // Exit early if the loads are neither consecutive nor reverse consecutive. 13509 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13510 return SDValue(); 13511 } 13512 13513 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13514 "The loads cannot be both consecutive and reverse consecutive."); 13515 13516 SDValue FirstLoadOp = 13517 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13518 SDValue LastLoadOp = 13519 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13520 N->getOperand(N->getNumOperands()-1); 13521 13522 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13523 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13524 if (InputsAreConsecutiveLoads) { 13525 assert(LD1 && "Input needs to be a LoadSDNode."); 13526 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13527 LD1->getBasePtr(), LD1->getPointerInfo(), 13528 LD1->getAlignment()); 13529 } 13530 if (InputsAreReverseConsecutive) { 13531 assert(LDL && "Input needs to be a LoadSDNode."); 13532 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13533 LDL->getBasePtr(), LDL->getPointerInfo(), 13534 LDL->getAlignment()); 13535 SmallVector<int, 16> Ops; 13536 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13537 Ops.push_back(i); 13538 13539 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13540 DAG.getUNDEF(N->getValueType(0)), Ops); 13541 } 13542 return SDValue(); 13543 } 13544 13545 // This function adds the required vector_shuffle needed to get 13546 // the elements of the vector extract in the correct position 13547 // as specified by the CorrectElems encoding. 13548 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13549 SDValue Input, uint64_t Elems, 13550 uint64_t CorrectElems) { 13551 SDLoc dl(N); 13552 13553 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13554 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13555 13556 // Knowing the element indices being extracted from the original 13557 // vector and the order in which they're being inserted, just put 13558 // them at element indices required for the instruction. 13559 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13560 if (DAG.getDataLayout().isLittleEndian()) 13561 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13562 else 13563 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13564 CorrectElems = CorrectElems >> 8; 13565 Elems = Elems >> 8; 13566 } 13567 13568 SDValue Shuffle = 13569 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13570 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13571 13572 EVT VT = N->getValueType(0); 13573 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13574 13575 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13576 Input.getValueType().getVectorElementType(), 13577 VT.getVectorNumElements()); 13578 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13579 DAG.getValueType(ExtVT)); 13580 } 13581 13582 // Look for build vector patterns where input operands come from sign 13583 // extended vector_extract elements of specific indices. If the correct indices 13584 // aren't used, add a vector shuffle to fix up the indices and create 13585 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13586 // during instruction selection. 13587 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13588 // This array encodes the indices that the vector sign extend instructions 13589 // extract from when extending from one type to another for both BE and LE. 13590 // The right nibble of each byte corresponds to the LE incides. 13591 // and the left nibble of each byte corresponds to the BE incides. 13592 // For example: 0x3074B8FC byte->word 13593 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13594 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13595 // For example: 0x000070F8 byte->double word 13596 // For LE: the allowed indices are: 0x0,0x8 13597 // For BE: the allowed indices are: 0x7,0xF 13598 uint64_t TargetElems[] = { 13599 0x3074B8FC, // b->w 13600 0x000070F8, // b->d 13601 0x10325476, // h->w 13602 0x00003074, // h->d 13603 0x00001032, // w->d 13604 }; 13605 13606 uint64_t Elems = 0; 13607 int Index; 13608 SDValue Input; 13609 13610 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13611 if (!Op) 13612 return false; 13613 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13614 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13615 return false; 13616 13617 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13618 // of the right width. 13619 SDValue Extract = Op.getOperand(0); 13620 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13621 Extract = Extract.getOperand(0); 13622 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13623 return false; 13624 13625 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13626 if (!ExtOp) 13627 return false; 13628 13629 Index = ExtOp->getZExtValue(); 13630 if (Input && Input != Extract.getOperand(0)) 13631 return false; 13632 13633 if (!Input) 13634 Input = Extract.getOperand(0); 13635 13636 Elems = Elems << 8; 13637 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13638 Elems |= Index; 13639 13640 return true; 13641 }; 13642 13643 // If the build vector operands aren't sign extended vector extracts, 13644 // of the same input vector, then return. 13645 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13646 if (!isSExtOfVecExtract(N->getOperand(i))) { 13647 return SDValue(); 13648 } 13649 } 13650 13651 // If the vector extract indicies are not correct, add the appropriate 13652 // vector_shuffle. 13653 int TgtElemArrayIdx; 13654 int InputSize = Input.getValueType().getScalarSizeInBits(); 13655 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13656 if (InputSize + OutputSize == 40) 13657 TgtElemArrayIdx = 0; 13658 else if (InputSize + OutputSize == 72) 13659 TgtElemArrayIdx = 1; 13660 else if (InputSize + OutputSize == 48) 13661 TgtElemArrayIdx = 2; 13662 else if (InputSize + OutputSize == 80) 13663 TgtElemArrayIdx = 3; 13664 else if (InputSize + OutputSize == 96) 13665 TgtElemArrayIdx = 4; 13666 else 13667 return SDValue(); 13668 13669 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13670 CorrectElems = DAG.getDataLayout().isLittleEndian() 13671 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13672 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13673 if (Elems != CorrectElems) { 13674 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13675 } 13676 13677 // Regular lowering will catch cases where a shuffle is not needed. 13678 return SDValue(); 13679 } 13680 13681 // Look for the pattern of a load from a narrow width to i128, feeding 13682 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13683 // (LXVRZX). This node represents a zero extending load that will be matched 13684 // to the Load VSX Vector Rightmost instructions. 13685 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13686 SDLoc DL(N); 13687 13688 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13689 if (N->getValueType(0) != MVT::v1i128) 13690 return SDValue(); 13691 13692 SDValue Operand = N->getOperand(0); 13693 // Proceed with the transformation if the operand to the BUILD_VECTOR 13694 // is a load instruction. 13695 if (Operand.getOpcode() != ISD::LOAD) 13696 return SDValue(); 13697 13698 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 13699 EVT MemoryType = LD->getMemoryVT(); 13700 13701 // This transformation is only valid if the we are loading either a byte, 13702 // halfword, word, or doubleword. 13703 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13704 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13705 13706 // Ensure that the load from the narrow width is being zero extended to i128. 13707 if (!ValidLDType || 13708 (LD->getExtensionType() != ISD::ZEXTLOAD && 13709 LD->getExtensionType() != ISD::EXTLOAD)) 13710 return SDValue(); 13711 13712 SDValue LoadOps[] = { 13713 LD->getChain(), LD->getBasePtr(), 13714 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13715 13716 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13717 DAG.getVTList(MVT::v1i128, MVT::Other), 13718 LoadOps, MemoryType, LD->getMemOperand()); 13719 } 13720 13721 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13722 DAGCombinerInfo &DCI) const { 13723 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13724 "Should be called with a BUILD_VECTOR node"); 13725 13726 SelectionDAG &DAG = DCI.DAG; 13727 SDLoc dl(N); 13728 13729 if (!Subtarget.hasVSX()) 13730 return SDValue(); 13731 13732 // The target independent DAG combiner will leave a build_vector of 13733 // float-to-int conversions intact. We can generate MUCH better code for 13734 // a float-to-int conversion of a vector of floats. 13735 SDValue FirstInput = N->getOperand(0); 13736 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13737 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13738 if (Reduced) 13739 return Reduced; 13740 } 13741 13742 // If we're building a vector out of consecutive loads, just load that 13743 // vector type. 13744 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13745 if (Reduced) 13746 return Reduced; 13747 13748 // If we're building a vector out of extended elements from another vector 13749 // we have P9 vector integer extend instructions. The code assumes legal 13750 // input types (i.e. it can't handle things like v4i16) so do not run before 13751 // legalization. 13752 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13753 Reduced = combineBVOfVecSExt(N, DAG); 13754 if (Reduced) 13755 return Reduced; 13756 } 13757 13758 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 13759 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 13760 // is a load from <valid narrow width> to i128. 13761 if (Subtarget.isISA3_1()) { 13762 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 13763 if (BVOfZLoad) 13764 return BVOfZLoad; 13765 } 13766 13767 if (N->getValueType(0) != MVT::v2f64) 13768 return SDValue(); 13769 13770 // Looking for: 13771 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13772 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13773 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13774 return SDValue(); 13775 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13776 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13777 return SDValue(); 13778 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13779 return SDValue(); 13780 13781 SDValue Ext1 = FirstInput.getOperand(0); 13782 SDValue Ext2 = N->getOperand(1).getOperand(0); 13783 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13784 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13785 return SDValue(); 13786 13787 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13788 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13789 if (!Ext1Op || !Ext2Op) 13790 return SDValue(); 13791 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13792 Ext1.getOperand(0) != Ext2.getOperand(0)) 13793 return SDValue(); 13794 13795 int FirstElem = Ext1Op->getZExtValue(); 13796 int SecondElem = Ext2Op->getZExtValue(); 13797 int SubvecIdx; 13798 if (FirstElem == 0 && SecondElem == 1) 13799 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13800 else if (FirstElem == 2 && SecondElem == 3) 13801 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13802 else 13803 return SDValue(); 13804 13805 SDValue SrcVec = Ext1.getOperand(0); 13806 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13807 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13808 return DAG.getNode(NodeType, dl, MVT::v2f64, 13809 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13810 } 13811 13812 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13813 DAGCombinerInfo &DCI) const { 13814 assert((N->getOpcode() == ISD::SINT_TO_FP || 13815 N->getOpcode() == ISD::UINT_TO_FP) && 13816 "Need an int -> FP conversion node here"); 13817 13818 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13819 return SDValue(); 13820 13821 SelectionDAG &DAG = DCI.DAG; 13822 SDLoc dl(N); 13823 SDValue Op(N, 0); 13824 13825 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13826 // from the hardware. 13827 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13828 return SDValue(); 13829 if (!Op.getOperand(0).getValueType().isSimple()) 13830 return SDValue(); 13831 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13832 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13833 return SDValue(); 13834 13835 SDValue FirstOperand(Op.getOperand(0)); 13836 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13837 (FirstOperand.getValueType() == MVT::i8 || 13838 FirstOperand.getValueType() == MVT::i16); 13839 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13840 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13841 bool DstDouble = Op.getValueType() == MVT::f64; 13842 unsigned ConvOp = Signed ? 13843 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13844 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13845 SDValue WidthConst = 13846 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13847 dl, false); 13848 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13849 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13850 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13851 DAG.getVTList(MVT::f64, MVT::Other), 13852 Ops, MVT::i8, LDN->getMemOperand()); 13853 13854 // For signed conversion, we need to sign-extend the value in the VSR 13855 if (Signed) { 13856 SDValue ExtOps[] = { Ld, WidthConst }; 13857 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13858 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13859 } else 13860 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13861 } 13862 13863 13864 // For i32 intermediate values, unfortunately, the conversion functions 13865 // leave the upper 32 bits of the value are undefined. Within the set of 13866 // scalar instructions, we have no method for zero- or sign-extending the 13867 // value. Thus, we cannot handle i32 intermediate values here. 13868 if (Op.getOperand(0).getValueType() == MVT::i32) 13869 return SDValue(); 13870 13871 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13872 "UINT_TO_FP is supported only with FPCVT"); 13873 13874 // If we have FCFIDS, then use it when converting to single-precision. 13875 // Otherwise, convert to double-precision and then round. 13876 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13877 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13878 : PPCISD::FCFIDS) 13879 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13880 : PPCISD::FCFID); 13881 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13882 ? MVT::f32 13883 : MVT::f64; 13884 13885 // If we're converting from a float, to an int, and back to a float again, 13886 // then we don't need the store/load pair at all. 13887 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13888 Subtarget.hasFPCVT()) || 13889 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13890 SDValue Src = Op.getOperand(0).getOperand(0); 13891 if (Src.getValueType() == MVT::f32) { 13892 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13893 DCI.AddToWorklist(Src.getNode()); 13894 } else if (Src.getValueType() != MVT::f64) { 13895 // Make sure that we don't pick up a ppc_fp128 source value. 13896 return SDValue(); 13897 } 13898 13899 unsigned FCTOp = 13900 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13901 PPCISD::FCTIDUZ; 13902 13903 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13904 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13905 13906 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13907 FP = DAG.getNode(ISD::FP_ROUND, dl, 13908 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13909 DCI.AddToWorklist(FP.getNode()); 13910 } 13911 13912 return FP; 13913 } 13914 13915 return SDValue(); 13916 } 13917 13918 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13919 // builtins) into loads with swaps. 13920 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13921 DAGCombinerInfo &DCI) const { 13922 SelectionDAG &DAG = DCI.DAG; 13923 SDLoc dl(N); 13924 SDValue Chain; 13925 SDValue Base; 13926 MachineMemOperand *MMO; 13927 13928 switch (N->getOpcode()) { 13929 default: 13930 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13931 case ISD::LOAD: { 13932 LoadSDNode *LD = cast<LoadSDNode>(N); 13933 Chain = LD->getChain(); 13934 Base = LD->getBasePtr(); 13935 MMO = LD->getMemOperand(); 13936 // If the MMO suggests this isn't a load of a full vector, leave 13937 // things alone. For a built-in, we have to make the change for 13938 // correctness, so if there is a size problem that will be a bug. 13939 if (MMO->getSize() < 16) 13940 return SDValue(); 13941 break; 13942 } 13943 case ISD::INTRINSIC_W_CHAIN: { 13944 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13945 Chain = Intrin->getChain(); 13946 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13947 // us what we want. Get operand 2 instead. 13948 Base = Intrin->getOperand(2); 13949 MMO = Intrin->getMemOperand(); 13950 break; 13951 } 13952 } 13953 13954 MVT VecTy = N->getValueType(0).getSimpleVT(); 13955 13956 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13957 // aligned and the type is a vector with elements up to 4 bytes 13958 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13959 VecTy.getScalarSizeInBits() <= 32) { 13960 return SDValue(); 13961 } 13962 13963 SDValue LoadOps[] = { Chain, Base }; 13964 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13965 DAG.getVTList(MVT::v2f64, MVT::Other), 13966 LoadOps, MVT::v2f64, MMO); 13967 13968 DCI.AddToWorklist(Load.getNode()); 13969 Chain = Load.getValue(1); 13970 SDValue Swap = DAG.getNode( 13971 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13972 DCI.AddToWorklist(Swap.getNode()); 13973 13974 // Add a bitcast if the resulting load type doesn't match v2f64. 13975 if (VecTy != MVT::v2f64) { 13976 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13977 DCI.AddToWorklist(N.getNode()); 13978 // Package {bitcast value, swap's chain} to match Load's shape. 13979 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13980 N, Swap.getValue(1)); 13981 } 13982 13983 return Swap; 13984 } 13985 13986 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13987 // builtins) into stores with swaps. 13988 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13989 DAGCombinerInfo &DCI) const { 13990 SelectionDAG &DAG = DCI.DAG; 13991 SDLoc dl(N); 13992 SDValue Chain; 13993 SDValue Base; 13994 unsigned SrcOpnd; 13995 MachineMemOperand *MMO; 13996 13997 switch (N->getOpcode()) { 13998 default: 13999 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14000 case ISD::STORE: { 14001 StoreSDNode *ST = cast<StoreSDNode>(N); 14002 Chain = ST->getChain(); 14003 Base = ST->getBasePtr(); 14004 MMO = ST->getMemOperand(); 14005 SrcOpnd = 1; 14006 // If the MMO suggests this isn't a store of a full vector, leave 14007 // things alone. For a built-in, we have to make the change for 14008 // correctness, so if there is a size problem that will be a bug. 14009 if (MMO->getSize() < 16) 14010 return SDValue(); 14011 break; 14012 } 14013 case ISD::INTRINSIC_VOID: { 14014 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14015 Chain = Intrin->getChain(); 14016 // Intrin->getBasePtr() oddly does not get what we want. 14017 Base = Intrin->getOperand(3); 14018 MMO = Intrin->getMemOperand(); 14019 SrcOpnd = 2; 14020 break; 14021 } 14022 } 14023 14024 SDValue Src = N->getOperand(SrcOpnd); 14025 MVT VecTy = Src.getValueType().getSimpleVT(); 14026 14027 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14028 // aligned and the type is a vector with elements up to 4 bytes 14029 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14030 VecTy.getScalarSizeInBits() <= 32) { 14031 return SDValue(); 14032 } 14033 14034 // All stores are done as v2f64 and possible bit cast. 14035 if (VecTy != MVT::v2f64) { 14036 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14037 DCI.AddToWorklist(Src.getNode()); 14038 } 14039 14040 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14041 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14042 DCI.AddToWorklist(Swap.getNode()); 14043 Chain = Swap.getValue(1); 14044 SDValue StoreOps[] = { Chain, Swap, Base }; 14045 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14046 DAG.getVTList(MVT::Other), 14047 StoreOps, VecTy, MMO); 14048 DCI.AddToWorklist(Store.getNode()); 14049 return Store; 14050 } 14051 14052 // Handle DAG combine for STORE (FP_TO_INT F). 14053 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14054 DAGCombinerInfo &DCI) const { 14055 14056 SelectionDAG &DAG = DCI.DAG; 14057 SDLoc dl(N); 14058 unsigned Opcode = N->getOperand(1).getOpcode(); 14059 14060 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14061 && "Not a FP_TO_INT Instruction!"); 14062 14063 SDValue Val = N->getOperand(1).getOperand(0); 14064 EVT Op1VT = N->getOperand(1).getValueType(); 14065 EVT ResVT = Val.getValueType(); 14066 14067 if (!isTypeLegal(ResVT)) 14068 return SDValue(); 14069 14070 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14071 bool ValidTypeForStoreFltAsInt = 14072 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14073 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14074 14075 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14076 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14077 return SDValue(); 14078 14079 // Extend f32 values to f64 14080 if (ResVT.getScalarSizeInBits() == 32) { 14081 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14082 DCI.AddToWorklist(Val.getNode()); 14083 } 14084 14085 // Set signed or unsigned conversion opcode. 14086 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14087 PPCISD::FP_TO_SINT_IN_VSR : 14088 PPCISD::FP_TO_UINT_IN_VSR; 14089 14090 Val = DAG.getNode(ConvOpcode, 14091 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14092 DCI.AddToWorklist(Val.getNode()); 14093 14094 // Set number of bytes being converted. 14095 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14096 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14097 DAG.getIntPtrConstant(ByteSize, dl, false), 14098 DAG.getValueType(Op1VT) }; 14099 14100 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14101 DAG.getVTList(MVT::Other), Ops, 14102 cast<StoreSDNode>(N)->getMemoryVT(), 14103 cast<StoreSDNode>(N)->getMemOperand()); 14104 14105 DCI.AddToWorklist(Val.getNode()); 14106 return Val; 14107 } 14108 14109 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14110 // Check that the source of the element keeps flipping 14111 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14112 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14113 for (int i = 1, e = Mask.size(); i < e; i++) { 14114 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14115 return false; 14116 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14117 return false; 14118 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14119 } 14120 return true; 14121 } 14122 14123 static bool isSplatBV(SDValue Op) { 14124 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14125 return false; 14126 SDValue FirstOp; 14127 14128 // Find first non-undef input. 14129 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14130 FirstOp = Op.getOperand(i); 14131 if (!FirstOp.isUndef()) 14132 break; 14133 } 14134 14135 // All inputs are undef or the same as the first non-undef input. 14136 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14137 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14138 return false; 14139 return true; 14140 } 14141 14142 static SDValue isScalarToVec(SDValue Op) { 14143 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14144 return Op; 14145 if (Op.getOpcode() != ISD::BITCAST) 14146 return SDValue(); 14147 Op = Op.getOperand(0); 14148 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14149 return Op; 14150 return SDValue(); 14151 } 14152 14153 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14154 int LHSMaxIdx, int RHSMinIdx, 14155 int RHSMaxIdx, int HalfVec) { 14156 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14157 int Idx = ShuffV[i]; 14158 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14159 ShuffV[i] += HalfVec; 14160 } 14161 } 14162 14163 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14164 // the original is: 14165 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14166 // In such a case, just change the shuffle mask to extract the element 14167 // from the permuted index. 14168 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14169 SDLoc dl(OrigSToV); 14170 EVT VT = OrigSToV.getValueType(); 14171 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14172 "Expecting a SCALAR_TO_VECTOR here"); 14173 SDValue Input = OrigSToV.getOperand(0); 14174 14175 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14176 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14177 SDValue OrigVector = Input.getOperand(0); 14178 14179 // Can't handle non-const element indices or different vector types 14180 // for the input to the extract and the output of the scalar_to_vector. 14181 if (Idx && VT == OrigVector.getValueType()) { 14182 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14183 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14184 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14185 } 14186 } 14187 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14188 OrigSToV.getOperand(0)); 14189 } 14190 14191 // On little endian subtargets, combine shuffles such as: 14192 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14193 // into: 14194 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14195 // because the latter can be matched to a single instruction merge. 14196 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14197 // to put the value into element zero. Adjust the shuffle mask so that the 14198 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14199 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14200 SelectionDAG &DAG) const { 14201 SDValue LHS = SVN->getOperand(0); 14202 SDValue RHS = SVN->getOperand(1); 14203 auto Mask = SVN->getMask(); 14204 int NumElts = LHS.getValueType().getVectorNumElements(); 14205 SDValue Res(SVN, 0); 14206 SDLoc dl(SVN); 14207 14208 // None of these combines are useful on big endian systems since the ISA 14209 // already has a big endian bias. 14210 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14211 return Res; 14212 14213 // If this is not a shuffle of a shuffle and the first element comes from 14214 // the second vector, canonicalize to the commuted form. This will make it 14215 // more likely to match one of the single instruction patterns. 14216 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14217 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14218 std::swap(LHS, RHS); 14219 Res = DAG.getCommutedVectorShuffle(*SVN); 14220 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14221 } 14222 14223 // Adjust the shuffle mask if either input vector comes from a 14224 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14225 // form (to prevent the need for a swap). 14226 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14227 SDValue SToVLHS = isScalarToVec(LHS); 14228 SDValue SToVRHS = isScalarToVec(RHS); 14229 if (SToVLHS || SToVRHS) { 14230 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14231 : SToVRHS.getValueType().getVectorNumElements(); 14232 int NumEltsOut = ShuffV.size(); 14233 14234 // Initially assume that neither input is permuted. These will be adjusted 14235 // accordingly if either input is. 14236 int LHSMaxIdx = -1; 14237 int RHSMinIdx = -1; 14238 int RHSMaxIdx = -1; 14239 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14240 14241 // Get the permuted scalar to vector nodes for the source(s) that come from 14242 // ISD::SCALAR_TO_VECTOR. 14243 if (SToVLHS) { 14244 // Set up the values for the shuffle vector fixup. 14245 LHSMaxIdx = NumEltsOut / NumEltsIn; 14246 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14247 if (SToVLHS.getValueType() != LHS.getValueType()) 14248 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14249 LHS = SToVLHS; 14250 } 14251 if (SToVRHS) { 14252 RHSMinIdx = NumEltsOut; 14253 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14254 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14255 if (SToVRHS.getValueType() != RHS.getValueType()) 14256 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14257 RHS = SToVRHS; 14258 } 14259 14260 // Fix up the shuffle mask to reflect where the desired element actually is. 14261 // The minimum and maximum indices that correspond to element zero for both 14262 // the LHS and RHS are computed and will control which shuffle mask entries 14263 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14264 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14265 // HalfVec to refer to the corresponding element in the permuted vector. 14266 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14267 HalfVec); 14268 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14269 14270 // We may have simplified away the shuffle. We won't be able to do anything 14271 // further with it here. 14272 if (!isa<ShuffleVectorSDNode>(Res)) 14273 return Res; 14274 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14275 } 14276 14277 // The common case after we commuted the shuffle is that the RHS is a splat 14278 // and we have elements coming in from the splat at indices that are not 14279 // conducive to using a merge. 14280 // Example: 14281 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14282 if (!isSplatBV(RHS)) 14283 return Res; 14284 14285 // We are looking for a mask such that all even elements are from 14286 // one vector and all odd elements from the other. 14287 if (!isAlternatingShuffMask(Mask, NumElts)) 14288 return Res; 14289 14290 // Adjust the mask so we are pulling in the same index from the splat 14291 // as the index from the interesting vector in consecutive elements. 14292 // Example (even elements from first vector): 14293 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14294 if (Mask[0] < NumElts) 14295 for (int i = 1, e = Mask.size(); i < e; i += 2) 14296 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14297 // Example (odd elements from first vector): 14298 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14299 else 14300 for (int i = 0, e = Mask.size(); i < e; i += 2) 14301 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14302 14303 // If the RHS has undefs, we need to remove them since we may have created 14304 // a shuffle that adds those instead of the splat value. 14305 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14306 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14307 14308 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14309 return Res; 14310 } 14311 14312 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14313 LSBaseSDNode *LSBase, 14314 DAGCombinerInfo &DCI) const { 14315 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14316 "Not a reverse memop pattern!"); 14317 14318 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14319 auto Mask = SVN->getMask(); 14320 int i = 0; 14321 auto I = Mask.rbegin(); 14322 auto E = Mask.rend(); 14323 14324 for (; I != E; ++I) { 14325 if (*I != i) 14326 return false; 14327 i++; 14328 } 14329 return true; 14330 }; 14331 14332 SelectionDAG &DAG = DCI.DAG; 14333 EVT VT = SVN->getValueType(0); 14334 14335 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14336 return SDValue(); 14337 14338 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14339 // See comment in PPCVSXSwapRemoval.cpp. 14340 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14341 if (!Subtarget.hasP9Vector()) 14342 return SDValue(); 14343 14344 if(!IsElementReverse(SVN)) 14345 return SDValue(); 14346 14347 if (LSBase->getOpcode() == ISD::LOAD) { 14348 SDLoc dl(SVN); 14349 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14350 return DAG.getMemIntrinsicNode( 14351 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14352 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14353 } 14354 14355 if (LSBase->getOpcode() == ISD::STORE) { 14356 SDLoc dl(LSBase); 14357 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14358 LSBase->getBasePtr()}; 14359 return DAG.getMemIntrinsicNode( 14360 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14361 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14362 } 14363 14364 llvm_unreachable("Expected a load or store node here"); 14365 } 14366 14367 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14368 DAGCombinerInfo &DCI) const { 14369 SelectionDAG &DAG = DCI.DAG; 14370 SDLoc dl(N); 14371 switch (N->getOpcode()) { 14372 default: break; 14373 case ISD::ADD: 14374 return combineADD(N, DCI); 14375 case ISD::SHL: 14376 return combineSHL(N, DCI); 14377 case ISD::SRA: 14378 return combineSRA(N, DCI); 14379 case ISD::SRL: 14380 return combineSRL(N, DCI); 14381 case ISD::MUL: 14382 return combineMUL(N, DCI); 14383 case ISD::FMA: 14384 case PPCISD::FNMSUB: 14385 return combineFMALike(N, DCI); 14386 case PPCISD::SHL: 14387 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14388 return N->getOperand(0); 14389 break; 14390 case PPCISD::SRL: 14391 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14392 return N->getOperand(0); 14393 break; 14394 case PPCISD::SRA: 14395 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14396 if (C->isNullValue() || // 0 >>s V -> 0. 14397 C->isAllOnesValue()) // -1 >>s V -> -1. 14398 return N->getOperand(0); 14399 } 14400 break; 14401 case ISD::SIGN_EXTEND: 14402 case ISD::ZERO_EXTEND: 14403 case ISD::ANY_EXTEND: 14404 return DAGCombineExtBoolTrunc(N, DCI); 14405 case ISD::TRUNCATE: 14406 return combineTRUNCATE(N, DCI); 14407 case ISD::SETCC: 14408 if (SDValue CSCC = combineSetCC(N, DCI)) 14409 return CSCC; 14410 LLVM_FALLTHROUGH; 14411 case ISD::SELECT_CC: 14412 return DAGCombineTruncBoolExt(N, DCI); 14413 case ISD::SINT_TO_FP: 14414 case ISD::UINT_TO_FP: 14415 return combineFPToIntToFP(N, DCI); 14416 case ISD::VECTOR_SHUFFLE: 14417 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14418 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14419 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14420 } 14421 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14422 case ISD::STORE: { 14423 14424 EVT Op1VT = N->getOperand(1).getValueType(); 14425 unsigned Opcode = N->getOperand(1).getOpcode(); 14426 14427 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14428 SDValue Val= combineStoreFPToInt(N, DCI); 14429 if (Val) 14430 return Val; 14431 } 14432 14433 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14434 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14435 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14436 if (Val) 14437 return Val; 14438 } 14439 14440 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14441 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14442 N->getOperand(1).getNode()->hasOneUse() && 14443 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14444 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14445 14446 // STBRX can only handle simple types and it makes no sense to store less 14447 // two bytes in byte-reversed order. 14448 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14449 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14450 break; 14451 14452 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14453 // Do an any-extend to 32-bits if this is a half-word input. 14454 if (BSwapOp.getValueType() == MVT::i16) 14455 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14456 14457 // If the type of BSWAP operand is wider than stored memory width 14458 // it need to be shifted to the right side before STBRX. 14459 if (Op1VT.bitsGT(mVT)) { 14460 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14461 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14462 DAG.getConstant(Shift, dl, MVT::i32)); 14463 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14464 if (Op1VT == MVT::i64) 14465 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14466 } 14467 14468 SDValue Ops[] = { 14469 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14470 }; 14471 return 14472 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14473 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14474 cast<StoreSDNode>(N)->getMemOperand()); 14475 } 14476 14477 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14478 // So it can increase the chance of CSE constant construction. 14479 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14480 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14481 // Need to sign-extended to 64-bits to handle negative values. 14482 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14483 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14484 MemVT.getSizeInBits()); 14485 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14486 14487 // DAG.getTruncStore() can't be used here because it doesn't accept 14488 // the general (base + offset) addressing mode. 14489 // So we use UpdateNodeOperands and setTruncatingStore instead. 14490 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14491 N->getOperand(3)); 14492 cast<StoreSDNode>(N)->setTruncatingStore(true); 14493 return SDValue(N, 0); 14494 } 14495 14496 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14497 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14498 if (Op1VT.isSimple()) { 14499 MVT StoreVT = Op1VT.getSimpleVT(); 14500 if (Subtarget.needsSwapsForVSXMemOps() && 14501 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14502 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14503 return expandVSXStoreForLE(N, DCI); 14504 } 14505 break; 14506 } 14507 case ISD::LOAD: { 14508 LoadSDNode *LD = cast<LoadSDNode>(N); 14509 EVT VT = LD->getValueType(0); 14510 14511 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14512 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14513 if (VT.isSimple()) { 14514 MVT LoadVT = VT.getSimpleVT(); 14515 if (Subtarget.needsSwapsForVSXMemOps() && 14516 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14517 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14518 return expandVSXLoadForLE(N, DCI); 14519 } 14520 14521 // We sometimes end up with a 64-bit integer load, from which we extract 14522 // two single-precision floating-point numbers. This happens with 14523 // std::complex<float>, and other similar structures, because of the way we 14524 // canonicalize structure copies. However, if we lack direct moves, 14525 // then the final bitcasts from the extracted integer values to the 14526 // floating-point numbers turn into store/load pairs. Even with direct moves, 14527 // just loading the two floating-point numbers is likely better. 14528 auto ReplaceTwoFloatLoad = [&]() { 14529 if (VT != MVT::i64) 14530 return false; 14531 14532 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14533 LD->isVolatile()) 14534 return false; 14535 14536 // We're looking for a sequence like this: 14537 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14538 // t16: i64 = srl t13, Constant:i32<32> 14539 // t17: i32 = truncate t16 14540 // t18: f32 = bitcast t17 14541 // t19: i32 = truncate t13 14542 // t20: f32 = bitcast t19 14543 14544 if (!LD->hasNUsesOfValue(2, 0)) 14545 return false; 14546 14547 auto UI = LD->use_begin(); 14548 while (UI.getUse().getResNo() != 0) ++UI; 14549 SDNode *Trunc = *UI++; 14550 while (UI.getUse().getResNo() != 0) ++UI; 14551 SDNode *RightShift = *UI; 14552 if (Trunc->getOpcode() != ISD::TRUNCATE) 14553 std::swap(Trunc, RightShift); 14554 14555 if (Trunc->getOpcode() != ISD::TRUNCATE || 14556 Trunc->getValueType(0) != MVT::i32 || 14557 !Trunc->hasOneUse()) 14558 return false; 14559 if (RightShift->getOpcode() != ISD::SRL || 14560 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14561 RightShift->getConstantOperandVal(1) != 32 || 14562 !RightShift->hasOneUse()) 14563 return false; 14564 14565 SDNode *Trunc2 = *RightShift->use_begin(); 14566 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14567 Trunc2->getValueType(0) != MVT::i32 || 14568 !Trunc2->hasOneUse()) 14569 return false; 14570 14571 SDNode *Bitcast = *Trunc->use_begin(); 14572 SDNode *Bitcast2 = *Trunc2->use_begin(); 14573 14574 if (Bitcast->getOpcode() != ISD::BITCAST || 14575 Bitcast->getValueType(0) != MVT::f32) 14576 return false; 14577 if (Bitcast2->getOpcode() != ISD::BITCAST || 14578 Bitcast2->getValueType(0) != MVT::f32) 14579 return false; 14580 14581 if (Subtarget.isLittleEndian()) 14582 std::swap(Bitcast, Bitcast2); 14583 14584 // Bitcast has the second float (in memory-layout order) and Bitcast2 14585 // has the first one. 14586 14587 SDValue BasePtr = LD->getBasePtr(); 14588 if (LD->isIndexed()) { 14589 assert(LD->getAddressingMode() == ISD::PRE_INC && 14590 "Non-pre-inc AM on PPC?"); 14591 BasePtr = 14592 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14593 LD->getOffset()); 14594 } 14595 14596 auto MMOFlags = 14597 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14598 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14599 LD->getPointerInfo(), LD->getAlignment(), 14600 MMOFlags, LD->getAAInfo()); 14601 SDValue AddPtr = 14602 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14603 BasePtr, DAG.getIntPtrConstant(4, dl)); 14604 SDValue FloatLoad2 = DAG.getLoad( 14605 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14606 LD->getPointerInfo().getWithOffset(4), 14607 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14608 14609 if (LD->isIndexed()) { 14610 // Note that DAGCombine should re-form any pre-increment load(s) from 14611 // what is produced here if that makes sense. 14612 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14613 } 14614 14615 DCI.CombineTo(Bitcast2, FloatLoad); 14616 DCI.CombineTo(Bitcast, FloatLoad2); 14617 14618 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14619 SDValue(FloatLoad2.getNode(), 1)); 14620 return true; 14621 }; 14622 14623 if (ReplaceTwoFloatLoad()) 14624 return SDValue(N, 0); 14625 14626 EVT MemVT = LD->getMemoryVT(); 14627 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14628 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14629 if (LD->isUnindexed() && VT.isVector() && 14630 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14631 // P8 and later hardware should just use LOAD. 14632 !Subtarget.hasP8Vector() && 14633 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14634 VT == MVT::v4f32))) && 14635 LD->getAlign() < ABIAlignment) { 14636 // This is a type-legal unaligned Altivec load. 14637 SDValue Chain = LD->getChain(); 14638 SDValue Ptr = LD->getBasePtr(); 14639 bool isLittleEndian = Subtarget.isLittleEndian(); 14640 14641 // This implements the loading of unaligned vectors as described in 14642 // the venerable Apple Velocity Engine overview. Specifically: 14643 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14644 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14645 // 14646 // The general idea is to expand a sequence of one or more unaligned 14647 // loads into an alignment-based permutation-control instruction (lvsl 14648 // or lvsr), a series of regular vector loads (which always truncate 14649 // their input address to an aligned address), and a series of 14650 // permutations. The results of these permutations are the requested 14651 // loaded values. The trick is that the last "extra" load is not taken 14652 // from the address you might suspect (sizeof(vector) bytes after the 14653 // last requested load), but rather sizeof(vector) - 1 bytes after the 14654 // last requested vector. The point of this is to avoid a page fault if 14655 // the base address happened to be aligned. This works because if the 14656 // base address is aligned, then adding less than a full vector length 14657 // will cause the last vector in the sequence to be (re)loaded. 14658 // Otherwise, the next vector will be fetched as you might suspect was 14659 // necessary. 14660 14661 // We might be able to reuse the permutation generation from 14662 // a different base address offset from this one by an aligned amount. 14663 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14664 // optimization later. 14665 Intrinsic::ID Intr, IntrLD, IntrPerm; 14666 MVT PermCntlTy, PermTy, LDTy; 14667 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14668 : Intrinsic::ppc_altivec_lvsl; 14669 IntrLD = Intrinsic::ppc_altivec_lvx; 14670 IntrPerm = Intrinsic::ppc_altivec_vperm; 14671 PermCntlTy = MVT::v16i8; 14672 PermTy = MVT::v4i32; 14673 LDTy = MVT::v4i32; 14674 14675 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14676 14677 // Create the new MMO for the new base load. It is like the original MMO, 14678 // but represents an area in memory almost twice the vector size centered 14679 // on the original address. If the address is unaligned, we might start 14680 // reading up to (sizeof(vector)-1) bytes below the address of the 14681 // original unaligned load. 14682 MachineFunction &MF = DAG.getMachineFunction(); 14683 MachineMemOperand *BaseMMO = 14684 MF.getMachineMemOperand(LD->getMemOperand(), 14685 -(long)MemVT.getStoreSize()+1, 14686 2*MemVT.getStoreSize()-1); 14687 14688 // Create the new base load. 14689 SDValue LDXIntID = 14690 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14691 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14692 SDValue BaseLoad = 14693 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14694 DAG.getVTList(PermTy, MVT::Other), 14695 BaseLoadOps, LDTy, BaseMMO); 14696 14697 // Note that the value of IncOffset (which is provided to the next 14698 // load's pointer info offset value, and thus used to calculate the 14699 // alignment), and the value of IncValue (which is actually used to 14700 // increment the pointer value) are different! This is because we 14701 // require the next load to appear to be aligned, even though it 14702 // is actually offset from the base pointer by a lesser amount. 14703 int IncOffset = VT.getSizeInBits() / 8; 14704 int IncValue = IncOffset; 14705 14706 // Walk (both up and down) the chain looking for another load at the real 14707 // (aligned) offset (the alignment of the other load does not matter in 14708 // this case). If found, then do not use the offset reduction trick, as 14709 // that will prevent the loads from being later combined (as they would 14710 // otherwise be duplicates). 14711 if (!findConsecutiveLoad(LD, DAG)) 14712 --IncValue; 14713 14714 SDValue Increment = 14715 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14716 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14717 14718 MachineMemOperand *ExtraMMO = 14719 MF.getMachineMemOperand(LD->getMemOperand(), 14720 1, 2*MemVT.getStoreSize()-1); 14721 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14722 SDValue ExtraLoad = 14723 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14724 DAG.getVTList(PermTy, MVT::Other), 14725 ExtraLoadOps, LDTy, ExtraMMO); 14726 14727 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14728 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14729 14730 // Because vperm has a big-endian bias, we must reverse the order 14731 // of the input vectors and complement the permute control vector 14732 // when generating little endian code. We have already handled the 14733 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14734 // and ExtraLoad here. 14735 SDValue Perm; 14736 if (isLittleEndian) 14737 Perm = BuildIntrinsicOp(IntrPerm, 14738 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14739 else 14740 Perm = BuildIntrinsicOp(IntrPerm, 14741 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14742 14743 if (VT != PermTy) 14744 Perm = Subtarget.hasAltivec() 14745 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14746 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14747 DAG.getTargetConstant(1, dl, MVT::i64)); 14748 // second argument is 1 because this rounding 14749 // is always exact. 14750 14751 // The output of the permutation is our loaded result, the TokenFactor is 14752 // our new chain. 14753 DCI.CombineTo(N, Perm, TF); 14754 return SDValue(N, 0); 14755 } 14756 } 14757 break; 14758 case ISD::INTRINSIC_WO_CHAIN: { 14759 bool isLittleEndian = Subtarget.isLittleEndian(); 14760 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14761 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14762 : Intrinsic::ppc_altivec_lvsl); 14763 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 14764 SDValue Add = N->getOperand(1); 14765 14766 int Bits = 4 /* 16 byte alignment */; 14767 14768 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14769 APInt::getAllOnesValue(Bits /* alignment */) 14770 .zext(Add.getScalarValueSizeInBits()))) { 14771 SDNode *BasePtr = Add->getOperand(0).getNode(); 14772 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14773 UE = BasePtr->use_end(); 14774 UI != UE; ++UI) { 14775 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14776 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 14777 IID) { 14778 // We've found another LVSL/LVSR, and this address is an aligned 14779 // multiple of that one. The results will be the same, so use the 14780 // one we've just found instead. 14781 14782 return SDValue(*UI, 0); 14783 } 14784 } 14785 } 14786 14787 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14788 SDNode *BasePtr = Add->getOperand(0).getNode(); 14789 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14790 UE = BasePtr->use_end(); UI != UE; ++UI) { 14791 if (UI->getOpcode() == ISD::ADD && 14792 isa<ConstantSDNode>(UI->getOperand(1)) && 14793 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14794 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14795 (1ULL << Bits) == 0) { 14796 SDNode *OtherAdd = *UI; 14797 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14798 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14799 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14800 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14801 return SDValue(*VI, 0); 14802 } 14803 } 14804 } 14805 } 14806 } 14807 } 14808 14809 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14810 // Expose the vabsduw/h/b opportunity for down stream 14811 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14812 (IID == Intrinsic::ppc_altivec_vmaxsw || 14813 IID == Intrinsic::ppc_altivec_vmaxsh || 14814 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14815 SDValue V1 = N->getOperand(1); 14816 SDValue V2 = N->getOperand(2); 14817 if ((V1.getSimpleValueType() == MVT::v4i32 || 14818 V1.getSimpleValueType() == MVT::v8i16 || 14819 V1.getSimpleValueType() == MVT::v16i8) && 14820 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14821 // (0-a, a) 14822 if (V1.getOpcode() == ISD::SUB && 14823 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14824 V1.getOperand(1) == V2) { 14825 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14826 } 14827 // (a, 0-a) 14828 if (V2.getOpcode() == ISD::SUB && 14829 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14830 V2.getOperand(1) == V1) { 14831 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14832 } 14833 // (x-y, y-x) 14834 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14835 V1.getOperand(0) == V2.getOperand(1) && 14836 V1.getOperand(1) == V2.getOperand(0)) { 14837 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14838 } 14839 } 14840 } 14841 } 14842 14843 break; 14844 case ISD::INTRINSIC_W_CHAIN: 14845 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14846 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14847 if (Subtarget.needsSwapsForVSXMemOps()) { 14848 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14849 default: 14850 break; 14851 case Intrinsic::ppc_vsx_lxvw4x: 14852 case Intrinsic::ppc_vsx_lxvd2x: 14853 return expandVSXLoadForLE(N, DCI); 14854 } 14855 } 14856 break; 14857 case ISD::INTRINSIC_VOID: 14858 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14859 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14860 if (Subtarget.needsSwapsForVSXMemOps()) { 14861 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14862 default: 14863 break; 14864 case Intrinsic::ppc_vsx_stxvw4x: 14865 case Intrinsic::ppc_vsx_stxvd2x: 14866 return expandVSXStoreForLE(N, DCI); 14867 } 14868 } 14869 break; 14870 case ISD::BSWAP: 14871 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14872 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14873 N->getOperand(0).hasOneUse() && 14874 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14875 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14876 N->getValueType(0) == MVT::i64))) { 14877 SDValue Load = N->getOperand(0); 14878 LoadSDNode *LD = cast<LoadSDNode>(Load); 14879 // Create the byte-swapping load. 14880 SDValue Ops[] = { 14881 LD->getChain(), // Chain 14882 LD->getBasePtr(), // Ptr 14883 DAG.getValueType(N->getValueType(0)) // VT 14884 }; 14885 SDValue BSLoad = 14886 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14887 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14888 MVT::i64 : MVT::i32, MVT::Other), 14889 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14890 14891 // If this is an i16 load, insert the truncate. 14892 SDValue ResVal = BSLoad; 14893 if (N->getValueType(0) == MVT::i16) 14894 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14895 14896 // First, combine the bswap away. This makes the value produced by the 14897 // load dead. 14898 DCI.CombineTo(N, ResVal); 14899 14900 // Next, combine the load away, we give it a bogus result value but a real 14901 // chain result. The result value is dead because the bswap is dead. 14902 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14903 14904 // Return N so it doesn't get rechecked! 14905 return SDValue(N, 0); 14906 } 14907 break; 14908 case PPCISD::VCMP: 14909 // If a VCMP_rec node already exists with exactly the same operands as this 14910 // node, use its result instead of this node (VCMP_rec computes both a CR6 14911 // and a normal output). 14912 // 14913 if (!N->getOperand(0).hasOneUse() && 14914 !N->getOperand(1).hasOneUse() && 14915 !N->getOperand(2).hasOneUse()) { 14916 14917 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 14918 SDNode *VCMPrecNode = nullptr; 14919 14920 SDNode *LHSN = N->getOperand(0).getNode(); 14921 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14922 UI != E; ++UI) 14923 if (UI->getOpcode() == PPCISD::VCMP_rec && 14924 UI->getOperand(1) == N->getOperand(1) && 14925 UI->getOperand(2) == N->getOperand(2) && 14926 UI->getOperand(0) == N->getOperand(0)) { 14927 VCMPrecNode = *UI; 14928 break; 14929 } 14930 14931 // If there is no VCMP_rec node, or if the flag value has a single use, 14932 // don't transform this. 14933 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 14934 break; 14935 14936 // Look at the (necessarily single) use of the flag value. If it has a 14937 // chain, this transformation is more complex. Note that multiple things 14938 // could use the value result, which we should ignore. 14939 SDNode *FlagUser = nullptr; 14940 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 14941 FlagUser == nullptr; ++UI) { 14942 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 14943 SDNode *User = *UI; 14944 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14945 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 14946 FlagUser = User; 14947 break; 14948 } 14949 } 14950 } 14951 14952 // If the user is a MFOCRF instruction, we know this is safe. 14953 // Otherwise we give up for right now. 14954 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14955 return SDValue(VCMPrecNode, 0); 14956 } 14957 break; 14958 case ISD::BRCOND: { 14959 SDValue Cond = N->getOperand(1); 14960 SDValue Target = N->getOperand(2); 14961 14962 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14963 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14964 Intrinsic::loop_decrement) { 14965 14966 // We now need to make the intrinsic dead (it cannot be instruction 14967 // selected). 14968 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14969 assert(Cond.getNode()->hasOneUse() && 14970 "Counter decrement has more than one use"); 14971 14972 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14973 N->getOperand(0), Target); 14974 } 14975 } 14976 break; 14977 case ISD::BR_CC: { 14978 // If this is a branch on an altivec predicate comparison, lower this so 14979 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14980 // lowering is done pre-legalize, because the legalizer lowers the predicate 14981 // compare down to code that is difficult to reassemble. 14982 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14983 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14984 14985 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14986 // value. If so, pass-through the AND to get to the intrinsic. 14987 if (LHS.getOpcode() == ISD::AND && 14988 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14989 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14990 Intrinsic::loop_decrement && 14991 isa<ConstantSDNode>(LHS.getOperand(1)) && 14992 !isNullConstant(LHS.getOperand(1))) 14993 LHS = LHS.getOperand(0); 14994 14995 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14996 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14997 Intrinsic::loop_decrement && 14998 isa<ConstantSDNode>(RHS)) { 14999 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15000 "Counter decrement comparison is not EQ or NE"); 15001 15002 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15003 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15004 (CC == ISD::SETNE && !Val); 15005 15006 // We now need to make the intrinsic dead (it cannot be instruction 15007 // selected). 15008 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15009 assert(LHS.getNode()->hasOneUse() && 15010 "Counter decrement has more than one use"); 15011 15012 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15013 N->getOperand(0), N->getOperand(4)); 15014 } 15015 15016 int CompareOpc; 15017 bool isDot; 15018 15019 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15020 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15021 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15022 assert(isDot && "Can't compare against a vector result!"); 15023 15024 // If this is a comparison against something other than 0/1, then we know 15025 // that the condition is never/always true. 15026 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15027 if (Val != 0 && Val != 1) { 15028 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15029 return N->getOperand(0); 15030 // Always !=, turn it into an unconditional branch. 15031 return DAG.getNode(ISD::BR, dl, MVT::Other, 15032 N->getOperand(0), N->getOperand(4)); 15033 } 15034 15035 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15036 15037 // Create the PPCISD altivec 'dot' comparison node. 15038 SDValue Ops[] = { 15039 LHS.getOperand(2), // LHS of compare 15040 LHS.getOperand(3), // RHS of compare 15041 DAG.getConstant(CompareOpc, dl, MVT::i32) 15042 }; 15043 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15044 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15045 15046 // Unpack the result based on how the target uses it. 15047 PPC::Predicate CompOpc; 15048 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15049 default: // Can't happen, don't crash on invalid number though. 15050 case 0: // Branch on the value of the EQ bit of CR6. 15051 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15052 break; 15053 case 1: // Branch on the inverted value of the EQ bit of CR6. 15054 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15055 break; 15056 case 2: // Branch on the value of the LT bit of CR6. 15057 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15058 break; 15059 case 3: // Branch on the inverted value of the LT bit of CR6. 15060 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15061 break; 15062 } 15063 15064 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15065 DAG.getConstant(CompOpc, dl, MVT::i32), 15066 DAG.getRegister(PPC::CR6, MVT::i32), 15067 N->getOperand(4), CompNode.getValue(1)); 15068 } 15069 break; 15070 } 15071 case ISD::BUILD_VECTOR: 15072 return DAGCombineBuildVector(N, DCI); 15073 case ISD::ABS: 15074 return combineABS(N, DCI); 15075 case ISD::VSELECT: 15076 return combineVSelect(N, DCI); 15077 } 15078 15079 return SDValue(); 15080 } 15081 15082 SDValue 15083 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15084 SelectionDAG &DAG, 15085 SmallVectorImpl<SDNode *> &Created) const { 15086 // fold (sdiv X, pow2) 15087 EVT VT = N->getValueType(0); 15088 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15089 return SDValue(); 15090 if ((VT != MVT::i32 && VT != MVT::i64) || 15091 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15092 return SDValue(); 15093 15094 SDLoc DL(N); 15095 SDValue N0 = N->getOperand(0); 15096 15097 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15098 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15099 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15100 15101 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15102 Created.push_back(Op.getNode()); 15103 15104 if (IsNegPow2) { 15105 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15106 Created.push_back(Op.getNode()); 15107 } 15108 15109 return Op; 15110 } 15111 15112 //===----------------------------------------------------------------------===// 15113 // Inline Assembly Support 15114 //===----------------------------------------------------------------------===// 15115 15116 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15117 KnownBits &Known, 15118 const APInt &DemandedElts, 15119 const SelectionDAG &DAG, 15120 unsigned Depth) const { 15121 Known.resetAll(); 15122 switch (Op.getOpcode()) { 15123 default: break; 15124 case PPCISD::LBRX: { 15125 // lhbrx is known to have the top bits cleared out. 15126 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15127 Known.Zero = 0xFFFF0000; 15128 break; 15129 } 15130 case ISD::INTRINSIC_WO_CHAIN: { 15131 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15132 default: break; 15133 case Intrinsic::ppc_altivec_vcmpbfp_p: 15134 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15135 case Intrinsic::ppc_altivec_vcmpequb_p: 15136 case Intrinsic::ppc_altivec_vcmpequh_p: 15137 case Intrinsic::ppc_altivec_vcmpequw_p: 15138 case Intrinsic::ppc_altivec_vcmpequd_p: 15139 case Intrinsic::ppc_altivec_vcmpequq_p: 15140 case Intrinsic::ppc_altivec_vcmpgefp_p: 15141 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15142 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15143 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15144 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15145 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15146 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15147 case Intrinsic::ppc_altivec_vcmpgtub_p: 15148 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15149 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15150 case Intrinsic::ppc_altivec_vcmpgtud_p: 15151 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15152 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15153 break; 15154 } 15155 } 15156 } 15157 } 15158 15159 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15160 switch (Subtarget.getCPUDirective()) { 15161 default: break; 15162 case PPC::DIR_970: 15163 case PPC::DIR_PWR4: 15164 case PPC::DIR_PWR5: 15165 case PPC::DIR_PWR5X: 15166 case PPC::DIR_PWR6: 15167 case PPC::DIR_PWR6X: 15168 case PPC::DIR_PWR7: 15169 case PPC::DIR_PWR8: 15170 case PPC::DIR_PWR9: 15171 case PPC::DIR_PWR10: 15172 case PPC::DIR_PWR_FUTURE: { 15173 if (!ML) 15174 break; 15175 15176 if (!DisableInnermostLoopAlign32) { 15177 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15178 // so that we can decrease cache misses and branch-prediction misses. 15179 // Actual alignment of the loop will depend on the hotness check and other 15180 // logic in alignBlocks. 15181 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15182 return Align(32); 15183 } 15184 15185 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15186 15187 // For small loops (between 5 and 8 instructions), align to a 32-byte 15188 // boundary so that the entire loop fits in one instruction-cache line. 15189 uint64_t LoopSize = 0; 15190 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15191 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15192 LoopSize += TII->getInstSizeInBytes(*J); 15193 if (LoopSize > 32) 15194 break; 15195 } 15196 15197 if (LoopSize > 16 && LoopSize <= 32) 15198 return Align(32); 15199 15200 break; 15201 } 15202 } 15203 15204 return TargetLowering::getPrefLoopAlignment(ML); 15205 } 15206 15207 /// getConstraintType - Given a constraint, return the type of 15208 /// constraint it is for this target. 15209 PPCTargetLowering::ConstraintType 15210 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15211 if (Constraint.size() == 1) { 15212 switch (Constraint[0]) { 15213 default: break; 15214 case 'b': 15215 case 'r': 15216 case 'f': 15217 case 'd': 15218 case 'v': 15219 case 'y': 15220 return C_RegisterClass; 15221 case 'Z': 15222 // FIXME: While Z does indicate a memory constraint, it specifically 15223 // indicates an r+r address (used in conjunction with the 'y' modifier 15224 // in the replacement string). Currently, we're forcing the base 15225 // register to be r0 in the asm printer (which is interpreted as zero) 15226 // and forming the complete address in the second register. This is 15227 // suboptimal. 15228 return C_Memory; 15229 } 15230 } else if (Constraint == "wc") { // individual CR bits. 15231 return C_RegisterClass; 15232 } else if (Constraint == "wa" || Constraint == "wd" || 15233 Constraint == "wf" || Constraint == "ws" || 15234 Constraint == "wi" || Constraint == "ww") { 15235 return C_RegisterClass; // VSX registers. 15236 } 15237 return TargetLowering::getConstraintType(Constraint); 15238 } 15239 15240 /// Examine constraint type and operand type and determine a weight value. 15241 /// This object must already have been set up with the operand type 15242 /// and the current alternative constraint selected. 15243 TargetLowering::ConstraintWeight 15244 PPCTargetLowering::getSingleConstraintMatchWeight( 15245 AsmOperandInfo &info, const char *constraint) const { 15246 ConstraintWeight weight = CW_Invalid; 15247 Value *CallOperandVal = info.CallOperandVal; 15248 // If we don't have a value, we can't do a match, 15249 // but allow it at the lowest weight. 15250 if (!CallOperandVal) 15251 return CW_Default; 15252 Type *type = CallOperandVal->getType(); 15253 15254 // Look at the constraint type. 15255 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15256 return CW_Register; // an individual CR bit. 15257 else if ((StringRef(constraint) == "wa" || 15258 StringRef(constraint) == "wd" || 15259 StringRef(constraint) == "wf") && 15260 type->isVectorTy()) 15261 return CW_Register; 15262 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15263 return CW_Register; // just hold 64-bit integers data. 15264 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15265 return CW_Register; 15266 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15267 return CW_Register; 15268 15269 switch (*constraint) { 15270 default: 15271 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15272 break; 15273 case 'b': 15274 if (type->isIntegerTy()) 15275 weight = CW_Register; 15276 break; 15277 case 'f': 15278 if (type->isFloatTy()) 15279 weight = CW_Register; 15280 break; 15281 case 'd': 15282 if (type->isDoubleTy()) 15283 weight = CW_Register; 15284 break; 15285 case 'v': 15286 if (type->isVectorTy()) 15287 weight = CW_Register; 15288 break; 15289 case 'y': 15290 weight = CW_Register; 15291 break; 15292 case 'Z': 15293 weight = CW_Memory; 15294 break; 15295 } 15296 return weight; 15297 } 15298 15299 std::pair<unsigned, const TargetRegisterClass *> 15300 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15301 StringRef Constraint, 15302 MVT VT) const { 15303 if (Constraint.size() == 1) { 15304 // GCC RS6000 Constraint Letters 15305 switch (Constraint[0]) { 15306 case 'b': // R1-R31 15307 if (VT == MVT::i64 && Subtarget.isPPC64()) 15308 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15309 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15310 case 'r': // R0-R31 15311 if (VT == MVT::i64 && Subtarget.isPPC64()) 15312 return std::make_pair(0U, &PPC::G8RCRegClass); 15313 return std::make_pair(0U, &PPC::GPRCRegClass); 15314 // 'd' and 'f' constraints are both defined to be "the floating point 15315 // registers", where one is for 32-bit and the other for 64-bit. We don't 15316 // really care overly much here so just give them all the same reg classes. 15317 case 'd': 15318 case 'f': 15319 if (Subtarget.hasSPE()) { 15320 if (VT == MVT::f32 || VT == MVT::i32) 15321 return std::make_pair(0U, &PPC::GPRCRegClass); 15322 if (VT == MVT::f64 || VT == MVT::i64) 15323 return std::make_pair(0U, &PPC::SPERCRegClass); 15324 } else { 15325 if (VT == MVT::f32 || VT == MVT::i32) 15326 return std::make_pair(0U, &PPC::F4RCRegClass); 15327 if (VT == MVT::f64 || VT == MVT::i64) 15328 return std::make_pair(0U, &PPC::F8RCRegClass); 15329 } 15330 break; 15331 case 'v': 15332 if (Subtarget.hasAltivec()) 15333 return std::make_pair(0U, &PPC::VRRCRegClass); 15334 break; 15335 case 'y': // crrc 15336 return std::make_pair(0U, &PPC::CRRCRegClass); 15337 } 15338 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15339 // An individual CR bit. 15340 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15341 } else if ((Constraint == "wa" || Constraint == "wd" || 15342 Constraint == "wf" || Constraint == "wi") && 15343 Subtarget.hasVSX()) { 15344 return std::make_pair(0U, &PPC::VSRCRegClass); 15345 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15346 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15347 return std::make_pair(0U, &PPC::VSSRCRegClass); 15348 else 15349 return std::make_pair(0U, &PPC::VSFRCRegClass); 15350 } 15351 15352 // Handle special cases of physical registers that are not properly handled 15353 // by the base class. 15354 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15355 // If we name a VSX register, we can't defer to the base class because it 15356 // will not recognize the correct register (their names will be VSL{0-31} 15357 // and V{0-31} so they won't match). So we match them here. 15358 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15359 int VSNum = atoi(Constraint.data() + 3); 15360 assert(VSNum >= 0 && VSNum <= 63 && 15361 "Attempted to access a vsr out of range"); 15362 if (VSNum < 32) 15363 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15364 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15365 } 15366 15367 // For float registers, we can't defer to the base class as it will match 15368 // the SPILLTOVSRRC class. 15369 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15370 int RegNum = atoi(Constraint.data() + 2); 15371 if (RegNum > 31 || RegNum < 0) 15372 report_fatal_error("Invalid floating point register number"); 15373 if (VT == MVT::f32 || VT == MVT::i32) 15374 return Subtarget.hasSPE() 15375 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15376 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15377 if (VT == MVT::f64 || VT == MVT::i64) 15378 return Subtarget.hasSPE() 15379 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15380 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15381 } 15382 } 15383 15384 std::pair<unsigned, const TargetRegisterClass *> R = 15385 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15386 15387 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15388 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15389 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15390 // register. 15391 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15392 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15393 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15394 PPC::GPRCRegClass.contains(R.first)) 15395 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15396 PPC::sub_32, &PPC::G8RCRegClass), 15397 &PPC::G8RCRegClass); 15398 15399 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15400 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15401 R.first = PPC::CR0; 15402 R.second = &PPC::CRRCRegClass; 15403 } 15404 // FIXME: This warning should ideally be emitted in the front end. 15405 const auto &TM = getTargetMachine(); 15406 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 15407 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 15408 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 15409 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 15410 errs() << "warning: vector registers 20 to 32 are reserved in the " 15411 "default AIX AltiVec ABI and cannot be used\n"; 15412 } 15413 15414 return R; 15415 } 15416 15417 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15418 /// vector. If it is invalid, don't add anything to Ops. 15419 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15420 std::string &Constraint, 15421 std::vector<SDValue>&Ops, 15422 SelectionDAG &DAG) const { 15423 SDValue Result; 15424 15425 // Only support length 1 constraints. 15426 if (Constraint.length() > 1) return; 15427 15428 char Letter = Constraint[0]; 15429 switch (Letter) { 15430 default: break; 15431 case 'I': 15432 case 'J': 15433 case 'K': 15434 case 'L': 15435 case 'M': 15436 case 'N': 15437 case 'O': 15438 case 'P': { 15439 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15440 if (!CST) return; // Must be an immediate to match. 15441 SDLoc dl(Op); 15442 int64_t Value = CST->getSExtValue(); 15443 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15444 // numbers are printed as such. 15445 switch (Letter) { 15446 default: llvm_unreachable("Unknown constraint letter!"); 15447 case 'I': // "I" is a signed 16-bit constant. 15448 if (isInt<16>(Value)) 15449 Result = DAG.getTargetConstant(Value, dl, TCVT); 15450 break; 15451 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15452 if (isShiftedUInt<16, 16>(Value)) 15453 Result = DAG.getTargetConstant(Value, dl, TCVT); 15454 break; 15455 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15456 if (isShiftedInt<16, 16>(Value)) 15457 Result = DAG.getTargetConstant(Value, dl, TCVT); 15458 break; 15459 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15460 if (isUInt<16>(Value)) 15461 Result = DAG.getTargetConstant(Value, dl, TCVT); 15462 break; 15463 case 'M': // "M" is a constant that is greater than 31. 15464 if (Value > 31) 15465 Result = DAG.getTargetConstant(Value, dl, TCVT); 15466 break; 15467 case 'N': // "N" is a positive constant that is an exact power of two. 15468 if (Value > 0 && isPowerOf2_64(Value)) 15469 Result = DAG.getTargetConstant(Value, dl, TCVT); 15470 break; 15471 case 'O': // "O" is the constant zero. 15472 if (Value == 0) 15473 Result = DAG.getTargetConstant(Value, dl, TCVT); 15474 break; 15475 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15476 if (isInt<16>(-Value)) 15477 Result = DAG.getTargetConstant(Value, dl, TCVT); 15478 break; 15479 } 15480 break; 15481 } 15482 } 15483 15484 if (Result.getNode()) { 15485 Ops.push_back(Result); 15486 return; 15487 } 15488 15489 // Handle standard constraint letters. 15490 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15491 } 15492 15493 // isLegalAddressingMode - Return true if the addressing mode represented 15494 // by AM is legal for this target, for a load/store of the specified type. 15495 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15496 const AddrMode &AM, Type *Ty, 15497 unsigned AS, 15498 Instruction *I) const { 15499 // Vector type r+i form is supported since power9 as DQ form. We don't check 15500 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15501 // imm form is preferred and the offset can be adjusted to use imm form later 15502 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15503 // max offset to check legal addressing mode, we should be a little aggressive 15504 // to contain other offsets for that LSRUse. 15505 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15506 return false; 15507 15508 // PPC allows a sign-extended 16-bit immediate field. 15509 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15510 return false; 15511 15512 // No global is ever allowed as a base. 15513 if (AM.BaseGV) 15514 return false; 15515 15516 // PPC only support r+r, 15517 switch (AM.Scale) { 15518 case 0: // "r+i" or just "i", depending on HasBaseReg. 15519 break; 15520 case 1: 15521 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15522 return false; 15523 // Otherwise we have r+r or r+i. 15524 break; 15525 case 2: 15526 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15527 return false; 15528 // Allow 2*r as r+r. 15529 break; 15530 default: 15531 // No other scales are supported. 15532 return false; 15533 } 15534 15535 return true; 15536 } 15537 15538 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15539 SelectionDAG &DAG) const { 15540 MachineFunction &MF = DAG.getMachineFunction(); 15541 MachineFrameInfo &MFI = MF.getFrameInfo(); 15542 MFI.setReturnAddressIsTaken(true); 15543 15544 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15545 return SDValue(); 15546 15547 SDLoc dl(Op); 15548 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15549 15550 // Make sure the function does not optimize away the store of the RA to 15551 // the stack. 15552 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15553 FuncInfo->setLRStoreRequired(); 15554 bool isPPC64 = Subtarget.isPPC64(); 15555 auto PtrVT = getPointerTy(MF.getDataLayout()); 15556 15557 if (Depth > 0) { 15558 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15559 SDValue Offset = 15560 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15561 isPPC64 ? MVT::i64 : MVT::i32); 15562 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15563 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15564 MachinePointerInfo()); 15565 } 15566 15567 // Just load the return address off the stack. 15568 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15569 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15570 MachinePointerInfo()); 15571 } 15572 15573 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15574 SelectionDAG &DAG) const { 15575 SDLoc dl(Op); 15576 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15577 15578 MachineFunction &MF = DAG.getMachineFunction(); 15579 MachineFrameInfo &MFI = MF.getFrameInfo(); 15580 MFI.setFrameAddressIsTaken(true); 15581 15582 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15583 bool isPPC64 = PtrVT == MVT::i64; 15584 15585 // Naked functions never have a frame pointer, and so we use r1. For all 15586 // other functions, this decision must be delayed until during PEI. 15587 unsigned FrameReg; 15588 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15589 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15590 else 15591 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15592 15593 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15594 PtrVT); 15595 while (Depth--) 15596 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15597 FrameAddr, MachinePointerInfo()); 15598 return FrameAddr; 15599 } 15600 15601 // FIXME? Maybe this could be a TableGen attribute on some registers and 15602 // this table could be generated automatically from RegInfo. 15603 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15604 const MachineFunction &MF) const { 15605 bool isPPC64 = Subtarget.isPPC64(); 15606 15607 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15608 if (!is64Bit && VT != LLT::scalar(32)) 15609 report_fatal_error("Invalid register global variable type"); 15610 15611 Register Reg = StringSwitch<Register>(RegName) 15612 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15613 .Case("r2", isPPC64 ? Register() : PPC::R2) 15614 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15615 .Default(Register()); 15616 15617 if (Reg) 15618 return Reg; 15619 report_fatal_error("Invalid register name global variable"); 15620 } 15621 15622 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15623 // 32-bit SVR4 ABI access everything as got-indirect. 15624 if (Subtarget.is32BitELFABI()) 15625 return true; 15626 15627 // AIX accesses everything indirectly through the TOC, which is similar to 15628 // the GOT. 15629 if (Subtarget.isAIXABI()) 15630 return true; 15631 15632 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15633 // If it is small or large code model, module locals are accessed 15634 // indirectly by loading their address from .toc/.got. 15635 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15636 return true; 15637 15638 // JumpTable and BlockAddress are accessed as got-indirect. 15639 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15640 return true; 15641 15642 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15643 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15644 15645 return false; 15646 } 15647 15648 bool 15649 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15650 // The PowerPC target isn't yet aware of offsets. 15651 return false; 15652 } 15653 15654 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15655 const CallInst &I, 15656 MachineFunction &MF, 15657 unsigned Intrinsic) const { 15658 switch (Intrinsic) { 15659 case Intrinsic::ppc_altivec_lvx: 15660 case Intrinsic::ppc_altivec_lvxl: 15661 case Intrinsic::ppc_altivec_lvebx: 15662 case Intrinsic::ppc_altivec_lvehx: 15663 case Intrinsic::ppc_altivec_lvewx: 15664 case Intrinsic::ppc_vsx_lxvd2x: 15665 case Intrinsic::ppc_vsx_lxvw4x: 15666 case Intrinsic::ppc_vsx_lxvd2x_be: 15667 case Intrinsic::ppc_vsx_lxvw4x_be: 15668 case Intrinsic::ppc_vsx_lxvl: 15669 case Intrinsic::ppc_vsx_lxvll: { 15670 EVT VT; 15671 switch (Intrinsic) { 15672 case Intrinsic::ppc_altivec_lvebx: 15673 VT = MVT::i8; 15674 break; 15675 case Intrinsic::ppc_altivec_lvehx: 15676 VT = MVT::i16; 15677 break; 15678 case Intrinsic::ppc_altivec_lvewx: 15679 VT = MVT::i32; 15680 break; 15681 case Intrinsic::ppc_vsx_lxvd2x: 15682 case Intrinsic::ppc_vsx_lxvd2x_be: 15683 VT = MVT::v2f64; 15684 break; 15685 default: 15686 VT = MVT::v4i32; 15687 break; 15688 } 15689 15690 Info.opc = ISD::INTRINSIC_W_CHAIN; 15691 Info.memVT = VT; 15692 Info.ptrVal = I.getArgOperand(0); 15693 Info.offset = -VT.getStoreSize()+1; 15694 Info.size = 2*VT.getStoreSize()-1; 15695 Info.align = Align(1); 15696 Info.flags = MachineMemOperand::MOLoad; 15697 return true; 15698 } 15699 case Intrinsic::ppc_altivec_stvx: 15700 case Intrinsic::ppc_altivec_stvxl: 15701 case Intrinsic::ppc_altivec_stvebx: 15702 case Intrinsic::ppc_altivec_stvehx: 15703 case Intrinsic::ppc_altivec_stvewx: 15704 case Intrinsic::ppc_vsx_stxvd2x: 15705 case Intrinsic::ppc_vsx_stxvw4x: 15706 case Intrinsic::ppc_vsx_stxvd2x_be: 15707 case Intrinsic::ppc_vsx_stxvw4x_be: 15708 case Intrinsic::ppc_vsx_stxvl: 15709 case Intrinsic::ppc_vsx_stxvll: { 15710 EVT VT; 15711 switch (Intrinsic) { 15712 case Intrinsic::ppc_altivec_stvebx: 15713 VT = MVT::i8; 15714 break; 15715 case Intrinsic::ppc_altivec_stvehx: 15716 VT = MVT::i16; 15717 break; 15718 case Intrinsic::ppc_altivec_stvewx: 15719 VT = MVT::i32; 15720 break; 15721 case Intrinsic::ppc_vsx_stxvd2x: 15722 case Intrinsic::ppc_vsx_stxvd2x_be: 15723 VT = MVT::v2f64; 15724 break; 15725 default: 15726 VT = MVT::v4i32; 15727 break; 15728 } 15729 15730 Info.opc = ISD::INTRINSIC_VOID; 15731 Info.memVT = VT; 15732 Info.ptrVal = I.getArgOperand(1); 15733 Info.offset = -VT.getStoreSize()+1; 15734 Info.size = 2*VT.getStoreSize()-1; 15735 Info.align = Align(1); 15736 Info.flags = MachineMemOperand::MOStore; 15737 return true; 15738 } 15739 default: 15740 break; 15741 } 15742 15743 return false; 15744 } 15745 15746 /// It returns EVT::Other if the type should be determined using generic 15747 /// target-independent logic. 15748 EVT PPCTargetLowering::getOptimalMemOpType( 15749 const MemOp &Op, const AttributeList &FuncAttributes) const { 15750 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15751 // We should use Altivec/VSX loads and stores when available. For unaligned 15752 // addresses, unaligned VSX loads are only fast starting with the P8. 15753 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15754 (Op.isAligned(Align(16)) || 15755 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15756 return MVT::v4i32; 15757 } 15758 15759 if (Subtarget.isPPC64()) { 15760 return MVT::i64; 15761 } 15762 15763 return MVT::i32; 15764 } 15765 15766 /// Returns true if it is beneficial to convert a load of a constant 15767 /// to just the constant itself. 15768 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15769 Type *Ty) const { 15770 assert(Ty->isIntegerTy()); 15771 15772 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15773 return !(BitSize == 0 || BitSize > 64); 15774 } 15775 15776 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15777 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15778 return false; 15779 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15780 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15781 return NumBits1 == 64 && NumBits2 == 32; 15782 } 15783 15784 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15785 if (!VT1.isInteger() || !VT2.isInteger()) 15786 return false; 15787 unsigned NumBits1 = VT1.getSizeInBits(); 15788 unsigned NumBits2 = VT2.getSizeInBits(); 15789 return NumBits1 == 64 && NumBits2 == 32; 15790 } 15791 15792 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15793 // Generally speaking, zexts are not free, but they are free when they can be 15794 // folded with other operations. 15795 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15796 EVT MemVT = LD->getMemoryVT(); 15797 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15798 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15799 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15800 LD->getExtensionType() == ISD::ZEXTLOAD)) 15801 return true; 15802 } 15803 15804 // FIXME: Add other cases... 15805 // - 32-bit shifts with a zext to i64 15806 // - zext after ctlz, bswap, etc. 15807 // - zext after and by a constant mask 15808 15809 return TargetLowering::isZExtFree(Val, VT2); 15810 } 15811 15812 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15813 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15814 "invalid fpext types"); 15815 // Extending to float128 is not free. 15816 if (DestVT == MVT::f128) 15817 return false; 15818 return true; 15819 } 15820 15821 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15822 return isInt<16>(Imm) || isUInt<16>(Imm); 15823 } 15824 15825 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15826 return isInt<16>(Imm) || isUInt<16>(Imm); 15827 } 15828 15829 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 15830 MachineMemOperand::Flags, 15831 bool *Fast) const { 15832 if (DisablePPCUnaligned) 15833 return false; 15834 15835 // PowerPC supports unaligned memory access for simple non-vector types. 15836 // Although accessing unaligned addresses is not as efficient as accessing 15837 // aligned addresses, it is generally more efficient than manual expansion, 15838 // and generally only traps for software emulation when crossing page 15839 // boundaries. 15840 15841 if (!VT.isSimple()) 15842 return false; 15843 15844 if (VT.isFloatingPoint() && !VT.isVector() && 15845 !Subtarget.allowsUnalignedFPAccess()) 15846 return false; 15847 15848 if (VT.getSimpleVT().isVector()) { 15849 if (Subtarget.hasVSX()) { 15850 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15851 VT != MVT::v4f32 && VT != MVT::v4i32) 15852 return false; 15853 } else { 15854 return false; 15855 } 15856 } 15857 15858 if (VT == MVT::ppcf128) 15859 return false; 15860 15861 if (Fast) 15862 *Fast = true; 15863 15864 return true; 15865 } 15866 15867 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 15868 SDValue C) const { 15869 // Check integral scalar types. 15870 if (!VT.isScalarInteger()) 15871 return false; 15872 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 15873 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 15874 return false; 15875 // This transformation will generate >= 2 operations. But the following 15876 // cases will generate <= 2 instructions during ISEL. So exclude them. 15877 // 1. If the constant multiplier fits 16 bits, it can be handled by one 15878 // HW instruction, ie. MULLI 15879 // 2. If the multiplier after shifted fits 16 bits, an extra shift 15880 // instruction is needed than case 1, ie. MULLI and RLDICR 15881 int64_t Imm = ConstNode->getSExtValue(); 15882 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 15883 Imm >>= Shift; 15884 if (isInt<16>(Imm)) 15885 return false; 15886 uint64_t UImm = static_cast<uint64_t>(Imm); 15887 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 15888 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 15889 return true; 15890 } 15891 return false; 15892 } 15893 15894 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15895 EVT VT) const { 15896 return isFMAFasterThanFMulAndFAdd( 15897 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15898 } 15899 15900 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15901 Type *Ty) const { 15902 switch (Ty->getScalarType()->getTypeID()) { 15903 case Type::FloatTyID: 15904 case Type::DoubleTyID: 15905 return true; 15906 case Type::FP128TyID: 15907 return Subtarget.hasP9Vector(); 15908 default: 15909 return false; 15910 } 15911 } 15912 15913 // FIXME: add more patterns which are not profitable to hoist. 15914 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15915 if (!I->hasOneUse()) 15916 return true; 15917 15918 Instruction *User = I->user_back(); 15919 assert(User && "A single use instruction with no uses."); 15920 15921 switch (I->getOpcode()) { 15922 case Instruction::FMul: { 15923 // Don't break FMA, PowerPC prefers FMA. 15924 if (User->getOpcode() != Instruction::FSub && 15925 User->getOpcode() != Instruction::FAdd) 15926 return true; 15927 15928 const TargetOptions &Options = getTargetMachine().Options; 15929 const Function *F = I->getFunction(); 15930 const DataLayout &DL = F->getParent()->getDataLayout(); 15931 Type *Ty = User->getOperand(0)->getType(); 15932 15933 return !( 15934 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15935 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15936 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15937 } 15938 case Instruction::Load: { 15939 // Don't break "store (load float*)" pattern, this pattern will be combined 15940 // to "store (load int32)" in later InstCombine pass. See function 15941 // combineLoadToOperationType. On PowerPC, loading a float point takes more 15942 // cycles than loading a 32 bit integer. 15943 LoadInst *LI = cast<LoadInst>(I); 15944 // For the loads that combineLoadToOperationType does nothing, like 15945 // ordered load, it should be profitable to hoist them. 15946 // For swifterror load, it can only be used for pointer to pointer type, so 15947 // later type check should get rid of this case. 15948 if (!LI->isUnordered()) 15949 return true; 15950 15951 if (User->getOpcode() != Instruction::Store) 15952 return true; 15953 15954 if (I->getType()->getTypeID() != Type::FloatTyID) 15955 return true; 15956 15957 return false; 15958 } 15959 default: 15960 return true; 15961 } 15962 return true; 15963 } 15964 15965 const MCPhysReg * 15966 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15967 // LR is a callee-save register, but we must treat it as clobbered by any call 15968 // site. Hence we include LR in the scratch registers, which are in turn added 15969 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15970 // to CTR, which is used by any indirect call. 15971 static const MCPhysReg ScratchRegs[] = { 15972 PPC::X12, PPC::LR8, PPC::CTR8, 0 15973 }; 15974 15975 return ScratchRegs; 15976 } 15977 15978 Register PPCTargetLowering::getExceptionPointerRegister( 15979 const Constant *PersonalityFn) const { 15980 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15981 } 15982 15983 Register PPCTargetLowering::getExceptionSelectorRegister( 15984 const Constant *PersonalityFn) const { 15985 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15986 } 15987 15988 bool 15989 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15990 EVT VT , unsigned DefinedValues) const { 15991 if (VT == MVT::v2i64) 15992 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15993 15994 if (Subtarget.hasVSX()) 15995 return true; 15996 15997 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15998 } 15999 16000 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16001 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16002 return TargetLowering::getSchedulingPreference(N); 16003 16004 return Sched::ILP; 16005 } 16006 16007 // Create a fast isel object. 16008 FastISel * 16009 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16010 const TargetLibraryInfo *LibInfo) const { 16011 return PPC::createFastISel(FuncInfo, LibInfo); 16012 } 16013 16014 // 'Inverted' means the FMA opcode after negating one multiplicand. 16015 // For example, (fma -a b c) = (fnmsub a b c) 16016 static unsigned invertFMAOpcode(unsigned Opc) { 16017 switch (Opc) { 16018 default: 16019 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16020 case ISD::FMA: 16021 return PPCISD::FNMSUB; 16022 case PPCISD::FNMSUB: 16023 return ISD::FMA; 16024 } 16025 } 16026 16027 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16028 bool LegalOps, bool OptForSize, 16029 NegatibleCost &Cost, 16030 unsigned Depth) const { 16031 if (Depth > SelectionDAG::MaxRecursionDepth) 16032 return SDValue(); 16033 16034 unsigned Opc = Op.getOpcode(); 16035 EVT VT = Op.getValueType(); 16036 SDNodeFlags Flags = Op.getNode()->getFlags(); 16037 16038 switch (Opc) { 16039 case PPCISD::FNMSUB: 16040 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16041 break; 16042 16043 const TargetOptions &Options = getTargetMachine().Options; 16044 SDValue N0 = Op.getOperand(0); 16045 SDValue N1 = Op.getOperand(1); 16046 SDValue N2 = Op.getOperand(2); 16047 SDLoc Loc(Op); 16048 16049 NegatibleCost N2Cost = NegatibleCost::Expensive; 16050 SDValue NegN2 = 16051 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16052 16053 if (!NegN2) 16054 return SDValue(); 16055 16056 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16057 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16058 // These transformations may change sign of zeroes. For example, 16059 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16060 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16061 // Try and choose the cheaper one to negate. 16062 NegatibleCost N0Cost = NegatibleCost::Expensive; 16063 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16064 N0Cost, Depth + 1); 16065 16066 NegatibleCost N1Cost = NegatibleCost::Expensive; 16067 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16068 N1Cost, Depth + 1); 16069 16070 if (NegN0 && N0Cost <= N1Cost) { 16071 Cost = std::min(N0Cost, N2Cost); 16072 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16073 } else if (NegN1) { 16074 Cost = std::min(N1Cost, N2Cost); 16075 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16076 } 16077 } 16078 16079 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16080 if (isOperationLegal(ISD::FMA, VT)) { 16081 Cost = N2Cost; 16082 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16083 } 16084 16085 break; 16086 } 16087 16088 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16089 Cost, Depth); 16090 } 16091 16092 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16093 bool PPCTargetLowering::useLoadStackGuardNode() const { 16094 if (!Subtarget.isTargetLinux()) 16095 return TargetLowering::useLoadStackGuardNode(); 16096 return true; 16097 } 16098 16099 // Override to disable global variable loading on Linux. 16100 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16101 if (!Subtarget.isTargetLinux()) 16102 return TargetLowering::insertSSPDeclarations(M); 16103 } 16104 16105 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16106 bool ForCodeSize) const { 16107 if (!VT.isSimple() || !Subtarget.hasVSX()) 16108 return false; 16109 16110 switch(VT.getSimpleVT().SimpleTy) { 16111 default: 16112 // For FP types that are currently not supported by PPC backend, return 16113 // false. Examples: f16, f80. 16114 return false; 16115 case MVT::f32: 16116 case MVT::f64: 16117 if (Subtarget.hasPrefixInstrs()) { 16118 // With prefixed instructions, we can materialize anything that can be 16119 // represented with a 32-bit immediate, not just positive zero. 16120 APFloat APFloatOfImm = Imm; 16121 return convertToNonDenormSingle(APFloatOfImm); 16122 } 16123 LLVM_FALLTHROUGH; 16124 case MVT::ppcf128: 16125 return Imm.isPosZero(); 16126 } 16127 } 16128 16129 // For vector shift operation op, fold 16130 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16131 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16132 SelectionDAG &DAG) { 16133 SDValue N0 = N->getOperand(0); 16134 SDValue N1 = N->getOperand(1); 16135 EVT VT = N0.getValueType(); 16136 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16137 unsigned Opcode = N->getOpcode(); 16138 unsigned TargetOpcode; 16139 16140 switch (Opcode) { 16141 default: 16142 llvm_unreachable("Unexpected shift operation"); 16143 case ISD::SHL: 16144 TargetOpcode = PPCISD::SHL; 16145 break; 16146 case ISD::SRL: 16147 TargetOpcode = PPCISD::SRL; 16148 break; 16149 case ISD::SRA: 16150 TargetOpcode = PPCISD::SRA; 16151 break; 16152 } 16153 16154 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16155 N1->getOpcode() == ISD::AND) 16156 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16157 if (Mask->getZExtValue() == OpSizeInBits - 1) 16158 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16159 16160 return SDValue(); 16161 } 16162 16163 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16164 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16165 return Value; 16166 16167 SDValue N0 = N->getOperand(0); 16168 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16169 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16170 N0.getOpcode() != ISD::SIGN_EXTEND || 16171 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16172 N->getValueType(0) != MVT::i64) 16173 return SDValue(); 16174 16175 // We can't save an operation here if the value is already extended, and 16176 // the existing shift is easier to combine. 16177 SDValue ExtsSrc = N0.getOperand(0); 16178 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16179 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16180 return SDValue(); 16181 16182 SDLoc DL(N0); 16183 SDValue ShiftBy = SDValue(CN1, 0); 16184 // We want the shift amount to be i32 on the extswli, but the shift could 16185 // have an i64. 16186 if (ShiftBy.getValueType() == MVT::i64) 16187 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16188 16189 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16190 ShiftBy); 16191 } 16192 16193 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16194 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16195 return Value; 16196 16197 return SDValue(); 16198 } 16199 16200 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16201 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16202 return Value; 16203 16204 return SDValue(); 16205 } 16206 16207 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16208 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16209 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16210 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16211 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16212 const PPCSubtarget &Subtarget) { 16213 if (!Subtarget.isPPC64()) 16214 return SDValue(); 16215 16216 SDValue LHS = N->getOperand(0); 16217 SDValue RHS = N->getOperand(1); 16218 16219 auto isZextOfCompareWithConstant = [](SDValue Op) { 16220 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16221 Op.getValueType() != MVT::i64) 16222 return false; 16223 16224 SDValue Cmp = Op.getOperand(0); 16225 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16226 Cmp.getOperand(0).getValueType() != MVT::i64) 16227 return false; 16228 16229 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16230 int64_t NegConstant = 0 - Constant->getSExtValue(); 16231 // Due to the limitations of the addi instruction, 16232 // -C is required to be [-32768, 32767]. 16233 return isInt<16>(NegConstant); 16234 } 16235 16236 return false; 16237 }; 16238 16239 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16240 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16241 16242 // If there is a pattern, canonicalize a zext operand to the RHS. 16243 if (LHSHasPattern && !RHSHasPattern) 16244 std::swap(LHS, RHS); 16245 else if (!LHSHasPattern && !RHSHasPattern) 16246 return SDValue(); 16247 16248 SDLoc DL(N); 16249 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16250 SDValue Cmp = RHS.getOperand(0); 16251 SDValue Z = Cmp.getOperand(0); 16252 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16253 16254 assert(Constant && "Constant Should not be a null pointer."); 16255 int64_t NegConstant = 0 - Constant->getSExtValue(); 16256 16257 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16258 default: break; 16259 case ISD::SETNE: { 16260 // when C == 0 16261 // --> addze X, (addic Z, -1).carry 16262 // / 16263 // add X, (zext(setne Z, C))-- 16264 // \ when -32768 <= -C <= 32767 && C != 0 16265 // --> addze X, (addic (addi Z, -C), -1).carry 16266 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16267 DAG.getConstant(NegConstant, DL, MVT::i64)); 16268 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16269 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16270 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16271 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16272 SDValue(Addc.getNode(), 1)); 16273 } 16274 case ISD::SETEQ: { 16275 // when C == 0 16276 // --> addze X, (subfic Z, 0).carry 16277 // / 16278 // add X, (zext(sete Z, C))-- 16279 // \ when -32768 <= -C <= 32767 && C != 0 16280 // --> addze X, (subfic (addi Z, -C), 0).carry 16281 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16282 DAG.getConstant(NegConstant, DL, MVT::i64)); 16283 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16284 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16285 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16286 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16287 SDValue(Subc.getNode(), 1)); 16288 } 16289 } 16290 16291 return SDValue(); 16292 } 16293 16294 // Transform 16295 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16296 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16297 // In this case both C1 and C2 must be known constants. 16298 // C1+C2 must fit into a 34 bit signed integer. 16299 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16300 const PPCSubtarget &Subtarget) { 16301 if (!Subtarget.isUsingPCRelativeCalls()) 16302 return SDValue(); 16303 16304 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16305 // If we find that node try to cast the Global Address and the Constant. 16306 SDValue LHS = N->getOperand(0); 16307 SDValue RHS = N->getOperand(1); 16308 16309 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16310 std::swap(LHS, RHS); 16311 16312 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16313 return SDValue(); 16314 16315 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16316 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16317 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16318 16319 // Check that both casts succeeded. 16320 if (!GSDN || !ConstNode) 16321 return SDValue(); 16322 16323 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16324 SDLoc DL(GSDN); 16325 16326 // The signed int offset needs to fit in 34 bits. 16327 if (!isInt<34>(NewOffset)) 16328 return SDValue(); 16329 16330 // The new global address is a copy of the old global address except 16331 // that it has the updated Offset. 16332 SDValue GA = 16333 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16334 NewOffset, GSDN->getTargetFlags()); 16335 SDValue MatPCRel = 16336 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16337 return MatPCRel; 16338 } 16339 16340 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16341 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16342 return Value; 16343 16344 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16345 return Value; 16346 16347 return SDValue(); 16348 } 16349 16350 // Detect TRUNCATE operations on bitcasts of float128 values. 16351 // What we are looking for here is the situtation where we extract a subset 16352 // of bits from a 128 bit float. 16353 // This can be of two forms: 16354 // 1) BITCAST of f128 feeding TRUNCATE 16355 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16356 // The reason this is required is because we do not have a legal i128 type 16357 // and so we want to prevent having to store the f128 and then reload part 16358 // of it. 16359 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16360 DAGCombinerInfo &DCI) const { 16361 // If we are using CRBits then try that first. 16362 if (Subtarget.useCRBits()) { 16363 // Check if CRBits did anything and return that if it did. 16364 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16365 return CRTruncValue; 16366 } 16367 16368 SDLoc dl(N); 16369 SDValue Op0 = N->getOperand(0); 16370 16371 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16372 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16373 EVT VT = N->getValueType(0); 16374 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16375 return SDValue(); 16376 SDValue Sub = Op0.getOperand(0); 16377 if (Sub.getOpcode() == ISD::SUB) { 16378 SDValue SubOp0 = Sub.getOperand(0); 16379 SDValue SubOp1 = Sub.getOperand(1); 16380 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16381 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16382 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16383 SubOp1.getOperand(0), 16384 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16385 } 16386 } 16387 } 16388 16389 // Looking for a truncate of i128 to i64. 16390 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16391 return SDValue(); 16392 16393 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16394 16395 // SRL feeding TRUNCATE. 16396 if (Op0.getOpcode() == ISD::SRL) { 16397 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16398 // The right shift has to be by 64 bits. 16399 if (!ConstNode || ConstNode->getZExtValue() != 64) 16400 return SDValue(); 16401 16402 // Switch the element number to extract. 16403 EltToExtract = EltToExtract ? 0 : 1; 16404 // Update Op0 past the SRL. 16405 Op0 = Op0.getOperand(0); 16406 } 16407 16408 // BITCAST feeding a TRUNCATE possibly via SRL. 16409 if (Op0.getOpcode() == ISD::BITCAST && 16410 Op0.getValueType() == MVT::i128 && 16411 Op0.getOperand(0).getValueType() == MVT::f128) { 16412 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16413 return DCI.DAG.getNode( 16414 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16415 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16416 } 16417 return SDValue(); 16418 } 16419 16420 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16421 SelectionDAG &DAG = DCI.DAG; 16422 16423 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16424 if (!ConstOpOrElement) 16425 return SDValue(); 16426 16427 // An imul is usually smaller than the alternative sequence for legal type. 16428 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16429 isOperationLegal(ISD::MUL, N->getValueType(0))) 16430 return SDValue(); 16431 16432 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16433 switch (this->Subtarget.getCPUDirective()) { 16434 default: 16435 // TODO: enhance the condition for subtarget before pwr8 16436 return false; 16437 case PPC::DIR_PWR8: 16438 // type mul add shl 16439 // scalar 4 1 1 16440 // vector 7 2 2 16441 return true; 16442 case PPC::DIR_PWR9: 16443 case PPC::DIR_PWR10: 16444 case PPC::DIR_PWR_FUTURE: 16445 // type mul add shl 16446 // scalar 5 2 2 16447 // vector 7 2 2 16448 16449 // The cycle RATIO of related operations are showed as a table above. 16450 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16451 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16452 // are 4, it is always profitable; but for 3 instrs patterns 16453 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16454 // So we should only do it for vector type. 16455 return IsAddOne && IsNeg ? VT.isVector() : true; 16456 } 16457 }; 16458 16459 EVT VT = N->getValueType(0); 16460 SDLoc DL(N); 16461 16462 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16463 bool IsNeg = MulAmt.isNegative(); 16464 APInt MulAmtAbs = MulAmt.abs(); 16465 16466 if ((MulAmtAbs - 1).isPowerOf2()) { 16467 // (mul x, 2^N + 1) => (add (shl x, N), x) 16468 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16469 16470 if (!IsProfitable(IsNeg, true, VT)) 16471 return SDValue(); 16472 16473 SDValue Op0 = N->getOperand(0); 16474 SDValue Op1 = 16475 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16476 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16477 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16478 16479 if (!IsNeg) 16480 return Res; 16481 16482 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16483 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16484 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16485 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16486 16487 if (!IsProfitable(IsNeg, false, VT)) 16488 return SDValue(); 16489 16490 SDValue Op0 = N->getOperand(0); 16491 SDValue Op1 = 16492 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16493 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16494 16495 if (!IsNeg) 16496 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16497 else 16498 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16499 16500 } else { 16501 return SDValue(); 16502 } 16503 } 16504 16505 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16506 // in combiner since we need to check SD flags and other subtarget features. 16507 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16508 DAGCombinerInfo &DCI) const { 16509 SDValue N0 = N->getOperand(0); 16510 SDValue N1 = N->getOperand(1); 16511 SDValue N2 = N->getOperand(2); 16512 SDNodeFlags Flags = N->getFlags(); 16513 EVT VT = N->getValueType(0); 16514 SelectionDAG &DAG = DCI.DAG; 16515 const TargetOptions &Options = getTargetMachine().Options; 16516 unsigned Opc = N->getOpcode(); 16517 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16518 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16519 SDLoc Loc(N); 16520 16521 if (!isOperationLegal(ISD::FMA, VT)) 16522 return SDValue(); 16523 16524 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16525 // since (fnmsub a b c)=-0 while c-ab=+0. 16526 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16527 return SDValue(); 16528 16529 // (fma (fneg a) b c) => (fnmsub a b c) 16530 // (fnmsub (fneg a) b c) => (fma a b c) 16531 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16532 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16533 16534 // (fma a (fneg b) c) => (fnmsub a b c) 16535 // (fnmsub a (fneg b) c) => (fma a b c) 16536 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16537 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16538 16539 return SDValue(); 16540 } 16541 16542 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16543 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16544 if (!Subtarget.is64BitELFABI()) 16545 return false; 16546 16547 // If not a tail call then no need to proceed. 16548 if (!CI->isTailCall()) 16549 return false; 16550 16551 // If sibling calls have been disabled and tail-calls aren't guaranteed 16552 // there is no reason to duplicate. 16553 auto &TM = getTargetMachine(); 16554 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16555 return false; 16556 16557 // Can't tail call a function called indirectly, or if it has variadic args. 16558 const Function *Callee = CI->getCalledFunction(); 16559 if (!Callee || Callee->isVarArg()) 16560 return false; 16561 16562 // Make sure the callee and caller calling conventions are eligible for tco. 16563 const Function *Caller = CI->getParent()->getParent(); 16564 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16565 CI->getCallingConv())) 16566 return false; 16567 16568 // If the function is local then we have a good chance at tail-calling it 16569 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16570 } 16571 16572 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16573 if (!Subtarget.hasVSX()) 16574 return false; 16575 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16576 return true; 16577 return VT == MVT::f32 || VT == MVT::f64 || 16578 VT == MVT::v4f32 || VT == MVT::v2f64; 16579 } 16580 16581 bool PPCTargetLowering:: 16582 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16583 const Value *Mask = AndI.getOperand(1); 16584 // If the mask is suitable for andi. or andis. we should sink the and. 16585 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16586 // Can't handle constants wider than 64-bits. 16587 if (CI->getBitWidth() > 64) 16588 return false; 16589 int64_t ConstVal = CI->getZExtValue(); 16590 return isUInt<16>(ConstVal) || 16591 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16592 } 16593 16594 // For non-constant masks, we can always use the record-form and. 16595 return true; 16596 } 16597 16598 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16599 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16600 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16601 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16602 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16603 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16604 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16605 assert(Subtarget.hasP9Altivec() && 16606 "Only combine this when P9 altivec supported!"); 16607 EVT VT = N->getValueType(0); 16608 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16609 return SDValue(); 16610 16611 SelectionDAG &DAG = DCI.DAG; 16612 SDLoc dl(N); 16613 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16614 // Even for signed integers, if it's known to be positive (as signed 16615 // integer) due to zero-extended inputs. 16616 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16617 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16618 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16619 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16620 (SubOpcd1 == ISD::ZERO_EXTEND || 16621 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16622 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16623 N->getOperand(0)->getOperand(0), 16624 N->getOperand(0)->getOperand(1), 16625 DAG.getTargetConstant(0, dl, MVT::i32)); 16626 } 16627 16628 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16629 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16630 N->getOperand(0).hasOneUse()) { 16631 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16632 N->getOperand(0)->getOperand(0), 16633 N->getOperand(0)->getOperand(1), 16634 DAG.getTargetConstant(1, dl, MVT::i32)); 16635 } 16636 } 16637 16638 return SDValue(); 16639 } 16640 16641 // For type v4i32/v8ii16/v16i8, transform 16642 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16643 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16644 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16645 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16646 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16647 DAGCombinerInfo &DCI) const { 16648 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16649 assert(Subtarget.hasP9Altivec() && 16650 "Only combine this when P9 altivec supported!"); 16651 16652 SelectionDAG &DAG = DCI.DAG; 16653 SDLoc dl(N); 16654 SDValue Cond = N->getOperand(0); 16655 SDValue TrueOpnd = N->getOperand(1); 16656 SDValue FalseOpnd = N->getOperand(2); 16657 EVT VT = N->getOperand(1).getValueType(); 16658 16659 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16660 FalseOpnd.getOpcode() != ISD::SUB) 16661 return SDValue(); 16662 16663 // ABSD only available for type v4i32/v8i16/v16i8 16664 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16665 return SDValue(); 16666 16667 // At least to save one more dependent computation 16668 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16669 return SDValue(); 16670 16671 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16672 16673 // Can only handle unsigned comparison here 16674 switch (CC) { 16675 default: 16676 return SDValue(); 16677 case ISD::SETUGT: 16678 case ISD::SETUGE: 16679 break; 16680 case ISD::SETULT: 16681 case ISD::SETULE: 16682 std::swap(TrueOpnd, FalseOpnd); 16683 break; 16684 } 16685 16686 SDValue CmpOpnd1 = Cond.getOperand(0); 16687 SDValue CmpOpnd2 = Cond.getOperand(1); 16688 16689 // SETCC CmpOpnd1 CmpOpnd2 cond 16690 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16691 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16692 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16693 TrueOpnd.getOperand(1) == CmpOpnd2 && 16694 FalseOpnd.getOperand(0) == CmpOpnd2 && 16695 FalseOpnd.getOperand(1) == CmpOpnd1) { 16696 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16697 CmpOpnd1, CmpOpnd2, 16698 DAG.getTargetConstant(0, dl, MVT::i32)); 16699 } 16700 16701 return SDValue(); 16702 } 16703