1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 // TODO - Remove this option if soft fp128 has been fully supported . 125 static cl::opt<bool> 126 EnableSoftFP128("enable-soft-fp128", 127 cl::desc("temp option to enable soft fp128"), cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 155 } else { 156 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 157 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 158 } 159 } 160 161 // Match BITREVERSE to customized fast code sequence in the td file. 162 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 163 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 164 165 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 166 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 167 168 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 169 for (MVT VT : MVT::integer_valuetypes()) { 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 172 } 173 174 if (Subtarget.isISA3_0()) { 175 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 176 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 177 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 178 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 179 } else { 180 // No extending loads from f16 or HW conversions back and forth. 181 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 182 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 183 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 185 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 186 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 187 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 188 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 189 } 190 191 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 192 193 // PowerPC has pre-inc load and store's. 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 200 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 204 if (!Subtarget.hasSPE()) { 205 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 206 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 207 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 209 } 210 211 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 212 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 213 for (MVT VT : ScalarIntVTs) { 214 setOperationAction(ISD::ADDC, VT, Legal); 215 setOperationAction(ISD::ADDE, VT, Legal); 216 setOperationAction(ISD::SUBC, VT, Legal); 217 setOperationAction(ISD::SUBE, VT, Legal); 218 } 219 220 if (Subtarget.useCRBits()) { 221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 222 223 if (isPPC64 || Subtarget.hasFPCVT()) { 224 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 225 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 226 isPPC64 ? MVT::i64 : MVT::i32); 227 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 228 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 229 isPPC64 ? MVT::i64 : MVT::i32); 230 231 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 232 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 233 isPPC64 ? MVT::i64 : MVT::i32); 234 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 235 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 236 isPPC64 ? MVT::i64 : MVT::i32); 237 } else { 238 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 240 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 241 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 242 } 243 244 // PowerPC does not support direct load/store of condition registers. 245 setOperationAction(ISD::LOAD, MVT::i1, Custom); 246 setOperationAction(ISD::STORE, MVT::i1, Custom); 247 248 // FIXME: Remove this once the ANDI glue bug is fixed: 249 if (ANDIGlueBug) 250 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 251 252 for (MVT VT : MVT::integer_valuetypes()) { 253 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 254 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 255 setTruncStoreAction(VT, MVT::i1, Expand); 256 } 257 258 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 259 } 260 261 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 262 // PPC (the libcall is not available). 263 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 264 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 265 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 266 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 267 268 // We do not currently implement these libm ops for PowerPC. 269 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 270 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 271 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 272 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 273 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 274 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 275 276 // PowerPC has no SREM/UREM instructions unless we are on P9 277 // On P9 we may use a hardware instruction to compute the remainder. 278 // When the result of both the remainder and the division is required it is 279 // more efficient to compute the remainder from the result of the division 280 // rather than use the remainder instruction. The instructions are legalized 281 // directly because the DivRemPairsPass performs the transformation at the IR 282 // level. 283 if (Subtarget.isISA3_0()) { 284 setOperationAction(ISD::SREM, MVT::i32, Legal); 285 setOperationAction(ISD::UREM, MVT::i32, Legal); 286 setOperationAction(ISD::SREM, MVT::i64, Legal); 287 setOperationAction(ISD::UREM, MVT::i64, Legal); 288 } else { 289 setOperationAction(ISD::SREM, MVT::i32, Expand); 290 setOperationAction(ISD::UREM, MVT::i32, Expand); 291 setOperationAction(ISD::SREM, MVT::i64, Expand); 292 setOperationAction(ISD::UREM, MVT::i64, Expand); 293 } 294 295 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 296 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 297 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 298 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 299 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 300 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 301 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 302 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 303 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 304 305 // Handle constrained floating-point operations of scalar. 306 // TODO: Handle SPE specific operation. 307 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 308 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 309 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 310 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 311 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 312 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 313 314 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 315 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 316 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 317 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 319 if (Subtarget.hasVSX()) { 320 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 321 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 322 } 323 324 if (Subtarget.hasFSQRT()) { 325 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 327 } 328 329 if (Subtarget.hasFPRND()) { 330 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 331 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 332 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 333 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 334 335 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 336 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 337 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 338 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 339 } 340 341 // We don't support sin/cos/sqrt/fmod/pow 342 setOperationAction(ISD::FSIN , MVT::f64, Expand); 343 setOperationAction(ISD::FCOS , MVT::f64, Expand); 344 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 345 setOperationAction(ISD::FREM , MVT::f64, Expand); 346 setOperationAction(ISD::FPOW , MVT::f64, Expand); 347 setOperationAction(ISD::FSIN , MVT::f32, Expand); 348 setOperationAction(ISD::FCOS , MVT::f32, Expand); 349 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 350 setOperationAction(ISD::FREM , MVT::f32, Expand); 351 setOperationAction(ISD::FPOW , MVT::f32, Expand); 352 if (Subtarget.hasSPE()) { 353 setOperationAction(ISD::FMA , MVT::f64, Expand); 354 setOperationAction(ISD::FMA , MVT::f32, Expand); 355 } else { 356 setOperationAction(ISD::FMA , MVT::f64, Legal); 357 setOperationAction(ISD::FMA , MVT::f32, Legal); 358 } 359 360 if (Subtarget.hasSPE()) 361 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 362 363 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 364 365 // If we're enabling GP optimizations, use hardware square root 366 if (!Subtarget.hasFSQRT() && 367 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 368 Subtarget.hasFRE())) 369 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 370 371 if (!Subtarget.hasFSQRT() && 372 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 373 Subtarget.hasFRES())) 374 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 375 376 if (Subtarget.hasFCPSGN()) { 377 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 378 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 379 } else { 380 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 381 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 382 } 383 384 if (Subtarget.hasFPRND()) { 385 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 386 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 387 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 388 setOperationAction(ISD::FROUND, MVT::f64, Legal); 389 390 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 391 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 392 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 393 setOperationAction(ISD::FROUND, MVT::f32, Legal); 394 } 395 396 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 397 // to speed up scalar BSWAP64. 398 // CTPOP or CTTZ were introduced in P8/P9 respectively 399 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 400 if (Subtarget.hasP9Vector()) 401 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 402 else 403 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 404 if (Subtarget.isISA3_0()) { 405 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 406 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 407 } else { 408 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 409 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 410 } 411 412 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 413 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 414 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 415 } else { 416 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 417 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 418 } 419 420 // PowerPC does not have ROTR 421 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 422 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 423 424 if (!Subtarget.useCRBits()) { 425 // PowerPC does not have Select 426 setOperationAction(ISD::SELECT, MVT::i32, Expand); 427 setOperationAction(ISD::SELECT, MVT::i64, Expand); 428 setOperationAction(ISD::SELECT, MVT::f32, Expand); 429 setOperationAction(ISD::SELECT, MVT::f64, Expand); 430 } 431 432 // PowerPC wants to turn select_cc of FP into fsel when possible. 433 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 434 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 435 436 // PowerPC wants to optimize integer setcc a bit 437 if (!Subtarget.useCRBits()) 438 setOperationAction(ISD::SETCC, MVT::i32, Custom); 439 440 if (Subtarget.hasFPU()) { 441 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 442 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 443 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 444 445 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 446 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 447 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 448 } 449 450 // PowerPC does not have BRCOND which requires SetCC 451 if (!Subtarget.useCRBits()) 452 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 453 454 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 455 456 if (Subtarget.hasSPE()) { 457 // SPE has built-in conversions 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 459 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 460 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 461 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 462 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 463 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 464 } else { 465 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 466 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 467 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 468 469 // PowerPC does not have [U|S]INT_TO_FP 470 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 471 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 472 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 473 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 474 } 475 476 if (Subtarget.hasDirectMove() && isPPC64) { 477 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 478 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 479 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 480 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 481 if (TM.Options.UnsafeFPMath) { 482 setOperationAction(ISD::LRINT, MVT::f64, Legal); 483 setOperationAction(ISD::LRINT, MVT::f32, Legal); 484 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 485 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 486 setOperationAction(ISD::LROUND, MVT::f64, Legal); 487 setOperationAction(ISD::LROUND, MVT::f32, Legal); 488 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 489 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 490 } 491 } else { 492 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 493 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 494 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 495 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 496 } 497 498 // We cannot sextinreg(i1). Expand to shifts. 499 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 500 501 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 502 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 503 // support continuation, user-level threading, and etc.. As a result, no 504 // other SjLj exception interfaces are implemented and please don't build 505 // your own exception handling based on them. 506 // LLVM/Clang supports zero-cost DWARF exception handling. 507 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 508 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 509 510 // We want to legalize GlobalAddress and ConstantPool nodes into the 511 // appropriate instructions to materialize the address. 512 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 513 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 514 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 515 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 516 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 517 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 518 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 519 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 520 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 521 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 522 523 // TRAP is legal. 524 setOperationAction(ISD::TRAP, MVT::Other, Legal); 525 526 // TRAMPOLINE is custom lowered. 527 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 528 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 529 530 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 531 setOperationAction(ISD::VASTART , MVT::Other, Custom); 532 533 if (Subtarget.is64BitELFABI()) { 534 // VAARG always uses double-word chunks, so promote anything smaller. 535 setOperationAction(ISD::VAARG, MVT::i1, Promote); 536 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 537 setOperationAction(ISD::VAARG, MVT::i8, Promote); 538 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 539 setOperationAction(ISD::VAARG, MVT::i16, Promote); 540 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 541 setOperationAction(ISD::VAARG, MVT::i32, Promote); 542 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 543 setOperationAction(ISD::VAARG, MVT::Other, Expand); 544 } else if (Subtarget.is32BitELFABI()) { 545 // VAARG is custom lowered with the 32-bit SVR4 ABI. 546 setOperationAction(ISD::VAARG, MVT::Other, Custom); 547 setOperationAction(ISD::VAARG, MVT::i64, Custom); 548 } else 549 setOperationAction(ISD::VAARG, MVT::Other, Expand); 550 551 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 552 if (Subtarget.is32BitELFABI()) 553 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 554 else 555 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 556 557 // Use the default implementation. 558 setOperationAction(ISD::VAEND , MVT::Other, Expand); 559 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 560 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 561 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 562 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 563 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 564 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 565 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 566 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 567 568 // We want to custom lower some of our intrinsics. 569 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 570 571 // To handle counter-based loop conditions. 572 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 573 574 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 575 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 576 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 577 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 578 579 // Comparisons that require checking two conditions. 580 if (Subtarget.hasSPE()) { 581 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 582 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 583 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 584 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 585 } 586 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 587 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 588 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 589 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 590 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 591 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 592 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 593 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 594 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 595 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 596 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 597 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 598 599 if (Subtarget.has64BitSupport()) { 600 // They also have instructions for converting between i64 and fp. 601 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 602 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 603 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 604 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 605 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 606 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 607 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 608 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 609 // This is just the low 32 bits of a (signed) fp->i64 conversion. 610 // We cannot do this with Promote because i64 is not a legal type. 611 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 612 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 613 614 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 615 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 616 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 617 } 618 } else { 619 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 620 if (Subtarget.hasSPE()) { 621 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 622 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 623 } else { 624 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 625 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 626 } 627 } 628 629 // With the instructions enabled under FPCVT, we can do everything. 630 if (Subtarget.hasFPCVT()) { 631 if (Subtarget.has64BitSupport()) { 632 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 633 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 634 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 635 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 636 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 637 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 638 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 639 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 640 } 641 642 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 644 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 645 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 646 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 647 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 648 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 649 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 650 } 651 652 if (Subtarget.use64BitRegs()) { 653 // 64-bit PowerPC implementations can support i64 types directly 654 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 655 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 656 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 657 // 64-bit PowerPC wants to expand i128 shifts itself. 658 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 659 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 660 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 661 } else { 662 // 32-bit PowerPC wants to expand i64 shifts itself. 663 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 664 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 665 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 666 } 667 668 // PowerPC has better expansions for funnel shifts than the generic 669 // TargetLowering::expandFunnelShift. 670 if (Subtarget.has64BitSupport()) { 671 setOperationAction(ISD::FSHL, MVT::i64, Custom); 672 setOperationAction(ISD::FSHR, MVT::i64, Custom); 673 } 674 setOperationAction(ISD::FSHL, MVT::i32, Custom); 675 setOperationAction(ISD::FSHR, MVT::i32, Custom); 676 677 if (Subtarget.hasVSX()) { 678 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 679 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 680 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 681 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 682 } 683 684 if (Subtarget.hasAltivec()) { 685 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 686 setOperationAction(ISD::SADDSAT, VT, Legal); 687 setOperationAction(ISD::SSUBSAT, VT, Legal); 688 setOperationAction(ISD::UADDSAT, VT, Legal); 689 setOperationAction(ISD::USUBSAT, VT, Legal); 690 } 691 // First set operation action for all vector types to expand. Then we 692 // will selectively turn on ones that can be effectively codegen'd. 693 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 694 // add/sub are legal for all supported vector VT's. 695 setOperationAction(ISD::ADD, VT, Legal); 696 setOperationAction(ISD::SUB, VT, Legal); 697 698 // For v2i64, these are only valid with P8Vector. This is corrected after 699 // the loop. 700 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 701 setOperationAction(ISD::SMAX, VT, Legal); 702 setOperationAction(ISD::SMIN, VT, Legal); 703 setOperationAction(ISD::UMAX, VT, Legal); 704 setOperationAction(ISD::UMIN, VT, Legal); 705 } 706 else { 707 setOperationAction(ISD::SMAX, VT, Expand); 708 setOperationAction(ISD::SMIN, VT, Expand); 709 setOperationAction(ISD::UMAX, VT, Expand); 710 setOperationAction(ISD::UMIN, VT, Expand); 711 } 712 713 if (Subtarget.hasVSX()) { 714 setOperationAction(ISD::FMAXNUM, VT, Legal); 715 setOperationAction(ISD::FMINNUM, VT, Legal); 716 } 717 718 // Vector instructions introduced in P8 719 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 720 setOperationAction(ISD::CTPOP, VT, Legal); 721 setOperationAction(ISD::CTLZ, VT, Legal); 722 } 723 else { 724 setOperationAction(ISD::CTPOP, VT, Expand); 725 setOperationAction(ISD::CTLZ, VT, Expand); 726 } 727 728 // Vector instructions introduced in P9 729 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 730 setOperationAction(ISD::CTTZ, VT, Legal); 731 else 732 setOperationAction(ISD::CTTZ, VT, Expand); 733 734 // We promote all shuffles to v16i8. 735 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 736 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 737 738 // We promote all non-typed operations to v4i32. 739 setOperationAction(ISD::AND , VT, Promote); 740 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 741 setOperationAction(ISD::OR , VT, Promote); 742 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 743 setOperationAction(ISD::XOR , VT, Promote); 744 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 745 setOperationAction(ISD::LOAD , VT, Promote); 746 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 747 setOperationAction(ISD::SELECT, VT, Promote); 748 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 749 setOperationAction(ISD::VSELECT, VT, Legal); 750 setOperationAction(ISD::SELECT_CC, VT, Promote); 751 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 752 setOperationAction(ISD::STORE, VT, Promote); 753 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 754 755 // No other operations are legal. 756 setOperationAction(ISD::MUL , VT, Expand); 757 setOperationAction(ISD::SDIV, VT, Expand); 758 setOperationAction(ISD::SREM, VT, Expand); 759 setOperationAction(ISD::UDIV, VT, Expand); 760 setOperationAction(ISD::UREM, VT, Expand); 761 setOperationAction(ISD::FDIV, VT, Expand); 762 setOperationAction(ISD::FREM, VT, Expand); 763 setOperationAction(ISD::FNEG, VT, Expand); 764 setOperationAction(ISD::FSQRT, VT, Expand); 765 setOperationAction(ISD::FLOG, VT, Expand); 766 setOperationAction(ISD::FLOG10, VT, Expand); 767 setOperationAction(ISD::FLOG2, VT, Expand); 768 setOperationAction(ISD::FEXP, VT, Expand); 769 setOperationAction(ISD::FEXP2, VT, Expand); 770 setOperationAction(ISD::FSIN, VT, Expand); 771 setOperationAction(ISD::FCOS, VT, Expand); 772 setOperationAction(ISD::FABS, VT, Expand); 773 setOperationAction(ISD::FFLOOR, VT, Expand); 774 setOperationAction(ISD::FCEIL, VT, Expand); 775 setOperationAction(ISD::FTRUNC, VT, Expand); 776 setOperationAction(ISD::FRINT, VT, Expand); 777 setOperationAction(ISD::FNEARBYINT, VT, Expand); 778 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 779 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 780 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 781 setOperationAction(ISD::MULHU, VT, Expand); 782 setOperationAction(ISD::MULHS, VT, Expand); 783 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 784 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 785 setOperationAction(ISD::UDIVREM, VT, Expand); 786 setOperationAction(ISD::SDIVREM, VT, Expand); 787 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 788 setOperationAction(ISD::FPOW, VT, Expand); 789 setOperationAction(ISD::BSWAP, VT, Expand); 790 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 791 setOperationAction(ISD::ROTL, VT, Expand); 792 setOperationAction(ISD::ROTR, VT, Expand); 793 794 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 795 setTruncStoreAction(VT, InnerVT, Expand); 796 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 797 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 798 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 799 } 800 } 801 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 802 if (!Subtarget.hasP8Vector()) { 803 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 804 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 805 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 806 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 807 } 808 809 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 810 // with merges, splats, etc. 811 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 812 813 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 814 // are cheap, so handle them before they get expanded to scalar. 815 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 816 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 817 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 818 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 819 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 820 821 setOperationAction(ISD::AND , MVT::v4i32, Legal); 822 setOperationAction(ISD::OR , MVT::v4i32, Legal); 823 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 824 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 825 setOperationAction(ISD::SELECT, MVT::v4i32, 826 Subtarget.useCRBits() ? Legal : Expand); 827 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 828 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 829 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 830 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 831 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 832 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 833 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 834 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 835 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 836 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 837 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 838 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 839 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 840 841 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 842 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 843 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 844 if (Subtarget.hasAltivec()) 845 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 846 setOperationAction(ISD::ROTL, VT, Legal); 847 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 848 if (Subtarget.hasP8Altivec()) 849 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 850 851 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 852 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 853 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 854 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 855 856 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 857 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 858 859 if (Subtarget.hasVSX()) { 860 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 861 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 862 } 863 864 if (Subtarget.hasP8Altivec()) 865 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 866 else 867 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 868 869 if (Subtarget.isISA3_1()) { 870 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 871 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 872 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 873 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 874 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 875 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 876 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 877 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 878 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 879 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 880 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 881 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 882 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 883 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 884 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 885 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 886 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 887 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 888 } 889 890 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 891 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 892 893 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 894 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 895 896 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 897 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 898 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 899 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 900 901 // Altivec does not contain unordered floating-point compare instructions 902 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 903 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 904 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 905 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 906 907 if (Subtarget.hasVSX()) { 908 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 909 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 910 if (Subtarget.hasP8Vector()) { 911 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 912 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 913 } 914 if (Subtarget.hasDirectMove() && isPPC64) { 915 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 916 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 917 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 918 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 919 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 920 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 921 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 922 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 923 } 924 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 925 926 // The nearbyint variants are not allowed to raise the inexact exception 927 // so we can only code-gen them with unsafe math. 928 if (TM.Options.UnsafeFPMath) { 929 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 930 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 931 } 932 933 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 934 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 935 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 936 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 937 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 938 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 939 setOperationAction(ISD::FROUND, MVT::f64, Legal); 940 setOperationAction(ISD::FRINT, MVT::f64, Legal); 941 942 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 943 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 944 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 945 setOperationAction(ISD::FROUND, MVT::f32, Legal); 946 setOperationAction(ISD::FRINT, MVT::f32, Legal); 947 948 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 949 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 950 951 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 952 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 953 954 // Share the Altivec comparison restrictions. 955 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 956 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 957 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 958 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 959 960 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 961 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 962 963 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 964 965 if (Subtarget.hasP8Vector()) 966 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 967 968 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 969 970 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 971 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 972 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 973 974 if (Subtarget.hasP8Altivec()) { 975 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 976 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 977 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 978 979 // 128 bit shifts can be accomplished via 3 instructions for SHL and 980 // SRL, but not for SRA because of the instructions available: 981 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 982 // doing 983 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 984 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 985 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 986 987 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 988 } 989 else { 990 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 991 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 992 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 993 994 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 995 996 // VSX v2i64 only supports non-arithmetic operations. 997 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 998 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 999 } 1000 1001 if (Subtarget.isISA3_1()) 1002 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1003 else 1004 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1005 1006 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1007 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1008 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1009 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1010 1011 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1012 1013 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1014 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1015 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1016 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1017 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1018 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1019 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1020 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1021 1022 // Custom handling for partial vectors of integers converted to 1023 // floating point. We already have optimal handling for v2i32 through 1024 // the DAG combine, so those aren't necessary. 1025 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1026 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1027 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1028 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1029 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1030 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1031 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1032 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1033 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1034 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1035 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1036 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1037 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1038 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1039 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1040 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1041 1042 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1043 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1044 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1045 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1046 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1047 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1048 1049 if (Subtarget.hasDirectMove()) 1050 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1051 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1052 1053 // Handle constrained floating-point operations of vector. 1054 // The predictor is `hasVSX` because altivec instruction has 1055 // no exception but VSX vector instruction has. 1056 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1057 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1058 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1059 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1060 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1061 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1062 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1063 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1064 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1065 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1066 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1067 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1068 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1069 1070 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1071 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1072 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1073 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1074 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1075 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1076 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1077 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1078 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1079 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1080 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1081 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1082 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1083 1084 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1085 } 1086 1087 if (Subtarget.hasP8Altivec()) { 1088 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1089 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1090 } 1091 1092 if (Subtarget.hasP9Vector()) { 1093 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1094 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1095 1096 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1097 // SRL, but not for SRA because of the instructions available: 1098 // VS{RL} and VS{RL}O. 1099 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1100 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1101 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1102 1103 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1104 setOperationAction(ISD::FADD, MVT::f128, Legal); 1105 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1106 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1107 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1108 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1109 // No extending loads to f128 on PPC. 1110 for (MVT FPT : MVT::fp_valuetypes()) 1111 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1112 setOperationAction(ISD::FMA, MVT::f128, Legal); 1113 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1114 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1115 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1116 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1117 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1118 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1119 1120 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1121 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1122 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1123 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1124 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1125 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1126 1127 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1128 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1129 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1130 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1131 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1132 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1133 // No implementation for these ops for PowerPC. 1134 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1135 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1136 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1137 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1138 setOperationAction(ISD::FREM, MVT::f128, Expand); 1139 1140 // Handle constrained floating-point operations of fp128 1141 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1142 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1143 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1144 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1145 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1146 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1147 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1148 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1149 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1150 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1151 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1152 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1153 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1154 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1155 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1156 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1157 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1158 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1159 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1160 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1161 } else if (Subtarget.hasAltivec() && EnableSoftFP128) { 1162 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1163 1164 for (MVT FPT : MVT::fp_valuetypes()) 1165 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1166 1167 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1168 setOperationAction(ISD::STORE, MVT::f128, Promote); 1169 1170 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1171 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1172 1173 setOperationAction(ISD::FADD, MVT::f128, Expand); 1174 setOperationAction(ISD::FSUB, MVT::f128, Expand); 1175 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1176 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1177 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1178 setOperationAction(ISD::FABS, MVT::f128, Expand); 1179 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1180 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1181 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1182 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1183 setOperationAction(ISD::FREM, MVT::f128, Expand); 1184 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1185 setOperationAction(ISD::FMA, MVT::f128, Expand); 1186 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1187 } 1188 1189 if (Subtarget.hasP9Altivec()) { 1190 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1191 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1192 1193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1200 } 1201 } 1202 1203 if (Subtarget.pairedVectorMemops()) { 1204 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1205 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1206 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1207 } 1208 if (Subtarget.hasMMA()) { 1209 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1210 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1211 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1212 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1213 } 1214 1215 if (Subtarget.has64BitSupport()) 1216 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1217 1218 if (Subtarget.isISA3_1()) 1219 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1220 1221 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1222 1223 if (!isPPC64) { 1224 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1225 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1226 } 1227 1228 setBooleanContents(ZeroOrOneBooleanContent); 1229 1230 if (Subtarget.hasAltivec()) { 1231 // Altivec instructions set fields to all zeros or all ones. 1232 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1233 } 1234 1235 if (!isPPC64) { 1236 // These libcalls are not available in 32-bit. 1237 setLibcallName(RTLIB::SHL_I128, nullptr); 1238 setLibcallName(RTLIB::SRL_I128, nullptr); 1239 setLibcallName(RTLIB::SRA_I128, nullptr); 1240 } 1241 1242 if (!isPPC64) 1243 setMaxAtomicSizeInBitsSupported(32); 1244 1245 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1246 1247 // We have target-specific dag combine patterns for the following nodes: 1248 setTargetDAGCombine(ISD::ADD); 1249 setTargetDAGCombine(ISD::SHL); 1250 setTargetDAGCombine(ISD::SRA); 1251 setTargetDAGCombine(ISD::SRL); 1252 setTargetDAGCombine(ISD::MUL); 1253 setTargetDAGCombine(ISD::FMA); 1254 setTargetDAGCombine(ISD::SINT_TO_FP); 1255 setTargetDAGCombine(ISD::BUILD_VECTOR); 1256 if (Subtarget.hasFPCVT()) 1257 setTargetDAGCombine(ISD::UINT_TO_FP); 1258 setTargetDAGCombine(ISD::LOAD); 1259 setTargetDAGCombine(ISD::STORE); 1260 setTargetDAGCombine(ISD::BR_CC); 1261 if (Subtarget.useCRBits()) 1262 setTargetDAGCombine(ISD::BRCOND); 1263 setTargetDAGCombine(ISD::BSWAP); 1264 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1265 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1266 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1267 1268 setTargetDAGCombine(ISD::SIGN_EXTEND); 1269 setTargetDAGCombine(ISD::ZERO_EXTEND); 1270 setTargetDAGCombine(ISD::ANY_EXTEND); 1271 1272 setTargetDAGCombine(ISD::TRUNCATE); 1273 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1274 1275 1276 if (Subtarget.useCRBits()) { 1277 setTargetDAGCombine(ISD::TRUNCATE); 1278 setTargetDAGCombine(ISD::SETCC); 1279 setTargetDAGCombine(ISD::SELECT_CC); 1280 } 1281 1282 if (Subtarget.hasP9Altivec()) { 1283 setTargetDAGCombine(ISD::ABS); 1284 setTargetDAGCombine(ISD::VSELECT); 1285 } 1286 1287 setLibcallName(RTLIB::LOG_F128, "logf128"); 1288 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1289 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1290 setLibcallName(RTLIB::EXP_F128, "expf128"); 1291 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1292 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1293 setLibcallName(RTLIB::COS_F128, "cosf128"); 1294 setLibcallName(RTLIB::POW_F128, "powf128"); 1295 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1296 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1297 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1298 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1299 1300 // With 32 condition bits, we don't need to sink (and duplicate) compares 1301 // aggressively in CodeGenPrep. 1302 if (Subtarget.useCRBits()) { 1303 setHasMultipleConditionRegisters(); 1304 setJumpIsExpensive(); 1305 } 1306 1307 setMinFunctionAlignment(Align(4)); 1308 1309 switch (Subtarget.getCPUDirective()) { 1310 default: break; 1311 case PPC::DIR_970: 1312 case PPC::DIR_A2: 1313 case PPC::DIR_E500: 1314 case PPC::DIR_E500mc: 1315 case PPC::DIR_E5500: 1316 case PPC::DIR_PWR4: 1317 case PPC::DIR_PWR5: 1318 case PPC::DIR_PWR5X: 1319 case PPC::DIR_PWR6: 1320 case PPC::DIR_PWR6X: 1321 case PPC::DIR_PWR7: 1322 case PPC::DIR_PWR8: 1323 case PPC::DIR_PWR9: 1324 case PPC::DIR_PWR10: 1325 case PPC::DIR_PWR_FUTURE: 1326 setPrefLoopAlignment(Align(16)); 1327 setPrefFunctionAlignment(Align(16)); 1328 break; 1329 } 1330 1331 if (Subtarget.enableMachineScheduler()) 1332 setSchedulingPreference(Sched::Source); 1333 else 1334 setSchedulingPreference(Sched::Hybrid); 1335 1336 computeRegisterProperties(STI.getRegisterInfo()); 1337 1338 // The Freescale cores do better with aggressive inlining of memcpy and 1339 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1340 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1341 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1342 MaxStoresPerMemset = 32; 1343 MaxStoresPerMemsetOptSize = 16; 1344 MaxStoresPerMemcpy = 32; 1345 MaxStoresPerMemcpyOptSize = 8; 1346 MaxStoresPerMemmove = 32; 1347 MaxStoresPerMemmoveOptSize = 8; 1348 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1349 // The A2 also benefits from (very) aggressive inlining of memcpy and 1350 // friends. The overhead of a the function call, even when warm, can be 1351 // over one hundred cycles. 1352 MaxStoresPerMemset = 128; 1353 MaxStoresPerMemcpy = 128; 1354 MaxStoresPerMemmove = 128; 1355 MaxLoadsPerMemcmp = 128; 1356 } else { 1357 MaxLoadsPerMemcmp = 8; 1358 MaxLoadsPerMemcmpOptSize = 4; 1359 } 1360 1361 IsStrictFPEnabled = true; 1362 1363 // Let the subtarget (CPU) decide if a predictable select is more expensive 1364 // than the corresponding branch. This information is used in CGP to decide 1365 // when to convert selects into branches. 1366 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1367 } 1368 1369 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1370 /// the desired ByVal argument alignment. 1371 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1372 if (MaxAlign == MaxMaxAlign) 1373 return; 1374 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1375 if (MaxMaxAlign >= 32 && 1376 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1377 MaxAlign = Align(32); 1378 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1379 MaxAlign < 16) 1380 MaxAlign = Align(16); 1381 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1382 Align EltAlign; 1383 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1384 if (EltAlign > MaxAlign) 1385 MaxAlign = EltAlign; 1386 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1387 for (auto *EltTy : STy->elements()) { 1388 Align EltAlign; 1389 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1390 if (EltAlign > MaxAlign) 1391 MaxAlign = EltAlign; 1392 if (MaxAlign == MaxMaxAlign) 1393 break; 1394 } 1395 } 1396 } 1397 1398 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1399 /// function arguments in the caller parameter area. 1400 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1401 const DataLayout &DL) const { 1402 // 16byte and wider vectors are passed on 16byte boundary. 1403 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1404 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1405 if (Subtarget.hasAltivec()) 1406 getMaxByValAlign(Ty, Alignment, Align(16)); 1407 return Alignment.value(); 1408 } 1409 1410 bool PPCTargetLowering::useSoftFloat() const { 1411 return Subtarget.useSoftFloat(); 1412 } 1413 1414 bool PPCTargetLowering::hasSPE() const { 1415 return Subtarget.hasSPE(); 1416 } 1417 1418 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1419 return VT.isScalarInteger(); 1420 } 1421 1422 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1423 switch ((PPCISD::NodeType)Opcode) { 1424 case PPCISD::FIRST_NUMBER: break; 1425 case PPCISD::FSEL: return "PPCISD::FSEL"; 1426 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1427 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1428 case PPCISD::FCFID: return "PPCISD::FCFID"; 1429 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1430 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1431 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1432 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1433 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1434 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1435 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1436 case PPCISD::FP_TO_UINT_IN_VSR: 1437 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1438 case PPCISD::FP_TO_SINT_IN_VSR: 1439 return "PPCISD::FP_TO_SINT_IN_VSR"; 1440 case PPCISD::FRE: return "PPCISD::FRE"; 1441 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1442 case PPCISD::FTSQRT: 1443 return "PPCISD::FTSQRT"; 1444 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1445 case PPCISD::VPERM: return "PPCISD::VPERM"; 1446 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1447 case PPCISD::XXSPLTI_SP_TO_DP: 1448 return "PPCISD::XXSPLTI_SP_TO_DP"; 1449 case PPCISD::XXSPLTI32DX: 1450 return "PPCISD::XXSPLTI32DX"; 1451 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1452 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1453 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1454 case PPCISD::CMPB: return "PPCISD::CMPB"; 1455 case PPCISD::Hi: return "PPCISD::Hi"; 1456 case PPCISD::Lo: return "PPCISD::Lo"; 1457 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1458 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1459 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1460 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1461 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1462 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1463 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1464 case PPCISD::SRL: return "PPCISD::SRL"; 1465 case PPCISD::SRA: return "PPCISD::SRA"; 1466 case PPCISD::SHL: return "PPCISD::SHL"; 1467 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1468 case PPCISD::CALL: return "PPCISD::CALL"; 1469 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1470 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1471 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1472 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1473 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1474 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1475 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1476 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1477 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1478 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1479 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1480 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1481 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1482 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1483 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1484 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1485 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1486 case PPCISD::ANDI_rec_1_EQ_BIT: 1487 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1488 case PPCISD::ANDI_rec_1_GT_BIT: 1489 return "PPCISD::ANDI_rec_1_GT_BIT"; 1490 case PPCISD::VCMP: return "PPCISD::VCMP"; 1491 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1492 case PPCISD::LBRX: return "PPCISD::LBRX"; 1493 case PPCISD::STBRX: return "PPCISD::STBRX"; 1494 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1495 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1496 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1497 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1498 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1499 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1500 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1501 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1502 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1503 case PPCISD::ST_VSR_SCAL_INT: 1504 return "PPCISD::ST_VSR_SCAL_INT"; 1505 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1506 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1507 case PPCISD::BDZ: return "PPCISD::BDZ"; 1508 case PPCISD::MFFS: return "PPCISD::MFFS"; 1509 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1510 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1511 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1512 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1513 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1514 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1515 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1516 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1517 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1518 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1519 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1520 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1521 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1522 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1523 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1524 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1525 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1526 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1527 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1528 case PPCISD::PADDI_DTPREL: 1529 return "PPCISD::PADDI_DTPREL"; 1530 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1531 case PPCISD::SC: return "PPCISD::SC"; 1532 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1533 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1534 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1535 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1536 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1537 case PPCISD::VABSD: return "PPCISD::VABSD"; 1538 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1539 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1540 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1541 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1542 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1543 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1544 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1545 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1546 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1547 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1548 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1549 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1550 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1551 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1552 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1553 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1554 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1555 case PPCISD::STRICT_FADDRTZ: 1556 return "PPCISD::STRICT_FADDRTZ"; 1557 case PPCISD::STRICT_FCTIDZ: 1558 return "PPCISD::STRICT_FCTIDZ"; 1559 case PPCISD::STRICT_FCTIWZ: 1560 return "PPCISD::STRICT_FCTIWZ"; 1561 case PPCISD::STRICT_FCTIDUZ: 1562 return "PPCISD::STRICT_FCTIDUZ"; 1563 case PPCISD::STRICT_FCTIWUZ: 1564 return "PPCISD::STRICT_FCTIWUZ"; 1565 case PPCISD::STRICT_FCFID: 1566 return "PPCISD::STRICT_FCFID"; 1567 case PPCISD::STRICT_FCFIDU: 1568 return "PPCISD::STRICT_FCFIDU"; 1569 case PPCISD::STRICT_FCFIDS: 1570 return "PPCISD::STRICT_FCFIDS"; 1571 case PPCISD::STRICT_FCFIDUS: 1572 return "PPCISD::STRICT_FCFIDUS"; 1573 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1574 } 1575 return nullptr; 1576 } 1577 1578 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1579 EVT VT) const { 1580 if (!VT.isVector()) 1581 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1582 1583 return VT.changeVectorElementTypeToInteger(); 1584 } 1585 1586 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1587 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1588 return true; 1589 } 1590 1591 //===----------------------------------------------------------------------===// 1592 // Node matching predicates, for use by the tblgen matching code. 1593 //===----------------------------------------------------------------------===// 1594 1595 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1596 static bool isFloatingPointZero(SDValue Op) { 1597 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1598 return CFP->getValueAPF().isZero(); 1599 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1600 // Maybe this has already been legalized into the constant pool? 1601 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1602 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1603 return CFP->getValueAPF().isZero(); 1604 } 1605 return false; 1606 } 1607 1608 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1609 /// true if Op is undef or if it matches the specified value. 1610 static bool isConstantOrUndef(int Op, int Val) { 1611 return Op < 0 || Op == Val; 1612 } 1613 1614 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1615 /// VPKUHUM instruction. 1616 /// The ShuffleKind distinguishes between big-endian operations with 1617 /// two different inputs (0), either-endian operations with two identical 1618 /// inputs (1), and little-endian operations with two different inputs (2). 1619 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1620 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1621 SelectionDAG &DAG) { 1622 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1623 if (ShuffleKind == 0) { 1624 if (IsLE) 1625 return false; 1626 for (unsigned i = 0; i != 16; ++i) 1627 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1628 return false; 1629 } else if (ShuffleKind == 2) { 1630 if (!IsLE) 1631 return false; 1632 for (unsigned i = 0; i != 16; ++i) 1633 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1634 return false; 1635 } else if (ShuffleKind == 1) { 1636 unsigned j = IsLE ? 0 : 1; 1637 for (unsigned i = 0; i != 8; ++i) 1638 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1639 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1640 return false; 1641 } 1642 return true; 1643 } 1644 1645 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1646 /// VPKUWUM instruction. 1647 /// The ShuffleKind distinguishes between big-endian operations with 1648 /// two different inputs (0), either-endian operations with two identical 1649 /// inputs (1), and little-endian operations with two different inputs (2). 1650 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1651 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1652 SelectionDAG &DAG) { 1653 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1654 if (ShuffleKind == 0) { 1655 if (IsLE) 1656 return false; 1657 for (unsigned i = 0; i != 16; i += 2) 1658 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1659 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1660 return false; 1661 } else if (ShuffleKind == 2) { 1662 if (!IsLE) 1663 return false; 1664 for (unsigned i = 0; i != 16; i += 2) 1665 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1666 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1667 return false; 1668 } else if (ShuffleKind == 1) { 1669 unsigned j = IsLE ? 0 : 2; 1670 for (unsigned i = 0; i != 8; i += 2) 1671 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1672 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1673 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1674 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1675 return false; 1676 } 1677 return true; 1678 } 1679 1680 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1681 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1682 /// current subtarget. 1683 /// 1684 /// The ShuffleKind distinguishes between big-endian operations with 1685 /// two different inputs (0), either-endian operations with two identical 1686 /// inputs (1), and little-endian operations with two different inputs (2). 1687 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1688 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1689 SelectionDAG &DAG) { 1690 const PPCSubtarget& Subtarget = 1691 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1692 if (!Subtarget.hasP8Vector()) 1693 return false; 1694 1695 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1696 if (ShuffleKind == 0) { 1697 if (IsLE) 1698 return false; 1699 for (unsigned i = 0; i != 16; i += 4) 1700 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1701 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1702 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1703 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1704 return false; 1705 } else if (ShuffleKind == 2) { 1706 if (!IsLE) 1707 return false; 1708 for (unsigned i = 0; i != 16; i += 4) 1709 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1710 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1711 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1712 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1713 return false; 1714 } else if (ShuffleKind == 1) { 1715 unsigned j = IsLE ? 0 : 4; 1716 for (unsigned i = 0; i != 8; i += 4) 1717 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1718 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1719 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1720 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1721 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1722 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1723 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1724 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1725 return false; 1726 } 1727 return true; 1728 } 1729 1730 /// isVMerge - Common function, used to match vmrg* shuffles. 1731 /// 1732 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1733 unsigned LHSStart, unsigned RHSStart) { 1734 if (N->getValueType(0) != MVT::v16i8) 1735 return false; 1736 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1737 "Unsupported merge size!"); 1738 1739 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1740 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1741 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1742 LHSStart+j+i*UnitSize) || 1743 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1744 RHSStart+j+i*UnitSize)) 1745 return false; 1746 } 1747 return true; 1748 } 1749 1750 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1751 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1752 /// The ShuffleKind distinguishes between big-endian merges with two 1753 /// different inputs (0), either-endian merges with two identical inputs (1), 1754 /// and little-endian merges with two different inputs (2). For the latter, 1755 /// the input operands are swapped (see PPCInstrAltivec.td). 1756 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1757 unsigned ShuffleKind, SelectionDAG &DAG) { 1758 if (DAG.getDataLayout().isLittleEndian()) { 1759 if (ShuffleKind == 1) // unary 1760 return isVMerge(N, UnitSize, 0, 0); 1761 else if (ShuffleKind == 2) // swapped 1762 return isVMerge(N, UnitSize, 0, 16); 1763 else 1764 return false; 1765 } else { 1766 if (ShuffleKind == 1) // unary 1767 return isVMerge(N, UnitSize, 8, 8); 1768 else if (ShuffleKind == 0) // normal 1769 return isVMerge(N, UnitSize, 8, 24); 1770 else 1771 return false; 1772 } 1773 } 1774 1775 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1776 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1777 /// The ShuffleKind distinguishes between big-endian merges with two 1778 /// different inputs (0), either-endian merges with two identical inputs (1), 1779 /// and little-endian merges with two different inputs (2). For the latter, 1780 /// the input operands are swapped (see PPCInstrAltivec.td). 1781 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1782 unsigned ShuffleKind, SelectionDAG &DAG) { 1783 if (DAG.getDataLayout().isLittleEndian()) { 1784 if (ShuffleKind == 1) // unary 1785 return isVMerge(N, UnitSize, 8, 8); 1786 else if (ShuffleKind == 2) // swapped 1787 return isVMerge(N, UnitSize, 8, 24); 1788 else 1789 return false; 1790 } else { 1791 if (ShuffleKind == 1) // unary 1792 return isVMerge(N, UnitSize, 0, 0); 1793 else if (ShuffleKind == 0) // normal 1794 return isVMerge(N, UnitSize, 0, 16); 1795 else 1796 return false; 1797 } 1798 } 1799 1800 /** 1801 * Common function used to match vmrgew and vmrgow shuffles 1802 * 1803 * The indexOffset determines whether to look for even or odd words in 1804 * the shuffle mask. This is based on the of the endianness of the target 1805 * machine. 1806 * - Little Endian: 1807 * - Use offset of 0 to check for odd elements 1808 * - Use offset of 4 to check for even elements 1809 * - Big Endian: 1810 * - Use offset of 0 to check for even elements 1811 * - Use offset of 4 to check for odd elements 1812 * A detailed description of the vector element ordering for little endian and 1813 * big endian can be found at 1814 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1815 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1816 * compiler differences mean to you 1817 * 1818 * The mask to the shuffle vector instruction specifies the indices of the 1819 * elements from the two input vectors to place in the result. The elements are 1820 * numbered in array-access order, starting with the first vector. These vectors 1821 * are always of type v16i8, thus each vector will contain 16 elements of size 1822 * 8. More info on the shuffle vector can be found in the 1823 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1824 * Language Reference. 1825 * 1826 * The RHSStartValue indicates whether the same input vectors are used (unary) 1827 * or two different input vectors are used, based on the following: 1828 * - If the instruction uses the same vector for both inputs, the range of the 1829 * indices will be 0 to 15. In this case, the RHSStart value passed should 1830 * be 0. 1831 * - If the instruction has two different vectors then the range of the 1832 * indices will be 0 to 31. In this case, the RHSStart value passed should 1833 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1834 * to 31 specify elements in the second vector). 1835 * 1836 * \param[in] N The shuffle vector SD Node to analyze 1837 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1838 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1839 * vector to the shuffle_vector instruction 1840 * \return true iff this shuffle vector represents an even or odd word merge 1841 */ 1842 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1843 unsigned RHSStartValue) { 1844 if (N->getValueType(0) != MVT::v16i8) 1845 return false; 1846 1847 for (unsigned i = 0; i < 2; ++i) 1848 for (unsigned j = 0; j < 4; ++j) 1849 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1850 i*RHSStartValue+j+IndexOffset) || 1851 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1852 i*RHSStartValue+j+IndexOffset+8)) 1853 return false; 1854 return true; 1855 } 1856 1857 /** 1858 * Determine if the specified shuffle mask is suitable for the vmrgew or 1859 * vmrgow instructions. 1860 * 1861 * \param[in] N The shuffle vector SD Node to analyze 1862 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1863 * \param[in] ShuffleKind Identify the type of merge: 1864 * - 0 = big-endian merge with two different inputs; 1865 * - 1 = either-endian merge with two identical inputs; 1866 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1867 * little-endian merges). 1868 * \param[in] DAG The current SelectionDAG 1869 * \return true iff this shuffle mask 1870 */ 1871 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1872 unsigned ShuffleKind, SelectionDAG &DAG) { 1873 if (DAG.getDataLayout().isLittleEndian()) { 1874 unsigned indexOffset = CheckEven ? 4 : 0; 1875 if (ShuffleKind == 1) // Unary 1876 return isVMerge(N, indexOffset, 0); 1877 else if (ShuffleKind == 2) // swapped 1878 return isVMerge(N, indexOffset, 16); 1879 else 1880 return false; 1881 } 1882 else { 1883 unsigned indexOffset = CheckEven ? 0 : 4; 1884 if (ShuffleKind == 1) // Unary 1885 return isVMerge(N, indexOffset, 0); 1886 else if (ShuffleKind == 0) // Normal 1887 return isVMerge(N, indexOffset, 16); 1888 else 1889 return false; 1890 } 1891 return false; 1892 } 1893 1894 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1895 /// amount, otherwise return -1. 1896 /// The ShuffleKind distinguishes between big-endian operations with two 1897 /// different inputs (0), either-endian operations with two identical inputs 1898 /// (1), and little-endian operations with two different inputs (2). For the 1899 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1900 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1901 SelectionDAG &DAG) { 1902 if (N->getValueType(0) != MVT::v16i8) 1903 return -1; 1904 1905 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1906 1907 // Find the first non-undef value in the shuffle mask. 1908 unsigned i; 1909 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1910 /*search*/; 1911 1912 if (i == 16) return -1; // all undef. 1913 1914 // Otherwise, check to see if the rest of the elements are consecutively 1915 // numbered from this value. 1916 unsigned ShiftAmt = SVOp->getMaskElt(i); 1917 if (ShiftAmt < i) return -1; 1918 1919 ShiftAmt -= i; 1920 bool isLE = DAG.getDataLayout().isLittleEndian(); 1921 1922 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1923 // Check the rest of the elements to see if they are consecutive. 1924 for (++i; i != 16; ++i) 1925 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1926 return -1; 1927 } else if (ShuffleKind == 1) { 1928 // Check the rest of the elements to see if they are consecutive. 1929 for (++i; i != 16; ++i) 1930 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1931 return -1; 1932 } else 1933 return -1; 1934 1935 if (isLE) 1936 ShiftAmt = 16 - ShiftAmt; 1937 1938 return ShiftAmt; 1939 } 1940 1941 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1942 /// specifies a splat of a single element that is suitable for input to 1943 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1944 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1945 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1946 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1947 1948 // The consecutive indices need to specify an element, not part of two 1949 // different elements. So abandon ship early if this isn't the case. 1950 if (N->getMaskElt(0) % EltSize != 0) 1951 return false; 1952 1953 // This is a splat operation if each element of the permute is the same, and 1954 // if the value doesn't reference the second vector. 1955 unsigned ElementBase = N->getMaskElt(0); 1956 1957 // FIXME: Handle UNDEF elements too! 1958 if (ElementBase >= 16) 1959 return false; 1960 1961 // Check that the indices are consecutive, in the case of a multi-byte element 1962 // splatted with a v16i8 mask. 1963 for (unsigned i = 1; i != EltSize; ++i) 1964 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1965 return false; 1966 1967 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1968 if (N->getMaskElt(i) < 0) continue; 1969 for (unsigned j = 0; j != EltSize; ++j) 1970 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1971 return false; 1972 } 1973 return true; 1974 } 1975 1976 /// Check that the mask is shuffling N byte elements. Within each N byte 1977 /// element of the mask, the indices could be either in increasing or 1978 /// decreasing order as long as they are consecutive. 1979 /// \param[in] N the shuffle vector SD Node to analyze 1980 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1981 /// Word/DoubleWord/QuadWord). 1982 /// \param[in] StepLen the delta indices number among the N byte element, if 1983 /// the mask is in increasing/decreasing order then it is 1/-1. 1984 /// \return true iff the mask is shuffling N byte elements. 1985 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1986 int StepLen) { 1987 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1988 "Unexpected element width."); 1989 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1990 1991 unsigned NumOfElem = 16 / Width; 1992 unsigned MaskVal[16]; // Width is never greater than 16 1993 for (unsigned i = 0; i < NumOfElem; ++i) { 1994 MaskVal[0] = N->getMaskElt(i * Width); 1995 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1996 return false; 1997 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1998 return false; 1999 } 2000 2001 for (unsigned int j = 1; j < Width; ++j) { 2002 MaskVal[j] = N->getMaskElt(i * Width + j); 2003 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2004 return false; 2005 } 2006 } 2007 } 2008 2009 return true; 2010 } 2011 2012 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2013 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2014 if (!isNByteElemShuffleMask(N, 4, 1)) 2015 return false; 2016 2017 // Now we look at mask elements 0,4,8,12 2018 unsigned M0 = N->getMaskElt(0) / 4; 2019 unsigned M1 = N->getMaskElt(4) / 4; 2020 unsigned M2 = N->getMaskElt(8) / 4; 2021 unsigned M3 = N->getMaskElt(12) / 4; 2022 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2023 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2024 2025 // Below, let H and L be arbitrary elements of the shuffle mask 2026 // where H is in the range [4,7] and L is in the range [0,3]. 2027 // H, 1, 2, 3 or L, 5, 6, 7 2028 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2029 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2030 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2031 InsertAtByte = IsLE ? 12 : 0; 2032 Swap = M0 < 4; 2033 return true; 2034 } 2035 // 0, H, 2, 3 or 4, L, 6, 7 2036 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2037 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2038 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2039 InsertAtByte = IsLE ? 8 : 4; 2040 Swap = M1 < 4; 2041 return true; 2042 } 2043 // 0, 1, H, 3 or 4, 5, L, 7 2044 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2045 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2046 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2047 InsertAtByte = IsLE ? 4 : 8; 2048 Swap = M2 < 4; 2049 return true; 2050 } 2051 // 0, 1, 2, H or 4, 5, 6, L 2052 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2053 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2054 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2055 InsertAtByte = IsLE ? 0 : 12; 2056 Swap = M3 < 4; 2057 return true; 2058 } 2059 2060 // If both vector operands for the shuffle are the same vector, the mask will 2061 // contain only elements from the first one and the second one will be undef. 2062 if (N->getOperand(1).isUndef()) { 2063 ShiftElts = 0; 2064 Swap = true; 2065 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2066 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2067 InsertAtByte = IsLE ? 12 : 0; 2068 return true; 2069 } 2070 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2071 InsertAtByte = IsLE ? 8 : 4; 2072 return true; 2073 } 2074 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2075 InsertAtByte = IsLE ? 4 : 8; 2076 return true; 2077 } 2078 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2079 InsertAtByte = IsLE ? 0 : 12; 2080 return true; 2081 } 2082 } 2083 2084 return false; 2085 } 2086 2087 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2088 bool &Swap, bool IsLE) { 2089 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2090 // Ensure each byte index of the word is consecutive. 2091 if (!isNByteElemShuffleMask(N, 4, 1)) 2092 return false; 2093 2094 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2095 unsigned M0 = N->getMaskElt(0) / 4; 2096 unsigned M1 = N->getMaskElt(4) / 4; 2097 unsigned M2 = N->getMaskElt(8) / 4; 2098 unsigned M3 = N->getMaskElt(12) / 4; 2099 2100 // If both vector operands for the shuffle are the same vector, the mask will 2101 // contain only elements from the first one and the second one will be undef. 2102 if (N->getOperand(1).isUndef()) { 2103 assert(M0 < 4 && "Indexing into an undef vector?"); 2104 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2105 return false; 2106 2107 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2108 Swap = false; 2109 return true; 2110 } 2111 2112 // Ensure each word index of the ShuffleVector Mask is consecutive. 2113 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2114 return false; 2115 2116 if (IsLE) { 2117 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2118 // Input vectors don't need to be swapped if the leading element 2119 // of the result is one of the 3 left elements of the second vector 2120 // (or if there is no shift to be done at all). 2121 Swap = false; 2122 ShiftElts = (8 - M0) % 8; 2123 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2124 // Input vectors need to be swapped if the leading element 2125 // of the result is one of the 3 left elements of the first vector 2126 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2127 Swap = true; 2128 ShiftElts = (4 - M0) % 4; 2129 } 2130 2131 return true; 2132 } else { // BE 2133 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2134 // Input vectors don't need to be swapped if the leading element 2135 // of the result is one of the 4 elements of the first vector. 2136 Swap = false; 2137 ShiftElts = M0; 2138 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2139 // Input vectors need to be swapped if the leading element 2140 // of the result is one of the 4 elements of the right vector. 2141 Swap = true; 2142 ShiftElts = M0 - 4; 2143 } 2144 2145 return true; 2146 } 2147 } 2148 2149 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2150 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2151 2152 if (!isNByteElemShuffleMask(N, Width, -1)) 2153 return false; 2154 2155 for (int i = 0; i < 16; i += Width) 2156 if (N->getMaskElt(i) != i + Width - 1) 2157 return false; 2158 2159 return true; 2160 } 2161 2162 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2163 return isXXBRShuffleMaskHelper(N, 2); 2164 } 2165 2166 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2167 return isXXBRShuffleMaskHelper(N, 4); 2168 } 2169 2170 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2171 return isXXBRShuffleMaskHelper(N, 8); 2172 } 2173 2174 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2175 return isXXBRShuffleMaskHelper(N, 16); 2176 } 2177 2178 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2179 /// if the inputs to the instruction should be swapped and set \p DM to the 2180 /// value for the immediate. 2181 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2182 /// AND element 0 of the result comes from the first input (LE) or second input 2183 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2184 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2185 /// mask. 2186 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2187 bool &Swap, bool IsLE) { 2188 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2189 2190 // Ensure each byte index of the double word is consecutive. 2191 if (!isNByteElemShuffleMask(N, 8, 1)) 2192 return false; 2193 2194 unsigned M0 = N->getMaskElt(0) / 8; 2195 unsigned M1 = N->getMaskElt(8) / 8; 2196 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2197 2198 // If both vector operands for the shuffle are the same vector, the mask will 2199 // contain only elements from the first one and the second one will be undef. 2200 if (N->getOperand(1).isUndef()) { 2201 if ((M0 | M1) < 2) { 2202 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2203 Swap = false; 2204 return true; 2205 } else 2206 return false; 2207 } 2208 2209 if (IsLE) { 2210 if (M0 > 1 && M1 < 2) { 2211 Swap = false; 2212 } else if (M0 < 2 && M1 > 1) { 2213 M0 = (M0 + 2) % 4; 2214 M1 = (M1 + 2) % 4; 2215 Swap = true; 2216 } else 2217 return false; 2218 2219 // Note: if control flow comes here that means Swap is already set above 2220 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2221 return true; 2222 } else { // BE 2223 if (M0 < 2 && M1 > 1) { 2224 Swap = false; 2225 } else if (M0 > 1 && M1 < 2) { 2226 M0 = (M0 + 2) % 4; 2227 M1 = (M1 + 2) % 4; 2228 Swap = true; 2229 } else 2230 return false; 2231 2232 // Note: if control flow comes here that means Swap is already set above 2233 DM = (M0 << 1) + (M1 & 1); 2234 return true; 2235 } 2236 } 2237 2238 2239 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2240 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2241 /// elements are counted from the left of the vector register). 2242 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2243 SelectionDAG &DAG) { 2244 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2245 assert(isSplatShuffleMask(SVOp, EltSize)); 2246 if (DAG.getDataLayout().isLittleEndian()) 2247 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2248 else 2249 return SVOp->getMaskElt(0) / EltSize; 2250 } 2251 2252 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2253 /// by using a vspltis[bhw] instruction of the specified element size, return 2254 /// the constant being splatted. The ByteSize field indicates the number of 2255 /// bytes of each element [124] -> [bhw]. 2256 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2257 SDValue OpVal(nullptr, 0); 2258 2259 // If ByteSize of the splat is bigger than the element size of the 2260 // build_vector, then we have a case where we are checking for a splat where 2261 // multiple elements of the buildvector are folded together into a single 2262 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2263 unsigned EltSize = 16/N->getNumOperands(); 2264 if (EltSize < ByteSize) { 2265 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2266 SDValue UniquedVals[4]; 2267 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2268 2269 // See if all of the elements in the buildvector agree across. 2270 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2271 if (N->getOperand(i).isUndef()) continue; 2272 // If the element isn't a constant, bail fully out. 2273 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2274 2275 if (!UniquedVals[i&(Multiple-1)].getNode()) 2276 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2277 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2278 return SDValue(); // no match. 2279 } 2280 2281 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2282 // either constant or undef values that are identical for each chunk. See 2283 // if these chunks can form into a larger vspltis*. 2284 2285 // Check to see if all of the leading entries are either 0 or -1. If 2286 // neither, then this won't fit into the immediate field. 2287 bool LeadingZero = true; 2288 bool LeadingOnes = true; 2289 for (unsigned i = 0; i != Multiple-1; ++i) { 2290 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2291 2292 LeadingZero &= isNullConstant(UniquedVals[i]); 2293 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2294 } 2295 // Finally, check the least significant entry. 2296 if (LeadingZero) { 2297 if (!UniquedVals[Multiple-1].getNode()) 2298 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2299 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2300 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2301 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2302 } 2303 if (LeadingOnes) { 2304 if (!UniquedVals[Multiple-1].getNode()) 2305 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2306 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2307 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2308 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2309 } 2310 2311 return SDValue(); 2312 } 2313 2314 // Check to see if this buildvec has a single non-undef value in its elements. 2315 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2316 if (N->getOperand(i).isUndef()) continue; 2317 if (!OpVal.getNode()) 2318 OpVal = N->getOperand(i); 2319 else if (OpVal != N->getOperand(i)) 2320 return SDValue(); 2321 } 2322 2323 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2324 2325 unsigned ValSizeInBytes = EltSize; 2326 uint64_t Value = 0; 2327 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2328 Value = CN->getZExtValue(); 2329 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2330 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2331 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2332 } 2333 2334 // If the splat value is larger than the element value, then we can never do 2335 // this splat. The only case that we could fit the replicated bits into our 2336 // immediate field for would be zero, and we prefer to use vxor for it. 2337 if (ValSizeInBytes < ByteSize) return SDValue(); 2338 2339 // If the element value is larger than the splat value, check if it consists 2340 // of a repeated bit pattern of size ByteSize. 2341 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2342 return SDValue(); 2343 2344 // Properly sign extend the value. 2345 int MaskVal = SignExtend32(Value, ByteSize * 8); 2346 2347 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2348 if (MaskVal == 0) return SDValue(); 2349 2350 // Finally, if this value fits in a 5 bit sext field, return it 2351 if (SignExtend32<5>(MaskVal) == MaskVal) 2352 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2353 return SDValue(); 2354 } 2355 2356 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2357 /// amount, otherwise return -1. 2358 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2359 EVT VT = N->getValueType(0); 2360 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2361 return -1; 2362 2363 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2364 2365 // Find the first non-undef value in the shuffle mask. 2366 unsigned i; 2367 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2368 /*search*/; 2369 2370 if (i == 4) return -1; // all undef. 2371 2372 // Otherwise, check to see if the rest of the elements are consecutively 2373 // numbered from this value. 2374 unsigned ShiftAmt = SVOp->getMaskElt(i); 2375 if (ShiftAmt < i) return -1; 2376 ShiftAmt -= i; 2377 2378 // Check the rest of the elements to see if they are consecutive. 2379 for (++i; i != 4; ++i) 2380 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2381 return -1; 2382 2383 return ShiftAmt; 2384 } 2385 2386 //===----------------------------------------------------------------------===// 2387 // Addressing Mode Selection 2388 //===----------------------------------------------------------------------===// 2389 2390 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2391 /// or 64-bit immediate, and if the value can be accurately represented as a 2392 /// sign extension from a 16-bit value. If so, this returns true and the 2393 /// immediate. 2394 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2395 if (!isa<ConstantSDNode>(N)) 2396 return false; 2397 2398 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2399 if (N->getValueType(0) == MVT::i32) 2400 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2401 else 2402 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2403 } 2404 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2405 return isIntS16Immediate(Op.getNode(), Imm); 2406 } 2407 2408 2409 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2410 /// be represented as an indexed [r+r] operation. 2411 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2412 SDValue &Index, 2413 SelectionDAG &DAG) const { 2414 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2415 UI != E; ++UI) { 2416 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2417 if (Memop->getMemoryVT() == MVT::f64) { 2418 Base = N.getOperand(0); 2419 Index = N.getOperand(1); 2420 return true; 2421 } 2422 } 2423 } 2424 return false; 2425 } 2426 2427 /// isIntS34Immediate - This method tests if value of node given can be 2428 /// accurately represented as a sign extension from a 34-bit value. If so, 2429 /// this returns true and the immediate. 2430 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2431 if (!isa<ConstantSDNode>(N)) 2432 return false; 2433 2434 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2435 return isInt<34>(Imm); 2436 } 2437 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2438 return isIntS34Immediate(Op.getNode(), Imm); 2439 } 2440 2441 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2442 /// can be represented as an indexed [r+r] operation. Returns false if it 2443 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2444 /// non-zero and N can be represented by a base register plus a signed 16-bit 2445 /// displacement, make a more precise judgement by checking (displacement % \p 2446 /// EncodingAlignment). 2447 bool PPCTargetLowering::SelectAddressRegReg( 2448 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2449 MaybeAlign EncodingAlignment) const { 2450 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2451 // a [pc+imm]. 2452 if (SelectAddressPCRel(N, Base)) 2453 return false; 2454 2455 int16_t Imm = 0; 2456 if (N.getOpcode() == ISD::ADD) { 2457 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2458 // SPE load/store can only handle 8-bit offsets. 2459 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2460 return true; 2461 if (isIntS16Immediate(N.getOperand(1), Imm) && 2462 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2463 return false; // r+i 2464 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2465 return false; // r+i 2466 2467 Base = N.getOperand(0); 2468 Index = N.getOperand(1); 2469 return true; 2470 } else if (N.getOpcode() == ISD::OR) { 2471 if (isIntS16Immediate(N.getOperand(1), Imm) && 2472 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2473 return false; // r+i can fold it if we can. 2474 2475 // If this is an or of disjoint bitfields, we can codegen this as an add 2476 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2477 // disjoint. 2478 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2479 2480 if (LHSKnown.Zero.getBoolValue()) { 2481 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2482 // If all of the bits are known zero on the LHS or RHS, the add won't 2483 // carry. 2484 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2485 Base = N.getOperand(0); 2486 Index = N.getOperand(1); 2487 return true; 2488 } 2489 } 2490 } 2491 2492 return false; 2493 } 2494 2495 // If we happen to be doing an i64 load or store into a stack slot that has 2496 // less than a 4-byte alignment, then the frame-index elimination may need to 2497 // use an indexed load or store instruction (because the offset may not be a 2498 // multiple of 4). The extra register needed to hold the offset comes from the 2499 // register scavenger, and it is possible that the scavenger will need to use 2500 // an emergency spill slot. As a result, we need to make sure that a spill slot 2501 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2502 // stack slot. 2503 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2504 // FIXME: This does not handle the LWA case. 2505 if (VT != MVT::i64) 2506 return; 2507 2508 // NOTE: We'll exclude negative FIs here, which come from argument 2509 // lowering, because there are no known test cases triggering this problem 2510 // using packed structures (or similar). We can remove this exclusion if 2511 // we find such a test case. The reason why this is so test-case driven is 2512 // because this entire 'fixup' is only to prevent crashes (from the 2513 // register scavenger) on not-really-valid inputs. For example, if we have: 2514 // %a = alloca i1 2515 // %b = bitcast i1* %a to i64* 2516 // store i64* a, i64 b 2517 // then the store should really be marked as 'align 1', but is not. If it 2518 // were marked as 'align 1' then the indexed form would have been 2519 // instruction-selected initially, and the problem this 'fixup' is preventing 2520 // won't happen regardless. 2521 if (FrameIdx < 0) 2522 return; 2523 2524 MachineFunction &MF = DAG.getMachineFunction(); 2525 MachineFrameInfo &MFI = MF.getFrameInfo(); 2526 2527 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2528 return; 2529 2530 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2531 FuncInfo->setHasNonRISpills(); 2532 } 2533 2534 /// Returns true if the address N can be represented by a base register plus 2535 /// a signed 16-bit displacement [r+imm], and if it is not better 2536 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2537 /// displacements that are multiples of that value. 2538 bool PPCTargetLowering::SelectAddressRegImm( 2539 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2540 MaybeAlign EncodingAlignment) const { 2541 // FIXME dl should come from parent load or store, not from address 2542 SDLoc dl(N); 2543 2544 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2545 // a [pc+imm]. 2546 if (SelectAddressPCRel(N, Base)) 2547 return false; 2548 2549 // If this can be more profitably realized as r+r, fail. 2550 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2551 return false; 2552 2553 if (N.getOpcode() == ISD::ADD) { 2554 int16_t imm = 0; 2555 if (isIntS16Immediate(N.getOperand(1), imm) && 2556 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2557 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2558 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2559 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2560 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2561 } else { 2562 Base = N.getOperand(0); 2563 } 2564 return true; // [r+i] 2565 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2566 // Match LOAD (ADD (X, Lo(G))). 2567 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2568 && "Cannot handle constant offsets yet!"); 2569 Disp = N.getOperand(1).getOperand(0); // The global address. 2570 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2571 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2572 Disp.getOpcode() == ISD::TargetConstantPool || 2573 Disp.getOpcode() == ISD::TargetJumpTable); 2574 Base = N.getOperand(0); 2575 return true; // [&g+r] 2576 } 2577 } else if (N.getOpcode() == ISD::OR) { 2578 int16_t imm = 0; 2579 if (isIntS16Immediate(N.getOperand(1), imm) && 2580 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2581 // If this is an or of disjoint bitfields, we can codegen this as an add 2582 // (for better address arithmetic) if the LHS and RHS of the OR are 2583 // provably disjoint. 2584 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2585 2586 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2587 // If all of the bits are known zero on the LHS or RHS, the add won't 2588 // carry. 2589 if (FrameIndexSDNode *FI = 2590 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2591 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2592 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2593 } else { 2594 Base = N.getOperand(0); 2595 } 2596 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2597 return true; 2598 } 2599 } 2600 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2601 // Loading from a constant address. 2602 2603 // If this address fits entirely in a 16-bit sext immediate field, codegen 2604 // this as "d, 0" 2605 int16_t Imm; 2606 if (isIntS16Immediate(CN, Imm) && 2607 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2608 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2609 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2610 CN->getValueType(0)); 2611 return true; 2612 } 2613 2614 // Handle 32-bit sext immediates with LIS + addr mode. 2615 if ((CN->getValueType(0) == MVT::i32 || 2616 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2617 (!EncodingAlignment || 2618 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2619 int Addr = (int)CN->getZExtValue(); 2620 2621 // Otherwise, break this down into an LIS + disp. 2622 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2623 2624 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2625 MVT::i32); 2626 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2627 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2628 return true; 2629 } 2630 } 2631 2632 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2633 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2634 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2635 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2636 } else 2637 Base = N; 2638 return true; // [r+0] 2639 } 2640 2641 /// Similar to the 16-bit case but for instructions that take a 34-bit 2642 /// displacement field (prefixed loads/stores). 2643 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2644 SDValue &Base, 2645 SelectionDAG &DAG) const { 2646 // Only on 64-bit targets. 2647 if (N.getValueType() != MVT::i64) 2648 return false; 2649 2650 SDLoc dl(N); 2651 int64_t Imm = 0; 2652 2653 if (N.getOpcode() == ISD::ADD) { 2654 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2655 return false; 2656 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2657 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2658 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2659 else 2660 Base = N.getOperand(0); 2661 return true; 2662 } 2663 2664 if (N.getOpcode() == ISD::OR) { 2665 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2666 return false; 2667 // If this is an or of disjoint bitfields, we can codegen this as an add 2668 // (for better address arithmetic) if the LHS and RHS of the OR are 2669 // provably disjoint. 2670 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2671 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2672 return false; 2673 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2674 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2675 else 2676 Base = N.getOperand(0); 2677 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2678 return true; 2679 } 2680 2681 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2682 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2683 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2684 return true; 2685 } 2686 2687 return false; 2688 } 2689 2690 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2691 /// represented as an indexed [r+r] operation. 2692 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2693 SDValue &Index, 2694 SelectionDAG &DAG) const { 2695 // Check to see if we can easily represent this as an [r+r] address. This 2696 // will fail if it thinks that the address is more profitably represented as 2697 // reg+imm, e.g. where imm = 0. 2698 if (SelectAddressRegReg(N, Base, Index, DAG)) 2699 return true; 2700 2701 // If the address is the result of an add, we will utilize the fact that the 2702 // address calculation includes an implicit add. However, we can reduce 2703 // register pressure if we do not materialize a constant just for use as the 2704 // index register. We only get rid of the add if it is not an add of a 2705 // value and a 16-bit signed constant and both have a single use. 2706 int16_t imm = 0; 2707 if (N.getOpcode() == ISD::ADD && 2708 (!isIntS16Immediate(N.getOperand(1), imm) || 2709 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2710 Base = N.getOperand(0); 2711 Index = N.getOperand(1); 2712 return true; 2713 } 2714 2715 // Otherwise, do it the hard way, using R0 as the base register. 2716 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2717 N.getValueType()); 2718 Index = N; 2719 return true; 2720 } 2721 2722 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2723 Ty *PCRelCand = dyn_cast<Ty>(N); 2724 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2725 } 2726 2727 /// Returns true if this address is a PC Relative address. 2728 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2729 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2730 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2731 // This is a materialize PC Relative node. Always select this as PC Relative. 2732 Base = N; 2733 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2734 return true; 2735 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2736 isValidPCRelNode<GlobalAddressSDNode>(N) || 2737 isValidPCRelNode<JumpTableSDNode>(N) || 2738 isValidPCRelNode<BlockAddressSDNode>(N)) 2739 return true; 2740 return false; 2741 } 2742 2743 /// Returns true if we should use a direct load into vector instruction 2744 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2745 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2746 2747 // If there are any other uses other than scalar to vector, then we should 2748 // keep it as a scalar load -> direct move pattern to prevent multiple 2749 // loads. 2750 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2751 if (!LD) 2752 return false; 2753 2754 EVT MemVT = LD->getMemoryVT(); 2755 if (!MemVT.isSimple()) 2756 return false; 2757 switch(MemVT.getSimpleVT().SimpleTy) { 2758 case MVT::i64: 2759 break; 2760 case MVT::i32: 2761 if (!ST.hasP8Vector()) 2762 return false; 2763 break; 2764 case MVT::i16: 2765 case MVT::i8: 2766 if (!ST.hasP9Vector()) 2767 return false; 2768 break; 2769 default: 2770 return false; 2771 } 2772 2773 SDValue LoadedVal(N, 0); 2774 if (!LoadedVal.hasOneUse()) 2775 return false; 2776 2777 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2778 UI != UE; ++UI) 2779 if (UI.getUse().get().getResNo() == 0 && 2780 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2781 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2782 return false; 2783 2784 return true; 2785 } 2786 2787 /// getPreIndexedAddressParts - returns true by value, base pointer and 2788 /// offset pointer and addressing mode by reference if the node's address 2789 /// can be legally represented as pre-indexed load / store address. 2790 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2791 SDValue &Offset, 2792 ISD::MemIndexedMode &AM, 2793 SelectionDAG &DAG) const { 2794 if (DisablePPCPreinc) return false; 2795 2796 bool isLoad = true; 2797 SDValue Ptr; 2798 EVT VT; 2799 unsigned Alignment; 2800 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2801 Ptr = LD->getBasePtr(); 2802 VT = LD->getMemoryVT(); 2803 Alignment = LD->getAlignment(); 2804 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2805 Ptr = ST->getBasePtr(); 2806 VT = ST->getMemoryVT(); 2807 Alignment = ST->getAlignment(); 2808 isLoad = false; 2809 } else 2810 return false; 2811 2812 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2813 // instructions because we can fold these into a more efficient instruction 2814 // instead, (such as LXSD). 2815 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2816 return false; 2817 } 2818 2819 // PowerPC doesn't have preinc load/store instructions for vectors 2820 if (VT.isVector()) 2821 return false; 2822 2823 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2824 // Common code will reject creating a pre-inc form if the base pointer 2825 // is a frame index, or if N is a store and the base pointer is either 2826 // the same as or a predecessor of the value being stored. Check for 2827 // those situations here, and try with swapped Base/Offset instead. 2828 bool Swap = false; 2829 2830 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2831 Swap = true; 2832 else if (!isLoad) { 2833 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2834 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2835 Swap = true; 2836 } 2837 2838 if (Swap) 2839 std::swap(Base, Offset); 2840 2841 AM = ISD::PRE_INC; 2842 return true; 2843 } 2844 2845 // LDU/STU can only handle immediates that are a multiple of 4. 2846 if (VT != MVT::i64) { 2847 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2848 return false; 2849 } else { 2850 // LDU/STU need an address with at least 4-byte alignment. 2851 if (Alignment < 4) 2852 return false; 2853 2854 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2855 return false; 2856 } 2857 2858 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2859 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2860 // sext i32 to i64 when addr mode is r+i. 2861 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2862 LD->getExtensionType() == ISD::SEXTLOAD && 2863 isa<ConstantSDNode>(Offset)) 2864 return false; 2865 } 2866 2867 AM = ISD::PRE_INC; 2868 return true; 2869 } 2870 2871 //===----------------------------------------------------------------------===// 2872 // LowerOperation implementation 2873 //===----------------------------------------------------------------------===// 2874 2875 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2876 /// and LoOpFlags to the target MO flags. 2877 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2878 unsigned &HiOpFlags, unsigned &LoOpFlags, 2879 const GlobalValue *GV = nullptr) { 2880 HiOpFlags = PPCII::MO_HA; 2881 LoOpFlags = PPCII::MO_LO; 2882 2883 // Don't use the pic base if not in PIC relocation model. 2884 if (IsPIC) { 2885 HiOpFlags |= PPCII::MO_PIC_FLAG; 2886 LoOpFlags |= PPCII::MO_PIC_FLAG; 2887 } 2888 } 2889 2890 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2891 SelectionDAG &DAG) { 2892 SDLoc DL(HiPart); 2893 EVT PtrVT = HiPart.getValueType(); 2894 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2895 2896 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2897 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2898 2899 // With PIC, the first instruction is actually "GR+hi(&G)". 2900 if (isPIC) 2901 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2902 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2903 2904 // Generate non-pic code that has direct accesses to the constant pool. 2905 // The address of the global is just (hi(&g)+lo(&g)). 2906 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2907 } 2908 2909 static void setUsesTOCBasePtr(MachineFunction &MF) { 2910 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2911 FuncInfo->setUsesTOCBasePtr(); 2912 } 2913 2914 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2915 setUsesTOCBasePtr(DAG.getMachineFunction()); 2916 } 2917 2918 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2919 SDValue GA) const { 2920 const bool Is64Bit = Subtarget.isPPC64(); 2921 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2922 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2923 : Subtarget.isAIXABI() 2924 ? DAG.getRegister(PPC::R2, VT) 2925 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2926 SDValue Ops[] = { GA, Reg }; 2927 return DAG.getMemIntrinsicNode( 2928 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2929 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2930 MachineMemOperand::MOLoad); 2931 } 2932 2933 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2934 SelectionDAG &DAG) const { 2935 EVT PtrVT = Op.getValueType(); 2936 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2937 const Constant *C = CP->getConstVal(); 2938 2939 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2940 // The actual address of the GlobalValue is stored in the TOC. 2941 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2942 if (Subtarget.isUsingPCRelativeCalls()) { 2943 SDLoc DL(CP); 2944 EVT Ty = getPointerTy(DAG.getDataLayout()); 2945 SDValue ConstPool = DAG.getTargetConstantPool( 2946 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2947 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2948 } 2949 setUsesTOCBasePtr(DAG); 2950 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2951 return getTOCEntry(DAG, SDLoc(CP), GA); 2952 } 2953 2954 unsigned MOHiFlag, MOLoFlag; 2955 bool IsPIC = isPositionIndependent(); 2956 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2957 2958 if (IsPIC && Subtarget.isSVR4ABI()) { 2959 SDValue GA = 2960 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2961 return getTOCEntry(DAG, SDLoc(CP), GA); 2962 } 2963 2964 SDValue CPIHi = 2965 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2966 SDValue CPILo = 2967 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2968 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2969 } 2970 2971 // For 64-bit PowerPC, prefer the more compact relative encodings. 2972 // This trades 32 bits per jump table entry for one or two instructions 2973 // on the jump site. 2974 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2975 if (isJumpTableRelative()) 2976 return MachineJumpTableInfo::EK_LabelDifference32; 2977 2978 return TargetLowering::getJumpTableEncoding(); 2979 } 2980 2981 bool PPCTargetLowering::isJumpTableRelative() const { 2982 if (UseAbsoluteJumpTables) 2983 return false; 2984 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2985 return true; 2986 return TargetLowering::isJumpTableRelative(); 2987 } 2988 2989 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2990 SelectionDAG &DAG) const { 2991 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2992 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2993 2994 switch (getTargetMachine().getCodeModel()) { 2995 case CodeModel::Small: 2996 case CodeModel::Medium: 2997 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2998 default: 2999 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3000 getPointerTy(DAG.getDataLayout())); 3001 } 3002 } 3003 3004 const MCExpr * 3005 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3006 unsigned JTI, 3007 MCContext &Ctx) const { 3008 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3009 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3010 3011 switch (getTargetMachine().getCodeModel()) { 3012 case CodeModel::Small: 3013 case CodeModel::Medium: 3014 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3015 default: 3016 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3017 } 3018 } 3019 3020 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3021 EVT PtrVT = Op.getValueType(); 3022 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3023 3024 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3025 if (Subtarget.isUsingPCRelativeCalls()) { 3026 SDLoc DL(JT); 3027 EVT Ty = getPointerTy(DAG.getDataLayout()); 3028 SDValue GA = 3029 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3030 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3031 return MatAddr; 3032 } 3033 3034 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3035 // The actual address of the GlobalValue is stored in the TOC. 3036 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3037 setUsesTOCBasePtr(DAG); 3038 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3039 return getTOCEntry(DAG, SDLoc(JT), GA); 3040 } 3041 3042 unsigned MOHiFlag, MOLoFlag; 3043 bool IsPIC = isPositionIndependent(); 3044 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3045 3046 if (IsPIC && Subtarget.isSVR4ABI()) { 3047 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3048 PPCII::MO_PIC_FLAG); 3049 return getTOCEntry(DAG, SDLoc(GA), GA); 3050 } 3051 3052 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3053 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3054 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3055 } 3056 3057 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3058 SelectionDAG &DAG) const { 3059 EVT PtrVT = Op.getValueType(); 3060 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3061 const BlockAddress *BA = BASDN->getBlockAddress(); 3062 3063 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3064 if (Subtarget.isUsingPCRelativeCalls()) { 3065 SDLoc DL(BASDN); 3066 EVT Ty = getPointerTy(DAG.getDataLayout()); 3067 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3068 PPCII::MO_PCREL_FLAG); 3069 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3070 return MatAddr; 3071 } 3072 3073 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3074 // The actual BlockAddress is stored in the TOC. 3075 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3076 setUsesTOCBasePtr(DAG); 3077 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3078 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3079 } 3080 3081 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3082 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3083 return getTOCEntry( 3084 DAG, SDLoc(BASDN), 3085 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3086 3087 unsigned MOHiFlag, MOLoFlag; 3088 bool IsPIC = isPositionIndependent(); 3089 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3090 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3091 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3092 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3093 } 3094 3095 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3096 SelectionDAG &DAG) const { 3097 // FIXME: TLS addresses currently use medium model code sequences, 3098 // which is the most useful form. Eventually support for small and 3099 // large models could be added if users need it, at the cost of 3100 // additional complexity. 3101 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3102 if (DAG.getTarget().useEmulatedTLS()) 3103 return LowerToTLSEmulatedModel(GA, DAG); 3104 3105 SDLoc dl(GA); 3106 const GlobalValue *GV = GA->getGlobal(); 3107 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3108 bool is64bit = Subtarget.isPPC64(); 3109 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3110 PICLevel::Level picLevel = M->getPICLevel(); 3111 3112 const TargetMachine &TM = getTargetMachine(); 3113 TLSModel::Model Model = TM.getTLSModel(GV); 3114 3115 if (Model == TLSModel::LocalExec) { 3116 if (Subtarget.isUsingPCRelativeCalls()) { 3117 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3118 SDValue TGA = DAG.getTargetGlobalAddress( 3119 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3120 SDValue MatAddr = 3121 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3122 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3123 } 3124 3125 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3126 PPCII::MO_TPREL_HA); 3127 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3128 PPCII::MO_TPREL_LO); 3129 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3130 : DAG.getRegister(PPC::R2, MVT::i32); 3131 3132 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3133 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3134 } 3135 3136 if (Model == TLSModel::InitialExec) { 3137 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3138 SDValue TGA = DAG.getTargetGlobalAddress( 3139 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3140 SDValue TGATLS = DAG.getTargetGlobalAddress( 3141 GV, dl, PtrVT, 0, 3142 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3143 SDValue TPOffset; 3144 if (IsPCRel) { 3145 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3146 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3147 MachinePointerInfo()); 3148 } else { 3149 SDValue GOTPtr; 3150 if (is64bit) { 3151 setUsesTOCBasePtr(DAG); 3152 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3153 GOTPtr = 3154 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3155 } else { 3156 if (!TM.isPositionIndependent()) 3157 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3158 else if (picLevel == PICLevel::SmallPIC) 3159 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3160 else 3161 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3162 } 3163 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3164 } 3165 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3166 } 3167 3168 if (Model == TLSModel::GeneralDynamic) { 3169 if (Subtarget.isUsingPCRelativeCalls()) { 3170 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3171 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3172 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3173 } 3174 3175 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3176 SDValue GOTPtr; 3177 if (is64bit) { 3178 setUsesTOCBasePtr(DAG); 3179 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3180 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3181 GOTReg, TGA); 3182 } else { 3183 if (picLevel == PICLevel::SmallPIC) 3184 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3185 else 3186 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3187 } 3188 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3189 GOTPtr, TGA, TGA); 3190 } 3191 3192 if (Model == TLSModel::LocalDynamic) { 3193 if (Subtarget.isUsingPCRelativeCalls()) { 3194 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3195 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3196 SDValue MatPCRel = 3197 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3198 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3199 } 3200 3201 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3202 SDValue GOTPtr; 3203 if (is64bit) { 3204 setUsesTOCBasePtr(DAG); 3205 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3206 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3207 GOTReg, TGA); 3208 } else { 3209 if (picLevel == PICLevel::SmallPIC) 3210 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3211 else 3212 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3213 } 3214 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3215 PtrVT, GOTPtr, TGA, TGA); 3216 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3217 PtrVT, TLSAddr, TGA); 3218 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3219 } 3220 3221 llvm_unreachable("Unknown TLS model!"); 3222 } 3223 3224 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3225 SelectionDAG &DAG) const { 3226 EVT PtrVT = Op.getValueType(); 3227 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3228 SDLoc DL(GSDN); 3229 const GlobalValue *GV = GSDN->getGlobal(); 3230 3231 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3232 // The actual address of the GlobalValue is stored in the TOC. 3233 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3234 if (Subtarget.isUsingPCRelativeCalls()) { 3235 EVT Ty = getPointerTy(DAG.getDataLayout()); 3236 if (isAccessedAsGotIndirect(Op)) { 3237 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3238 PPCII::MO_PCREL_FLAG | 3239 PPCII::MO_GOT_FLAG); 3240 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3241 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3242 MachinePointerInfo()); 3243 return Load; 3244 } else { 3245 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3246 PPCII::MO_PCREL_FLAG); 3247 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3248 } 3249 } 3250 setUsesTOCBasePtr(DAG); 3251 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3252 return getTOCEntry(DAG, DL, GA); 3253 } 3254 3255 unsigned MOHiFlag, MOLoFlag; 3256 bool IsPIC = isPositionIndependent(); 3257 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3258 3259 if (IsPIC && Subtarget.isSVR4ABI()) { 3260 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3261 GSDN->getOffset(), 3262 PPCII::MO_PIC_FLAG); 3263 return getTOCEntry(DAG, DL, GA); 3264 } 3265 3266 SDValue GAHi = 3267 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3268 SDValue GALo = 3269 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3270 3271 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3272 } 3273 3274 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3275 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3276 SDLoc dl(Op); 3277 3278 if (Op.getValueType() == MVT::v2i64) { 3279 // When the operands themselves are v2i64 values, we need to do something 3280 // special because VSX has no underlying comparison operations for these. 3281 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3282 // Equality can be handled by casting to the legal type for Altivec 3283 // comparisons, everything else needs to be expanded. 3284 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3285 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3286 DAG.getSetCC(dl, MVT::v4i32, 3287 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3288 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3289 CC)); 3290 } 3291 3292 return SDValue(); 3293 } 3294 3295 // We handle most of these in the usual way. 3296 return Op; 3297 } 3298 3299 // If we're comparing for equality to zero, expose the fact that this is 3300 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3301 // fold the new nodes. 3302 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3303 return V; 3304 3305 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3306 // Leave comparisons against 0 and -1 alone for now, since they're usually 3307 // optimized. FIXME: revisit this when we can custom lower all setcc 3308 // optimizations. 3309 if (C->isAllOnesValue() || C->isNullValue()) 3310 return SDValue(); 3311 } 3312 3313 // If we have an integer seteq/setne, turn it into a compare against zero 3314 // by xor'ing the rhs with the lhs, which is faster than setting a 3315 // condition register, reading it back out, and masking the correct bit. The 3316 // normal approach here uses sub to do this instead of xor. Using xor exposes 3317 // the result to other bit-twiddling opportunities. 3318 EVT LHSVT = Op.getOperand(0).getValueType(); 3319 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3320 EVT VT = Op.getValueType(); 3321 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3322 Op.getOperand(1)); 3323 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3324 } 3325 return SDValue(); 3326 } 3327 3328 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3329 SDNode *Node = Op.getNode(); 3330 EVT VT = Node->getValueType(0); 3331 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3332 SDValue InChain = Node->getOperand(0); 3333 SDValue VAListPtr = Node->getOperand(1); 3334 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3335 SDLoc dl(Node); 3336 3337 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3338 3339 // gpr_index 3340 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3341 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3342 InChain = GprIndex.getValue(1); 3343 3344 if (VT == MVT::i64) { 3345 // Check if GprIndex is even 3346 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3347 DAG.getConstant(1, dl, MVT::i32)); 3348 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3349 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3350 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3351 DAG.getConstant(1, dl, MVT::i32)); 3352 // Align GprIndex to be even if it isn't 3353 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3354 GprIndex); 3355 } 3356 3357 // fpr index is 1 byte after gpr 3358 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3359 DAG.getConstant(1, dl, MVT::i32)); 3360 3361 // fpr 3362 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3363 FprPtr, MachinePointerInfo(SV), MVT::i8); 3364 InChain = FprIndex.getValue(1); 3365 3366 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3367 DAG.getConstant(8, dl, MVT::i32)); 3368 3369 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3370 DAG.getConstant(4, dl, MVT::i32)); 3371 3372 // areas 3373 SDValue OverflowArea = 3374 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3375 InChain = OverflowArea.getValue(1); 3376 3377 SDValue RegSaveArea = 3378 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3379 InChain = RegSaveArea.getValue(1); 3380 3381 // select overflow_area if index > 8 3382 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3383 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3384 3385 // adjustment constant gpr_index * 4/8 3386 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3387 VT.isInteger() ? GprIndex : FprIndex, 3388 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3389 MVT::i32)); 3390 3391 // OurReg = RegSaveArea + RegConstant 3392 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3393 RegConstant); 3394 3395 // Floating types are 32 bytes into RegSaveArea 3396 if (VT.isFloatingPoint()) 3397 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3398 DAG.getConstant(32, dl, MVT::i32)); 3399 3400 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3401 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3402 VT.isInteger() ? GprIndex : FprIndex, 3403 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3404 MVT::i32)); 3405 3406 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3407 VT.isInteger() ? VAListPtr : FprPtr, 3408 MachinePointerInfo(SV), MVT::i8); 3409 3410 // determine if we should load from reg_save_area or overflow_area 3411 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3412 3413 // increase overflow_area by 4/8 if gpr/fpr > 8 3414 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3415 DAG.getConstant(VT.isInteger() ? 4 : 8, 3416 dl, MVT::i32)); 3417 3418 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3419 OverflowAreaPlusN); 3420 3421 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3422 MachinePointerInfo(), MVT::i32); 3423 3424 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3425 } 3426 3427 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3428 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3429 3430 // We have to copy the entire va_list struct: 3431 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3432 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3433 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3434 false, true, false, MachinePointerInfo(), 3435 MachinePointerInfo()); 3436 } 3437 3438 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3439 SelectionDAG &DAG) const { 3440 if (Subtarget.isAIXABI()) 3441 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3442 3443 return Op.getOperand(0); 3444 } 3445 3446 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3447 SelectionDAG &DAG) const { 3448 if (Subtarget.isAIXABI()) 3449 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3450 3451 SDValue Chain = Op.getOperand(0); 3452 SDValue Trmp = Op.getOperand(1); // trampoline 3453 SDValue FPtr = Op.getOperand(2); // nested function 3454 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3455 SDLoc dl(Op); 3456 3457 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3458 bool isPPC64 = (PtrVT == MVT::i64); 3459 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3460 3461 TargetLowering::ArgListTy Args; 3462 TargetLowering::ArgListEntry Entry; 3463 3464 Entry.Ty = IntPtrTy; 3465 Entry.Node = Trmp; Args.push_back(Entry); 3466 3467 // TrampSize == (isPPC64 ? 48 : 40); 3468 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3469 isPPC64 ? MVT::i64 : MVT::i32); 3470 Args.push_back(Entry); 3471 3472 Entry.Node = FPtr; Args.push_back(Entry); 3473 Entry.Node = Nest; Args.push_back(Entry); 3474 3475 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3476 TargetLowering::CallLoweringInfo CLI(DAG); 3477 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3478 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3479 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3480 3481 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3482 return CallResult.second; 3483 } 3484 3485 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3486 MachineFunction &MF = DAG.getMachineFunction(); 3487 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3488 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3489 3490 SDLoc dl(Op); 3491 3492 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3493 // vastart just stores the address of the VarArgsFrameIndex slot into the 3494 // memory location argument. 3495 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3496 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3497 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3498 MachinePointerInfo(SV)); 3499 } 3500 3501 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3502 // We suppose the given va_list is already allocated. 3503 // 3504 // typedef struct { 3505 // char gpr; /* index into the array of 8 GPRs 3506 // * stored in the register save area 3507 // * gpr=0 corresponds to r3, 3508 // * gpr=1 to r4, etc. 3509 // */ 3510 // char fpr; /* index into the array of 8 FPRs 3511 // * stored in the register save area 3512 // * fpr=0 corresponds to f1, 3513 // * fpr=1 to f2, etc. 3514 // */ 3515 // char *overflow_arg_area; 3516 // /* location on stack that holds 3517 // * the next overflow argument 3518 // */ 3519 // char *reg_save_area; 3520 // /* where r3:r10 and f1:f8 (if saved) 3521 // * are stored 3522 // */ 3523 // } va_list[1]; 3524 3525 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3526 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3527 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3528 PtrVT); 3529 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3530 PtrVT); 3531 3532 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3533 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3534 3535 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3536 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3537 3538 uint64_t FPROffset = 1; 3539 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3540 3541 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3542 3543 // Store first byte : number of int regs 3544 SDValue firstStore = 3545 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3546 MachinePointerInfo(SV), MVT::i8); 3547 uint64_t nextOffset = FPROffset; 3548 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3549 ConstFPROffset); 3550 3551 // Store second byte : number of float regs 3552 SDValue secondStore = 3553 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3554 MachinePointerInfo(SV, nextOffset), MVT::i8); 3555 nextOffset += StackOffset; 3556 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3557 3558 // Store second word : arguments given on stack 3559 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3560 MachinePointerInfo(SV, nextOffset)); 3561 nextOffset += FrameOffset; 3562 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3563 3564 // Store third word : arguments given in registers 3565 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3566 MachinePointerInfo(SV, nextOffset)); 3567 } 3568 3569 /// FPR - The set of FP registers that should be allocated for arguments 3570 /// on Darwin and AIX. 3571 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3572 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3573 PPC::F11, PPC::F12, PPC::F13}; 3574 3575 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3576 /// the stack. 3577 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3578 unsigned PtrByteSize) { 3579 unsigned ArgSize = ArgVT.getStoreSize(); 3580 if (Flags.isByVal()) 3581 ArgSize = Flags.getByValSize(); 3582 3583 // Round up to multiples of the pointer size, except for array members, 3584 // which are always packed. 3585 if (!Flags.isInConsecutiveRegs()) 3586 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3587 3588 return ArgSize; 3589 } 3590 3591 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3592 /// on the stack. 3593 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3594 ISD::ArgFlagsTy Flags, 3595 unsigned PtrByteSize) { 3596 Align Alignment(PtrByteSize); 3597 3598 // Altivec parameters are padded to a 16 byte boundary. 3599 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3600 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3601 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3602 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3603 Alignment = Align(16); 3604 3605 // ByVal parameters are aligned as requested. 3606 if (Flags.isByVal()) { 3607 auto BVAlign = Flags.getNonZeroByValAlign(); 3608 if (BVAlign > PtrByteSize) { 3609 if (BVAlign.value() % PtrByteSize != 0) 3610 llvm_unreachable( 3611 "ByVal alignment is not a multiple of the pointer size"); 3612 3613 Alignment = BVAlign; 3614 } 3615 } 3616 3617 // Array members are always packed to their original alignment. 3618 if (Flags.isInConsecutiveRegs()) { 3619 // If the array member was split into multiple registers, the first 3620 // needs to be aligned to the size of the full type. (Except for 3621 // ppcf128, which is only aligned as its f64 components.) 3622 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3623 Alignment = Align(OrigVT.getStoreSize()); 3624 else 3625 Alignment = Align(ArgVT.getStoreSize()); 3626 } 3627 3628 return Alignment; 3629 } 3630 3631 /// CalculateStackSlotUsed - Return whether this argument will use its 3632 /// stack slot (instead of being passed in registers). ArgOffset, 3633 /// AvailableFPRs, and AvailableVRs must hold the current argument 3634 /// position, and will be updated to account for this argument. 3635 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3636 unsigned PtrByteSize, unsigned LinkageSize, 3637 unsigned ParamAreaSize, unsigned &ArgOffset, 3638 unsigned &AvailableFPRs, 3639 unsigned &AvailableVRs) { 3640 bool UseMemory = false; 3641 3642 // Respect alignment of argument on the stack. 3643 Align Alignment = 3644 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3645 ArgOffset = alignTo(ArgOffset, Alignment); 3646 // If there's no space left in the argument save area, we must 3647 // use memory (this check also catches zero-sized arguments). 3648 if (ArgOffset >= LinkageSize + ParamAreaSize) 3649 UseMemory = true; 3650 3651 // Allocate argument on the stack. 3652 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3653 if (Flags.isInConsecutiveRegsLast()) 3654 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3655 // If we overran the argument save area, we must use memory 3656 // (this check catches arguments passed partially in memory) 3657 if (ArgOffset > LinkageSize + ParamAreaSize) 3658 UseMemory = true; 3659 3660 // However, if the argument is actually passed in an FPR or a VR, 3661 // we don't use memory after all. 3662 if (!Flags.isByVal()) { 3663 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3664 if (AvailableFPRs > 0) { 3665 --AvailableFPRs; 3666 return false; 3667 } 3668 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3669 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3670 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3671 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3672 if (AvailableVRs > 0) { 3673 --AvailableVRs; 3674 return false; 3675 } 3676 } 3677 3678 return UseMemory; 3679 } 3680 3681 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3682 /// ensure minimum alignment required for target. 3683 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3684 unsigned NumBytes) { 3685 return alignTo(NumBytes, Lowering->getStackAlign()); 3686 } 3687 3688 SDValue PPCTargetLowering::LowerFormalArguments( 3689 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3690 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3691 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3692 if (Subtarget.isAIXABI()) 3693 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3694 InVals); 3695 if (Subtarget.is64BitELFABI()) 3696 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3697 InVals); 3698 if (Subtarget.is32BitELFABI()) 3699 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3700 InVals); 3701 3702 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3703 InVals); 3704 } 3705 3706 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3707 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3708 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3709 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3710 3711 // 32-bit SVR4 ABI Stack Frame Layout: 3712 // +-----------------------------------+ 3713 // +--> | Back chain | 3714 // | +-----------------------------------+ 3715 // | | Floating-point register save area | 3716 // | +-----------------------------------+ 3717 // | | General register save area | 3718 // | +-----------------------------------+ 3719 // | | CR save word | 3720 // | +-----------------------------------+ 3721 // | | VRSAVE save word | 3722 // | +-----------------------------------+ 3723 // | | Alignment padding | 3724 // | +-----------------------------------+ 3725 // | | Vector register save area | 3726 // | +-----------------------------------+ 3727 // | | Local variable space | 3728 // | +-----------------------------------+ 3729 // | | Parameter list area | 3730 // | +-----------------------------------+ 3731 // | | LR save word | 3732 // | +-----------------------------------+ 3733 // SP--> +--- | Back chain | 3734 // +-----------------------------------+ 3735 // 3736 // Specifications: 3737 // System V Application Binary Interface PowerPC Processor Supplement 3738 // AltiVec Technology Programming Interface Manual 3739 3740 MachineFunction &MF = DAG.getMachineFunction(); 3741 MachineFrameInfo &MFI = MF.getFrameInfo(); 3742 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3743 3744 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3745 // Potential tail calls could cause overwriting of argument stack slots. 3746 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3747 (CallConv == CallingConv::Fast)); 3748 const Align PtrAlign(4); 3749 3750 // Assign locations to all of the incoming arguments. 3751 SmallVector<CCValAssign, 16> ArgLocs; 3752 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3753 *DAG.getContext()); 3754 3755 // Reserve space for the linkage area on the stack. 3756 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3757 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3758 if (useSoftFloat()) 3759 CCInfo.PreAnalyzeFormalArguments(Ins); 3760 3761 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3762 CCInfo.clearWasPPCF128(); 3763 3764 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3765 CCValAssign &VA = ArgLocs[i]; 3766 3767 // Arguments stored in registers. 3768 if (VA.isRegLoc()) { 3769 const TargetRegisterClass *RC; 3770 EVT ValVT = VA.getValVT(); 3771 3772 switch (ValVT.getSimpleVT().SimpleTy) { 3773 default: 3774 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3775 case MVT::i1: 3776 case MVT::i32: 3777 RC = &PPC::GPRCRegClass; 3778 break; 3779 case MVT::f32: 3780 if (Subtarget.hasP8Vector()) 3781 RC = &PPC::VSSRCRegClass; 3782 else if (Subtarget.hasSPE()) 3783 RC = &PPC::GPRCRegClass; 3784 else 3785 RC = &PPC::F4RCRegClass; 3786 break; 3787 case MVT::f64: 3788 if (Subtarget.hasVSX()) 3789 RC = &PPC::VSFRCRegClass; 3790 else if (Subtarget.hasSPE()) 3791 // SPE passes doubles in GPR pairs. 3792 RC = &PPC::GPRCRegClass; 3793 else 3794 RC = &PPC::F8RCRegClass; 3795 break; 3796 case MVT::v16i8: 3797 case MVT::v8i16: 3798 case MVT::v4i32: 3799 RC = &PPC::VRRCRegClass; 3800 break; 3801 case MVT::v4f32: 3802 RC = &PPC::VRRCRegClass; 3803 break; 3804 case MVT::v2f64: 3805 case MVT::v2i64: 3806 RC = &PPC::VRRCRegClass; 3807 break; 3808 } 3809 3810 SDValue ArgValue; 3811 // Transform the arguments stored in physical registers into 3812 // virtual ones. 3813 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3814 assert(i + 1 < e && "No second half of double precision argument"); 3815 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3816 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3817 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3818 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3819 if (!Subtarget.isLittleEndian()) 3820 std::swap (ArgValueLo, ArgValueHi); 3821 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3822 ArgValueHi); 3823 } else { 3824 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3825 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3826 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3827 if (ValVT == MVT::i1) 3828 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3829 } 3830 3831 InVals.push_back(ArgValue); 3832 } else { 3833 // Argument stored in memory. 3834 assert(VA.isMemLoc()); 3835 3836 // Get the extended size of the argument type in stack 3837 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3838 // Get the actual size of the argument type 3839 unsigned ObjSize = VA.getValVT().getStoreSize(); 3840 unsigned ArgOffset = VA.getLocMemOffset(); 3841 // Stack objects in PPC32 are right justified. 3842 ArgOffset += ArgSize - ObjSize; 3843 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3844 3845 // Create load nodes to retrieve arguments from the stack. 3846 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3847 InVals.push_back( 3848 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3849 } 3850 } 3851 3852 // Assign locations to all of the incoming aggregate by value arguments. 3853 // Aggregates passed by value are stored in the local variable space of the 3854 // caller's stack frame, right above the parameter list area. 3855 SmallVector<CCValAssign, 16> ByValArgLocs; 3856 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3857 ByValArgLocs, *DAG.getContext()); 3858 3859 // Reserve stack space for the allocations in CCInfo. 3860 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3861 3862 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3863 3864 // Area that is at least reserved in the caller of this function. 3865 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3866 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3867 3868 // Set the size that is at least reserved in caller of this function. Tail 3869 // call optimized function's reserved stack space needs to be aligned so that 3870 // taking the difference between two stack areas will result in an aligned 3871 // stack. 3872 MinReservedArea = 3873 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3874 FuncInfo->setMinReservedArea(MinReservedArea); 3875 3876 SmallVector<SDValue, 8> MemOps; 3877 3878 // If the function takes variable number of arguments, make a frame index for 3879 // the start of the first vararg value... for expansion of llvm.va_start. 3880 if (isVarArg) { 3881 static const MCPhysReg GPArgRegs[] = { 3882 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3883 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3884 }; 3885 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3886 3887 static const MCPhysReg FPArgRegs[] = { 3888 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3889 PPC::F8 3890 }; 3891 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3892 3893 if (useSoftFloat() || hasSPE()) 3894 NumFPArgRegs = 0; 3895 3896 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3897 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3898 3899 // Make room for NumGPArgRegs and NumFPArgRegs. 3900 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3901 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3902 3903 FuncInfo->setVarArgsStackOffset( 3904 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3905 CCInfo.getNextStackOffset(), true)); 3906 3907 FuncInfo->setVarArgsFrameIndex( 3908 MFI.CreateStackObject(Depth, Align(8), false)); 3909 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3910 3911 // The fixed integer arguments of a variadic function are stored to the 3912 // VarArgsFrameIndex on the stack so that they may be loaded by 3913 // dereferencing the result of va_next. 3914 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3915 // Get an existing live-in vreg, or add a new one. 3916 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3917 if (!VReg) 3918 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3919 3920 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3921 SDValue Store = 3922 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3923 MemOps.push_back(Store); 3924 // Increment the address by four for the next argument to store 3925 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3926 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3927 } 3928 3929 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3930 // is set. 3931 // The double arguments are stored to the VarArgsFrameIndex 3932 // on the stack. 3933 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3934 // Get an existing live-in vreg, or add a new one. 3935 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3936 if (!VReg) 3937 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3938 3939 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3940 SDValue Store = 3941 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3942 MemOps.push_back(Store); 3943 // Increment the address by eight for the next argument to store 3944 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3945 PtrVT); 3946 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3947 } 3948 } 3949 3950 if (!MemOps.empty()) 3951 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3952 3953 return Chain; 3954 } 3955 3956 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3957 // value to MVT::i64 and then truncate to the correct register size. 3958 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3959 EVT ObjectVT, SelectionDAG &DAG, 3960 SDValue ArgVal, 3961 const SDLoc &dl) const { 3962 if (Flags.isSExt()) 3963 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3964 DAG.getValueType(ObjectVT)); 3965 else if (Flags.isZExt()) 3966 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3967 DAG.getValueType(ObjectVT)); 3968 3969 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3970 } 3971 3972 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3973 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3974 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3975 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3976 // TODO: add description of PPC stack frame format, or at least some docs. 3977 // 3978 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3979 bool isLittleEndian = Subtarget.isLittleEndian(); 3980 MachineFunction &MF = DAG.getMachineFunction(); 3981 MachineFrameInfo &MFI = MF.getFrameInfo(); 3982 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3983 3984 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3985 "fastcc not supported on varargs functions"); 3986 3987 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3988 // Potential tail calls could cause overwriting of argument stack slots. 3989 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3990 (CallConv == CallingConv::Fast)); 3991 unsigned PtrByteSize = 8; 3992 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3993 3994 static const MCPhysReg GPR[] = { 3995 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3996 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3997 }; 3998 static const MCPhysReg VR[] = { 3999 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4000 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4001 }; 4002 4003 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4004 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4005 const unsigned Num_VR_Regs = array_lengthof(VR); 4006 4007 // Do a first pass over the arguments to determine whether the ABI 4008 // guarantees that our caller has allocated the parameter save area 4009 // on its stack frame. In the ELFv1 ABI, this is always the case; 4010 // in the ELFv2 ABI, it is true if this is a vararg function or if 4011 // any parameter is located in a stack slot. 4012 4013 bool HasParameterArea = !isELFv2ABI || isVarArg; 4014 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4015 unsigned NumBytes = LinkageSize; 4016 unsigned AvailableFPRs = Num_FPR_Regs; 4017 unsigned AvailableVRs = Num_VR_Regs; 4018 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4019 if (Ins[i].Flags.isNest()) 4020 continue; 4021 4022 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4023 PtrByteSize, LinkageSize, ParamAreaSize, 4024 NumBytes, AvailableFPRs, AvailableVRs)) 4025 HasParameterArea = true; 4026 } 4027 4028 // Add DAG nodes to load the arguments or copy them out of registers. On 4029 // entry to a function on PPC, the arguments start after the linkage area, 4030 // although the first ones are often in registers. 4031 4032 unsigned ArgOffset = LinkageSize; 4033 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4034 SmallVector<SDValue, 8> MemOps; 4035 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4036 unsigned CurArgIdx = 0; 4037 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4038 SDValue ArgVal; 4039 bool needsLoad = false; 4040 EVT ObjectVT = Ins[ArgNo].VT; 4041 EVT OrigVT = Ins[ArgNo].ArgVT; 4042 unsigned ObjSize = ObjectVT.getStoreSize(); 4043 unsigned ArgSize = ObjSize; 4044 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4045 if (Ins[ArgNo].isOrigArg()) { 4046 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4047 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4048 } 4049 // We re-align the argument offset for each argument, except when using the 4050 // fast calling convention, when we need to make sure we do that only when 4051 // we'll actually use a stack slot. 4052 unsigned CurArgOffset; 4053 Align Alignment; 4054 auto ComputeArgOffset = [&]() { 4055 /* Respect alignment of argument on the stack. */ 4056 Alignment = 4057 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4058 ArgOffset = alignTo(ArgOffset, Alignment); 4059 CurArgOffset = ArgOffset; 4060 }; 4061 4062 if (CallConv != CallingConv::Fast) { 4063 ComputeArgOffset(); 4064 4065 /* Compute GPR index associated with argument offset. */ 4066 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4067 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4068 } 4069 4070 // FIXME the codegen can be much improved in some cases. 4071 // We do not have to keep everything in memory. 4072 if (Flags.isByVal()) { 4073 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4074 4075 if (CallConv == CallingConv::Fast) 4076 ComputeArgOffset(); 4077 4078 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4079 ObjSize = Flags.getByValSize(); 4080 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4081 // Empty aggregate parameters do not take up registers. Examples: 4082 // struct { } a; 4083 // union { } b; 4084 // int c[0]; 4085 // etc. However, we have to provide a place-holder in InVals, so 4086 // pretend we have an 8-byte item at the current address for that 4087 // purpose. 4088 if (!ObjSize) { 4089 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4090 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4091 InVals.push_back(FIN); 4092 continue; 4093 } 4094 4095 // Create a stack object covering all stack doublewords occupied 4096 // by the argument. If the argument is (fully or partially) on 4097 // the stack, or if the argument is fully in registers but the 4098 // caller has allocated the parameter save anyway, we can refer 4099 // directly to the caller's stack frame. Otherwise, create a 4100 // local copy in our own frame. 4101 int FI; 4102 if (HasParameterArea || 4103 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4104 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4105 else 4106 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4107 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4108 4109 // Handle aggregates smaller than 8 bytes. 4110 if (ObjSize < PtrByteSize) { 4111 // The value of the object is its address, which differs from the 4112 // address of the enclosing doubleword on big-endian systems. 4113 SDValue Arg = FIN; 4114 if (!isLittleEndian) { 4115 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4116 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4117 } 4118 InVals.push_back(Arg); 4119 4120 if (GPR_idx != Num_GPR_Regs) { 4121 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4122 FuncInfo->addLiveInAttr(VReg, Flags); 4123 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4124 SDValue Store; 4125 4126 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4127 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4128 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4129 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4130 MachinePointerInfo(&*FuncArg), ObjType); 4131 } else { 4132 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4133 // store the whole register as-is to the parameter save area 4134 // slot. 4135 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4136 MachinePointerInfo(&*FuncArg)); 4137 } 4138 4139 MemOps.push_back(Store); 4140 } 4141 // Whether we copied from a register or not, advance the offset 4142 // into the parameter save area by a full doubleword. 4143 ArgOffset += PtrByteSize; 4144 continue; 4145 } 4146 4147 // The value of the object is its address, which is the address of 4148 // its first stack doubleword. 4149 InVals.push_back(FIN); 4150 4151 // Store whatever pieces of the object are in registers to memory. 4152 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4153 if (GPR_idx == Num_GPR_Regs) 4154 break; 4155 4156 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4157 FuncInfo->addLiveInAttr(VReg, Flags); 4158 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4159 SDValue Addr = FIN; 4160 if (j) { 4161 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4162 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4163 } 4164 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4165 MachinePointerInfo(&*FuncArg, j)); 4166 MemOps.push_back(Store); 4167 ++GPR_idx; 4168 } 4169 ArgOffset += ArgSize; 4170 continue; 4171 } 4172 4173 switch (ObjectVT.getSimpleVT().SimpleTy) { 4174 default: llvm_unreachable("Unhandled argument type!"); 4175 case MVT::i1: 4176 case MVT::i32: 4177 case MVT::i64: 4178 if (Flags.isNest()) { 4179 // The 'nest' parameter, if any, is passed in R11. 4180 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4181 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4182 4183 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4184 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4185 4186 break; 4187 } 4188 4189 // These can be scalar arguments or elements of an integer array type 4190 // passed directly. Clang may use those instead of "byval" aggregate 4191 // types to avoid forcing arguments to memory unnecessarily. 4192 if (GPR_idx != Num_GPR_Regs) { 4193 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4194 FuncInfo->addLiveInAttr(VReg, Flags); 4195 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4196 4197 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4198 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4199 // value to MVT::i64 and then truncate to the correct register size. 4200 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4201 } else { 4202 if (CallConv == CallingConv::Fast) 4203 ComputeArgOffset(); 4204 4205 needsLoad = true; 4206 ArgSize = PtrByteSize; 4207 } 4208 if (CallConv != CallingConv::Fast || needsLoad) 4209 ArgOffset += 8; 4210 break; 4211 4212 case MVT::f32: 4213 case MVT::f64: 4214 // These can be scalar arguments or elements of a float array type 4215 // passed directly. The latter are used to implement ELFv2 homogenous 4216 // float aggregates. 4217 if (FPR_idx != Num_FPR_Regs) { 4218 unsigned VReg; 4219 4220 if (ObjectVT == MVT::f32) 4221 VReg = MF.addLiveIn(FPR[FPR_idx], 4222 Subtarget.hasP8Vector() 4223 ? &PPC::VSSRCRegClass 4224 : &PPC::F4RCRegClass); 4225 else 4226 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4227 ? &PPC::VSFRCRegClass 4228 : &PPC::F8RCRegClass); 4229 4230 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4231 ++FPR_idx; 4232 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4233 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4234 // once we support fp <-> gpr moves. 4235 4236 // This can only ever happen in the presence of f32 array types, 4237 // since otherwise we never run out of FPRs before running out 4238 // of GPRs. 4239 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4240 FuncInfo->addLiveInAttr(VReg, Flags); 4241 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4242 4243 if (ObjectVT == MVT::f32) { 4244 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4245 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4246 DAG.getConstant(32, dl, MVT::i32)); 4247 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4248 } 4249 4250 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4251 } else { 4252 if (CallConv == CallingConv::Fast) 4253 ComputeArgOffset(); 4254 4255 needsLoad = true; 4256 } 4257 4258 // When passing an array of floats, the array occupies consecutive 4259 // space in the argument area; only round up to the next doubleword 4260 // at the end of the array. Otherwise, each float takes 8 bytes. 4261 if (CallConv != CallingConv::Fast || needsLoad) { 4262 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4263 ArgOffset += ArgSize; 4264 if (Flags.isInConsecutiveRegsLast()) 4265 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4266 } 4267 break; 4268 case MVT::v4f32: 4269 case MVT::v4i32: 4270 case MVT::v8i16: 4271 case MVT::v16i8: 4272 case MVT::v2f64: 4273 case MVT::v2i64: 4274 case MVT::v1i128: 4275 case MVT::f128: 4276 // These can be scalar arguments or elements of a vector array type 4277 // passed directly. The latter are used to implement ELFv2 homogenous 4278 // vector aggregates. 4279 if (VR_idx != Num_VR_Regs) { 4280 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4281 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4282 ++VR_idx; 4283 } else { 4284 if (CallConv == CallingConv::Fast) 4285 ComputeArgOffset(); 4286 needsLoad = true; 4287 } 4288 if (CallConv != CallingConv::Fast || needsLoad) 4289 ArgOffset += 16; 4290 break; 4291 } 4292 4293 // We need to load the argument to a virtual register if we determined 4294 // above that we ran out of physical registers of the appropriate type. 4295 if (needsLoad) { 4296 if (ObjSize < ArgSize && !isLittleEndian) 4297 CurArgOffset += ArgSize - ObjSize; 4298 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4299 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4300 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4301 } 4302 4303 InVals.push_back(ArgVal); 4304 } 4305 4306 // Area that is at least reserved in the caller of this function. 4307 unsigned MinReservedArea; 4308 if (HasParameterArea) 4309 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4310 else 4311 MinReservedArea = LinkageSize; 4312 4313 // Set the size that is at least reserved in caller of this function. Tail 4314 // call optimized functions' reserved stack space needs to be aligned so that 4315 // taking the difference between two stack areas will result in an aligned 4316 // stack. 4317 MinReservedArea = 4318 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4319 FuncInfo->setMinReservedArea(MinReservedArea); 4320 4321 // If the function takes variable number of arguments, make a frame index for 4322 // the start of the first vararg value... for expansion of llvm.va_start. 4323 // On ELFv2ABI spec, it writes: 4324 // C programs that are intended to be *portable* across different compilers 4325 // and architectures must use the header file <stdarg.h> to deal with variable 4326 // argument lists. 4327 if (isVarArg && MFI.hasVAStart()) { 4328 int Depth = ArgOffset; 4329 4330 FuncInfo->setVarArgsFrameIndex( 4331 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4332 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4333 4334 // If this function is vararg, store any remaining integer argument regs 4335 // to their spots on the stack so that they may be loaded by dereferencing 4336 // the result of va_next. 4337 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4338 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4339 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4340 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4341 SDValue Store = 4342 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4343 MemOps.push_back(Store); 4344 // Increment the address by four for the next argument to store 4345 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4346 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4347 } 4348 } 4349 4350 if (!MemOps.empty()) 4351 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4352 4353 return Chain; 4354 } 4355 4356 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4357 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4358 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4359 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4360 // TODO: add description of PPC stack frame format, or at least some docs. 4361 // 4362 MachineFunction &MF = DAG.getMachineFunction(); 4363 MachineFrameInfo &MFI = MF.getFrameInfo(); 4364 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4365 4366 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4367 bool isPPC64 = PtrVT == MVT::i64; 4368 // Potential tail calls could cause overwriting of argument stack slots. 4369 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4370 (CallConv == CallingConv::Fast)); 4371 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4372 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4373 unsigned ArgOffset = LinkageSize; 4374 // Area that is at least reserved in caller of this function. 4375 unsigned MinReservedArea = ArgOffset; 4376 4377 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4378 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4379 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4380 }; 4381 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4382 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4383 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4384 }; 4385 static const MCPhysReg VR[] = { 4386 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4387 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4388 }; 4389 4390 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4391 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4392 const unsigned Num_VR_Regs = array_lengthof( VR); 4393 4394 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4395 4396 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4397 4398 // In 32-bit non-varargs functions, the stack space for vectors is after the 4399 // stack space for non-vectors. We do not use this space unless we have 4400 // too many vectors to fit in registers, something that only occurs in 4401 // constructed examples:), but we have to walk the arglist to figure 4402 // that out...for the pathological case, compute VecArgOffset as the 4403 // start of the vector parameter area. Computing VecArgOffset is the 4404 // entire point of the following loop. 4405 unsigned VecArgOffset = ArgOffset; 4406 if (!isVarArg && !isPPC64) { 4407 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4408 ++ArgNo) { 4409 EVT ObjectVT = Ins[ArgNo].VT; 4410 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4411 4412 if (Flags.isByVal()) { 4413 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4414 unsigned ObjSize = Flags.getByValSize(); 4415 unsigned ArgSize = 4416 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4417 VecArgOffset += ArgSize; 4418 continue; 4419 } 4420 4421 switch(ObjectVT.getSimpleVT().SimpleTy) { 4422 default: llvm_unreachable("Unhandled argument type!"); 4423 case MVT::i1: 4424 case MVT::i32: 4425 case MVT::f32: 4426 VecArgOffset += 4; 4427 break; 4428 case MVT::i64: // PPC64 4429 case MVT::f64: 4430 // FIXME: We are guaranteed to be !isPPC64 at this point. 4431 // Does MVT::i64 apply? 4432 VecArgOffset += 8; 4433 break; 4434 case MVT::v4f32: 4435 case MVT::v4i32: 4436 case MVT::v8i16: 4437 case MVT::v16i8: 4438 // Nothing to do, we're only looking at Nonvector args here. 4439 break; 4440 } 4441 } 4442 } 4443 // We've found where the vector parameter area in memory is. Skip the 4444 // first 12 parameters; these don't use that memory. 4445 VecArgOffset = ((VecArgOffset+15)/16)*16; 4446 VecArgOffset += 12*16; 4447 4448 // Add DAG nodes to load the arguments or copy them out of registers. On 4449 // entry to a function on PPC, the arguments start after the linkage area, 4450 // although the first ones are often in registers. 4451 4452 SmallVector<SDValue, 8> MemOps; 4453 unsigned nAltivecParamsAtEnd = 0; 4454 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4455 unsigned CurArgIdx = 0; 4456 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4457 SDValue ArgVal; 4458 bool needsLoad = false; 4459 EVT ObjectVT = Ins[ArgNo].VT; 4460 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4461 unsigned ArgSize = ObjSize; 4462 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4463 if (Ins[ArgNo].isOrigArg()) { 4464 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4465 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4466 } 4467 unsigned CurArgOffset = ArgOffset; 4468 4469 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4470 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4471 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4472 if (isVarArg || isPPC64) { 4473 MinReservedArea = ((MinReservedArea+15)/16)*16; 4474 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4475 Flags, 4476 PtrByteSize); 4477 } else nAltivecParamsAtEnd++; 4478 } else 4479 // Calculate min reserved area. 4480 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4481 Flags, 4482 PtrByteSize); 4483 4484 // FIXME the codegen can be much improved in some cases. 4485 // We do not have to keep everything in memory. 4486 if (Flags.isByVal()) { 4487 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4488 4489 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4490 ObjSize = Flags.getByValSize(); 4491 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4492 // Objects of size 1 and 2 are right justified, everything else is 4493 // left justified. This means the memory address is adjusted forwards. 4494 if (ObjSize==1 || ObjSize==2) { 4495 CurArgOffset = CurArgOffset + (4 - ObjSize); 4496 } 4497 // The value of the object is its address. 4498 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4499 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4500 InVals.push_back(FIN); 4501 if (ObjSize==1 || ObjSize==2) { 4502 if (GPR_idx != Num_GPR_Regs) { 4503 unsigned VReg; 4504 if (isPPC64) 4505 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4506 else 4507 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4508 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4509 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4510 SDValue Store = 4511 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4512 MachinePointerInfo(&*FuncArg), ObjType); 4513 MemOps.push_back(Store); 4514 ++GPR_idx; 4515 } 4516 4517 ArgOffset += PtrByteSize; 4518 4519 continue; 4520 } 4521 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4522 // Store whatever pieces of the object are in registers 4523 // to memory. ArgOffset will be the address of the beginning 4524 // of the object. 4525 if (GPR_idx != Num_GPR_Regs) { 4526 unsigned VReg; 4527 if (isPPC64) 4528 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4529 else 4530 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4531 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4532 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4533 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4534 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4535 MachinePointerInfo(&*FuncArg, j)); 4536 MemOps.push_back(Store); 4537 ++GPR_idx; 4538 ArgOffset += PtrByteSize; 4539 } else { 4540 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4541 break; 4542 } 4543 } 4544 continue; 4545 } 4546 4547 switch (ObjectVT.getSimpleVT().SimpleTy) { 4548 default: llvm_unreachable("Unhandled argument type!"); 4549 case MVT::i1: 4550 case MVT::i32: 4551 if (!isPPC64) { 4552 if (GPR_idx != Num_GPR_Regs) { 4553 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4554 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4555 4556 if (ObjectVT == MVT::i1) 4557 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4558 4559 ++GPR_idx; 4560 } else { 4561 needsLoad = true; 4562 ArgSize = PtrByteSize; 4563 } 4564 // All int arguments reserve stack space in the Darwin ABI. 4565 ArgOffset += PtrByteSize; 4566 break; 4567 } 4568 LLVM_FALLTHROUGH; 4569 case MVT::i64: // PPC64 4570 if (GPR_idx != Num_GPR_Regs) { 4571 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4572 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4573 4574 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4575 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4576 // value to MVT::i64 and then truncate to the correct register size. 4577 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4578 4579 ++GPR_idx; 4580 } else { 4581 needsLoad = true; 4582 ArgSize = PtrByteSize; 4583 } 4584 // All int arguments reserve stack space in the Darwin ABI. 4585 ArgOffset += 8; 4586 break; 4587 4588 case MVT::f32: 4589 case MVT::f64: 4590 // Every 4 bytes of argument space consumes one of the GPRs available for 4591 // argument passing. 4592 if (GPR_idx != Num_GPR_Regs) { 4593 ++GPR_idx; 4594 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4595 ++GPR_idx; 4596 } 4597 if (FPR_idx != Num_FPR_Regs) { 4598 unsigned VReg; 4599 4600 if (ObjectVT == MVT::f32) 4601 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4602 else 4603 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4604 4605 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4606 ++FPR_idx; 4607 } else { 4608 needsLoad = true; 4609 } 4610 4611 // All FP arguments reserve stack space in the Darwin ABI. 4612 ArgOffset += isPPC64 ? 8 : ObjSize; 4613 break; 4614 case MVT::v4f32: 4615 case MVT::v4i32: 4616 case MVT::v8i16: 4617 case MVT::v16i8: 4618 // Note that vector arguments in registers don't reserve stack space, 4619 // except in varargs functions. 4620 if (VR_idx != Num_VR_Regs) { 4621 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4622 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4623 if (isVarArg) { 4624 while ((ArgOffset % 16) != 0) { 4625 ArgOffset += PtrByteSize; 4626 if (GPR_idx != Num_GPR_Regs) 4627 GPR_idx++; 4628 } 4629 ArgOffset += 16; 4630 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4631 } 4632 ++VR_idx; 4633 } else { 4634 if (!isVarArg && !isPPC64) { 4635 // Vectors go after all the nonvectors. 4636 CurArgOffset = VecArgOffset; 4637 VecArgOffset += 16; 4638 } else { 4639 // Vectors are aligned. 4640 ArgOffset = ((ArgOffset+15)/16)*16; 4641 CurArgOffset = ArgOffset; 4642 ArgOffset += 16; 4643 } 4644 needsLoad = true; 4645 } 4646 break; 4647 } 4648 4649 // We need to load the argument to a virtual register if we determined above 4650 // that we ran out of physical registers of the appropriate type. 4651 if (needsLoad) { 4652 int FI = MFI.CreateFixedObject(ObjSize, 4653 CurArgOffset + (ArgSize - ObjSize), 4654 isImmutable); 4655 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4656 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4657 } 4658 4659 InVals.push_back(ArgVal); 4660 } 4661 4662 // Allow for Altivec parameters at the end, if needed. 4663 if (nAltivecParamsAtEnd) { 4664 MinReservedArea = ((MinReservedArea+15)/16)*16; 4665 MinReservedArea += 16*nAltivecParamsAtEnd; 4666 } 4667 4668 // Area that is at least reserved in the caller of this function. 4669 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4670 4671 // Set the size that is at least reserved in caller of this function. Tail 4672 // call optimized functions' reserved stack space needs to be aligned so that 4673 // taking the difference between two stack areas will result in an aligned 4674 // stack. 4675 MinReservedArea = 4676 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4677 FuncInfo->setMinReservedArea(MinReservedArea); 4678 4679 // If the function takes variable number of arguments, make a frame index for 4680 // the start of the first vararg value... for expansion of llvm.va_start. 4681 if (isVarArg) { 4682 int Depth = ArgOffset; 4683 4684 FuncInfo->setVarArgsFrameIndex( 4685 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4686 Depth, true)); 4687 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4688 4689 // If this function is vararg, store any remaining integer argument regs 4690 // to their spots on the stack so that they may be loaded by dereferencing 4691 // the result of va_next. 4692 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4693 unsigned VReg; 4694 4695 if (isPPC64) 4696 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4697 else 4698 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4699 4700 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4701 SDValue Store = 4702 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4703 MemOps.push_back(Store); 4704 // Increment the address by four for the next argument to store 4705 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4706 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4707 } 4708 } 4709 4710 if (!MemOps.empty()) 4711 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4712 4713 return Chain; 4714 } 4715 4716 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4717 /// adjusted to accommodate the arguments for the tailcall. 4718 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4719 unsigned ParamSize) { 4720 4721 if (!isTailCall) return 0; 4722 4723 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4724 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4725 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4726 // Remember only if the new adjustment is bigger. 4727 if (SPDiff < FI->getTailCallSPDelta()) 4728 FI->setTailCallSPDelta(SPDiff); 4729 4730 return SPDiff; 4731 } 4732 4733 static bool isFunctionGlobalAddress(SDValue Callee); 4734 4735 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4736 const TargetMachine &TM) { 4737 // It does not make sense to call callsShareTOCBase() with a caller that 4738 // is PC Relative since PC Relative callers do not have a TOC. 4739 #ifndef NDEBUG 4740 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4741 assert(!STICaller->isUsingPCRelativeCalls() && 4742 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4743 #endif 4744 4745 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4746 // don't have enough information to determine if the caller and callee share 4747 // the same TOC base, so we have to pessimistically assume they don't for 4748 // correctness. 4749 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4750 if (!G) 4751 return false; 4752 4753 const GlobalValue *GV = G->getGlobal(); 4754 4755 // If the callee is preemptable, then the static linker will use a plt-stub 4756 // which saves the toc to the stack, and needs a nop after the call 4757 // instruction to convert to a toc-restore. 4758 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4759 return false; 4760 4761 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4762 // We may need a TOC restore in the situation where the caller requires a 4763 // valid TOC but the callee is PC Relative and does not. 4764 const Function *F = dyn_cast<Function>(GV); 4765 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4766 4767 // If we have an Alias we can try to get the function from there. 4768 if (Alias) { 4769 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4770 F = dyn_cast<Function>(GlobalObj); 4771 } 4772 4773 // If we still have no valid function pointer we do not have enough 4774 // information to determine if the callee uses PC Relative calls so we must 4775 // assume that it does. 4776 if (!F) 4777 return false; 4778 4779 // If the callee uses PC Relative we cannot guarantee that the callee won't 4780 // clobber the TOC of the caller and so we must assume that the two 4781 // functions do not share a TOC base. 4782 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4783 if (STICallee->isUsingPCRelativeCalls()) 4784 return false; 4785 4786 // The medium and large code models are expected to provide a sufficiently 4787 // large TOC to provide all data addressing needs of a module with a 4788 // single TOC. 4789 if (CodeModel::Medium == TM.getCodeModel() || 4790 CodeModel::Large == TM.getCodeModel()) 4791 return true; 4792 4793 // Otherwise we need to ensure callee and caller are in the same section, 4794 // since the linker may allocate multiple TOCs, and we don't know which 4795 // sections will belong to the same TOC base. 4796 if (!GV->isStrongDefinitionForLinker()) 4797 return false; 4798 4799 // Any explicitly-specified sections and section prefixes must also match. 4800 // Also, if we're using -ffunction-sections, then each function is always in 4801 // a different section (the same is true for COMDAT functions). 4802 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4803 GV->getSection() != Caller->getSection()) 4804 return false; 4805 if (const auto *F = dyn_cast<Function>(GV)) { 4806 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4807 return false; 4808 } 4809 4810 return true; 4811 } 4812 4813 static bool 4814 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4815 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4816 assert(Subtarget.is64BitELFABI()); 4817 4818 const unsigned PtrByteSize = 8; 4819 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4820 4821 static const MCPhysReg GPR[] = { 4822 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4823 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4824 }; 4825 static const MCPhysReg VR[] = { 4826 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4827 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4828 }; 4829 4830 const unsigned NumGPRs = array_lengthof(GPR); 4831 const unsigned NumFPRs = 13; 4832 const unsigned NumVRs = array_lengthof(VR); 4833 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4834 4835 unsigned NumBytes = LinkageSize; 4836 unsigned AvailableFPRs = NumFPRs; 4837 unsigned AvailableVRs = NumVRs; 4838 4839 for (const ISD::OutputArg& Param : Outs) { 4840 if (Param.Flags.isNest()) continue; 4841 4842 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4843 LinkageSize, ParamAreaSize, NumBytes, 4844 AvailableFPRs, AvailableVRs)) 4845 return true; 4846 } 4847 return false; 4848 } 4849 4850 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4851 if (CB.arg_size() != CallerFn->arg_size()) 4852 return false; 4853 4854 auto CalleeArgIter = CB.arg_begin(); 4855 auto CalleeArgEnd = CB.arg_end(); 4856 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4857 4858 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4859 const Value* CalleeArg = *CalleeArgIter; 4860 const Value* CallerArg = &(*CallerArgIter); 4861 if (CalleeArg == CallerArg) 4862 continue; 4863 4864 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4865 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4866 // } 4867 // 1st argument of callee is undef and has the same type as caller. 4868 if (CalleeArg->getType() == CallerArg->getType() && 4869 isa<UndefValue>(CalleeArg)) 4870 continue; 4871 4872 return false; 4873 } 4874 4875 return true; 4876 } 4877 4878 // Returns true if TCO is possible between the callers and callees 4879 // calling conventions. 4880 static bool 4881 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4882 CallingConv::ID CalleeCC) { 4883 // Tail calls are possible with fastcc and ccc. 4884 auto isTailCallableCC = [] (CallingConv::ID CC){ 4885 return CC == CallingConv::C || CC == CallingConv::Fast; 4886 }; 4887 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4888 return false; 4889 4890 // We can safely tail call both fastcc and ccc callees from a c calling 4891 // convention caller. If the caller is fastcc, we may have less stack space 4892 // than a non-fastcc caller with the same signature so disable tail-calls in 4893 // that case. 4894 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4895 } 4896 4897 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4898 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4899 const SmallVectorImpl<ISD::OutputArg> &Outs, 4900 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4901 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4902 4903 if (DisableSCO && !TailCallOpt) return false; 4904 4905 // Variadic argument functions are not supported. 4906 if (isVarArg) return false; 4907 4908 auto &Caller = DAG.getMachineFunction().getFunction(); 4909 // Check that the calling conventions are compatible for tco. 4910 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4911 return false; 4912 4913 // Caller contains any byval parameter is not supported. 4914 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4915 return false; 4916 4917 // Callee contains any byval parameter is not supported, too. 4918 // Note: This is a quick work around, because in some cases, e.g. 4919 // caller's stack size > callee's stack size, we are still able to apply 4920 // sibling call optimization. For example, gcc is able to do SCO for caller1 4921 // in the following example, but not for caller2. 4922 // struct test { 4923 // long int a; 4924 // char ary[56]; 4925 // } gTest; 4926 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4927 // b->a = v.a; 4928 // return 0; 4929 // } 4930 // void caller1(struct test a, struct test c, struct test *b) { 4931 // callee(gTest, b); } 4932 // void caller2(struct test *b) { callee(gTest, b); } 4933 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4934 return false; 4935 4936 // If callee and caller use different calling conventions, we cannot pass 4937 // parameters on stack since offsets for the parameter area may be different. 4938 if (Caller.getCallingConv() != CalleeCC && 4939 needStackSlotPassParameters(Subtarget, Outs)) 4940 return false; 4941 4942 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4943 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4944 // callee potentially have different TOC bases then we cannot tail call since 4945 // we need to restore the TOC pointer after the call. 4946 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4947 // We cannot guarantee this for indirect calls or calls to external functions. 4948 // When PC-Relative addressing is used, the concept of the TOC is no longer 4949 // applicable so this check is not required. 4950 // Check first for indirect calls. 4951 if (!Subtarget.isUsingPCRelativeCalls() && 4952 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4953 return false; 4954 4955 // Check if we share the TOC base. 4956 if (!Subtarget.isUsingPCRelativeCalls() && 4957 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4958 return false; 4959 4960 // TCO allows altering callee ABI, so we don't have to check further. 4961 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4962 return true; 4963 4964 if (DisableSCO) return false; 4965 4966 // If callee use the same argument list that caller is using, then we can 4967 // apply SCO on this case. If it is not, then we need to check if callee needs 4968 // stack for passing arguments. 4969 // PC Relative tail calls may not have a CallBase. 4970 // If there is no CallBase we cannot verify if we have the same argument 4971 // list so assume that we don't have the same argument list. 4972 if (CB && !hasSameArgumentList(&Caller, *CB) && 4973 needStackSlotPassParameters(Subtarget, Outs)) 4974 return false; 4975 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4976 return false; 4977 4978 return true; 4979 } 4980 4981 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4982 /// for tail call optimization. Targets which want to do tail call 4983 /// optimization should implement this function. 4984 bool 4985 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4986 CallingConv::ID CalleeCC, 4987 bool isVarArg, 4988 const SmallVectorImpl<ISD::InputArg> &Ins, 4989 SelectionDAG& DAG) const { 4990 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4991 return false; 4992 4993 // Variable argument functions are not supported. 4994 if (isVarArg) 4995 return false; 4996 4997 MachineFunction &MF = DAG.getMachineFunction(); 4998 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4999 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 5000 // Functions containing by val parameters are not supported. 5001 for (unsigned i = 0; i != Ins.size(); i++) { 5002 ISD::ArgFlagsTy Flags = Ins[i].Flags; 5003 if (Flags.isByVal()) return false; 5004 } 5005 5006 // Non-PIC/GOT tail calls are supported. 5007 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 5008 return true; 5009 5010 // At the moment we can only do local tail calls (in same module, hidden 5011 // or protected) if we are generating PIC. 5012 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 5013 return G->getGlobal()->hasHiddenVisibility() 5014 || G->getGlobal()->hasProtectedVisibility(); 5015 } 5016 5017 return false; 5018 } 5019 5020 /// isCallCompatibleAddress - Return the immediate to use if the specified 5021 /// 32-bit value is representable in the immediate field of a BxA instruction. 5022 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 5023 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 5024 if (!C) return nullptr; 5025 5026 int Addr = C->getZExtValue(); 5027 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 5028 SignExtend32<26>(Addr) != Addr) 5029 return nullptr; // Top 6 bits have to be sext of immediate. 5030 5031 return DAG 5032 .getConstant( 5033 (int)C->getZExtValue() >> 2, SDLoc(Op), 5034 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5035 .getNode(); 5036 } 5037 5038 namespace { 5039 5040 struct TailCallArgumentInfo { 5041 SDValue Arg; 5042 SDValue FrameIdxOp; 5043 int FrameIdx = 0; 5044 5045 TailCallArgumentInfo() = default; 5046 }; 5047 5048 } // end anonymous namespace 5049 5050 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5051 static void StoreTailCallArgumentsToStackSlot( 5052 SelectionDAG &DAG, SDValue Chain, 5053 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5054 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5055 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5056 SDValue Arg = TailCallArgs[i].Arg; 5057 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5058 int FI = TailCallArgs[i].FrameIdx; 5059 // Store relative to framepointer. 5060 MemOpChains.push_back(DAG.getStore( 5061 Chain, dl, Arg, FIN, 5062 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5063 } 5064 } 5065 5066 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5067 /// the appropriate stack slot for the tail call optimized function call. 5068 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5069 SDValue OldRetAddr, SDValue OldFP, 5070 int SPDiff, const SDLoc &dl) { 5071 if (SPDiff) { 5072 // Calculate the new stack slot for the return address. 5073 MachineFunction &MF = DAG.getMachineFunction(); 5074 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5075 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5076 bool isPPC64 = Subtarget.isPPC64(); 5077 int SlotSize = isPPC64 ? 8 : 4; 5078 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5079 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5080 NewRetAddrLoc, true); 5081 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5082 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5083 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5084 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5085 } 5086 return Chain; 5087 } 5088 5089 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5090 /// the position of the argument. 5091 static void 5092 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5093 SDValue Arg, int SPDiff, unsigned ArgOffset, 5094 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5095 int Offset = ArgOffset + SPDiff; 5096 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5097 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5098 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5099 SDValue FIN = DAG.getFrameIndex(FI, VT); 5100 TailCallArgumentInfo Info; 5101 Info.Arg = Arg; 5102 Info.FrameIdxOp = FIN; 5103 Info.FrameIdx = FI; 5104 TailCallArguments.push_back(Info); 5105 } 5106 5107 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5108 /// stack slot. Returns the chain as result and the loaded frame pointers in 5109 /// LROpOut/FPOpout. Used when tail calling. 5110 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5111 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5112 SDValue &FPOpOut, const SDLoc &dl) const { 5113 if (SPDiff) { 5114 // Load the LR and FP stack slot for later adjusting. 5115 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5116 LROpOut = getReturnAddrFrameIndex(DAG); 5117 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5118 Chain = SDValue(LROpOut.getNode(), 1); 5119 } 5120 return Chain; 5121 } 5122 5123 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5124 /// by "Src" to address "Dst" of size "Size". Alignment information is 5125 /// specified by the specific parameter attribute. The copy will be passed as 5126 /// a byval function parameter. 5127 /// Sometimes what we are copying is the end of a larger object, the part that 5128 /// does not fit in registers. 5129 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5130 SDValue Chain, ISD::ArgFlagsTy Flags, 5131 SelectionDAG &DAG, const SDLoc &dl) { 5132 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5133 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5134 Flags.getNonZeroByValAlign(), false, false, false, 5135 MachinePointerInfo(), MachinePointerInfo()); 5136 } 5137 5138 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5139 /// tail calls. 5140 static void LowerMemOpCallTo( 5141 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5142 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5143 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5144 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5145 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5146 if (!isTailCall) { 5147 if (isVector) { 5148 SDValue StackPtr; 5149 if (isPPC64) 5150 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5151 else 5152 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5153 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5154 DAG.getConstant(ArgOffset, dl, PtrVT)); 5155 } 5156 MemOpChains.push_back( 5157 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5158 // Calculate and remember argument location. 5159 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5160 TailCallArguments); 5161 } 5162 5163 static void 5164 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5165 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5166 SDValue FPOp, 5167 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5168 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5169 // might overwrite each other in case of tail call optimization. 5170 SmallVector<SDValue, 8> MemOpChains2; 5171 // Do not flag preceding copytoreg stuff together with the following stuff. 5172 InFlag = SDValue(); 5173 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5174 MemOpChains2, dl); 5175 if (!MemOpChains2.empty()) 5176 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5177 5178 // Store the return address to the appropriate stack slot. 5179 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5180 5181 // Emit callseq_end just before tailcall node. 5182 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5183 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5184 InFlag = Chain.getValue(1); 5185 } 5186 5187 // Is this global address that of a function that can be called by name? (as 5188 // opposed to something that must hold a descriptor for an indirect call). 5189 static bool isFunctionGlobalAddress(SDValue Callee) { 5190 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5191 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5192 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5193 return false; 5194 5195 return G->getGlobal()->getValueType()->isFunctionTy(); 5196 } 5197 5198 return false; 5199 } 5200 5201 SDValue PPCTargetLowering::LowerCallResult( 5202 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5203 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5204 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5205 SmallVector<CCValAssign, 16> RVLocs; 5206 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5207 *DAG.getContext()); 5208 5209 CCRetInfo.AnalyzeCallResult( 5210 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5211 ? RetCC_PPC_Cold 5212 : RetCC_PPC); 5213 5214 // Copy all of the result registers out of their specified physreg. 5215 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5216 CCValAssign &VA = RVLocs[i]; 5217 assert(VA.isRegLoc() && "Can only return in registers!"); 5218 5219 SDValue Val; 5220 5221 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5222 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5223 InFlag); 5224 Chain = Lo.getValue(1); 5225 InFlag = Lo.getValue(2); 5226 VA = RVLocs[++i]; // skip ahead to next loc 5227 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5228 InFlag); 5229 Chain = Hi.getValue(1); 5230 InFlag = Hi.getValue(2); 5231 if (!Subtarget.isLittleEndian()) 5232 std::swap (Lo, Hi); 5233 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5234 } else { 5235 Val = DAG.getCopyFromReg(Chain, dl, 5236 VA.getLocReg(), VA.getLocVT(), InFlag); 5237 Chain = Val.getValue(1); 5238 InFlag = Val.getValue(2); 5239 } 5240 5241 switch (VA.getLocInfo()) { 5242 default: llvm_unreachable("Unknown loc info!"); 5243 case CCValAssign::Full: break; 5244 case CCValAssign::AExt: 5245 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5246 break; 5247 case CCValAssign::ZExt: 5248 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5249 DAG.getValueType(VA.getValVT())); 5250 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5251 break; 5252 case CCValAssign::SExt: 5253 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5254 DAG.getValueType(VA.getValVT())); 5255 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5256 break; 5257 } 5258 5259 InVals.push_back(Val); 5260 } 5261 5262 return Chain; 5263 } 5264 5265 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5266 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5267 // PatchPoint calls are not indirect. 5268 if (isPatchPoint) 5269 return false; 5270 5271 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5272 return false; 5273 5274 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5275 // becuase the immediate function pointer points to a descriptor instead of 5276 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5277 // pointer immediate points to the global entry point, while the BLA would 5278 // need to jump to the local entry point (see rL211174). 5279 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5280 isBLACompatibleAddress(Callee, DAG)) 5281 return false; 5282 5283 return true; 5284 } 5285 5286 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5287 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5288 return Subtarget.isAIXABI() || 5289 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5290 } 5291 5292 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5293 const Function &Caller, 5294 const SDValue &Callee, 5295 const PPCSubtarget &Subtarget, 5296 const TargetMachine &TM) { 5297 if (CFlags.IsTailCall) 5298 return PPCISD::TC_RETURN; 5299 5300 // This is a call through a function pointer. 5301 if (CFlags.IsIndirect) { 5302 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5303 // indirect calls. The save of the caller's TOC pointer to the stack will be 5304 // inserted into the DAG as part of call lowering. The restore of the TOC 5305 // pointer is modeled by using a pseudo instruction for the call opcode that 5306 // represents the 2 instruction sequence of an indirect branch and link, 5307 // immediately followed by a load of the TOC pointer from the the stack save 5308 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5309 // as it is not saved or used. 5310 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5311 : PPCISD::BCTRL; 5312 } 5313 5314 if (Subtarget.isUsingPCRelativeCalls()) { 5315 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5316 return PPCISD::CALL_NOTOC; 5317 } 5318 5319 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5320 // immediately following the call instruction if the caller and callee may 5321 // have different TOC bases. At link time if the linker determines the calls 5322 // may not share a TOC base, the call is redirected to a trampoline inserted 5323 // by the linker. The trampoline will (among other things) save the callers 5324 // TOC pointer at an ABI designated offset in the linkage area and the linker 5325 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5326 // into gpr2. 5327 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5328 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5329 : PPCISD::CALL_NOP; 5330 5331 return PPCISD::CALL; 5332 } 5333 5334 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5335 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5336 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5337 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5338 return SDValue(Dest, 0); 5339 5340 // Returns true if the callee is local, and false otherwise. 5341 auto isLocalCallee = [&]() { 5342 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5343 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5344 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5345 5346 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5347 !dyn_cast_or_null<GlobalIFunc>(GV); 5348 }; 5349 5350 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5351 // a static relocation model causes some versions of GNU LD (2.17.50, at 5352 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5353 // built with secure-PLT. 5354 bool UsePlt = 5355 Subtarget.is32BitELFABI() && !isLocalCallee() && 5356 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5357 5358 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5359 const TargetMachine &TM = Subtarget.getTargetMachine(); 5360 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5361 MCSymbolXCOFF *S = 5362 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5363 5364 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5365 return DAG.getMCSymbol(S, PtrVT); 5366 }; 5367 5368 if (isFunctionGlobalAddress(Callee)) { 5369 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5370 5371 if (Subtarget.isAIXABI()) { 5372 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5373 return getAIXFuncEntryPointSymbolSDNode(GV); 5374 } 5375 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5376 UsePlt ? PPCII::MO_PLT : 0); 5377 } 5378 5379 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5380 const char *SymName = S->getSymbol(); 5381 if (Subtarget.isAIXABI()) { 5382 // If there exists a user-declared function whose name is the same as the 5383 // ExternalSymbol's, then we pick up the user-declared version. 5384 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5385 if (const Function *F = 5386 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5387 return getAIXFuncEntryPointSymbolSDNode(F); 5388 5389 // On AIX, direct function calls reference the symbol for the function's 5390 // entry point, which is named by prepending a "." before the function's 5391 // C-linkage name. A Qualname is returned here because an external 5392 // function entry point is a csect with XTY_ER property. 5393 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5394 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5395 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5396 (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5397 SectionKind::getMetadata()); 5398 return Sec->getQualNameSymbol(); 5399 }; 5400 5401 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5402 } 5403 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5404 UsePlt ? PPCII::MO_PLT : 0); 5405 } 5406 5407 // No transformation needed. 5408 assert(Callee.getNode() && "What no callee?"); 5409 return Callee; 5410 } 5411 5412 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5413 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5414 "Expected a CALLSEQ_STARTSDNode."); 5415 5416 // The last operand is the chain, except when the node has glue. If the node 5417 // has glue, then the last operand is the glue, and the chain is the second 5418 // last operand. 5419 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5420 if (LastValue.getValueType() != MVT::Glue) 5421 return LastValue; 5422 5423 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5424 } 5425 5426 // Creates the node that moves a functions address into the count register 5427 // to prepare for an indirect call instruction. 5428 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5429 SDValue &Glue, SDValue &Chain, 5430 const SDLoc &dl) { 5431 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5432 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5433 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5434 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5435 // The glue is the second value produced. 5436 Glue = Chain.getValue(1); 5437 } 5438 5439 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5440 SDValue &Glue, SDValue &Chain, 5441 SDValue CallSeqStart, 5442 const CallBase *CB, const SDLoc &dl, 5443 bool hasNest, 5444 const PPCSubtarget &Subtarget) { 5445 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5446 // entry point, but to the function descriptor (the function entry point 5447 // address is part of the function descriptor though). 5448 // The function descriptor is a three doubleword structure with the 5449 // following fields: function entry point, TOC base address and 5450 // environment pointer. 5451 // Thus for a call through a function pointer, the following actions need 5452 // to be performed: 5453 // 1. Save the TOC of the caller in the TOC save area of its stack 5454 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5455 // 2. Load the address of the function entry point from the function 5456 // descriptor. 5457 // 3. Load the TOC of the callee from the function descriptor into r2. 5458 // 4. Load the environment pointer from the function descriptor into 5459 // r11. 5460 // 5. Branch to the function entry point address. 5461 // 6. On return of the callee, the TOC of the caller needs to be 5462 // restored (this is done in FinishCall()). 5463 // 5464 // The loads are scheduled at the beginning of the call sequence, and the 5465 // register copies are flagged together to ensure that no other 5466 // operations can be scheduled in between. E.g. without flagging the 5467 // copies together, a TOC access in the caller could be scheduled between 5468 // the assignment of the callee TOC and the branch to the callee, which leads 5469 // to incorrect code. 5470 5471 // Start by loading the function address from the descriptor. 5472 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5473 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5474 ? (MachineMemOperand::MODereferenceable | 5475 MachineMemOperand::MOInvariant) 5476 : MachineMemOperand::MONone; 5477 5478 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5479 5480 // Registers used in building the DAG. 5481 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5482 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5483 5484 // Offsets of descriptor members. 5485 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5486 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5487 5488 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5489 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5490 5491 // One load for the functions entry point address. 5492 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5493 Alignment, MMOFlags); 5494 5495 // One for loading the TOC anchor for the module that contains the called 5496 // function. 5497 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5498 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5499 SDValue TOCPtr = 5500 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5501 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5502 5503 // One for loading the environment pointer. 5504 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5505 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5506 SDValue LoadEnvPtr = 5507 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5508 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5509 5510 5511 // Then copy the newly loaded TOC anchor to the TOC pointer. 5512 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5513 Chain = TOCVal.getValue(0); 5514 Glue = TOCVal.getValue(1); 5515 5516 // If the function call has an explicit 'nest' parameter, it takes the 5517 // place of the environment pointer. 5518 assert((!hasNest || !Subtarget.isAIXABI()) && 5519 "Nest parameter is not supported on AIX."); 5520 if (!hasNest) { 5521 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5522 Chain = EnvVal.getValue(0); 5523 Glue = EnvVal.getValue(1); 5524 } 5525 5526 // The rest of the indirect call sequence is the same as the non-descriptor 5527 // DAG. 5528 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5529 } 5530 5531 static void 5532 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5533 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5534 SelectionDAG &DAG, 5535 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5536 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5537 const PPCSubtarget &Subtarget) { 5538 const bool IsPPC64 = Subtarget.isPPC64(); 5539 // MVT for a general purpose register. 5540 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5541 5542 // First operand is always the chain. 5543 Ops.push_back(Chain); 5544 5545 // If it's a direct call pass the callee as the second operand. 5546 if (!CFlags.IsIndirect) 5547 Ops.push_back(Callee); 5548 else { 5549 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5550 5551 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5552 // on the stack (this would have been done in `LowerCall_64SVR4` or 5553 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5554 // represents both the indirect branch and a load that restores the TOC 5555 // pointer from the linkage area. The operand for the TOC restore is an add 5556 // of the TOC save offset to the stack pointer. This must be the second 5557 // operand: after the chain input but before any other variadic arguments. 5558 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5559 // saved or used. 5560 if (isTOCSaveRestoreRequired(Subtarget)) { 5561 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5562 5563 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5564 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5565 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5566 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5567 Ops.push_back(AddTOC); 5568 } 5569 5570 // Add the register used for the environment pointer. 5571 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5572 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5573 RegVT)); 5574 5575 5576 // Add CTR register as callee so a bctr can be emitted later. 5577 if (CFlags.IsTailCall) 5578 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5579 } 5580 5581 // If this is a tail call add stack pointer delta. 5582 if (CFlags.IsTailCall) 5583 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5584 5585 // Add argument registers to the end of the list so that they are known live 5586 // into the call. 5587 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5588 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5589 RegsToPass[i].second.getValueType())); 5590 5591 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5592 // no way to mark dependencies as implicit here. 5593 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5594 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5595 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5596 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5597 5598 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5599 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5600 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5601 5602 // Add a register mask operand representing the call-preserved registers. 5603 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5604 const uint32_t *Mask = 5605 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5606 assert(Mask && "Missing call preserved mask for calling convention"); 5607 Ops.push_back(DAG.getRegisterMask(Mask)); 5608 5609 // If the glue is valid, it is the last operand. 5610 if (Glue.getNode()) 5611 Ops.push_back(Glue); 5612 } 5613 5614 SDValue PPCTargetLowering::FinishCall( 5615 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5616 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5617 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5618 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5619 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5620 5621 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5622 Subtarget.isAIXABI()) 5623 setUsesTOCBasePtr(DAG); 5624 5625 unsigned CallOpc = 5626 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5627 Subtarget, DAG.getTarget()); 5628 5629 if (!CFlags.IsIndirect) 5630 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5631 else if (Subtarget.usesFunctionDescriptors()) 5632 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5633 dl, CFlags.HasNest, Subtarget); 5634 else 5635 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5636 5637 // Build the operand list for the call instruction. 5638 SmallVector<SDValue, 8> Ops; 5639 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5640 SPDiff, Subtarget); 5641 5642 // Emit tail call. 5643 if (CFlags.IsTailCall) { 5644 // Indirect tail call when using PC Relative calls do not have the same 5645 // constraints. 5646 assert(((Callee.getOpcode() == ISD::Register && 5647 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5648 Callee.getOpcode() == ISD::TargetExternalSymbol || 5649 Callee.getOpcode() == ISD::TargetGlobalAddress || 5650 isa<ConstantSDNode>(Callee) || 5651 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5652 "Expecting a global address, external symbol, absolute value, " 5653 "register or an indirect tail call when PC Relative calls are " 5654 "used."); 5655 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5656 assert(CallOpc == PPCISD::TC_RETURN && 5657 "Unexpected call opcode for a tail call."); 5658 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5659 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5660 } 5661 5662 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5663 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5664 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5665 Glue = Chain.getValue(1); 5666 5667 // When performing tail call optimization the callee pops its arguments off 5668 // the stack. Account for this here so these bytes can be pushed back on in 5669 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5670 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5671 getTargetMachine().Options.GuaranteedTailCallOpt) 5672 ? NumBytes 5673 : 0; 5674 5675 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5676 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5677 Glue, dl); 5678 Glue = Chain.getValue(1); 5679 5680 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5681 DAG, InVals); 5682 } 5683 5684 SDValue 5685 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5686 SmallVectorImpl<SDValue> &InVals) const { 5687 SelectionDAG &DAG = CLI.DAG; 5688 SDLoc &dl = CLI.DL; 5689 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5690 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5691 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5692 SDValue Chain = CLI.Chain; 5693 SDValue Callee = CLI.Callee; 5694 bool &isTailCall = CLI.IsTailCall; 5695 CallingConv::ID CallConv = CLI.CallConv; 5696 bool isVarArg = CLI.IsVarArg; 5697 bool isPatchPoint = CLI.IsPatchPoint; 5698 const CallBase *CB = CLI.CB; 5699 5700 if (isTailCall) { 5701 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5702 isTailCall = false; 5703 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5704 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5705 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5706 else 5707 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5708 Ins, DAG); 5709 if (isTailCall) { 5710 ++NumTailCalls; 5711 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5712 ++NumSiblingCalls; 5713 5714 // PC Relative calls no longer guarantee that the callee is a Global 5715 // Address Node. The callee could be an indirect tail call in which 5716 // case the SDValue for the callee could be a load (to load the address 5717 // of a function pointer) or it may be a register copy (to move the 5718 // address of the callee from a function parameter into a virtual 5719 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5720 assert((Subtarget.isUsingPCRelativeCalls() || 5721 isa<GlobalAddressSDNode>(Callee)) && 5722 "Callee should be an llvm::Function object."); 5723 5724 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5725 << "\nTCO callee: "); 5726 LLVM_DEBUG(Callee.dump()); 5727 } 5728 } 5729 5730 if (!isTailCall && CB && CB->isMustTailCall()) 5731 report_fatal_error("failed to perform tail call elimination on a call " 5732 "site marked musttail"); 5733 5734 // When long calls (i.e. indirect calls) are always used, calls are always 5735 // made via function pointer. If we have a function name, first translate it 5736 // into a pointer. 5737 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5738 !isTailCall) 5739 Callee = LowerGlobalAddress(Callee, DAG); 5740 5741 CallFlags CFlags( 5742 CallConv, isTailCall, isVarArg, isPatchPoint, 5743 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5744 // hasNest 5745 Subtarget.is64BitELFABI() && 5746 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5747 CLI.NoMerge); 5748 5749 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5750 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5751 InVals, CB); 5752 5753 if (Subtarget.isSVR4ABI()) 5754 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5755 InVals, CB); 5756 5757 if (Subtarget.isAIXABI()) 5758 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5759 InVals, CB); 5760 5761 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5762 InVals, CB); 5763 } 5764 5765 SDValue PPCTargetLowering::LowerCall_32SVR4( 5766 SDValue Chain, SDValue Callee, CallFlags CFlags, 5767 const SmallVectorImpl<ISD::OutputArg> &Outs, 5768 const SmallVectorImpl<SDValue> &OutVals, 5769 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5770 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5771 const CallBase *CB) const { 5772 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5773 // of the 32-bit SVR4 ABI stack frame layout. 5774 5775 const CallingConv::ID CallConv = CFlags.CallConv; 5776 const bool IsVarArg = CFlags.IsVarArg; 5777 const bool IsTailCall = CFlags.IsTailCall; 5778 5779 assert((CallConv == CallingConv::C || 5780 CallConv == CallingConv::Cold || 5781 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5782 5783 const Align PtrAlign(4); 5784 5785 MachineFunction &MF = DAG.getMachineFunction(); 5786 5787 // Mark this function as potentially containing a function that contains a 5788 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5789 // and restoring the callers stack pointer in this functions epilog. This is 5790 // done because by tail calling the called function might overwrite the value 5791 // in this function's (MF) stack pointer stack slot 0(SP). 5792 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5793 CallConv == CallingConv::Fast) 5794 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5795 5796 // Count how many bytes are to be pushed on the stack, including the linkage 5797 // area, parameter list area and the part of the local variable space which 5798 // contains copies of aggregates which are passed by value. 5799 5800 // Assign locations to all of the outgoing arguments. 5801 SmallVector<CCValAssign, 16> ArgLocs; 5802 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5803 5804 // Reserve space for the linkage area on the stack. 5805 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5806 PtrAlign); 5807 if (useSoftFloat()) 5808 CCInfo.PreAnalyzeCallOperands(Outs); 5809 5810 if (IsVarArg) { 5811 // Handle fixed and variable vector arguments differently. 5812 // Fixed vector arguments go into registers as long as registers are 5813 // available. Variable vector arguments always go into memory. 5814 unsigned NumArgs = Outs.size(); 5815 5816 for (unsigned i = 0; i != NumArgs; ++i) { 5817 MVT ArgVT = Outs[i].VT; 5818 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5819 bool Result; 5820 5821 if (Outs[i].IsFixed) { 5822 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5823 CCInfo); 5824 } else { 5825 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5826 ArgFlags, CCInfo); 5827 } 5828 5829 if (Result) { 5830 #ifndef NDEBUG 5831 errs() << "Call operand #" << i << " has unhandled type " 5832 << EVT(ArgVT).getEVTString() << "\n"; 5833 #endif 5834 llvm_unreachable(nullptr); 5835 } 5836 } 5837 } else { 5838 // All arguments are treated the same. 5839 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5840 } 5841 CCInfo.clearWasPPCF128(); 5842 5843 // Assign locations to all of the outgoing aggregate by value arguments. 5844 SmallVector<CCValAssign, 16> ByValArgLocs; 5845 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5846 5847 // Reserve stack space for the allocations in CCInfo. 5848 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5849 5850 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5851 5852 // Size of the linkage area, parameter list area and the part of the local 5853 // space variable where copies of aggregates which are passed by value are 5854 // stored. 5855 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5856 5857 // Calculate by how many bytes the stack has to be adjusted in case of tail 5858 // call optimization. 5859 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5860 5861 // Adjust the stack pointer for the new arguments... 5862 // These operations are automatically eliminated by the prolog/epilog pass 5863 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5864 SDValue CallSeqStart = Chain; 5865 5866 // Load the return address and frame pointer so it can be moved somewhere else 5867 // later. 5868 SDValue LROp, FPOp; 5869 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5870 5871 // Set up a copy of the stack pointer for use loading and storing any 5872 // arguments that may not fit in the registers available for argument 5873 // passing. 5874 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5875 5876 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5877 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5878 SmallVector<SDValue, 8> MemOpChains; 5879 5880 bool seenFloatArg = false; 5881 // Walk the register/memloc assignments, inserting copies/loads. 5882 // i - Tracks the index into the list of registers allocated for the call 5883 // RealArgIdx - Tracks the index into the list of actual function arguments 5884 // j - Tracks the index into the list of byval arguments 5885 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5886 i != e; 5887 ++i, ++RealArgIdx) { 5888 CCValAssign &VA = ArgLocs[i]; 5889 SDValue Arg = OutVals[RealArgIdx]; 5890 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5891 5892 if (Flags.isByVal()) { 5893 // Argument is an aggregate which is passed by value, thus we need to 5894 // create a copy of it in the local variable space of the current stack 5895 // frame (which is the stack frame of the caller) and pass the address of 5896 // this copy to the callee. 5897 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5898 CCValAssign &ByValVA = ByValArgLocs[j++]; 5899 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5900 5901 // Memory reserved in the local variable space of the callers stack frame. 5902 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5903 5904 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5905 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5906 StackPtr, PtrOff); 5907 5908 // Create a copy of the argument in the local area of the current 5909 // stack frame. 5910 SDValue MemcpyCall = 5911 CreateCopyOfByValArgument(Arg, PtrOff, 5912 CallSeqStart.getNode()->getOperand(0), 5913 Flags, DAG, dl); 5914 5915 // This must go outside the CALLSEQ_START..END. 5916 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5917 SDLoc(MemcpyCall)); 5918 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5919 NewCallSeqStart.getNode()); 5920 Chain = CallSeqStart = NewCallSeqStart; 5921 5922 // Pass the address of the aggregate copy on the stack either in a 5923 // physical register or in the parameter list area of the current stack 5924 // frame to the callee. 5925 Arg = PtrOff; 5926 } 5927 5928 // When useCRBits() is true, there can be i1 arguments. 5929 // It is because getRegisterType(MVT::i1) => MVT::i1, 5930 // and for other integer types getRegisterType() => MVT::i32. 5931 // Extend i1 and ensure callee will get i32. 5932 if (Arg.getValueType() == MVT::i1) 5933 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5934 dl, MVT::i32, Arg); 5935 5936 if (VA.isRegLoc()) { 5937 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5938 // Put argument in a physical register. 5939 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5940 bool IsLE = Subtarget.isLittleEndian(); 5941 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5942 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5943 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5944 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5945 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5946 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5947 SVal.getValue(0))); 5948 } else 5949 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5950 } else { 5951 // Put argument in the parameter list area of the current stack frame. 5952 assert(VA.isMemLoc()); 5953 unsigned LocMemOffset = VA.getLocMemOffset(); 5954 5955 if (!IsTailCall) { 5956 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5957 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5958 StackPtr, PtrOff); 5959 5960 MemOpChains.push_back( 5961 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5962 } else { 5963 // Calculate and remember argument location. 5964 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5965 TailCallArguments); 5966 } 5967 } 5968 } 5969 5970 if (!MemOpChains.empty()) 5971 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5972 5973 // Build a sequence of copy-to-reg nodes chained together with token chain 5974 // and flag operands which copy the outgoing args into the appropriate regs. 5975 SDValue InFlag; 5976 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5977 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5978 RegsToPass[i].second, InFlag); 5979 InFlag = Chain.getValue(1); 5980 } 5981 5982 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5983 // registers. 5984 if (IsVarArg) { 5985 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5986 SDValue Ops[] = { Chain, InFlag }; 5987 5988 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5989 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5990 5991 InFlag = Chain.getValue(1); 5992 } 5993 5994 if (IsTailCall) 5995 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5996 TailCallArguments); 5997 5998 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5999 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6000 } 6001 6002 // Copy an argument into memory, being careful to do this outside the 6003 // call sequence for the call to which the argument belongs. 6004 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 6005 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 6006 SelectionDAG &DAG, const SDLoc &dl) const { 6007 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 6008 CallSeqStart.getNode()->getOperand(0), 6009 Flags, DAG, dl); 6010 // The MEMCPY must go outside the CALLSEQ_START..END. 6011 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 6012 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 6013 SDLoc(MemcpyCall)); 6014 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6015 NewCallSeqStart.getNode()); 6016 return NewCallSeqStart; 6017 } 6018 6019 SDValue PPCTargetLowering::LowerCall_64SVR4( 6020 SDValue Chain, SDValue Callee, CallFlags CFlags, 6021 const SmallVectorImpl<ISD::OutputArg> &Outs, 6022 const SmallVectorImpl<SDValue> &OutVals, 6023 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6024 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6025 const CallBase *CB) const { 6026 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6027 bool isLittleEndian = Subtarget.isLittleEndian(); 6028 unsigned NumOps = Outs.size(); 6029 bool IsSibCall = false; 6030 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6031 6032 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6033 unsigned PtrByteSize = 8; 6034 6035 MachineFunction &MF = DAG.getMachineFunction(); 6036 6037 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6038 IsSibCall = true; 6039 6040 // Mark this function as potentially containing a function that contains a 6041 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6042 // and restoring the callers stack pointer in this functions epilog. This is 6043 // done because by tail calling the called function might overwrite the value 6044 // in this function's (MF) stack pointer stack slot 0(SP). 6045 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6046 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6047 6048 assert(!(IsFastCall && CFlags.IsVarArg) && 6049 "fastcc not supported on varargs functions"); 6050 6051 // Count how many bytes are to be pushed on the stack, including the linkage 6052 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6053 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6054 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6055 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6056 unsigned NumBytes = LinkageSize; 6057 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6058 6059 static const MCPhysReg GPR[] = { 6060 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6061 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6062 }; 6063 static const MCPhysReg VR[] = { 6064 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6065 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6066 }; 6067 6068 const unsigned NumGPRs = array_lengthof(GPR); 6069 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6070 const unsigned NumVRs = array_lengthof(VR); 6071 6072 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6073 // can be passed to the callee in registers. 6074 // For the fast calling convention, there is another check below. 6075 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6076 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6077 if (!HasParameterArea) { 6078 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6079 unsigned AvailableFPRs = NumFPRs; 6080 unsigned AvailableVRs = NumVRs; 6081 unsigned NumBytesTmp = NumBytes; 6082 for (unsigned i = 0; i != NumOps; ++i) { 6083 if (Outs[i].Flags.isNest()) continue; 6084 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6085 PtrByteSize, LinkageSize, ParamAreaSize, 6086 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6087 HasParameterArea = true; 6088 } 6089 } 6090 6091 // When using the fast calling convention, we don't provide backing for 6092 // arguments that will be in registers. 6093 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6094 6095 // Avoid allocating parameter area for fastcc functions if all the arguments 6096 // can be passed in the registers. 6097 if (IsFastCall) 6098 HasParameterArea = false; 6099 6100 // Add up all the space actually used. 6101 for (unsigned i = 0; i != NumOps; ++i) { 6102 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6103 EVT ArgVT = Outs[i].VT; 6104 EVT OrigVT = Outs[i].ArgVT; 6105 6106 if (Flags.isNest()) 6107 continue; 6108 6109 if (IsFastCall) { 6110 if (Flags.isByVal()) { 6111 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6112 if (NumGPRsUsed > NumGPRs) 6113 HasParameterArea = true; 6114 } else { 6115 switch (ArgVT.getSimpleVT().SimpleTy) { 6116 default: llvm_unreachable("Unexpected ValueType for argument!"); 6117 case MVT::i1: 6118 case MVT::i32: 6119 case MVT::i64: 6120 if (++NumGPRsUsed <= NumGPRs) 6121 continue; 6122 break; 6123 case MVT::v4i32: 6124 case MVT::v8i16: 6125 case MVT::v16i8: 6126 case MVT::v2f64: 6127 case MVT::v2i64: 6128 case MVT::v1i128: 6129 case MVT::f128: 6130 if (++NumVRsUsed <= NumVRs) 6131 continue; 6132 break; 6133 case MVT::v4f32: 6134 if (++NumVRsUsed <= NumVRs) 6135 continue; 6136 break; 6137 case MVT::f32: 6138 case MVT::f64: 6139 if (++NumFPRsUsed <= NumFPRs) 6140 continue; 6141 break; 6142 } 6143 HasParameterArea = true; 6144 } 6145 } 6146 6147 /* Respect alignment of argument on the stack. */ 6148 auto Alignement = 6149 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6150 NumBytes = alignTo(NumBytes, Alignement); 6151 6152 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6153 if (Flags.isInConsecutiveRegsLast()) 6154 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6155 } 6156 6157 unsigned NumBytesActuallyUsed = NumBytes; 6158 6159 // In the old ELFv1 ABI, 6160 // the prolog code of the callee may store up to 8 GPR argument registers to 6161 // the stack, allowing va_start to index over them in memory if its varargs. 6162 // Because we cannot tell if this is needed on the caller side, we have to 6163 // conservatively assume that it is needed. As such, make sure we have at 6164 // least enough stack space for the caller to store the 8 GPRs. 6165 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6166 // really requires memory operands, e.g. a vararg function. 6167 if (HasParameterArea) 6168 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6169 else 6170 NumBytes = LinkageSize; 6171 6172 // Tail call needs the stack to be aligned. 6173 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6174 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6175 6176 int SPDiff = 0; 6177 6178 // Calculate by how many bytes the stack has to be adjusted in case of tail 6179 // call optimization. 6180 if (!IsSibCall) 6181 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6182 6183 // To protect arguments on the stack from being clobbered in a tail call, 6184 // force all the loads to happen before doing any other lowering. 6185 if (CFlags.IsTailCall) 6186 Chain = DAG.getStackArgumentTokenFactor(Chain); 6187 6188 // Adjust the stack pointer for the new arguments... 6189 // These operations are automatically eliminated by the prolog/epilog pass 6190 if (!IsSibCall) 6191 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6192 SDValue CallSeqStart = Chain; 6193 6194 // Load the return address and frame pointer so it can be move somewhere else 6195 // later. 6196 SDValue LROp, FPOp; 6197 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6198 6199 // Set up a copy of the stack pointer for use loading and storing any 6200 // arguments that may not fit in the registers available for argument 6201 // passing. 6202 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6203 6204 // Figure out which arguments are going to go in registers, and which in 6205 // memory. Also, if this is a vararg function, floating point operations 6206 // must be stored to our stack, and loaded into integer regs as well, if 6207 // any integer regs are available for argument passing. 6208 unsigned ArgOffset = LinkageSize; 6209 6210 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6211 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6212 6213 SmallVector<SDValue, 8> MemOpChains; 6214 for (unsigned i = 0; i != NumOps; ++i) { 6215 SDValue Arg = OutVals[i]; 6216 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6217 EVT ArgVT = Outs[i].VT; 6218 EVT OrigVT = Outs[i].ArgVT; 6219 6220 // PtrOff will be used to store the current argument to the stack if a 6221 // register cannot be found for it. 6222 SDValue PtrOff; 6223 6224 // We re-align the argument offset for each argument, except when using the 6225 // fast calling convention, when we need to make sure we do that only when 6226 // we'll actually use a stack slot. 6227 auto ComputePtrOff = [&]() { 6228 /* Respect alignment of argument on the stack. */ 6229 auto Alignment = 6230 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6231 ArgOffset = alignTo(ArgOffset, Alignment); 6232 6233 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6234 6235 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6236 }; 6237 6238 if (!IsFastCall) { 6239 ComputePtrOff(); 6240 6241 /* Compute GPR index associated with argument offset. */ 6242 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6243 GPR_idx = std::min(GPR_idx, NumGPRs); 6244 } 6245 6246 // Promote integers to 64-bit values. 6247 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6248 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6249 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6250 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6251 } 6252 6253 // FIXME memcpy is used way more than necessary. Correctness first. 6254 // Note: "by value" is code for passing a structure by value, not 6255 // basic types. 6256 if (Flags.isByVal()) { 6257 // Note: Size includes alignment padding, so 6258 // struct x { short a; char b; } 6259 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6260 // These are the proper values we need for right-justifying the 6261 // aggregate in a parameter register. 6262 unsigned Size = Flags.getByValSize(); 6263 6264 // An empty aggregate parameter takes up no storage and no 6265 // registers. 6266 if (Size == 0) 6267 continue; 6268 6269 if (IsFastCall) 6270 ComputePtrOff(); 6271 6272 // All aggregates smaller than 8 bytes must be passed right-justified. 6273 if (Size==1 || Size==2 || Size==4) { 6274 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6275 if (GPR_idx != NumGPRs) { 6276 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6277 MachinePointerInfo(), VT); 6278 MemOpChains.push_back(Load.getValue(1)); 6279 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6280 6281 ArgOffset += PtrByteSize; 6282 continue; 6283 } 6284 } 6285 6286 if (GPR_idx == NumGPRs && Size < 8) { 6287 SDValue AddPtr = PtrOff; 6288 if (!isLittleEndian) { 6289 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6290 PtrOff.getValueType()); 6291 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6292 } 6293 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6294 CallSeqStart, 6295 Flags, DAG, dl); 6296 ArgOffset += PtrByteSize; 6297 continue; 6298 } 6299 // Copy entire object into memory. There are cases where gcc-generated 6300 // code assumes it is there, even if it could be put entirely into 6301 // registers. (This is not what the doc says.) 6302 6303 // FIXME: The above statement is likely due to a misunderstanding of the 6304 // documents. All arguments must be copied into the parameter area BY 6305 // THE CALLEE in the event that the callee takes the address of any 6306 // formal argument. That has not yet been implemented. However, it is 6307 // reasonable to use the stack area as a staging area for the register 6308 // load. 6309 6310 // Skip this for small aggregates, as we will use the same slot for a 6311 // right-justified copy, below. 6312 if (Size >= 8) 6313 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6314 CallSeqStart, 6315 Flags, DAG, dl); 6316 6317 // When a register is available, pass a small aggregate right-justified. 6318 if (Size < 8 && GPR_idx != NumGPRs) { 6319 // The easiest way to get this right-justified in a register 6320 // is to copy the structure into the rightmost portion of a 6321 // local variable slot, then load the whole slot into the 6322 // register. 6323 // FIXME: The memcpy seems to produce pretty awful code for 6324 // small aggregates, particularly for packed ones. 6325 // FIXME: It would be preferable to use the slot in the 6326 // parameter save area instead of a new local variable. 6327 SDValue AddPtr = PtrOff; 6328 if (!isLittleEndian) { 6329 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6330 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6331 } 6332 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6333 CallSeqStart, 6334 Flags, DAG, dl); 6335 6336 // Load the slot into the register. 6337 SDValue Load = 6338 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6339 MemOpChains.push_back(Load.getValue(1)); 6340 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6341 6342 // Done with this argument. 6343 ArgOffset += PtrByteSize; 6344 continue; 6345 } 6346 6347 // For aggregates larger than PtrByteSize, copy the pieces of the 6348 // object that fit into registers from the parameter save area. 6349 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6350 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6351 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6352 if (GPR_idx != NumGPRs) { 6353 SDValue Load = 6354 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6355 MemOpChains.push_back(Load.getValue(1)); 6356 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6357 ArgOffset += PtrByteSize; 6358 } else { 6359 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6360 break; 6361 } 6362 } 6363 continue; 6364 } 6365 6366 switch (Arg.getSimpleValueType().SimpleTy) { 6367 default: llvm_unreachable("Unexpected ValueType for argument!"); 6368 case MVT::i1: 6369 case MVT::i32: 6370 case MVT::i64: 6371 if (Flags.isNest()) { 6372 // The 'nest' parameter, if any, is passed in R11. 6373 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6374 break; 6375 } 6376 6377 // These can be scalar arguments or elements of an integer array type 6378 // passed directly. Clang may use those instead of "byval" aggregate 6379 // types to avoid forcing arguments to memory unnecessarily. 6380 if (GPR_idx != NumGPRs) { 6381 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6382 } else { 6383 if (IsFastCall) 6384 ComputePtrOff(); 6385 6386 assert(HasParameterArea && 6387 "Parameter area must exist to pass an argument in memory."); 6388 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6389 true, CFlags.IsTailCall, false, MemOpChains, 6390 TailCallArguments, dl); 6391 if (IsFastCall) 6392 ArgOffset += PtrByteSize; 6393 } 6394 if (!IsFastCall) 6395 ArgOffset += PtrByteSize; 6396 break; 6397 case MVT::f32: 6398 case MVT::f64: { 6399 // These can be scalar arguments or elements of a float array type 6400 // passed directly. The latter are used to implement ELFv2 homogenous 6401 // float aggregates. 6402 6403 // Named arguments go into FPRs first, and once they overflow, the 6404 // remaining arguments go into GPRs and then the parameter save area. 6405 // Unnamed arguments for vararg functions always go to GPRs and 6406 // then the parameter save area. For now, put all arguments to vararg 6407 // routines always in both locations (FPR *and* GPR or stack slot). 6408 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6409 bool NeededLoad = false; 6410 6411 // First load the argument into the next available FPR. 6412 if (FPR_idx != NumFPRs) 6413 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6414 6415 // Next, load the argument into GPR or stack slot if needed. 6416 if (!NeedGPROrStack) 6417 ; 6418 else if (GPR_idx != NumGPRs && !IsFastCall) { 6419 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6420 // once we support fp <-> gpr moves. 6421 6422 // In the non-vararg case, this can only ever happen in the 6423 // presence of f32 array types, since otherwise we never run 6424 // out of FPRs before running out of GPRs. 6425 SDValue ArgVal; 6426 6427 // Double values are always passed in a single GPR. 6428 if (Arg.getValueType() != MVT::f32) { 6429 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6430 6431 // Non-array float values are extended and passed in a GPR. 6432 } else if (!Flags.isInConsecutiveRegs()) { 6433 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6434 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6435 6436 // If we have an array of floats, we collect every odd element 6437 // together with its predecessor into one GPR. 6438 } else if (ArgOffset % PtrByteSize != 0) { 6439 SDValue Lo, Hi; 6440 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6441 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6442 if (!isLittleEndian) 6443 std::swap(Lo, Hi); 6444 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6445 6446 // The final element, if even, goes into the first half of a GPR. 6447 } else if (Flags.isInConsecutiveRegsLast()) { 6448 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6449 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6450 if (!isLittleEndian) 6451 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6452 DAG.getConstant(32, dl, MVT::i32)); 6453 6454 // Non-final even elements are skipped; they will be handled 6455 // together the with subsequent argument on the next go-around. 6456 } else 6457 ArgVal = SDValue(); 6458 6459 if (ArgVal.getNode()) 6460 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6461 } else { 6462 if (IsFastCall) 6463 ComputePtrOff(); 6464 6465 // Single-precision floating-point values are mapped to the 6466 // second (rightmost) word of the stack doubleword. 6467 if (Arg.getValueType() == MVT::f32 && 6468 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6469 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6470 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6471 } 6472 6473 assert(HasParameterArea && 6474 "Parameter area must exist to pass an argument in memory."); 6475 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6476 true, CFlags.IsTailCall, false, MemOpChains, 6477 TailCallArguments, dl); 6478 6479 NeededLoad = true; 6480 } 6481 // When passing an array of floats, the array occupies consecutive 6482 // space in the argument area; only round up to the next doubleword 6483 // at the end of the array. Otherwise, each float takes 8 bytes. 6484 if (!IsFastCall || NeededLoad) { 6485 ArgOffset += (Arg.getValueType() == MVT::f32 && 6486 Flags.isInConsecutiveRegs()) ? 4 : 8; 6487 if (Flags.isInConsecutiveRegsLast()) 6488 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6489 } 6490 break; 6491 } 6492 case MVT::v4f32: 6493 case MVT::v4i32: 6494 case MVT::v8i16: 6495 case MVT::v16i8: 6496 case MVT::v2f64: 6497 case MVT::v2i64: 6498 case MVT::v1i128: 6499 case MVT::f128: 6500 // These can be scalar arguments or elements of a vector array type 6501 // passed directly. The latter are used to implement ELFv2 homogenous 6502 // vector aggregates. 6503 6504 // For a varargs call, named arguments go into VRs or on the stack as 6505 // usual; unnamed arguments always go to the stack or the corresponding 6506 // GPRs when within range. For now, we always put the value in both 6507 // locations (or even all three). 6508 if (CFlags.IsVarArg) { 6509 assert(HasParameterArea && 6510 "Parameter area must exist if we have a varargs call."); 6511 // We could elide this store in the case where the object fits 6512 // entirely in R registers. Maybe later. 6513 SDValue Store = 6514 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6515 MemOpChains.push_back(Store); 6516 if (VR_idx != NumVRs) { 6517 SDValue Load = 6518 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6519 MemOpChains.push_back(Load.getValue(1)); 6520 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6521 } 6522 ArgOffset += 16; 6523 for (unsigned i=0; i<16; i+=PtrByteSize) { 6524 if (GPR_idx == NumGPRs) 6525 break; 6526 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6527 DAG.getConstant(i, dl, PtrVT)); 6528 SDValue Load = 6529 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6530 MemOpChains.push_back(Load.getValue(1)); 6531 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6532 } 6533 break; 6534 } 6535 6536 // Non-varargs Altivec params go into VRs or on the stack. 6537 if (VR_idx != NumVRs) { 6538 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6539 } else { 6540 if (IsFastCall) 6541 ComputePtrOff(); 6542 6543 assert(HasParameterArea && 6544 "Parameter area must exist to pass an argument in memory."); 6545 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6546 true, CFlags.IsTailCall, true, MemOpChains, 6547 TailCallArguments, dl); 6548 if (IsFastCall) 6549 ArgOffset += 16; 6550 } 6551 6552 if (!IsFastCall) 6553 ArgOffset += 16; 6554 break; 6555 } 6556 } 6557 6558 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6559 "mismatch in size of parameter area"); 6560 (void)NumBytesActuallyUsed; 6561 6562 if (!MemOpChains.empty()) 6563 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6564 6565 // Check if this is an indirect call (MTCTR/BCTRL). 6566 // See prepareDescriptorIndirectCall and buildCallOperands for more 6567 // information about calls through function pointers in the 64-bit SVR4 ABI. 6568 if (CFlags.IsIndirect) { 6569 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6570 // caller in the TOC save area. 6571 if (isTOCSaveRestoreRequired(Subtarget)) { 6572 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6573 // Load r2 into a virtual register and store it to the TOC save area. 6574 setUsesTOCBasePtr(DAG); 6575 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6576 // TOC save area offset. 6577 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6578 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6579 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6580 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6581 MachinePointerInfo::getStack( 6582 DAG.getMachineFunction(), TOCSaveOffset)); 6583 } 6584 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6585 // This does not mean the MTCTR instruction must use R12; it's easier 6586 // to model this as an extra parameter, so do that. 6587 if (isELFv2ABI && !CFlags.IsPatchPoint) 6588 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6589 } 6590 6591 // Build a sequence of copy-to-reg nodes chained together with token chain 6592 // and flag operands which copy the outgoing args into the appropriate regs. 6593 SDValue InFlag; 6594 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6595 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6596 RegsToPass[i].second, InFlag); 6597 InFlag = Chain.getValue(1); 6598 } 6599 6600 if (CFlags.IsTailCall && !IsSibCall) 6601 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6602 TailCallArguments); 6603 6604 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6605 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6606 } 6607 6608 SDValue PPCTargetLowering::LowerCall_Darwin( 6609 SDValue Chain, SDValue Callee, CallFlags CFlags, 6610 const SmallVectorImpl<ISD::OutputArg> &Outs, 6611 const SmallVectorImpl<SDValue> &OutVals, 6612 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6613 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6614 const CallBase *CB) const { 6615 unsigned NumOps = Outs.size(); 6616 6617 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6618 bool isPPC64 = PtrVT == MVT::i64; 6619 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6620 6621 MachineFunction &MF = DAG.getMachineFunction(); 6622 6623 // Mark this function as potentially containing a function that contains a 6624 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6625 // and restoring the callers stack pointer in this functions epilog. This is 6626 // done because by tail calling the called function might overwrite the value 6627 // in this function's (MF) stack pointer stack slot 0(SP). 6628 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6629 CFlags.CallConv == CallingConv::Fast) 6630 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6631 6632 // Count how many bytes are to be pushed on the stack, including the linkage 6633 // area, and parameter passing area. We start with 24/48 bytes, which is 6634 // prereserved space for [SP][CR][LR][3 x unused]. 6635 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6636 unsigned NumBytes = LinkageSize; 6637 6638 // Add up all the space actually used. 6639 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6640 // they all go in registers, but we must reserve stack space for them for 6641 // possible use by the caller. In varargs or 64-bit calls, parameters are 6642 // assigned stack space in order, with padding so Altivec parameters are 6643 // 16-byte aligned. 6644 unsigned nAltivecParamsAtEnd = 0; 6645 for (unsigned i = 0; i != NumOps; ++i) { 6646 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6647 EVT ArgVT = Outs[i].VT; 6648 // Varargs Altivec parameters are padded to a 16 byte boundary. 6649 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6650 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6651 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6652 if (!CFlags.IsVarArg && !isPPC64) { 6653 // Non-varargs Altivec parameters go after all the non-Altivec 6654 // parameters; handle those later so we know how much padding we need. 6655 nAltivecParamsAtEnd++; 6656 continue; 6657 } 6658 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6659 NumBytes = ((NumBytes+15)/16)*16; 6660 } 6661 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6662 } 6663 6664 // Allow for Altivec parameters at the end, if needed. 6665 if (nAltivecParamsAtEnd) { 6666 NumBytes = ((NumBytes+15)/16)*16; 6667 NumBytes += 16*nAltivecParamsAtEnd; 6668 } 6669 6670 // The prolog code of the callee may store up to 8 GPR argument registers to 6671 // the stack, allowing va_start to index over them in memory if its varargs. 6672 // Because we cannot tell if this is needed on the caller side, we have to 6673 // conservatively assume that it is needed. As such, make sure we have at 6674 // least enough stack space for the caller to store the 8 GPRs. 6675 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6676 6677 // Tail call needs the stack to be aligned. 6678 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6679 CFlags.CallConv == CallingConv::Fast) 6680 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6681 6682 // Calculate by how many bytes the stack has to be adjusted in case of tail 6683 // call optimization. 6684 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6685 6686 // To protect arguments on the stack from being clobbered in a tail call, 6687 // force all the loads to happen before doing any other lowering. 6688 if (CFlags.IsTailCall) 6689 Chain = DAG.getStackArgumentTokenFactor(Chain); 6690 6691 // Adjust the stack pointer for the new arguments... 6692 // These operations are automatically eliminated by the prolog/epilog pass 6693 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6694 SDValue CallSeqStart = Chain; 6695 6696 // Load the return address and frame pointer so it can be move somewhere else 6697 // later. 6698 SDValue LROp, FPOp; 6699 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6700 6701 // Set up a copy of the stack pointer for use loading and storing any 6702 // arguments that may not fit in the registers available for argument 6703 // passing. 6704 SDValue StackPtr; 6705 if (isPPC64) 6706 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6707 else 6708 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6709 6710 // Figure out which arguments are going to go in registers, and which in 6711 // memory. Also, if this is a vararg function, floating point operations 6712 // must be stored to our stack, and loaded into integer regs as well, if 6713 // any integer regs are available for argument passing. 6714 unsigned ArgOffset = LinkageSize; 6715 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6716 6717 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6718 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6719 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6720 }; 6721 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6722 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6723 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6724 }; 6725 static const MCPhysReg VR[] = { 6726 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6727 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6728 }; 6729 const unsigned NumGPRs = array_lengthof(GPR_32); 6730 const unsigned NumFPRs = 13; 6731 const unsigned NumVRs = array_lengthof(VR); 6732 6733 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6734 6735 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6736 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6737 6738 SmallVector<SDValue, 8> MemOpChains; 6739 for (unsigned i = 0; i != NumOps; ++i) { 6740 SDValue Arg = OutVals[i]; 6741 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6742 6743 // PtrOff will be used to store the current argument to the stack if a 6744 // register cannot be found for it. 6745 SDValue PtrOff; 6746 6747 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6748 6749 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6750 6751 // On PPC64, promote integers to 64-bit values. 6752 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6753 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6754 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6755 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6756 } 6757 6758 // FIXME memcpy is used way more than necessary. Correctness first. 6759 // Note: "by value" is code for passing a structure by value, not 6760 // basic types. 6761 if (Flags.isByVal()) { 6762 unsigned Size = Flags.getByValSize(); 6763 // Very small objects are passed right-justified. Everything else is 6764 // passed left-justified. 6765 if (Size==1 || Size==2) { 6766 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6767 if (GPR_idx != NumGPRs) { 6768 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6769 MachinePointerInfo(), VT); 6770 MemOpChains.push_back(Load.getValue(1)); 6771 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6772 6773 ArgOffset += PtrByteSize; 6774 } else { 6775 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6776 PtrOff.getValueType()); 6777 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6778 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6779 CallSeqStart, 6780 Flags, DAG, dl); 6781 ArgOffset += PtrByteSize; 6782 } 6783 continue; 6784 } 6785 // Copy entire object into memory. There are cases where gcc-generated 6786 // code assumes it is there, even if it could be put entirely into 6787 // registers. (This is not what the doc says.) 6788 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6789 CallSeqStart, 6790 Flags, DAG, dl); 6791 6792 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6793 // copy the pieces of the object that fit into registers from the 6794 // parameter save area. 6795 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6796 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6797 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6798 if (GPR_idx != NumGPRs) { 6799 SDValue Load = 6800 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6801 MemOpChains.push_back(Load.getValue(1)); 6802 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6803 ArgOffset += PtrByteSize; 6804 } else { 6805 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6806 break; 6807 } 6808 } 6809 continue; 6810 } 6811 6812 switch (Arg.getSimpleValueType().SimpleTy) { 6813 default: llvm_unreachable("Unexpected ValueType for argument!"); 6814 case MVT::i1: 6815 case MVT::i32: 6816 case MVT::i64: 6817 if (GPR_idx != NumGPRs) { 6818 if (Arg.getValueType() == MVT::i1) 6819 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6820 6821 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6822 } else { 6823 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6824 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6825 TailCallArguments, dl); 6826 } 6827 ArgOffset += PtrByteSize; 6828 break; 6829 case MVT::f32: 6830 case MVT::f64: 6831 if (FPR_idx != NumFPRs) { 6832 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6833 6834 if (CFlags.IsVarArg) { 6835 SDValue Store = 6836 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6837 MemOpChains.push_back(Store); 6838 6839 // Float varargs are always shadowed in available integer registers 6840 if (GPR_idx != NumGPRs) { 6841 SDValue Load = 6842 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6843 MemOpChains.push_back(Load.getValue(1)); 6844 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6845 } 6846 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6847 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6848 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6849 SDValue Load = 6850 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6851 MemOpChains.push_back(Load.getValue(1)); 6852 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6853 } 6854 } else { 6855 // If we have any FPRs remaining, we may also have GPRs remaining. 6856 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6857 // GPRs. 6858 if (GPR_idx != NumGPRs) 6859 ++GPR_idx; 6860 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6861 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6862 ++GPR_idx; 6863 } 6864 } else 6865 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6866 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6867 TailCallArguments, dl); 6868 if (isPPC64) 6869 ArgOffset += 8; 6870 else 6871 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6872 break; 6873 case MVT::v4f32: 6874 case MVT::v4i32: 6875 case MVT::v8i16: 6876 case MVT::v16i8: 6877 if (CFlags.IsVarArg) { 6878 // These go aligned on the stack, or in the corresponding R registers 6879 // when within range. The Darwin PPC ABI doc claims they also go in 6880 // V registers; in fact gcc does this only for arguments that are 6881 // prototyped, not for those that match the ... We do it for all 6882 // arguments, seems to work. 6883 while (ArgOffset % 16 !=0) { 6884 ArgOffset += PtrByteSize; 6885 if (GPR_idx != NumGPRs) 6886 GPR_idx++; 6887 } 6888 // We could elide this store in the case where the object fits 6889 // entirely in R registers. Maybe later. 6890 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6891 DAG.getConstant(ArgOffset, dl, PtrVT)); 6892 SDValue Store = 6893 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6894 MemOpChains.push_back(Store); 6895 if (VR_idx != NumVRs) { 6896 SDValue Load = 6897 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6898 MemOpChains.push_back(Load.getValue(1)); 6899 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6900 } 6901 ArgOffset += 16; 6902 for (unsigned i=0; i<16; i+=PtrByteSize) { 6903 if (GPR_idx == NumGPRs) 6904 break; 6905 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6906 DAG.getConstant(i, dl, PtrVT)); 6907 SDValue Load = 6908 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6909 MemOpChains.push_back(Load.getValue(1)); 6910 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6911 } 6912 break; 6913 } 6914 6915 // Non-varargs Altivec params generally go in registers, but have 6916 // stack space allocated at the end. 6917 if (VR_idx != NumVRs) { 6918 // Doesn't have GPR space allocated. 6919 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6920 } else if (nAltivecParamsAtEnd==0) { 6921 // We are emitting Altivec params in order. 6922 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6923 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6924 TailCallArguments, dl); 6925 ArgOffset += 16; 6926 } 6927 break; 6928 } 6929 } 6930 // If all Altivec parameters fit in registers, as they usually do, 6931 // they get stack space following the non-Altivec parameters. We 6932 // don't track this here because nobody below needs it. 6933 // If there are more Altivec parameters than fit in registers emit 6934 // the stores here. 6935 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6936 unsigned j = 0; 6937 // Offset is aligned; skip 1st 12 params which go in V registers. 6938 ArgOffset = ((ArgOffset+15)/16)*16; 6939 ArgOffset += 12*16; 6940 for (unsigned i = 0; i != NumOps; ++i) { 6941 SDValue Arg = OutVals[i]; 6942 EVT ArgType = Outs[i].VT; 6943 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6944 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6945 if (++j > NumVRs) { 6946 SDValue PtrOff; 6947 // We are emitting Altivec params in order. 6948 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6949 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6950 TailCallArguments, dl); 6951 ArgOffset += 16; 6952 } 6953 } 6954 } 6955 } 6956 6957 if (!MemOpChains.empty()) 6958 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6959 6960 // On Darwin, R12 must contain the address of an indirect callee. This does 6961 // not mean the MTCTR instruction must use R12; it's easier to model this as 6962 // an extra parameter, so do that. 6963 if (CFlags.IsIndirect) { 6964 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6965 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6966 PPC::R12), Callee)); 6967 } 6968 6969 // Build a sequence of copy-to-reg nodes chained together with token chain 6970 // and flag operands which copy the outgoing args into the appropriate regs. 6971 SDValue InFlag; 6972 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6973 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6974 RegsToPass[i].second, InFlag); 6975 InFlag = Chain.getValue(1); 6976 } 6977 6978 if (CFlags.IsTailCall) 6979 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6980 TailCallArguments); 6981 6982 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6983 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6984 } 6985 6986 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6987 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6988 CCState &State) { 6989 6990 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6991 State.getMachineFunction().getSubtarget()); 6992 const bool IsPPC64 = Subtarget.isPPC64(); 6993 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6994 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6995 6996 if (ValVT.isVector() && !State.getMachineFunction() 6997 .getTarget() 6998 .Options.EnableAIXExtendedAltivecABI) 6999 report_fatal_error("the default Altivec AIX ABI is not yet supported"); 7000 7001 if (ValVT.isVector() && State.getMachineFunction() 7002 .getTarget() 7003 .Options.EnableAIXExtendedAltivecABI) 7004 report_fatal_error("the extended Altivec AIX ABI is not yet supported"); 7005 7006 assert((!ValVT.isInteger() || 7007 (ValVT.getFixedSizeInBits() <= RegVT.getFixedSizeInBits())) && 7008 "Integer argument exceeds register size: should have been legalized"); 7009 7010 if (ValVT == MVT::f128) 7011 report_fatal_error("f128 is unimplemented on AIX."); 7012 7013 if (ArgFlags.isNest()) 7014 report_fatal_error("Nest arguments are unimplemented."); 7015 7016 if (ValVT.isVector() || LocVT.isVector()) 7017 report_fatal_error("Vector arguments are unimplemented on AIX."); 7018 7019 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7020 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7021 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7022 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7023 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7024 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7025 7026 if (ArgFlags.isByVal()) { 7027 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7028 report_fatal_error("Pass-by-value arguments with alignment greater than " 7029 "register width are not supported."); 7030 7031 const unsigned ByValSize = ArgFlags.getByValSize(); 7032 7033 // An empty aggregate parameter takes up no storage and no registers, 7034 // but needs a MemLoc for a stack slot for the formal arguments side. 7035 if (ByValSize == 0) { 7036 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7037 State.getNextStackOffset(), RegVT, 7038 LocInfo)); 7039 return false; 7040 } 7041 7042 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7043 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7044 for (const unsigned E = Offset + StackSize; Offset < E; 7045 Offset += PtrAlign.value()) { 7046 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7047 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7048 else { 7049 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7050 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7051 LocInfo)); 7052 break; 7053 } 7054 } 7055 return false; 7056 } 7057 7058 // Arguments always reserve parameter save area. 7059 switch (ValVT.SimpleTy) { 7060 default: 7061 report_fatal_error("Unhandled value type for argument."); 7062 case MVT::i64: 7063 // i64 arguments should have been split to i32 for PPC32. 7064 assert(IsPPC64 && "PPC32 should have split i64 values."); 7065 LLVM_FALLTHROUGH; 7066 case MVT::i1: 7067 case MVT::i32: { 7068 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7069 // AIX integer arguments are always passed in register width. 7070 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 7071 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7072 : CCValAssign::LocInfo::ZExt; 7073 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7074 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7075 else 7076 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7077 7078 return false; 7079 } 7080 case MVT::f32: 7081 case MVT::f64: { 7082 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7083 const unsigned StoreSize = LocVT.getStoreSize(); 7084 // Floats are always 4-byte aligned in the PSA on AIX. 7085 // This includes f64 in 64-bit mode for ABI compatibility. 7086 const unsigned Offset = 7087 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7088 unsigned FReg = State.AllocateReg(FPR); 7089 if (FReg) 7090 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7091 7092 // Reserve and initialize GPRs or initialize the PSA as required. 7093 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7094 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7095 assert(FReg && "An FPR should be available when a GPR is reserved."); 7096 if (State.isVarArg()) { 7097 // Successfully reserved GPRs are only initialized for vararg calls. 7098 // Custom handling is required for: 7099 // f64 in PPC32 needs to be split into 2 GPRs. 7100 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7101 State.addLoc( 7102 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7103 } 7104 } else { 7105 // If there are insufficient GPRs, the PSA needs to be initialized. 7106 // Initialization occurs even if an FPR was initialized for 7107 // compatibility with the AIX XL compiler. The full memory for the 7108 // argument will be initialized even if a prior word is saved in GPR. 7109 // A custom memLoc is used when the argument also passes in FPR so 7110 // that the callee handling can skip over it easily. 7111 State.addLoc( 7112 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7113 LocInfo) 7114 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7115 break; 7116 } 7117 } 7118 7119 return false; 7120 } 7121 } 7122 return true; 7123 } 7124 7125 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7126 bool IsPPC64) { 7127 assert((IsPPC64 || SVT != MVT::i64) && 7128 "i64 should have been split for 32-bit codegen."); 7129 7130 switch (SVT) { 7131 default: 7132 report_fatal_error("Unexpected value type for formal argument"); 7133 case MVT::i1: 7134 case MVT::i32: 7135 case MVT::i64: 7136 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7137 case MVT::f32: 7138 return &PPC::F4RCRegClass; 7139 case MVT::f64: 7140 return &PPC::F8RCRegClass; 7141 } 7142 } 7143 7144 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7145 SelectionDAG &DAG, SDValue ArgValue, 7146 MVT LocVT, const SDLoc &dl) { 7147 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7148 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 7149 7150 if (Flags.isSExt()) 7151 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7152 DAG.getValueType(ValVT)); 7153 else if (Flags.isZExt()) 7154 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7155 DAG.getValueType(ValVT)); 7156 7157 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7158 } 7159 7160 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7161 const unsigned LASize = FL->getLinkageSize(); 7162 7163 if (PPC::GPRCRegClass.contains(Reg)) { 7164 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7165 "Reg must be a valid argument register!"); 7166 return LASize + 4 * (Reg - PPC::R3); 7167 } 7168 7169 if (PPC::G8RCRegClass.contains(Reg)) { 7170 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7171 "Reg must be a valid argument register!"); 7172 return LASize + 8 * (Reg - PPC::X3); 7173 } 7174 7175 llvm_unreachable("Only general purpose registers expected."); 7176 } 7177 7178 // AIX ABI Stack Frame Layout: 7179 // 7180 // Low Memory +--------------------------------------------+ 7181 // SP +---> | Back chain | ---+ 7182 // | +--------------------------------------------+ | 7183 // | | Saved Condition Register | | 7184 // | +--------------------------------------------+ | 7185 // | | Saved Linkage Register | | 7186 // | +--------------------------------------------+ | Linkage Area 7187 // | | Reserved for compilers | | 7188 // | +--------------------------------------------+ | 7189 // | | Reserved for binders | | 7190 // | +--------------------------------------------+ | 7191 // | | Saved TOC pointer | ---+ 7192 // | +--------------------------------------------+ 7193 // | | Parameter save area | 7194 // | +--------------------------------------------+ 7195 // | | Alloca space | 7196 // | +--------------------------------------------+ 7197 // | | Local variable space | 7198 // | +--------------------------------------------+ 7199 // | | Float/int conversion temporary | 7200 // | +--------------------------------------------+ 7201 // | | Save area for AltiVec registers | 7202 // | +--------------------------------------------+ 7203 // | | AltiVec alignment padding | 7204 // | +--------------------------------------------+ 7205 // | | Save area for VRSAVE register | 7206 // | +--------------------------------------------+ 7207 // | | Save area for General Purpose registers | 7208 // | +--------------------------------------------+ 7209 // | | Save area for Floating Point registers | 7210 // | +--------------------------------------------+ 7211 // +---- | Back chain | 7212 // High Memory +--------------------------------------------+ 7213 // 7214 // Specifications: 7215 // AIX 7.2 Assembler Language Reference 7216 // Subroutine linkage convention 7217 7218 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7219 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7220 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7221 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7222 7223 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7224 CallConv == CallingConv::Fast) && 7225 "Unexpected calling convention!"); 7226 7227 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7228 report_fatal_error("Tail call support is unimplemented on AIX."); 7229 7230 if (useSoftFloat()) 7231 report_fatal_error("Soft float support is unimplemented on AIX."); 7232 7233 const PPCSubtarget &Subtarget = 7234 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7235 7236 const bool IsPPC64 = Subtarget.isPPC64(); 7237 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7238 7239 // Assign locations to all of the incoming arguments. 7240 SmallVector<CCValAssign, 16> ArgLocs; 7241 MachineFunction &MF = DAG.getMachineFunction(); 7242 MachineFrameInfo &MFI = MF.getFrameInfo(); 7243 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7244 7245 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7246 // Reserve space for the linkage area on the stack. 7247 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7248 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7249 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7250 7251 SmallVector<SDValue, 8> MemOps; 7252 7253 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7254 CCValAssign &VA = ArgLocs[I++]; 7255 MVT LocVT = VA.getLocVT(); 7256 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7257 7258 // For compatibility with the AIX XL compiler, the float args in the 7259 // parameter save area are initialized even if the argument is available 7260 // in register. The caller is required to initialize both the register 7261 // and memory, however, the callee can choose to expect it in either. 7262 // The memloc is dismissed here because the argument is retrieved from 7263 // the register. 7264 if (VA.isMemLoc() && VA.needsCustom()) 7265 continue; 7266 7267 if (Flags.isByVal() && VA.isMemLoc()) { 7268 const unsigned Size = 7269 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7270 PtrByteSize); 7271 const int FI = MF.getFrameInfo().CreateFixedObject( 7272 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7273 /* IsAliased */ true); 7274 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7275 InVals.push_back(FIN); 7276 7277 continue; 7278 } 7279 7280 if (Flags.isByVal()) { 7281 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7282 7283 const MCPhysReg ArgReg = VA.getLocReg(); 7284 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7285 7286 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7287 report_fatal_error("Over aligned byvals not supported yet."); 7288 7289 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7290 const int FI = MF.getFrameInfo().CreateFixedObject( 7291 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7292 /* IsAliased */ true); 7293 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7294 InVals.push_back(FIN); 7295 7296 // Add live ins for all the RegLocs for the same ByVal. 7297 const TargetRegisterClass *RegClass = 7298 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7299 7300 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7301 unsigned Offset) { 7302 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7303 // Since the callers side has left justified the aggregate in the 7304 // register, we can simply store the entire register into the stack 7305 // slot. 7306 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7307 // The store to the fixedstack object is needed becuase accessing a 7308 // field of the ByVal will use a gep and load. Ideally we will optimize 7309 // to extracting the value from the register directly, and elide the 7310 // stores when the arguments address is not taken, but that will need to 7311 // be future work. 7312 SDValue Store = DAG.getStore( 7313 CopyFrom.getValue(1), dl, CopyFrom, 7314 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7315 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7316 7317 MemOps.push_back(Store); 7318 }; 7319 7320 unsigned Offset = 0; 7321 HandleRegLoc(VA.getLocReg(), Offset); 7322 Offset += PtrByteSize; 7323 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7324 Offset += PtrByteSize) { 7325 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7326 "RegLocs should be for ByVal argument."); 7327 7328 const CCValAssign RL = ArgLocs[I++]; 7329 HandleRegLoc(RL.getLocReg(), Offset); 7330 } 7331 7332 if (Offset != StackSize) { 7333 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7334 "Expected MemLoc for remaining bytes."); 7335 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7336 // Consume the MemLoc.The InVal has already been emitted, so nothing 7337 // more needs to be done. 7338 ++I; 7339 } 7340 7341 continue; 7342 } 7343 7344 EVT ValVT = VA.getValVT(); 7345 if (VA.isRegLoc() && !VA.needsCustom()) { 7346 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7347 unsigned VReg = 7348 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7349 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7350 if (ValVT.isScalarInteger() && 7351 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7352 ArgValue = 7353 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7354 } 7355 InVals.push_back(ArgValue); 7356 continue; 7357 } 7358 if (VA.isMemLoc()) { 7359 const unsigned LocSize = LocVT.getStoreSize(); 7360 const unsigned ValSize = ValVT.getStoreSize(); 7361 assert((ValSize <= LocSize) && 7362 "Object size is larger than size of MemLoc"); 7363 int CurArgOffset = VA.getLocMemOffset(); 7364 // Objects are right-justified because AIX is big-endian. 7365 if (LocSize > ValSize) 7366 CurArgOffset += LocSize - ValSize; 7367 // Potential tail calls could cause overwriting of argument stack slots. 7368 const bool IsImmutable = 7369 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7370 (CallConv == CallingConv::Fast)); 7371 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7372 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7373 SDValue ArgValue = 7374 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7375 InVals.push_back(ArgValue); 7376 continue; 7377 } 7378 } 7379 7380 // On AIX a minimum of 8 words is saved to the parameter save area. 7381 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7382 // Area that is at least reserved in the caller of this function. 7383 unsigned CallerReservedArea = 7384 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7385 7386 // Set the size that is at least reserved in caller of this function. Tail 7387 // call optimized function's reserved stack space needs to be aligned so 7388 // that taking the difference between two stack areas will result in an 7389 // aligned stack. 7390 CallerReservedArea = 7391 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7392 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7393 FuncInfo->setMinReservedArea(CallerReservedArea); 7394 7395 if (isVarArg) { 7396 FuncInfo->setVarArgsFrameIndex( 7397 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7398 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7399 7400 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7401 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7402 7403 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7404 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7405 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7406 7407 // The fixed integer arguments of a variadic function are stored to the 7408 // VarArgsFrameIndex on the stack so that they may be loaded by 7409 // dereferencing the result of va_next. 7410 for (unsigned GPRIndex = 7411 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7412 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7413 7414 const unsigned VReg = 7415 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7416 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7417 7418 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7419 SDValue Store = 7420 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7421 MemOps.push_back(Store); 7422 // Increment the address for the next argument to store. 7423 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7424 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7425 } 7426 } 7427 7428 if (!MemOps.empty()) 7429 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7430 7431 return Chain; 7432 } 7433 7434 SDValue PPCTargetLowering::LowerCall_AIX( 7435 SDValue Chain, SDValue Callee, CallFlags CFlags, 7436 const SmallVectorImpl<ISD::OutputArg> &Outs, 7437 const SmallVectorImpl<SDValue> &OutVals, 7438 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7439 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7440 const CallBase *CB) const { 7441 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7442 // AIX ABI stack frame layout. 7443 7444 assert((CFlags.CallConv == CallingConv::C || 7445 CFlags.CallConv == CallingConv::Cold || 7446 CFlags.CallConv == CallingConv::Fast) && 7447 "Unexpected calling convention!"); 7448 7449 if (CFlags.IsPatchPoint) 7450 report_fatal_error("This call type is unimplemented on AIX."); 7451 7452 const PPCSubtarget& Subtarget = 7453 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7454 if (Subtarget.hasAltivec()) 7455 report_fatal_error("Altivec support is unimplemented on AIX."); 7456 7457 MachineFunction &MF = DAG.getMachineFunction(); 7458 SmallVector<CCValAssign, 16> ArgLocs; 7459 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7460 *DAG.getContext()); 7461 7462 // Reserve space for the linkage save area (LSA) on the stack. 7463 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7464 // [SP][CR][LR][2 x reserved][TOC]. 7465 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7466 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7467 const bool IsPPC64 = Subtarget.isPPC64(); 7468 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7469 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7470 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7471 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7472 7473 // The prolog code of the callee may store up to 8 GPR argument registers to 7474 // the stack, allowing va_start to index over them in memory if the callee 7475 // is variadic. 7476 // Because we cannot tell if this is needed on the caller side, we have to 7477 // conservatively assume that it is needed. As such, make sure we have at 7478 // least enough stack space for the caller to store the 8 GPRs. 7479 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7480 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7481 CCInfo.getNextStackOffset()); 7482 7483 // Adjust the stack pointer for the new arguments... 7484 // These operations are automatically eliminated by the prolog/epilog pass. 7485 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7486 SDValue CallSeqStart = Chain; 7487 7488 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7489 SmallVector<SDValue, 8> MemOpChains; 7490 7491 // Set up a copy of the stack pointer for loading and storing any 7492 // arguments that may not fit in the registers available for argument 7493 // passing. 7494 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7495 : DAG.getRegister(PPC::R1, MVT::i32); 7496 7497 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7498 const unsigned ValNo = ArgLocs[I].getValNo(); 7499 SDValue Arg = OutVals[ValNo]; 7500 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7501 7502 if (Flags.isByVal()) { 7503 const unsigned ByValSize = Flags.getByValSize(); 7504 7505 // Nothing to do for zero-sized ByVals on the caller side. 7506 if (!ByValSize) { 7507 ++I; 7508 continue; 7509 } 7510 7511 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7512 return DAG.getExtLoad( 7513 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7514 (LoadOffset != 0) 7515 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7516 : Arg, 7517 MachinePointerInfo(), VT); 7518 }; 7519 7520 unsigned LoadOffset = 0; 7521 7522 // Initialize registers, which are fully occupied by the by-val argument. 7523 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7524 SDValue Load = GetLoad(PtrVT, LoadOffset); 7525 MemOpChains.push_back(Load.getValue(1)); 7526 LoadOffset += PtrByteSize; 7527 const CCValAssign &ByValVA = ArgLocs[I++]; 7528 assert(ByValVA.getValNo() == ValNo && 7529 "Unexpected location for pass-by-value argument."); 7530 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7531 } 7532 7533 if (LoadOffset == ByValSize) 7534 continue; 7535 7536 // There must be one more loc to handle the remainder. 7537 assert(ArgLocs[I].getValNo() == ValNo && 7538 "Expected additional location for by-value argument."); 7539 7540 if (ArgLocs[I].isMemLoc()) { 7541 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7542 const CCValAssign &ByValVA = ArgLocs[I++]; 7543 ISD::ArgFlagsTy MemcpyFlags = Flags; 7544 // Only memcpy the bytes that don't pass in register. 7545 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7546 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7547 (LoadOffset != 0) 7548 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7549 : Arg, 7550 DAG.getObjectPtrOffset(dl, StackPtr, 7551 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7552 CallSeqStart, MemcpyFlags, DAG, dl); 7553 continue; 7554 } 7555 7556 // Initialize the final register residue. 7557 // Any residue that occupies the final by-val arg register must be 7558 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7559 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7560 // 2 and 1 byte loads. 7561 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7562 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7563 "Unexpected register residue for by-value argument."); 7564 SDValue ResidueVal; 7565 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7566 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7567 const MVT VT = 7568 N == 1 ? MVT::i8 7569 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7570 SDValue Load = GetLoad(VT, LoadOffset); 7571 MemOpChains.push_back(Load.getValue(1)); 7572 LoadOffset += N; 7573 Bytes += N; 7574 7575 // By-val arguments are passed left-justfied in register. 7576 // Every load here needs to be shifted, otherwise a full register load 7577 // should have been used. 7578 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7579 "Unexpected load emitted during handling of pass-by-value " 7580 "argument."); 7581 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7582 EVT ShiftAmountTy = 7583 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7584 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7585 SDValue ShiftedLoad = 7586 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7587 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7588 ShiftedLoad) 7589 : ShiftedLoad; 7590 } 7591 7592 const CCValAssign &ByValVA = ArgLocs[I++]; 7593 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7594 continue; 7595 } 7596 7597 CCValAssign &VA = ArgLocs[I++]; 7598 const MVT LocVT = VA.getLocVT(); 7599 const MVT ValVT = VA.getValVT(); 7600 7601 switch (VA.getLocInfo()) { 7602 default: 7603 report_fatal_error("Unexpected argument extension type."); 7604 case CCValAssign::Full: 7605 break; 7606 case CCValAssign::ZExt: 7607 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7608 break; 7609 case CCValAssign::SExt: 7610 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7611 break; 7612 } 7613 7614 if (VA.isRegLoc() && !VA.needsCustom()) { 7615 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7616 continue; 7617 } 7618 7619 if (VA.isMemLoc()) { 7620 SDValue PtrOff = 7621 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7622 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7623 MemOpChains.push_back( 7624 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7625 7626 continue; 7627 } 7628 7629 // Custom handling is used for GPR initializations for vararg float 7630 // arguments. 7631 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7632 ValVT.isFloatingPoint() && LocVT.isInteger() && 7633 "Unexpected register handling for calling convention."); 7634 7635 SDValue ArgAsInt = 7636 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7637 7638 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7639 // f32 in 32-bit GPR 7640 // f64 in 64-bit GPR 7641 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7642 else if (Arg.getValueType().getFixedSizeInBits() < 7643 LocVT.getFixedSizeInBits()) 7644 // f32 in 64-bit GPR. 7645 RegsToPass.push_back(std::make_pair( 7646 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7647 else { 7648 // f64 in two 32-bit GPRs 7649 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7650 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7651 "Unexpected custom register for argument!"); 7652 CCValAssign &GPR1 = VA; 7653 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7654 DAG.getConstant(32, dl, MVT::i8)); 7655 RegsToPass.push_back(std::make_pair( 7656 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7657 7658 if (I != E) { 7659 // If only 1 GPR was available, there will only be one custom GPR and 7660 // the argument will also pass in memory. 7661 CCValAssign &PeekArg = ArgLocs[I]; 7662 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7663 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7664 CCValAssign &GPR2 = ArgLocs[I++]; 7665 RegsToPass.push_back(std::make_pair( 7666 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7667 } 7668 } 7669 } 7670 } 7671 7672 if (!MemOpChains.empty()) 7673 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7674 7675 // For indirect calls, we need to save the TOC base to the stack for 7676 // restoration after the call. 7677 if (CFlags.IsIndirect) { 7678 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7679 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7680 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7681 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7682 const unsigned TOCSaveOffset = 7683 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7684 7685 setUsesTOCBasePtr(DAG); 7686 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7687 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7688 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7689 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7690 Chain = DAG.getStore( 7691 Val.getValue(1), dl, Val, AddPtr, 7692 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7693 } 7694 7695 // Build a sequence of copy-to-reg nodes chained together with token chain 7696 // and flag operands which copy the outgoing args into the appropriate regs. 7697 SDValue InFlag; 7698 for (auto Reg : RegsToPass) { 7699 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7700 InFlag = Chain.getValue(1); 7701 } 7702 7703 const int SPDiff = 0; 7704 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7705 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7706 } 7707 7708 bool 7709 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7710 MachineFunction &MF, bool isVarArg, 7711 const SmallVectorImpl<ISD::OutputArg> &Outs, 7712 LLVMContext &Context) const { 7713 SmallVector<CCValAssign, 16> RVLocs; 7714 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7715 return CCInfo.CheckReturn( 7716 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7717 ? RetCC_PPC_Cold 7718 : RetCC_PPC); 7719 } 7720 7721 SDValue 7722 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7723 bool isVarArg, 7724 const SmallVectorImpl<ISD::OutputArg> &Outs, 7725 const SmallVectorImpl<SDValue> &OutVals, 7726 const SDLoc &dl, SelectionDAG &DAG) const { 7727 SmallVector<CCValAssign, 16> RVLocs; 7728 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7729 *DAG.getContext()); 7730 CCInfo.AnalyzeReturn(Outs, 7731 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7732 ? RetCC_PPC_Cold 7733 : RetCC_PPC); 7734 7735 SDValue Flag; 7736 SmallVector<SDValue, 4> RetOps(1, Chain); 7737 7738 // Copy the result values into the output registers. 7739 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7740 CCValAssign &VA = RVLocs[i]; 7741 assert(VA.isRegLoc() && "Can only return in registers!"); 7742 7743 SDValue Arg = OutVals[RealResIdx]; 7744 7745 if (Subtarget.isAIXABI() && 7746 (VA.getLocVT().isVector() || VA.getValVT().isVector())) 7747 report_fatal_error("Returning vector types not yet supported on AIX."); 7748 7749 switch (VA.getLocInfo()) { 7750 default: llvm_unreachable("Unknown loc info!"); 7751 case CCValAssign::Full: break; 7752 case CCValAssign::AExt: 7753 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7754 break; 7755 case CCValAssign::ZExt: 7756 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7757 break; 7758 case CCValAssign::SExt: 7759 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7760 break; 7761 } 7762 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7763 bool isLittleEndian = Subtarget.isLittleEndian(); 7764 // Legalize ret f64 -> ret 2 x i32. 7765 SDValue SVal = 7766 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7767 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7768 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7769 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7770 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7771 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7772 Flag = Chain.getValue(1); 7773 VA = RVLocs[++i]; // skip ahead to next loc 7774 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7775 } else 7776 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7777 Flag = Chain.getValue(1); 7778 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7779 } 7780 7781 RetOps[0] = Chain; // Update chain. 7782 7783 // Add the flag if we have it. 7784 if (Flag.getNode()) 7785 RetOps.push_back(Flag); 7786 7787 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7788 } 7789 7790 SDValue 7791 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7792 SelectionDAG &DAG) const { 7793 SDLoc dl(Op); 7794 7795 // Get the correct type for integers. 7796 EVT IntVT = Op.getValueType(); 7797 7798 // Get the inputs. 7799 SDValue Chain = Op.getOperand(0); 7800 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7801 // Build a DYNAREAOFFSET node. 7802 SDValue Ops[2] = {Chain, FPSIdx}; 7803 SDVTList VTs = DAG.getVTList(IntVT); 7804 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7805 } 7806 7807 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7808 SelectionDAG &DAG) const { 7809 // When we pop the dynamic allocation we need to restore the SP link. 7810 SDLoc dl(Op); 7811 7812 // Get the correct type for pointers. 7813 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7814 7815 // Construct the stack pointer operand. 7816 bool isPPC64 = Subtarget.isPPC64(); 7817 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7818 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7819 7820 // Get the operands for the STACKRESTORE. 7821 SDValue Chain = Op.getOperand(0); 7822 SDValue SaveSP = Op.getOperand(1); 7823 7824 // Load the old link SP. 7825 SDValue LoadLinkSP = 7826 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7827 7828 // Restore the stack pointer. 7829 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7830 7831 // Store the old link SP. 7832 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7833 } 7834 7835 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7836 MachineFunction &MF = DAG.getMachineFunction(); 7837 bool isPPC64 = Subtarget.isPPC64(); 7838 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7839 7840 // Get current frame pointer save index. The users of this index will be 7841 // primarily DYNALLOC instructions. 7842 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7843 int RASI = FI->getReturnAddrSaveIndex(); 7844 7845 // If the frame pointer save index hasn't been defined yet. 7846 if (!RASI) { 7847 // Find out what the fix offset of the frame pointer save area. 7848 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7849 // Allocate the frame index for frame pointer save area. 7850 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7851 // Save the result. 7852 FI->setReturnAddrSaveIndex(RASI); 7853 } 7854 return DAG.getFrameIndex(RASI, PtrVT); 7855 } 7856 7857 SDValue 7858 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7859 MachineFunction &MF = DAG.getMachineFunction(); 7860 bool isPPC64 = Subtarget.isPPC64(); 7861 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7862 7863 // Get current frame pointer save index. The users of this index will be 7864 // primarily DYNALLOC instructions. 7865 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7866 int FPSI = FI->getFramePointerSaveIndex(); 7867 7868 // If the frame pointer save index hasn't been defined yet. 7869 if (!FPSI) { 7870 // Find out what the fix offset of the frame pointer save area. 7871 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7872 // Allocate the frame index for frame pointer save area. 7873 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7874 // Save the result. 7875 FI->setFramePointerSaveIndex(FPSI); 7876 } 7877 return DAG.getFrameIndex(FPSI, PtrVT); 7878 } 7879 7880 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7881 SelectionDAG &DAG) const { 7882 MachineFunction &MF = DAG.getMachineFunction(); 7883 // Get the inputs. 7884 SDValue Chain = Op.getOperand(0); 7885 SDValue Size = Op.getOperand(1); 7886 SDLoc dl(Op); 7887 7888 // Get the correct type for pointers. 7889 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7890 // Negate the size. 7891 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7892 DAG.getConstant(0, dl, PtrVT), Size); 7893 // Construct a node for the frame pointer save index. 7894 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7895 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7896 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7897 if (hasInlineStackProbe(MF)) 7898 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7899 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7900 } 7901 7902 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7903 SelectionDAG &DAG) const { 7904 MachineFunction &MF = DAG.getMachineFunction(); 7905 7906 bool isPPC64 = Subtarget.isPPC64(); 7907 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7908 7909 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7910 return DAG.getFrameIndex(FI, PtrVT); 7911 } 7912 7913 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7914 SelectionDAG &DAG) const { 7915 SDLoc DL(Op); 7916 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7917 DAG.getVTList(MVT::i32, MVT::Other), 7918 Op.getOperand(0), Op.getOperand(1)); 7919 } 7920 7921 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7922 SelectionDAG &DAG) const { 7923 SDLoc DL(Op); 7924 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7925 Op.getOperand(0), Op.getOperand(1)); 7926 } 7927 7928 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7929 if (Op.getValueType().isVector()) 7930 return LowerVectorLoad(Op, DAG); 7931 7932 assert(Op.getValueType() == MVT::i1 && 7933 "Custom lowering only for i1 loads"); 7934 7935 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7936 7937 SDLoc dl(Op); 7938 LoadSDNode *LD = cast<LoadSDNode>(Op); 7939 7940 SDValue Chain = LD->getChain(); 7941 SDValue BasePtr = LD->getBasePtr(); 7942 MachineMemOperand *MMO = LD->getMemOperand(); 7943 7944 SDValue NewLD = 7945 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7946 BasePtr, MVT::i8, MMO); 7947 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7948 7949 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7950 return DAG.getMergeValues(Ops, dl); 7951 } 7952 7953 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7954 if (Op.getOperand(1).getValueType().isVector()) 7955 return LowerVectorStore(Op, DAG); 7956 7957 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7958 "Custom lowering only for i1 stores"); 7959 7960 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7961 7962 SDLoc dl(Op); 7963 StoreSDNode *ST = cast<StoreSDNode>(Op); 7964 7965 SDValue Chain = ST->getChain(); 7966 SDValue BasePtr = ST->getBasePtr(); 7967 SDValue Value = ST->getValue(); 7968 MachineMemOperand *MMO = ST->getMemOperand(); 7969 7970 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7971 Value); 7972 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7973 } 7974 7975 // FIXME: Remove this once the ANDI glue bug is fixed: 7976 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7977 assert(Op.getValueType() == MVT::i1 && 7978 "Custom lowering only for i1 results"); 7979 7980 SDLoc DL(Op); 7981 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7982 } 7983 7984 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7985 SelectionDAG &DAG) const { 7986 7987 // Implements a vector truncate that fits in a vector register as a shuffle. 7988 // We want to legalize vector truncates down to where the source fits in 7989 // a vector register (and target is therefore smaller than vector register 7990 // size). At that point legalization will try to custom lower the sub-legal 7991 // result and get here - where we can contain the truncate as a single target 7992 // operation. 7993 7994 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7995 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7996 // 7997 // We will implement it for big-endian ordering as this (where x denotes 7998 // undefined): 7999 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 8000 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 8001 // 8002 // The same operation in little-endian ordering will be: 8003 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 8004 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 8005 8006 EVT TrgVT = Op.getValueType(); 8007 assert(TrgVT.isVector() && "Vector type expected."); 8008 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 8009 EVT EltVT = TrgVT.getVectorElementType(); 8010 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 8011 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 8012 !isPowerOf2_32(EltVT.getSizeInBits())) 8013 return SDValue(); 8014 8015 SDValue N1 = Op.getOperand(0); 8016 EVT SrcVT = N1.getValueType(); 8017 unsigned SrcSize = SrcVT.getSizeInBits(); 8018 if (SrcSize > 256 || 8019 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 8020 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 8021 return SDValue(); 8022 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 8023 return SDValue(); 8024 8025 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8026 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8027 8028 SDLoc DL(Op); 8029 SDValue Op1, Op2; 8030 if (SrcSize == 256) { 8031 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 8032 EVT SplitVT = 8033 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 8034 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 8035 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 8036 DAG.getConstant(0, DL, VecIdxTy)); 8037 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 8038 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 8039 } 8040 else { 8041 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 8042 Op2 = DAG.getUNDEF(WideVT); 8043 } 8044 8045 // First list the elements we want to keep. 8046 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 8047 SmallVector<int, 16> ShuffV; 8048 if (Subtarget.isLittleEndian()) 8049 for (unsigned i = 0; i < TrgNumElts; ++i) 8050 ShuffV.push_back(i * SizeMult); 8051 else 8052 for (unsigned i = 1; i <= TrgNumElts; ++i) 8053 ShuffV.push_back(i * SizeMult - 1); 8054 8055 // Populate the remaining elements with undefs. 8056 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8057 // ShuffV.push_back(i + WideNumElts); 8058 ShuffV.push_back(WideNumElts + 1); 8059 8060 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 8061 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 8062 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 8063 } 8064 8065 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8066 /// possible. 8067 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8068 // Not FP, or using SPE? Not a fsel. 8069 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 8070 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 8071 return Op; 8072 8073 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8074 8075 EVT ResVT = Op.getValueType(); 8076 EVT CmpVT = Op.getOperand(0).getValueType(); 8077 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8078 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8079 SDLoc dl(Op); 8080 SDNodeFlags Flags = Op.getNode()->getFlags(); 8081 8082 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8083 // presence of infinities. 8084 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8085 switch (CC) { 8086 default: 8087 break; 8088 case ISD::SETOGT: 8089 case ISD::SETGT: 8090 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8091 case ISD::SETOLT: 8092 case ISD::SETLT: 8093 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8094 } 8095 } 8096 8097 // We might be able to do better than this under some circumstances, but in 8098 // general, fsel-based lowering of select is a finite-math-only optimization. 8099 // For more information, see section F.3 of the 2.06 ISA specification. 8100 // With ISA 3.0 8101 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8102 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8103 return Op; 8104 8105 // If the RHS of the comparison is a 0.0, we don't need to do the 8106 // subtraction at all. 8107 SDValue Sel1; 8108 if (isFloatingPointZero(RHS)) 8109 switch (CC) { 8110 default: break; // SETUO etc aren't handled by fsel. 8111 case ISD::SETNE: 8112 std::swap(TV, FV); 8113 LLVM_FALLTHROUGH; 8114 case ISD::SETEQ: 8115 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8116 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8117 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8118 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8119 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8120 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8121 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8122 case ISD::SETULT: 8123 case ISD::SETLT: 8124 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8125 LLVM_FALLTHROUGH; 8126 case ISD::SETOGE: 8127 case ISD::SETGE: 8128 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8129 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8130 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8131 case ISD::SETUGT: 8132 case ISD::SETGT: 8133 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8134 LLVM_FALLTHROUGH; 8135 case ISD::SETOLE: 8136 case ISD::SETLE: 8137 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8138 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8139 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8140 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8141 } 8142 8143 SDValue Cmp; 8144 switch (CC) { 8145 default: break; // SETUO etc aren't handled by fsel. 8146 case ISD::SETNE: 8147 std::swap(TV, FV); 8148 LLVM_FALLTHROUGH; 8149 case ISD::SETEQ: 8150 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8151 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8152 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8153 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8154 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8155 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8156 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8157 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8158 case ISD::SETULT: 8159 case ISD::SETLT: 8160 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8161 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8162 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8163 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8164 case ISD::SETOGE: 8165 case ISD::SETGE: 8166 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8167 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8168 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8169 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8170 case ISD::SETUGT: 8171 case ISD::SETGT: 8172 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8173 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8174 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8175 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8176 case ISD::SETOLE: 8177 case ISD::SETLE: 8178 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8179 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8180 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8181 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8182 } 8183 return Op; 8184 } 8185 8186 static unsigned getPPCStrictOpcode(unsigned Opc) { 8187 switch (Opc) { 8188 default: 8189 llvm_unreachable("No strict version of this opcode!"); 8190 case PPCISD::FCTIDZ: 8191 return PPCISD::STRICT_FCTIDZ; 8192 case PPCISD::FCTIWZ: 8193 return PPCISD::STRICT_FCTIWZ; 8194 case PPCISD::FCTIDUZ: 8195 return PPCISD::STRICT_FCTIDUZ; 8196 case PPCISD::FCTIWUZ: 8197 return PPCISD::STRICT_FCTIWUZ; 8198 case PPCISD::FCFID: 8199 return PPCISD::STRICT_FCFID; 8200 case PPCISD::FCFIDU: 8201 return PPCISD::STRICT_FCFIDU; 8202 case PPCISD::FCFIDS: 8203 return PPCISD::STRICT_FCFIDS; 8204 case PPCISD::FCFIDUS: 8205 return PPCISD::STRICT_FCFIDUS; 8206 } 8207 } 8208 8209 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8210 const PPCSubtarget &Subtarget) { 8211 SDLoc dl(Op); 8212 bool IsStrict = Op->isStrictFPOpcode(); 8213 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8214 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8215 8216 // TODO: Any other flags to propagate? 8217 SDNodeFlags Flags; 8218 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8219 8220 // For strict nodes, source is the second operand. 8221 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8222 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8223 assert(Src.getValueType().isFloatingPoint()); 8224 if (Src.getValueType() == MVT::f32) { 8225 if (IsStrict) { 8226 Src = 8227 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8228 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8229 Chain = Src.getValue(1); 8230 } else 8231 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8232 } 8233 SDValue Conv; 8234 unsigned Opc = ISD::DELETED_NODE; 8235 switch (Op.getSimpleValueType().SimpleTy) { 8236 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8237 case MVT::i32: 8238 Opc = IsSigned ? PPCISD::FCTIWZ 8239 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8240 break; 8241 case MVT::i64: 8242 assert((IsSigned || Subtarget.hasFPCVT()) && 8243 "i64 FP_TO_UINT is supported only with FPCVT"); 8244 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8245 } 8246 if (IsStrict) { 8247 Opc = getPPCStrictOpcode(Opc); 8248 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8249 {Chain, Src}, Flags); 8250 } else { 8251 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8252 } 8253 return Conv; 8254 } 8255 8256 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8257 SelectionDAG &DAG, 8258 const SDLoc &dl) const { 8259 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8260 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8261 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8262 bool IsStrict = Op->isStrictFPOpcode(); 8263 8264 // Convert the FP value to an int value through memory. 8265 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8266 (IsSigned || Subtarget.hasFPCVT()); 8267 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8268 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8269 MachinePointerInfo MPI = 8270 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8271 8272 // Emit a store to the stack slot. 8273 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8274 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8275 if (i32Stack) { 8276 MachineFunction &MF = DAG.getMachineFunction(); 8277 Alignment = Align(4); 8278 MachineMemOperand *MMO = 8279 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8280 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8281 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8282 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8283 } else 8284 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8285 8286 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8287 // add in a bias on big endian. 8288 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8289 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8290 DAG.getConstant(4, dl, FIPtr.getValueType())); 8291 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8292 } 8293 8294 RLI.Chain = Chain; 8295 RLI.Ptr = FIPtr; 8296 RLI.MPI = MPI; 8297 RLI.Alignment = Alignment; 8298 } 8299 8300 /// Custom lowers floating point to integer conversions to use 8301 /// the direct move instructions available in ISA 2.07 to avoid the 8302 /// need for load/store combinations. 8303 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8304 SelectionDAG &DAG, 8305 const SDLoc &dl) const { 8306 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8307 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8308 if (Op->isStrictFPOpcode()) 8309 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8310 else 8311 return Mov; 8312 } 8313 8314 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8315 const SDLoc &dl) const { 8316 bool IsStrict = Op->isStrictFPOpcode(); 8317 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8318 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8319 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8320 EVT SrcVT = Src.getValueType(); 8321 EVT DstVT = Op.getValueType(); 8322 8323 // FP to INT conversions are legal for f128. 8324 if (SrcVT == MVT::f128) 8325 return Op; 8326 8327 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8328 // PPC (the libcall is not available). 8329 if (SrcVT == MVT::ppcf128) { 8330 if (DstVT == MVT::i32) { 8331 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8332 // set other fast-math flags to FP operations in both strict and 8333 // non-strict cases. (FP_TO_SINT, FSUB) 8334 SDNodeFlags Flags; 8335 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8336 8337 if (IsSigned) { 8338 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8339 DAG.getIntPtrConstant(0, dl)); 8340 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8341 DAG.getIntPtrConstant(1, dl)); 8342 8343 // Add the two halves of the long double in round-to-zero mode, and use 8344 // a smaller FP_TO_SINT. 8345 if (IsStrict) { 8346 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8347 DAG.getVTList(MVT::f64, MVT::Other), 8348 {Op.getOperand(0), Lo, Hi}, Flags); 8349 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8350 DAG.getVTList(MVT::i32, MVT::Other), 8351 {Res.getValue(1), Res}, Flags); 8352 } else { 8353 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8354 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8355 } 8356 } else { 8357 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8358 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8359 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8360 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8361 if (IsStrict) { 8362 // Sel = Src < 0x80000000 8363 // FltOfs = select Sel, 0.0, 0x80000000 8364 // IntOfs = select Sel, 0, 0x80000000 8365 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8366 SDValue Chain = Op.getOperand(0); 8367 EVT SetCCVT = 8368 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8369 EVT DstSetCCVT = 8370 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8371 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8372 Chain, true); 8373 Chain = Sel.getValue(1); 8374 8375 SDValue FltOfs = DAG.getSelect( 8376 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8377 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8378 8379 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8380 DAG.getVTList(SrcVT, MVT::Other), 8381 {Chain, Src, FltOfs}, Flags); 8382 Chain = Val.getValue(1); 8383 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8384 DAG.getVTList(DstVT, MVT::Other), 8385 {Chain, Val}, Flags); 8386 Chain = SInt.getValue(1); 8387 SDValue IntOfs = DAG.getSelect( 8388 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8389 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8390 return DAG.getMergeValues({Result, Chain}, dl); 8391 } else { 8392 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8393 // FIXME: generated code sucks. 8394 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8395 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8396 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8397 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8398 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8399 } 8400 } 8401 } 8402 8403 return SDValue(); 8404 } 8405 8406 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8407 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8408 8409 ReuseLoadInfo RLI; 8410 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8411 8412 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8413 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8414 } 8415 8416 // We're trying to insert a regular store, S, and then a load, L. If the 8417 // incoming value, O, is a load, we might just be able to have our load use the 8418 // address used by O. However, we don't know if anything else will store to 8419 // that address before we can load from it. To prevent this situation, we need 8420 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8421 // the same chain operand as O, we create a token factor from the chain results 8422 // of O and L, and we replace all uses of O's chain result with that token 8423 // factor (see spliceIntoChain below for this last part). 8424 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8425 ReuseLoadInfo &RLI, 8426 SelectionDAG &DAG, 8427 ISD::LoadExtType ET) const { 8428 // Conservatively skip reusing for constrained FP nodes. 8429 if (Op->isStrictFPOpcode()) 8430 return false; 8431 8432 SDLoc dl(Op); 8433 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8434 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8435 if (ET == ISD::NON_EXTLOAD && 8436 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8437 isOperationLegalOrCustom(Op.getOpcode(), 8438 Op.getOperand(0).getValueType())) { 8439 8440 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8441 return true; 8442 } 8443 8444 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8445 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8446 LD->isNonTemporal()) 8447 return false; 8448 if (LD->getMemoryVT() != MemVT) 8449 return false; 8450 8451 // If the result of the load is an illegal type, then we can't build a 8452 // valid chain for reuse since the legalised loads and token factor node that 8453 // ties the legalised loads together uses a different output chain then the 8454 // illegal load. 8455 if (!isTypeLegal(LD->getValueType(0))) 8456 return false; 8457 8458 RLI.Ptr = LD->getBasePtr(); 8459 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8460 assert(LD->getAddressingMode() == ISD::PRE_INC && 8461 "Non-pre-inc AM on PPC?"); 8462 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8463 LD->getOffset()); 8464 } 8465 8466 RLI.Chain = LD->getChain(); 8467 RLI.MPI = LD->getPointerInfo(); 8468 RLI.IsDereferenceable = LD->isDereferenceable(); 8469 RLI.IsInvariant = LD->isInvariant(); 8470 RLI.Alignment = LD->getAlign(); 8471 RLI.AAInfo = LD->getAAInfo(); 8472 RLI.Ranges = LD->getRanges(); 8473 8474 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8475 return true; 8476 } 8477 8478 // Given the head of the old chain, ResChain, insert a token factor containing 8479 // it and NewResChain, and make users of ResChain now be users of that token 8480 // factor. 8481 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8482 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8483 SDValue NewResChain, 8484 SelectionDAG &DAG) const { 8485 if (!ResChain) 8486 return; 8487 8488 SDLoc dl(NewResChain); 8489 8490 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8491 NewResChain, DAG.getUNDEF(MVT::Other)); 8492 assert(TF.getNode() != NewResChain.getNode() && 8493 "A new TF really is required here"); 8494 8495 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8496 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8497 } 8498 8499 /// Analyze profitability of direct move 8500 /// prefer float load to int load plus direct move 8501 /// when there is no integer use of int load 8502 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8503 SDNode *Origin = Op.getOperand(0).getNode(); 8504 if (Origin->getOpcode() != ISD::LOAD) 8505 return true; 8506 8507 // If there is no LXSIBZX/LXSIHZX, like Power8, 8508 // prefer direct move if the memory size is 1 or 2 bytes. 8509 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8510 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8511 return true; 8512 8513 for (SDNode::use_iterator UI = Origin->use_begin(), 8514 UE = Origin->use_end(); 8515 UI != UE; ++UI) { 8516 8517 // Only look at the users of the loaded value. 8518 if (UI.getUse().get().getResNo() != 0) 8519 continue; 8520 8521 if (UI->getOpcode() != ISD::SINT_TO_FP && 8522 UI->getOpcode() != ISD::UINT_TO_FP && 8523 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8524 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8525 return true; 8526 } 8527 8528 return false; 8529 } 8530 8531 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8532 const PPCSubtarget &Subtarget, 8533 SDValue Chain = SDValue()) { 8534 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8535 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8536 SDLoc dl(Op); 8537 8538 // TODO: Any other flags to propagate? 8539 SDNodeFlags Flags; 8540 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8541 8542 // If we have FCFIDS, then use it when converting to single-precision. 8543 // Otherwise, convert to double-precision and then round. 8544 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8545 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8546 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8547 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8548 if (Op->isStrictFPOpcode()) { 8549 if (!Chain) 8550 Chain = Op.getOperand(0); 8551 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8552 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8553 } else 8554 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8555 } 8556 8557 /// Custom lowers integer to floating point conversions to use 8558 /// the direct move instructions available in ISA 2.07 to avoid the 8559 /// need for load/store combinations. 8560 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8561 SelectionDAG &DAG, 8562 const SDLoc &dl) const { 8563 assert((Op.getValueType() == MVT::f32 || 8564 Op.getValueType() == MVT::f64) && 8565 "Invalid floating point type as target of conversion"); 8566 assert(Subtarget.hasFPCVT() && 8567 "Int to FP conversions with direct moves require FPCVT"); 8568 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8569 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8570 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8571 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8572 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8573 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8574 return convertIntToFP(Op, Mov, DAG, Subtarget); 8575 } 8576 8577 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8578 8579 EVT VecVT = Vec.getValueType(); 8580 assert(VecVT.isVector() && "Expected a vector type."); 8581 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8582 8583 EVT EltVT = VecVT.getVectorElementType(); 8584 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8585 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8586 8587 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8588 SmallVector<SDValue, 16> Ops(NumConcat); 8589 Ops[0] = Vec; 8590 SDValue UndefVec = DAG.getUNDEF(VecVT); 8591 for (unsigned i = 1; i < NumConcat; ++i) 8592 Ops[i] = UndefVec; 8593 8594 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8595 } 8596 8597 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8598 const SDLoc &dl) const { 8599 bool IsStrict = Op->isStrictFPOpcode(); 8600 unsigned Opc = Op.getOpcode(); 8601 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8602 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8603 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8604 "Unexpected conversion type"); 8605 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8606 "Supports conversions to v2f64/v4f32 only."); 8607 8608 // TODO: Any other flags to propagate? 8609 SDNodeFlags Flags; 8610 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8611 8612 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8613 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8614 8615 SDValue Wide = widenVec(DAG, Src, dl); 8616 EVT WideVT = Wide.getValueType(); 8617 unsigned WideNumElts = WideVT.getVectorNumElements(); 8618 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8619 8620 SmallVector<int, 16> ShuffV; 8621 for (unsigned i = 0; i < WideNumElts; ++i) 8622 ShuffV.push_back(i + WideNumElts); 8623 8624 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8625 int SaveElts = FourEltRes ? 4 : 2; 8626 if (Subtarget.isLittleEndian()) 8627 for (int i = 0; i < SaveElts; i++) 8628 ShuffV[i * Stride] = i; 8629 else 8630 for (int i = 1; i <= SaveElts; i++) 8631 ShuffV[i * Stride - 1] = i - 1; 8632 8633 SDValue ShuffleSrc2 = 8634 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8635 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8636 8637 SDValue Extend; 8638 if (SignedConv) { 8639 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8640 EVT ExtVT = Src.getValueType(); 8641 if (Subtarget.hasP9Altivec()) 8642 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8643 IntermediateVT.getVectorNumElements()); 8644 8645 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8646 DAG.getValueType(ExtVT)); 8647 } else 8648 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8649 8650 if (IsStrict) 8651 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8652 {Op.getOperand(0), Extend}, Flags); 8653 8654 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8655 } 8656 8657 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8658 SelectionDAG &DAG) const { 8659 SDLoc dl(Op); 8660 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8661 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8662 bool IsStrict = Op->isStrictFPOpcode(); 8663 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8664 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8665 8666 // TODO: Any other flags to propagate? 8667 SDNodeFlags Flags; 8668 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8669 8670 EVT InVT = Src.getValueType(); 8671 EVT OutVT = Op.getValueType(); 8672 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8673 isOperationCustom(Op.getOpcode(), InVT)) 8674 return LowerINT_TO_FPVector(Op, DAG, dl); 8675 8676 // Conversions to f128 are legal. 8677 if (Op.getValueType() == MVT::f128) 8678 return Op; 8679 8680 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8681 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8682 return SDValue(); 8683 8684 if (Src.getValueType() == MVT::i1) 8685 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8686 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8687 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8688 8689 // If we have direct moves, we can do all the conversion, skip the store/load 8690 // however, without FPCVT we can't do most conversions. 8691 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8692 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8693 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8694 8695 assert((IsSigned || Subtarget.hasFPCVT()) && 8696 "UINT_TO_FP is supported only with FPCVT"); 8697 8698 if (Src.getValueType() == MVT::i64) { 8699 SDValue SINT = Src; 8700 // When converting to single-precision, we actually need to convert 8701 // to double-precision first and then round to single-precision. 8702 // To avoid double-rounding effects during that operation, we have 8703 // to prepare the input operand. Bits that might be truncated when 8704 // converting to double-precision are replaced by a bit that won't 8705 // be lost at this stage, but is below the single-precision rounding 8706 // position. 8707 // 8708 // However, if -enable-unsafe-fp-math is in effect, accept double 8709 // rounding to avoid the extra overhead. 8710 if (Op.getValueType() == MVT::f32 && 8711 !Subtarget.hasFPCVT() && 8712 !DAG.getTarget().Options.UnsafeFPMath) { 8713 8714 // Twiddle input to make sure the low 11 bits are zero. (If this 8715 // is the case, we are guaranteed the value will fit into the 53 bit 8716 // mantissa of an IEEE double-precision value without rounding.) 8717 // If any of those low 11 bits were not zero originally, make sure 8718 // bit 12 (value 2048) is set instead, so that the final rounding 8719 // to single-precision gets the correct result. 8720 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8721 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8722 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8723 Round, DAG.getConstant(2047, dl, MVT::i64)); 8724 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8725 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8726 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8727 8728 // However, we cannot use that value unconditionally: if the magnitude 8729 // of the input value is small, the bit-twiddling we did above might 8730 // end up visibly changing the output. Fortunately, in that case, we 8731 // don't need to twiddle bits since the original input will convert 8732 // exactly to double-precision floating-point already. Therefore, 8733 // construct a conditional to use the original value if the top 11 8734 // bits are all sign-bit copies, and use the rounded value computed 8735 // above otherwise. 8736 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8737 SINT, DAG.getConstant(53, dl, MVT::i32)); 8738 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8739 Cond, DAG.getConstant(1, dl, MVT::i64)); 8740 Cond = DAG.getSetCC( 8741 dl, 8742 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8743 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8744 8745 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8746 } 8747 8748 ReuseLoadInfo RLI; 8749 SDValue Bits; 8750 8751 MachineFunction &MF = DAG.getMachineFunction(); 8752 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8753 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8754 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8755 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8756 } else if (Subtarget.hasLFIWAX() && 8757 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8758 MachineMemOperand *MMO = 8759 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8760 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8761 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8762 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8763 DAG.getVTList(MVT::f64, MVT::Other), 8764 Ops, MVT::i32, MMO); 8765 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8766 } else if (Subtarget.hasFPCVT() && 8767 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8768 MachineMemOperand *MMO = 8769 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8770 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8771 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8772 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8773 DAG.getVTList(MVT::f64, MVT::Other), 8774 Ops, MVT::i32, MMO); 8775 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8776 } else if (((Subtarget.hasLFIWAX() && 8777 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8778 (Subtarget.hasFPCVT() && 8779 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8780 SINT.getOperand(0).getValueType() == MVT::i32) { 8781 MachineFrameInfo &MFI = MF.getFrameInfo(); 8782 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8783 8784 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8785 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8786 8787 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8788 MachinePointerInfo::getFixedStack( 8789 DAG.getMachineFunction(), FrameIdx)); 8790 Chain = Store; 8791 8792 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8793 "Expected an i32 store"); 8794 8795 RLI.Ptr = FIdx; 8796 RLI.Chain = Chain; 8797 RLI.MPI = 8798 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8799 RLI.Alignment = Align(4); 8800 8801 MachineMemOperand *MMO = 8802 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8803 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8804 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8805 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8806 PPCISD::LFIWZX : PPCISD::LFIWAX, 8807 dl, DAG.getVTList(MVT::f64, MVT::Other), 8808 Ops, MVT::i32, MMO); 8809 Chain = Bits.getValue(1); 8810 } else 8811 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8812 8813 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8814 if (IsStrict) 8815 Chain = FP.getValue(1); 8816 8817 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8818 if (IsStrict) 8819 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8820 DAG.getVTList(MVT::f32, MVT::Other), 8821 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8822 else 8823 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8824 DAG.getIntPtrConstant(0, dl)); 8825 } 8826 return FP; 8827 } 8828 8829 assert(Src.getValueType() == MVT::i32 && 8830 "Unhandled INT_TO_FP type in custom expander!"); 8831 // Since we only generate this in 64-bit mode, we can take advantage of 8832 // 64-bit registers. In particular, sign extend the input value into the 8833 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8834 // then lfd it and fcfid it. 8835 MachineFunction &MF = DAG.getMachineFunction(); 8836 MachineFrameInfo &MFI = MF.getFrameInfo(); 8837 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8838 8839 SDValue Ld; 8840 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8841 ReuseLoadInfo RLI; 8842 bool ReusingLoad; 8843 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8844 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8845 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8846 8847 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8848 MachinePointerInfo::getFixedStack( 8849 DAG.getMachineFunction(), FrameIdx)); 8850 Chain = Store; 8851 8852 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8853 "Expected an i32 store"); 8854 8855 RLI.Ptr = FIdx; 8856 RLI.Chain = Chain; 8857 RLI.MPI = 8858 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8859 RLI.Alignment = Align(4); 8860 } 8861 8862 MachineMemOperand *MMO = 8863 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8864 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8865 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8866 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8867 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8868 MVT::i32, MMO); 8869 Chain = Ld.getValue(1); 8870 if (ReusingLoad) 8871 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8872 } else { 8873 assert(Subtarget.isPPC64() && 8874 "i32->FP without LFIWAX supported only on PPC64"); 8875 8876 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8877 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8878 8879 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8880 8881 // STD the extended value into the stack slot. 8882 SDValue Store = DAG.getStore( 8883 Chain, dl, Ext64, FIdx, 8884 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8885 Chain = Store; 8886 8887 // Load the value as a double. 8888 Ld = DAG.getLoad( 8889 MVT::f64, dl, Chain, FIdx, 8890 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8891 Chain = Ld.getValue(1); 8892 } 8893 8894 // FCFID it and return it. 8895 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8896 if (IsStrict) 8897 Chain = FP.getValue(1); 8898 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8899 if (IsStrict) 8900 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8901 DAG.getVTList(MVT::f32, MVT::Other), 8902 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8903 else 8904 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8905 DAG.getIntPtrConstant(0, dl)); 8906 } 8907 return FP; 8908 } 8909 8910 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8911 SelectionDAG &DAG) const { 8912 SDLoc dl(Op); 8913 /* 8914 The rounding mode is in bits 30:31 of FPSR, and has the following 8915 settings: 8916 00 Round to nearest 8917 01 Round to 0 8918 10 Round to +inf 8919 11 Round to -inf 8920 8921 FLT_ROUNDS, on the other hand, expects the following: 8922 -1 Undefined 8923 0 Round to 0 8924 1 Round to nearest 8925 2 Round to +inf 8926 3 Round to -inf 8927 8928 To perform the conversion, we do: 8929 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8930 */ 8931 8932 MachineFunction &MF = DAG.getMachineFunction(); 8933 EVT VT = Op.getValueType(); 8934 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8935 8936 // Save FP Control Word to register 8937 SDValue Chain = Op.getOperand(0); 8938 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8939 Chain = MFFS.getValue(1); 8940 8941 // Save FP register to stack slot 8942 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8943 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8944 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8945 8946 // Load FP Control Word from low 32 bits of stack slot. 8947 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8948 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8949 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8950 Chain = CWD.getValue(1); 8951 8952 // Transform as necessary 8953 SDValue CWD1 = 8954 DAG.getNode(ISD::AND, dl, MVT::i32, 8955 CWD, DAG.getConstant(3, dl, MVT::i32)); 8956 SDValue CWD2 = 8957 DAG.getNode(ISD::SRL, dl, MVT::i32, 8958 DAG.getNode(ISD::AND, dl, MVT::i32, 8959 DAG.getNode(ISD::XOR, dl, MVT::i32, 8960 CWD, DAG.getConstant(3, dl, MVT::i32)), 8961 DAG.getConstant(3, dl, MVT::i32)), 8962 DAG.getConstant(1, dl, MVT::i32)); 8963 8964 SDValue RetVal = 8965 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8966 8967 RetVal = 8968 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8969 dl, VT, RetVal); 8970 8971 return DAG.getMergeValues({RetVal, Chain}, dl); 8972 } 8973 8974 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8975 EVT VT = Op.getValueType(); 8976 unsigned BitWidth = VT.getSizeInBits(); 8977 SDLoc dl(Op); 8978 assert(Op.getNumOperands() == 3 && 8979 VT == Op.getOperand(1).getValueType() && 8980 "Unexpected SHL!"); 8981 8982 // Expand into a bunch of logical ops. Note that these ops 8983 // depend on the PPC behavior for oversized shift amounts. 8984 SDValue Lo = Op.getOperand(0); 8985 SDValue Hi = Op.getOperand(1); 8986 SDValue Amt = Op.getOperand(2); 8987 EVT AmtVT = Amt.getValueType(); 8988 8989 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8990 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8991 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8992 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8993 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8994 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8995 DAG.getConstant(-BitWidth, dl, AmtVT)); 8996 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8997 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8998 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8999 SDValue OutOps[] = { OutLo, OutHi }; 9000 return DAG.getMergeValues(OutOps, dl); 9001 } 9002 9003 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 9004 EVT VT = Op.getValueType(); 9005 SDLoc dl(Op); 9006 unsigned BitWidth = VT.getSizeInBits(); 9007 assert(Op.getNumOperands() == 3 && 9008 VT == Op.getOperand(1).getValueType() && 9009 "Unexpected SRL!"); 9010 9011 // Expand into a bunch of logical ops. Note that these ops 9012 // depend on the PPC behavior for oversized shift amounts. 9013 SDValue Lo = Op.getOperand(0); 9014 SDValue Hi = Op.getOperand(1); 9015 SDValue Amt = Op.getOperand(2); 9016 EVT AmtVT = Amt.getValueType(); 9017 9018 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9019 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9020 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 9021 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 9022 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9023 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9024 DAG.getConstant(-BitWidth, dl, AmtVT)); 9025 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 9026 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 9027 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 9028 SDValue OutOps[] = { OutLo, OutHi }; 9029 return DAG.getMergeValues(OutOps, dl); 9030 } 9031 9032 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 9033 SDLoc dl(Op); 9034 EVT VT = Op.getValueType(); 9035 unsigned BitWidth = VT.getSizeInBits(); 9036 assert(Op.getNumOperands() == 3 && 9037 VT == Op.getOperand(1).getValueType() && 9038 "Unexpected SRA!"); 9039 9040 // Expand into a bunch of logical ops, followed by a select_cc. 9041 SDValue Lo = Op.getOperand(0); 9042 SDValue Hi = Op.getOperand(1); 9043 SDValue Amt = Op.getOperand(2); 9044 EVT AmtVT = Amt.getValueType(); 9045 9046 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9047 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9048 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 9049 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 9050 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9051 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9052 DAG.getConstant(-BitWidth, dl, AmtVT)); 9053 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 9054 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 9055 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 9056 Tmp4, Tmp6, ISD::SETLE); 9057 SDValue OutOps[] = { OutLo, OutHi }; 9058 return DAG.getMergeValues(OutOps, dl); 9059 } 9060 9061 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 9062 SelectionDAG &DAG) const { 9063 SDLoc dl(Op); 9064 EVT VT = Op.getValueType(); 9065 unsigned BitWidth = VT.getSizeInBits(); 9066 9067 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 9068 SDValue X = Op.getOperand(0); 9069 SDValue Y = Op.getOperand(1); 9070 SDValue Z = Op.getOperand(2); 9071 EVT AmtVT = Z.getValueType(); 9072 9073 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 9074 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 9075 // This is simpler than TargetLowering::expandFunnelShift because we can rely 9076 // on PowerPC shift by BW being well defined. 9077 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 9078 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 9079 SDValue SubZ = 9080 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 9081 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 9082 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 9083 return DAG.getNode(ISD::OR, dl, VT, X, Y); 9084 } 9085 9086 //===----------------------------------------------------------------------===// 9087 // Vector related lowering. 9088 // 9089 9090 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 9091 /// element size of SplatSize. Cast the result to VT. 9092 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 9093 SelectionDAG &DAG, const SDLoc &dl) { 9094 static const MVT VTys[] = { // canonical VT to use for each size. 9095 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 9096 }; 9097 9098 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 9099 9100 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 9101 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 9102 SplatSize = 1; 9103 Val = 0xFF; 9104 } 9105 9106 EVT CanonicalVT = VTys[SplatSize-1]; 9107 9108 // Build a canonical splat for this value. 9109 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 9110 } 9111 9112 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9113 /// specified intrinsic ID. 9114 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9115 const SDLoc &dl, EVT DestVT = MVT::Other) { 9116 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9117 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9118 DAG.getConstant(IID, dl, MVT::i32), Op); 9119 } 9120 9121 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9122 /// specified intrinsic ID. 9123 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9124 SelectionDAG &DAG, const SDLoc &dl, 9125 EVT DestVT = MVT::Other) { 9126 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9127 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9128 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9129 } 9130 9131 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9132 /// specified intrinsic ID. 9133 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9134 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9135 EVT DestVT = MVT::Other) { 9136 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9137 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9138 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9139 } 9140 9141 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9142 /// amount. The result has the specified value type. 9143 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9144 SelectionDAG &DAG, const SDLoc &dl) { 9145 // Force LHS/RHS to be the right type. 9146 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9147 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9148 9149 int Ops[16]; 9150 for (unsigned i = 0; i != 16; ++i) 9151 Ops[i] = i + Amt; 9152 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9153 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9154 } 9155 9156 /// Do we have an efficient pattern in a .td file for this node? 9157 /// 9158 /// \param V - pointer to the BuildVectorSDNode being matched 9159 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9160 /// 9161 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9162 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9163 /// the opposite is true (expansion is beneficial) are: 9164 /// - The node builds a vector out of integers that are not 32 or 64-bits 9165 /// - The node builds a vector out of constants 9166 /// - The node is a "load-and-splat" 9167 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9168 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9169 bool HasDirectMove, 9170 bool HasP8Vector) { 9171 EVT VecVT = V->getValueType(0); 9172 bool RightType = VecVT == MVT::v2f64 || 9173 (HasP8Vector && VecVT == MVT::v4f32) || 9174 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9175 if (!RightType) 9176 return false; 9177 9178 bool IsSplat = true; 9179 bool IsLoad = false; 9180 SDValue Op0 = V->getOperand(0); 9181 9182 // This function is called in a block that confirms the node is not a constant 9183 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9184 // different constants. 9185 if (V->isConstant()) 9186 return false; 9187 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9188 if (V->getOperand(i).isUndef()) 9189 return false; 9190 // We want to expand nodes that represent load-and-splat even if the 9191 // loaded value is a floating point truncation or conversion to int. 9192 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9193 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9194 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9195 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9196 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9197 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9198 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9199 IsLoad = true; 9200 // If the operands are different or the input is not a load and has more 9201 // uses than just this BV node, then it isn't a splat. 9202 if (V->getOperand(i) != Op0 || 9203 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9204 IsSplat = false; 9205 } 9206 return !(IsSplat && IsLoad); 9207 } 9208 9209 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9210 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9211 9212 SDLoc dl(Op); 9213 SDValue Op0 = Op->getOperand(0); 9214 9215 if ((Op.getValueType() != MVT::f128) || 9216 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9217 (Op0.getOperand(0).getValueType() != MVT::i64) || 9218 (Op0.getOperand(1).getValueType() != MVT::i64)) 9219 return SDValue(); 9220 9221 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9222 Op0.getOperand(1)); 9223 } 9224 9225 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9226 const SDValue *InputLoad = &Op; 9227 if (InputLoad->getOpcode() == ISD::BITCAST) 9228 InputLoad = &InputLoad->getOperand(0); 9229 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9230 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9231 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9232 InputLoad = &InputLoad->getOperand(0); 9233 } 9234 if (InputLoad->getOpcode() != ISD::LOAD) 9235 return nullptr; 9236 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9237 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9238 } 9239 9240 // Convert the argument APFloat to a single precision APFloat if there is no 9241 // loss in information during the conversion to single precision APFloat and the 9242 // resulting number is not a denormal number. Return true if successful. 9243 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9244 APFloat APFloatToConvert = ArgAPFloat; 9245 bool LosesInfo = true; 9246 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9247 &LosesInfo); 9248 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9249 if (Success) 9250 ArgAPFloat = APFloatToConvert; 9251 return Success; 9252 } 9253 9254 // Bitcast the argument APInt to a double and convert it to a single precision 9255 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9256 // argument if there is no loss in information during the conversion from 9257 // double to single precision APFloat and the resulting number is not a denormal 9258 // number. Return true if successful. 9259 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9260 double DpValue = ArgAPInt.bitsToDouble(); 9261 APFloat APFloatDp(DpValue); 9262 bool Success = convertToNonDenormSingle(APFloatDp); 9263 if (Success) 9264 ArgAPInt = APFloatDp.bitcastToAPInt(); 9265 return Success; 9266 } 9267 9268 // If this is a case we can't handle, return null and let the default 9269 // expansion code take care of it. If we CAN select this case, and if it 9270 // selects to a single instruction, return Op. Otherwise, if we can codegen 9271 // this case more efficiently than a constant pool load, lower it to the 9272 // sequence of ops that should be used. 9273 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9274 SelectionDAG &DAG) const { 9275 SDLoc dl(Op); 9276 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9277 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9278 9279 // Check if this is a splat of a constant value. 9280 APInt APSplatBits, APSplatUndef; 9281 unsigned SplatBitSize; 9282 bool HasAnyUndefs; 9283 bool BVNIsConstantSplat = 9284 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9285 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9286 9287 // If it is a splat of a double, check if we can shrink it to a 32 bit 9288 // non-denormal float which when converted back to double gives us the same 9289 // double. This is to exploit the XXSPLTIDP instruction. 9290 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9291 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9292 convertToNonDenormSingle(APSplatBits)) { 9293 SDValue SplatNode = DAG.getNode( 9294 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9295 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9296 return DAG.getBitcast(Op.getValueType(), SplatNode); 9297 } 9298 9299 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9300 9301 bool IsPermutedLoad = false; 9302 const SDValue *InputLoad = 9303 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9304 // Handle load-and-splat patterns as we have instructions that will do this 9305 // in one go. 9306 if (InputLoad && DAG.isSplatValue(Op, true)) { 9307 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9308 9309 // We have handling for 4 and 8 byte elements. 9310 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9311 9312 // Checking for a single use of this load, we have to check for vector 9313 // width (128 bits) / ElementSize uses (since each operand of the 9314 // BUILD_VECTOR is a separate use of the value. 9315 unsigned NumUsesOfInputLD = 128 / ElementSize; 9316 for (SDValue BVInOp : Op->ops()) 9317 if (BVInOp.isUndef()) 9318 NumUsesOfInputLD--; 9319 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9320 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9321 ((Subtarget.hasVSX() && ElementSize == 64) || 9322 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9323 SDValue Ops[] = { 9324 LD->getChain(), // Chain 9325 LD->getBasePtr(), // Ptr 9326 DAG.getValueType(Op.getValueType()) // VT 9327 }; 9328 SDValue LdSplt = DAG.getMemIntrinsicNode( 9329 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9330 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9331 // Replace all uses of the output chain of the original load with the 9332 // output chain of the new load. 9333 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9334 LdSplt.getValue(1)); 9335 return LdSplt; 9336 } 9337 } 9338 9339 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9340 // lowered to VSX instructions under certain conditions. 9341 // Without VSX, there is no pattern more efficient than expanding the node. 9342 if (Subtarget.hasVSX() && 9343 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9344 Subtarget.hasP8Vector())) 9345 return Op; 9346 return SDValue(); 9347 } 9348 9349 uint64_t SplatBits = APSplatBits.getZExtValue(); 9350 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9351 unsigned SplatSize = SplatBitSize / 8; 9352 9353 // First, handle single instruction cases. 9354 9355 // All zeros? 9356 if (SplatBits == 0) { 9357 // Canonicalize all zero vectors to be v4i32. 9358 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9359 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9360 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9361 } 9362 return Op; 9363 } 9364 9365 // We have XXSPLTIW for constant splats four bytes wide. 9366 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9367 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9368 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9369 // turned into a 4-byte splat of 0xABABABAB. 9370 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9371 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9372 Op.getValueType(), DAG, dl); 9373 9374 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9375 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9376 dl); 9377 9378 // We have XXSPLTIB for constant splats one byte wide. 9379 if (Subtarget.hasP9Vector() && SplatSize == 1) 9380 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9381 dl); 9382 9383 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9384 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9385 (32-SplatBitSize)); 9386 if (SextVal >= -16 && SextVal <= 15) 9387 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9388 dl); 9389 9390 // Two instruction sequences. 9391 9392 // If this value is in the range [-32,30] and is even, use: 9393 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9394 // If this value is in the range [17,31] and is odd, use: 9395 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9396 // If this value is in the range [-31,-17] and is odd, use: 9397 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9398 // Note the last two are three-instruction sequences. 9399 if (SextVal >= -32 && SextVal <= 31) { 9400 // To avoid having these optimizations undone by constant folding, 9401 // we convert to a pseudo that will be expanded later into one of 9402 // the above forms. 9403 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9404 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9405 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9406 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9407 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9408 if (VT == Op.getValueType()) 9409 return RetVal; 9410 else 9411 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9412 } 9413 9414 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9415 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9416 // for fneg/fabs. 9417 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9418 // Make -1 and vspltisw -1: 9419 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9420 9421 // Make the VSLW intrinsic, computing 0x8000_0000. 9422 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9423 OnesV, DAG, dl); 9424 9425 // xor by OnesV to invert it. 9426 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9427 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9428 } 9429 9430 // Check to see if this is a wide variety of vsplti*, binop self cases. 9431 static const signed char SplatCsts[] = { 9432 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9433 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9434 }; 9435 9436 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9437 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9438 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9439 int i = SplatCsts[idx]; 9440 9441 // Figure out what shift amount will be used by altivec if shifted by i in 9442 // this splat size. 9443 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9444 9445 // vsplti + shl self. 9446 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9447 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9448 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9449 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9450 Intrinsic::ppc_altivec_vslw 9451 }; 9452 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9453 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9454 } 9455 9456 // vsplti + srl self. 9457 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9458 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9459 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9460 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9461 Intrinsic::ppc_altivec_vsrw 9462 }; 9463 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9464 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9465 } 9466 9467 // vsplti + sra self. 9468 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9469 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9470 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9471 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9472 Intrinsic::ppc_altivec_vsraw 9473 }; 9474 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9475 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9476 } 9477 9478 // vsplti + rol self. 9479 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9480 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9481 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9482 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9483 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9484 Intrinsic::ppc_altivec_vrlw 9485 }; 9486 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9487 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9488 } 9489 9490 // t = vsplti c, result = vsldoi t, t, 1 9491 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9492 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9493 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9494 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9495 } 9496 // t = vsplti c, result = vsldoi t, t, 2 9497 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9498 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9499 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9500 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9501 } 9502 // t = vsplti c, result = vsldoi t, t, 3 9503 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9504 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9505 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9506 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9507 } 9508 } 9509 9510 return SDValue(); 9511 } 9512 9513 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9514 /// the specified operations to build the shuffle. 9515 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9516 SDValue RHS, SelectionDAG &DAG, 9517 const SDLoc &dl) { 9518 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9519 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9520 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9521 9522 enum { 9523 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9524 OP_VMRGHW, 9525 OP_VMRGLW, 9526 OP_VSPLTISW0, 9527 OP_VSPLTISW1, 9528 OP_VSPLTISW2, 9529 OP_VSPLTISW3, 9530 OP_VSLDOI4, 9531 OP_VSLDOI8, 9532 OP_VSLDOI12 9533 }; 9534 9535 if (OpNum == OP_COPY) { 9536 if (LHSID == (1*9+2)*9+3) return LHS; 9537 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9538 return RHS; 9539 } 9540 9541 SDValue OpLHS, OpRHS; 9542 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9543 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9544 9545 int ShufIdxs[16]; 9546 switch (OpNum) { 9547 default: llvm_unreachable("Unknown i32 permute!"); 9548 case OP_VMRGHW: 9549 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9550 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9551 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9552 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9553 break; 9554 case OP_VMRGLW: 9555 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9556 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9557 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9558 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9559 break; 9560 case OP_VSPLTISW0: 9561 for (unsigned i = 0; i != 16; ++i) 9562 ShufIdxs[i] = (i&3)+0; 9563 break; 9564 case OP_VSPLTISW1: 9565 for (unsigned i = 0; i != 16; ++i) 9566 ShufIdxs[i] = (i&3)+4; 9567 break; 9568 case OP_VSPLTISW2: 9569 for (unsigned i = 0; i != 16; ++i) 9570 ShufIdxs[i] = (i&3)+8; 9571 break; 9572 case OP_VSPLTISW3: 9573 for (unsigned i = 0; i != 16; ++i) 9574 ShufIdxs[i] = (i&3)+12; 9575 break; 9576 case OP_VSLDOI4: 9577 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9578 case OP_VSLDOI8: 9579 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9580 case OP_VSLDOI12: 9581 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9582 } 9583 EVT VT = OpLHS.getValueType(); 9584 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9585 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9586 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9587 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9588 } 9589 9590 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9591 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9592 /// SDValue. 9593 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9594 SelectionDAG &DAG) const { 9595 const unsigned BytesInVector = 16; 9596 bool IsLE = Subtarget.isLittleEndian(); 9597 SDLoc dl(N); 9598 SDValue V1 = N->getOperand(0); 9599 SDValue V2 = N->getOperand(1); 9600 unsigned ShiftElts = 0, InsertAtByte = 0; 9601 bool Swap = false; 9602 9603 // Shifts required to get the byte we want at element 7. 9604 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9605 0, 15, 14, 13, 12, 11, 10, 9}; 9606 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9607 1, 2, 3, 4, 5, 6, 7, 8}; 9608 9609 ArrayRef<int> Mask = N->getMask(); 9610 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9611 9612 // For each mask element, find out if we're just inserting something 9613 // from V2 into V1 or vice versa. 9614 // Possible permutations inserting an element from V2 into V1: 9615 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9616 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9617 // ... 9618 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9619 // Inserting from V1 into V2 will be similar, except mask range will be 9620 // [16,31]. 9621 9622 bool FoundCandidate = false; 9623 // If both vector operands for the shuffle are the same vector, the mask 9624 // will contain only elements from the first one and the second one will be 9625 // undef. 9626 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9627 // Go through the mask of half-words to find an element that's being moved 9628 // from one vector to the other. 9629 for (unsigned i = 0; i < BytesInVector; ++i) { 9630 unsigned CurrentElement = Mask[i]; 9631 // If 2nd operand is undefined, we should only look for element 7 in the 9632 // Mask. 9633 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9634 continue; 9635 9636 bool OtherElementsInOrder = true; 9637 // Examine the other elements in the Mask to see if they're in original 9638 // order. 9639 for (unsigned j = 0; j < BytesInVector; ++j) { 9640 if (j == i) 9641 continue; 9642 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9643 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9644 // in which we always assume we're always picking from the 1st operand. 9645 int MaskOffset = 9646 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9647 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9648 OtherElementsInOrder = false; 9649 break; 9650 } 9651 } 9652 // If other elements are in original order, we record the number of shifts 9653 // we need to get the element we want into element 7. Also record which byte 9654 // in the vector we should insert into. 9655 if (OtherElementsInOrder) { 9656 // If 2nd operand is undefined, we assume no shifts and no swapping. 9657 if (V2.isUndef()) { 9658 ShiftElts = 0; 9659 Swap = false; 9660 } else { 9661 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9662 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9663 : BigEndianShifts[CurrentElement & 0xF]; 9664 Swap = CurrentElement < BytesInVector; 9665 } 9666 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9667 FoundCandidate = true; 9668 break; 9669 } 9670 } 9671 9672 if (!FoundCandidate) 9673 return SDValue(); 9674 9675 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9676 // optionally with VECSHL if shift is required. 9677 if (Swap) 9678 std::swap(V1, V2); 9679 if (V2.isUndef()) 9680 V2 = V1; 9681 if (ShiftElts) { 9682 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9683 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9684 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9685 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9686 } 9687 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9688 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9689 } 9690 9691 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9692 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9693 /// SDValue. 9694 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9695 SelectionDAG &DAG) const { 9696 const unsigned NumHalfWords = 8; 9697 const unsigned BytesInVector = NumHalfWords * 2; 9698 // Check that the shuffle is on half-words. 9699 if (!isNByteElemShuffleMask(N, 2, 1)) 9700 return SDValue(); 9701 9702 bool IsLE = Subtarget.isLittleEndian(); 9703 SDLoc dl(N); 9704 SDValue V1 = N->getOperand(0); 9705 SDValue V2 = N->getOperand(1); 9706 unsigned ShiftElts = 0, InsertAtByte = 0; 9707 bool Swap = false; 9708 9709 // Shifts required to get the half-word we want at element 3. 9710 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9711 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9712 9713 uint32_t Mask = 0; 9714 uint32_t OriginalOrderLow = 0x1234567; 9715 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9716 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9717 // 32-bit space, only need 4-bit nibbles per element. 9718 for (unsigned i = 0; i < NumHalfWords; ++i) { 9719 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9720 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9721 } 9722 9723 // For each mask element, find out if we're just inserting something 9724 // from V2 into V1 or vice versa. Possible permutations inserting an element 9725 // from V2 into V1: 9726 // X, 1, 2, 3, 4, 5, 6, 7 9727 // 0, X, 2, 3, 4, 5, 6, 7 9728 // 0, 1, X, 3, 4, 5, 6, 7 9729 // 0, 1, 2, X, 4, 5, 6, 7 9730 // 0, 1, 2, 3, X, 5, 6, 7 9731 // 0, 1, 2, 3, 4, X, 6, 7 9732 // 0, 1, 2, 3, 4, 5, X, 7 9733 // 0, 1, 2, 3, 4, 5, 6, X 9734 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9735 9736 bool FoundCandidate = false; 9737 // Go through the mask of half-words to find an element that's being moved 9738 // from one vector to the other. 9739 for (unsigned i = 0; i < NumHalfWords; ++i) { 9740 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9741 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9742 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9743 uint32_t TargetOrder = 0x0; 9744 9745 // If both vector operands for the shuffle are the same vector, the mask 9746 // will contain only elements from the first one and the second one will be 9747 // undef. 9748 if (V2.isUndef()) { 9749 ShiftElts = 0; 9750 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9751 TargetOrder = OriginalOrderLow; 9752 Swap = false; 9753 // Skip if not the correct element or mask of other elements don't equal 9754 // to our expected order. 9755 if (MaskOneElt == VINSERTHSrcElem && 9756 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9757 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9758 FoundCandidate = true; 9759 break; 9760 } 9761 } else { // If both operands are defined. 9762 // Target order is [8,15] if the current mask is between [0,7]. 9763 TargetOrder = 9764 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9765 // Skip if mask of other elements don't equal our expected order. 9766 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9767 // We only need the last 3 bits for the number of shifts. 9768 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9769 : BigEndianShifts[MaskOneElt & 0x7]; 9770 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9771 Swap = MaskOneElt < NumHalfWords; 9772 FoundCandidate = true; 9773 break; 9774 } 9775 } 9776 } 9777 9778 if (!FoundCandidate) 9779 return SDValue(); 9780 9781 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9782 // optionally with VECSHL if shift is required. 9783 if (Swap) 9784 std::swap(V1, V2); 9785 if (V2.isUndef()) 9786 V2 = V1; 9787 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9788 if (ShiftElts) { 9789 // Double ShiftElts because we're left shifting on v16i8 type. 9790 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9791 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9792 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9793 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9794 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9795 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9796 } 9797 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9798 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9799 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9800 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9801 } 9802 9803 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9804 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9805 /// return the default SDValue. 9806 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9807 SelectionDAG &DAG) const { 9808 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9809 // to v16i8. Peek through the bitcasts to get the actual operands. 9810 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9811 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9812 9813 auto ShuffleMask = SVN->getMask(); 9814 SDValue VecShuffle(SVN, 0); 9815 SDLoc DL(SVN); 9816 9817 // Check that we have a four byte shuffle. 9818 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9819 return SDValue(); 9820 9821 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9822 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9823 std::swap(LHS, RHS); 9824 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9825 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9826 } 9827 9828 // Ensure that the RHS is a vector of constants. 9829 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9830 if (!BVN) 9831 return SDValue(); 9832 9833 // Check if RHS is a splat of 4-bytes (or smaller). 9834 APInt APSplatValue, APSplatUndef; 9835 unsigned SplatBitSize; 9836 bool HasAnyUndefs; 9837 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9838 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9839 SplatBitSize > 32) 9840 return SDValue(); 9841 9842 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9843 // The instruction splats a constant C into two words of the source vector 9844 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9845 // Thus we check that the shuffle mask is the equivalent of 9846 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9847 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9848 // within each word are consecutive, so we only need to check the first byte. 9849 SDValue Index; 9850 bool IsLE = Subtarget.isLittleEndian(); 9851 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9852 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9853 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9854 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9855 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9856 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9857 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9858 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9859 else 9860 return SDValue(); 9861 9862 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9863 // for XXSPLTI32DX. 9864 unsigned SplatVal = APSplatValue.getZExtValue(); 9865 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9866 SplatVal |= (SplatVal << SplatBitSize); 9867 9868 SDValue SplatNode = DAG.getNode( 9869 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9870 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9871 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9872 } 9873 9874 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9875 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9876 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9877 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9878 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9879 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9880 assert(Op.getValueType() == MVT::v1i128 && 9881 "Only set v1i128 as custom, other type shouldn't reach here!"); 9882 SDLoc dl(Op); 9883 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9884 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9885 unsigned SHLAmt = N1.getConstantOperandVal(0); 9886 if (SHLAmt % 8 == 0) { 9887 SmallVector<int, 16> Mask(16, 0); 9888 std::iota(Mask.begin(), Mask.end(), 0); 9889 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9890 if (SDValue Shuffle = 9891 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9892 DAG.getUNDEF(MVT::v16i8), Mask)) 9893 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9894 } 9895 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9896 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9897 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9898 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9899 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9900 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9901 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9902 } 9903 9904 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9905 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9906 /// return the code it can be lowered into. Worst case, it can always be 9907 /// lowered into a vperm. 9908 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9909 SelectionDAG &DAG) const { 9910 SDLoc dl(Op); 9911 SDValue V1 = Op.getOperand(0); 9912 SDValue V2 = Op.getOperand(1); 9913 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9914 9915 // Any nodes that were combined in the target-independent combiner prior 9916 // to vector legalization will not be sent to the target combine. Try to 9917 // combine it here. 9918 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9919 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9920 return NewShuffle; 9921 Op = NewShuffle; 9922 SVOp = cast<ShuffleVectorSDNode>(Op); 9923 V1 = Op.getOperand(0); 9924 V2 = Op.getOperand(1); 9925 } 9926 EVT VT = Op.getValueType(); 9927 bool isLittleEndian = Subtarget.isLittleEndian(); 9928 9929 unsigned ShiftElts, InsertAtByte; 9930 bool Swap = false; 9931 9932 // If this is a load-and-splat, we can do that with a single instruction 9933 // in some cases. However if the load has multiple uses, we don't want to 9934 // combine it because that will just produce multiple loads. 9935 bool IsPermutedLoad = false; 9936 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9937 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9938 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9939 InputLoad->hasOneUse()) { 9940 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9941 int SplatIdx = 9942 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9943 9944 // The splat index for permuted loads will be in the left half of the vector 9945 // which is strictly wider than the loaded value by 8 bytes. So we need to 9946 // adjust the splat index to point to the correct address in memory. 9947 if (IsPermutedLoad) { 9948 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9949 SplatIdx += IsFourByte ? 2 : 1; 9950 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9951 "Splat of a value outside of the loaded memory"); 9952 } 9953 9954 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9955 // For 4-byte load-and-splat, we need Power9. 9956 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9957 uint64_t Offset = 0; 9958 if (IsFourByte) 9959 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9960 else 9961 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9962 9963 SDValue BasePtr = LD->getBasePtr(); 9964 if (Offset != 0) 9965 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9966 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9967 SDValue Ops[] = { 9968 LD->getChain(), // Chain 9969 BasePtr, // BasePtr 9970 DAG.getValueType(Op.getValueType()) // VT 9971 }; 9972 SDVTList VTL = 9973 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9974 SDValue LdSplt = 9975 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9976 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9977 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9978 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9979 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9980 return LdSplt; 9981 } 9982 } 9983 if (Subtarget.hasP9Vector() && 9984 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9985 isLittleEndian)) { 9986 if (Swap) 9987 std::swap(V1, V2); 9988 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9989 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9990 if (ShiftElts) { 9991 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9992 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9993 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9994 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9995 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9996 } 9997 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9998 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9999 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10000 } 10001 10002 if (Subtarget.hasPrefixInstrs()) { 10003 SDValue SplatInsertNode; 10004 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 10005 return SplatInsertNode; 10006 } 10007 10008 if (Subtarget.hasP9Altivec()) { 10009 SDValue NewISDNode; 10010 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 10011 return NewISDNode; 10012 10013 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 10014 return NewISDNode; 10015 } 10016 10017 if (Subtarget.hasVSX() && 10018 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10019 if (Swap) 10020 std::swap(V1, V2); 10021 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10022 SDValue Conv2 = 10023 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 10024 10025 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 10026 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10027 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 10028 } 10029 10030 if (Subtarget.hasVSX() && 10031 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10032 if (Swap) 10033 std::swap(V1, V2); 10034 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10035 SDValue Conv2 = 10036 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 10037 10038 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10039 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10040 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10041 } 10042 10043 if (Subtarget.hasP9Vector()) { 10044 if (PPC::isXXBRHShuffleMask(SVOp)) { 10045 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10046 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10047 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10048 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10049 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10050 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10051 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10052 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10053 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10054 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10055 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10056 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10057 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10058 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10059 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10060 } 10061 } 10062 10063 if (Subtarget.hasVSX()) { 10064 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10065 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10066 10067 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10068 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10069 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10070 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10071 } 10072 10073 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10074 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10075 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10076 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10077 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10078 } 10079 } 10080 10081 // Cases that are handled by instructions that take permute immediates 10082 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10083 // selected by the instruction selector. 10084 if (V2.isUndef()) { 10085 if (PPC::isSplatShuffleMask(SVOp, 1) || 10086 PPC::isSplatShuffleMask(SVOp, 2) || 10087 PPC::isSplatShuffleMask(SVOp, 4) || 10088 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10089 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10090 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10091 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10092 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10093 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10094 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10095 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10096 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10097 (Subtarget.hasP8Altivec() && ( 10098 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10099 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10100 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10101 return Op; 10102 } 10103 } 10104 10105 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10106 // and produce a fixed permutation. If any of these match, do not lower to 10107 // VPERM. 10108 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10109 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10110 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10111 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10112 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10113 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10114 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10115 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10116 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10117 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10118 (Subtarget.hasP8Altivec() && ( 10119 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10120 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10121 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10122 return Op; 10123 10124 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10125 // perfect shuffle table to emit an optimal matching sequence. 10126 ArrayRef<int> PermMask = SVOp->getMask(); 10127 10128 unsigned PFIndexes[4]; 10129 bool isFourElementShuffle = true; 10130 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10131 unsigned EltNo = 8; // Start out undef. 10132 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10133 if (PermMask[i*4+j] < 0) 10134 continue; // Undef, ignore it. 10135 10136 unsigned ByteSource = PermMask[i*4+j]; 10137 if ((ByteSource & 3) != j) { 10138 isFourElementShuffle = false; 10139 break; 10140 } 10141 10142 if (EltNo == 8) { 10143 EltNo = ByteSource/4; 10144 } else if (EltNo != ByteSource/4) { 10145 isFourElementShuffle = false; 10146 break; 10147 } 10148 } 10149 PFIndexes[i] = EltNo; 10150 } 10151 10152 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10153 // perfect shuffle vector to determine if it is cost effective to do this as 10154 // discrete instructions, or whether we should use a vperm. 10155 // For now, we skip this for little endian until such time as we have a 10156 // little-endian perfect shuffle table. 10157 if (isFourElementShuffle && !isLittleEndian) { 10158 // Compute the index in the perfect shuffle table. 10159 unsigned PFTableIndex = 10160 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10161 10162 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10163 unsigned Cost = (PFEntry >> 30); 10164 10165 // Determining when to avoid vperm is tricky. Many things affect the cost 10166 // of vperm, particularly how many times the perm mask needs to be computed. 10167 // For example, if the perm mask can be hoisted out of a loop or is already 10168 // used (perhaps because there are multiple permutes with the same shuffle 10169 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10170 // the loop requires an extra register. 10171 // 10172 // As a compromise, we only emit discrete instructions if the shuffle can be 10173 // generated in 3 or fewer operations. When we have loop information 10174 // available, if this block is within a loop, we should avoid using vperm 10175 // for 3-operation perms and use a constant pool load instead. 10176 if (Cost < 3) 10177 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10178 } 10179 10180 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10181 // vector that will get spilled to the constant pool. 10182 if (V2.isUndef()) V2 = V1; 10183 10184 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10185 // that it is in input element units, not in bytes. Convert now. 10186 10187 // For little endian, the order of the input vectors is reversed, and 10188 // the permutation mask is complemented with respect to 31. This is 10189 // necessary to produce proper semantics with the big-endian-biased vperm 10190 // instruction. 10191 EVT EltVT = V1.getValueType().getVectorElementType(); 10192 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10193 10194 SmallVector<SDValue, 16> ResultMask; 10195 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10196 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10197 10198 for (unsigned j = 0; j != BytesPerElement; ++j) 10199 if (isLittleEndian) 10200 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10201 dl, MVT::i32)); 10202 else 10203 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10204 MVT::i32)); 10205 } 10206 10207 ShufflesHandledWithVPERM++; 10208 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10209 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10210 LLVM_DEBUG(SVOp->dump()); 10211 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10212 LLVM_DEBUG(VPermMask.dump()); 10213 10214 if (isLittleEndian) 10215 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10216 V2, V1, VPermMask); 10217 else 10218 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10219 V1, V2, VPermMask); 10220 } 10221 10222 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10223 /// vector comparison. If it is, return true and fill in Opc/isDot with 10224 /// information about the intrinsic. 10225 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10226 bool &isDot, const PPCSubtarget &Subtarget) { 10227 unsigned IntrinsicID = 10228 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10229 CompareOpc = -1; 10230 isDot = false; 10231 switch (IntrinsicID) { 10232 default: 10233 return false; 10234 // Comparison predicates. 10235 case Intrinsic::ppc_altivec_vcmpbfp_p: 10236 CompareOpc = 966; 10237 isDot = true; 10238 break; 10239 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10240 CompareOpc = 198; 10241 isDot = true; 10242 break; 10243 case Intrinsic::ppc_altivec_vcmpequb_p: 10244 CompareOpc = 6; 10245 isDot = true; 10246 break; 10247 case Intrinsic::ppc_altivec_vcmpequh_p: 10248 CompareOpc = 70; 10249 isDot = true; 10250 break; 10251 case Intrinsic::ppc_altivec_vcmpequw_p: 10252 CompareOpc = 134; 10253 isDot = true; 10254 break; 10255 case Intrinsic::ppc_altivec_vcmpequd_p: 10256 if (Subtarget.hasP8Altivec()) { 10257 CompareOpc = 199; 10258 isDot = true; 10259 } else 10260 return false; 10261 break; 10262 case Intrinsic::ppc_altivec_vcmpneb_p: 10263 case Intrinsic::ppc_altivec_vcmpneh_p: 10264 case Intrinsic::ppc_altivec_vcmpnew_p: 10265 case Intrinsic::ppc_altivec_vcmpnezb_p: 10266 case Intrinsic::ppc_altivec_vcmpnezh_p: 10267 case Intrinsic::ppc_altivec_vcmpnezw_p: 10268 if (Subtarget.hasP9Altivec()) { 10269 switch (IntrinsicID) { 10270 default: 10271 llvm_unreachable("Unknown comparison intrinsic."); 10272 case Intrinsic::ppc_altivec_vcmpneb_p: 10273 CompareOpc = 7; 10274 break; 10275 case Intrinsic::ppc_altivec_vcmpneh_p: 10276 CompareOpc = 71; 10277 break; 10278 case Intrinsic::ppc_altivec_vcmpnew_p: 10279 CompareOpc = 135; 10280 break; 10281 case Intrinsic::ppc_altivec_vcmpnezb_p: 10282 CompareOpc = 263; 10283 break; 10284 case Intrinsic::ppc_altivec_vcmpnezh_p: 10285 CompareOpc = 327; 10286 break; 10287 case Intrinsic::ppc_altivec_vcmpnezw_p: 10288 CompareOpc = 391; 10289 break; 10290 } 10291 isDot = true; 10292 } else 10293 return false; 10294 break; 10295 case Intrinsic::ppc_altivec_vcmpgefp_p: 10296 CompareOpc = 454; 10297 isDot = true; 10298 break; 10299 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10300 CompareOpc = 710; 10301 isDot = true; 10302 break; 10303 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10304 CompareOpc = 774; 10305 isDot = true; 10306 break; 10307 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10308 CompareOpc = 838; 10309 isDot = true; 10310 break; 10311 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10312 CompareOpc = 902; 10313 isDot = true; 10314 break; 10315 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10316 if (Subtarget.hasP8Altivec()) { 10317 CompareOpc = 967; 10318 isDot = true; 10319 } else 10320 return false; 10321 break; 10322 case Intrinsic::ppc_altivec_vcmpgtub_p: 10323 CompareOpc = 518; 10324 isDot = true; 10325 break; 10326 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10327 CompareOpc = 582; 10328 isDot = true; 10329 break; 10330 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10331 CompareOpc = 646; 10332 isDot = true; 10333 break; 10334 case Intrinsic::ppc_altivec_vcmpgtud_p: 10335 if (Subtarget.hasP8Altivec()) { 10336 CompareOpc = 711; 10337 isDot = true; 10338 } else 10339 return false; 10340 break; 10341 10342 case Intrinsic::ppc_altivec_vcmpequq: 10343 case Intrinsic::ppc_altivec_vcmpgtsq: 10344 case Intrinsic::ppc_altivec_vcmpgtuq: 10345 if (!Subtarget.isISA3_1()) 10346 return false; 10347 switch (IntrinsicID) { 10348 default: 10349 llvm_unreachable("Unknown comparison intrinsic."); 10350 case Intrinsic::ppc_altivec_vcmpequq: 10351 CompareOpc = 455; 10352 break; 10353 case Intrinsic::ppc_altivec_vcmpgtsq: 10354 CompareOpc = 903; 10355 break; 10356 case Intrinsic::ppc_altivec_vcmpgtuq: 10357 CompareOpc = 647; 10358 break; 10359 } 10360 break; 10361 10362 // VSX predicate comparisons use the same infrastructure 10363 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10364 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10365 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10366 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10367 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10368 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10369 if (Subtarget.hasVSX()) { 10370 switch (IntrinsicID) { 10371 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10372 CompareOpc = 99; 10373 break; 10374 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10375 CompareOpc = 115; 10376 break; 10377 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10378 CompareOpc = 107; 10379 break; 10380 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10381 CompareOpc = 67; 10382 break; 10383 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10384 CompareOpc = 83; 10385 break; 10386 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10387 CompareOpc = 75; 10388 break; 10389 } 10390 isDot = true; 10391 } else 10392 return false; 10393 break; 10394 10395 // Normal Comparisons. 10396 case Intrinsic::ppc_altivec_vcmpbfp: 10397 CompareOpc = 966; 10398 break; 10399 case Intrinsic::ppc_altivec_vcmpeqfp: 10400 CompareOpc = 198; 10401 break; 10402 case Intrinsic::ppc_altivec_vcmpequb: 10403 CompareOpc = 6; 10404 break; 10405 case Intrinsic::ppc_altivec_vcmpequh: 10406 CompareOpc = 70; 10407 break; 10408 case Intrinsic::ppc_altivec_vcmpequw: 10409 CompareOpc = 134; 10410 break; 10411 case Intrinsic::ppc_altivec_vcmpequd: 10412 if (Subtarget.hasP8Altivec()) 10413 CompareOpc = 199; 10414 else 10415 return false; 10416 break; 10417 case Intrinsic::ppc_altivec_vcmpneb: 10418 case Intrinsic::ppc_altivec_vcmpneh: 10419 case Intrinsic::ppc_altivec_vcmpnew: 10420 case Intrinsic::ppc_altivec_vcmpnezb: 10421 case Intrinsic::ppc_altivec_vcmpnezh: 10422 case Intrinsic::ppc_altivec_vcmpnezw: 10423 if (Subtarget.hasP9Altivec()) 10424 switch (IntrinsicID) { 10425 default: 10426 llvm_unreachable("Unknown comparison intrinsic."); 10427 case Intrinsic::ppc_altivec_vcmpneb: 10428 CompareOpc = 7; 10429 break; 10430 case Intrinsic::ppc_altivec_vcmpneh: 10431 CompareOpc = 71; 10432 break; 10433 case Intrinsic::ppc_altivec_vcmpnew: 10434 CompareOpc = 135; 10435 break; 10436 case Intrinsic::ppc_altivec_vcmpnezb: 10437 CompareOpc = 263; 10438 break; 10439 case Intrinsic::ppc_altivec_vcmpnezh: 10440 CompareOpc = 327; 10441 break; 10442 case Intrinsic::ppc_altivec_vcmpnezw: 10443 CompareOpc = 391; 10444 break; 10445 } 10446 else 10447 return false; 10448 break; 10449 case Intrinsic::ppc_altivec_vcmpgefp: 10450 CompareOpc = 454; 10451 break; 10452 case Intrinsic::ppc_altivec_vcmpgtfp: 10453 CompareOpc = 710; 10454 break; 10455 case Intrinsic::ppc_altivec_vcmpgtsb: 10456 CompareOpc = 774; 10457 break; 10458 case Intrinsic::ppc_altivec_vcmpgtsh: 10459 CompareOpc = 838; 10460 break; 10461 case Intrinsic::ppc_altivec_vcmpgtsw: 10462 CompareOpc = 902; 10463 break; 10464 case Intrinsic::ppc_altivec_vcmpgtsd: 10465 if (Subtarget.hasP8Altivec()) 10466 CompareOpc = 967; 10467 else 10468 return false; 10469 break; 10470 case Intrinsic::ppc_altivec_vcmpgtub: 10471 CompareOpc = 518; 10472 break; 10473 case Intrinsic::ppc_altivec_vcmpgtuh: 10474 CompareOpc = 582; 10475 break; 10476 case Intrinsic::ppc_altivec_vcmpgtuw: 10477 CompareOpc = 646; 10478 break; 10479 case Intrinsic::ppc_altivec_vcmpgtud: 10480 if (Subtarget.hasP8Altivec()) 10481 CompareOpc = 711; 10482 else 10483 return false; 10484 break; 10485 case Intrinsic::ppc_altivec_vcmpequq_p: 10486 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10487 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10488 if (!Subtarget.isISA3_1()) 10489 return false; 10490 switch (IntrinsicID) { 10491 default: 10492 llvm_unreachable("Unknown comparison intrinsic."); 10493 case Intrinsic::ppc_altivec_vcmpequq_p: 10494 CompareOpc = 455; 10495 break; 10496 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10497 CompareOpc = 903; 10498 break; 10499 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10500 CompareOpc = 647; 10501 break; 10502 } 10503 isDot = true; 10504 break; 10505 } 10506 return true; 10507 } 10508 10509 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10510 /// lower, do it, otherwise return null. 10511 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10512 SelectionDAG &DAG) const { 10513 unsigned IntrinsicID = 10514 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10515 10516 SDLoc dl(Op); 10517 10518 switch (IntrinsicID) { 10519 case Intrinsic::thread_pointer: 10520 // Reads the thread pointer register, used for __builtin_thread_pointer. 10521 if (Subtarget.isPPC64()) 10522 return DAG.getRegister(PPC::X13, MVT::i64); 10523 return DAG.getRegister(PPC::R2, MVT::i32); 10524 10525 case Intrinsic::ppc_mma_disassemble_acc: 10526 case Intrinsic::ppc_mma_disassemble_pair: { 10527 int NumVecs = 2; 10528 SDValue WideVec = Op.getOperand(1); 10529 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10530 NumVecs = 4; 10531 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10532 } 10533 SmallVector<SDValue, 4> RetOps; 10534 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10535 SDValue Extract = DAG.getNode( 10536 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10537 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10538 : VecNo, 10539 dl, MVT::i64)); 10540 RetOps.push_back(Extract); 10541 } 10542 return DAG.getMergeValues(RetOps, dl); 10543 } 10544 } 10545 10546 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10547 // opcode number of the comparison. 10548 int CompareOpc; 10549 bool isDot; 10550 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10551 return SDValue(); // Don't custom lower most intrinsics. 10552 10553 // If this is a non-dot comparison, make the VCMP node and we are done. 10554 if (!isDot) { 10555 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10556 Op.getOperand(1), Op.getOperand(2), 10557 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10558 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10559 } 10560 10561 // Create the PPCISD altivec 'dot' comparison node. 10562 SDValue Ops[] = { 10563 Op.getOperand(2), // LHS 10564 Op.getOperand(3), // RHS 10565 DAG.getConstant(CompareOpc, dl, MVT::i32) 10566 }; 10567 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10568 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10569 10570 // Now that we have the comparison, emit a copy from the CR to a GPR. 10571 // This is flagged to the above dot comparison. 10572 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10573 DAG.getRegister(PPC::CR6, MVT::i32), 10574 CompNode.getValue(1)); 10575 10576 // Unpack the result based on how the target uses it. 10577 unsigned BitNo; // Bit # of CR6. 10578 bool InvertBit; // Invert result? 10579 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10580 default: // Can't happen, don't crash on invalid number though. 10581 case 0: // Return the value of the EQ bit of CR6. 10582 BitNo = 0; InvertBit = false; 10583 break; 10584 case 1: // Return the inverted value of the EQ bit of CR6. 10585 BitNo = 0; InvertBit = true; 10586 break; 10587 case 2: // Return the value of the LT bit of CR6. 10588 BitNo = 2; InvertBit = false; 10589 break; 10590 case 3: // Return the inverted value of the LT bit of CR6. 10591 BitNo = 2; InvertBit = true; 10592 break; 10593 } 10594 10595 // Shift the bit into the low position. 10596 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10597 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10598 // Isolate the bit. 10599 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10600 DAG.getConstant(1, dl, MVT::i32)); 10601 10602 // If we are supposed to, toggle the bit. 10603 if (InvertBit) 10604 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10605 DAG.getConstant(1, dl, MVT::i32)); 10606 return Flags; 10607 } 10608 10609 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10610 SelectionDAG &DAG) const { 10611 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10612 // the beginning of the argument list. 10613 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10614 SDLoc DL(Op); 10615 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10616 case Intrinsic::ppc_cfence: { 10617 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10618 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10619 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10620 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10621 Op.getOperand(ArgStart + 1)), 10622 Op.getOperand(0)), 10623 0); 10624 } 10625 default: 10626 break; 10627 } 10628 return SDValue(); 10629 } 10630 10631 // Lower scalar BSWAP64 to xxbrd. 10632 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10633 SDLoc dl(Op); 10634 // MTVSRDD 10635 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10636 Op.getOperand(0)); 10637 // XXBRD 10638 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10639 // MFVSRD 10640 int VectorIndex = 0; 10641 if (Subtarget.isLittleEndian()) 10642 VectorIndex = 1; 10643 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10644 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10645 return Op; 10646 } 10647 10648 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10649 // compared to a value that is atomically loaded (atomic loads zero-extend). 10650 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10651 SelectionDAG &DAG) const { 10652 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10653 "Expecting an atomic compare-and-swap here."); 10654 SDLoc dl(Op); 10655 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10656 EVT MemVT = AtomicNode->getMemoryVT(); 10657 if (MemVT.getSizeInBits() >= 32) 10658 return Op; 10659 10660 SDValue CmpOp = Op.getOperand(2); 10661 // If this is already correctly zero-extended, leave it alone. 10662 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10663 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10664 return Op; 10665 10666 // Clear the high bits of the compare operand. 10667 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10668 SDValue NewCmpOp = 10669 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10670 DAG.getConstant(MaskVal, dl, MVT::i32)); 10671 10672 // Replace the existing compare operand with the properly zero-extended one. 10673 SmallVector<SDValue, 4> Ops; 10674 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10675 Ops.push_back(AtomicNode->getOperand(i)); 10676 Ops[2] = NewCmpOp; 10677 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10678 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10679 auto NodeTy = 10680 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10681 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10682 } 10683 10684 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10685 SelectionDAG &DAG) const { 10686 SDLoc dl(Op); 10687 // Create a stack slot that is 16-byte aligned. 10688 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10689 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10690 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10691 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10692 10693 // Store the input value into Value#0 of the stack slot. 10694 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10695 MachinePointerInfo()); 10696 // Load it out. 10697 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10698 } 10699 10700 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10701 SelectionDAG &DAG) const { 10702 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10703 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10704 10705 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10706 // We have legal lowering for constant indices but not for variable ones. 10707 if (!C) 10708 return SDValue(); 10709 10710 EVT VT = Op.getValueType(); 10711 SDLoc dl(Op); 10712 SDValue V1 = Op.getOperand(0); 10713 SDValue V2 = Op.getOperand(1); 10714 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10715 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10716 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10717 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10718 unsigned InsertAtElement = C->getZExtValue(); 10719 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10720 if (Subtarget.isLittleEndian()) { 10721 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10722 } 10723 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10724 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10725 } 10726 return Op; 10727 } 10728 10729 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10730 SelectionDAG &DAG) const { 10731 SDLoc dl(Op); 10732 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10733 SDValue LoadChain = LN->getChain(); 10734 SDValue BasePtr = LN->getBasePtr(); 10735 EVT VT = Op.getValueType(); 10736 10737 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10738 return Op; 10739 10740 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10741 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10742 // 2 or 4 vsx registers. 10743 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10744 "Type unsupported without MMA"); 10745 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10746 "Type unsupported without paired vector support"); 10747 Align Alignment = LN->getAlign(); 10748 SmallVector<SDValue, 4> Loads; 10749 SmallVector<SDValue, 4> LoadChains; 10750 unsigned NumVecs = VT.getSizeInBits() / 128; 10751 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10752 SDValue Load = 10753 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10754 LN->getPointerInfo().getWithOffset(Idx * 16), 10755 commonAlignment(Alignment, Idx * 16), 10756 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10757 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10758 DAG.getConstant(16, dl, BasePtr.getValueType())); 10759 Loads.push_back(Load); 10760 LoadChains.push_back(Load.getValue(1)); 10761 } 10762 if (Subtarget.isLittleEndian()) { 10763 std::reverse(Loads.begin(), Loads.end()); 10764 std::reverse(LoadChains.begin(), LoadChains.end()); 10765 } 10766 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10767 SDValue Value = 10768 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10769 dl, VT, Loads); 10770 SDValue RetOps[] = {Value, TF}; 10771 return DAG.getMergeValues(RetOps, dl); 10772 } 10773 10774 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10775 SelectionDAG &DAG) const { 10776 SDLoc dl(Op); 10777 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10778 SDValue StoreChain = SN->getChain(); 10779 SDValue BasePtr = SN->getBasePtr(); 10780 SDValue Value = SN->getValue(); 10781 EVT StoreVT = Value.getValueType(); 10782 10783 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10784 return Op; 10785 10786 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10787 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10788 // underlying registers individually. 10789 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10790 "Type unsupported without MMA"); 10791 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10792 "Type unsupported without paired vector support"); 10793 Align Alignment = SN->getAlign(); 10794 SmallVector<SDValue, 4> Stores; 10795 unsigned NumVecs = 2; 10796 if (StoreVT == MVT::v512i1) { 10797 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10798 NumVecs = 4; 10799 } 10800 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10801 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10802 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10803 DAG.getConstant(VecNum, dl, MVT::i64)); 10804 SDValue Store = 10805 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10806 SN->getPointerInfo().getWithOffset(Idx * 16), 10807 commonAlignment(Alignment, Idx * 16), 10808 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10809 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10810 DAG.getConstant(16, dl, BasePtr.getValueType())); 10811 Stores.push_back(Store); 10812 } 10813 SDValue TF = DAG.getTokenFactor(dl, Stores); 10814 return TF; 10815 } 10816 10817 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10818 SDLoc dl(Op); 10819 if (Op.getValueType() == MVT::v4i32) { 10820 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10821 10822 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10823 // +16 as shift amt. 10824 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10825 SDValue RHSSwap = // = vrlw RHS, 16 10826 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10827 10828 // Shrinkify inputs to v8i16. 10829 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10830 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10831 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10832 10833 // Low parts multiplied together, generating 32-bit results (we ignore the 10834 // top parts). 10835 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10836 LHS, RHS, DAG, dl, MVT::v4i32); 10837 10838 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10839 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10840 // Shift the high parts up 16 bits. 10841 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10842 Neg16, DAG, dl); 10843 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10844 } else if (Op.getValueType() == MVT::v16i8) { 10845 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10846 bool isLittleEndian = Subtarget.isLittleEndian(); 10847 10848 // Multiply the even 8-bit parts, producing 16-bit sums. 10849 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10850 LHS, RHS, DAG, dl, MVT::v8i16); 10851 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10852 10853 // Multiply the odd 8-bit parts, producing 16-bit sums. 10854 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10855 LHS, RHS, DAG, dl, MVT::v8i16); 10856 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10857 10858 // Merge the results together. Because vmuleub and vmuloub are 10859 // instructions with a big-endian bias, we must reverse the 10860 // element numbering and reverse the meaning of "odd" and "even" 10861 // when generating little endian code. 10862 int Ops[16]; 10863 for (unsigned i = 0; i != 8; ++i) { 10864 if (isLittleEndian) { 10865 Ops[i*2 ] = 2*i; 10866 Ops[i*2+1] = 2*i+16; 10867 } else { 10868 Ops[i*2 ] = 2*i+1; 10869 Ops[i*2+1] = 2*i+1+16; 10870 } 10871 } 10872 if (isLittleEndian) 10873 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10874 else 10875 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10876 } else { 10877 llvm_unreachable("Unknown mul to lower!"); 10878 } 10879 } 10880 10881 // Custom lowering for fpext vf32 to v2f64 10882 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10883 10884 assert(Op.getOpcode() == ISD::FP_EXTEND && 10885 "Should only be called for ISD::FP_EXTEND"); 10886 10887 // FIXME: handle extends from half precision float vectors on P9. 10888 // We only want to custom lower an extend from v2f32 to v2f64. 10889 if (Op.getValueType() != MVT::v2f64 || 10890 Op.getOperand(0).getValueType() != MVT::v2f32) 10891 return SDValue(); 10892 10893 SDLoc dl(Op); 10894 SDValue Op0 = Op.getOperand(0); 10895 10896 switch (Op0.getOpcode()) { 10897 default: 10898 return SDValue(); 10899 case ISD::EXTRACT_SUBVECTOR: { 10900 assert(Op0.getNumOperands() == 2 && 10901 isa<ConstantSDNode>(Op0->getOperand(1)) && 10902 "Node should have 2 operands with second one being a constant!"); 10903 10904 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10905 return SDValue(); 10906 10907 // Custom lower is only done for high or low doubleword. 10908 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10909 if (Idx % 2 != 0) 10910 return SDValue(); 10911 10912 // Since input is v4f32, at this point Idx is either 0 or 2. 10913 // Shift to get the doubleword position we want. 10914 int DWord = Idx >> 1; 10915 10916 // High and low word positions are different on little endian. 10917 if (Subtarget.isLittleEndian()) 10918 DWord ^= 0x1; 10919 10920 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10921 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10922 } 10923 case ISD::FADD: 10924 case ISD::FMUL: 10925 case ISD::FSUB: { 10926 SDValue NewLoad[2]; 10927 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10928 // Ensure both input are loads. 10929 SDValue LdOp = Op0.getOperand(i); 10930 if (LdOp.getOpcode() != ISD::LOAD) 10931 return SDValue(); 10932 // Generate new load node. 10933 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10934 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10935 NewLoad[i] = DAG.getMemIntrinsicNode( 10936 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10937 LD->getMemoryVT(), LD->getMemOperand()); 10938 } 10939 SDValue NewOp = 10940 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10941 NewLoad[1], Op0.getNode()->getFlags()); 10942 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10943 DAG.getConstant(0, dl, MVT::i32)); 10944 } 10945 case ISD::LOAD: { 10946 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10947 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10948 SDValue NewLd = DAG.getMemIntrinsicNode( 10949 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10950 LD->getMemoryVT(), LD->getMemOperand()); 10951 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10952 DAG.getConstant(0, dl, MVT::i32)); 10953 } 10954 } 10955 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10956 } 10957 10958 /// LowerOperation - Provide custom lowering hooks for some operations. 10959 /// 10960 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10961 switch (Op.getOpcode()) { 10962 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10963 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10964 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10965 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10966 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10967 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10968 case ISD::SETCC: return LowerSETCC(Op, DAG); 10969 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10970 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10971 10972 // Variable argument lowering. 10973 case ISD::VASTART: return LowerVASTART(Op, DAG); 10974 case ISD::VAARG: return LowerVAARG(Op, DAG); 10975 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10976 10977 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10978 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10979 case ISD::GET_DYNAMIC_AREA_OFFSET: 10980 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10981 10982 // Exception handling lowering. 10983 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10984 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10985 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10986 10987 case ISD::LOAD: return LowerLOAD(Op, DAG); 10988 case ISD::STORE: return LowerSTORE(Op, DAG); 10989 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10990 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10991 case ISD::STRICT_FP_TO_UINT: 10992 case ISD::STRICT_FP_TO_SINT: 10993 case ISD::FP_TO_UINT: 10994 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10995 case ISD::STRICT_UINT_TO_FP: 10996 case ISD::STRICT_SINT_TO_FP: 10997 case ISD::UINT_TO_FP: 10998 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10999 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11000 11001 // Lower 64-bit shifts. 11002 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11003 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11004 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11005 11006 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11007 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11008 11009 // Vector-related lowering. 11010 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11011 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11012 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11013 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11014 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11015 case ISD::MUL: return LowerMUL(Op, DAG); 11016 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11017 case ISD::ROTL: return LowerROTL(Op, DAG); 11018 11019 // For counter-based loop handling. 11020 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11021 11022 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11023 11024 // Frame & Return address. 11025 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11026 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11027 11028 case ISD::INTRINSIC_VOID: 11029 return LowerINTRINSIC_VOID(Op, DAG); 11030 case ISD::BSWAP: 11031 return LowerBSWAP(Op, DAG); 11032 case ISD::ATOMIC_CMP_SWAP: 11033 return LowerATOMIC_CMP_SWAP(Op, DAG); 11034 } 11035 } 11036 11037 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11038 SmallVectorImpl<SDValue>&Results, 11039 SelectionDAG &DAG) const { 11040 SDLoc dl(N); 11041 switch (N->getOpcode()) { 11042 default: 11043 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11044 case ISD::READCYCLECOUNTER: { 11045 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11046 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11047 11048 Results.push_back( 11049 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11050 Results.push_back(RTB.getValue(2)); 11051 break; 11052 } 11053 case ISD::INTRINSIC_W_CHAIN: { 11054 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11055 Intrinsic::loop_decrement) 11056 break; 11057 11058 assert(N->getValueType(0) == MVT::i1 && 11059 "Unexpected result type for CTR decrement intrinsic"); 11060 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11061 N->getValueType(0)); 11062 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11063 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11064 N->getOperand(1)); 11065 11066 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11067 Results.push_back(NewInt.getValue(1)); 11068 break; 11069 } 11070 case ISD::VAARG: { 11071 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11072 return; 11073 11074 EVT VT = N->getValueType(0); 11075 11076 if (VT == MVT::i64) { 11077 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11078 11079 Results.push_back(NewNode); 11080 Results.push_back(NewNode.getValue(1)); 11081 } 11082 return; 11083 } 11084 case ISD::STRICT_FP_TO_SINT: 11085 case ISD::STRICT_FP_TO_UINT: 11086 case ISD::FP_TO_SINT: 11087 case ISD::FP_TO_UINT: 11088 // LowerFP_TO_INT() can only handle f32 and f64. 11089 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11090 MVT::ppcf128) 11091 return; 11092 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11093 return; 11094 case ISD::TRUNCATE: { 11095 if (!N->getValueType(0).isVector()) 11096 return; 11097 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11098 if (Lowered) 11099 Results.push_back(Lowered); 11100 return; 11101 } 11102 case ISD::FSHL: 11103 case ISD::FSHR: 11104 // Don't handle funnel shifts here. 11105 return; 11106 case ISD::BITCAST: 11107 // Don't handle bitcast here. 11108 return; 11109 case ISD::FP_EXTEND: 11110 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11111 if (Lowered) 11112 Results.push_back(Lowered); 11113 return; 11114 } 11115 } 11116 11117 //===----------------------------------------------------------------------===// 11118 // Other Lowering Code 11119 //===----------------------------------------------------------------------===// 11120 11121 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11122 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11123 Function *Func = Intrinsic::getDeclaration(M, Id); 11124 return Builder.CreateCall(Func, {}); 11125 } 11126 11127 // The mappings for emitLeading/TrailingFence is taken from 11128 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11129 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11130 Instruction *Inst, 11131 AtomicOrdering Ord) const { 11132 if (Ord == AtomicOrdering::SequentiallyConsistent) 11133 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11134 if (isReleaseOrStronger(Ord)) 11135 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11136 return nullptr; 11137 } 11138 11139 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11140 Instruction *Inst, 11141 AtomicOrdering Ord) const { 11142 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11143 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11144 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11145 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11146 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11147 return Builder.CreateCall( 11148 Intrinsic::getDeclaration( 11149 Builder.GetInsertBlock()->getParent()->getParent(), 11150 Intrinsic::ppc_cfence, {Inst->getType()}), 11151 {Inst}); 11152 // FIXME: Can use isync for rmw operation. 11153 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11154 } 11155 return nullptr; 11156 } 11157 11158 MachineBasicBlock * 11159 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11160 unsigned AtomicSize, 11161 unsigned BinOpcode, 11162 unsigned CmpOpcode, 11163 unsigned CmpPred) const { 11164 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11165 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11166 11167 auto LoadMnemonic = PPC::LDARX; 11168 auto StoreMnemonic = PPC::STDCX; 11169 switch (AtomicSize) { 11170 default: 11171 llvm_unreachable("Unexpected size of atomic entity"); 11172 case 1: 11173 LoadMnemonic = PPC::LBARX; 11174 StoreMnemonic = PPC::STBCX; 11175 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11176 break; 11177 case 2: 11178 LoadMnemonic = PPC::LHARX; 11179 StoreMnemonic = PPC::STHCX; 11180 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11181 break; 11182 case 4: 11183 LoadMnemonic = PPC::LWARX; 11184 StoreMnemonic = PPC::STWCX; 11185 break; 11186 case 8: 11187 LoadMnemonic = PPC::LDARX; 11188 StoreMnemonic = PPC::STDCX; 11189 break; 11190 } 11191 11192 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11193 MachineFunction *F = BB->getParent(); 11194 MachineFunction::iterator It = ++BB->getIterator(); 11195 11196 Register dest = MI.getOperand(0).getReg(); 11197 Register ptrA = MI.getOperand(1).getReg(); 11198 Register ptrB = MI.getOperand(2).getReg(); 11199 Register incr = MI.getOperand(3).getReg(); 11200 DebugLoc dl = MI.getDebugLoc(); 11201 11202 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11203 MachineBasicBlock *loop2MBB = 11204 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11205 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11206 F->insert(It, loopMBB); 11207 if (CmpOpcode) 11208 F->insert(It, loop2MBB); 11209 F->insert(It, exitMBB); 11210 exitMBB->splice(exitMBB->begin(), BB, 11211 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11212 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11213 11214 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11215 Register TmpReg = (!BinOpcode) ? incr : 11216 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11217 : &PPC::GPRCRegClass); 11218 11219 // thisMBB: 11220 // ... 11221 // fallthrough --> loopMBB 11222 BB->addSuccessor(loopMBB); 11223 11224 // loopMBB: 11225 // l[wd]arx dest, ptr 11226 // add r0, dest, incr 11227 // st[wd]cx. r0, ptr 11228 // bne- loopMBB 11229 // fallthrough --> exitMBB 11230 11231 // For max/min... 11232 // loopMBB: 11233 // l[wd]arx dest, ptr 11234 // cmpl?[wd] incr, dest 11235 // bgt exitMBB 11236 // loop2MBB: 11237 // st[wd]cx. dest, ptr 11238 // bne- loopMBB 11239 // fallthrough --> exitMBB 11240 11241 BB = loopMBB; 11242 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11243 .addReg(ptrA).addReg(ptrB); 11244 if (BinOpcode) 11245 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11246 if (CmpOpcode) { 11247 // Signed comparisons of byte or halfword values must be sign-extended. 11248 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11249 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11250 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11251 ExtReg).addReg(dest); 11252 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11253 .addReg(incr).addReg(ExtReg); 11254 } else 11255 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11256 .addReg(incr).addReg(dest); 11257 11258 BuildMI(BB, dl, TII->get(PPC::BCC)) 11259 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11260 BB->addSuccessor(loop2MBB); 11261 BB->addSuccessor(exitMBB); 11262 BB = loop2MBB; 11263 } 11264 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11265 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11266 BuildMI(BB, dl, TII->get(PPC::BCC)) 11267 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11268 BB->addSuccessor(loopMBB); 11269 BB->addSuccessor(exitMBB); 11270 11271 // exitMBB: 11272 // ... 11273 BB = exitMBB; 11274 return BB; 11275 } 11276 11277 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11278 MachineInstr &MI, MachineBasicBlock *BB, 11279 bool is8bit, // operation 11280 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11281 // If we support part-word atomic mnemonics, just use them 11282 if (Subtarget.hasPartwordAtomics()) 11283 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11284 CmpPred); 11285 11286 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11287 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11288 // In 64 bit mode we have to use 64 bits for addresses, even though the 11289 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11290 // registers without caring whether they're 32 or 64, but here we're 11291 // doing actual arithmetic on the addresses. 11292 bool is64bit = Subtarget.isPPC64(); 11293 bool isLittleEndian = Subtarget.isLittleEndian(); 11294 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11295 11296 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11297 MachineFunction *F = BB->getParent(); 11298 MachineFunction::iterator It = ++BB->getIterator(); 11299 11300 Register dest = MI.getOperand(0).getReg(); 11301 Register ptrA = MI.getOperand(1).getReg(); 11302 Register ptrB = MI.getOperand(2).getReg(); 11303 Register incr = MI.getOperand(3).getReg(); 11304 DebugLoc dl = MI.getDebugLoc(); 11305 11306 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11307 MachineBasicBlock *loop2MBB = 11308 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11309 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11310 F->insert(It, loopMBB); 11311 if (CmpOpcode) 11312 F->insert(It, loop2MBB); 11313 F->insert(It, exitMBB); 11314 exitMBB->splice(exitMBB->begin(), BB, 11315 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11316 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11317 11318 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11319 const TargetRegisterClass *RC = 11320 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11321 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11322 11323 Register PtrReg = RegInfo.createVirtualRegister(RC); 11324 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11325 Register ShiftReg = 11326 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11327 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11328 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11329 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11330 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11331 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11332 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11333 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11334 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11335 Register Ptr1Reg; 11336 Register TmpReg = 11337 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11338 11339 // thisMBB: 11340 // ... 11341 // fallthrough --> loopMBB 11342 BB->addSuccessor(loopMBB); 11343 11344 // The 4-byte load must be aligned, while a char or short may be 11345 // anywhere in the word. Hence all this nasty bookkeeping code. 11346 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11347 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11348 // xori shift, shift1, 24 [16] 11349 // rlwinm ptr, ptr1, 0, 0, 29 11350 // slw incr2, incr, shift 11351 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11352 // slw mask, mask2, shift 11353 // loopMBB: 11354 // lwarx tmpDest, ptr 11355 // add tmp, tmpDest, incr2 11356 // andc tmp2, tmpDest, mask 11357 // and tmp3, tmp, mask 11358 // or tmp4, tmp3, tmp2 11359 // stwcx. tmp4, ptr 11360 // bne- loopMBB 11361 // fallthrough --> exitMBB 11362 // srw dest, tmpDest, shift 11363 if (ptrA != ZeroReg) { 11364 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11365 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11366 .addReg(ptrA) 11367 .addReg(ptrB); 11368 } else { 11369 Ptr1Reg = ptrB; 11370 } 11371 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11372 // mode. 11373 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11374 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11375 .addImm(3) 11376 .addImm(27) 11377 .addImm(is8bit ? 28 : 27); 11378 if (!isLittleEndian) 11379 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11380 .addReg(Shift1Reg) 11381 .addImm(is8bit ? 24 : 16); 11382 if (is64bit) 11383 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11384 .addReg(Ptr1Reg) 11385 .addImm(0) 11386 .addImm(61); 11387 else 11388 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11389 .addReg(Ptr1Reg) 11390 .addImm(0) 11391 .addImm(0) 11392 .addImm(29); 11393 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11394 if (is8bit) 11395 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11396 else { 11397 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11398 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11399 .addReg(Mask3Reg) 11400 .addImm(65535); 11401 } 11402 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11403 .addReg(Mask2Reg) 11404 .addReg(ShiftReg); 11405 11406 BB = loopMBB; 11407 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11408 .addReg(ZeroReg) 11409 .addReg(PtrReg); 11410 if (BinOpcode) 11411 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11412 .addReg(Incr2Reg) 11413 .addReg(TmpDestReg); 11414 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11415 .addReg(TmpDestReg) 11416 .addReg(MaskReg); 11417 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11418 if (CmpOpcode) { 11419 // For unsigned comparisons, we can directly compare the shifted values. 11420 // For signed comparisons we shift and sign extend. 11421 Register SReg = RegInfo.createVirtualRegister(GPRC); 11422 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11423 .addReg(TmpDestReg) 11424 .addReg(MaskReg); 11425 unsigned ValueReg = SReg; 11426 unsigned CmpReg = Incr2Reg; 11427 if (CmpOpcode == PPC::CMPW) { 11428 ValueReg = RegInfo.createVirtualRegister(GPRC); 11429 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11430 .addReg(SReg) 11431 .addReg(ShiftReg); 11432 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11433 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11434 .addReg(ValueReg); 11435 ValueReg = ValueSReg; 11436 CmpReg = incr; 11437 } 11438 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11439 .addReg(CmpReg) 11440 .addReg(ValueReg); 11441 BuildMI(BB, dl, TII->get(PPC::BCC)) 11442 .addImm(CmpPred) 11443 .addReg(PPC::CR0) 11444 .addMBB(exitMBB); 11445 BB->addSuccessor(loop2MBB); 11446 BB->addSuccessor(exitMBB); 11447 BB = loop2MBB; 11448 } 11449 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11450 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11451 .addReg(Tmp4Reg) 11452 .addReg(ZeroReg) 11453 .addReg(PtrReg); 11454 BuildMI(BB, dl, TII->get(PPC::BCC)) 11455 .addImm(PPC::PRED_NE) 11456 .addReg(PPC::CR0) 11457 .addMBB(loopMBB); 11458 BB->addSuccessor(loopMBB); 11459 BB->addSuccessor(exitMBB); 11460 11461 // exitMBB: 11462 // ... 11463 BB = exitMBB; 11464 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11465 .addReg(TmpDestReg) 11466 .addReg(ShiftReg); 11467 return BB; 11468 } 11469 11470 llvm::MachineBasicBlock * 11471 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11472 MachineBasicBlock *MBB) const { 11473 DebugLoc DL = MI.getDebugLoc(); 11474 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11475 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11476 11477 MachineFunction *MF = MBB->getParent(); 11478 MachineRegisterInfo &MRI = MF->getRegInfo(); 11479 11480 const BasicBlock *BB = MBB->getBasicBlock(); 11481 MachineFunction::iterator I = ++MBB->getIterator(); 11482 11483 Register DstReg = MI.getOperand(0).getReg(); 11484 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11485 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11486 Register mainDstReg = MRI.createVirtualRegister(RC); 11487 Register restoreDstReg = MRI.createVirtualRegister(RC); 11488 11489 MVT PVT = getPointerTy(MF->getDataLayout()); 11490 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11491 "Invalid Pointer Size!"); 11492 // For v = setjmp(buf), we generate 11493 // 11494 // thisMBB: 11495 // SjLjSetup mainMBB 11496 // bl mainMBB 11497 // v_restore = 1 11498 // b sinkMBB 11499 // 11500 // mainMBB: 11501 // buf[LabelOffset] = LR 11502 // v_main = 0 11503 // 11504 // sinkMBB: 11505 // v = phi(main, restore) 11506 // 11507 11508 MachineBasicBlock *thisMBB = MBB; 11509 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11510 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11511 MF->insert(I, mainMBB); 11512 MF->insert(I, sinkMBB); 11513 11514 MachineInstrBuilder MIB; 11515 11516 // Transfer the remainder of BB and its successor edges to sinkMBB. 11517 sinkMBB->splice(sinkMBB->begin(), MBB, 11518 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11519 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11520 11521 // Note that the structure of the jmp_buf used here is not compatible 11522 // with that used by libc, and is not designed to be. Specifically, it 11523 // stores only those 'reserved' registers that LLVM does not otherwise 11524 // understand how to spill. Also, by convention, by the time this 11525 // intrinsic is called, Clang has already stored the frame address in the 11526 // first slot of the buffer and stack address in the third. Following the 11527 // X86 target code, we'll store the jump address in the second slot. We also 11528 // need to save the TOC pointer (R2) to handle jumps between shared 11529 // libraries, and that will be stored in the fourth slot. The thread 11530 // identifier (R13) is not affected. 11531 11532 // thisMBB: 11533 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11534 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11535 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11536 11537 // Prepare IP either in reg. 11538 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11539 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11540 Register BufReg = MI.getOperand(1).getReg(); 11541 11542 if (Subtarget.is64BitELFABI()) { 11543 setUsesTOCBasePtr(*MBB->getParent()); 11544 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11545 .addReg(PPC::X2) 11546 .addImm(TOCOffset) 11547 .addReg(BufReg) 11548 .cloneMemRefs(MI); 11549 } 11550 11551 // Naked functions never have a base pointer, and so we use r1. For all 11552 // other functions, this decision must be delayed until during PEI. 11553 unsigned BaseReg; 11554 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11555 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11556 else 11557 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11558 11559 MIB = BuildMI(*thisMBB, MI, DL, 11560 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11561 .addReg(BaseReg) 11562 .addImm(BPOffset) 11563 .addReg(BufReg) 11564 .cloneMemRefs(MI); 11565 11566 // Setup 11567 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11568 MIB.addRegMask(TRI->getNoPreservedMask()); 11569 11570 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11571 11572 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11573 .addMBB(mainMBB); 11574 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11575 11576 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11577 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11578 11579 // mainMBB: 11580 // mainDstReg = 0 11581 MIB = 11582 BuildMI(mainMBB, DL, 11583 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11584 11585 // Store IP 11586 if (Subtarget.isPPC64()) { 11587 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11588 .addReg(LabelReg) 11589 .addImm(LabelOffset) 11590 .addReg(BufReg); 11591 } else { 11592 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11593 .addReg(LabelReg) 11594 .addImm(LabelOffset) 11595 .addReg(BufReg); 11596 } 11597 MIB.cloneMemRefs(MI); 11598 11599 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11600 mainMBB->addSuccessor(sinkMBB); 11601 11602 // sinkMBB: 11603 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11604 TII->get(PPC::PHI), DstReg) 11605 .addReg(mainDstReg).addMBB(mainMBB) 11606 .addReg(restoreDstReg).addMBB(thisMBB); 11607 11608 MI.eraseFromParent(); 11609 return sinkMBB; 11610 } 11611 11612 MachineBasicBlock * 11613 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11614 MachineBasicBlock *MBB) const { 11615 DebugLoc DL = MI.getDebugLoc(); 11616 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11617 11618 MachineFunction *MF = MBB->getParent(); 11619 MachineRegisterInfo &MRI = MF->getRegInfo(); 11620 11621 MVT PVT = getPointerTy(MF->getDataLayout()); 11622 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11623 "Invalid Pointer Size!"); 11624 11625 const TargetRegisterClass *RC = 11626 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11627 Register Tmp = MRI.createVirtualRegister(RC); 11628 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11629 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11630 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11631 unsigned BP = 11632 (PVT == MVT::i64) 11633 ? PPC::X30 11634 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11635 : PPC::R30); 11636 11637 MachineInstrBuilder MIB; 11638 11639 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11640 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11641 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11642 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11643 11644 Register BufReg = MI.getOperand(0).getReg(); 11645 11646 // Reload FP (the jumped-to function may not have had a 11647 // frame pointer, and if so, then its r31 will be restored 11648 // as necessary). 11649 if (PVT == MVT::i64) { 11650 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11651 .addImm(0) 11652 .addReg(BufReg); 11653 } else { 11654 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11655 .addImm(0) 11656 .addReg(BufReg); 11657 } 11658 MIB.cloneMemRefs(MI); 11659 11660 // Reload IP 11661 if (PVT == MVT::i64) { 11662 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11663 .addImm(LabelOffset) 11664 .addReg(BufReg); 11665 } else { 11666 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11667 .addImm(LabelOffset) 11668 .addReg(BufReg); 11669 } 11670 MIB.cloneMemRefs(MI); 11671 11672 // Reload SP 11673 if (PVT == MVT::i64) { 11674 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11675 .addImm(SPOffset) 11676 .addReg(BufReg); 11677 } else { 11678 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11679 .addImm(SPOffset) 11680 .addReg(BufReg); 11681 } 11682 MIB.cloneMemRefs(MI); 11683 11684 // Reload BP 11685 if (PVT == MVT::i64) { 11686 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11687 .addImm(BPOffset) 11688 .addReg(BufReg); 11689 } else { 11690 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11691 .addImm(BPOffset) 11692 .addReg(BufReg); 11693 } 11694 MIB.cloneMemRefs(MI); 11695 11696 // Reload TOC 11697 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11698 setUsesTOCBasePtr(*MBB->getParent()); 11699 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11700 .addImm(TOCOffset) 11701 .addReg(BufReg) 11702 .cloneMemRefs(MI); 11703 } 11704 11705 // Jump 11706 BuildMI(*MBB, MI, DL, 11707 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11708 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11709 11710 MI.eraseFromParent(); 11711 return MBB; 11712 } 11713 11714 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11715 // If the function specifically requests inline stack probes, emit them. 11716 if (MF.getFunction().hasFnAttribute("probe-stack")) 11717 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11718 "inline-asm"; 11719 return false; 11720 } 11721 11722 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11723 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11724 unsigned StackAlign = TFI->getStackAlignment(); 11725 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11726 "Unexpected stack alignment"); 11727 // The default stack probe size is 4096 if the function has no 11728 // stack-probe-size attribute. 11729 unsigned StackProbeSize = 4096; 11730 const Function &Fn = MF.getFunction(); 11731 if (Fn.hasFnAttribute("stack-probe-size")) 11732 Fn.getFnAttribute("stack-probe-size") 11733 .getValueAsString() 11734 .getAsInteger(0, StackProbeSize); 11735 // Round down to the stack alignment. 11736 StackProbeSize &= ~(StackAlign - 1); 11737 return StackProbeSize ? StackProbeSize : StackAlign; 11738 } 11739 11740 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11741 // into three phases. In the first phase, it uses pseudo instruction 11742 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11743 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11744 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11745 // MaxCallFrameSize so that it can calculate correct data area pointer. 11746 MachineBasicBlock * 11747 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11748 MachineBasicBlock *MBB) const { 11749 const bool isPPC64 = Subtarget.isPPC64(); 11750 MachineFunction *MF = MBB->getParent(); 11751 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11752 DebugLoc DL = MI.getDebugLoc(); 11753 const unsigned ProbeSize = getStackProbeSize(*MF); 11754 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11755 MachineRegisterInfo &MRI = MF->getRegInfo(); 11756 // The CFG of probing stack looks as 11757 // +-----+ 11758 // | MBB | 11759 // +--+--+ 11760 // | 11761 // +----v----+ 11762 // +--->+ TestMBB +---+ 11763 // | +----+----+ | 11764 // | | | 11765 // | +-----v----+ | 11766 // +---+ BlockMBB | | 11767 // +----------+ | 11768 // | 11769 // +---------+ | 11770 // | TailMBB +<--+ 11771 // +---------+ 11772 // In MBB, calculate previous frame pointer and final stack pointer. 11773 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11774 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11775 // TailMBB is spliced via \p MI. 11776 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11777 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11778 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11779 11780 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11781 MF->insert(MBBIter, TestMBB); 11782 MF->insert(MBBIter, BlockMBB); 11783 MF->insert(MBBIter, TailMBB); 11784 11785 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11786 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11787 11788 Register DstReg = MI.getOperand(0).getReg(); 11789 Register NegSizeReg = MI.getOperand(1).getReg(); 11790 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11791 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11792 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11793 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11794 11795 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11796 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11797 // NegSize. 11798 unsigned ProbeOpc; 11799 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11800 ProbeOpc = 11801 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11802 else 11803 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11804 // and NegSizeReg will be allocated in the same phyreg to avoid 11805 // redundant copy when NegSizeReg has only one use which is current MI and 11806 // will be replaced by PREPARE_PROBED_ALLOCA then. 11807 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11808 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11809 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11810 .addDef(ActualNegSizeReg) 11811 .addReg(NegSizeReg) 11812 .add(MI.getOperand(2)) 11813 .add(MI.getOperand(3)); 11814 11815 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11816 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11817 FinalStackPtr) 11818 .addReg(SPReg) 11819 .addReg(ActualNegSizeReg); 11820 11821 // Materialize a scratch register for update. 11822 int64_t NegProbeSize = -(int64_t)ProbeSize; 11823 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11824 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11825 if (!isInt<16>(NegProbeSize)) { 11826 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11827 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11828 .addImm(NegProbeSize >> 16); 11829 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11830 ScratchReg) 11831 .addReg(TempReg) 11832 .addImm(NegProbeSize & 0xFFFF); 11833 } else 11834 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11835 .addImm(NegProbeSize); 11836 11837 { 11838 // Probing leading residual part. 11839 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11840 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11841 .addReg(ActualNegSizeReg) 11842 .addReg(ScratchReg); 11843 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11844 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11845 .addReg(Div) 11846 .addReg(ScratchReg); 11847 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11848 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11849 .addReg(Mul) 11850 .addReg(ActualNegSizeReg); 11851 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11852 .addReg(FramePointer) 11853 .addReg(SPReg) 11854 .addReg(NegMod); 11855 } 11856 11857 { 11858 // Remaining part should be multiple of ProbeSize. 11859 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11860 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11861 .addReg(SPReg) 11862 .addReg(FinalStackPtr); 11863 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11864 .addImm(PPC::PRED_EQ) 11865 .addReg(CmpResult) 11866 .addMBB(TailMBB); 11867 TestMBB->addSuccessor(BlockMBB); 11868 TestMBB->addSuccessor(TailMBB); 11869 } 11870 11871 { 11872 // Touch the block. 11873 // |P...|P...|P... 11874 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11875 .addReg(FramePointer) 11876 .addReg(SPReg) 11877 .addReg(ScratchReg); 11878 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11879 BlockMBB->addSuccessor(TestMBB); 11880 } 11881 11882 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11883 // DYNAREAOFFSET pseudo instruction to get the future result. 11884 Register MaxCallFrameSizeReg = 11885 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11886 BuildMI(TailMBB, DL, 11887 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11888 MaxCallFrameSizeReg) 11889 .add(MI.getOperand(2)) 11890 .add(MI.getOperand(3)); 11891 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11892 .addReg(SPReg) 11893 .addReg(MaxCallFrameSizeReg); 11894 11895 // Splice instructions after MI to TailMBB. 11896 TailMBB->splice(TailMBB->end(), MBB, 11897 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11898 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11899 MBB->addSuccessor(TestMBB); 11900 11901 // Delete the pseudo instruction. 11902 MI.eraseFromParent(); 11903 11904 ++NumDynamicAllocaProbed; 11905 return TailMBB; 11906 } 11907 11908 MachineBasicBlock * 11909 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11910 MachineBasicBlock *BB) const { 11911 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11912 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11913 if (Subtarget.is64BitELFABI() && 11914 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11915 !Subtarget.isUsingPCRelativeCalls()) { 11916 // Call lowering should have added an r2 operand to indicate a dependence 11917 // on the TOC base pointer value. It can't however, because there is no 11918 // way to mark the dependence as implicit there, and so the stackmap code 11919 // will confuse it with a regular operand. Instead, add the dependence 11920 // here. 11921 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11922 } 11923 11924 return emitPatchPoint(MI, BB); 11925 } 11926 11927 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11928 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11929 return emitEHSjLjSetJmp(MI, BB); 11930 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11931 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11932 return emitEHSjLjLongJmp(MI, BB); 11933 } 11934 11935 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11936 11937 // To "insert" these instructions we actually have to insert their 11938 // control-flow patterns. 11939 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11940 MachineFunction::iterator It = ++BB->getIterator(); 11941 11942 MachineFunction *F = BB->getParent(); 11943 11944 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11945 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11946 MI.getOpcode() == PPC::SELECT_I8) { 11947 SmallVector<MachineOperand, 2> Cond; 11948 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11949 MI.getOpcode() == PPC::SELECT_CC_I8) 11950 Cond.push_back(MI.getOperand(4)); 11951 else 11952 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11953 Cond.push_back(MI.getOperand(1)); 11954 11955 DebugLoc dl = MI.getDebugLoc(); 11956 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11957 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11958 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11959 MI.getOpcode() == PPC::SELECT_CC_F8 || 11960 MI.getOpcode() == PPC::SELECT_CC_F16 || 11961 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11962 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11963 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11964 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11965 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11966 MI.getOpcode() == PPC::SELECT_CC_SPE || 11967 MI.getOpcode() == PPC::SELECT_F4 || 11968 MI.getOpcode() == PPC::SELECT_F8 || 11969 MI.getOpcode() == PPC::SELECT_F16 || 11970 MI.getOpcode() == PPC::SELECT_SPE || 11971 MI.getOpcode() == PPC::SELECT_SPE4 || 11972 MI.getOpcode() == PPC::SELECT_VRRC || 11973 MI.getOpcode() == PPC::SELECT_VSFRC || 11974 MI.getOpcode() == PPC::SELECT_VSSRC || 11975 MI.getOpcode() == PPC::SELECT_VSRC) { 11976 // The incoming instruction knows the destination vreg to set, the 11977 // condition code register to branch on, the true/false values to 11978 // select between, and a branch opcode to use. 11979 11980 // thisMBB: 11981 // ... 11982 // TrueVal = ... 11983 // cmpTY ccX, r1, r2 11984 // bCC copy1MBB 11985 // fallthrough --> copy0MBB 11986 MachineBasicBlock *thisMBB = BB; 11987 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11988 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11989 DebugLoc dl = MI.getDebugLoc(); 11990 F->insert(It, copy0MBB); 11991 F->insert(It, sinkMBB); 11992 11993 // Transfer the remainder of BB and its successor edges to sinkMBB. 11994 sinkMBB->splice(sinkMBB->begin(), BB, 11995 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11996 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11997 11998 // Next, add the true and fallthrough blocks as its successors. 11999 BB->addSuccessor(copy0MBB); 12000 BB->addSuccessor(sinkMBB); 12001 12002 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12003 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12004 MI.getOpcode() == PPC::SELECT_F16 || 12005 MI.getOpcode() == PPC::SELECT_SPE4 || 12006 MI.getOpcode() == PPC::SELECT_SPE || 12007 MI.getOpcode() == PPC::SELECT_VRRC || 12008 MI.getOpcode() == PPC::SELECT_VSFRC || 12009 MI.getOpcode() == PPC::SELECT_VSSRC || 12010 MI.getOpcode() == PPC::SELECT_VSRC) { 12011 BuildMI(BB, dl, TII->get(PPC::BC)) 12012 .addReg(MI.getOperand(1).getReg()) 12013 .addMBB(sinkMBB); 12014 } else { 12015 unsigned SelectPred = MI.getOperand(4).getImm(); 12016 BuildMI(BB, dl, TII->get(PPC::BCC)) 12017 .addImm(SelectPred) 12018 .addReg(MI.getOperand(1).getReg()) 12019 .addMBB(sinkMBB); 12020 } 12021 12022 // copy0MBB: 12023 // %FalseValue = ... 12024 // # fallthrough to sinkMBB 12025 BB = copy0MBB; 12026 12027 // Update machine-CFG edges 12028 BB->addSuccessor(sinkMBB); 12029 12030 // sinkMBB: 12031 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12032 // ... 12033 BB = sinkMBB; 12034 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12035 .addReg(MI.getOperand(3).getReg()) 12036 .addMBB(copy0MBB) 12037 .addReg(MI.getOperand(2).getReg()) 12038 .addMBB(thisMBB); 12039 } else if (MI.getOpcode() == PPC::ReadTB) { 12040 // To read the 64-bit time-base register on a 32-bit target, we read the 12041 // two halves. Should the counter have wrapped while it was being read, we 12042 // need to try again. 12043 // ... 12044 // readLoop: 12045 // mfspr Rx,TBU # load from TBU 12046 // mfspr Ry,TB # load from TB 12047 // mfspr Rz,TBU # load from TBU 12048 // cmpw crX,Rx,Rz # check if 'old'='new' 12049 // bne readLoop # branch if they're not equal 12050 // ... 12051 12052 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12053 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12054 DebugLoc dl = MI.getDebugLoc(); 12055 F->insert(It, readMBB); 12056 F->insert(It, sinkMBB); 12057 12058 // Transfer the remainder of BB and its successor edges to sinkMBB. 12059 sinkMBB->splice(sinkMBB->begin(), BB, 12060 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12061 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12062 12063 BB->addSuccessor(readMBB); 12064 BB = readMBB; 12065 12066 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12067 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12068 Register LoReg = MI.getOperand(0).getReg(); 12069 Register HiReg = MI.getOperand(1).getReg(); 12070 12071 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12072 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12073 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12074 12075 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12076 12077 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12078 .addReg(HiReg) 12079 .addReg(ReadAgainReg); 12080 BuildMI(BB, dl, TII->get(PPC::BCC)) 12081 .addImm(PPC::PRED_NE) 12082 .addReg(CmpReg) 12083 .addMBB(readMBB); 12084 12085 BB->addSuccessor(readMBB); 12086 BB->addSuccessor(sinkMBB); 12087 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12088 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12089 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12090 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12091 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12092 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12093 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12094 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12095 12096 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12097 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12098 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12099 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12100 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12101 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12102 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12103 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12104 12105 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12106 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12107 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12108 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12109 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12110 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12111 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12112 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12113 12114 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12115 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12116 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12117 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12118 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12119 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12120 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12121 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12122 12123 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12124 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12125 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12126 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12127 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12128 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12129 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12130 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12131 12132 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12133 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12134 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12135 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12136 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12137 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12138 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12139 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12140 12141 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12142 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12143 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12144 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12145 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12146 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12147 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12148 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12149 12150 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12151 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12152 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12153 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12154 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12155 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12156 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12157 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12158 12159 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12160 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12161 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12162 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12163 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12164 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12165 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12166 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12167 12168 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12169 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12170 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12171 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12172 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12173 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12174 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12175 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12176 12177 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12178 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12179 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12180 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12181 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12182 BB = EmitAtomicBinary(MI, BB, 4, 0); 12183 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12184 BB = EmitAtomicBinary(MI, BB, 8, 0); 12185 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12186 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12187 (Subtarget.hasPartwordAtomics() && 12188 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12189 (Subtarget.hasPartwordAtomics() && 12190 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12191 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12192 12193 auto LoadMnemonic = PPC::LDARX; 12194 auto StoreMnemonic = PPC::STDCX; 12195 switch (MI.getOpcode()) { 12196 default: 12197 llvm_unreachable("Compare and swap of unknown size"); 12198 case PPC::ATOMIC_CMP_SWAP_I8: 12199 LoadMnemonic = PPC::LBARX; 12200 StoreMnemonic = PPC::STBCX; 12201 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12202 break; 12203 case PPC::ATOMIC_CMP_SWAP_I16: 12204 LoadMnemonic = PPC::LHARX; 12205 StoreMnemonic = PPC::STHCX; 12206 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12207 break; 12208 case PPC::ATOMIC_CMP_SWAP_I32: 12209 LoadMnemonic = PPC::LWARX; 12210 StoreMnemonic = PPC::STWCX; 12211 break; 12212 case PPC::ATOMIC_CMP_SWAP_I64: 12213 LoadMnemonic = PPC::LDARX; 12214 StoreMnemonic = PPC::STDCX; 12215 break; 12216 } 12217 Register dest = MI.getOperand(0).getReg(); 12218 Register ptrA = MI.getOperand(1).getReg(); 12219 Register ptrB = MI.getOperand(2).getReg(); 12220 Register oldval = MI.getOperand(3).getReg(); 12221 Register newval = MI.getOperand(4).getReg(); 12222 DebugLoc dl = MI.getDebugLoc(); 12223 12224 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12225 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12226 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12227 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12228 F->insert(It, loop1MBB); 12229 F->insert(It, loop2MBB); 12230 F->insert(It, midMBB); 12231 F->insert(It, exitMBB); 12232 exitMBB->splice(exitMBB->begin(), BB, 12233 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12234 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12235 12236 // thisMBB: 12237 // ... 12238 // fallthrough --> loopMBB 12239 BB->addSuccessor(loop1MBB); 12240 12241 // loop1MBB: 12242 // l[bhwd]arx dest, ptr 12243 // cmp[wd] dest, oldval 12244 // bne- midMBB 12245 // loop2MBB: 12246 // st[bhwd]cx. newval, ptr 12247 // bne- loopMBB 12248 // b exitBB 12249 // midMBB: 12250 // st[bhwd]cx. dest, ptr 12251 // exitBB: 12252 BB = loop1MBB; 12253 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12254 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12255 .addReg(oldval) 12256 .addReg(dest); 12257 BuildMI(BB, dl, TII->get(PPC::BCC)) 12258 .addImm(PPC::PRED_NE) 12259 .addReg(PPC::CR0) 12260 .addMBB(midMBB); 12261 BB->addSuccessor(loop2MBB); 12262 BB->addSuccessor(midMBB); 12263 12264 BB = loop2MBB; 12265 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12266 .addReg(newval) 12267 .addReg(ptrA) 12268 .addReg(ptrB); 12269 BuildMI(BB, dl, TII->get(PPC::BCC)) 12270 .addImm(PPC::PRED_NE) 12271 .addReg(PPC::CR0) 12272 .addMBB(loop1MBB); 12273 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12274 BB->addSuccessor(loop1MBB); 12275 BB->addSuccessor(exitMBB); 12276 12277 BB = midMBB; 12278 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12279 .addReg(dest) 12280 .addReg(ptrA) 12281 .addReg(ptrB); 12282 BB->addSuccessor(exitMBB); 12283 12284 // exitMBB: 12285 // ... 12286 BB = exitMBB; 12287 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12288 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12289 // We must use 64-bit registers for addresses when targeting 64-bit, 12290 // since we're actually doing arithmetic on them. Other registers 12291 // can be 32-bit. 12292 bool is64bit = Subtarget.isPPC64(); 12293 bool isLittleEndian = Subtarget.isLittleEndian(); 12294 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12295 12296 Register dest = MI.getOperand(0).getReg(); 12297 Register ptrA = MI.getOperand(1).getReg(); 12298 Register ptrB = MI.getOperand(2).getReg(); 12299 Register oldval = MI.getOperand(3).getReg(); 12300 Register newval = MI.getOperand(4).getReg(); 12301 DebugLoc dl = MI.getDebugLoc(); 12302 12303 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12304 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12305 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12306 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12307 F->insert(It, loop1MBB); 12308 F->insert(It, loop2MBB); 12309 F->insert(It, midMBB); 12310 F->insert(It, exitMBB); 12311 exitMBB->splice(exitMBB->begin(), BB, 12312 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12313 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12314 12315 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12316 const TargetRegisterClass *RC = 12317 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12318 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12319 12320 Register PtrReg = RegInfo.createVirtualRegister(RC); 12321 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12322 Register ShiftReg = 12323 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12324 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12325 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12326 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12327 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12328 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12329 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12330 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12331 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12332 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12333 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12334 Register Ptr1Reg; 12335 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12336 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12337 // thisMBB: 12338 // ... 12339 // fallthrough --> loopMBB 12340 BB->addSuccessor(loop1MBB); 12341 12342 // The 4-byte load must be aligned, while a char or short may be 12343 // anywhere in the word. Hence all this nasty bookkeeping code. 12344 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12345 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12346 // xori shift, shift1, 24 [16] 12347 // rlwinm ptr, ptr1, 0, 0, 29 12348 // slw newval2, newval, shift 12349 // slw oldval2, oldval,shift 12350 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12351 // slw mask, mask2, shift 12352 // and newval3, newval2, mask 12353 // and oldval3, oldval2, mask 12354 // loop1MBB: 12355 // lwarx tmpDest, ptr 12356 // and tmp, tmpDest, mask 12357 // cmpw tmp, oldval3 12358 // bne- midMBB 12359 // loop2MBB: 12360 // andc tmp2, tmpDest, mask 12361 // or tmp4, tmp2, newval3 12362 // stwcx. tmp4, ptr 12363 // bne- loop1MBB 12364 // b exitBB 12365 // midMBB: 12366 // stwcx. tmpDest, ptr 12367 // exitBB: 12368 // srw dest, tmpDest, shift 12369 if (ptrA != ZeroReg) { 12370 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12371 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12372 .addReg(ptrA) 12373 .addReg(ptrB); 12374 } else { 12375 Ptr1Reg = ptrB; 12376 } 12377 12378 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12379 // mode. 12380 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12381 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12382 .addImm(3) 12383 .addImm(27) 12384 .addImm(is8bit ? 28 : 27); 12385 if (!isLittleEndian) 12386 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12387 .addReg(Shift1Reg) 12388 .addImm(is8bit ? 24 : 16); 12389 if (is64bit) 12390 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12391 .addReg(Ptr1Reg) 12392 .addImm(0) 12393 .addImm(61); 12394 else 12395 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12396 .addReg(Ptr1Reg) 12397 .addImm(0) 12398 .addImm(0) 12399 .addImm(29); 12400 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12401 .addReg(newval) 12402 .addReg(ShiftReg); 12403 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12404 .addReg(oldval) 12405 .addReg(ShiftReg); 12406 if (is8bit) 12407 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12408 else { 12409 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12410 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12411 .addReg(Mask3Reg) 12412 .addImm(65535); 12413 } 12414 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12415 .addReg(Mask2Reg) 12416 .addReg(ShiftReg); 12417 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12418 .addReg(NewVal2Reg) 12419 .addReg(MaskReg); 12420 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12421 .addReg(OldVal2Reg) 12422 .addReg(MaskReg); 12423 12424 BB = loop1MBB; 12425 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12426 .addReg(ZeroReg) 12427 .addReg(PtrReg); 12428 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12429 .addReg(TmpDestReg) 12430 .addReg(MaskReg); 12431 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12432 .addReg(TmpReg) 12433 .addReg(OldVal3Reg); 12434 BuildMI(BB, dl, TII->get(PPC::BCC)) 12435 .addImm(PPC::PRED_NE) 12436 .addReg(PPC::CR0) 12437 .addMBB(midMBB); 12438 BB->addSuccessor(loop2MBB); 12439 BB->addSuccessor(midMBB); 12440 12441 BB = loop2MBB; 12442 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12443 .addReg(TmpDestReg) 12444 .addReg(MaskReg); 12445 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12446 .addReg(Tmp2Reg) 12447 .addReg(NewVal3Reg); 12448 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12449 .addReg(Tmp4Reg) 12450 .addReg(ZeroReg) 12451 .addReg(PtrReg); 12452 BuildMI(BB, dl, TII->get(PPC::BCC)) 12453 .addImm(PPC::PRED_NE) 12454 .addReg(PPC::CR0) 12455 .addMBB(loop1MBB); 12456 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12457 BB->addSuccessor(loop1MBB); 12458 BB->addSuccessor(exitMBB); 12459 12460 BB = midMBB; 12461 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12462 .addReg(TmpDestReg) 12463 .addReg(ZeroReg) 12464 .addReg(PtrReg); 12465 BB->addSuccessor(exitMBB); 12466 12467 // exitMBB: 12468 // ... 12469 BB = exitMBB; 12470 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12471 .addReg(TmpReg) 12472 .addReg(ShiftReg); 12473 } else if (MI.getOpcode() == PPC::FADDrtz) { 12474 // This pseudo performs an FADD with rounding mode temporarily forced 12475 // to round-to-zero. We emit this via custom inserter since the FPSCR 12476 // is not modeled at the SelectionDAG level. 12477 Register Dest = MI.getOperand(0).getReg(); 12478 Register Src1 = MI.getOperand(1).getReg(); 12479 Register Src2 = MI.getOperand(2).getReg(); 12480 DebugLoc dl = MI.getDebugLoc(); 12481 12482 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12483 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12484 12485 // Save FPSCR value. 12486 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12487 12488 // Set rounding mode to round-to-zero. 12489 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12490 .addImm(31) 12491 .addReg(PPC::RM, RegState::ImplicitDefine); 12492 12493 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12494 .addImm(30) 12495 .addReg(PPC::RM, RegState::ImplicitDefine); 12496 12497 // Perform addition. 12498 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12499 .addReg(Src1) 12500 .addReg(Src2); 12501 if (MI.getFlag(MachineInstr::NoFPExcept)) 12502 MIB.setMIFlag(MachineInstr::NoFPExcept); 12503 12504 // Restore FPSCR value. 12505 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12506 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12507 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12508 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12509 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12510 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12511 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12512 ? PPC::ANDI8_rec 12513 : PPC::ANDI_rec; 12514 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12515 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12516 12517 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12518 Register Dest = RegInfo.createVirtualRegister( 12519 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12520 12521 DebugLoc Dl = MI.getDebugLoc(); 12522 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12523 .addReg(MI.getOperand(1).getReg()) 12524 .addImm(1); 12525 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12526 MI.getOperand(0).getReg()) 12527 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12528 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12529 DebugLoc Dl = MI.getDebugLoc(); 12530 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12531 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12532 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12533 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12534 MI.getOperand(0).getReg()) 12535 .addReg(CRReg); 12536 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12537 DebugLoc Dl = MI.getDebugLoc(); 12538 unsigned Imm = MI.getOperand(1).getImm(); 12539 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12540 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12541 MI.getOperand(0).getReg()) 12542 .addReg(PPC::CR0EQ); 12543 } else if (MI.getOpcode() == PPC::SETRNDi) { 12544 DebugLoc dl = MI.getDebugLoc(); 12545 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12546 12547 // Save FPSCR value. 12548 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12549 12550 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12551 // the following settings: 12552 // 00 Round to nearest 12553 // 01 Round to 0 12554 // 10 Round to +inf 12555 // 11 Round to -inf 12556 12557 // When the operand is immediate, using the two least significant bits of 12558 // the immediate to set the bits 62:63 of FPSCR. 12559 unsigned Mode = MI.getOperand(1).getImm(); 12560 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12561 .addImm(31) 12562 .addReg(PPC::RM, RegState::ImplicitDefine); 12563 12564 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12565 .addImm(30) 12566 .addReg(PPC::RM, RegState::ImplicitDefine); 12567 } else if (MI.getOpcode() == PPC::SETRND) { 12568 DebugLoc dl = MI.getDebugLoc(); 12569 12570 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12571 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12572 // If the target doesn't have DirectMove, we should use stack to do the 12573 // conversion, because the target doesn't have the instructions like mtvsrd 12574 // or mfvsrd to do this conversion directly. 12575 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12576 if (Subtarget.hasDirectMove()) { 12577 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12578 .addReg(SrcReg); 12579 } else { 12580 // Use stack to do the register copy. 12581 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12582 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12583 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12584 if (RC == &PPC::F8RCRegClass) { 12585 // Copy register from F8RCRegClass to G8RCRegclass. 12586 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12587 "Unsupported RegClass."); 12588 12589 StoreOp = PPC::STFD; 12590 LoadOp = PPC::LD; 12591 } else { 12592 // Copy register from G8RCRegClass to F8RCRegclass. 12593 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12594 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12595 "Unsupported RegClass."); 12596 } 12597 12598 MachineFrameInfo &MFI = F->getFrameInfo(); 12599 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12600 12601 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12602 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12603 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12604 MFI.getObjectAlign(FrameIdx)); 12605 12606 // Store the SrcReg into the stack. 12607 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12608 .addReg(SrcReg) 12609 .addImm(0) 12610 .addFrameIndex(FrameIdx) 12611 .addMemOperand(MMOStore); 12612 12613 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12614 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12615 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12616 MFI.getObjectAlign(FrameIdx)); 12617 12618 // Load from the stack where SrcReg is stored, and save to DestReg, 12619 // so we have done the RegClass conversion from RegClass::SrcReg to 12620 // RegClass::DestReg. 12621 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12622 .addImm(0) 12623 .addFrameIndex(FrameIdx) 12624 .addMemOperand(MMOLoad); 12625 } 12626 }; 12627 12628 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12629 12630 // Save FPSCR value. 12631 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12632 12633 // When the operand is gprc register, use two least significant bits of the 12634 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12635 // 12636 // copy OldFPSCRTmpReg, OldFPSCRReg 12637 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12638 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12639 // copy NewFPSCRReg, NewFPSCRTmpReg 12640 // mtfsf 255, NewFPSCRReg 12641 MachineOperand SrcOp = MI.getOperand(1); 12642 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12643 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12644 12645 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12646 12647 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12648 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12649 12650 // The first operand of INSERT_SUBREG should be a register which has 12651 // subregisters, we only care about its RegClass, so we should use an 12652 // IMPLICIT_DEF register. 12653 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12654 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12655 .addReg(ImDefReg) 12656 .add(SrcOp) 12657 .addImm(1); 12658 12659 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12660 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12661 .addReg(OldFPSCRTmpReg) 12662 .addReg(ExtSrcReg) 12663 .addImm(0) 12664 .addImm(62); 12665 12666 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12667 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12668 12669 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12670 // bits of FPSCR. 12671 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12672 .addImm(255) 12673 .addReg(NewFPSCRReg) 12674 .addImm(0) 12675 .addImm(0); 12676 } else if (MI.getOpcode() == PPC::SETFLM) { 12677 DebugLoc Dl = MI.getDebugLoc(); 12678 12679 // Result of setflm is previous FPSCR content, so we need to save it first. 12680 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12681 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12682 12683 // Put bits in 32:63 to FPSCR. 12684 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12685 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12686 .addImm(255) 12687 .addReg(NewFPSCRReg) 12688 .addImm(0) 12689 .addImm(0); 12690 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12691 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12692 return emitProbedAlloca(MI, BB); 12693 } else { 12694 llvm_unreachable("Unexpected instr type to insert"); 12695 } 12696 12697 MI.eraseFromParent(); // The pseudo instruction is gone now. 12698 return BB; 12699 } 12700 12701 //===----------------------------------------------------------------------===// 12702 // Target Optimization Hooks 12703 //===----------------------------------------------------------------------===// 12704 12705 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12706 // For the estimates, convergence is quadratic, so we essentially double the 12707 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12708 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12709 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12710 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12711 if (VT.getScalarType() == MVT::f64) 12712 RefinementSteps++; 12713 return RefinementSteps; 12714 } 12715 12716 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12717 const DenormalMode &Mode) const { 12718 // TODO - add support for v2f64/v4f32 12719 EVT VT = Op.getValueType(); 12720 if (VT != MVT::f64) 12721 return SDValue(); 12722 12723 SDLoc DL(Op); 12724 // The output register of FTSQRT is CR field. 12725 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12726 // ftsqrt BF,FRB 12727 // Let e_b be the unbiased exponent of the double-precision 12728 // floating-point operand in register FRB. 12729 // fe_flag is set to 1 if either of the following conditions occurs. 12730 // - The double-precision floating-point operand in register FRB is a zero, 12731 // a NaN, or an infinity, or a negative value. 12732 // - e_b is less than or equal to -970. 12733 // Otherwise fe_flag is set to 0. 12734 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12735 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12736 // exponent is less than -970) 12737 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12738 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12739 FTSQRT, SRIdxVal), 12740 0); 12741 } 12742 12743 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12744 int Enabled, int &RefinementSteps, 12745 bool &UseOneConstNR, 12746 bool Reciprocal) const { 12747 EVT VT = Operand.getValueType(); 12748 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12749 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12750 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12751 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12752 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12753 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12754 12755 // The Newton-Raphson computation with a single constant does not provide 12756 // enough accuracy on some CPUs. 12757 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12758 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12759 } 12760 return SDValue(); 12761 } 12762 12763 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12764 int Enabled, 12765 int &RefinementSteps) const { 12766 EVT VT = Operand.getValueType(); 12767 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12768 (VT == MVT::f64 && Subtarget.hasFRE()) || 12769 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12770 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12771 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12772 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12773 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12774 } 12775 return SDValue(); 12776 } 12777 12778 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12779 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12780 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12781 // enabled for division), this functionality is redundant with the default 12782 // combiner logic (once the division -> reciprocal/multiply transformation 12783 // has taken place). As a result, this matters more for older cores than for 12784 // newer ones. 12785 12786 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12787 // reciprocal if there are two or more FDIVs (for embedded cores with only 12788 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12789 switch (Subtarget.getCPUDirective()) { 12790 default: 12791 return 3; 12792 case PPC::DIR_440: 12793 case PPC::DIR_A2: 12794 case PPC::DIR_E500: 12795 case PPC::DIR_E500mc: 12796 case PPC::DIR_E5500: 12797 return 2; 12798 } 12799 } 12800 12801 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12802 // collapsed, and so we need to look through chains of them. 12803 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12804 int64_t& Offset, SelectionDAG &DAG) { 12805 if (DAG.isBaseWithConstantOffset(Loc)) { 12806 Base = Loc.getOperand(0); 12807 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12808 12809 // The base might itself be a base plus an offset, and if so, accumulate 12810 // that as well. 12811 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12812 } 12813 } 12814 12815 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12816 unsigned Bytes, int Dist, 12817 SelectionDAG &DAG) { 12818 if (VT.getSizeInBits() / 8 != Bytes) 12819 return false; 12820 12821 SDValue BaseLoc = Base->getBasePtr(); 12822 if (Loc.getOpcode() == ISD::FrameIndex) { 12823 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12824 return false; 12825 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12826 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12827 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12828 int FS = MFI.getObjectSize(FI); 12829 int BFS = MFI.getObjectSize(BFI); 12830 if (FS != BFS || FS != (int)Bytes) return false; 12831 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12832 } 12833 12834 SDValue Base1 = Loc, Base2 = BaseLoc; 12835 int64_t Offset1 = 0, Offset2 = 0; 12836 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12837 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12838 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12839 return true; 12840 12841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12842 const GlobalValue *GV1 = nullptr; 12843 const GlobalValue *GV2 = nullptr; 12844 Offset1 = 0; 12845 Offset2 = 0; 12846 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12847 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12848 if (isGA1 && isGA2 && GV1 == GV2) 12849 return Offset1 == (Offset2 + Dist*Bytes); 12850 return false; 12851 } 12852 12853 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12854 // not enforce equality of the chain operands. 12855 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12856 unsigned Bytes, int Dist, 12857 SelectionDAG &DAG) { 12858 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12859 EVT VT = LS->getMemoryVT(); 12860 SDValue Loc = LS->getBasePtr(); 12861 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12862 } 12863 12864 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12865 EVT VT; 12866 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12867 default: return false; 12868 case Intrinsic::ppc_altivec_lvx: 12869 case Intrinsic::ppc_altivec_lvxl: 12870 case Intrinsic::ppc_vsx_lxvw4x: 12871 case Intrinsic::ppc_vsx_lxvw4x_be: 12872 VT = MVT::v4i32; 12873 break; 12874 case Intrinsic::ppc_vsx_lxvd2x: 12875 case Intrinsic::ppc_vsx_lxvd2x_be: 12876 VT = MVT::v2f64; 12877 break; 12878 case Intrinsic::ppc_altivec_lvebx: 12879 VT = MVT::i8; 12880 break; 12881 case Intrinsic::ppc_altivec_lvehx: 12882 VT = MVT::i16; 12883 break; 12884 case Intrinsic::ppc_altivec_lvewx: 12885 VT = MVT::i32; 12886 break; 12887 } 12888 12889 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12890 } 12891 12892 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12893 EVT VT; 12894 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12895 default: return false; 12896 case Intrinsic::ppc_altivec_stvx: 12897 case Intrinsic::ppc_altivec_stvxl: 12898 case Intrinsic::ppc_vsx_stxvw4x: 12899 VT = MVT::v4i32; 12900 break; 12901 case Intrinsic::ppc_vsx_stxvd2x: 12902 VT = MVT::v2f64; 12903 break; 12904 case Intrinsic::ppc_vsx_stxvw4x_be: 12905 VT = MVT::v4i32; 12906 break; 12907 case Intrinsic::ppc_vsx_stxvd2x_be: 12908 VT = MVT::v2f64; 12909 break; 12910 case Intrinsic::ppc_altivec_stvebx: 12911 VT = MVT::i8; 12912 break; 12913 case Intrinsic::ppc_altivec_stvehx: 12914 VT = MVT::i16; 12915 break; 12916 case Intrinsic::ppc_altivec_stvewx: 12917 VT = MVT::i32; 12918 break; 12919 } 12920 12921 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12922 } 12923 12924 return false; 12925 } 12926 12927 // Return true is there is a nearyby consecutive load to the one provided 12928 // (regardless of alignment). We search up and down the chain, looking though 12929 // token factors and other loads (but nothing else). As a result, a true result 12930 // indicates that it is safe to create a new consecutive load adjacent to the 12931 // load provided. 12932 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12933 SDValue Chain = LD->getChain(); 12934 EVT VT = LD->getMemoryVT(); 12935 12936 SmallSet<SDNode *, 16> LoadRoots; 12937 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12938 SmallSet<SDNode *, 16> Visited; 12939 12940 // First, search up the chain, branching to follow all token-factor operands. 12941 // If we find a consecutive load, then we're done, otherwise, record all 12942 // nodes just above the top-level loads and token factors. 12943 while (!Queue.empty()) { 12944 SDNode *ChainNext = Queue.pop_back_val(); 12945 if (!Visited.insert(ChainNext).second) 12946 continue; 12947 12948 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12949 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12950 return true; 12951 12952 if (!Visited.count(ChainLD->getChain().getNode())) 12953 Queue.push_back(ChainLD->getChain().getNode()); 12954 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12955 for (const SDUse &O : ChainNext->ops()) 12956 if (!Visited.count(O.getNode())) 12957 Queue.push_back(O.getNode()); 12958 } else 12959 LoadRoots.insert(ChainNext); 12960 } 12961 12962 // Second, search down the chain, starting from the top-level nodes recorded 12963 // in the first phase. These top-level nodes are the nodes just above all 12964 // loads and token factors. Starting with their uses, recursively look though 12965 // all loads (just the chain uses) and token factors to find a consecutive 12966 // load. 12967 Visited.clear(); 12968 Queue.clear(); 12969 12970 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12971 IE = LoadRoots.end(); I != IE; ++I) { 12972 Queue.push_back(*I); 12973 12974 while (!Queue.empty()) { 12975 SDNode *LoadRoot = Queue.pop_back_val(); 12976 if (!Visited.insert(LoadRoot).second) 12977 continue; 12978 12979 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12980 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12981 return true; 12982 12983 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12984 UE = LoadRoot->use_end(); UI != UE; ++UI) 12985 if (((isa<MemSDNode>(*UI) && 12986 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12987 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12988 Queue.push_back(*UI); 12989 } 12990 } 12991 12992 return false; 12993 } 12994 12995 /// This function is called when we have proved that a SETCC node can be replaced 12996 /// by subtraction (and other supporting instructions) so that the result of 12997 /// comparison is kept in a GPR instead of CR. This function is purely for 12998 /// codegen purposes and has some flags to guide the codegen process. 12999 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13000 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13001 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13002 13003 // Zero extend the operands to the largest legal integer. Originally, they 13004 // must be of a strictly smaller size. 13005 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13006 DAG.getConstant(Size, DL, MVT::i32)); 13007 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13008 DAG.getConstant(Size, DL, MVT::i32)); 13009 13010 // Swap if needed. Depends on the condition code. 13011 if (Swap) 13012 std::swap(Op0, Op1); 13013 13014 // Subtract extended integers. 13015 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13016 13017 // Move the sign bit to the least significant position and zero out the rest. 13018 // Now the least significant bit carries the result of original comparison. 13019 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13020 DAG.getConstant(Size - 1, DL, MVT::i32)); 13021 auto Final = Shifted; 13022 13023 // Complement the result if needed. Based on the condition code. 13024 if (Complement) 13025 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13026 DAG.getConstant(1, DL, MVT::i64)); 13027 13028 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13029 } 13030 13031 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13032 DAGCombinerInfo &DCI) const { 13033 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13034 13035 SelectionDAG &DAG = DCI.DAG; 13036 SDLoc DL(N); 13037 13038 // Size of integers being compared has a critical role in the following 13039 // analysis, so we prefer to do this when all types are legal. 13040 if (!DCI.isAfterLegalizeDAG()) 13041 return SDValue(); 13042 13043 // If all users of SETCC extend its value to a legal integer type 13044 // then we replace SETCC with a subtraction 13045 for (SDNode::use_iterator UI = N->use_begin(), 13046 UE = N->use_end(); UI != UE; ++UI) { 13047 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13048 return SDValue(); 13049 } 13050 13051 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13052 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13053 13054 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13055 13056 if (OpSize < Size) { 13057 switch (CC) { 13058 default: break; 13059 case ISD::SETULT: 13060 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13061 case ISD::SETULE: 13062 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13063 case ISD::SETUGT: 13064 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13065 case ISD::SETUGE: 13066 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13067 } 13068 } 13069 13070 return SDValue(); 13071 } 13072 13073 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13074 DAGCombinerInfo &DCI) const { 13075 SelectionDAG &DAG = DCI.DAG; 13076 SDLoc dl(N); 13077 13078 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13079 // If we're tracking CR bits, we need to be careful that we don't have: 13080 // trunc(binary-ops(zext(x), zext(y))) 13081 // or 13082 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13083 // such that we're unnecessarily moving things into GPRs when it would be 13084 // better to keep them in CR bits. 13085 13086 // Note that trunc here can be an actual i1 trunc, or can be the effective 13087 // truncation that comes from a setcc or select_cc. 13088 if (N->getOpcode() == ISD::TRUNCATE && 13089 N->getValueType(0) != MVT::i1) 13090 return SDValue(); 13091 13092 if (N->getOperand(0).getValueType() != MVT::i32 && 13093 N->getOperand(0).getValueType() != MVT::i64) 13094 return SDValue(); 13095 13096 if (N->getOpcode() == ISD::SETCC || 13097 N->getOpcode() == ISD::SELECT_CC) { 13098 // If we're looking at a comparison, then we need to make sure that the 13099 // high bits (all except for the first) don't matter the result. 13100 ISD::CondCode CC = 13101 cast<CondCodeSDNode>(N->getOperand( 13102 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13103 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13104 13105 if (ISD::isSignedIntSetCC(CC)) { 13106 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13107 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13108 return SDValue(); 13109 } else if (ISD::isUnsignedIntSetCC(CC)) { 13110 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13111 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13112 !DAG.MaskedValueIsZero(N->getOperand(1), 13113 APInt::getHighBitsSet(OpBits, OpBits-1))) 13114 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13115 : SDValue()); 13116 } else { 13117 // This is neither a signed nor an unsigned comparison, just make sure 13118 // that the high bits are equal. 13119 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13120 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13121 13122 // We don't really care about what is known about the first bit (if 13123 // anything), so clear it in all masks prior to comparing them. 13124 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 13125 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 13126 13127 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 13128 return SDValue(); 13129 } 13130 } 13131 13132 // We now know that the higher-order bits are irrelevant, we just need to 13133 // make sure that all of the intermediate operations are bit operations, and 13134 // all inputs are extensions. 13135 if (N->getOperand(0).getOpcode() != ISD::AND && 13136 N->getOperand(0).getOpcode() != ISD::OR && 13137 N->getOperand(0).getOpcode() != ISD::XOR && 13138 N->getOperand(0).getOpcode() != ISD::SELECT && 13139 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13140 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13141 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13142 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13143 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13144 return SDValue(); 13145 13146 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13147 N->getOperand(1).getOpcode() != ISD::AND && 13148 N->getOperand(1).getOpcode() != ISD::OR && 13149 N->getOperand(1).getOpcode() != ISD::XOR && 13150 N->getOperand(1).getOpcode() != ISD::SELECT && 13151 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13152 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13153 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13154 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13155 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13156 return SDValue(); 13157 13158 SmallVector<SDValue, 4> Inputs; 13159 SmallVector<SDValue, 8> BinOps, PromOps; 13160 SmallPtrSet<SDNode *, 16> Visited; 13161 13162 for (unsigned i = 0; i < 2; ++i) { 13163 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13164 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13165 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13166 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13167 isa<ConstantSDNode>(N->getOperand(i))) 13168 Inputs.push_back(N->getOperand(i)); 13169 else 13170 BinOps.push_back(N->getOperand(i)); 13171 13172 if (N->getOpcode() == ISD::TRUNCATE) 13173 break; 13174 } 13175 13176 // Visit all inputs, collect all binary operations (and, or, xor and 13177 // select) that are all fed by extensions. 13178 while (!BinOps.empty()) { 13179 SDValue BinOp = BinOps.back(); 13180 BinOps.pop_back(); 13181 13182 if (!Visited.insert(BinOp.getNode()).second) 13183 continue; 13184 13185 PromOps.push_back(BinOp); 13186 13187 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13188 // The condition of the select is not promoted. 13189 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13190 continue; 13191 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13192 continue; 13193 13194 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13195 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13196 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13197 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13198 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13199 Inputs.push_back(BinOp.getOperand(i)); 13200 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13201 BinOp.getOperand(i).getOpcode() == ISD::OR || 13202 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13203 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13204 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13205 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13206 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13207 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13208 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13209 BinOps.push_back(BinOp.getOperand(i)); 13210 } else { 13211 // We have an input that is not an extension or another binary 13212 // operation; we'll abort this transformation. 13213 return SDValue(); 13214 } 13215 } 13216 } 13217 13218 // Make sure that this is a self-contained cluster of operations (which 13219 // is not quite the same thing as saying that everything has only one 13220 // use). 13221 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13222 if (isa<ConstantSDNode>(Inputs[i])) 13223 continue; 13224 13225 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13226 UE = Inputs[i].getNode()->use_end(); 13227 UI != UE; ++UI) { 13228 SDNode *User = *UI; 13229 if (User != N && !Visited.count(User)) 13230 return SDValue(); 13231 13232 // Make sure that we're not going to promote the non-output-value 13233 // operand(s) or SELECT or SELECT_CC. 13234 // FIXME: Although we could sometimes handle this, and it does occur in 13235 // practice that one of the condition inputs to the select is also one of 13236 // the outputs, we currently can't deal with this. 13237 if (User->getOpcode() == ISD::SELECT) { 13238 if (User->getOperand(0) == Inputs[i]) 13239 return SDValue(); 13240 } else if (User->getOpcode() == ISD::SELECT_CC) { 13241 if (User->getOperand(0) == Inputs[i] || 13242 User->getOperand(1) == Inputs[i]) 13243 return SDValue(); 13244 } 13245 } 13246 } 13247 13248 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13249 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13250 UE = PromOps[i].getNode()->use_end(); 13251 UI != UE; ++UI) { 13252 SDNode *User = *UI; 13253 if (User != N && !Visited.count(User)) 13254 return SDValue(); 13255 13256 // Make sure that we're not going to promote the non-output-value 13257 // operand(s) or SELECT or SELECT_CC. 13258 // FIXME: Although we could sometimes handle this, and it does occur in 13259 // practice that one of the condition inputs to the select is also one of 13260 // the outputs, we currently can't deal with this. 13261 if (User->getOpcode() == ISD::SELECT) { 13262 if (User->getOperand(0) == PromOps[i]) 13263 return SDValue(); 13264 } else if (User->getOpcode() == ISD::SELECT_CC) { 13265 if (User->getOperand(0) == PromOps[i] || 13266 User->getOperand(1) == PromOps[i]) 13267 return SDValue(); 13268 } 13269 } 13270 } 13271 13272 // Replace all inputs with the extension operand. 13273 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13274 // Constants may have users outside the cluster of to-be-promoted nodes, 13275 // and so we need to replace those as we do the promotions. 13276 if (isa<ConstantSDNode>(Inputs[i])) 13277 continue; 13278 else 13279 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13280 } 13281 13282 std::list<HandleSDNode> PromOpHandles; 13283 for (auto &PromOp : PromOps) 13284 PromOpHandles.emplace_back(PromOp); 13285 13286 // Replace all operations (these are all the same, but have a different 13287 // (i1) return type). DAG.getNode will validate that the types of 13288 // a binary operator match, so go through the list in reverse so that 13289 // we've likely promoted both operands first. Any intermediate truncations or 13290 // extensions disappear. 13291 while (!PromOpHandles.empty()) { 13292 SDValue PromOp = PromOpHandles.back().getValue(); 13293 PromOpHandles.pop_back(); 13294 13295 if (PromOp.getOpcode() == ISD::TRUNCATE || 13296 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13297 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13298 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13299 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13300 PromOp.getOperand(0).getValueType() != MVT::i1) { 13301 // The operand is not yet ready (see comment below). 13302 PromOpHandles.emplace_front(PromOp); 13303 continue; 13304 } 13305 13306 SDValue RepValue = PromOp.getOperand(0); 13307 if (isa<ConstantSDNode>(RepValue)) 13308 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13309 13310 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13311 continue; 13312 } 13313 13314 unsigned C; 13315 switch (PromOp.getOpcode()) { 13316 default: C = 0; break; 13317 case ISD::SELECT: C = 1; break; 13318 case ISD::SELECT_CC: C = 2; break; 13319 } 13320 13321 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13322 PromOp.getOperand(C).getValueType() != MVT::i1) || 13323 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13324 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13325 // The to-be-promoted operands of this node have not yet been 13326 // promoted (this should be rare because we're going through the 13327 // list backward, but if one of the operands has several users in 13328 // this cluster of to-be-promoted nodes, it is possible). 13329 PromOpHandles.emplace_front(PromOp); 13330 continue; 13331 } 13332 13333 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13334 PromOp.getNode()->op_end()); 13335 13336 // If there are any constant inputs, make sure they're replaced now. 13337 for (unsigned i = 0; i < 2; ++i) 13338 if (isa<ConstantSDNode>(Ops[C+i])) 13339 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13340 13341 DAG.ReplaceAllUsesOfValueWith(PromOp, 13342 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13343 } 13344 13345 // Now we're left with the initial truncation itself. 13346 if (N->getOpcode() == ISD::TRUNCATE) 13347 return N->getOperand(0); 13348 13349 // Otherwise, this is a comparison. The operands to be compared have just 13350 // changed type (to i1), but everything else is the same. 13351 return SDValue(N, 0); 13352 } 13353 13354 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13355 DAGCombinerInfo &DCI) const { 13356 SelectionDAG &DAG = DCI.DAG; 13357 SDLoc dl(N); 13358 13359 // If we're tracking CR bits, we need to be careful that we don't have: 13360 // zext(binary-ops(trunc(x), trunc(y))) 13361 // or 13362 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13363 // such that we're unnecessarily moving things into CR bits that can more 13364 // efficiently stay in GPRs. Note that if we're not certain that the high 13365 // bits are set as required by the final extension, we still may need to do 13366 // some masking to get the proper behavior. 13367 13368 // This same functionality is important on PPC64 when dealing with 13369 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13370 // the return values of functions. Because it is so similar, it is handled 13371 // here as well. 13372 13373 if (N->getValueType(0) != MVT::i32 && 13374 N->getValueType(0) != MVT::i64) 13375 return SDValue(); 13376 13377 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13378 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13379 return SDValue(); 13380 13381 if (N->getOperand(0).getOpcode() != ISD::AND && 13382 N->getOperand(0).getOpcode() != ISD::OR && 13383 N->getOperand(0).getOpcode() != ISD::XOR && 13384 N->getOperand(0).getOpcode() != ISD::SELECT && 13385 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13386 return SDValue(); 13387 13388 SmallVector<SDValue, 4> Inputs; 13389 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13390 SmallPtrSet<SDNode *, 16> Visited; 13391 13392 // Visit all inputs, collect all binary operations (and, or, xor and 13393 // select) that are all fed by truncations. 13394 while (!BinOps.empty()) { 13395 SDValue BinOp = BinOps.back(); 13396 BinOps.pop_back(); 13397 13398 if (!Visited.insert(BinOp.getNode()).second) 13399 continue; 13400 13401 PromOps.push_back(BinOp); 13402 13403 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13404 // The condition of the select is not promoted. 13405 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13406 continue; 13407 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13408 continue; 13409 13410 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13411 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13412 Inputs.push_back(BinOp.getOperand(i)); 13413 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13414 BinOp.getOperand(i).getOpcode() == ISD::OR || 13415 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13416 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13417 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13418 BinOps.push_back(BinOp.getOperand(i)); 13419 } else { 13420 // We have an input that is not a truncation or another binary 13421 // operation; we'll abort this transformation. 13422 return SDValue(); 13423 } 13424 } 13425 } 13426 13427 // The operands of a select that must be truncated when the select is 13428 // promoted because the operand is actually part of the to-be-promoted set. 13429 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13430 13431 // Make sure that this is a self-contained cluster of operations (which 13432 // is not quite the same thing as saying that everything has only one 13433 // use). 13434 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13435 if (isa<ConstantSDNode>(Inputs[i])) 13436 continue; 13437 13438 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13439 UE = Inputs[i].getNode()->use_end(); 13440 UI != UE; ++UI) { 13441 SDNode *User = *UI; 13442 if (User != N && !Visited.count(User)) 13443 return SDValue(); 13444 13445 // If we're going to promote the non-output-value operand(s) or SELECT or 13446 // SELECT_CC, record them for truncation. 13447 if (User->getOpcode() == ISD::SELECT) { 13448 if (User->getOperand(0) == Inputs[i]) 13449 SelectTruncOp[0].insert(std::make_pair(User, 13450 User->getOperand(0).getValueType())); 13451 } else if (User->getOpcode() == ISD::SELECT_CC) { 13452 if (User->getOperand(0) == Inputs[i]) 13453 SelectTruncOp[0].insert(std::make_pair(User, 13454 User->getOperand(0).getValueType())); 13455 if (User->getOperand(1) == Inputs[i]) 13456 SelectTruncOp[1].insert(std::make_pair(User, 13457 User->getOperand(1).getValueType())); 13458 } 13459 } 13460 } 13461 13462 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13463 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13464 UE = PromOps[i].getNode()->use_end(); 13465 UI != UE; ++UI) { 13466 SDNode *User = *UI; 13467 if (User != N && !Visited.count(User)) 13468 return SDValue(); 13469 13470 // If we're going to promote the non-output-value operand(s) or SELECT or 13471 // SELECT_CC, record them for truncation. 13472 if (User->getOpcode() == ISD::SELECT) { 13473 if (User->getOperand(0) == PromOps[i]) 13474 SelectTruncOp[0].insert(std::make_pair(User, 13475 User->getOperand(0).getValueType())); 13476 } else if (User->getOpcode() == ISD::SELECT_CC) { 13477 if (User->getOperand(0) == PromOps[i]) 13478 SelectTruncOp[0].insert(std::make_pair(User, 13479 User->getOperand(0).getValueType())); 13480 if (User->getOperand(1) == PromOps[i]) 13481 SelectTruncOp[1].insert(std::make_pair(User, 13482 User->getOperand(1).getValueType())); 13483 } 13484 } 13485 } 13486 13487 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13488 bool ReallyNeedsExt = false; 13489 if (N->getOpcode() != ISD::ANY_EXTEND) { 13490 // If all of the inputs are not already sign/zero extended, then 13491 // we'll still need to do that at the end. 13492 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13493 if (isa<ConstantSDNode>(Inputs[i])) 13494 continue; 13495 13496 unsigned OpBits = 13497 Inputs[i].getOperand(0).getValueSizeInBits(); 13498 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13499 13500 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13501 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13502 APInt::getHighBitsSet(OpBits, 13503 OpBits-PromBits))) || 13504 (N->getOpcode() == ISD::SIGN_EXTEND && 13505 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13506 (OpBits-(PromBits-1)))) { 13507 ReallyNeedsExt = true; 13508 break; 13509 } 13510 } 13511 } 13512 13513 // Replace all inputs, either with the truncation operand, or a 13514 // truncation or extension to the final output type. 13515 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13516 // Constant inputs need to be replaced with the to-be-promoted nodes that 13517 // use them because they might have users outside of the cluster of 13518 // promoted nodes. 13519 if (isa<ConstantSDNode>(Inputs[i])) 13520 continue; 13521 13522 SDValue InSrc = Inputs[i].getOperand(0); 13523 if (Inputs[i].getValueType() == N->getValueType(0)) 13524 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13525 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13526 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13527 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13528 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13529 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13530 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13531 else 13532 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13533 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13534 } 13535 13536 std::list<HandleSDNode> PromOpHandles; 13537 for (auto &PromOp : PromOps) 13538 PromOpHandles.emplace_back(PromOp); 13539 13540 // Replace all operations (these are all the same, but have a different 13541 // (promoted) return type). DAG.getNode will validate that the types of 13542 // a binary operator match, so go through the list in reverse so that 13543 // we've likely promoted both operands first. 13544 while (!PromOpHandles.empty()) { 13545 SDValue PromOp = PromOpHandles.back().getValue(); 13546 PromOpHandles.pop_back(); 13547 13548 unsigned C; 13549 switch (PromOp.getOpcode()) { 13550 default: C = 0; break; 13551 case ISD::SELECT: C = 1; break; 13552 case ISD::SELECT_CC: C = 2; break; 13553 } 13554 13555 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13556 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13557 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13558 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13559 // The to-be-promoted operands of this node have not yet been 13560 // promoted (this should be rare because we're going through the 13561 // list backward, but if one of the operands has several users in 13562 // this cluster of to-be-promoted nodes, it is possible). 13563 PromOpHandles.emplace_front(PromOp); 13564 continue; 13565 } 13566 13567 // For SELECT and SELECT_CC nodes, we do a similar check for any 13568 // to-be-promoted comparison inputs. 13569 if (PromOp.getOpcode() == ISD::SELECT || 13570 PromOp.getOpcode() == ISD::SELECT_CC) { 13571 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13572 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13573 (SelectTruncOp[1].count(PromOp.getNode()) && 13574 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13575 PromOpHandles.emplace_front(PromOp); 13576 continue; 13577 } 13578 } 13579 13580 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13581 PromOp.getNode()->op_end()); 13582 13583 // If this node has constant inputs, then they'll need to be promoted here. 13584 for (unsigned i = 0; i < 2; ++i) { 13585 if (!isa<ConstantSDNode>(Ops[C+i])) 13586 continue; 13587 if (Ops[C+i].getValueType() == N->getValueType(0)) 13588 continue; 13589 13590 if (N->getOpcode() == ISD::SIGN_EXTEND) 13591 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13592 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13593 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13594 else 13595 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13596 } 13597 13598 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13599 // truncate them again to the original value type. 13600 if (PromOp.getOpcode() == ISD::SELECT || 13601 PromOp.getOpcode() == ISD::SELECT_CC) { 13602 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13603 if (SI0 != SelectTruncOp[0].end()) 13604 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13605 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13606 if (SI1 != SelectTruncOp[1].end()) 13607 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13608 } 13609 13610 DAG.ReplaceAllUsesOfValueWith(PromOp, 13611 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13612 } 13613 13614 // Now we're left with the initial extension itself. 13615 if (!ReallyNeedsExt) 13616 return N->getOperand(0); 13617 13618 // To zero extend, just mask off everything except for the first bit (in the 13619 // i1 case). 13620 if (N->getOpcode() == ISD::ZERO_EXTEND) 13621 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13622 DAG.getConstant(APInt::getLowBitsSet( 13623 N->getValueSizeInBits(0), PromBits), 13624 dl, N->getValueType(0))); 13625 13626 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13627 "Invalid extension type"); 13628 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13629 SDValue ShiftCst = 13630 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13631 return DAG.getNode( 13632 ISD::SRA, dl, N->getValueType(0), 13633 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13634 ShiftCst); 13635 } 13636 13637 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13638 DAGCombinerInfo &DCI) const { 13639 assert(N->getOpcode() == ISD::SETCC && 13640 "Should be called with a SETCC node"); 13641 13642 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13643 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13644 SDValue LHS = N->getOperand(0); 13645 SDValue RHS = N->getOperand(1); 13646 13647 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13648 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13649 LHS.hasOneUse()) 13650 std::swap(LHS, RHS); 13651 13652 // x == 0-y --> x+y == 0 13653 // x != 0-y --> x+y != 0 13654 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13655 RHS.hasOneUse()) { 13656 SDLoc DL(N); 13657 SelectionDAG &DAG = DCI.DAG; 13658 EVT VT = N->getValueType(0); 13659 EVT OpVT = LHS.getValueType(); 13660 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13661 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13662 } 13663 } 13664 13665 return DAGCombineTruncBoolExt(N, DCI); 13666 } 13667 13668 // Is this an extending load from an f32 to an f64? 13669 static bool isFPExtLoad(SDValue Op) { 13670 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13671 return LD->getExtensionType() == ISD::EXTLOAD && 13672 Op.getValueType() == MVT::f64; 13673 return false; 13674 } 13675 13676 /// Reduces the number of fp-to-int conversion when building a vector. 13677 /// 13678 /// If this vector is built out of floating to integer conversions, 13679 /// transform it to a vector built out of floating point values followed by a 13680 /// single floating to integer conversion of the vector. 13681 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13682 /// becomes (fptosi (build_vector ($A, $B, ...))) 13683 SDValue PPCTargetLowering:: 13684 combineElementTruncationToVectorTruncation(SDNode *N, 13685 DAGCombinerInfo &DCI) const { 13686 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13687 "Should be called with a BUILD_VECTOR node"); 13688 13689 SelectionDAG &DAG = DCI.DAG; 13690 SDLoc dl(N); 13691 13692 SDValue FirstInput = N->getOperand(0); 13693 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13694 "The input operand must be an fp-to-int conversion."); 13695 13696 // This combine happens after legalization so the fp_to_[su]i nodes are 13697 // already converted to PPCSISD nodes. 13698 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13699 if (FirstConversion == PPCISD::FCTIDZ || 13700 FirstConversion == PPCISD::FCTIDUZ || 13701 FirstConversion == PPCISD::FCTIWZ || 13702 FirstConversion == PPCISD::FCTIWUZ) { 13703 bool IsSplat = true; 13704 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13705 FirstConversion == PPCISD::FCTIWUZ; 13706 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13707 SmallVector<SDValue, 4> Ops; 13708 EVT TargetVT = N->getValueType(0); 13709 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13710 SDValue NextOp = N->getOperand(i); 13711 if (NextOp.getOpcode() != PPCISD::MFVSR) 13712 return SDValue(); 13713 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13714 if (NextConversion != FirstConversion) 13715 return SDValue(); 13716 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13717 // This is not valid if the input was originally double precision. It is 13718 // also not profitable to do unless this is an extending load in which 13719 // case doing this combine will allow us to combine consecutive loads. 13720 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13721 return SDValue(); 13722 if (N->getOperand(i) != FirstInput) 13723 IsSplat = false; 13724 } 13725 13726 // If this is a splat, we leave it as-is since there will be only a single 13727 // fp-to-int conversion followed by a splat of the integer. This is better 13728 // for 32-bit and smaller ints and neutral for 64-bit ints. 13729 if (IsSplat) 13730 return SDValue(); 13731 13732 // Now that we know we have the right type of node, get its operands 13733 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13734 SDValue In = N->getOperand(i).getOperand(0); 13735 if (Is32Bit) { 13736 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13737 // here, we know that all inputs are extending loads so this is safe). 13738 if (In.isUndef()) 13739 Ops.push_back(DAG.getUNDEF(SrcVT)); 13740 else { 13741 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13742 MVT::f32, In.getOperand(0), 13743 DAG.getIntPtrConstant(1, dl)); 13744 Ops.push_back(Trunc); 13745 } 13746 } else 13747 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13748 } 13749 13750 unsigned Opcode; 13751 if (FirstConversion == PPCISD::FCTIDZ || 13752 FirstConversion == PPCISD::FCTIWZ) 13753 Opcode = ISD::FP_TO_SINT; 13754 else 13755 Opcode = ISD::FP_TO_UINT; 13756 13757 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13758 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13759 return DAG.getNode(Opcode, dl, TargetVT, BV); 13760 } 13761 return SDValue(); 13762 } 13763 13764 /// Reduce the number of loads when building a vector. 13765 /// 13766 /// Building a vector out of multiple loads can be converted to a load 13767 /// of the vector type if the loads are consecutive. If the loads are 13768 /// consecutive but in descending order, a shuffle is added at the end 13769 /// to reorder the vector. 13770 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13771 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13772 "Should be called with a BUILD_VECTOR node"); 13773 13774 SDLoc dl(N); 13775 13776 // Return early for non byte-sized type, as they can't be consecutive. 13777 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13778 return SDValue(); 13779 13780 bool InputsAreConsecutiveLoads = true; 13781 bool InputsAreReverseConsecutive = true; 13782 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13783 SDValue FirstInput = N->getOperand(0); 13784 bool IsRoundOfExtLoad = false; 13785 13786 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13787 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13788 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13789 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13790 } 13791 // Not a build vector of (possibly fp_rounded) loads. 13792 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13793 N->getNumOperands() == 1) 13794 return SDValue(); 13795 13796 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13797 // If any inputs are fp_round(extload), they all must be. 13798 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13799 return SDValue(); 13800 13801 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13802 N->getOperand(i); 13803 if (NextInput.getOpcode() != ISD::LOAD) 13804 return SDValue(); 13805 13806 SDValue PreviousInput = 13807 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13808 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13809 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13810 13811 // If any inputs are fp_round(extload), they all must be. 13812 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13813 return SDValue(); 13814 13815 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13816 InputsAreConsecutiveLoads = false; 13817 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13818 InputsAreReverseConsecutive = false; 13819 13820 // Exit early if the loads are neither consecutive nor reverse consecutive. 13821 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13822 return SDValue(); 13823 } 13824 13825 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13826 "The loads cannot be both consecutive and reverse consecutive."); 13827 13828 SDValue FirstLoadOp = 13829 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13830 SDValue LastLoadOp = 13831 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13832 N->getOperand(N->getNumOperands()-1); 13833 13834 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13835 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13836 if (InputsAreConsecutiveLoads) { 13837 assert(LD1 && "Input needs to be a LoadSDNode."); 13838 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13839 LD1->getBasePtr(), LD1->getPointerInfo(), 13840 LD1->getAlignment()); 13841 } 13842 if (InputsAreReverseConsecutive) { 13843 assert(LDL && "Input needs to be a LoadSDNode."); 13844 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13845 LDL->getBasePtr(), LDL->getPointerInfo(), 13846 LDL->getAlignment()); 13847 SmallVector<int, 16> Ops; 13848 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13849 Ops.push_back(i); 13850 13851 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13852 DAG.getUNDEF(N->getValueType(0)), Ops); 13853 } 13854 return SDValue(); 13855 } 13856 13857 // This function adds the required vector_shuffle needed to get 13858 // the elements of the vector extract in the correct position 13859 // as specified by the CorrectElems encoding. 13860 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13861 SDValue Input, uint64_t Elems, 13862 uint64_t CorrectElems) { 13863 SDLoc dl(N); 13864 13865 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13866 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13867 13868 // Knowing the element indices being extracted from the original 13869 // vector and the order in which they're being inserted, just put 13870 // them at element indices required for the instruction. 13871 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13872 if (DAG.getDataLayout().isLittleEndian()) 13873 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13874 else 13875 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13876 CorrectElems = CorrectElems >> 8; 13877 Elems = Elems >> 8; 13878 } 13879 13880 SDValue Shuffle = 13881 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13882 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13883 13884 EVT VT = N->getValueType(0); 13885 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13886 13887 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13888 Input.getValueType().getVectorElementType(), 13889 VT.getVectorNumElements()); 13890 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13891 DAG.getValueType(ExtVT)); 13892 } 13893 13894 // Look for build vector patterns where input operands come from sign 13895 // extended vector_extract elements of specific indices. If the correct indices 13896 // aren't used, add a vector shuffle to fix up the indices and create 13897 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13898 // during instruction selection. 13899 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13900 // This array encodes the indices that the vector sign extend instructions 13901 // extract from when extending from one type to another for both BE and LE. 13902 // The right nibble of each byte corresponds to the LE incides. 13903 // and the left nibble of each byte corresponds to the BE incides. 13904 // For example: 0x3074B8FC byte->word 13905 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13906 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13907 // For example: 0x000070F8 byte->double word 13908 // For LE: the allowed indices are: 0x0,0x8 13909 // For BE: the allowed indices are: 0x7,0xF 13910 uint64_t TargetElems[] = { 13911 0x3074B8FC, // b->w 13912 0x000070F8, // b->d 13913 0x10325476, // h->w 13914 0x00003074, // h->d 13915 0x00001032, // w->d 13916 }; 13917 13918 uint64_t Elems = 0; 13919 int Index; 13920 SDValue Input; 13921 13922 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13923 if (!Op) 13924 return false; 13925 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13926 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13927 return false; 13928 13929 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13930 // of the right width. 13931 SDValue Extract = Op.getOperand(0); 13932 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13933 Extract = Extract.getOperand(0); 13934 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13935 return false; 13936 13937 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13938 if (!ExtOp) 13939 return false; 13940 13941 Index = ExtOp->getZExtValue(); 13942 if (Input && Input != Extract.getOperand(0)) 13943 return false; 13944 13945 if (!Input) 13946 Input = Extract.getOperand(0); 13947 13948 Elems = Elems << 8; 13949 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13950 Elems |= Index; 13951 13952 return true; 13953 }; 13954 13955 // If the build vector operands aren't sign extended vector extracts, 13956 // of the same input vector, then return. 13957 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13958 if (!isSExtOfVecExtract(N->getOperand(i))) { 13959 return SDValue(); 13960 } 13961 } 13962 13963 // If the vector extract indicies are not correct, add the appropriate 13964 // vector_shuffle. 13965 int TgtElemArrayIdx; 13966 int InputSize = Input.getValueType().getScalarSizeInBits(); 13967 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13968 if (InputSize + OutputSize == 40) 13969 TgtElemArrayIdx = 0; 13970 else if (InputSize + OutputSize == 72) 13971 TgtElemArrayIdx = 1; 13972 else if (InputSize + OutputSize == 48) 13973 TgtElemArrayIdx = 2; 13974 else if (InputSize + OutputSize == 80) 13975 TgtElemArrayIdx = 3; 13976 else if (InputSize + OutputSize == 96) 13977 TgtElemArrayIdx = 4; 13978 else 13979 return SDValue(); 13980 13981 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13982 CorrectElems = DAG.getDataLayout().isLittleEndian() 13983 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13984 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13985 if (Elems != CorrectElems) { 13986 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13987 } 13988 13989 // Regular lowering will catch cases where a shuffle is not needed. 13990 return SDValue(); 13991 } 13992 13993 // Look for the pattern of a load from a narrow width to i128, feeding 13994 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13995 // (LXVRZX). This node represents a zero extending load that will be matched 13996 // to the Load VSX Vector Rightmost instructions. 13997 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13998 SDLoc DL(N); 13999 14000 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14001 if (N->getValueType(0) != MVT::v1i128) 14002 return SDValue(); 14003 14004 SDValue Operand = N->getOperand(0); 14005 // Proceed with the transformation if the operand to the BUILD_VECTOR 14006 // is a load instruction. 14007 if (Operand.getOpcode() != ISD::LOAD) 14008 return SDValue(); 14009 14010 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 14011 EVT MemoryType = LD->getMemoryVT(); 14012 14013 // This transformation is only valid if the we are loading either a byte, 14014 // halfword, word, or doubleword. 14015 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14016 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14017 14018 // Ensure that the load from the narrow width is being zero extended to i128. 14019 if (!ValidLDType || 14020 (LD->getExtensionType() != ISD::ZEXTLOAD && 14021 LD->getExtensionType() != ISD::EXTLOAD)) 14022 return SDValue(); 14023 14024 SDValue LoadOps[] = { 14025 LD->getChain(), LD->getBasePtr(), 14026 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14027 14028 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14029 DAG.getVTList(MVT::v1i128, MVT::Other), 14030 LoadOps, MemoryType, LD->getMemOperand()); 14031 } 14032 14033 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14034 DAGCombinerInfo &DCI) const { 14035 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14036 "Should be called with a BUILD_VECTOR node"); 14037 14038 SelectionDAG &DAG = DCI.DAG; 14039 SDLoc dl(N); 14040 14041 if (!Subtarget.hasVSX()) 14042 return SDValue(); 14043 14044 // The target independent DAG combiner will leave a build_vector of 14045 // float-to-int conversions intact. We can generate MUCH better code for 14046 // a float-to-int conversion of a vector of floats. 14047 SDValue FirstInput = N->getOperand(0); 14048 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14049 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14050 if (Reduced) 14051 return Reduced; 14052 } 14053 14054 // If we're building a vector out of consecutive loads, just load that 14055 // vector type. 14056 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14057 if (Reduced) 14058 return Reduced; 14059 14060 // If we're building a vector out of extended elements from another vector 14061 // we have P9 vector integer extend instructions. The code assumes legal 14062 // input types (i.e. it can't handle things like v4i16) so do not run before 14063 // legalization. 14064 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14065 Reduced = combineBVOfVecSExt(N, DAG); 14066 if (Reduced) 14067 return Reduced; 14068 } 14069 14070 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14071 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14072 // is a load from <valid narrow width> to i128. 14073 if (Subtarget.isISA3_1()) { 14074 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14075 if (BVOfZLoad) 14076 return BVOfZLoad; 14077 } 14078 14079 if (N->getValueType(0) != MVT::v2f64) 14080 return SDValue(); 14081 14082 // Looking for: 14083 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14084 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14085 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14086 return SDValue(); 14087 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14088 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14089 return SDValue(); 14090 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14091 return SDValue(); 14092 14093 SDValue Ext1 = FirstInput.getOperand(0); 14094 SDValue Ext2 = N->getOperand(1).getOperand(0); 14095 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14096 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14097 return SDValue(); 14098 14099 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14100 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14101 if (!Ext1Op || !Ext2Op) 14102 return SDValue(); 14103 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14104 Ext1.getOperand(0) != Ext2.getOperand(0)) 14105 return SDValue(); 14106 14107 int FirstElem = Ext1Op->getZExtValue(); 14108 int SecondElem = Ext2Op->getZExtValue(); 14109 int SubvecIdx; 14110 if (FirstElem == 0 && SecondElem == 1) 14111 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14112 else if (FirstElem == 2 && SecondElem == 3) 14113 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14114 else 14115 return SDValue(); 14116 14117 SDValue SrcVec = Ext1.getOperand(0); 14118 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14119 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14120 return DAG.getNode(NodeType, dl, MVT::v2f64, 14121 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14122 } 14123 14124 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14125 DAGCombinerInfo &DCI) const { 14126 assert((N->getOpcode() == ISD::SINT_TO_FP || 14127 N->getOpcode() == ISD::UINT_TO_FP) && 14128 "Need an int -> FP conversion node here"); 14129 14130 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14131 return SDValue(); 14132 14133 SelectionDAG &DAG = DCI.DAG; 14134 SDLoc dl(N); 14135 SDValue Op(N, 0); 14136 14137 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14138 // from the hardware. 14139 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14140 return SDValue(); 14141 if (!Op.getOperand(0).getValueType().isSimple()) 14142 return SDValue(); 14143 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14144 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14145 return SDValue(); 14146 14147 SDValue FirstOperand(Op.getOperand(0)); 14148 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14149 (FirstOperand.getValueType() == MVT::i8 || 14150 FirstOperand.getValueType() == MVT::i16); 14151 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14152 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14153 bool DstDouble = Op.getValueType() == MVT::f64; 14154 unsigned ConvOp = Signed ? 14155 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14156 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14157 SDValue WidthConst = 14158 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14159 dl, false); 14160 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14161 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14162 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14163 DAG.getVTList(MVT::f64, MVT::Other), 14164 Ops, MVT::i8, LDN->getMemOperand()); 14165 14166 // For signed conversion, we need to sign-extend the value in the VSR 14167 if (Signed) { 14168 SDValue ExtOps[] = { Ld, WidthConst }; 14169 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14170 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14171 } else 14172 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14173 } 14174 14175 14176 // For i32 intermediate values, unfortunately, the conversion functions 14177 // leave the upper 32 bits of the value are undefined. Within the set of 14178 // scalar instructions, we have no method for zero- or sign-extending the 14179 // value. Thus, we cannot handle i32 intermediate values here. 14180 if (Op.getOperand(0).getValueType() == MVT::i32) 14181 return SDValue(); 14182 14183 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14184 "UINT_TO_FP is supported only with FPCVT"); 14185 14186 // If we have FCFIDS, then use it when converting to single-precision. 14187 // Otherwise, convert to double-precision and then round. 14188 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14189 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14190 : PPCISD::FCFIDS) 14191 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14192 : PPCISD::FCFID); 14193 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14194 ? MVT::f32 14195 : MVT::f64; 14196 14197 // If we're converting from a float, to an int, and back to a float again, 14198 // then we don't need the store/load pair at all. 14199 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14200 Subtarget.hasFPCVT()) || 14201 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14202 SDValue Src = Op.getOperand(0).getOperand(0); 14203 if (Src.getValueType() == MVT::f32) { 14204 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14205 DCI.AddToWorklist(Src.getNode()); 14206 } else if (Src.getValueType() != MVT::f64) { 14207 // Make sure that we don't pick up a ppc_fp128 source value. 14208 return SDValue(); 14209 } 14210 14211 unsigned FCTOp = 14212 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14213 PPCISD::FCTIDUZ; 14214 14215 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14216 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14217 14218 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14219 FP = DAG.getNode(ISD::FP_ROUND, dl, 14220 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14221 DCI.AddToWorklist(FP.getNode()); 14222 } 14223 14224 return FP; 14225 } 14226 14227 return SDValue(); 14228 } 14229 14230 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14231 // builtins) into loads with swaps. 14232 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14233 DAGCombinerInfo &DCI) const { 14234 SelectionDAG &DAG = DCI.DAG; 14235 SDLoc dl(N); 14236 SDValue Chain; 14237 SDValue Base; 14238 MachineMemOperand *MMO; 14239 14240 switch (N->getOpcode()) { 14241 default: 14242 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14243 case ISD::LOAD: { 14244 LoadSDNode *LD = cast<LoadSDNode>(N); 14245 Chain = LD->getChain(); 14246 Base = LD->getBasePtr(); 14247 MMO = LD->getMemOperand(); 14248 // If the MMO suggests this isn't a load of a full vector, leave 14249 // things alone. For a built-in, we have to make the change for 14250 // correctness, so if there is a size problem that will be a bug. 14251 if (MMO->getSize() < 16) 14252 return SDValue(); 14253 break; 14254 } 14255 case ISD::INTRINSIC_W_CHAIN: { 14256 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14257 Chain = Intrin->getChain(); 14258 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14259 // us what we want. Get operand 2 instead. 14260 Base = Intrin->getOperand(2); 14261 MMO = Intrin->getMemOperand(); 14262 break; 14263 } 14264 } 14265 14266 MVT VecTy = N->getValueType(0).getSimpleVT(); 14267 14268 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14269 // aligned and the type is a vector with elements up to 4 bytes 14270 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14271 VecTy.getScalarSizeInBits() <= 32) { 14272 return SDValue(); 14273 } 14274 14275 SDValue LoadOps[] = { Chain, Base }; 14276 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14277 DAG.getVTList(MVT::v2f64, MVT::Other), 14278 LoadOps, MVT::v2f64, MMO); 14279 14280 DCI.AddToWorklist(Load.getNode()); 14281 Chain = Load.getValue(1); 14282 SDValue Swap = DAG.getNode( 14283 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14284 DCI.AddToWorklist(Swap.getNode()); 14285 14286 // Add a bitcast if the resulting load type doesn't match v2f64. 14287 if (VecTy != MVT::v2f64) { 14288 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14289 DCI.AddToWorklist(N.getNode()); 14290 // Package {bitcast value, swap's chain} to match Load's shape. 14291 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14292 N, Swap.getValue(1)); 14293 } 14294 14295 return Swap; 14296 } 14297 14298 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14299 // builtins) into stores with swaps. 14300 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14301 DAGCombinerInfo &DCI) const { 14302 SelectionDAG &DAG = DCI.DAG; 14303 SDLoc dl(N); 14304 SDValue Chain; 14305 SDValue Base; 14306 unsigned SrcOpnd; 14307 MachineMemOperand *MMO; 14308 14309 switch (N->getOpcode()) { 14310 default: 14311 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14312 case ISD::STORE: { 14313 StoreSDNode *ST = cast<StoreSDNode>(N); 14314 Chain = ST->getChain(); 14315 Base = ST->getBasePtr(); 14316 MMO = ST->getMemOperand(); 14317 SrcOpnd = 1; 14318 // If the MMO suggests this isn't a store of a full vector, leave 14319 // things alone. For a built-in, we have to make the change for 14320 // correctness, so if there is a size problem that will be a bug. 14321 if (MMO->getSize() < 16) 14322 return SDValue(); 14323 break; 14324 } 14325 case ISD::INTRINSIC_VOID: { 14326 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14327 Chain = Intrin->getChain(); 14328 // Intrin->getBasePtr() oddly does not get what we want. 14329 Base = Intrin->getOperand(3); 14330 MMO = Intrin->getMemOperand(); 14331 SrcOpnd = 2; 14332 break; 14333 } 14334 } 14335 14336 SDValue Src = N->getOperand(SrcOpnd); 14337 MVT VecTy = Src.getValueType().getSimpleVT(); 14338 14339 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14340 // aligned and the type is a vector with elements up to 4 bytes 14341 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14342 VecTy.getScalarSizeInBits() <= 32) { 14343 return SDValue(); 14344 } 14345 14346 // All stores are done as v2f64 and possible bit cast. 14347 if (VecTy != MVT::v2f64) { 14348 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14349 DCI.AddToWorklist(Src.getNode()); 14350 } 14351 14352 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14353 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14354 DCI.AddToWorklist(Swap.getNode()); 14355 Chain = Swap.getValue(1); 14356 SDValue StoreOps[] = { Chain, Swap, Base }; 14357 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14358 DAG.getVTList(MVT::Other), 14359 StoreOps, VecTy, MMO); 14360 DCI.AddToWorklist(Store.getNode()); 14361 return Store; 14362 } 14363 14364 // Handle DAG combine for STORE (FP_TO_INT F). 14365 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14366 DAGCombinerInfo &DCI) const { 14367 14368 SelectionDAG &DAG = DCI.DAG; 14369 SDLoc dl(N); 14370 unsigned Opcode = N->getOperand(1).getOpcode(); 14371 14372 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14373 && "Not a FP_TO_INT Instruction!"); 14374 14375 SDValue Val = N->getOperand(1).getOperand(0); 14376 EVT Op1VT = N->getOperand(1).getValueType(); 14377 EVT ResVT = Val.getValueType(); 14378 14379 if (!isTypeLegal(ResVT)) 14380 return SDValue(); 14381 14382 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14383 bool ValidTypeForStoreFltAsInt = 14384 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14385 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14386 14387 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14388 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14389 return SDValue(); 14390 14391 // Extend f32 values to f64 14392 if (ResVT.getScalarSizeInBits() == 32) { 14393 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14394 DCI.AddToWorklist(Val.getNode()); 14395 } 14396 14397 // Set signed or unsigned conversion opcode. 14398 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14399 PPCISD::FP_TO_SINT_IN_VSR : 14400 PPCISD::FP_TO_UINT_IN_VSR; 14401 14402 Val = DAG.getNode(ConvOpcode, 14403 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14404 DCI.AddToWorklist(Val.getNode()); 14405 14406 // Set number of bytes being converted. 14407 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14408 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14409 DAG.getIntPtrConstant(ByteSize, dl, false), 14410 DAG.getValueType(Op1VT) }; 14411 14412 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14413 DAG.getVTList(MVT::Other), Ops, 14414 cast<StoreSDNode>(N)->getMemoryVT(), 14415 cast<StoreSDNode>(N)->getMemOperand()); 14416 14417 DCI.AddToWorklist(Val.getNode()); 14418 return Val; 14419 } 14420 14421 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14422 // Check that the source of the element keeps flipping 14423 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14424 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14425 for (int i = 1, e = Mask.size(); i < e; i++) { 14426 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14427 return false; 14428 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14429 return false; 14430 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14431 } 14432 return true; 14433 } 14434 14435 static bool isSplatBV(SDValue Op) { 14436 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14437 return false; 14438 SDValue FirstOp; 14439 14440 // Find first non-undef input. 14441 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14442 FirstOp = Op.getOperand(i); 14443 if (!FirstOp.isUndef()) 14444 break; 14445 } 14446 14447 // All inputs are undef or the same as the first non-undef input. 14448 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14449 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14450 return false; 14451 return true; 14452 } 14453 14454 static SDValue isScalarToVec(SDValue Op) { 14455 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14456 return Op; 14457 if (Op.getOpcode() != ISD::BITCAST) 14458 return SDValue(); 14459 Op = Op.getOperand(0); 14460 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14461 return Op; 14462 return SDValue(); 14463 } 14464 14465 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14466 int LHSMaxIdx, int RHSMinIdx, 14467 int RHSMaxIdx, int HalfVec) { 14468 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14469 int Idx = ShuffV[i]; 14470 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14471 ShuffV[i] += HalfVec; 14472 } 14473 return; 14474 } 14475 14476 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14477 // the original is: 14478 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14479 // In such a case, just change the shuffle mask to extract the element 14480 // from the permuted index. 14481 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14482 SDLoc dl(OrigSToV); 14483 EVT VT = OrigSToV.getValueType(); 14484 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14485 "Expecting a SCALAR_TO_VECTOR here"); 14486 SDValue Input = OrigSToV.getOperand(0); 14487 14488 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14489 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14490 SDValue OrigVector = Input.getOperand(0); 14491 14492 // Can't handle non-const element indices or different vector types 14493 // for the input to the extract and the output of the scalar_to_vector. 14494 if (Idx && VT == OrigVector.getValueType()) { 14495 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14496 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14497 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14498 } 14499 } 14500 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14501 OrigSToV.getOperand(0)); 14502 } 14503 14504 // On little endian subtargets, combine shuffles such as: 14505 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14506 // into: 14507 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14508 // because the latter can be matched to a single instruction merge. 14509 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14510 // to put the value into element zero. Adjust the shuffle mask so that the 14511 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14512 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14513 SelectionDAG &DAG) const { 14514 SDValue LHS = SVN->getOperand(0); 14515 SDValue RHS = SVN->getOperand(1); 14516 auto Mask = SVN->getMask(); 14517 int NumElts = LHS.getValueType().getVectorNumElements(); 14518 SDValue Res(SVN, 0); 14519 SDLoc dl(SVN); 14520 14521 // None of these combines are useful on big endian systems since the ISA 14522 // already has a big endian bias. 14523 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14524 return Res; 14525 14526 // If this is not a shuffle of a shuffle and the first element comes from 14527 // the second vector, canonicalize to the commuted form. This will make it 14528 // more likely to match one of the single instruction patterns. 14529 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14530 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14531 std::swap(LHS, RHS); 14532 Res = DAG.getCommutedVectorShuffle(*SVN); 14533 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14534 } 14535 14536 // Adjust the shuffle mask if either input vector comes from a 14537 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14538 // form (to prevent the need for a swap). 14539 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14540 SDValue SToVLHS = isScalarToVec(LHS); 14541 SDValue SToVRHS = isScalarToVec(RHS); 14542 if (SToVLHS || SToVRHS) { 14543 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14544 : SToVRHS.getValueType().getVectorNumElements(); 14545 int NumEltsOut = ShuffV.size(); 14546 14547 // Initially assume that neither input is permuted. These will be adjusted 14548 // accordingly if either input is. 14549 int LHSMaxIdx = -1; 14550 int RHSMinIdx = -1; 14551 int RHSMaxIdx = -1; 14552 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14553 14554 // Get the permuted scalar to vector nodes for the source(s) that come from 14555 // ISD::SCALAR_TO_VECTOR. 14556 if (SToVLHS) { 14557 // Set up the values for the shuffle vector fixup. 14558 LHSMaxIdx = NumEltsOut / NumEltsIn; 14559 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14560 if (SToVLHS.getValueType() != LHS.getValueType()) 14561 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14562 LHS = SToVLHS; 14563 } 14564 if (SToVRHS) { 14565 RHSMinIdx = NumEltsOut; 14566 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14567 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14568 if (SToVRHS.getValueType() != RHS.getValueType()) 14569 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14570 RHS = SToVRHS; 14571 } 14572 14573 // Fix up the shuffle mask to reflect where the desired element actually is. 14574 // The minimum and maximum indices that correspond to element zero for both 14575 // the LHS and RHS are computed and will control which shuffle mask entries 14576 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14577 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14578 // HalfVec to refer to the corresponding element in the permuted vector. 14579 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14580 HalfVec); 14581 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14582 14583 // We may have simplified away the shuffle. We won't be able to do anything 14584 // further with it here. 14585 if (!isa<ShuffleVectorSDNode>(Res)) 14586 return Res; 14587 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14588 } 14589 14590 // The common case after we commuted the shuffle is that the RHS is a splat 14591 // and we have elements coming in from the splat at indices that are not 14592 // conducive to using a merge. 14593 // Example: 14594 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14595 if (!isSplatBV(RHS)) 14596 return Res; 14597 14598 // We are looking for a mask such that all even elements are from 14599 // one vector and all odd elements from the other. 14600 if (!isAlternatingShuffMask(Mask, NumElts)) 14601 return Res; 14602 14603 // Adjust the mask so we are pulling in the same index from the splat 14604 // as the index from the interesting vector in consecutive elements. 14605 // Example (even elements from first vector): 14606 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14607 if (Mask[0] < NumElts) 14608 for (int i = 1, e = Mask.size(); i < e; i += 2) 14609 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14610 // Example (odd elements from first vector): 14611 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14612 else 14613 for (int i = 0, e = Mask.size(); i < e; i += 2) 14614 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14615 14616 // If the RHS has undefs, we need to remove them since we may have created 14617 // a shuffle that adds those instead of the splat value. 14618 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14619 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14620 14621 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14622 return Res; 14623 } 14624 14625 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14626 LSBaseSDNode *LSBase, 14627 DAGCombinerInfo &DCI) const { 14628 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14629 "Not a reverse memop pattern!"); 14630 14631 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14632 auto Mask = SVN->getMask(); 14633 int i = 0; 14634 auto I = Mask.rbegin(); 14635 auto E = Mask.rend(); 14636 14637 for (; I != E; ++I) { 14638 if (*I != i) 14639 return false; 14640 i++; 14641 } 14642 return true; 14643 }; 14644 14645 SelectionDAG &DAG = DCI.DAG; 14646 EVT VT = SVN->getValueType(0); 14647 14648 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14649 return SDValue(); 14650 14651 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14652 // See comment in PPCVSXSwapRemoval.cpp. 14653 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14654 if (!Subtarget.hasP9Vector()) 14655 return SDValue(); 14656 14657 if(!IsElementReverse(SVN)) 14658 return SDValue(); 14659 14660 if (LSBase->getOpcode() == ISD::LOAD) { 14661 SDLoc dl(SVN); 14662 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14663 return DAG.getMemIntrinsicNode( 14664 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14665 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14666 } 14667 14668 if (LSBase->getOpcode() == ISD::STORE) { 14669 SDLoc dl(LSBase); 14670 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14671 LSBase->getBasePtr()}; 14672 return DAG.getMemIntrinsicNode( 14673 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14674 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14675 } 14676 14677 llvm_unreachable("Expected a load or store node here"); 14678 } 14679 14680 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14681 DAGCombinerInfo &DCI) const { 14682 SelectionDAG &DAG = DCI.DAG; 14683 SDLoc dl(N); 14684 switch (N->getOpcode()) { 14685 default: break; 14686 case ISD::ADD: 14687 return combineADD(N, DCI); 14688 case ISD::SHL: 14689 return combineSHL(N, DCI); 14690 case ISD::SRA: 14691 return combineSRA(N, DCI); 14692 case ISD::SRL: 14693 return combineSRL(N, DCI); 14694 case ISD::MUL: 14695 return combineMUL(N, DCI); 14696 case ISD::FMA: 14697 case PPCISD::FNMSUB: 14698 return combineFMALike(N, DCI); 14699 case PPCISD::SHL: 14700 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14701 return N->getOperand(0); 14702 break; 14703 case PPCISD::SRL: 14704 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14705 return N->getOperand(0); 14706 break; 14707 case PPCISD::SRA: 14708 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14709 if (C->isNullValue() || // 0 >>s V -> 0. 14710 C->isAllOnesValue()) // -1 >>s V -> -1. 14711 return N->getOperand(0); 14712 } 14713 break; 14714 case ISD::SIGN_EXTEND: 14715 case ISD::ZERO_EXTEND: 14716 case ISD::ANY_EXTEND: 14717 return DAGCombineExtBoolTrunc(N, DCI); 14718 case ISD::TRUNCATE: 14719 return combineTRUNCATE(N, DCI); 14720 case ISD::SETCC: 14721 if (SDValue CSCC = combineSetCC(N, DCI)) 14722 return CSCC; 14723 LLVM_FALLTHROUGH; 14724 case ISD::SELECT_CC: 14725 return DAGCombineTruncBoolExt(N, DCI); 14726 case ISD::SINT_TO_FP: 14727 case ISD::UINT_TO_FP: 14728 return combineFPToIntToFP(N, DCI); 14729 case ISD::VECTOR_SHUFFLE: 14730 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14731 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14732 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14733 } 14734 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14735 case ISD::STORE: { 14736 14737 EVT Op1VT = N->getOperand(1).getValueType(); 14738 unsigned Opcode = N->getOperand(1).getOpcode(); 14739 14740 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14741 SDValue Val= combineStoreFPToInt(N, DCI); 14742 if (Val) 14743 return Val; 14744 } 14745 14746 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14747 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14748 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14749 if (Val) 14750 return Val; 14751 } 14752 14753 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14754 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14755 N->getOperand(1).getNode()->hasOneUse() && 14756 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14757 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14758 14759 // STBRX can only handle simple types and it makes no sense to store less 14760 // two bytes in byte-reversed order. 14761 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14762 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14763 break; 14764 14765 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14766 // Do an any-extend to 32-bits if this is a half-word input. 14767 if (BSwapOp.getValueType() == MVT::i16) 14768 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14769 14770 // If the type of BSWAP operand is wider than stored memory width 14771 // it need to be shifted to the right side before STBRX. 14772 if (Op1VT.bitsGT(mVT)) { 14773 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14774 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14775 DAG.getConstant(Shift, dl, MVT::i32)); 14776 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14777 if (Op1VT == MVT::i64) 14778 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14779 } 14780 14781 SDValue Ops[] = { 14782 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14783 }; 14784 return 14785 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14786 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14787 cast<StoreSDNode>(N)->getMemOperand()); 14788 } 14789 14790 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14791 // So it can increase the chance of CSE constant construction. 14792 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14793 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14794 // Need to sign-extended to 64-bits to handle negative values. 14795 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14796 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14797 MemVT.getSizeInBits()); 14798 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14799 14800 // DAG.getTruncStore() can't be used here because it doesn't accept 14801 // the general (base + offset) addressing mode. 14802 // So we use UpdateNodeOperands and setTruncatingStore instead. 14803 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14804 N->getOperand(3)); 14805 cast<StoreSDNode>(N)->setTruncatingStore(true); 14806 return SDValue(N, 0); 14807 } 14808 14809 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14810 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14811 if (Op1VT.isSimple()) { 14812 MVT StoreVT = Op1VT.getSimpleVT(); 14813 if (Subtarget.needsSwapsForVSXMemOps() && 14814 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14815 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14816 return expandVSXStoreForLE(N, DCI); 14817 } 14818 break; 14819 } 14820 case ISD::LOAD: { 14821 LoadSDNode *LD = cast<LoadSDNode>(N); 14822 EVT VT = LD->getValueType(0); 14823 14824 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14825 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14826 if (VT.isSimple()) { 14827 MVT LoadVT = VT.getSimpleVT(); 14828 if (Subtarget.needsSwapsForVSXMemOps() && 14829 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14830 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14831 return expandVSXLoadForLE(N, DCI); 14832 } 14833 14834 // We sometimes end up with a 64-bit integer load, from which we extract 14835 // two single-precision floating-point numbers. This happens with 14836 // std::complex<float>, and other similar structures, because of the way we 14837 // canonicalize structure copies. However, if we lack direct moves, 14838 // then the final bitcasts from the extracted integer values to the 14839 // floating-point numbers turn into store/load pairs. Even with direct moves, 14840 // just loading the two floating-point numbers is likely better. 14841 auto ReplaceTwoFloatLoad = [&]() { 14842 if (VT != MVT::i64) 14843 return false; 14844 14845 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14846 LD->isVolatile()) 14847 return false; 14848 14849 // We're looking for a sequence like this: 14850 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14851 // t16: i64 = srl t13, Constant:i32<32> 14852 // t17: i32 = truncate t16 14853 // t18: f32 = bitcast t17 14854 // t19: i32 = truncate t13 14855 // t20: f32 = bitcast t19 14856 14857 if (!LD->hasNUsesOfValue(2, 0)) 14858 return false; 14859 14860 auto UI = LD->use_begin(); 14861 while (UI.getUse().getResNo() != 0) ++UI; 14862 SDNode *Trunc = *UI++; 14863 while (UI.getUse().getResNo() != 0) ++UI; 14864 SDNode *RightShift = *UI; 14865 if (Trunc->getOpcode() != ISD::TRUNCATE) 14866 std::swap(Trunc, RightShift); 14867 14868 if (Trunc->getOpcode() != ISD::TRUNCATE || 14869 Trunc->getValueType(0) != MVT::i32 || 14870 !Trunc->hasOneUse()) 14871 return false; 14872 if (RightShift->getOpcode() != ISD::SRL || 14873 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14874 RightShift->getConstantOperandVal(1) != 32 || 14875 !RightShift->hasOneUse()) 14876 return false; 14877 14878 SDNode *Trunc2 = *RightShift->use_begin(); 14879 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14880 Trunc2->getValueType(0) != MVT::i32 || 14881 !Trunc2->hasOneUse()) 14882 return false; 14883 14884 SDNode *Bitcast = *Trunc->use_begin(); 14885 SDNode *Bitcast2 = *Trunc2->use_begin(); 14886 14887 if (Bitcast->getOpcode() != ISD::BITCAST || 14888 Bitcast->getValueType(0) != MVT::f32) 14889 return false; 14890 if (Bitcast2->getOpcode() != ISD::BITCAST || 14891 Bitcast2->getValueType(0) != MVT::f32) 14892 return false; 14893 14894 if (Subtarget.isLittleEndian()) 14895 std::swap(Bitcast, Bitcast2); 14896 14897 // Bitcast has the second float (in memory-layout order) and Bitcast2 14898 // has the first one. 14899 14900 SDValue BasePtr = LD->getBasePtr(); 14901 if (LD->isIndexed()) { 14902 assert(LD->getAddressingMode() == ISD::PRE_INC && 14903 "Non-pre-inc AM on PPC?"); 14904 BasePtr = 14905 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14906 LD->getOffset()); 14907 } 14908 14909 auto MMOFlags = 14910 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14911 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14912 LD->getPointerInfo(), LD->getAlignment(), 14913 MMOFlags, LD->getAAInfo()); 14914 SDValue AddPtr = 14915 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14916 BasePtr, DAG.getIntPtrConstant(4, dl)); 14917 SDValue FloatLoad2 = DAG.getLoad( 14918 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14919 LD->getPointerInfo().getWithOffset(4), 14920 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14921 14922 if (LD->isIndexed()) { 14923 // Note that DAGCombine should re-form any pre-increment load(s) from 14924 // what is produced here if that makes sense. 14925 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14926 } 14927 14928 DCI.CombineTo(Bitcast2, FloatLoad); 14929 DCI.CombineTo(Bitcast, FloatLoad2); 14930 14931 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14932 SDValue(FloatLoad2.getNode(), 1)); 14933 return true; 14934 }; 14935 14936 if (ReplaceTwoFloatLoad()) 14937 return SDValue(N, 0); 14938 14939 EVT MemVT = LD->getMemoryVT(); 14940 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14941 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14942 if (LD->isUnindexed() && VT.isVector() && 14943 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14944 // P8 and later hardware should just use LOAD. 14945 !Subtarget.hasP8Vector() && 14946 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14947 VT == MVT::v4f32))) && 14948 LD->getAlign() < ABIAlignment) { 14949 // This is a type-legal unaligned Altivec load. 14950 SDValue Chain = LD->getChain(); 14951 SDValue Ptr = LD->getBasePtr(); 14952 bool isLittleEndian = Subtarget.isLittleEndian(); 14953 14954 // This implements the loading of unaligned vectors as described in 14955 // the venerable Apple Velocity Engine overview. Specifically: 14956 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14957 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14958 // 14959 // The general idea is to expand a sequence of one or more unaligned 14960 // loads into an alignment-based permutation-control instruction (lvsl 14961 // or lvsr), a series of regular vector loads (which always truncate 14962 // their input address to an aligned address), and a series of 14963 // permutations. The results of these permutations are the requested 14964 // loaded values. The trick is that the last "extra" load is not taken 14965 // from the address you might suspect (sizeof(vector) bytes after the 14966 // last requested load), but rather sizeof(vector) - 1 bytes after the 14967 // last requested vector. The point of this is to avoid a page fault if 14968 // the base address happened to be aligned. This works because if the 14969 // base address is aligned, then adding less than a full vector length 14970 // will cause the last vector in the sequence to be (re)loaded. 14971 // Otherwise, the next vector will be fetched as you might suspect was 14972 // necessary. 14973 14974 // We might be able to reuse the permutation generation from 14975 // a different base address offset from this one by an aligned amount. 14976 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14977 // optimization later. 14978 Intrinsic::ID Intr, IntrLD, IntrPerm; 14979 MVT PermCntlTy, PermTy, LDTy; 14980 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14981 : Intrinsic::ppc_altivec_lvsl; 14982 IntrLD = Intrinsic::ppc_altivec_lvx; 14983 IntrPerm = Intrinsic::ppc_altivec_vperm; 14984 PermCntlTy = MVT::v16i8; 14985 PermTy = MVT::v4i32; 14986 LDTy = MVT::v4i32; 14987 14988 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14989 14990 // Create the new MMO for the new base load. It is like the original MMO, 14991 // but represents an area in memory almost twice the vector size centered 14992 // on the original address. If the address is unaligned, we might start 14993 // reading up to (sizeof(vector)-1) bytes below the address of the 14994 // original unaligned load. 14995 MachineFunction &MF = DAG.getMachineFunction(); 14996 MachineMemOperand *BaseMMO = 14997 MF.getMachineMemOperand(LD->getMemOperand(), 14998 -(long)MemVT.getStoreSize()+1, 14999 2*MemVT.getStoreSize()-1); 15000 15001 // Create the new base load. 15002 SDValue LDXIntID = 15003 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15004 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15005 SDValue BaseLoad = 15006 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15007 DAG.getVTList(PermTy, MVT::Other), 15008 BaseLoadOps, LDTy, BaseMMO); 15009 15010 // Note that the value of IncOffset (which is provided to the next 15011 // load's pointer info offset value, and thus used to calculate the 15012 // alignment), and the value of IncValue (which is actually used to 15013 // increment the pointer value) are different! This is because we 15014 // require the next load to appear to be aligned, even though it 15015 // is actually offset from the base pointer by a lesser amount. 15016 int IncOffset = VT.getSizeInBits() / 8; 15017 int IncValue = IncOffset; 15018 15019 // Walk (both up and down) the chain looking for another load at the real 15020 // (aligned) offset (the alignment of the other load does not matter in 15021 // this case). If found, then do not use the offset reduction trick, as 15022 // that will prevent the loads from being later combined (as they would 15023 // otherwise be duplicates). 15024 if (!findConsecutiveLoad(LD, DAG)) 15025 --IncValue; 15026 15027 SDValue Increment = 15028 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15029 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15030 15031 MachineMemOperand *ExtraMMO = 15032 MF.getMachineMemOperand(LD->getMemOperand(), 15033 1, 2*MemVT.getStoreSize()-1); 15034 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15035 SDValue ExtraLoad = 15036 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15037 DAG.getVTList(PermTy, MVT::Other), 15038 ExtraLoadOps, LDTy, ExtraMMO); 15039 15040 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15041 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15042 15043 // Because vperm has a big-endian bias, we must reverse the order 15044 // of the input vectors and complement the permute control vector 15045 // when generating little endian code. We have already handled the 15046 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15047 // and ExtraLoad here. 15048 SDValue Perm; 15049 if (isLittleEndian) 15050 Perm = BuildIntrinsicOp(IntrPerm, 15051 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15052 else 15053 Perm = BuildIntrinsicOp(IntrPerm, 15054 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15055 15056 if (VT != PermTy) 15057 Perm = Subtarget.hasAltivec() 15058 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15059 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15060 DAG.getTargetConstant(1, dl, MVT::i64)); 15061 // second argument is 1 because this rounding 15062 // is always exact. 15063 15064 // The output of the permutation is our loaded result, the TokenFactor is 15065 // our new chain. 15066 DCI.CombineTo(N, Perm, TF); 15067 return SDValue(N, 0); 15068 } 15069 } 15070 break; 15071 case ISD::INTRINSIC_WO_CHAIN: { 15072 bool isLittleEndian = Subtarget.isLittleEndian(); 15073 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15074 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15075 : Intrinsic::ppc_altivec_lvsl); 15076 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15077 SDValue Add = N->getOperand(1); 15078 15079 int Bits = 4 /* 16 byte alignment */; 15080 15081 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15082 APInt::getAllOnesValue(Bits /* alignment */) 15083 .zext(Add.getScalarValueSizeInBits()))) { 15084 SDNode *BasePtr = Add->getOperand(0).getNode(); 15085 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15086 UE = BasePtr->use_end(); 15087 UI != UE; ++UI) { 15088 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15089 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15090 IID) { 15091 // We've found another LVSL/LVSR, and this address is an aligned 15092 // multiple of that one. The results will be the same, so use the 15093 // one we've just found instead. 15094 15095 return SDValue(*UI, 0); 15096 } 15097 } 15098 } 15099 15100 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15101 SDNode *BasePtr = Add->getOperand(0).getNode(); 15102 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15103 UE = BasePtr->use_end(); UI != UE; ++UI) { 15104 if (UI->getOpcode() == ISD::ADD && 15105 isa<ConstantSDNode>(UI->getOperand(1)) && 15106 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15107 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15108 (1ULL << Bits) == 0) { 15109 SDNode *OtherAdd = *UI; 15110 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15111 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15112 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15113 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15114 return SDValue(*VI, 0); 15115 } 15116 } 15117 } 15118 } 15119 } 15120 } 15121 15122 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15123 // Expose the vabsduw/h/b opportunity for down stream 15124 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15125 (IID == Intrinsic::ppc_altivec_vmaxsw || 15126 IID == Intrinsic::ppc_altivec_vmaxsh || 15127 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15128 SDValue V1 = N->getOperand(1); 15129 SDValue V2 = N->getOperand(2); 15130 if ((V1.getSimpleValueType() == MVT::v4i32 || 15131 V1.getSimpleValueType() == MVT::v8i16 || 15132 V1.getSimpleValueType() == MVT::v16i8) && 15133 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15134 // (0-a, a) 15135 if (V1.getOpcode() == ISD::SUB && 15136 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15137 V1.getOperand(1) == V2) { 15138 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15139 } 15140 // (a, 0-a) 15141 if (V2.getOpcode() == ISD::SUB && 15142 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15143 V2.getOperand(1) == V1) { 15144 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15145 } 15146 // (x-y, y-x) 15147 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15148 V1.getOperand(0) == V2.getOperand(1) && 15149 V1.getOperand(1) == V2.getOperand(0)) { 15150 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15151 } 15152 } 15153 } 15154 } 15155 15156 break; 15157 case ISD::INTRINSIC_W_CHAIN: 15158 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15159 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15160 if (Subtarget.needsSwapsForVSXMemOps()) { 15161 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15162 default: 15163 break; 15164 case Intrinsic::ppc_vsx_lxvw4x: 15165 case Intrinsic::ppc_vsx_lxvd2x: 15166 return expandVSXLoadForLE(N, DCI); 15167 } 15168 } 15169 break; 15170 case ISD::INTRINSIC_VOID: 15171 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15172 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15173 if (Subtarget.needsSwapsForVSXMemOps()) { 15174 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15175 default: 15176 break; 15177 case Intrinsic::ppc_vsx_stxvw4x: 15178 case Intrinsic::ppc_vsx_stxvd2x: 15179 return expandVSXStoreForLE(N, DCI); 15180 } 15181 } 15182 break; 15183 case ISD::BSWAP: 15184 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15185 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15186 N->getOperand(0).hasOneUse() && 15187 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15188 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15189 N->getValueType(0) == MVT::i64))) { 15190 SDValue Load = N->getOperand(0); 15191 LoadSDNode *LD = cast<LoadSDNode>(Load); 15192 // Create the byte-swapping load. 15193 SDValue Ops[] = { 15194 LD->getChain(), // Chain 15195 LD->getBasePtr(), // Ptr 15196 DAG.getValueType(N->getValueType(0)) // VT 15197 }; 15198 SDValue BSLoad = 15199 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15200 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15201 MVT::i64 : MVT::i32, MVT::Other), 15202 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15203 15204 // If this is an i16 load, insert the truncate. 15205 SDValue ResVal = BSLoad; 15206 if (N->getValueType(0) == MVT::i16) 15207 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15208 15209 // First, combine the bswap away. This makes the value produced by the 15210 // load dead. 15211 DCI.CombineTo(N, ResVal); 15212 15213 // Next, combine the load away, we give it a bogus result value but a real 15214 // chain result. The result value is dead because the bswap is dead. 15215 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15216 15217 // Return N so it doesn't get rechecked! 15218 return SDValue(N, 0); 15219 } 15220 break; 15221 case PPCISD::VCMP: 15222 // If a VCMP_rec node already exists with exactly the same operands as this 15223 // node, use its result instead of this node (VCMP_rec computes both a CR6 15224 // and a normal output). 15225 // 15226 if (!N->getOperand(0).hasOneUse() && 15227 !N->getOperand(1).hasOneUse() && 15228 !N->getOperand(2).hasOneUse()) { 15229 15230 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15231 SDNode *VCMPrecNode = nullptr; 15232 15233 SDNode *LHSN = N->getOperand(0).getNode(); 15234 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15235 UI != E; ++UI) 15236 if (UI->getOpcode() == PPCISD::VCMP_rec && 15237 UI->getOperand(1) == N->getOperand(1) && 15238 UI->getOperand(2) == N->getOperand(2) && 15239 UI->getOperand(0) == N->getOperand(0)) { 15240 VCMPrecNode = *UI; 15241 break; 15242 } 15243 15244 // If there is no VCMP_rec node, or if the flag value has a single use, 15245 // don't transform this. 15246 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15247 break; 15248 15249 // Look at the (necessarily single) use of the flag value. If it has a 15250 // chain, this transformation is more complex. Note that multiple things 15251 // could use the value result, which we should ignore. 15252 SDNode *FlagUser = nullptr; 15253 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15254 FlagUser == nullptr; ++UI) { 15255 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15256 SDNode *User = *UI; 15257 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15258 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15259 FlagUser = User; 15260 break; 15261 } 15262 } 15263 } 15264 15265 // If the user is a MFOCRF instruction, we know this is safe. 15266 // Otherwise we give up for right now. 15267 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15268 return SDValue(VCMPrecNode, 0); 15269 } 15270 break; 15271 case ISD::BRCOND: { 15272 SDValue Cond = N->getOperand(1); 15273 SDValue Target = N->getOperand(2); 15274 15275 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15276 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15277 Intrinsic::loop_decrement) { 15278 15279 // We now need to make the intrinsic dead (it cannot be instruction 15280 // selected). 15281 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15282 assert(Cond.getNode()->hasOneUse() && 15283 "Counter decrement has more than one use"); 15284 15285 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15286 N->getOperand(0), Target); 15287 } 15288 } 15289 break; 15290 case ISD::BR_CC: { 15291 // If this is a branch on an altivec predicate comparison, lower this so 15292 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15293 // lowering is done pre-legalize, because the legalizer lowers the predicate 15294 // compare down to code that is difficult to reassemble. 15295 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15296 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15297 15298 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15299 // value. If so, pass-through the AND to get to the intrinsic. 15300 if (LHS.getOpcode() == ISD::AND && 15301 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15302 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15303 Intrinsic::loop_decrement && 15304 isa<ConstantSDNode>(LHS.getOperand(1)) && 15305 !isNullConstant(LHS.getOperand(1))) 15306 LHS = LHS.getOperand(0); 15307 15308 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15309 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15310 Intrinsic::loop_decrement && 15311 isa<ConstantSDNode>(RHS)) { 15312 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15313 "Counter decrement comparison is not EQ or NE"); 15314 15315 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15316 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15317 (CC == ISD::SETNE && !Val); 15318 15319 // We now need to make the intrinsic dead (it cannot be instruction 15320 // selected). 15321 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15322 assert(LHS.getNode()->hasOneUse() && 15323 "Counter decrement has more than one use"); 15324 15325 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15326 N->getOperand(0), N->getOperand(4)); 15327 } 15328 15329 int CompareOpc; 15330 bool isDot; 15331 15332 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15333 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15334 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15335 assert(isDot && "Can't compare against a vector result!"); 15336 15337 // If this is a comparison against something other than 0/1, then we know 15338 // that the condition is never/always true. 15339 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15340 if (Val != 0 && Val != 1) { 15341 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15342 return N->getOperand(0); 15343 // Always !=, turn it into an unconditional branch. 15344 return DAG.getNode(ISD::BR, dl, MVT::Other, 15345 N->getOperand(0), N->getOperand(4)); 15346 } 15347 15348 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15349 15350 // Create the PPCISD altivec 'dot' comparison node. 15351 SDValue Ops[] = { 15352 LHS.getOperand(2), // LHS of compare 15353 LHS.getOperand(3), // RHS of compare 15354 DAG.getConstant(CompareOpc, dl, MVT::i32) 15355 }; 15356 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15357 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15358 15359 // Unpack the result based on how the target uses it. 15360 PPC::Predicate CompOpc; 15361 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15362 default: // Can't happen, don't crash on invalid number though. 15363 case 0: // Branch on the value of the EQ bit of CR6. 15364 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15365 break; 15366 case 1: // Branch on the inverted value of the EQ bit of CR6. 15367 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15368 break; 15369 case 2: // Branch on the value of the LT bit of CR6. 15370 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15371 break; 15372 case 3: // Branch on the inverted value of the LT bit of CR6. 15373 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15374 break; 15375 } 15376 15377 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15378 DAG.getConstant(CompOpc, dl, MVT::i32), 15379 DAG.getRegister(PPC::CR6, MVT::i32), 15380 N->getOperand(4), CompNode.getValue(1)); 15381 } 15382 break; 15383 } 15384 case ISD::BUILD_VECTOR: 15385 return DAGCombineBuildVector(N, DCI); 15386 case ISD::ABS: 15387 return combineABS(N, DCI); 15388 case ISD::VSELECT: 15389 return combineVSelect(N, DCI); 15390 } 15391 15392 return SDValue(); 15393 } 15394 15395 SDValue 15396 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15397 SelectionDAG &DAG, 15398 SmallVectorImpl<SDNode *> &Created) const { 15399 // fold (sdiv X, pow2) 15400 EVT VT = N->getValueType(0); 15401 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15402 return SDValue(); 15403 if ((VT != MVT::i32 && VT != MVT::i64) || 15404 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15405 return SDValue(); 15406 15407 SDLoc DL(N); 15408 SDValue N0 = N->getOperand(0); 15409 15410 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15411 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15412 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15413 15414 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15415 Created.push_back(Op.getNode()); 15416 15417 if (IsNegPow2) { 15418 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15419 Created.push_back(Op.getNode()); 15420 } 15421 15422 return Op; 15423 } 15424 15425 //===----------------------------------------------------------------------===// 15426 // Inline Assembly Support 15427 //===----------------------------------------------------------------------===// 15428 15429 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15430 KnownBits &Known, 15431 const APInt &DemandedElts, 15432 const SelectionDAG &DAG, 15433 unsigned Depth) const { 15434 Known.resetAll(); 15435 switch (Op.getOpcode()) { 15436 default: break; 15437 case PPCISD::LBRX: { 15438 // lhbrx is known to have the top bits cleared out. 15439 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15440 Known.Zero = 0xFFFF0000; 15441 break; 15442 } 15443 case ISD::INTRINSIC_WO_CHAIN: { 15444 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15445 default: break; 15446 case Intrinsic::ppc_altivec_vcmpbfp_p: 15447 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15448 case Intrinsic::ppc_altivec_vcmpequb_p: 15449 case Intrinsic::ppc_altivec_vcmpequh_p: 15450 case Intrinsic::ppc_altivec_vcmpequw_p: 15451 case Intrinsic::ppc_altivec_vcmpequd_p: 15452 case Intrinsic::ppc_altivec_vcmpequq_p: 15453 case Intrinsic::ppc_altivec_vcmpgefp_p: 15454 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15455 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15456 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15457 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15458 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15459 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15460 case Intrinsic::ppc_altivec_vcmpgtub_p: 15461 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15462 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15463 case Intrinsic::ppc_altivec_vcmpgtud_p: 15464 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15465 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15466 break; 15467 } 15468 } 15469 } 15470 } 15471 15472 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15473 switch (Subtarget.getCPUDirective()) { 15474 default: break; 15475 case PPC::DIR_970: 15476 case PPC::DIR_PWR4: 15477 case PPC::DIR_PWR5: 15478 case PPC::DIR_PWR5X: 15479 case PPC::DIR_PWR6: 15480 case PPC::DIR_PWR6X: 15481 case PPC::DIR_PWR7: 15482 case PPC::DIR_PWR8: 15483 case PPC::DIR_PWR9: 15484 case PPC::DIR_PWR10: 15485 case PPC::DIR_PWR_FUTURE: { 15486 if (!ML) 15487 break; 15488 15489 if (!DisableInnermostLoopAlign32) { 15490 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15491 // so that we can decrease cache misses and branch-prediction misses. 15492 // Actual alignment of the loop will depend on the hotness check and other 15493 // logic in alignBlocks. 15494 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15495 return Align(32); 15496 } 15497 15498 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15499 15500 // For small loops (between 5 and 8 instructions), align to a 32-byte 15501 // boundary so that the entire loop fits in one instruction-cache line. 15502 uint64_t LoopSize = 0; 15503 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15504 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15505 LoopSize += TII->getInstSizeInBytes(*J); 15506 if (LoopSize > 32) 15507 break; 15508 } 15509 15510 if (LoopSize > 16 && LoopSize <= 32) 15511 return Align(32); 15512 15513 break; 15514 } 15515 } 15516 15517 return TargetLowering::getPrefLoopAlignment(ML); 15518 } 15519 15520 /// getConstraintType - Given a constraint, return the type of 15521 /// constraint it is for this target. 15522 PPCTargetLowering::ConstraintType 15523 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15524 if (Constraint.size() == 1) { 15525 switch (Constraint[0]) { 15526 default: break; 15527 case 'b': 15528 case 'r': 15529 case 'f': 15530 case 'd': 15531 case 'v': 15532 case 'y': 15533 return C_RegisterClass; 15534 case 'Z': 15535 // FIXME: While Z does indicate a memory constraint, it specifically 15536 // indicates an r+r address (used in conjunction with the 'y' modifier 15537 // in the replacement string). Currently, we're forcing the base 15538 // register to be r0 in the asm printer (which is interpreted as zero) 15539 // and forming the complete address in the second register. This is 15540 // suboptimal. 15541 return C_Memory; 15542 } 15543 } else if (Constraint == "wc") { // individual CR bits. 15544 return C_RegisterClass; 15545 } else if (Constraint == "wa" || Constraint == "wd" || 15546 Constraint == "wf" || Constraint == "ws" || 15547 Constraint == "wi" || Constraint == "ww") { 15548 return C_RegisterClass; // VSX registers. 15549 } 15550 return TargetLowering::getConstraintType(Constraint); 15551 } 15552 15553 /// Examine constraint type and operand type and determine a weight value. 15554 /// This object must already have been set up with the operand type 15555 /// and the current alternative constraint selected. 15556 TargetLowering::ConstraintWeight 15557 PPCTargetLowering::getSingleConstraintMatchWeight( 15558 AsmOperandInfo &info, const char *constraint) const { 15559 ConstraintWeight weight = CW_Invalid; 15560 Value *CallOperandVal = info.CallOperandVal; 15561 // If we don't have a value, we can't do a match, 15562 // but allow it at the lowest weight. 15563 if (!CallOperandVal) 15564 return CW_Default; 15565 Type *type = CallOperandVal->getType(); 15566 15567 // Look at the constraint type. 15568 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15569 return CW_Register; // an individual CR bit. 15570 else if ((StringRef(constraint) == "wa" || 15571 StringRef(constraint) == "wd" || 15572 StringRef(constraint) == "wf") && 15573 type->isVectorTy()) 15574 return CW_Register; 15575 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15576 return CW_Register; // just hold 64-bit integers data. 15577 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15578 return CW_Register; 15579 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15580 return CW_Register; 15581 15582 switch (*constraint) { 15583 default: 15584 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15585 break; 15586 case 'b': 15587 if (type->isIntegerTy()) 15588 weight = CW_Register; 15589 break; 15590 case 'f': 15591 if (type->isFloatTy()) 15592 weight = CW_Register; 15593 break; 15594 case 'd': 15595 if (type->isDoubleTy()) 15596 weight = CW_Register; 15597 break; 15598 case 'v': 15599 if (type->isVectorTy()) 15600 weight = CW_Register; 15601 break; 15602 case 'y': 15603 weight = CW_Register; 15604 break; 15605 case 'Z': 15606 weight = CW_Memory; 15607 break; 15608 } 15609 return weight; 15610 } 15611 15612 std::pair<unsigned, const TargetRegisterClass *> 15613 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15614 StringRef Constraint, 15615 MVT VT) const { 15616 if (Constraint.size() == 1) { 15617 // GCC RS6000 Constraint Letters 15618 switch (Constraint[0]) { 15619 case 'b': // R1-R31 15620 if (VT == MVT::i64 && Subtarget.isPPC64()) 15621 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15622 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15623 case 'r': // R0-R31 15624 if (VT == MVT::i64 && Subtarget.isPPC64()) 15625 return std::make_pair(0U, &PPC::G8RCRegClass); 15626 return std::make_pair(0U, &PPC::GPRCRegClass); 15627 // 'd' and 'f' constraints are both defined to be "the floating point 15628 // registers", where one is for 32-bit and the other for 64-bit. We don't 15629 // really care overly much here so just give them all the same reg classes. 15630 case 'd': 15631 case 'f': 15632 if (Subtarget.hasSPE()) { 15633 if (VT == MVT::f32 || VT == MVT::i32) 15634 return std::make_pair(0U, &PPC::GPRCRegClass); 15635 if (VT == MVT::f64 || VT == MVT::i64) 15636 return std::make_pair(0U, &PPC::SPERCRegClass); 15637 } else { 15638 if (VT == MVT::f32 || VT == MVT::i32) 15639 return std::make_pair(0U, &PPC::F4RCRegClass); 15640 if (VT == MVT::f64 || VT == MVT::i64) 15641 return std::make_pair(0U, &PPC::F8RCRegClass); 15642 } 15643 break; 15644 case 'v': 15645 if (Subtarget.hasAltivec()) 15646 return std::make_pair(0U, &PPC::VRRCRegClass); 15647 break; 15648 case 'y': // crrc 15649 return std::make_pair(0U, &PPC::CRRCRegClass); 15650 } 15651 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15652 // An individual CR bit. 15653 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15654 } else if ((Constraint == "wa" || Constraint == "wd" || 15655 Constraint == "wf" || Constraint == "wi") && 15656 Subtarget.hasVSX()) { 15657 return std::make_pair(0U, &PPC::VSRCRegClass); 15658 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15659 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15660 return std::make_pair(0U, &PPC::VSSRCRegClass); 15661 else 15662 return std::make_pair(0U, &PPC::VSFRCRegClass); 15663 } 15664 15665 // If we name a VSX register, we can't defer to the base class because it 15666 // will not recognize the correct register (their names will be VSL{0-31} 15667 // and V{0-31} so they won't match). So we match them here. 15668 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15669 int VSNum = atoi(Constraint.data() + 3); 15670 assert(VSNum >= 0 && VSNum <= 63 && 15671 "Attempted to access a vsr out of range"); 15672 if (VSNum < 32) 15673 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15674 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15675 } 15676 std::pair<unsigned, const TargetRegisterClass *> R = 15677 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15678 15679 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15680 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15681 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15682 // register. 15683 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15684 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15685 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15686 PPC::GPRCRegClass.contains(R.first)) 15687 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15688 PPC::sub_32, &PPC::G8RCRegClass), 15689 &PPC::G8RCRegClass); 15690 15691 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15692 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15693 R.first = PPC::CR0; 15694 R.second = &PPC::CRRCRegClass; 15695 } 15696 15697 return R; 15698 } 15699 15700 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15701 /// vector. If it is invalid, don't add anything to Ops. 15702 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15703 std::string &Constraint, 15704 std::vector<SDValue>&Ops, 15705 SelectionDAG &DAG) const { 15706 SDValue Result; 15707 15708 // Only support length 1 constraints. 15709 if (Constraint.length() > 1) return; 15710 15711 char Letter = Constraint[0]; 15712 switch (Letter) { 15713 default: break; 15714 case 'I': 15715 case 'J': 15716 case 'K': 15717 case 'L': 15718 case 'M': 15719 case 'N': 15720 case 'O': 15721 case 'P': { 15722 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15723 if (!CST) return; // Must be an immediate to match. 15724 SDLoc dl(Op); 15725 int64_t Value = CST->getSExtValue(); 15726 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15727 // numbers are printed as such. 15728 switch (Letter) { 15729 default: llvm_unreachable("Unknown constraint letter!"); 15730 case 'I': // "I" is a signed 16-bit constant. 15731 if (isInt<16>(Value)) 15732 Result = DAG.getTargetConstant(Value, dl, TCVT); 15733 break; 15734 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15735 if (isShiftedUInt<16, 16>(Value)) 15736 Result = DAG.getTargetConstant(Value, dl, TCVT); 15737 break; 15738 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15739 if (isShiftedInt<16, 16>(Value)) 15740 Result = DAG.getTargetConstant(Value, dl, TCVT); 15741 break; 15742 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15743 if (isUInt<16>(Value)) 15744 Result = DAG.getTargetConstant(Value, dl, TCVT); 15745 break; 15746 case 'M': // "M" is a constant that is greater than 31. 15747 if (Value > 31) 15748 Result = DAG.getTargetConstant(Value, dl, TCVT); 15749 break; 15750 case 'N': // "N" is a positive constant that is an exact power of two. 15751 if (Value > 0 && isPowerOf2_64(Value)) 15752 Result = DAG.getTargetConstant(Value, dl, TCVT); 15753 break; 15754 case 'O': // "O" is the constant zero. 15755 if (Value == 0) 15756 Result = DAG.getTargetConstant(Value, dl, TCVT); 15757 break; 15758 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15759 if (isInt<16>(-Value)) 15760 Result = DAG.getTargetConstant(Value, dl, TCVT); 15761 break; 15762 } 15763 break; 15764 } 15765 } 15766 15767 if (Result.getNode()) { 15768 Ops.push_back(Result); 15769 return; 15770 } 15771 15772 // Handle standard constraint letters. 15773 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15774 } 15775 15776 // isLegalAddressingMode - Return true if the addressing mode represented 15777 // by AM is legal for this target, for a load/store of the specified type. 15778 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15779 const AddrMode &AM, Type *Ty, 15780 unsigned AS, 15781 Instruction *I) const { 15782 // Vector type r+i form is supported since power9 as DQ form. We don't check 15783 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15784 // imm form is preferred and the offset can be adjusted to use imm form later 15785 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15786 // max offset to check legal addressing mode, we should be a little aggressive 15787 // to contain other offsets for that LSRUse. 15788 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15789 return false; 15790 15791 // PPC allows a sign-extended 16-bit immediate field. 15792 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15793 return false; 15794 15795 // No global is ever allowed as a base. 15796 if (AM.BaseGV) 15797 return false; 15798 15799 // PPC only support r+r, 15800 switch (AM.Scale) { 15801 case 0: // "r+i" or just "i", depending on HasBaseReg. 15802 break; 15803 case 1: 15804 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15805 return false; 15806 // Otherwise we have r+r or r+i. 15807 break; 15808 case 2: 15809 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15810 return false; 15811 // Allow 2*r as r+r. 15812 break; 15813 default: 15814 // No other scales are supported. 15815 return false; 15816 } 15817 15818 return true; 15819 } 15820 15821 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15822 SelectionDAG &DAG) const { 15823 MachineFunction &MF = DAG.getMachineFunction(); 15824 MachineFrameInfo &MFI = MF.getFrameInfo(); 15825 MFI.setReturnAddressIsTaken(true); 15826 15827 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15828 return SDValue(); 15829 15830 SDLoc dl(Op); 15831 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15832 15833 // Make sure the function does not optimize away the store of the RA to 15834 // the stack. 15835 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15836 FuncInfo->setLRStoreRequired(); 15837 bool isPPC64 = Subtarget.isPPC64(); 15838 auto PtrVT = getPointerTy(MF.getDataLayout()); 15839 15840 if (Depth > 0) { 15841 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15842 SDValue Offset = 15843 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15844 isPPC64 ? MVT::i64 : MVT::i32); 15845 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15846 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15847 MachinePointerInfo()); 15848 } 15849 15850 // Just load the return address off the stack. 15851 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15852 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15853 MachinePointerInfo()); 15854 } 15855 15856 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15857 SelectionDAG &DAG) const { 15858 SDLoc dl(Op); 15859 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15860 15861 MachineFunction &MF = DAG.getMachineFunction(); 15862 MachineFrameInfo &MFI = MF.getFrameInfo(); 15863 MFI.setFrameAddressIsTaken(true); 15864 15865 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15866 bool isPPC64 = PtrVT == MVT::i64; 15867 15868 // Naked functions never have a frame pointer, and so we use r1. For all 15869 // other functions, this decision must be delayed until during PEI. 15870 unsigned FrameReg; 15871 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15872 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15873 else 15874 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15875 15876 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15877 PtrVT); 15878 while (Depth--) 15879 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15880 FrameAddr, MachinePointerInfo()); 15881 return FrameAddr; 15882 } 15883 15884 // FIXME? Maybe this could be a TableGen attribute on some registers and 15885 // this table could be generated automatically from RegInfo. 15886 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15887 const MachineFunction &MF) const { 15888 bool isPPC64 = Subtarget.isPPC64(); 15889 15890 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15891 if (!is64Bit && VT != LLT::scalar(32)) 15892 report_fatal_error("Invalid register global variable type"); 15893 15894 Register Reg = StringSwitch<Register>(RegName) 15895 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15896 .Case("r2", isPPC64 ? Register() : PPC::R2) 15897 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15898 .Default(Register()); 15899 15900 if (Reg) 15901 return Reg; 15902 report_fatal_error("Invalid register name global variable"); 15903 } 15904 15905 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15906 // 32-bit SVR4 ABI access everything as got-indirect. 15907 if (Subtarget.is32BitELFABI()) 15908 return true; 15909 15910 // AIX accesses everything indirectly through the TOC, which is similar to 15911 // the GOT. 15912 if (Subtarget.isAIXABI()) 15913 return true; 15914 15915 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15916 // If it is small or large code model, module locals are accessed 15917 // indirectly by loading their address from .toc/.got. 15918 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15919 return true; 15920 15921 // JumpTable and BlockAddress are accessed as got-indirect. 15922 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15923 return true; 15924 15925 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15926 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15927 15928 return false; 15929 } 15930 15931 bool 15932 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15933 // The PowerPC target isn't yet aware of offsets. 15934 return false; 15935 } 15936 15937 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15938 const CallInst &I, 15939 MachineFunction &MF, 15940 unsigned Intrinsic) const { 15941 switch (Intrinsic) { 15942 case Intrinsic::ppc_altivec_lvx: 15943 case Intrinsic::ppc_altivec_lvxl: 15944 case Intrinsic::ppc_altivec_lvebx: 15945 case Intrinsic::ppc_altivec_lvehx: 15946 case Intrinsic::ppc_altivec_lvewx: 15947 case Intrinsic::ppc_vsx_lxvd2x: 15948 case Intrinsic::ppc_vsx_lxvw4x: 15949 case Intrinsic::ppc_vsx_lxvd2x_be: 15950 case Intrinsic::ppc_vsx_lxvw4x_be: 15951 case Intrinsic::ppc_vsx_lxvl: 15952 case Intrinsic::ppc_vsx_lxvll: { 15953 EVT VT; 15954 switch (Intrinsic) { 15955 case Intrinsic::ppc_altivec_lvebx: 15956 VT = MVT::i8; 15957 break; 15958 case Intrinsic::ppc_altivec_lvehx: 15959 VT = MVT::i16; 15960 break; 15961 case Intrinsic::ppc_altivec_lvewx: 15962 VT = MVT::i32; 15963 break; 15964 case Intrinsic::ppc_vsx_lxvd2x: 15965 case Intrinsic::ppc_vsx_lxvd2x_be: 15966 VT = MVT::v2f64; 15967 break; 15968 default: 15969 VT = MVT::v4i32; 15970 break; 15971 } 15972 15973 Info.opc = ISD::INTRINSIC_W_CHAIN; 15974 Info.memVT = VT; 15975 Info.ptrVal = I.getArgOperand(0); 15976 Info.offset = -VT.getStoreSize()+1; 15977 Info.size = 2*VT.getStoreSize()-1; 15978 Info.align = Align(1); 15979 Info.flags = MachineMemOperand::MOLoad; 15980 return true; 15981 } 15982 case Intrinsic::ppc_altivec_stvx: 15983 case Intrinsic::ppc_altivec_stvxl: 15984 case Intrinsic::ppc_altivec_stvebx: 15985 case Intrinsic::ppc_altivec_stvehx: 15986 case Intrinsic::ppc_altivec_stvewx: 15987 case Intrinsic::ppc_vsx_stxvd2x: 15988 case Intrinsic::ppc_vsx_stxvw4x: 15989 case Intrinsic::ppc_vsx_stxvd2x_be: 15990 case Intrinsic::ppc_vsx_stxvw4x_be: 15991 case Intrinsic::ppc_vsx_stxvl: 15992 case Intrinsic::ppc_vsx_stxvll: { 15993 EVT VT; 15994 switch (Intrinsic) { 15995 case Intrinsic::ppc_altivec_stvebx: 15996 VT = MVT::i8; 15997 break; 15998 case Intrinsic::ppc_altivec_stvehx: 15999 VT = MVT::i16; 16000 break; 16001 case Intrinsic::ppc_altivec_stvewx: 16002 VT = MVT::i32; 16003 break; 16004 case Intrinsic::ppc_vsx_stxvd2x: 16005 case Intrinsic::ppc_vsx_stxvd2x_be: 16006 VT = MVT::v2f64; 16007 break; 16008 default: 16009 VT = MVT::v4i32; 16010 break; 16011 } 16012 16013 Info.opc = ISD::INTRINSIC_VOID; 16014 Info.memVT = VT; 16015 Info.ptrVal = I.getArgOperand(1); 16016 Info.offset = -VT.getStoreSize()+1; 16017 Info.size = 2*VT.getStoreSize()-1; 16018 Info.align = Align(1); 16019 Info.flags = MachineMemOperand::MOStore; 16020 return true; 16021 } 16022 default: 16023 break; 16024 } 16025 16026 return false; 16027 } 16028 16029 /// It returns EVT::Other if the type should be determined using generic 16030 /// target-independent logic. 16031 EVT PPCTargetLowering::getOptimalMemOpType( 16032 const MemOp &Op, const AttributeList &FuncAttributes) const { 16033 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16034 // We should use Altivec/VSX loads and stores when available. For unaligned 16035 // addresses, unaligned VSX loads are only fast starting with the P8. 16036 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16037 (Op.isAligned(Align(16)) || 16038 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16039 return MVT::v4i32; 16040 } 16041 16042 if (Subtarget.isPPC64()) { 16043 return MVT::i64; 16044 } 16045 16046 return MVT::i32; 16047 } 16048 16049 /// Returns true if it is beneficial to convert a load of a constant 16050 /// to just the constant itself. 16051 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16052 Type *Ty) const { 16053 assert(Ty->isIntegerTy()); 16054 16055 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16056 return !(BitSize == 0 || BitSize > 64); 16057 } 16058 16059 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16060 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16061 return false; 16062 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16063 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16064 return NumBits1 == 64 && NumBits2 == 32; 16065 } 16066 16067 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16068 if (!VT1.isInteger() || !VT2.isInteger()) 16069 return false; 16070 unsigned NumBits1 = VT1.getSizeInBits(); 16071 unsigned NumBits2 = VT2.getSizeInBits(); 16072 return NumBits1 == 64 && NumBits2 == 32; 16073 } 16074 16075 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16076 // Generally speaking, zexts are not free, but they are free when they can be 16077 // folded with other operations. 16078 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16079 EVT MemVT = LD->getMemoryVT(); 16080 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16081 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16082 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16083 LD->getExtensionType() == ISD::ZEXTLOAD)) 16084 return true; 16085 } 16086 16087 // FIXME: Add other cases... 16088 // - 32-bit shifts with a zext to i64 16089 // - zext after ctlz, bswap, etc. 16090 // - zext after and by a constant mask 16091 16092 return TargetLowering::isZExtFree(Val, VT2); 16093 } 16094 16095 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16096 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16097 "invalid fpext types"); 16098 // Extending to float128 is not free. 16099 if (DestVT == MVT::f128) 16100 return false; 16101 return true; 16102 } 16103 16104 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16105 return isInt<16>(Imm) || isUInt<16>(Imm); 16106 } 16107 16108 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16109 return isInt<16>(Imm) || isUInt<16>(Imm); 16110 } 16111 16112 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16113 unsigned, 16114 unsigned, 16115 MachineMemOperand::Flags, 16116 bool *Fast) const { 16117 if (DisablePPCUnaligned) 16118 return false; 16119 16120 // PowerPC supports unaligned memory access for simple non-vector types. 16121 // Although accessing unaligned addresses is not as efficient as accessing 16122 // aligned addresses, it is generally more efficient than manual expansion, 16123 // and generally only traps for software emulation when crossing page 16124 // boundaries. 16125 16126 if (!VT.isSimple()) 16127 return false; 16128 16129 if (VT.isFloatingPoint() && !VT.isVector() && 16130 !Subtarget.allowsUnalignedFPAccess()) 16131 return false; 16132 16133 if (VT.getSimpleVT().isVector()) { 16134 if (Subtarget.hasVSX()) { 16135 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16136 VT != MVT::v4f32 && VT != MVT::v4i32) 16137 return false; 16138 } else { 16139 return false; 16140 } 16141 } 16142 16143 if (VT == MVT::ppcf128) 16144 return false; 16145 16146 if (Fast) 16147 *Fast = true; 16148 16149 return true; 16150 } 16151 16152 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16153 SDValue C) const { 16154 // Check integral scalar types. 16155 if (!VT.isScalarInteger()) 16156 return false; 16157 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16158 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16159 return false; 16160 // This transformation will generate >= 2 operations. But the following 16161 // cases will generate <= 2 instructions during ISEL. So exclude them. 16162 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16163 // HW instruction, ie. MULLI 16164 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16165 // instruction is needed than case 1, ie. MULLI and RLDICR 16166 int64_t Imm = ConstNode->getSExtValue(); 16167 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16168 Imm >>= Shift; 16169 if (isInt<16>(Imm)) 16170 return false; 16171 uint64_t UImm = static_cast<uint64_t>(Imm); 16172 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16173 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16174 return true; 16175 } 16176 return false; 16177 } 16178 16179 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16180 EVT VT) const { 16181 return isFMAFasterThanFMulAndFAdd( 16182 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16183 } 16184 16185 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16186 Type *Ty) const { 16187 switch (Ty->getScalarType()->getTypeID()) { 16188 case Type::FloatTyID: 16189 case Type::DoubleTyID: 16190 return true; 16191 case Type::FP128TyID: 16192 return Subtarget.hasP9Vector(); 16193 default: 16194 return false; 16195 } 16196 } 16197 16198 // FIXME: add more patterns which are not profitable to hoist. 16199 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16200 if (!I->hasOneUse()) 16201 return true; 16202 16203 Instruction *User = I->user_back(); 16204 assert(User && "A single use instruction with no uses."); 16205 16206 switch (I->getOpcode()) { 16207 case Instruction::FMul: { 16208 // Don't break FMA, PowerPC prefers FMA. 16209 if (User->getOpcode() != Instruction::FSub && 16210 User->getOpcode() != Instruction::FAdd) 16211 return true; 16212 16213 const TargetOptions &Options = getTargetMachine().Options; 16214 const Function *F = I->getFunction(); 16215 const DataLayout &DL = F->getParent()->getDataLayout(); 16216 Type *Ty = User->getOperand(0)->getType(); 16217 16218 return !( 16219 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16220 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16221 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16222 } 16223 case Instruction::Load: { 16224 // Don't break "store (load float*)" pattern, this pattern will be combined 16225 // to "store (load int32)" in later InstCombine pass. See function 16226 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16227 // cycles than loading a 32 bit integer. 16228 LoadInst *LI = cast<LoadInst>(I); 16229 // For the loads that combineLoadToOperationType does nothing, like 16230 // ordered load, it should be profitable to hoist them. 16231 // For swifterror load, it can only be used for pointer to pointer type, so 16232 // later type check should get rid of this case. 16233 if (!LI->isUnordered()) 16234 return true; 16235 16236 if (User->getOpcode() != Instruction::Store) 16237 return true; 16238 16239 if (I->getType()->getTypeID() != Type::FloatTyID) 16240 return true; 16241 16242 return false; 16243 } 16244 default: 16245 return true; 16246 } 16247 return true; 16248 } 16249 16250 const MCPhysReg * 16251 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16252 // LR is a callee-save register, but we must treat it as clobbered by any call 16253 // site. Hence we include LR in the scratch registers, which are in turn added 16254 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16255 // to CTR, which is used by any indirect call. 16256 static const MCPhysReg ScratchRegs[] = { 16257 PPC::X12, PPC::LR8, PPC::CTR8, 0 16258 }; 16259 16260 return ScratchRegs; 16261 } 16262 16263 Register PPCTargetLowering::getExceptionPointerRegister( 16264 const Constant *PersonalityFn) const { 16265 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16266 } 16267 16268 Register PPCTargetLowering::getExceptionSelectorRegister( 16269 const Constant *PersonalityFn) const { 16270 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16271 } 16272 16273 bool 16274 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16275 EVT VT , unsigned DefinedValues) const { 16276 if (VT == MVT::v2i64) 16277 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16278 16279 if (Subtarget.hasVSX()) 16280 return true; 16281 16282 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16283 } 16284 16285 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16286 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16287 return TargetLowering::getSchedulingPreference(N); 16288 16289 return Sched::ILP; 16290 } 16291 16292 // Create a fast isel object. 16293 FastISel * 16294 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16295 const TargetLibraryInfo *LibInfo) const { 16296 return PPC::createFastISel(FuncInfo, LibInfo); 16297 } 16298 16299 // 'Inverted' means the FMA opcode after negating one multiplicand. 16300 // For example, (fma -a b c) = (fnmsub a b c) 16301 static unsigned invertFMAOpcode(unsigned Opc) { 16302 switch (Opc) { 16303 default: 16304 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16305 case ISD::FMA: 16306 return PPCISD::FNMSUB; 16307 case PPCISD::FNMSUB: 16308 return ISD::FMA; 16309 } 16310 } 16311 16312 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16313 bool LegalOps, bool OptForSize, 16314 NegatibleCost &Cost, 16315 unsigned Depth) const { 16316 if (Depth > SelectionDAG::MaxRecursionDepth) 16317 return SDValue(); 16318 16319 unsigned Opc = Op.getOpcode(); 16320 EVT VT = Op.getValueType(); 16321 SDNodeFlags Flags = Op.getNode()->getFlags(); 16322 16323 switch (Opc) { 16324 case PPCISD::FNMSUB: 16325 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16326 break; 16327 16328 const TargetOptions &Options = getTargetMachine().Options; 16329 SDValue N0 = Op.getOperand(0); 16330 SDValue N1 = Op.getOperand(1); 16331 SDValue N2 = Op.getOperand(2); 16332 SDLoc Loc(Op); 16333 16334 NegatibleCost N2Cost = NegatibleCost::Expensive; 16335 SDValue NegN2 = 16336 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16337 16338 if (!NegN2) 16339 return SDValue(); 16340 16341 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16342 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16343 // These transformations may change sign of zeroes. For example, 16344 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16345 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16346 // Try and choose the cheaper one to negate. 16347 NegatibleCost N0Cost = NegatibleCost::Expensive; 16348 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16349 N0Cost, Depth + 1); 16350 16351 NegatibleCost N1Cost = NegatibleCost::Expensive; 16352 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16353 N1Cost, Depth + 1); 16354 16355 if (NegN0 && N0Cost <= N1Cost) { 16356 Cost = std::min(N0Cost, N2Cost); 16357 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16358 } else if (NegN1) { 16359 Cost = std::min(N1Cost, N2Cost); 16360 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16361 } 16362 } 16363 16364 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16365 if (isOperationLegal(ISD::FMA, VT)) { 16366 Cost = N2Cost; 16367 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16368 } 16369 16370 break; 16371 } 16372 16373 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16374 Cost, Depth); 16375 } 16376 16377 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16378 bool PPCTargetLowering::useLoadStackGuardNode() const { 16379 if (!Subtarget.isTargetLinux()) 16380 return TargetLowering::useLoadStackGuardNode(); 16381 return true; 16382 } 16383 16384 // Override to disable global variable loading on Linux. 16385 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16386 if (!Subtarget.isTargetLinux()) 16387 return TargetLowering::insertSSPDeclarations(M); 16388 } 16389 16390 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16391 bool ForCodeSize) const { 16392 if (!VT.isSimple() || !Subtarget.hasVSX()) 16393 return false; 16394 16395 switch(VT.getSimpleVT().SimpleTy) { 16396 default: 16397 // For FP types that are currently not supported by PPC backend, return 16398 // false. Examples: f16, f80. 16399 return false; 16400 case MVT::f32: 16401 case MVT::f64: 16402 if (Subtarget.hasPrefixInstrs()) { 16403 // With prefixed instructions, we can materialize anything that can be 16404 // represented with a 32-bit immediate, not just positive zero. 16405 APFloat APFloatOfImm = Imm; 16406 return convertToNonDenormSingle(APFloatOfImm); 16407 } 16408 LLVM_FALLTHROUGH; 16409 case MVT::ppcf128: 16410 return Imm.isPosZero(); 16411 } 16412 } 16413 16414 // For vector shift operation op, fold 16415 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16416 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16417 SelectionDAG &DAG) { 16418 SDValue N0 = N->getOperand(0); 16419 SDValue N1 = N->getOperand(1); 16420 EVT VT = N0.getValueType(); 16421 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16422 unsigned Opcode = N->getOpcode(); 16423 unsigned TargetOpcode; 16424 16425 switch (Opcode) { 16426 default: 16427 llvm_unreachable("Unexpected shift operation"); 16428 case ISD::SHL: 16429 TargetOpcode = PPCISD::SHL; 16430 break; 16431 case ISD::SRL: 16432 TargetOpcode = PPCISD::SRL; 16433 break; 16434 case ISD::SRA: 16435 TargetOpcode = PPCISD::SRA; 16436 break; 16437 } 16438 16439 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16440 N1->getOpcode() == ISD::AND) 16441 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16442 if (Mask->getZExtValue() == OpSizeInBits - 1) 16443 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16444 16445 return SDValue(); 16446 } 16447 16448 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16449 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16450 return Value; 16451 16452 SDValue N0 = N->getOperand(0); 16453 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16454 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16455 N0.getOpcode() != ISD::SIGN_EXTEND || 16456 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16457 N->getValueType(0) != MVT::i64) 16458 return SDValue(); 16459 16460 // We can't save an operation here if the value is already extended, and 16461 // the existing shift is easier to combine. 16462 SDValue ExtsSrc = N0.getOperand(0); 16463 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16464 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16465 return SDValue(); 16466 16467 SDLoc DL(N0); 16468 SDValue ShiftBy = SDValue(CN1, 0); 16469 // We want the shift amount to be i32 on the extswli, but the shift could 16470 // have an i64. 16471 if (ShiftBy.getValueType() == MVT::i64) 16472 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16473 16474 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16475 ShiftBy); 16476 } 16477 16478 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16479 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16480 return Value; 16481 16482 return SDValue(); 16483 } 16484 16485 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16486 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16487 return Value; 16488 16489 return SDValue(); 16490 } 16491 16492 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16493 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16494 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16495 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16496 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16497 const PPCSubtarget &Subtarget) { 16498 if (!Subtarget.isPPC64()) 16499 return SDValue(); 16500 16501 SDValue LHS = N->getOperand(0); 16502 SDValue RHS = N->getOperand(1); 16503 16504 auto isZextOfCompareWithConstant = [](SDValue Op) { 16505 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16506 Op.getValueType() != MVT::i64) 16507 return false; 16508 16509 SDValue Cmp = Op.getOperand(0); 16510 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16511 Cmp.getOperand(0).getValueType() != MVT::i64) 16512 return false; 16513 16514 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16515 int64_t NegConstant = 0 - Constant->getSExtValue(); 16516 // Due to the limitations of the addi instruction, 16517 // -C is required to be [-32768, 32767]. 16518 return isInt<16>(NegConstant); 16519 } 16520 16521 return false; 16522 }; 16523 16524 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16525 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16526 16527 // If there is a pattern, canonicalize a zext operand to the RHS. 16528 if (LHSHasPattern && !RHSHasPattern) 16529 std::swap(LHS, RHS); 16530 else if (!LHSHasPattern && !RHSHasPattern) 16531 return SDValue(); 16532 16533 SDLoc DL(N); 16534 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16535 SDValue Cmp = RHS.getOperand(0); 16536 SDValue Z = Cmp.getOperand(0); 16537 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16538 16539 assert(Constant && "Constant Should not be a null pointer."); 16540 int64_t NegConstant = 0 - Constant->getSExtValue(); 16541 16542 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16543 default: break; 16544 case ISD::SETNE: { 16545 // when C == 0 16546 // --> addze X, (addic Z, -1).carry 16547 // / 16548 // add X, (zext(setne Z, C))-- 16549 // \ when -32768 <= -C <= 32767 && C != 0 16550 // --> addze X, (addic (addi Z, -C), -1).carry 16551 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16552 DAG.getConstant(NegConstant, DL, MVT::i64)); 16553 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16554 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16555 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16556 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16557 SDValue(Addc.getNode(), 1)); 16558 } 16559 case ISD::SETEQ: { 16560 // when C == 0 16561 // --> addze X, (subfic Z, 0).carry 16562 // / 16563 // add X, (zext(sete Z, C))-- 16564 // \ when -32768 <= -C <= 32767 && C != 0 16565 // --> addze X, (subfic (addi Z, -C), 0).carry 16566 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16567 DAG.getConstant(NegConstant, DL, MVT::i64)); 16568 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16569 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16570 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16571 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16572 SDValue(Subc.getNode(), 1)); 16573 } 16574 } 16575 16576 return SDValue(); 16577 } 16578 16579 // Transform 16580 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16581 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16582 // In this case both C1 and C2 must be known constants. 16583 // C1+C2 must fit into a 34 bit signed integer. 16584 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16585 const PPCSubtarget &Subtarget) { 16586 if (!Subtarget.isUsingPCRelativeCalls()) 16587 return SDValue(); 16588 16589 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16590 // If we find that node try to cast the Global Address and the Constant. 16591 SDValue LHS = N->getOperand(0); 16592 SDValue RHS = N->getOperand(1); 16593 16594 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16595 std::swap(LHS, RHS); 16596 16597 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16598 return SDValue(); 16599 16600 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16601 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16602 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16603 16604 // Check that both casts succeeded. 16605 if (!GSDN || !ConstNode) 16606 return SDValue(); 16607 16608 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16609 SDLoc DL(GSDN); 16610 16611 // The signed int offset needs to fit in 34 bits. 16612 if (!isInt<34>(NewOffset)) 16613 return SDValue(); 16614 16615 // The new global address is a copy of the old global address except 16616 // that it has the updated Offset. 16617 SDValue GA = 16618 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16619 NewOffset, GSDN->getTargetFlags()); 16620 SDValue MatPCRel = 16621 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16622 return MatPCRel; 16623 } 16624 16625 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16626 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16627 return Value; 16628 16629 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16630 return Value; 16631 16632 return SDValue(); 16633 } 16634 16635 // Detect TRUNCATE operations on bitcasts of float128 values. 16636 // What we are looking for here is the situtation where we extract a subset 16637 // of bits from a 128 bit float. 16638 // This can be of two forms: 16639 // 1) BITCAST of f128 feeding TRUNCATE 16640 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16641 // The reason this is required is because we do not have a legal i128 type 16642 // and so we want to prevent having to store the f128 and then reload part 16643 // of it. 16644 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16645 DAGCombinerInfo &DCI) const { 16646 // If we are using CRBits then try that first. 16647 if (Subtarget.useCRBits()) { 16648 // Check if CRBits did anything and return that if it did. 16649 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16650 return CRTruncValue; 16651 } 16652 16653 SDLoc dl(N); 16654 SDValue Op0 = N->getOperand(0); 16655 16656 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16657 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16658 EVT VT = N->getValueType(0); 16659 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16660 return SDValue(); 16661 SDValue Sub = Op0.getOperand(0); 16662 if (Sub.getOpcode() == ISD::SUB) { 16663 SDValue SubOp0 = Sub.getOperand(0); 16664 SDValue SubOp1 = Sub.getOperand(1); 16665 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16666 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16667 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16668 SubOp1.getOperand(0), 16669 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16670 } 16671 } 16672 } 16673 16674 // Looking for a truncate of i128 to i64. 16675 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16676 return SDValue(); 16677 16678 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16679 16680 // SRL feeding TRUNCATE. 16681 if (Op0.getOpcode() == ISD::SRL) { 16682 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16683 // The right shift has to be by 64 bits. 16684 if (!ConstNode || ConstNode->getZExtValue() != 64) 16685 return SDValue(); 16686 16687 // Switch the element number to extract. 16688 EltToExtract = EltToExtract ? 0 : 1; 16689 // Update Op0 past the SRL. 16690 Op0 = Op0.getOperand(0); 16691 } 16692 16693 // BITCAST feeding a TRUNCATE possibly via SRL. 16694 if (Op0.getOpcode() == ISD::BITCAST && 16695 Op0.getValueType() == MVT::i128 && 16696 Op0.getOperand(0).getValueType() == MVT::f128) { 16697 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16698 return DCI.DAG.getNode( 16699 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16700 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16701 } 16702 return SDValue(); 16703 } 16704 16705 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16706 SelectionDAG &DAG = DCI.DAG; 16707 16708 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16709 if (!ConstOpOrElement) 16710 return SDValue(); 16711 16712 // An imul is usually smaller than the alternative sequence for legal type. 16713 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16714 isOperationLegal(ISD::MUL, N->getValueType(0))) 16715 return SDValue(); 16716 16717 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16718 switch (this->Subtarget.getCPUDirective()) { 16719 default: 16720 // TODO: enhance the condition for subtarget before pwr8 16721 return false; 16722 case PPC::DIR_PWR8: 16723 // type mul add shl 16724 // scalar 4 1 1 16725 // vector 7 2 2 16726 return true; 16727 case PPC::DIR_PWR9: 16728 case PPC::DIR_PWR10: 16729 case PPC::DIR_PWR_FUTURE: 16730 // type mul add shl 16731 // scalar 5 2 2 16732 // vector 7 2 2 16733 16734 // The cycle RATIO of related operations are showed as a table above. 16735 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16736 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16737 // are 4, it is always profitable; but for 3 instrs patterns 16738 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16739 // So we should only do it for vector type. 16740 return IsAddOne && IsNeg ? VT.isVector() : true; 16741 } 16742 }; 16743 16744 EVT VT = N->getValueType(0); 16745 SDLoc DL(N); 16746 16747 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16748 bool IsNeg = MulAmt.isNegative(); 16749 APInt MulAmtAbs = MulAmt.abs(); 16750 16751 if ((MulAmtAbs - 1).isPowerOf2()) { 16752 // (mul x, 2^N + 1) => (add (shl x, N), x) 16753 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16754 16755 if (!IsProfitable(IsNeg, true, VT)) 16756 return SDValue(); 16757 16758 SDValue Op0 = N->getOperand(0); 16759 SDValue Op1 = 16760 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16761 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16762 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16763 16764 if (!IsNeg) 16765 return Res; 16766 16767 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16768 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16769 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16770 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16771 16772 if (!IsProfitable(IsNeg, false, VT)) 16773 return SDValue(); 16774 16775 SDValue Op0 = N->getOperand(0); 16776 SDValue Op1 = 16777 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16778 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16779 16780 if (!IsNeg) 16781 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16782 else 16783 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16784 16785 } else { 16786 return SDValue(); 16787 } 16788 } 16789 16790 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16791 // in combiner since we need to check SD flags and other subtarget features. 16792 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16793 DAGCombinerInfo &DCI) const { 16794 SDValue N0 = N->getOperand(0); 16795 SDValue N1 = N->getOperand(1); 16796 SDValue N2 = N->getOperand(2); 16797 SDNodeFlags Flags = N->getFlags(); 16798 EVT VT = N->getValueType(0); 16799 SelectionDAG &DAG = DCI.DAG; 16800 const TargetOptions &Options = getTargetMachine().Options; 16801 unsigned Opc = N->getOpcode(); 16802 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16803 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16804 SDLoc Loc(N); 16805 16806 if (!isOperationLegal(ISD::FMA, VT)) 16807 return SDValue(); 16808 16809 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16810 // since (fnmsub a b c)=-0 while c-ab=+0. 16811 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16812 return SDValue(); 16813 16814 // (fma (fneg a) b c) => (fnmsub a b c) 16815 // (fnmsub (fneg a) b c) => (fma a b c) 16816 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16817 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16818 16819 // (fma a (fneg b) c) => (fnmsub a b c) 16820 // (fnmsub a (fneg b) c) => (fma a b c) 16821 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16822 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16823 16824 return SDValue(); 16825 } 16826 16827 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16828 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16829 if (!Subtarget.is64BitELFABI()) 16830 return false; 16831 16832 // If not a tail call then no need to proceed. 16833 if (!CI->isTailCall()) 16834 return false; 16835 16836 // If sibling calls have been disabled and tail-calls aren't guaranteed 16837 // there is no reason to duplicate. 16838 auto &TM = getTargetMachine(); 16839 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16840 return false; 16841 16842 // Can't tail call a function called indirectly, or if it has variadic args. 16843 const Function *Callee = CI->getCalledFunction(); 16844 if (!Callee || Callee->isVarArg()) 16845 return false; 16846 16847 // Make sure the callee and caller calling conventions are eligible for tco. 16848 const Function *Caller = CI->getParent()->getParent(); 16849 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16850 CI->getCallingConv())) 16851 return false; 16852 16853 // If the function is local then we have a good chance at tail-calling it 16854 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16855 } 16856 16857 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16858 if (!Subtarget.hasVSX()) 16859 return false; 16860 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16861 return true; 16862 return VT == MVT::f32 || VT == MVT::f64 || 16863 VT == MVT::v4f32 || VT == MVT::v2f64; 16864 } 16865 16866 bool PPCTargetLowering:: 16867 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16868 const Value *Mask = AndI.getOperand(1); 16869 // If the mask is suitable for andi. or andis. we should sink the and. 16870 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16871 // Can't handle constants wider than 64-bits. 16872 if (CI->getBitWidth() > 64) 16873 return false; 16874 int64_t ConstVal = CI->getZExtValue(); 16875 return isUInt<16>(ConstVal) || 16876 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16877 } 16878 16879 // For non-constant masks, we can always use the record-form and. 16880 return true; 16881 } 16882 16883 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16884 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16885 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16886 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16887 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16888 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16889 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16890 assert(Subtarget.hasP9Altivec() && 16891 "Only combine this when P9 altivec supported!"); 16892 EVT VT = N->getValueType(0); 16893 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16894 return SDValue(); 16895 16896 SelectionDAG &DAG = DCI.DAG; 16897 SDLoc dl(N); 16898 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16899 // Even for signed integers, if it's known to be positive (as signed 16900 // integer) due to zero-extended inputs. 16901 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16902 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16903 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16904 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16905 (SubOpcd1 == ISD::ZERO_EXTEND || 16906 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16907 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16908 N->getOperand(0)->getOperand(0), 16909 N->getOperand(0)->getOperand(1), 16910 DAG.getTargetConstant(0, dl, MVT::i32)); 16911 } 16912 16913 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16914 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16915 N->getOperand(0).hasOneUse()) { 16916 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16917 N->getOperand(0)->getOperand(0), 16918 N->getOperand(0)->getOperand(1), 16919 DAG.getTargetConstant(1, dl, MVT::i32)); 16920 } 16921 } 16922 16923 return SDValue(); 16924 } 16925 16926 // For type v4i32/v8ii16/v16i8, transform 16927 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16928 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16929 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16930 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16931 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16932 DAGCombinerInfo &DCI) const { 16933 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16934 assert(Subtarget.hasP9Altivec() && 16935 "Only combine this when P9 altivec supported!"); 16936 16937 SelectionDAG &DAG = DCI.DAG; 16938 SDLoc dl(N); 16939 SDValue Cond = N->getOperand(0); 16940 SDValue TrueOpnd = N->getOperand(1); 16941 SDValue FalseOpnd = N->getOperand(2); 16942 EVT VT = N->getOperand(1).getValueType(); 16943 16944 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16945 FalseOpnd.getOpcode() != ISD::SUB) 16946 return SDValue(); 16947 16948 // ABSD only available for type v4i32/v8i16/v16i8 16949 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16950 return SDValue(); 16951 16952 // At least to save one more dependent computation 16953 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16954 return SDValue(); 16955 16956 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16957 16958 // Can only handle unsigned comparison here 16959 switch (CC) { 16960 default: 16961 return SDValue(); 16962 case ISD::SETUGT: 16963 case ISD::SETUGE: 16964 break; 16965 case ISD::SETULT: 16966 case ISD::SETULE: 16967 std::swap(TrueOpnd, FalseOpnd); 16968 break; 16969 } 16970 16971 SDValue CmpOpnd1 = Cond.getOperand(0); 16972 SDValue CmpOpnd2 = Cond.getOperand(1); 16973 16974 // SETCC CmpOpnd1 CmpOpnd2 cond 16975 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16976 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16977 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16978 TrueOpnd.getOperand(1) == CmpOpnd2 && 16979 FalseOpnd.getOperand(0) == CmpOpnd2 && 16980 FalseOpnd.getOperand(1) == CmpOpnd1) { 16981 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16982 CmpOpnd1, CmpOpnd2, 16983 DAG.getTargetConstant(0, dl, MVT::i32)); 16984 } 16985 16986 return SDValue(); 16987 } 16988