1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCContext.h" 74 #include "llvm/MC/MCExpr.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCSymbolXCOFF.h" 77 #include "llvm/Support/AtomicOrdering.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CodeGen.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/Format.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MachineValueType.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <list> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 102 #define DEBUG_TYPE "ppc-lowering" 103 104 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 112 113 static cl::opt<bool> DisableSCO("disable-ppc-sco", 114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 115 116 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 118 119 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 120 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 121 122 STATISTIC(NumTailCalls, "Number of tail calls"); 123 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 124 125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 126 127 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 128 129 // FIXME: Remove this once the bug has been fixed! 130 extern cl::opt<bool> ANDIGlueBug; 131 132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 133 const PPCSubtarget &STI) 134 : TargetLowering(TM), Subtarget(STI) { 135 // Use _setjmp/_longjmp instead of setjmp/longjmp. 136 setUseUnderscoreSetJmp(true); 137 setUseUnderscoreLongJmp(true); 138 139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 140 // arguments are at least 4/8 bytes aligned. 141 bool isPPC64 = Subtarget.isPPC64(); 142 setMinStackArgumentAlignment(isPPC64 ? 8:4); 143 144 // Set up the register classes. 145 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 146 if (!useSoftFloat()) { 147 if (hasSPE()) { 148 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass); 149 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 150 } else { 151 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 152 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 153 } 154 } 155 156 // Match BITREVERSE to customized fast code sequence in the td file. 157 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 158 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 159 160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 161 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 162 163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 164 for (MVT VT : MVT::integer_valuetypes()) { 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 167 } 168 169 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 170 171 // PowerPC has pre-inc load and store's. 172 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 177 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 182 if (!Subtarget.hasSPE()) { 183 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 185 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 187 } 188 189 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 190 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 191 for (MVT VT : ScalarIntVTs) { 192 setOperationAction(ISD::ADDC, VT, Legal); 193 setOperationAction(ISD::ADDE, VT, Legal); 194 setOperationAction(ISD::SUBC, VT, Legal); 195 setOperationAction(ISD::SUBE, VT, Legal); 196 } 197 198 if (Subtarget.useCRBits()) { 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 200 201 if (isPPC64 || Subtarget.hasFPCVT()) { 202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 203 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 204 isPPC64 ? MVT::i64 : MVT::i32); 205 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 206 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 207 isPPC64 ? MVT::i64 : MVT::i32); 208 } else { 209 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 210 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 211 } 212 213 // PowerPC does not support direct load/store of condition registers. 214 setOperationAction(ISD::LOAD, MVT::i1, Custom); 215 setOperationAction(ISD::STORE, MVT::i1, Custom); 216 217 // FIXME: Remove this once the ANDI glue bug is fixed: 218 if (ANDIGlueBug) 219 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 220 221 for (MVT VT : MVT::integer_valuetypes()) { 222 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 223 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 224 setTruncStoreAction(VT, MVT::i1, Expand); 225 } 226 227 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 228 } 229 230 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 231 // PPC (the libcall is not available). 232 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 233 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 234 235 // We do not currently implement these libm ops for PowerPC. 236 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 237 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 242 243 // PowerPC has no SREM/UREM instructions unless we are on P9 244 // On P9 we may use a hardware instruction to compute the remainder. 245 // The instructions are not legalized directly because in the cases where the 246 // result of both the remainder and the division is required it is more 247 // efficient to compute the remainder from the result of the division rather 248 // than use the remainder instruction. 249 if (Subtarget.isISA3_0()) { 250 setOperationAction(ISD::SREM, MVT::i32, Custom); 251 setOperationAction(ISD::UREM, MVT::i32, Custom); 252 setOperationAction(ISD::SREM, MVT::i64, Custom); 253 setOperationAction(ISD::UREM, MVT::i64, Custom); 254 } else { 255 setOperationAction(ISD::SREM, MVT::i32, Expand); 256 setOperationAction(ISD::UREM, MVT::i32, Expand); 257 setOperationAction(ISD::SREM, MVT::i64, Expand); 258 setOperationAction(ISD::UREM, MVT::i64, Expand); 259 } 260 261 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 262 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 263 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 265 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 267 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 269 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 270 271 // We don't support sin/cos/sqrt/fmod/pow 272 setOperationAction(ISD::FSIN , MVT::f64, Expand); 273 setOperationAction(ISD::FCOS , MVT::f64, Expand); 274 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 275 setOperationAction(ISD::FREM , MVT::f64, Expand); 276 setOperationAction(ISD::FPOW , MVT::f64, Expand); 277 setOperationAction(ISD::FSIN , MVT::f32, Expand); 278 setOperationAction(ISD::FCOS , MVT::f32, Expand); 279 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 280 setOperationAction(ISD::FREM , MVT::f32, Expand); 281 setOperationAction(ISD::FPOW , MVT::f32, Expand); 282 if (Subtarget.hasSPE()) { 283 setOperationAction(ISD::FMA , MVT::f64, Expand); 284 setOperationAction(ISD::FMA , MVT::f32, Expand); 285 } else { 286 setOperationAction(ISD::FMA , MVT::f64, Legal); 287 setOperationAction(ISD::FMA , MVT::f32, Legal); 288 } 289 290 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 291 292 // If we're enabling GP optimizations, use hardware square root 293 if (!Subtarget.hasFSQRT() && 294 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 295 Subtarget.hasFRE())) 296 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 297 298 if (!Subtarget.hasFSQRT() && 299 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 300 Subtarget.hasFRES())) 301 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 302 303 if (Subtarget.hasFCPSGN()) { 304 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 305 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 306 } else { 307 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 308 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 309 } 310 311 if (Subtarget.hasFPRND()) { 312 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 313 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 314 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 315 setOperationAction(ISD::FROUND, MVT::f64, Legal); 316 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FROUND, MVT::f32, Legal); 321 } 322 323 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 324 // to speed up scalar BSWAP64. 325 // CTPOP or CTTZ were introduced in P8/P9 respectively 326 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 327 if (Subtarget.hasP9Vector()) 328 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 329 else 330 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 331 if (Subtarget.isISA3_0()) { 332 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 333 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 334 } else { 335 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 336 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 337 } 338 339 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 340 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 341 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 342 } else { 343 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 344 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 345 } 346 347 // PowerPC does not have ROTR 348 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 349 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 350 351 if (!Subtarget.useCRBits()) { 352 // PowerPC does not have Select 353 setOperationAction(ISD::SELECT, MVT::i32, Expand); 354 setOperationAction(ISD::SELECT, MVT::i64, Expand); 355 setOperationAction(ISD::SELECT, MVT::f32, Expand); 356 setOperationAction(ISD::SELECT, MVT::f64, Expand); 357 } 358 359 // PowerPC wants to turn select_cc of FP into fsel when possible. 360 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 361 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 362 363 // PowerPC wants to optimize integer setcc a bit 364 if (!Subtarget.useCRBits()) 365 setOperationAction(ISD::SETCC, MVT::i32, Custom); 366 367 // PowerPC does not have BRCOND which requires SetCC 368 if (!Subtarget.useCRBits()) 369 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 370 371 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 372 373 if (Subtarget.hasSPE()) { 374 // SPE has built-in conversions 375 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 376 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 378 } else { 379 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 380 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 381 382 // PowerPC does not have [U|S]INT_TO_FP 383 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 384 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 385 } 386 387 if (Subtarget.hasDirectMove() && isPPC64) { 388 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 389 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 390 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 391 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 392 } else { 393 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 394 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 395 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 396 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 397 } 398 399 // We cannot sextinreg(i1). Expand to shifts. 400 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 401 402 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 403 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 404 // support continuation, user-level threading, and etc.. As a result, no 405 // other SjLj exception interfaces are implemented and please don't build 406 // your own exception handling based on them. 407 // LLVM/Clang supports zero-cost DWARF exception handling. 408 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 409 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 410 411 // We want to legalize GlobalAddress and ConstantPool nodes into the 412 // appropriate instructions to materialize the address. 413 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 414 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 415 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 416 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 417 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 418 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 419 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 420 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 421 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 422 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 423 424 // TRAP is legal. 425 setOperationAction(ISD::TRAP, MVT::Other, Legal); 426 427 // TRAMPOLINE is custom lowered. 428 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 429 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 430 431 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 432 setOperationAction(ISD::VASTART , MVT::Other, Custom); 433 434 if (Subtarget.is64BitELFABI()) { 435 // VAARG always uses double-word chunks, so promote anything smaller. 436 setOperationAction(ISD::VAARG, MVT::i1, Promote); 437 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 438 setOperationAction(ISD::VAARG, MVT::i8, Promote); 439 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 440 setOperationAction(ISD::VAARG, MVT::i16, Promote); 441 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 442 setOperationAction(ISD::VAARG, MVT::i32, Promote); 443 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 444 setOperationAction(ISD::VAARG, MVT::Other, Expand); 445 } else if (Subtarget.is32BitELFABI()) { 446 // VAARG is custom lowered with the 32-bit SVR4 ABI. 447 setOperationAction(ISD::VAARG, MVT::Other, Custom); 448 setOperationAction(ISD::VAARG, MVT::i64, Custom); 449 } else 450 setOperationAction(ISD::VAARG, MVT::Other, Expand); 451 452 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 453 if (Subtarget.is32BitELFABI()) 454 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 455 else 456 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 457 458 // Use the default implementation. 459 setOperationAction(ISD::VAEND , MVT::Other, Expand); 460 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 461 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 462 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 463 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 464 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 465 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 466 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 467 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 468 469 // We want to custom lower some of our intrinsics. 470 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 471 472 // To handle counter-based loop conditions. 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 474 475 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 476 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 477 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 478 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 479 480 // Comparisons that require checking two conditions. 481 if (Subtarget.hasSPE()) { 482 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 483 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 484 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 485 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 486 } 487 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 488 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 489 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 490 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 491 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 492 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 493 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 495 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 496 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 497 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 498 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 499 500 if (Subtarget.has64BitSupport()) { 501 // They also have instructions for converting between i64 and fp. 502 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 503 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 504 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 505 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 506 // This is just the low 32 bits of a (signed) fp->i64 conversion. 507 // We cannot do this with Promote because i64 is not a legal type. 508 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 509 510 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 511 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 512 } else { 513 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 514 if (Subtarget.hasSPE()) 515 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 516 else 517 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 518 } 519 520 // With the instructions enabled under FPCVT, we can do everything. 521 if (Subtarget.hasFPCVT()) { 522 if (Subtarget.has64BitSupport()) { 523 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 524 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 525 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 526 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 527 } 528 529 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 530 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 531 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 532 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 533 } 534 535 if (Subtarget.use64BitRegs()) { 536 // 64-bit PowerPC implementations can support i64 types directly 537 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 538 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 539 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 540 // 64-bit PowerPC wants to expand i128 shifts itself. 541 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 542 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 543 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 544 } else { 545 // 32-bit PowerPC wants to expand i64 shifts itself. 546 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 547 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 548 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 549 } 550 551 if (Subtarget.hasAltivec()) { 552 // First set operation action for all vector types to expand. Then we 553 // will selectively turn on ones that can be effectively codegen'd. 554 for (MVT VT : MVT::vector_valuetypes()) { 555 // add/sub are legal for all supported vector VT's. 556 setOperationAction(ISD::ADD, VT, Legal); 557 setOperationAction(ISD::SUB, VT, Legal); 558 559 // For v2i64, these are only valid with P8Vector. This is corrected after 560 // the loop. 561 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 562 setOperationAction(ISD::SMAX, VT, Legal); 563 setOperationAction(ISD::SMIN, VT, Legal); 564 setOperationAction(ISD::UMAX, VT, Legal); 565 setOperationAction(ISD::UMIN, VT, Legal); 566 } 567 else { 568 setOperationAction(ISD::SMAX, VT, Expand); 569 setOperationAction(ISD::SMIN, VT, Expand); 570 setOperationAction(ISD::UMAX, VT, Expand); 571 setOperationAction(ISD::UMIN, VT, Expand); 572 } 573 574 if (Subtarget.hasVSX()) { 575 setOperationAction(ISD::FMAXNUM, VT, Legal); 576 setOperationAction(ISD::FMINNUM, VT, Legal); 577 } 578 579 // Vector instructions introduced in P8 580 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 581 setOperationAction(ISD::CTPOP, VT, Legal); 582 setOperationAction(ISD::CTLZ, VT, Legal); 583 } 584 else { 585 setOperationAction(ISD::CTPOP, VT, Expand); 586 setOperationAction(ISD::CTLZ, VT, Expand); 587 } 588 589 // Vector instructions introduced in P9 590 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 591 setOperationAction(ISD::CTTZ, VT, Legal); 592 else 593 setOperationAction(ISD::CTTZ, VT, Expand); 594 595 // We promote all shuffles to v16i8. 596 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 597 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 598 599 // We promote all non-typed operations to v4i32. 600 setOperationAction(ISD::AND , VT, Promote); 601 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 602 setOperationAction(ISD::OR , VT, Promote); 603 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 604 setOperationAction(ISD::XOR , VT, Promote); 605 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 606 setOperationAction(ISD::LOAD , VT, Promote); 607 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 608 setOperationAction(ISD::SELECT, VT, Promote); 609 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 610 setOperationAction(ISD::VSELECT, VT, Legal); 611 setOperationAction(ISD::SELECT_CC, VT, Promote); 612 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 613 setOperationAction(ISD::STORE, VT, Promote); 614 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 615 616 // No other operations are legal. 617 setOperationAction(ISD::MUL , VT, Expand); 618 setOperationAction(ISD::SDIV, VT, Expand); 619 setOperationAction(ISD::SREM, VT, Expand); 620 setOperationAction(ISD::UDIV, VT, Expand); 621 setOperationAction(ISD::UREM, VT, Expand); 622 setOperationAction(ISD::FDIV, VT, Expand); 623 setOperationAction(ISD::FREM, VT, Expand); 624 setOperationAction(ISD::FNEG, VT, Expand); 625 setOperationAction(ISD::FSQRT, VT, Expand); 626 setOperationAction(ISD::FLOG, VT, Expand); 627 setOperationAction(ISD::FLOG10, VT, Expand); 628 setOperationAction(ISD::FLOG2, VT, Expand); 629 setOperationAction(ISD::FEXP, VT, Expand); 630 setOperationAction(ISD::FEXP2, VT, Expand); 631 setOperationAction(ISD::FSIN, VT, Expand); 632 setOperationAction(ISD::FCOS, VT, Expand); 633 setOperationAction(ISD::FABS, VT, Expand); 634 setOperationAction(ISD::FFLOOR, VT, Expand); 635 setOperationAction(ISD::FCEIL, VT, Expand); 636 setOperationAction(ISD::FTRUNC, VT, Expand); 637 setOperationAction(ISD::FRINT, VT, Expand); 638 setOperationAction(ISD::FNEARBYINT, VT, Expand); 639 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 640 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 641 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 642 setOperationAction(ISD::MULHU, VT, Expand); 643 setOperationAction(ISD::MULHS, VT, Expand); 644 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 645 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 646 setOperationAction(ISD::UDIVREM, VT, Expand); 647 setOperationAction(ISD::SDIVREM, VT, Expand); 648 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 649 setOperationAction(ISD::FPOW, VT, Expand); 650 setOperationAction(ISD::BSWAP, VT, Expand); 651 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 652 setOperationAction(ISD::ROTL, VT, Expand); 653 setOperationAction(ISD::ROTR, VT, Expand); 654 655 for (MVT InnerVT : MVT::vector_valuetypes()) { 656 setTruncStoreAction(VT, InnerVT, Expand); 657 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 658 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 659 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 660 } 661 } 662 if (!Subtarget.hasP8Vector()) { 663 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 664 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 665 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 666 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 667 } 668 669 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 670 setOperationAction(ISD::ABS, VT, Custom); 671 672 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 673 // with merges, splats, etc. 674 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 675 676 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 677 // are cheap, so handle them before they get expanded to scalar. 678 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 679 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 680 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 681 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 682 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 683 684 setOperationAction(ISD::AND , MVT::v4i32, Legal); 685 setOperationAction(ISD::OR , MVT::v4i32, Legal); 686 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 687 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 688 setOperationAction(ISD::SELECT, MVT::v4i32, 689 Subtarget.useCRBits() ? Legal : Expand); 690 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 691 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 692 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 693 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 694 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 695 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 696 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 697 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 698 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 699 700 // Without hasP8Altivec set, v2i64 SMAX isn't available. 701 // But ABS custom lowering requires SMAX support. 702 if (!Subtarget.hasP8Altivec()) 703 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 704 705 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 706 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 707 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 708 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 709 710 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 711 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 712 713 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 714 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 715 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 716 } 717 718 if (Subtarget.hasP8Altivec()) 719 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 720 else 721 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 722 723 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 724 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 725 726 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 727 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 728 729 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 730 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 731 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 732 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 733 734 // Altivec does not contain unordered floating-point compare instructions 735 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 736 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 737 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 738 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 739 740 if (Subtarget.hasVSX()) { 741 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 742 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 743 if (Subtarget.hasP8Vector()) { 744 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 745 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 746 } 747 if (Subtarget.hasDirectMove() && isPPC64) { 748 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 749 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 750 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 751 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 752 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 753 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 754 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 755 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 756 } 757 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 758 759 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 760 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 761 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 762 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 763 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 764 765 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 766 767 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 768 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 769 770 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 771 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 772 773 // Share the Altivec comparison restrictions. 774 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 775 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 776 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 777 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 778 779 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 780 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 781 782 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 783 784 if (Subtarget.hasP8Vector()) 785 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 786 787 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 788 789 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 790 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 791 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 792 793 if (Subtarget.hasP8Altivec()) { 794 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 795 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 796 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 797 798 // 128 bit shifts can be accomplished via 3 instructions for SHL and 799 // SRL, but not for SRA because of the instructions available: 800 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 801 // doing 802 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 803 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 804 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 805 806 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 807 } 808 else { 809 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 810 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 811 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 812 813 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 814 815 // VSX v2i64 only supports non-arithmetic operations. 816 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 817 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 818 } 819 820 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 821 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 822 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 823 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 824 825 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 826 827 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 828 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 829 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 830 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 831 832 // Custom handling for partial vectors of integers converted to 833 // floating point. We already have optimal handling for v2i32 through 834 // the DAG combine, so those aren't necessary. 835 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 836 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 837 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 838 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 839 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 840 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 841 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 842 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 843 844 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 845 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 846 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 847 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 848 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 849 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 850 851 if (Subtarget.hasDirectMove()) 852 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 853 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 854 855 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 856 } 857 858 if (Subtarget.hasP8Altivec()) { 859 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 860 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 861 } 862 863 if (Subtarget.hasP9Vector()) { 864 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 865 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 866 867 // 128 bit shifts can be accomplished via 3 instructions for SHL and 868 // SRL, but not for SRA because of the instructions available: 869 // VS{RL} and VS{RL}O. 870 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 871 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 872 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 873 874 if (EnableQuadPrecision) { 875 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 876 setOperationAction(ISD::FADD, MVT::f128, Legal); 877 setOperationAction(ISD::FSUB, MVT::f128, Legal); 878 setOperationAction(ISD::FDIV, MVT::f128, Legal); 879 setOperationAction(ISD::FMUL, MVT::f128, Legal); 880 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 881 // No extending loads to f128 on PPC. 882 for (MVT FPT : MVT::fp_valuetypes()) 883 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 884 setOperationAction(ISD::FMA, MVT::f128, Legal); 885 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 886 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 887 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 888 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 889 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 890 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 891 892 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 893 setOperationAction(ISD::FRINT, MVT::f128, Legal); 894 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 895 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 896 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 897 setOperationAction(ISD::FROUND, MVT::f128, Legal); 898 899 setOperationAction(ISD::SELECT, MVT::f128, Expand); 900 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 901 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 902 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 903 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 904 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 905 // No implementation for these ops for PowerPC. 906 setOperationAction(ISD::FSIN , MVT::f128, Expand); 907 setOperationAction(ISD::FCOS , MVT::f128, Expand); 908 setOperationAction(ISD::FPOW, MVT::f128, Expand); 909 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 910 setOperationAction(ISD::FREM, MVT::f128, Expand); 911 } 912 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 913 914 } 915 916 if (Subtarget.hasP9Altivec()) { 917 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 918 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 919 } 920 } 921 922 if (Subtarget.hasQPX()) { 923 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 924 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 925 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 926 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 927 928 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 929 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 930 931 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 932 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 933 934 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 935 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 936 937 if (!Subtarget.useCRBits()) 938 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 939 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 940 941 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 942 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 943 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 944 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 945 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 946 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 947 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 948 949 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 950 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 951 952 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 953 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 954 955 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 956 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 957 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 958 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 959 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 960 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 961 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 962 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 963 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 964 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 965 966 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 967 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 968 969 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 970 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 971 972 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 973 974 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 975 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 976 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 977 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 978 979 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 980 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 981 982 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 983 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 984 985 if (!Subtarget.useCRBits()) 986 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 987 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 988 989 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 990 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 991 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 992 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 993 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 994 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 995 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 996 997 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 998 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 999 1000 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1001 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1002 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1003 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1004 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1005 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1006 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1007 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1008 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1009 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1010 1011 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1012 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1013 1014 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1015 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1016 1017 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1018 1019 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1020 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1021 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1022 1023 if (!Subtarget.useCRBits()) 1024 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1025 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1026 1027 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1028 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1029 1030 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1031 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1032 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1033 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1034 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1035 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1036 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1037 1038 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1039 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1040 1041 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1042 1043 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1044 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1045 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1046 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1047 1048 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1049 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1050 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1051 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1052 1053 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1054 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1055 1056 // These need to set FE_INEXACT, and so cannot be vectorized here. 1057 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1058 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1059 1060 if (TM.Options.UnsafeFPMath) { 1061 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1062 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1063 1064 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1065 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1066 } else { 1067 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1068 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1069 1070 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1071 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1072 } 1073 } 1074 1075 if (Subtarget.has64BitSupport()) 1076 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1077 1078 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1079 1080 if (!isPPC64) { 1081 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1082 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1083 } 1084 1085 setBooleanContents(ZeroOrOneBooleanContent); 1086 1087 if (Subtarget.hasAltivec()) { 1088 // Altivec instructions set fields to all zeros or all ones. 1089 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1090 } 1091 1092 if (!isPPC64) { 1093 // These libcalls are not available in 32-bit. 1094 setLibcallName(RTLIB::SHL_I128, nullptr); 1095 setLibcallName(RTLIB::SRL_I128, nullptr); 1096 setLibcallName(RTLIB::SRA_I128, nullptr); 1097 } 1098 1099 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1100 1101 // We have target-specific dag combine patterns for the following nodes: 1102 setTargetDAGCombine(ISD::ADD); 1103 setTargetDAGCombine(ISD::SHL); 1104 setTargetDAGCombine(ISD::SRA); 1105 setTargetDAGCombine(ISD::SRL); 1106 setTargetDAGCombine(ISD::MUL); 1107 setTargetDAGCombine(ISD::SINT_TO_FP); 1108 setTargetDAGCombine(ISD::BUILD_VECTOR); 1109 if (Subtarget.hasFPCVT()) 1110 setTargetDAGCombine(ISD::UINT_TO_FP); 1111 setTargetDAGCombine(ISD::LOAD); 1112 setTargetDAGCombine(ISD::STORE); 1113 setTargetDAGCombine(ISD::BR_CC); 1114 if (Subtarget.useCRBits()) 1115 setTargetDAGCombine(ISD::BRCOND); 1116 setTargetDAGCombine(ISD::BSWAP); 1117 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1118 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1119 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1120 1121 setTargetDAGCombine(ISD::SIGN_EXTEND); 1122 setTargetDAGCombine(ISD::ZERO_EXTEND); 1123 setTargetDAGCombine(ISD::ANY_EXTEND); 1124 1125 setTargetDAGCombine(ISD::TRUNCATE); 1126 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1127 1128 1129 if (Subtarget.useCRBits()) { 1130 setTargetDAGCombine(ISD::TRUNCATE); 1131 setTargetDAGCombine(ISD::SETCC); 1132 setTargetDAGCombine(ISD::SELECT_CC); 1133 } 1134 1135 // Use reciprocal estimates. 1136 if (TM.Options.UnsafeFPMath) { 1137 setTargetDAGCombine(ISD::FDIV); 1138 setTargetDAGCombine(ISD::FSQRT); 1139 } 1140 1141 if (Subtarget.hasP9Altivec()) { 1142 setTargetDAGCombine(ISD::ABS); 1143 setTargetDAGCombine(ISD::VSELECT); 1144 } 1145 1146 // Darwin long double math library functions have $LDBL128 appended. 1147 if (Subtarget.isDarwin()) { 1148 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1149 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1150 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1151 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1152 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1153 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1154 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1155 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1156 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1157 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1158 } 1159 1160 if (EnableQuadPrecision) { 1161 setLibcallName(RTLIB::LOG_F128, "logf128"); 1162 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1163 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1164 setLibcallName(RTLIB::EXP_F128, "expf128"); 1165 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1166 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1167 setLibcallName(RTLIB::COS_F128, "cosf128"); 1168 setLibcallName(RTLIB::POW_F128, "powf128"); 1169 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1170 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1171 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1172 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1173 } 1174 1175 // With 32 condition bits, we don't need to sink (and duplicate) compares 1176 // aggressively in CodeGenPrep. 1177 if (Subtarget.useCRBits()) { 1178 setHasMultipleConditionRegisters(); 1179 setJumpIsExpensive(); 1180 } 1181 1182 setMinFunctionAlignment(llvm::Align(4)); 1183 if (Subtarget.isDarwin()) 1184 setPrefFunctionAlignment(llvm::Align(16)); 1185 1186 switch (Subtarget.getDarwinDirective()) { 1187 default: break; 1188 case PPC::DIR_970: 1189 case PPC::DIR_A2: 1190 case PPC::DIR_E500: 1191 case PPC::DIR_E500mc: 1192 case PPC::DIR_E5500: 1193 case PPC::DIR_PWR4: 1194 case PPC::DIR_PWR5: 1195 case PPC::DIR_PWR5X: 1196 case PPC::DIR_PWR6: 1197 case PPC::DIR_PWR6X: 1198 case PPC::DIR_PWR7: 1199 case PPC::DIR_PWR8: 1200 case PPC::DIR_PWR9: 1201 setPrefLoopAlignment(llvm::Align(16)); 1202 setPrefFunctionAlignment(llvm::Align(16)); 1203 break; 1204 } 1205 1206 if (Subtarget.enableMachineScheduler()) 1207 setSchedulingPreference(Sched::Source); 1208 else 1209 setSchedulingPreference(Sched::Hybrid); 1210 1211 computeRegisterProperties(STI.getRegisterInfo()); 1212 1213 // The Freescale cores do better with aggressive inlining of memcpy and 1214 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1215 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1216 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1217 MaxStoresPerMemset = 32; 1218 MaxStoresPerMemsetOptSize = 16; 1219 MaxStoresPerMemcpy = 32; 1220 MaxStoresPerMemcpyOptSize = 8; 1221 MaxStoresPerMemmove = 32; 1222 MaxStoresPerMemmoveOptSize = 8; 1223 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1224 // The A2 also benefits from (very) aggressive inlining of memcpy and 1225 // friends. The overhead of a the function call, even when warm, can be 1226 // over one hundred cycles. 1227 MaxStoresPerMemset = 128; 1228 MaxStoresPerMemcpy = 128; 1229 MaxStoresPerMemmove = 128; 1230 MaxLoadsPerMemcmp = 128; 1231 } else { 1232 MaxLoadsPerMemcmp = 8; 1233 MaxLoadsPerMemcmpOptSize = 4; 1234 } 1235 } 1236 1237 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1238 /// the desired ByVal argument alignment. 1239 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1240 unsigned MaxMaxAlign) { 1241 if (MaxAlign == MaxMaxAlign) 1242 return; 1243 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1244 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1245 MaxAlign = 32; 1246 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1247 MaxAlign = 16; 1248 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1249 unsigned EltAlign = 0; 1250 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1251 if (EltAlign > MaxAlign) 1252 MaxAlign = EltAlign; 1253 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1254 for (auto *EltTy : STy->elements()) { 1255 unsigned EltAlign = 0; 1256 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1257 if (EltAlign > MaxAlign) 1258 MaxAlign = EltAlign; 1259 if (MaxAlign == MaxMaxAlign) 1260 break; 1261 } 1262 } 1263 } 1264 1265 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1266 /// function arguments in the caller parameter area. 1267 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1268 const DataLayout &DL) const { 1269 // Darwin passes everything on 4 byte boundary. 1270 if (Subtarget.isDarwin()) 1271 return 4; 1272 1273 // 16byte and wider vectors are passed on 16byte boundary. 1274 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1275 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1276 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1277 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1278 return Align; 1279 } 1280 1281 bool PPCTargetLowering::useSoftFloat() const { 1282 return Subtarget.useSoftFloat(); 1283 } 1284 1285 bool PPCTargetLowering::hasSPE() const { 1286 return Subtarget.hasSPE(); 1287 } 1288 1289 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1290 return VT.isScalarInteger(); 1291 } 1292 1293 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1294 switch ((PPCISD::NodeType)Opcode) { 1295 case PPCISD::FIRST_NUMBER: break; 1296 case PPCISD::FSEL: return "PPCISD::FSEL"; 1297 case PPCISD::FCFID: return "PPCISD::FCFID"; 1298 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1299 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1300 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1301 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1302 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1303 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1304 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1305 case PPCISD::FP_TO_UINT_IN_VSR: 1306 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1307 case PPCISD::FP_TO_SINT_IN_VSR: 1308 return "PPCISD::FP_TO_SINT_IN_VSR"; 1309 case PPCISD::FRE: return "PPCISD::FRE"; 1310 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1311 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1312 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1313 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1314 case PPCISD::VPERM: return "PPCISD::VPERM"; 1315 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1316 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1317 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1318 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1319 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1320 case PPCISD::CMPB: return "PPCISD::CMPB"; 1321 case PPCISD::Hi: return "PPCISD::Hi"; 1322 case PPCISD::Lo: return "PPCISD::Lo"; 1323 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1324 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1325 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1326 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1327 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1328 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1329 case PPCISD::SRL: return "PPCISD::SRL"; 1330 case PPCISD::SRA: return "PPCISD::SRA"; 1331 case PPCISD::SHL: return "PPCISD::SHL"; 1332 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1333 case PPCISD::CALL: return "PPCISD::CALL"; 1334 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1335 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1336 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1337 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1338 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1339 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1340 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1341 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1342 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1343 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1344 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1345 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1346 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1347 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1348 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1349 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1350 case PPCISD::VCMP: return "PPCISD::VCMP"; 1351 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1352 case PPCISD::LBRX: return "PPCISD::LBRX"; 1353 case PPCISD::STBRX: return "PPCISD::STBRX"; 1354 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1355 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1356 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1357 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1358 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1359 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1360 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1361 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1362 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1363 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1364 case PPCISD::ST_VSR_SCAL_INT: 1365 return "PPCISD::ST_VSR_SCAL_INT"; 1366 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1367 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1368 case PPCISD::BDZ: return "PPCISD::BDZ"; 1369 case PPCISD::MFFS: return "PPCISD::MFFS"; 1370 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1371 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1372 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1373 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1374 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1375 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1376 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1377 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1378 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1379 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1380 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1381 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1382 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1383 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1384 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1385 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1386 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1387 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1388 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1389 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1390 case PPCISD::SC: return "PPCISD::SC"; 1391 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1392 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1393 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1394 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1395 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1396 case PPCISD::VABSD: return "PPCISD::VABSD"; 1397 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1398 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1399 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1400 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1401 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1402 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1403 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1404 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1405 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1406 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1407 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1408 case PPCISD::FP_EXTEND_LH: return "PPCISD::FP_EXTEND_LH"; 1409 } 1410 return nullptr; 1411 } 1412 1413 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1414 EVT VT) const { 1415 if (!VT.isVector()) 1416 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1417 1418 if (Subtarget.hasQPX()) 1419 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1420 1421 return VT.changeVectorElementTypeToInteger(); 1422 } 1423 1424 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1425 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1426 return true; 1427 } 1428 1429 //===----------------------------------------------------------------------===// 1430 // Node matching predicates, for use by the tblgen matching code. 1431 //===----------------------------------------------------------------------===// 1432 1433 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1434 static bool isFloatingPointZero(SDValue Op) { 1435 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1436 return CFP->getValueAPF().isZero(); 1437 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1438 // Maybe this has already been legalized into the constant pool? 1439 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1440 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1441 return CFP->getValueAPF().isZero(); 1442 } 1443 return false; 1444 } 1445 1446 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1447 /// true if Op is undef or if it matches the specified value. 1448 static bool isConstantOrUndef(int Op, int Val) { 1449 return Op < 0 || Op == Val; 1450 } 1451 1452 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1453 /// VPKUHUM instruction. 1454 /// The ShuffleKind distinguishes between big-endian operations with 1455 /// two different inputs (0), either-endian operations with two identical 1456 /// inputs (1), and little-endian operations with two different inputs (2). 1457 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1458 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1459 SelectionDAG &DAG) { 1460 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1461 if (ShuffleKind == 0) { 1462 if (IsLE) 1463 return false; 1464 for (unsigned i = 0; i != 16; ++i) 1465 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1466 return false; 1467 } else if (ShuffleKind == 2) { 1468 if (!IsLE) 1469 return false; 1470 for (unsigned i = 0; i != 16; ++i) 1471 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1472 return false; 1473 } else if (ShuffleKind == 1) { 1474 unsigned j = IsLE ? 0 : 1; 1475 for (unsigned i = 0; i != 8; ++i) 1476 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1477 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1478 return false; 1479 } 1480 return true; 1481 } 1482 1483 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1484 /// VPKUWUM instruction. 1485 /// The ShuffleKind distinguishes between big-endian operations with 1486 /// two different inputs (0), either-endian operations with two identical 1487 /// inputs (1), and little-endian operations with two different inputs (2). 1488 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1489 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1490 SelectionDAG &DAG) { 1491 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1492 if (ShuffleKind == 0) { 1493 if (IsLE) 1494 return false; 1495 for (unsigned i = 0; i != 16; i += 2) 1496 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1497 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1498 return false; 1499 } else if (ShuffleKind == 2) { 1500 if (!IsLE) 1501 return false; 1502 for (unsigned i = 0; i != 16; i += 2) 1503 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1504 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1505 return false; 1506 } else if (ShuffleKind == 1) { 1507 unsigned j = IsLE ? 0 : 2; 1508 for (unsigned i = 0; i != 8; i += 2) 1509 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1510 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1511 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1512 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1513 return false; 1514 } 1515 return true; 1516 } 1517 1518 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1519 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1520 /// current subtarget. 1521 /// 1522 /// The ShuffleKind distinguishes between big-endian operations with 1523 /// two different inputs (0), either-endian operations with two identical 1524 /// inputs (1), and little-endian operations with two different inputs (2). 1525 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1526 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1527 SelectionDAG &DAG) { 1528 const PPCSubtarget& Subtarget = 1529 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1530 if (!Subtarget.hasP8Vector()) 1531 return false; 1532 1533 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1534 if (ShuffleKind == 0) { 1535 if (IsLE) 1536 return false; 1537 for (unsigned i = 0; i != 16; i += 4) 1538 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1539 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1540 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1541 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1542 return false; 1543 } else if (ShuffleKind == 2) { 1544 if (!IsLE) 1545 return false; 1546 for (unsigned i = 0; i != 16; i += 4) 1547 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1548 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1549 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1550 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1551 return false; 1552 } else if (ShuffleKind == 1) { 1553 unsigned j = IsLE ? 0 : 4; 1554 for (unsigned i = 0; i != 8; i += 4) 1555 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1556 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1557 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1558 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1559 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1560 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1561 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1562 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1563 return false; 1564 } 1565 return true; 1566 } 1567 1568 /// isVMerge - Common function, used to match vmrg* shuffles. 1569 /// 1570 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1571 unsigned LHSStart, unsigned RHSStart) { 1572 if (N->getValueType(0) != MVT::v16i8) 1573 return false; 1574 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1575 "Unsupported merge size!"); 1576 1577 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1578 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1579 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1580 LHSStart+j+i*UnitSize) || 1581 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1582 RHSStart+j+i*UnitSize)) 1583 return false; 1584 } 1585 return true; 1586 } 1587 1588 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1589 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1590 /// The ShuffleKind distinguishes between big-endian merges with two 1591 /// different inputs (0), either-endian merges with two identical inputs (1), 1592 /// and little-endian merges with two different inputs (2). For the latter, 1593 /// the input operands are swapped (see PPCInstrAltivec.td). 1594 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1595 unsigned ShuffleKind, SelectionDAG &DAG) { 1596 if (DAG.getDataLayout().isLittleEndian()) { 1597 if (ShuffleKind == 1) // unary 1598 return isVMerge(N, UnitSize, 0, 0); 1599 else if (ShuffleKind == 2) // swapped 1600 return isVMerge(N, UnitSize, 0, 16); 1601 else 1602 return false; 1603 } else { 1604 if (ShuffleKind == 1) // unary 1605 return isVMerge(N, UnitSize, 8, 8); 1606 else if (ShuffleKind == 0) // normal 1607 return isVMerge(N, UnitSize, 8, 24); 1608 else 1609 return false; 1610 } 1611 } 1612 1613 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1614 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1615 /// The ShuffleKind distinguishes between big-endian merges with two 1616 /// different inputs (0), either-endian merges with two identical inputs (1), 1617 /// and little-endian merges with two different inputs (2). For the latter, 1618 /// the input operands are swapped (see PPCInstrAltivec.td). 1619 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1620 unsigned ShuffleKind, SelectionDAG &DAG) { 1621 if (DAG.getDataLayout().isLittleEndian()) { 1622 if (ShuffleKind == 1) // unary 1623 return isVMerge(N, UnitSize, 8, 8); 1624 else if (ShuffleKind == 2) // swapped 1625 return isVMerge(N, UnitSize, 8, 24); 1626 else 1627 return false; 1628 } else { 1629 if (ShuffleKind == 1) // unary 1630 return isVMerge(N, UnitSize, 0, 0); 1631 else if (ShuffleKind == 0) // normal 1632 return isVMerge(N, UnitSize, 0, 16); 1633 else 1634 return false; 1635 } 1636 } 1637 1638 /** 1639 * Common function used to match vmrgew and vmrgow shuffles 1640 * 1641 * The indexOffset determines whether to look for even or odd words in 1642 * the shuffle mask. This is based on the of the endianness of the target 1643 * machine. 1644 * - Little Endian: 1645 * - Use offset of 0 to check for odd elements 1646 * - Use offset of 4 to check for even elements 1647 * - Big Endian: 1648 * - Use offset of 0 to check for even elements 1649 * - Use offset of 4 to check for odd elements 1650 * A detailed description of the vector element ordering for little endian and 1651 * big endian can be found at 1652 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1653 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1654 * compiler differences mean to you 1655 * 1656 * The mask to the shuffle vector instruction specifies the indices of the 1657 * elements from the two input vectors to place in the result. The elements are 1658 * numbered in array-access order, starting with the first vector. These vectors 1659 * are always of type v16i8, thus each vector will contain 16 elements of size 1660 * 8. More info on the shuffle vector can be found in the 1661 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1662 * Language Reference. 1663 * 1664 * The RHSStartValue indicates whether the same input vectors are used (unary) 1665 * or two different input vectors are used, based on the following: 1666 * - If the instruction uses the same vector for both inputs, the range of the 1667 * indices will be 0 to 15. In this case, the RHSStart value passed should 1668 * be 0. 1669 * - If the instruction has two different vectors then the range of the 1670 * indices will be 0 to 31. In this case, the RHSStart value passed should 1671 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1672 * to 31 specify elements in the second vector). 1673 * 1674 * \param[in] N The shuffle vector SD Node to analyze 1675 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1676 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1677 * vector to the shuffle_vector instruction 1678 * \return true iff this shuffle vector represents an even or odd word merge 1679 */ 1680 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1681 unsigned RHSStartValue) { 1682 if (N->getValueType(0) != MVT::v16i8) 1683 return false; 1684 1685 for (unsigned i = 0; i < 2; ++i) 1686 for (unsigned j = 0; j < 4; ++j) 1687 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1688 i*RHSStartValue+j+IndexOffset) || 1689 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1690 i*RHSStartValue+j+IndexOffset+8)) 1691 return false; 1692 return true; 1693 } 1694 1695 /** 1696 * Determine if the specified shuffle mask is suitable for the vmrgew or 1697 * vmrgow instructions. 1698 * 1699 * \param[in] N The shuffle vector SD Node to analyze 1700 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1701 * \param[in] ShuffleKind Identify the type of merge: 1702 * - 0 = big-endian merge with two different inputs; 1703 * - 1 = either-endian merge with two identical inputs; 1704 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1705 * little-endian merges). 1706 * \param[in] DAG The current SelectionDAG 1707 * \return true iff this shuffle mask 1708 */ 1709 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1710 unsigned ShuffleKind, SelectionDAG &DAG) { 1711 if (DAG.getDataLayout().isLittleEndian()) { 1712 unsigned indexOffset = CheckEven ? 4 : 0; 1713 if (ShuffleKind == 1) // Unary 1714 return isVMerge(N, indexOffset, 0); 1715 else if (ShuffleKind == 2) // swapped 1716 return isVMerge(N, indexOffset, 16); 1717 else 1718 return false; 1719 } 1720 else { 1721 unsigned indexOffset = CheckEven ? 0 : 4; 1722 if (ShuffleKind == 1) // Unary 1723 return isVMerge(N, indexOffset, 0); 1724 else if (ShuffleKind == 0) // Normal 1725 return isVMerge(N, indexOffset, 16); 1726 else 1727 return false; 1728 } 1729 return false; 1730 } 1731 1732 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1733 /// amount, otherwise return -1. 1734 /// The ShuffleKind distinguishes between big-endian operations with two 1735 /// different inputs (0), either-endian operations with two identical inputs 1736 /// (1), and little-endian operations with two different inputs (2). For the 1737 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1738 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1739 SelectionDAG &DAG) { 1740 if (N->getValueType(0) != MVT::v16i8) 1741 return -1; 1742 1743 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1744 1745 // Find the first non-undef value in the shuffle mask. 1746 unsigned i; 1747 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1748 /*search*/; 1749 1750 if (i == 16) return -1; // all undef. 1751 1752 // Otherwise, check to see if the rest of the elements are consecutively 1753 // numbered from this value. 1754 unsigned ShiftAmt = SVOp->getMaskElt(i); 1755 if (ShiftAmt < i) return -1; 1756 1757 ShiftAmt -= i; 1758 bool isLE = DAG.getDataLayout().isLittleEndian(); 1759 1760 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1761 // Check the rest of the elements to see if they are consecutive. 1762 for (++i; i != 16; ++i) 1763 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1764 return -1; 1765 } else if (ShuffleKind == 1) { 1766 // Check the rest of the elements to see if they are consecutive. 1767 for (++i; i != 16; ++i) 1768 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1769 return -1; 1770 } else 1771 return -1; 1772 1773 if (isLE) 1774 ShiftAmt = 16 - ShiftAmt; 1775 1776 return ShiftAmt; 1777 } 1778 1779 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1780 /// specifies a splat of a single element that is suitable for input to 1781 /// VSPLTB/VSPLTH/VSPLTW. 1782 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1783 assert(N->getValueType(0) == MVT::v16i8 && 1784 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1785 1786 // The consecutive indices need to specify an element, not part of two 1787 // different elements. So abandon ship early if this isn't the case. 1788 if (N->getMaskElt(0) % EltSize != 0) 1789 return false; 1790 1791 // This is a splat operation if each element of the permute is the same, and 1792 // if the value doesn't reference the second vector. 1793 unsigned ElementBase = N->getMaskElt(0); 1794 1795 // FIXME: Handle UNDEF elements too! 1796 if (ElementBase >= 16) 1797 return false; 1798 1799 // Check that the indices are consecutive, in the case of a multi-byte element 1800 // splatted with a v16i8 mask. 1801 for (unsigned i = 1; i != EltSize; ++i) 1802 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1803 return false; 1804 1805 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1806 if (N->getMaskElt(i) < 0) continue; 1807 for (unsigned j = 0; j != EltSize; ++j) 1808 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1809 return false; 1810 } 1811 return true; 1812 } 1813 1814 /// Check that the mask is shuffling N byte elements. Within each N byte 1815 /// element of the mask, the indices could be either in increasing or 1816 /// decreasing order as long as they are consecutive. 1817 /// \param[in] N the shuffle vector SD Node to analyze 1818 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1819 /// Word/DoubleWord/QuadWord). 1820 /// \param[in] StepLen the delta indices number among the N byte element, if 1821 /// the mask is in increasing/decreasing order then it is 1/-1. 1822 /// \return true iff the mask is shuffling N byte elements. 1823 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1824 int StepLen) { 1825 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1826 "Unexpected element width."); 1827 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1828 1829 unsigned NumOfElem = 16 / Width; 1830 unsigned MaskVal[16]; // Width is never greater than 16 1831 for (unsigned i = 0; i < NumOfElem; ++i) { 1832 MaskVal[0] = N->getMaskElt(i * Width); 1833 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1834 return false; 1835 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1836 return false; 1837 } 1838 1839 for (unsigned int j = 1; j < Width; ++j) { 1840 MaskVal[j] = N->getMaskElt(i * Width + j); 1841 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1842 return false; 1843 } 1844 } 1845 } 1846 1847 return true; 1848 } 1849 1850 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1851 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1852 if (!isNByteElemShuffleMask(N, 4, 1)) 1853 return false; 1854 1855 // Now we look at mask elements 0,4,8,12 1856 unsigned M0 = N->getMaskElt(0) / 4; 1857 unsigned M1 = N->getMaskElt(4) / 4; 1858 unsigned M2 = N->getMaskElt(8) / 4; 1859 unsigned M3 = N->getMaskElt(12) / 4; 1860 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1861 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1862 1863 // Below, let H and L be arbitrary elements of the shuffle mask 1864 // where H is in the range [4,7] and L is in the range [0,3]. 1865 // H, 1, 2, 3 or L, 5, 6, 7 1866 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1867 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1868 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1869 InsertAtByte = IsLE ? 12 : 0; 1870 Swap = M0 < 4; 1871 return true; 1872 } 1873 // 0, H, 2, 3 or 4, L, 6, 7 1874 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1875 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1876 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1877 InsertAtByte = IsLE ? 8 : 4; 1878 Swap = M1 < 4; 1879 return true; 1880 } 1881 // 0, 1, H, 3 or 4, 5, L, 7 1882 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1883 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1884 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1885 InsertAtByte = IsLE ? 4 : 8; 1886 Swap = M2 < 4; 1887 return true; 1888 } 1889 // 0, 1, 2, H or 4, 5, 6, L 1890 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1891 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1892 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1893 InsertAtByte = IsLE ? 0 : 12; 1894 Swap = M3 < 4; 1895 return true; 1896 } 1897 1898 // If both vector operands for the shuffle are the same vector, the mask will 1899 // contain only elements from the first one and the second one will be undef. 1900 if (N->getOperand(1).isUndef()) { 1901 ShiftElts = 0; 1902 Swap = true; 1903 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1904 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1905 InsertAtByte = IsLE ? 12 : 0; 1906 return true; 1907 } 1908 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1909 InsertAtByte = IsLE ? 8 : 4; 1910 return true; 1911 } 1912 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1913 InsertAtByte = IsLE ? 4 : 8; 1914 return true; 1915 } 1916 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1917 InsertAtByte = IsLE ? 0 : 12; 1918 return true; 1919 } 1920 } 1921 1922 return false; 1923 } 1924 1925 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1926 bool &Swap, bool IsLE) { 1927 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1928 // Ensure each byte index of the word is consecutive. 1929 if (!isNByteElemShuffleMask(N, 4, 1)) 1930 return false; 1931 1932 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1933 unsigned M0 = N->getMaskElt(0) / 4; 1934 unsigned M1 = N->getMaskElt(4) / 4; 1935 unsigned M2 = N->getMaskElt(8) / 4; 1936 unsigned M3 = N->getMaskElt(12) / 4; 1937 1938 // If both vector operands for the shuffle are the same vector, the mask will 1939 // contain only elements from the first one and the second one will be undef. 1940 if (N->getOperand(1).isUndef()) { 1941 assert(M0 < 4 && "Indexing into an undef vector?"); 1942 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1943 return false; 1944 1945 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1946 Swap = false; 1947 return true; 1948 } 1949 1950 // Ensure each word index of the ShuffleVector Mask is consecutive. 1951 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1952 return false; 1953 1954 if (IsLE) { 1955 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1956 // Input vectors don't need to be swapped if the leading element 1957 // of the result is one of the 3 left elements of the second vector 1958 // (or if there is no shift to be done at all). 1959 Swap = false; 1960 ShiftElts = (8 - M0) % 8; 1961 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1962 // Input vectors need to be swapped if the leading element 1963 // of the result is one of the 3 left elements of the first vector 1964 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1965 Swap = true; 1966 ShiftElts = (4 - M0) % 4; 1967 } 1968 1969 return true; 1970 } else { // BE 1971 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1972 // Input vectors don't need to be swapped if the leading element 1973 // of the result is one of the 4 elements of the first vector. 1974 Swap = false; 1975 ShiftElts = M0; 1976 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1977 // Input vectors need to be swapped if the leading element 1978 // of the result is one of the 4 elements of the right vector. 1979 Swap = true; 1980 ShiftElts = M0 - 4; 1981 } 1982 1983 return true; 1984 } 1985 } 1986 1987 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1988 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1989 1990 if (!isNByteElemShuffleMask(N, Width, -1)) 1991 return false; 1992 1993 for (int i = 0; i < 16; i += Width) 1994 if (N->getMaskElt(i) != i + Width - 1) 1995 return false; 1996 1997 return true; 1998 } 1999 2000 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2001 return isXXBRShuffleMaskHelper(N, 2); 2002 } 2003 2004 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2005 return isXXBRShuffleMaskHelper(N, 4); 2006 } 2007 2008 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2009 return isXXBRShuffleMaskHelper(N, 8); 2010 } 2011 2012 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2013 return isXXBRShuffleMaskHelper(N, 16); 2014 } 2015 2016 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2017 /// if the inputs to the instruction should be swapped and set \p DM to the 2018 /// value for the immediate. 2019 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2020 /// AND element 0 of the result comes from the first input (LE) or second input 2021 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2022 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2023 /// mask. 2024 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2025 bool &Swap, bool IsLE) { 2026 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2027 2028 // Ensure each byte index of the double word is consecutive. 2029 if (!isNByteElemShuffleMask(N, 8, 1)) 2030 return false; 2031 2032 unsigned M0 = N->getMaskElt(0) / 8; 2033 unsigned M1 = N->getMaskElt(8) / 8; 2034 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2035 2036 // If both vector operands for the shuffle are the same vector, the mask will 2037 // contain only elements from the first one and the second one will be undef. 2038 if (N->getOperand(1).isUndef()) { 2039 if ((M0 | M1) < 2) { 2040 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2041 Swap = false; 2042 return true; 2043 } else 2044 return false; 2045 } 2046 2047 if (IsLE) { 2048 if (M0 > 1 && M1 < 2) { 2049 Swap = false; 2050 } else if (M0 < 2 && M1 > 1) { 2051 M0 = (M0 + 2) % 4; 2052 M1 = (M1 + 2) % 4; 2053 Swap = true; 2054 } else 2055 return false; 2056 2057 // Note: if control flow comes here that means Swap is already set above 2058 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2059 return true; 2060 } else { // BE 2061 if (M0 < 2 && M1 > 1) { 2062 Swap = false; 2063 } else if (M0 > 1 && M1 < 2) { 2064 M0 = (M0 + 2) % 4; 2065 M1 = (M1 + 2) % 4; 2066 Swap = true; 2067 } else 2068 return false; 2069 2070 // Note: if control flow comes here that means Swap is already set above 2071 DM = (M0 << 1) + (M1 & 1); 2072 return true; 2073 } 2074 } 2075 2076 2077 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 2078 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 2079 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 2080 SelectionDAG &DAG) { 2081 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2082 assert(isSplatShuffleMask(SVOp, EltSize)); 2083 if (DAG.getDataLayout().isLittleEndian()) 2084 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2085 else 2086 return SVOp->getMaskElt(0) / EltSize; 2087 } 2088 2089 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2090 /// by using a vspltis[bhw] instruction of the specified element size, return 2091 /// the constant being splatted. The ByteSize field indicates the number of 2092 /// bytes of each element [124] -> [bhw]. 2093 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2094 SDValue OpVal(nullptr, 0); 2095 2096 // If ByteSize of the splat is bigger than the element size of the 2097 // build_vector, then we have a case where we are checking for a splat where 2098 // multiple elements of the buildvector are folded together into a single 2099 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2100 unsigned EltSize = 16/N->getNumOperands(); 2101 if (EltSize < ByteSize) { 2102 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2103 SDValue UniquedVals[4]; 2104 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2105 2106 // See if all of the elements in the buildvector agree across. 2107 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2108 if (N->getOperand(i).isUndef()) continue; 2109 // If the element isn't a constant, bail fully out. 2110 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2111 2112 if (!UniquedVals[i&(Multiple-1)].getNode()) 2113 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2114 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2115 return SDValue(); // no match. 2116 } 2117 2118 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2119 // either constant or undef values that are identical for each chunk. See 2120 // if these chunks can form into a larger vspltis*. 2121 2122 // Check to see if all of the leading entries are either 0 or -1. If 2123 // neither, then this won't fit into the immediate field. 2124 bool LeadingZero = true; 2125 bool LeadingOnes = true; 2126 for (unsigned i = 0; i != Multiple-1; ++i) { 2127 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2128 2129 LeadingZero &= isNullConstant(UniquedVals[i]); 2130 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2131 } 2132 // Finally, check the least significant entry. 2133 if (LeadingZero) { 2134 if (!UniquedVals[Multiple-1].getNode()) 2135 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2136 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2137 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2138 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2139 } 2140 if (LeadingOnes) { 2141 if (!UniquedVals[Multiple-1].getNode()) 2142 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2143 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2144 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2145 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2146 } 2147 2148 return SDValue(); 2149 } 2150 2151 // Check to see if this buildvec has a single non-undef value in its elements. 2152 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2153 if (N->getOperand(i).isUndef()) continue; 2154 if (!OpVal.getNode()) 2155 OpVal = N->getOperand(i); 2156 else if (OpVal != N->getOperand(i)) 2157 return SDValue(); 2158 } 2159 2160 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2161 2162 unsigned ValSizeInBytes = EltSize; 2163 uint64_t Value = 0; 2164 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2165 Value = CN->getZExtValue(); 2166 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2167 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2168 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2169 } 2170 2171 // If the splat value is larger than the element value, then we can never do 2172 // this splat. The only case that we could fit the replicated bits into our 2173 // immediate field for would be zero, and we prefer to use vxor for it. 2174 if (ValSizeInBytes < ByteSize) return SDValue(); 2175 2176 // If the element value is larger than the splat value, check if it consists 2177 // of a repeated bit pattern of size ByteSize. 2178 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2179 return SDValue(); 2180 2181 // Properly sign extend the value. 2182 int MaskVal = SignExtend32(Value, ByteSize * 8); 2183 2184 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2185 if (MaskVal == 0) return SDValue(); 2186 2187 // Finally, if this value fits in a 5 bit sext field, return it 2188 if (SignExtend32<5>(MaskVal) == MaskVal) 2189 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2190 return SDValue(); 2191 } 2192 2193 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2194 /// amount, otherwise return -1. 2195 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2196 EVT VT = N->getValueType(0); 2197 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2198 return -1; 2199 2200 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2201 2202 // Find the first non-undef value in the shuffle mask. 2203 unsigned i; 2204 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2205 /*search*/; 2206 2207 if (i == 4) return -1; // all undef. 2208 2209 // Otherwise, check to see if the rest of the elements are consecutively 2210 // numbered from this value. 2211 unsigned ShiftAmt = SVOp->getMaskElt(i); 2212 if (ShiftAmt < i) return -1; 2213 ShiftAmt -= i; 2214 2215 // Check the rest of the elements to see if they are consecutive. 2216 for (++i; i != 4; ++i) 2217 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2218 return -1; 2219 2220 return ShiftAmt; 2221 } 2222 2223 //===----------------------------------------------------------------------===// 2224 // Addressing Mode Selection 2225 //===----------------------------------------------------------------------===// 2226 2227 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2228 /// or 64-bit immediate, and if the value can be accurately represented as a 2229 /// sign extension from a 16-bit value. If so, this returns true and the 2230 /// immediate. 2231 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2232 if (!isa<ConstantSDNode>(N)) 2233 return false; 2234 2235 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2236 if (N->getValueType(0) == MVT::i32) 2237 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2238 else 2239 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2240 } 2241 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2242 return isIntS16Immediate(Op.getNode(), Imm); 2243 } 2244 2245 2246 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2247 /// be represented as an indexed [r+r] operation. 2248 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2249 SDValue &Index, 2250 SelectionDAG &DAG) const { 2251 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2252 UI != E; ++UI) { 2253 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2254 if (Memop->getMemoryVT() == MVT::f64) { 2255 Base = N.getOperand(0); 2256 Index = N.getOperand(1); 2257 return true; 2258 } 2259 } 2260 } 2261 return false; 2262 } 2263 2264 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2265 /// can be represented as an indexed [r+r] operation. Returns false if it 2266 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2267 /// non-zero and N can be represented by a base register plus a signed 16-bit 2268 /// displacement, make a more precise judgement by checking (displacement % \p 2269 /// EncodingAlignment). 2270 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2271 SDValue &Index, SelectionDAG &DAG, 2272 unsigned EncodingAlignment) const { 2273 int16_t imm = 0; 2274 if (N.getOpcode() == ISD::ADD) { 2275 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2276 // SPE load/store can only handle 8-bit offsets. 2277 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2278 return true; 2279 if (isIntS16Immediate(N.getOperand(1), imm) && 2280 (!EncodingAlignment || !(imm % EncodingAlignment))) 2281 return false; // r+i 2282 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2283 return false; // r+i 2284 2285 Base = N.getOperand(0); 2286 Index = N.getOperand(1); 2287 return true; 2288 } else if (N.getOpcode() == ISD::OR) { 2289 if (isIntS16Immediate(N.getOperand(1), imm) && 2290 (!EncodingAlignment || !(imm % EncodingAlignment))) 2291 return false; // r+i can fold it if we can. 2292 2293 // If this is an or of disjoint bitfields, we can codegen this as an add 2294 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2295 // disjoint. 2296 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2297 2298 if (LHSKnown.Zero.getBoolValue()) { 2299 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2300 // If all of the bits are known zero on the LHS or RHS, the add won't 2301 // carry. 2302 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2303 Base = N.getOperand(0); 2304 Index = N.getOperand(1); 2305 return true; 2306 } 2307 } 2308 } 2309 2310 return false; 2311 } 2312 2313 // If we happen to be doing an i64 load or store into a stack slot that has 2314 // less than a 4-byte alignment, then the frame-index elimination may need to 2315 // use an indexed load or store instruction (because the offset may not be a 2316 // multiple of 4). The extra register needed to hold the offset comes from the 2317 // register scavenger, and it is possible that the scavenger will need to use 2318 // an emergency spill slot. As a result, we need to make sure that a spill slot 2319 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2320 // stack slot. 2321 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2322 // FIXME: This does not handle the LWA case. 2323 if (VT != MVT::i64) 2324 return; 2325 2326 // NOTE: We'll exclude negative FIs here, which come from argument 2327 // lowering, because there are no known test cases triggering this problem 2328 // using packed structures (or similar). We can remove this exclusion if 2329 // we find such a test case. The reason why this is so test-case driven is 2330 // because this entire 'fixup' is only to prevent crashes (from the 2331 // register scavenger) on not-really-valid inputs. For example, if we have: 2332 // %a = alloca i1 2333 // %b = bitcast i1* %a to i64* 2334 // store i64* a, i64 b 2335 // then the store should really be marked as 'align 1', but is not. If it 2336 // were marked as 'align 1' then the indexed form would have been 2337 // instruction-selected initially, and the problem this 'fixup' is preventing 2338 // won't happen regardless. 2339 if (FrameIdx < 0) 2340 return; 2341 2342 MachineFunction &MF = DAG.getMachineFunction(); 2343 MachineFrameInfo &MFI = MF.getFrameInfo(); 2344 2345 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2346 if (Align >= 4) 2347 return; 2348 2349 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2350 FuncInfo->setHasNonRISpills(); 2351 } 2352 2353 /// Returns true if the address N can be represented by a base register plus 2354 /// a signed 16-bit displacement [r+imm], and if it is not better 2355 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2356 /// displacements that are multiples of that value. 2357 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2358 SDValue &Base, 2359 SelectionDAG &DAG, 2360 unsigned EncodingAlignment) const { 2361 // FIXME dl should come from parent load or store, not from address 2362 SDLoc dl(N); 2363 // If this can be more profitably realized as r+r, fail. 2364 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2365 return false; 2366 2367 if (N.getOpcode() == ISD::ADD) { 2368 int16_t imm = 0; 2369 if (isIntS16Immediate(N.getOperand(1), imm) && 2370 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2371 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2372 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2373 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2374 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2375 } else { 2376 Base = N.getOperand(0); 2377 } 2378 return true; // [r+i] 2379 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2380 // Match LOAD (ADD (X, Lo(G))). 2381 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2382 && "Cannot handle constant offsets yet!"); 2383 Disp = N.getOperand(1).getOperand(0); // The global address. 2384 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2385 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2386 Disp.getOpcode() == ISD::TargetConstantPool || 2387 Disp.getOpcode() == ISD::TargetJumpTable); 2388 Base = N.getOperand(0); 2389 return true; // [&g+r] 2390 } 2391 } else if (N.getOpcode() == ISD::OR) { 2392 int16_t imm = 0; 2393 if (isIntS16Immediate(N.getOperand(1), imm) && 2394 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2395 // If this is an or of disjoint bitfields, we can codegen this as an add 2396 // (for better address arithmetic) if the LHS and RHS of the OR are 2397 // provably disjoint. 2398 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2399 2400 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2401 // If all of the bits are known zero on the LHS or RHS, the add won't 2402 // carry. 2403 if (FrameIndexSDNode *FI = 2404 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2405 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2406 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2407 } else { 2408 Base = N.getOperand(0); 2409 } 2410 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2411 return true; 2412 } 2413 } 2414 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2415 // Loading from a constant address. 2416 2417 // If this address fits entirely in a 16-bit sext immediate field, codegen 2418 // this as "d, 0" 2419 int16_t Imm; 2420 if (isIntS16Immediate(CN, Imm) && 2421 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2422 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2423 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2424 CN->getValueType(0)); 2425 return true; 2426 } 2427 2428 // Handle 32-bit sext immediates with LIS + addr mode. 2429 if ((CN->getValueType(0) == MVT::i32 || 2430 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2431 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2432 int Addr = (int)CN->getZExtValue(); 2433 2434 // Otherwise, break this down into an LIS + disp. 2435 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2436 2437 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2438 MVT::i32); 2439 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2440 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2441 return true; 2442 } 2443 } 2444 2445 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2446 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2447 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2448 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2449 } else 2450 Base = N; 2451 return true; // [r+0] 2452 } 2453 2454 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2455 /// represented as an indexed [r+r] operation. 2456 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2457 SDValue &Index, 2458 SelectionDAG &DAG) const { 2459 // Check to see if we can easily represent this as an [r+r] address. This 2460 // will fail if it thinks that the address is more profitably represented as 2461 // reg+imm, e.g. where imm = 0. 2462 if (SelectAddressRegReg(N, Base, Index, DAG)) 2463 return true; 2464 2465 // If the address is the result of an add, we will utilize the fact that the 2466 // address calculation includes an implicit add. However, we can reduce 2467 // register pressure if we do not materialize a constant just for use as the 2468 // index register. We only get rid of the add if it is not an add of a 2469 // value and a 16-bit signed constant and both have a single use. 2470 int16_t imm = 0; 2471 if (N.getOpcode() == ISD::ADD && 2472 (!isIntS16Immediate(N.getOperand(1), imm) || 2473 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2474 Base = N.getOperand(0); 2475 Index = N.getOperand(1); 2476 return true; 2477 } 2478 2479 // Otherwise, do it the hard way, using R0 as the base register. 2480 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2481 N.getValueType()); 2482 Index = N; 2483 return true; 2484 } 2485 2486 /// Returns true if we should use a direct load into vector instruction 2487 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2488 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2489 2490 // If there are any other uses other than scalar to vector, then we should 2491 // keep it as a scalar load -> direct move pattern to prevent multiple 2492 // loads. 2493 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2494 if (!LD) 2495 return false; 2496 2497 EVT MemVT = LD->getMemoryVT(); 2498 if (!MemVT.isSimple()) 2499 return false; 2500 switch(MemVT.getSimpleVT().SimpleTy) { 2501 case MVT::i64: 2502 break; 2503 case MVT::i32: 2504 if (!ST.hasP8Vector()) 2505 return false; 2506 break; 2507 case MVT::i16: 2508 case MVT::i8: 2509 if (!ST.hasP9Vector()) 2510 return false; 2511 break; 2512 default: 2513 return false; 2514 } 2515 2516 SDValue LoadedVal(N, 0); 2517 if (!LoadedVal.hasOneUse()) 2518 return false; 2519 2520 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2521 UI != UE; ++UI) 2522 if (UI.getUse().get().getResNo() == 0 && 2523 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2524 return false; 2525 2526 return true; 2527 } 2528 2529 /// getPreIndexedAddressParts - returns true by value, base pointer and 2530 /// offset pointer and addressing mode by reference if the node's address 2531 /// can be legally represented as pre-indexed load / store address. 2532 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2533 SDValue &Offset, 2534 ISD::MemIndexedMode &AM, 2535 SelectionDAG &DAG) const { 2536 if (DisablePPCPreinc) return false; 2537 2538 bool isLoad = true; 2539 SDValue Ptr; 2540 EVT VT; 2541 unsigned Alignment; 2542 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2543 Ptr = LD->getBasePtr(); 2544 VT = LD->getMemoryVT(); 2545 Alignment = LD->getAlignment(); 2546 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2547 Ptr = ST->getBasePtr(); 2548 VT = ST->getMemoryVT(); 2549 Alignment = ST->getAlignment(); 2550 isLoad = false; 2551 } else 2552 return false; 2553 2554 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2555 // instructions because we can fold these into a more efficient instruction 2556 // instead, (such as LXSD). 2557 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2558 return false; 2559 } 2560 2561 // PowerPC doesn't have preinc load/store instructions for vectors (except 2562 // for QPX, which does have preinc r+r forms). 2563 if (VT.isVector()) { 2564 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2565 return false; 2566 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2567 AM = ISD::PRE_INC; 2568 return true; 2569 } 2570 } 2571 2572 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2573 // Common code will reject creating a pre-inc form if the base pointer 2574 // is a frame index, or if N is a store and the base pointer is either 2575 // the same as or a predecessor of the value being stored. Check for 2576 // those situations here, and try with swapped Base/Offset instead. 2577 bool Swap = false; 2578 2579 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2580 Swap = true; 2581 else if (!isLoad) { 2582 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2583 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2584 Swap = true; 2585 } 2586 2587 if (Swap) 2588 std::swap(Base, Offset); 2589 2590 AM = ISD::PRE_INC; 2591 return true; 2592 } 2593 2594 // LDU/STU can only handle immediates that are a multiple of 4. 2595 if (VT != MVT::i64) { 2596 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2597 return false; 2598 } else { 2599 // LDU/STU need an address with at least 4-byte alignment. 2600 if (Alignment < 4) 2601 return false; 2602 2603 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2604 return false; 2605 } 2606 2607 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2608 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2609 // sext i32 to i64 when addr mode is r+i. 2610 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2611 LD->getExtensionType() == ISD::SEXTLOAD && 2612 isa<ConstantSDNode>(Offset)) 2613 return false; 2614 } 2615 2616 AM = ISD::PRE_INC; 2617 return true; 2618 } 2619 2620 //===----------------------------------------------------------------------===// 2621 // LowerOperation implementation 2622 //===----------------------------------------------------------------------===// 2623 2624 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2625 /// and LoOpFlags to the target MO flags. 2626 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2627 unsigned &HiOpFlags, unsigned &LoOpFlags, 2628 const GlobalValue *GV = nullptr) { 2629 HiOpFlags = PPCII::MO_HA; 2630 LoOpFlags = PPCII::MO_LO; 2631 2632 // Don't use the pic base if not in PIC relocation model. 2633 if (IsPIC) { 2634 HiOpFlags |= PPCII::MO_PIC_FLAG; 2635 LoOpFlags |= PPCII::MO_PIC_FLAG; 2636 } 2637 2638 // If this is a reference to a global value that requires a non-lazy-ptr, make 2639 // sure that instruction lowering adds it. 2640 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2641 HiOpFlags |= PPCII::MO_NLP_FLAG; 2642 LoOpFlags |= PPCII::MO_NLP_FLAG; 2643 2644 if (GV->hasHiddenVisibility()) { 2645 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2646 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2647 } 2648 } 2649 } 2650 2651 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2652 SelectionDAG &DAG) { 2653 SDLoc DL(HiPart); 2654 EVT PtrVT = HiPart.getValueType(); 2655 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2656 2657 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2658 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2659 2660 // With PIC, the first instruction is actually "GR+hi(&G)". 2661 if (isPIC) 2662 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2663 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2664 2665 // Generate non-pic code that has direct accesses to the constant pool. 2666 // The address of the global is just (hi(&g)+lo(&g)). 2667 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2668 } 2669 2670 static void setUsesTOCBasePtr(MachineFunction &MF) { 2671 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2672 FuncInfo->setUsesTOCBasePtr(); 2673 } 2674 2675 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2676 setUsesTOCBasePtr(DAG.getMachineFunction()); 2677 } 2678 2679 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2680 SDValue GA) const { 2681 const bool Is64Bit = Subtarget.isPPC64(); 2682 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2683 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2684 : Subtarget.isAIXABI() 2685 ? DAG.getRegister(PPC::R2, VT) 2686 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2687 SDValue Ops[] = { GA, Reg }; 2688 return DAG.getMemIntrinsicNode( 2689 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2690 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2691 MachineMemOperand::MOLoad); 2692 } 2693 2694 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2695 SelectionDAG &DAG) const { 2696 EVT PtrVT = Op.getValueType(); 2697 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2698 const Constant *C = CP->getConstVal(); 2699 2700 // 64-bit SVR4 ABI code is always position-independent. 2701 // The actual address of the GlobalValue is stored in the TOC. 2702 if (Subtarget.is64BitELFABI()) { 2703 setUsesTOCBasePtr(DAG); 2704 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2705 return getTOCEntry(DAG, SDLoc(CP), GA); 2706 } 2707 2708 unsigned MOHiFlag, MOLoFlag; 2709 bool IsPIC = isPositionIndependent(); 2710 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2711 2712 if (IsPIC && Subtarget.isSVR4ABI()) { 2713 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2714 PPCII::MO_PIC_FLAG); 2715 return getTOCEntry(DAG, SDLoc(CP), GA); 2716 } 2717 2718 SDValue CPIHi = 2719 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2720 SDValue CPILo = 2721 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2722 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2723 } 2724 2725 // For 64-bit PowerPC, prefer the more compact relative encodings. 2726 // This trades 32 bits per jump table entry for one or two instructions 2727 // on the jump site. 2728 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2729 if (isJumpTableRelative()) 2730 return MachineJumpTableInfo::EK_LabelDifference32; 2731 2732 return TargetLowering::getJumpTableEncoding(); 2733 } 2734 2735 bool PPCTargetLowering::isJumpTableRelative() const { 2736 if (Subtarget.isPPC64()) 2737 return true; 2738 return TargetLowering::isJumpTableRelative(); 2739 } 2740 2741 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2742 SelectionDAG &DAG) const { 2743 if (!Subtarget.isPPC64()) 2744 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2745 2746 switch (getTargetMachine().getCodeModel()) { 2747 case CodeModel::Small: 2748 case CodeModel::Medium: 2749 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2750 default: 2751 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2752 getPointerTy(DAG.getDataLayout())); 2753 } 2754 } 2755 2756 const MCExpr * 2757 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2758 unsigned JTI, 2759 MCContext &Ctx) const { 2760 if (!Subtarget.isPPC64()) 2761 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2762 2763 switch (getTargetMachine().getCodeModel()) { 2764 case CodeModel::Small: 2765 case CodeModel::Medium: 2766 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2767 default: 2768 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2769 } 2770 } 2771 2772 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2773 EVT PtrVT = Op.getValueType(); 2774 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2775 2776 // 64-bit SVR4 ABI code is always position-independent. 2777 // The actual address of the GlobalValue is stored in the TOC. 2778 if (Subtarget.is64BitELFABI()) { 2779 setUsesTOCBasePtr(DAG); 2780 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2781 return getTOCEntry(DAG, SDLoc(JT), GA); 2782 } 2783 2784 unsigned MOHiFlag, MOLoFlag; 2785 bool IsPIC = isPositionIndependent(); 2786 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2787 2788 if (IsPIC && Subtarget.isSVR4ABI()) { 2789 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2790 PPCII::MO_PIC_FLAG); 2791 return getTOCEntry(DAG, SDLoc(GA), GA); 2792 } 2793 2794 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2795 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2796 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2797 } 2798 2799 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2800 SelectionDAG &DAG) const { 2801 EVT PtrVT = Op.getValueType(); 2802 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2803 const BlockAddress *BA = BASDN->getBlockAddress(); 2804 2805 // 64-bit SVR4 ABI code is always position-independent. 2806 // The actual BlockAddress is stored in the TOC. 2807 if (Subtarget.is64BitELFABI()) { 2808 setUsesTOCBasePtr(DAG); 2809 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2810 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2811 } 2812 2813 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2814 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2815 return getTOCEntry( 2816 DAG, SDLoc(BASDN), 2817 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2818 2819 unsigned MOHiFlag, MOLoFlag; 2820 bool IsPIC = isPositionIndependent(); 2821 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2822 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2823 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2824 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2825 } 2826 2827 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2828 SelectionDAG &DAG) const { 2829 // FIXME: TLS addresses currently use medium model code sequences, 2830 // which is the most useful form. Eventually support for small and 2831 // large models could be added if users need it, at the cost of 2832 // additional complexity. 2833 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2834 if (DAG.getTarget().useEmulatedTLS()) 2835 return LowerToTLSEmulatedModel(GA, DAG); 2836 2837 SDLoc dl(GA); 2838 const GlobalValue *GV = GA->getGlobal(); 2839 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2840 bool is64bit = Subtarget.isPPC64(); 2841 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2842 PICLevel::Level picLevel = M->getPICLevel(); 2843 2844 const TargetMachine &TM = getTargetMachine(); 2845 TLSModel::Model Model = TM.getTLSModel(GV); 2846 2847 if (Model == TLSModel::LocalExec) { 2848 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2849 PPCII::MO_TPREL_HA); 2850 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2851 PPCII::MO_TPREL_LO); 2852 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2853 : DAG.getRegister(PPC::R2, MVT::i32); 2854 2855 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2856 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2857 } 2858 2859 if (Model == TLSModel::InitialExec) { 2860 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2861 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2862 PPCII::MO_TLS); 2863 SDValue GOTPtr; 2864 if (is64bit) { 2865 setUsesTOCBasePtr(DAG); 2866 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2867 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2868 PtrVT, GOTReg, TGA); 2869 } else { 2870 if (!TM.isPositionIndependent()) 2871 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2872 else if (picLevel == PICLevel::SmallPIC) 2873 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2874 else 2875 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2876 } 2877 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2878 PtrVT, TGA, GOTPtr); 2879 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2880 } 2881 2882 if (Model == TLSModel::GeneralDynamic) { 2883 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2884 SDValue GOTPtr; 2885 if (is64bit) { 2886 setUsesTOCBasePtr(DAG); 2887 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2888 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2889 GOTReg, TGA); 2890 } else { 2891 if (picLevel == PICLevel::SmallPIC) 2892 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2893 else 2894 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2895 } 2896 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2897 GOTPtr, TGA, TGA); 2898 } 2899 2900 if (Model == TLSModel::LocalDynamic) { 2901 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2902 SDValue GOTPtr; 2903 if (is64bit) { 2904 setUsesTOCBasePtr(DAG); 2905 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2906 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2907 GOTReg, TGA); 2908 } else { 2909 if (picLevel == PICLevel::SmallPIC) 2910 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2911 else 2912 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2913 } 2914 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2915 PtrVT, GOTPtr, TGA, TGA); 2916 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2917 PtrVT, TLSAddr, TGA); 2918 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2919 } 2920 2921 llvm_unreachable("Unknown TLS model!"); 2922 } 2923 2924 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2925 SelectionDAG &DAG) const { 2926 EVT PtrVT = Op.getValueType(); 2927 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2928 SDLoc DL(GSDN); 2929 const GlobalValue *GV = GSDN->getGlobal(); 2930 2931 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2932 // The actual address of the GlobalValue is stored in the TOC. 2933 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2934 setUsesTOCBasePtr(DAG); 2935 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2936 return getTOCEntry(DAG, DL, GA); 2937 } 2938 2939 unsigned MOHiFlag, MOLoFlag; 2940 bool IsPIC = isPositionIndependent(); 2941 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2942 2943 if (IsPIC && Subtarget.isSVR4ABI()) { 2944 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2945 GSDN->getOffset(), 2946 PPCII::MO_PIC_FLAG); 2947 return getTOCEntry(DAG, DL, GA); 2948 } 2949 2950 SDValue GAHi = 2951 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2952 SDValue GALo = 2953 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2954 2955 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2956 2957 // If the global reference is actually to a non-lazy-pointer, we have to do an 2958 // extra load to get the address of the global. 2959 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2960 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2961 return Ptr; 2962 } 2963 2964 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2965 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2966 SDLoc dl(Op); 2967 2968 if (Op.getValueType() == MVT::v2i64) { 2969 // When the operands themselves are v2i64 values, we need to do something 2970 // special because VSX has no underlying comparison operations for these. 2971 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2972 // Equality can be handled by casting to the legal type for Altivec 2973 // comparisons, everything else needs to be expanded. 2974 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2975 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2976 DAG.getSetCC(dl, MVT::v4i32, 2977 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2978 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2979 CC)); 2980 } 2981 2982 return SDValue(); 2983 } 2984 2985 // We handle most of these in the usual way. 2986 return Op; 2987 } 2988 2989 // If we're comparing for equality to zero, expose the fact that this is 2990 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2991 // fold the new nodes. 2992 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2993 return V; 2994 2995 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2996 // Leave comparisons against 0 and -1 alone for now, since they're usually 2997 // optimized. FIXME: revisit this when we can custom lower all setcc 2998 // optimizations. 2999 if (C->isAllOnesValue() || C->isNullValue()) 3000 return SDValue(); 3001 } 3002 3003 // If we have an integer seteq/setne, turn it into a compare against zero 3004 // by xor'ing the rhs with the lhs, which is faster than setting a 3005 // condition register, reading it back out, and masking the correct bit. The 3006 // normal approach here uses sub to do this instead of xor. Using xor exposes 3007 // the result to other bit-twiddling opportunities. 3008 EVT LHSVT = Op.getOperand(0).getValueType(); 3009 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3010 EVT VT = Op.getValueType(); 3011 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3012 Op.getOperand(1)); 3013 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3014 } 3015 return SDValue(); 3016 } 3017 3018 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3019 SDNode *Node = Op.getNode(); 3020 EVT VT = Node->getValueType(0); 3021 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3022 SDValue InChain = Node->getOperand(0); 3023 SDValue VAListPtr = Node->getOperand(1); 3024 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3025 SDLoc dl(Node); 3026 3027 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3028 3029 // gpr_index 3030 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3031 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3032 InChain = GprIndex.getValue(1); 3033 3034 if (VT == MVT::i64) { 3035 // Check if GprIndex is even 3036 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3037 DAG.getConstant(1, dl, MVT::i32)); 3038 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3039 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3040 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3041 DAG.getConstant(1, dl, MVT::i32)); 3042 // Align GprIndex to be even if it isn't 3043 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3044 GprIndex); 3045 } 3046 3047 // fpr index is 1 byte after gpr 3048 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3049 DAG.getConstant(1, dl, MVT::i32)); 3050 3051 // fpr 3052 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3053 FprPtr, MachinePointerInfo(SV), MVT::i8); 3054 InChain = FprIndex.getValue(1); 3055 3056 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3057 DAG.getConstant(8, dl, MVT::i32)); 3058 3059 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3060 DAG.getConstant(4, dl, MVT::i32)); 3061 3062 // areas 3063 SDValue OverflowArea = 3064 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3065 InChain = OverflowArea.getValue(1); 3066 3067 SDValue RegSaveArea = 3068 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3069 InChain = RegSaveArea.getValue(1); 3070 3071 // select overflow_area if index > 8 3072 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3073 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3074 3075 // adjustment constant gpr_index * 4/8 3076 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3077 VT.isInteger() ? GprIndex : FprIndex, 3078 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3079 MVT::i32)); 3080 3081 // OurReg = RegSaveArea + RegConstant 3082 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3083 RegConstant); 3084 3085 // Floating types are 32 bytes into RegSaveArea 3086 if (VT.isFloatingPoint()) 3087 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3088 DAG.getConstant(32, dl, MVT::i32)); 3089 3090 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3091 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3092 VT.isInteger() ? GprIndex : FprIndex, 3093 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3094 MVT::i32)); 3095 3096 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3097 VT.isInteger() ? VAListPtr : FprPtr, 3098 MachinePointerInfo(SV), MVT::i8); 3099 3100 // determine if we should load from reg_save_area or overflow_area 3101 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3102 3103 // increase overflow_area by 4/8 if gpr/fpr > 8 3104 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3105 DAG.getConstant(VT.isInteger() ? 4 : 8, 3106 dl, MVT::i32)); 3107 3108 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3109 OverflowAreaPlusN); 3110 3111 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3112 MachinePointerInfo(), MVT::i32); 3113 3114 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3115 } 3116 3117 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3118 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3119 3120 // We have to copy the entire va_list struct: 3121 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3122 return DAG.getMemcpy(Op.getOperand(0), Op, 3123 Op.getOperand(1), Op.getOperand(2), 3124 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3125 false, MachinePointerInfo(), MachinePointerInfo()); 3126 } 3127 3128 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3129 SelectionDAG &DAG) const { 3130 return Op.getOperand(0); 3131 } 3132 3133 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3134 SelectionDAG &DAG) const { 3135 SDValue Chain = Op.getOperand(0); 3136 SDValue Trmp = Op.getOperand(1); // trampoline 3137 SDValue FPtr = Op.getOperand(2); // nested function 3138 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3139 SDLoc dl(Op); 3140 3141 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3142 bool isPPC64 = (PtrVT == MVT::i64); 3143 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3144 3145 TargetLowering::ArgListTy Args; 3146 TargetLowering::ArgListEntry Entry; 3147 3148 Entry.Ty = IntPtrTy; 3149 Entry.Node = Trmp; Args.push_back(Entry); 3150 3151 // TrampSize == (isPPC64 ? 48 : 40); 3152 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3153 isPPC64 ? MVT::i64 : MVT::i32); 3154 Args.push_back(Entry); 3155 3156 Entry.Node = FPtr; Args.push_back(Entry); 3157 Entry.Node = Nest; Args.push_back(Entry); 3158 3159 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3160 TargetLowering::CallLoweringInfo CLI(DAG); 3161 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3162 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3163 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3164 3165 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3166 return CallResult.second; 3167 } 3168 3169 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3170 MachineFunction &MF = DAG.getMachineFunction(); 3171 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3172 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3173 3174 SDLoc dl(Op); 3175 3176 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3177 // vastart just stores the address of the VarArgsFrameIndex slot into the 3178 // memory location argument. 3179 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3180 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3181 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3182 MachinePointerInfo(SV)); 3183 } 3184 3185 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3186 // We suppose the given va_list is already allocated. 3187 // 3188 // typedef struct { 3189 // char gpr; /* index into the array of 8 GPRs 3190 // * stored in the register save area 3191 // * gpr=0 corresponds to r3, 3192 // * gpr=1 to r4, etc. 3193 // */ 3194 // char fpr; /* index into the array of 8 FPRs 3195 // * stored in the register save area 3196 // * fpr=0 corresponds to f1, 3197 // * fpr=1 to f2, etc. 3198 // */ 3199 // char *overflow_arg_area; 3200 // /* location on stack that holds 3201 // * the next overflow argument 3202 // */ 3203 // char *reg_save_area; 3204 // /* where r3:r10 and f1:f8 (if saved) 3205 // * are stored 3206 // */ 3207 // } va_list[1]; 3208 3209 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3210 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3211 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3212 PtrVT); 3213 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3214 PtrVT); 3215 3216 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3217 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3218 3219 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3220 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3221 3222 uint64_t FPROffset = 1; 3223 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3224 3225 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3226 3227 // Store first byte : number of int regs 3228 SDValue firstStore = 3229 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3230 MachinePointerInfo(SV), MVT::i8); 3231 uint64_t nextOffset = FPROffset; 3232 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3233 ConstFPROffset); 3234 3235 // Store second byte : number of float regs 3236 SDValue secondStore = 3237 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3238 MachinePointerInfo(SV, nextOffset), MVT::i8); 3239 nextOffset += StackOffset; 3240 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3241 3242 // Store second word : arguments given on stack 3243 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3244 MachinePointerInfo(SV, nextOffset)); 3245 nextOffset += FrameOffset; 3246 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3247 3248 // Store third word : arguments given in registers 3249 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3250 MachinePointerInfo(SV, nextOffset)); 3251 } 3252 3253 /// FPR - The set of FP registers that should be allocated for arguments 3254 /// on Darwin and AIX. 3255 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3256 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3257 PPC::F11, PPC::F12, PPC::F13}; 3258 3259 /// QFPR - The set of QPX registers that should be allocated for arguments. 3260 static const MCPhysReg QFPR[] = { 3261 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3262 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3263 3264 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3265 /// the stack. 3266 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3267 unsigned PtrByteSize) { 3268 unsigned ArgSize = ArgVT.getStoreSize(); 3269 if (Flags.isByVal()) 3270 ArgSize = Flags.getByValSize(); 3271 3272 // Round up to multiples of the pointer size, except for array members, 3273 // which are always packed. 3274 if (!Flags.isInConsecutiveRegs()) 3275 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3276 3277 return ArgSize; 3278 } 3279 3280 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3281 /// on the stack. 3282 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3283 ISD::ArgFlagsTy Flags, 3284 unsigned PtrByteSize) { 3285 unsigned Align = PtrByteSize; 3286 3287 // Altivec parameters are padded to a 16 byte boundary. 3288 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3289 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3290 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3291 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3292 Align = 16; 3293 // QPX vector types stored in double-precision are padded to a 32 byte 3294 // boundary. 3295 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3296 Align = 32; 3297 3298 // ByVal parameters are aligned as requested. 3299 if (Flags.isByVal()) { 3300 unsigned BVAlign = Flags.getByValAlign(); 3301 if (BVAlign > PtrByteSize) { 3302 if (BVAlign % PtrByteSize != 0) 3303 llvm_unreachable( 3304 "ByVal alignment is not a multiple of the pointer size"); 3305 3306 Align = BVAlign; 3307 } 3308 } 3309 3310 // Array members are always packed to their original alignment. 3311 if (Flags.isInConsecutiveRegs()) { 3312 // If the array member was split into multiple registers, the first 3313 // needs to be aligned to the size of the full type. (Except for 3314 // ppcf128, which is only aligned as its f64 components.) 3315 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3316 Align = OrigVT.getStoreSize(); 3317 else 3318 Align = ArgVT.getStoreSize(); 3319 } 3320 3321 return Align; 3322 } 3323 3324 /// CalculateStackSlotUsed - Return whether this argument will use its 3325 /// stack slot (instead of being passed in registers). ArgOffset, 3326 /// AvailableFPRs, and AvailableVRs must hold the current argument 3327 /// position, and will be updated to account for this argument. 3328 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3329 ISD::ArgFlagsTy Flags, 3330 unsigned PtrByteSize, 3331 unsigned LinkageSize, 3332 unsigned ParamAreaSize, 3333 unsigned &ArgOffset, 3334 unsigned &AvailableFPRs, 3335 unsigned &AvailableVRs, bool HasQPX) { 3336 bool UseMemory = false; 3337 3338 // Respect alignment of argument on the stack. 3339 unsigned Align = 3340 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3341 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3342 // If there's no space left in the argument save area, we must 3343 // use memory (this check also catches zero-sized arguments). 3344 if (ArgOffset >= LinkageSize + ParamAreaSize) 3345 UseMemory = true; 3346 3347 // Allocate argument on the stack. 3348 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3349 if (Flags.isInConsecutiveRegsLast()) 3350 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3351 // If we overran the argument save area, we must use memory 3352 // (this check catches arguments passed partially in memory) 3353 if (ArgOffset > LinkageSize + ParamAreaSize) 3354 UseMemory = true; 3355 3356 // However, if the argument is actually passed in an FPR or a VR, 3357 // we don't use memory after all. 3358 if (!Flags.isByVal()) { 3359 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3360 // QPX registers overlap with the scalar FP registers. 3361 (HasQPX && (ArgVT == MVT::v4f32 || 3362 ArgVT == MVT::v4f64 || 3363 ArgVT == MVT::v4i1))) 3364 if (AvailableFPRs > 0) { 3365 --AvailableFPRs; 3366 return false; 3367 } 3368 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3369 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3370 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3371 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3372 if (AvailableVRs > 0) { 3373 --AvailableVRs; 3374 return false; 3375 } 3376 } 3377 3378 return UseMemory; 3379 } 3380 3381 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3382 /// ensure minimum alignment required for target. 3383 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3384 unsigned NumBytes) { 3385 unsigned TargetAlign = Lowering->getStackAlignment(); 3386 unsigned AlignMask = TargetAlign - 1; 3387 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3388 return NumBytes; 3389 } 3390 3391 SDValue PPCTargetLowering::LowerFormalArguments( 3392 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3393 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3394 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3395 if (Subtarget.is64BitELFABI()) 3396 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3397 InVals); 3398 else if (Subtarget.is32BitELFABI()) 3399 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3400 InVals); 3401 3402 // FIXME: We are using this for both AIX and Darwin. We should add appropriate 3403 // AIX testing, and rename it appropriately. 3404 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3405 InVals); 3406 } 3407 3408 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3409 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3410 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3411 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3412 3413 // 32-bit SVR4 ABI Stack Frame Layout: 3414 // +-----------------------------------+ 3415 // +--> | Back chain | 3416 // | +-----------------------------------+ 3417 // | | Floating-point register save area | 3418 // | +-----------------------------------+ 3419 // | | General register save area | 3420 // | +-----------------------------------+ 3421 // | | CR save word | 3422 // | +-----------------------------------+ 3423 // | | VRSAVE save word | 3424 // | +-----------------------------------+ 3425 // | | Alignment padding | 3426 // | +-----------------------------------+ 3427 // | | Vector register save area | 3428 // | +-----------------------------------+ 3429 // | | Local variable space | 3430 // | +-----------------------------------+ 3431 // | | Parameter list area | 3432 // | +-----------------------------------+ 3433 // | | LR save word | 3434 // | +-----------------------------------+ 3435 // SP--> +--- | Back chain | 3436 // +-----------------------------------+ 3437 // 3438 // Specifications: 3439 // System V Application Binary Interface PowerPC Processor Supplement 3440 // AltiVec Technology Programming Interface Manual 3441 3442 MachineFunction &MF = DAG.getMachineFunction(); 3443 MachineFrameInfo &MFI = MF.getFrameInfo(); 3444 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3445 3446 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3447 // Potential tail calls could cause overwriting of argument stack slots. 3448 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3449 (CallConv == CallingConv::Fast)); 3450 unsigned PtrByteSize = 4; 3451 3452 // Assign locations to all of the incoming arguments. 3453 SmallVector<CCValAssign, 16> ArgLocs; 3454 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3455 *DAG.getContext()); 3456 3457 // Reserve space for the linkage area on the stack. 3458 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3459 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3460 if (useSoftFloat()) 3461 CCInfo.PreAnalyzeFormalArguments(Ins); 3462 3463 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3464 CCInfo.clearWasPPCF128(); 3465 3466 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3467 CCValAssign &VA = ArgLocs[i]; 3468 3469 // Arguments stored in registers. 3470 if (VA.isRegLoc()) { 3471 const TargetRegisterClass *RC; 3472 EVT ValVT = VA.getValVT(); 3473 3474 switch (ValVT.getSimpleVT().SimpleTy) { 3475 default: 3476 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3477 case MVT::i1: 3478 case MVT::i32: 3479 RC = &PPC::GPRCRegClass; 3480 break; 3481 case MVT::f32: 3482 if (Subtarget.hasP8Vector()) 3483 RC = &PPC::VSSRCRegClass; 3484 else if (Subtarget.hasSPE()) 3485 RC = &PPC::SPE4RCRegClass; 3486 else 3487 RC = &PPC::F4RCRegClass; 3488 break; 3489 case MVT::f64: 3490 if (Subtarget.hasVSX()) 3491 RC = &PPC::VSFRCRegClass; 3492 else if (Subtarget.hasSPE()) 3493 // SPE passes doubles in GPR pairs. 3494 RC = &PPC::GPRCRegClass; 3495 else 3496 RC = &PPC::F8RCRegClass; 3497 break; 3498 case MVT::v16i8: 3499 case MVT::v8i16: 3500 case MVT::v4i32: 3501 RC = &PPC::VRRCRegClass; 3502 break; 3503 case MVT::v4f32: 3504 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3505 break; 3506 case MVT::v2f64: 3507 case MVT::v2i64: 3508 RC = &PPC::VRRCRegClass; 3509 break; 3510 case MVT::v4f64: 3511 RC = &PPC::QFRCRegClass; 3512 break; 3513 case MVT::v4i1: 3514 RC = &PPC::QBRCRegClass; 3515 break; 3516 } 3517 3518 SDValue ArgValue; 3519 // Transform the arguments stored in physical registers into 3520 // virtual ones. 3521 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3522 assert(i + 1 < e && "No second half of double precision argument"); 3523 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3524 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3525 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3526 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3527 if (!Subtarget.isLittleEndian()) 3528 std::swap (ArgValueLo, ArgValueHi); 3529 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3530 ArgValueHi); 3531 } else { 3532 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3533 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3534 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3535 if (ValVT == MVT::i1) 3536 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3537 } 3538 3539 InVals.push_back(ArgValue); 3540 } else { 3541 // Argument stored in memory. 3542 assert(VA.isMemLoc()); 3543 3544 // Get the extended size of the argument type in stack 3545 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3546 // Get the actual size of the argument type 3547 unsigned ObjSize = VA.getValVT().getStoreSize(); 3548 unsigned ArgOffset = VA.getLocMemOffset(); 3549 // Stack objects in PPC32 are right justified. 3550 ArgOffset += ArgSize - ObjSize; 3551 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3552 3553 // Create load nodes to retrieve arguments from the stack. 3554 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3555 InVals.push_back( 3556 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3557 } 3558 } 3559 3560 // Assign locations to all of the incoming aggregate by value arguments. 3561 // Aggregates passed by value are stored in the local variable space of the 3562 // caller's stack frame, right above the parameter list area. 3563 SmallVector<CCValAssign, 16> ByValArgLocs; 3564 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3565 ByValArgLocs, *DAG.getContext()); 3566 3567 // Reserve stack space for the allocations in CCInfo. 3568 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3569 3570 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3571 3572 // Area that is at least reserved in the caller of this function. 3573 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3574 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3575 3576 // Set the size that is at least reserved in caller of this function. Tail 3577 // call optimized function's reserved stack space needs to be aligned so that 3578 // taking the difference between two stack areas will result in an aligned 3579 // stack. 3580 MinReservedArea = 3581 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3582 FuncInfo->setMinReservedArea(MinReservedArea); 3583 3584 SmallVector<SDValue, 8> MemOps; 3585 3586 // If the function takes variable number of arguments, make a frame index for 3587 // the start of the first vararg value... for expansion of llvm.va_start. 3588 if (isVarArg) { 3589 static const MCPhysReg GPArgRegs[] = { 3590 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3591 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3592 }; 3593 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3594 3595 static const MCPhysReg FPArgRegs[] = { 3596 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3597 PPC::F8 3598 }; 3599 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3600 3601 if (useSoftFloat() || hasSPE()) 3602 NumFPArgRegs = 0; 3603 3604 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3605 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3606 3607 // Make room for NumGPArgRegs and NumFPArgRegs. 3608 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3609 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3610 3611 FuncInfo->setVarArgsStackOffset( 3612 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3613 CCInfo.getNextStackOffset(), true)); 3614 3615 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3616 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3617 3618 // The fixed integer arguments of a variadic function are stored to the 3619 // VarArgsFrameIndex on the stack so that they may be loaded by 3620 // dereferencing the result of va_next. 3621 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3622 // Get an existing live-in vreg, or add a new one. 3623 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3624 if (!VReg) 3625 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3626 3627 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3628 SDValue Store = 3629 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3630 MemOps.push_back(Store); 3631 // Increment the address by four for the next argument to store 3632 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3633 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3634 } 3635 3636 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3637 // is set. 3638 // The double arguments are stored to the VarArgsFrameIndex 3639 // on the stack. 3640 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3641 // Get an existing live-in vreg, or add a new one. 3642 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3643 if (!VReg) 3644 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3645 3646 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3647 SDValue Store = 3648 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3649 MemOps.push_back(Store); 3650 // Increment the address by eight for the next argument to store 3651 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3652 PtrVT); 3653 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3654 } 3655 } 3656 3657 if (!MemOps.empty()) 3658 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3659 3660 return Chain; 3661 } 3662 3663 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3664 // value to MVT::i64 and then truncate to the correct register size. 3665 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3666 EVT ObjectVT, SelectionDAG &DAG, 3667 SDValue ArgVal, 3668 const SDLoc &dl) const { 3669 if (Flags.isSExt()) 3670 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3671 DAG.getValueType(ObjectVT)); 3672 else if (Flags.isZExt()) 3673 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3674 DAG.getValueType(ObjectVT)); 3675 3676 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3677 } 3678 3679 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3680 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3681 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3682 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3683 // TODO: add description of PPC stack frame format, or at least some docs. 3684 // 3685 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3686 bool isLittleEndian = Subtarget.isLittleEndian(); 3687 MachineFunction &MF = DAG.getMachineFunction(); 3688 MachineFrameInfo &MFI = MF.getFrameInfo(); 3689 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3690 3691 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3692 "fastcc not supported on varargs functions"); 3693 3694 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3695 // Potential tail calls could cause overwriting of argument stack slots. 3696 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3697 (CallConv == CallingConv::Fast)); 3698 unsigned PtrByteSize = 8; 3699 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3700 3701 static const MCPhysReg GPR[] = { 3702 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3703 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3704 }; 3705 static const MCPhysReg VR[] = { 3706 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3707 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3708 }; 3709 3710 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3711 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3712 const unsigned Num_VR_Regs = array_lengthof(VR); 3713 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3714 3715 // Do a first pass over the arguments to determine whether the ABI 3716 // guarantees that our caller has allocated the parameter save area 3717 // on its stack frame. In the ELFv1 ABI, this is always the case; 3718 // in the ELFv2 ABI, it is true if this is a vararg function or if 3719 // any parameter is located in a stack slot. 3720 3721 bool HasParameterArea = !isELFv2ABI || isVarArg; 3722 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3723 unsigned NumBytes = LinkageSize; 3724 unsigned AvailableFPRs = Num_FPR_Regs; 3725 unsigned AvailableVRs = Num_VR_Regs; 3726 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3727 if (Ins[i].Flags.isNest()) 3728 continue; 3729 3730 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3731 PtrByteSize, LinkageSize, ParamAreaSize, 3732 NumBytes, AvailableFPRs, AvailableVRs, 3733 Subtarget.hasQPX())) 3734 HasParameterArea = true; 3735 } 3736 3737 // Add DAG nodes to load the arguments or copy them out of registers. On 3738 // entry to a function on PPC, the arguments start after the linkage area, 3739 // although the first ones are often in registers. 3740 3741 unsigned ArgOffset = LinkageSize; 3742 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3743 unsigned &QFPR_idx = FPR_idx; 3744 SmallVector<SDValue, 8> MemOps; 3745 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3746 unsigned CurArgIdx = 0; 3747 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3748 SDValue ArgVal; 3749 bool needsLoad = false; 3750 EVT ObjectVT = Ins[ArgNo].VT; 3751 EVT OrigVT = Ins[ArgNo].ArgVT; 3752 unsigned ObjSize = ObjectVT.getStoreSize(); 3753 unsigned ArgSize = ObjSize; 3754 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3755 if (Ins[ArgNo].isOrigArg()) { 3756 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3757 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3758 } 3759 // We re-align the argument offset for each argument, except when using the 3760 // fast calling convention, when we need to make sure we do that only when 3761 // we'll actually use a stack slot. 3762 unsigned CurArgOffset, Align; 3763 auto ComputeArgOffset = [&]() { 3764 /* Respect alignment of argument on the stack. */ 3765 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3766 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3767 CurArgOffset = ArgOffset; 3768 }; 3769 3770 if (CallConv != CallingConv::Fast) { 3771 ComputeArgOffset(); 3772 3773 /* Compute GPR index associated with argument offset. */ 3774 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3775 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3776 } 3777 3778 // FIXME the codegen can be much improved in some cases. 3779 // We do not have to keep everything in memory. 3780 if (Flags.isByVal()) { 3781 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3782 3783 if (CallConv == CallingConv::Fast) 3784 ComputeArgOffset(); 3785 3786 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3787 ObjSize = Flags.getByValSize(); 3788 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3789 // Empty aggregate parameters do not take up registers. Examples: 3790 // struct { } a; 3791 // union { } b; 3792 // int c[0]; 3793 // etc. However, we have to provide a place-holder in InVals, so 3794 // pretend we have an 8-byte item at the current address for that 3795 // purpose. 3796 if (!ObjSize) { 3797 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3798 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3799 InVals.push_back(FIN); 3800 continue; 3801 } 3802 3803 // Create a stack object covering all stack doublewords occupied 3804 // by the argument. If the argument is (fully or partially) on 3805 // the stack, or if the argument is fully in registers but the 3806 // caller has allocated the parameter save anyway, we can refer 3807 // directly to the caller's stack frame. Otherwise, create a 3808 // local copy in our own frame. 3809 int FI; 3810 if (HasParameterArea || 3811 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3812 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3813 else 3814 FI = MFI.CreateStackObject(ArgSize, Align, false); 3815 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3816 3817 // Handle aggregates smaller than 8 bytes. 3818 if (ObjSize < PtrByteSize) { 3819 // The value of the object is its address, which differs from the 3820 // address of the enclosing doubleword on big-endian systems. 3821 SDValue Arg = FIN; 3822 if (!isLittleEndian) { 3823 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3824 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3825 } 3826 InVals.push_back(Arg); 3827 3828 if (GPR_idx != Num_GPR_Regs) { 3829 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3830 FuncInfo->addLiveInAttr(VReg, Flags); 3831 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3832 SDValue Store; 3833 3834 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3835 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3836 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3837 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3838 MachinePointerInfo(&*FuncArg), ObjType); 3839 } else { 3840 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3841 // store the whole register as-is to the parameter save area 3842 // slot. 3843 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3844 MachinePointerInfo(&*FuncArg)); 3845 } 3846 3847 MemOps.push_back(Store); 3848 } 3849 // Whether we copied from a register or not, advance the offset 3850 // into the parameter save area by a full doubleword. 3851 ArgOffset += PtrByteSize; 3852 continue; 3853 } 3854 3855 // The value of the object is its address, which is the address of 3856 // its first stack doubleword. 3857 InVals.push_back(FIN); 3858 3859 // Store whatever pieces of the object are in registers to memory. 3860 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3861 if (GPR_idx == Num_GPR_Regs) 3862 break; 3863 3864 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3865 FuncInfo->addLiveInAttr(VReg, Flags); 3866 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3867 SDValue Addr = FIN; 3868 if (j) { 3869 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3870 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3871 } 3872 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3873 MachinePointerInfo(&*FuncArg, j)); 3874 MemOps.push_back(Store); 3875 ++GPR_idx; 3876 } 3877 ArgOffset += ArgSize; 3878 continue; 3879 } 3880 3881 switch (ObjectVT.getSimpleVT().SimpleTy) { 3882 default: llvm_unreachable("Unhandled argument type!"); 3883 case MVT::i1: 3884 case MVT::i32: 3885 case MVT::i64: 3886 if (Flags.isNest()) { 3887 // The 'nest' parameter, if any, is passed in R11. 3888 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3889 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3890 3891 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3892 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3893 3894 break; 3895 } 3896 3897 // These can be scalar arguments or elements of an integer array type 3898 // passed directly. Clang may use those instead of "byval" aggregate 3899 // types to avoid forcing arguments to memory unnecessarily. 3900 if (GPR_idx != Num_GPR_Regs) { 3901 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3902 FuncInfo->addLiveInAttr(VReg, Flags); 3903 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3904 3905 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3906 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3907 // value to MVT::i64 and then truncate to the correct register size. 3908 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3909 } else { 3910 if (CallConv == CallingConv::Fast) 3911 ComputeArgOffset(); 3912 3913 needsLoad = true; 3914 ArgSize = PtrByteSize; 3915 } 3916 if (CallConv != CallingConv::Fast || needsLoad) 3917 ArgOffset += 8; 3918 break; 3919 3920 case MVT::f32: 3921 case MVT::f64: 3922 // These can be scalar arguments or elements of a float array type 3923 // passed directly. The latter are used to implement ELFv2 homogenous 3924 // float aggregates. 3925 if (FPR_idx != Num_FPR_Regs) { 3926 unsigned VReg; 3927 3928 if (ObjectVT == MVT::f32) 3929 VReg = MF.addLiveIn(FPR[FPR_idx], 3930 Subtarget.hasP8Vector() 3931 ? &PPC::VSSRCRegClass 3932 : &PPC::F4RCRegClass); 3933 else 3934 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3935 ? &PPC::VSFRCRegClass 3936 : &PPC::F8RCRegClass); 3937 3938 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3939 ++FPR_idx; 3940 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3941 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3942 // once we support fp <-> gpr moves. 3943 3944 // This can only ever happen in the presence of f32 array types, 3945 // since otherwise we never run out of FPRs before running out 3946 // of GPRs. 3947 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3948 FuncInfo->addLiveInAttr(VReg, Flags); 3949 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3950 3951 if (ObjectVT == MVT::f32) { 3952 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3953 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3954 DAG.getConstant(32, dl, MVT::i32)); 3955 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3956 } 3957 3958 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3959 } else { 3960 if (CallConv == CallingConv::Fast) 3961 ComputeArgOffset(); 3962 3963 needsLoad = true; 3964 } 3965 3966 // When passing an array of floats, the array occupies consecutive 3967 // space in the argument area; only round up to the next doubleword 3968 // at the end of the array. Otherwise, each float takes 8 bytes. 3969 if (CallConv != CallingConv::Fast || needsLoad) { 3970 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3971 ArgOffset += ArgSize; 3972 if (Flags.isInConsecutiveRegsLast()) 3973 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3974 } 3975 break; 3976 case MVT::v4f32: 3977 case MVT::v4i32: 3978 case MVT::v8i16: 3979 case MVT::v16i8: 3980 case MVT::v2f64: 3981 case MVT::v2i64: 3982 case MVT::v1i128: 3983 case MVT::f128: 3984 if (!Subtarget.hasQPX()) { 3985 // These can be scalar arguments or elements of a vector array type 3986 // passed directly. The latter are used to implement ELFv2 homogenous 3987 // vector aggregates. 3988 if (VR_idx != Num_VR_Regs) { 3989 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3990 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3991 ++VR_idx; 3992 } else { 3993 if (CallConv == CallingConv::Fast) 3994 ComputeArgOffset(); 3995 needsLoad = true; 3996 } 3997 if (CallConv != CallingConv::Fast || needsLoad) 3998 ArgOffset += 16; 3999 break; 4000 } // not QPX 4001 4002 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4003 "Invalid QPX parameter type"); 4004 LLVM_FALLTHROUGH; 4005 4006 case MVT::v4f64: 4007 case MVT::v4i1: 4008 // QPX vectors are treated like their scalar floating-point subregisters 4009 // (except that they're larger). 4010 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4011 if (QFPR_idx != Num_QFPR_Regs) { 4012 const TargetRegisterClass *RC; 4013 switch (ObjectVT.getSimpleVT().SimpleTy) { 4014 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4015 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4016 default: RC = &PPC::QBRCRegClass; break; 4017 } 4018 4019 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4020 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4021 ++QFPR_idx; 4022 } else { 4023 if (CallConv == CallingConv::Fast) 4024 ComputeArgOffset(); 4025 needsLoad = true; 4026 } 4027 if (CallConv != CallingConv::Fast || needsLoad) 4028 ArgOffset += Sz; 4029 break; 4030 } 4031 4032 // We need to load the argument to a virtual register if we determined 4033 // above that we ran out of physical registers of the appropriate type. 4034 if (needsLoad) { 4035 if (ObjSize < ArgSize && !isLittleEndian) 4036 CurArgOffset += ArgSize - ObjSize; 4037 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4038 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4039 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4040 } 4041 4042 InVals.push_back(ArgVal); 4043 } 4044 4045 // Area that is at least reserved in the caller of this function. 4046 unsigned MinReservedArea; 4047 if (HasParameterArea) 4048 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4049 else 4050 MinReservedArea = LinkageSize; 4051 4052 // Set the size that is at least reserved in caller of this function. Tail 4053 // call optimized functions' reserved stack space needs to be aligned so that 4054 // taking the difference between two stack areas will result in an aligned 4055 // stack. 4056 MinReservedArea = 4057 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4058 FuncInfo->setMinReservedArea(MinReservedArea); 4059 4060 // If the function takes variable number of arguments, make a frame index for 4061 // the start of the first vararg value... for expansion of llvm.va_start. 4062 if (isVarArg) { 4063 int Depth = ArgOffset; 4064 4065 FuncInfo->setVarArgsFrameIndex( 4066 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4067 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4068 4069 // If this function is vararg, store any remaining integer argument regs 4070 // to their spots on the stack so that they may be loaded by dereferencing 4071 // the result of va_next. 4072 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4073 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4074 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4075 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4076 SDValue Store = 4077 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4078 MemOps.push_back(Store); 4079 // Increment the address by four for the next argument to store 4080 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4081 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4082 } 4083 } 4084 4085 if (!MemOps.empty()) 4086 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4087 4088 return Chain; 4089 } 4090 4091 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4092 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4093 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4094 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4095 // TODO: add description of PPC stack frame format, or at least some docs. 4096 // 4097 MachineFunction &MF = DAG.getMachineFunction(); 4098 MachineFrameInfo &MFI = MF.getFrameInfo(); 4099 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4100 4101 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4102 bool isPPC64 = PtrVT == MVT::i64; 4103 // Potential tail calls could cause overwriting of argument stack slots. 4104 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4105 (CallConv == CallingConv::Fast)); 4106 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4107 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4108 unsigned ArgOffset = LinkageSize; 4109 // Area that is at least reserved in caller of this function. 4110 unsigned MinReservedArea = ArgOffset; 4111 4112 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4113 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4114 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4115 }; 4116 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4117 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4118 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4119 }; 4120 static const MCPhysReg VR[] = { 4121 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4122 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4123 }; 4124 4125 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4126 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4127 const unsigned Num_VR_Regs = array_lengthof( VR); 4128 4129 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4130 4131 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4132 4133 // In 32-bit non-varargs functions, the stack space for vectors is after the 4134 // stack space for non-vectors. We do not use this space unless we have 4135 // too many vectors to fit in registers, something that only occurs in 4136 // constructed examples:), but we have to walk the arglist to figure 4137 // that out...for the pathological case, compute VecArgOffset as the 4138 // start of the vector parameter area. Computing VecArgOffset is the 4139 // entire point of the following loop. 4140 unsigned VecArgOffset = ArgOffset; 4141 if (!isVarArg && !isPPC64) { 4142 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4143 ++ArgNo) { 4144 EVT ObjectVT = Ins[ArgNo].VT; 4145 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4146 4147 if (Flags.isByVal()) { 4148 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4149 unsigned ObjSize = Flags.getByValSize(); 4150 unsigned ArgSize = 4151 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4152 VecArgOffset += ArgSize; 4153 continue; 4154 } 4155 4156 switch(ObjectVT.getSimpleVT().SimpleTy) { 4157 default: llvm_unreachable("Unhandled argument type!"); 4158 case MVT::i1: 4159 case MVT::i32: 4160 case MVT::f32: 4161 VecArgOffset += 4; 4162 break; 4163 case MVT::i64: // PPC64 4164 case MVT::f64: 4165 // FIXME: We are guaranteed to be !isPPC64 at this point. 4166 // Does MVT::i64 apply? 4167 VecArgOffset += 8; 4168 break; 4169 case MVT::v4f32: 4170 case MVT::v4i32: 4171 case MVT::v8i16: 4172 case MVT::v16i8: 4173 // Nothing to do, we're only looking at Nonvector args here. 4174 break; 4175 } 4176 } 4177 } 4178 // We've found where the vector parameter area in memory is. Skip the 4179 // first 12 parameters; these don't use that memory. 4180 VecArgOffset = ((VecArgOffset+15)/16)*16; 4181 VecArgOffset += 12*16; 4182 4183 // Add DAG nodes to load the arguments or copy them out of registers. On 4184 // entry to a function on PPC, the arguments start after the linkage area, 4185 // although the first ones are often in registers. 4186 4187 SmallVector<SDValue, 8> MemOps; 4188 unsigned nAltivecParamsAtEnd = 0; 4189 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4190 unsigned CurArgIdx = 0; 4191 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4192 SDValue ArgVal; 4193 bool needsLoad = false; 4194 EVT ObjectVT = Ins[ArgNo].VT; 4195 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4196 unsigned ArgSize = ObjSize; 4197 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4198 if (Ins[ArgNo].isOrigArg()) { 4199 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4200 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4201 } 4202 unsigned CurArgOffset = ArgOffset; 4203 4204 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4205 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4206 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4207 if (isVarArg || isPPC64) { 4208 MinReservedArea = ((MinReservedArea+15)/16)*16; 4209 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4210 Flags, 4211 PtrByteSize); 4212 } else nAltivecParamsAtEnd++; 4213 } else 4214 // Calculate min reserved area. 4215 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4216 Flags, 4217 PtrByteSize); 4218 4219 // FIXME the codegen can be much improved in some cases. 4220 // We do not have to keep everything in memory. 4221 if (Flags.isByVal()) { 4222 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4223 4224 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4225 ObjSize = Flags.getByValSize(); 4226 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4227 // Objects of size 1 and 2 are right justified, everything else is 4228 // left justified. This means the memory address is adjusted forwards. 4229 if (ObjSize==1 || ObjSize==2) { 4230 CurArgOffset = CurArgOffset + (4 - ObjSize); 4231 } 4232 // The value of the object is its address. 4233 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4234 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4235 InVals.push_back(FIN); 4236 if (ObjSize==1 || ObjSize==2) { 4237 if (GPR_idx != Num_GPR_Regs) { 4238 unsigned VReg; 4239 if (isPPC64) 4240 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4241 else 4242 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4243 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4244 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4245 SDValue Store = 4246 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4247 MachinePointerInfo(&*FuncArg), ObjType); 4248 MemOps.push_back(Store); 4249 ++GPR_idx; 4250 } 4251 4252 ArgOffset += PtrByteSize; 4253 4254 continue; 4255 } 4256 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4257 // Store whatever pieces of the object are in registers 4258 // to memory. ArgOffset will be the address of the beginning 4259 // of the object. 4260 if (GPR_idx != Num_GPR_Regs) { 4261 unsigned VReg; 4262 if (isPPC64) 4263 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4264 else 4265 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4266 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4267 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4268 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4269 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4270 MachinePointerInfo(&*FuncArg, j)); 4271 MemOps.push_back(Store); 4272 ++GPR_idx; 4273 ArgOffset += PtrByteSize; 4274 } else { 4275 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4276 break; 4277 } 4278 } 4279 continue; 4280 } 4281 4282 switch (ObjectVT.getSimpleVT().SimpleTy) { 4283 default: llvm_unreachable("Unhandled argument type!"); 4284 case MVT::i1: 4285 case MVT::i32: 4286 if (!isPPC64) { 4287 if (GPR_idx != Num_GPR_Regs) { 4288 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4289 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4290 4291 if (ObjectVT == MVT::i1) 4292 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4293 4294 ++GPR_idx; 4295 } else { 4296 needsLoad = true; 4297 ArgSize = PtrByteSize; 4298 } 4299 // All int arguments reserve stack space in the Darwin ABI. 4300 ArgOffset += PtrByteSize; 4301 break; 4302 } 4303 LLVM_FALLTHROUGH; 4304 case MVT::i64: // PPC64 4305 if (GPR_idx != Num_GPR_Regs) { 4306 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4307 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4308 4309 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4310 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4311 // value to MVT::i64 and then truncate to the correct register size. 4312 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4313 4314 ++GPR_idx; 4315 } else { 4316 needsLoad = true; 4317 ArgSize = PtrByteSize; 4318 } 4319 // All int arguments reserve stack space in the Darwin ABI. 4320 ArgOffset += 8; 4321 break; 4322 4323 case MVT::f32: 4324 case MVT::f64: 4325 // Every 4 bytes of argument space consumes one of the GPRs available for 4326 // argument passing. 4327 if (GPR_idx != Num_GPR_Regs) { 4328 ++GPR_idx; 4329 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4330 ++GPR_idx; 4331 } 4332 if (FPR_idx != Num_FPR_Regs) { 4333 unsigned VReg; 4334 4335 if (ObjectVT == MVT::f32) 4336 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4337 else 4338 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4339 4340 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4341 ++FPR_idx; 4342 } else { 4343 needsLoad = true; 4344 } 4345 4346 // All FP arguments reserve stack space in the Darwin ABI. 4347 ArgOffset += isPPC64 ? 8 : ObjSize; 4348 break; 4349 case MVT::v4f32: 4350 case MVT::v4i32: 4351 case MVT::v8i16: 4352 case MVT::v16i8: 4353 // Note that vector arguments in registers don't reserve stack space, 4354 // except in varargs functions. 4355 if (VR_idx != Num_VR_Regs) { 4356 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4357 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4358 if (isVarArg) { 4359 while ((ArgOffset % 16) != 0) { 4360 ArgOffset += PtrByteSize; 4361 if (GPR_idx != Num_GPR_Regs) 4362 GPR_idx++; 4363 } 4364 ArgOffset += 16; 4365 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4366 } 4367 ++VR_idx; 4368 } else { 4369 if (!isVarArg && !isPPC64) { 4370 // Vectors go after all the nonvectors. 4371 CurArgOffset = VecArgOffset; 4372 VecArgOffset += 16; 4373 } else { 4374 // Vectors are aligned. 4375 ArgOffset = ((ArgOffset+15)/16)*16; 4376 CurArgOffset = ArgOffset; 4377 ArgOffset += 16; 4378 } 4379 needsLoad = true; 4380 } 4381 break; 4382 } 4383 4384 // We need to load the argument to a virtual register if we determined above 4385 // that we ran out of physical registers of the appropriate type. 4386 if (needsLoad) { 4387 int FI = MFI.CreateFixedObject(ObjSize, 4388 CurArgOffset + (ArgSize - ObjSize), 4389 isImmutable); 4390 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4391 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4392 } 4393 4394 InVals.push_back(ArgVal); 4395 } 4396 4397 // Allow for Altivec parameters at the end, if needed. 4398 if (nAltivecParamsAtEnd) { 4399 MinReservedArea = ((MinReservedArea+15)/16)*16; 4400 MinReservedArea += 16*nAltivecParamsAtEnd; 4401 } 4402 4403 // Area that is at least reserved in the caller of this function. 4404 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4405 4406 // Set the size that is at least reserved in caller of this function. Tail 4407 // call optimized functions' reserved stack space needs to be aligned so that 4408 // taking the difference between two stack areas will result in an aligned 4409 // stack. 4410 MinReservedArea = 4411 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4412 FuncInfo->setMinReservedArea(MinReservedArea); 4413 4414 // If the function takes variable number of arguments, make a frame index for 4415 // the start of the first vararg value... for expansion of llvm.va_start. 4416 if (isVarArg) { 4417 int Depth = ArgOffset; 4418 4419 FuncInfo->setVarArgsFrameIndex( 4420 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4421 Depth, true)); 4422 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4423 4424 // If this function is vararg, store any remaining integer argument regs 4425 // to their spots on the stack so that they may be loaded by dereferencing 4426 // the result of va_next. 4427 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4428 unsigned VReg; 4429 4430 if (isPPC64) 4431 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4432 else 4433 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4434 4435 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4436 SDValue Store = 4437 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4438 MemOps.push_back(Store); 4439 // Increment the address by four for the next argument to store 4440 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4441 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4442 } 4443 } 4444 4445 if (!MemOps.empty()) 4446 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4447 4448 return Chain; 4449 } 4450 4451 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4452 /// adjusted to accommodate the arguments for the tailcall. 4453 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4454 unsigned ParamSize) { 4455 4456 if (!isTailCall) return 0; 4457 4458 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4459 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4460 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4461 // Remember only if the new adjustment is bigger. 4462 if (SPDiff < FI->getTailCallSPDelta()) 4463 FI->setTailCallSPDelta(SPDiff); 4464 4465 return SPDiff; 4466 } 4467 4468 static bool isFunctionGlobalAddress(SDValue Callee); 4469 4470 static bool 4471 callsShareTOCBase(const Function *Caller, SDValue Callee, 4472 const TargetMachine &TM) { 4473 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4474 // don't have enough information to determine if the caller and calle share 4475 // the same TOC base, so we have to pessimistically assume they don't for 4476 // correctness. 4477 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4478 if (!G) 4479 return false; 4480 4481 const GlobalValue *GV = G->getGlobal(); 4482 // The medium and large code models are expected to provide a sufficiently 4483 // large TOC to provide all data addressing needs of a module with a 4484 // single TOC. Since each module will be addressed with a single TOC then we 4485 // only need to check that caller and callee don't cross dso boundaries. 4486 if (CodeModel::Medium == TM.getCodeModel() || 4487 CodeModel::Large == TM.getCodeModel()) 4488 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4489 4490 // Otherwise we need to ensure callee and caller are in the same section, 4491 // since the linker may allocate multiple TOCs, and we don't know which 4492 // sections will belong to the same TOC base. 4493 4494 if (!GV->isStrongDefinitionForLinker()) 4495 return false; 4496 4497 // Any explicitly-specified sections and section prefixes must also match. 4498 // Also, if we're using -ffunction-sections, then each function is always in 4499 // a different section (the same is true for COMDAT functions). 4500 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4501 GV->getSection() != Caller->getSection()) 4502 return false; 4503 if (const auto *F = dyn_cast<Function>(GV)) { 4504 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4505 return false; 4506 } 4507 4508 // If the callee might be interposed, then we can't assume the ultimate call 4509 // target will be in the same section. Even in cases where we can assume that 4510 // interposition won't happen, in any case where the linker might insert a 4511 // stub to allow for interposition, we must generate code as though 4512 // interposition might occur. To understand why this matters, consider a 4513 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4514 // in the same section, but a is in a different module (i.e. has a different 4515 // TOC base pointer). If the linker allows for interposition between b and c, 4516 // then it will generate a stub for the call edge between b and c which will 4517 // save the TOC pointer into the designated stack slot allocated by b. If we 4518 // return true here, and therefore allow a tail call between b and c, that 4519 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4520 // pointer into the stack slot allocated by a (where the a -> b stub saved 4521 // a's TOC base pointer). If we're not considering a tail call, but rather, 4522 // whether a nop is needed after the call instruction in b, because the linker 4523 // will insert a stub, it might complain about a missing nop if we omit it 4524 // (although many don't complain in this case). 4525 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4526 return false; 4527 4528 return true; 4529 } 4530 4531 static bool 4532 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4533 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4534 assert(Subtarget.is64BitELFABI()); 4535 4536 const unsigned PtrByteSize = 8; 4537 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4538 4539 static const MCPhysReg GPR[] = { 4540 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4541 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4542 }; 4543 static const MCPhysReg VR[] = { 4544 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4545 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4546 }; 4547 4548 const unsigned NumGPRs = array_lengthof(GPR); 4549 const unsigned NumFPRs = 13; 4550 const unsigned NumVRs = array_lengthof(VR); 4551 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4552 4553 unsigned NumBytes = LinkageSize; 4554 unsigned AvailableFPRs = NumFPRs; 4555 unsigned AvailableVRs = NumVRs; 4556 4557 for (const ISD::OutputArg& Param : Outs) { 4558 if (Param.Flags.isNest()) continue; 4559 4560 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4561 PtrByteSize, LinkageSize, ParamAreaSize, 4562 NumBytes, AvailableFPRs, AvailableVRs, 4563 Subtarget.hasQPX())) 4564 return true; 4565 } 4566 return false; 4567 } 4568 4569 static bool 4570 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4571 if (CS.arg_size() != CallerFn->arg_size()) 4572 return false; 4573 4574 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4575 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4576 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4577 4578 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4579 const Value* CalleeArg = *CalleeArgIter; 4580 const Value* CallerArg = &(*CallerArgIter); 4581 if (CalleeArg == CallerArg) 4582 continue; 4583 4584 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4585 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4586 // } 4587 // 1st argument of callee is undef and has the same type as caller. 4588 if (CalleeArg->getType() == CallerArg->getType() && 4589 isa<UndefValue>(CalleeArg)) 4590 continue; 4591 4592 return false; 4593 } 4594 4595 return true; 4596 } 4597 4598 // Returns true if TCO is possible between the callers and callees 4599 // calling conventions. 4600 static bool 4601 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4602 CallingConv::ID CalleeCC) { 4603 // Tail calls are possible with fastcc and ccc. 4604 auto isTailCallableCC = [] (CallingConv::ID CC){ 4605 return CC == CallingConv::C || CC == CallingConv::Fast; 4606 }; 4607 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4608 return false; 4609 4610 // We can safely tail call both fastcc and ccc callees from a c calling 4611 // convention caller. If the caller is fastcc, we may have less stack space 4612 // than a non-fastcc caller with the same signature so disable tail-calls in 4613 // that case. 4614 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4615 } 4616 4617 bool 4618 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4619 SDValue Callee, 4620 CallingConv::ID CalleeCC, 4621 ImmutableCallSite CS, 4622 bool isVarArg, 4623 const SmallVectorImpl<ISD::OutputArg> &Outs, 4624 const SmallVectorImpl<ISD::InputArg> &Ins, 4625 SelectionDAG& DAG) const { 4626 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4627 4628 if (DisableSCO && !TailCallOpt) return false; 4629 4630 // Variadic argument functions are not supported. 4631 if (isVarArg) return false; 4632 4633 auto &Caller = DAG.getMachineFunction().getFunction(); 4634 // Check that the calling conventions are compatible for tco. 4635 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4636 return false; 4637 4638 // Caller contains any byval parameter is not supported. 4639 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4640 return false; 4641 4642 // Callee contains any byval parameter is not supported, too. 4643 // Note: This is a quick work around, because in some cases, e.g. 4644 // caller's stack size > callee's stack size, we are still able to apply 4645 // sibling call optimization. For example, gcc is able to do SCO for caller1 4646 // in the following example, but not for caller2. 4647 // struct test { 4648 // long int a; 4649 // char ary[56]; 4650 // } gTest; 4651 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4652 // b->a = v.a; 4653 // return 0; 4654 // } 4655 // void caller1(struct test a, struct test c, struct test *b) { 4656 // callee(gTest, b); } 4657 // void caller2(struct test *b) { callee(gTest, b); } 4658 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4659 return false; 4660 4661 // If callee and caller use different calling conventions, we cannot pass 4662 // parameters on stack since offsets for the parameter area may be different. 4663 if (Caller.getCallingConv() != CalleeCC && 4664 needStackSlotPassParameters(Subtarget, Outs)) 4665 return false; 4666 4667 // No TCO/SCO on indirect call because Caller have to restore its TOC 4668 if (!isFunctionGlobalAddress(Callee) && 4669 !isa<ExternalSymbolSDNode>(Callee)) 4670 return false; 4671 4672 // If the caller and callee potentially have different TOC bases then we 4673 // cannot tail call since we need to restore the TOC pointer after the call. 4674 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4675 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4676 return false; 4677 4678 // TCO allows altering callee ABI, so we don't have to check further. 4679 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4680 return true; 4681 4682 if (DisableSCO) return false; 4683 4684 // If callee use the same argument list that caller is using, then we can 4685 // apply SCO on this case. If it is not, then we need to check if callee needs 4686 // stack for passing arguments. 4687 if (!hasSameArgumentList(&Caller, CS) && 4688 needStackSlotPassParameters(Subtarget, Outs)) { 4689 return false; 4690 } 4691 4692 return true; 4693 } 4694 4695 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4696 /// for tail call optimization. Targets which want to do tail call 4697 /// optimization should implement this function. 4698 bool 4699 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4700 CallingConv::ID CalleeCC, 4701 bool isVarArg, 4702 const SmallVectorImpl<ISD::InputArg> &Ins, 4703 SelectionDAG& DAG) const { 4704 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4705 return false; 4706 4707 // Variable argument functions are not supported. 4708 if (isVarArg) 4709 return false; 4710 4711 MachineFunction &MF = DAG.getMachineFunction(); 4712 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4713 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4714 // Functions containing by val parameters are not supported. 4715 for (unsigned i = 0; i != Ins.size(); i++) { 4716 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4717 if (Flags.isByVal()) return false; 4718 } 4719 4720 // Non-PIC/GOT tail calls are supported. 4721 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4722 return true; 4723 4724 // At the moment we can only do local tail calls (in same module, hidden 4725 // or protected) if we are generating PIC. 4726 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4727 return G->getGlobal()->hasHiddenVisibility() 4728 || G->getGlobal()->hasProtectedVisibility(); 4729 } 4730 4731 return false; 4732 } 4733 4734 /// isCallCompatibleAddress - Return the immediate to use if the specified 4735 /// 32-bit value is representable in the immediate field of a BxA instruction. 4736 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4737 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4738 if (!C) return nullptr; 4739 4740 int Addr = C->getZExtValue(); 4741 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4742 SignExtend32<26>(Addr) != Addr) 4743 return nullptr; // Top 6 bits have to be sext of immediate. 4744 4745 return DAG 4746 .getConstant( 4747 (int)C->getZExtValue() >> 2, SDLoc(Op), 4748 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4749 .getNode(); 4750 } 4751 4752 namespace { 4753 4754 struct TailCallArgumentInfo { 4755 SDValue Arg; 4756 SDValue FrameIdxOp; 4757 int FrameIdx = 0; 4758 4759 TailCallArgumentInfo() = default; 4760 }; 4761 4762 } // end anonymous namespace 4763 4764 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4765 static void StoreTailCallArgumentsToStackSlot( 4766 SelectionDAG &DAG, SDValue Chain, 4767 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4768 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4769 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4770 SDValue Arg = TailCallArgs[i].Arg; 4771 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4772 int FI = TailCallArgs[i].FrameIdx; 4773 // Store relative to framepointer. 4774 MemOpChains.push_back(DAG.getStore( 4775 Chain, dl, Arg, FIN, 4776 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4777 } 4778 } 4779 4780 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4781 /// the appropriate stack slot for the tail call optimized function call. 4782 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4783 SDValue OldRetAddr, SDValue OldFP, 4784 int SPDiff, const SDLoc &dl) { 4785 if (SPDiff) { 4786 // Calculate the new stack slot for the return address. 4787 MachineFunction &MF = DAG.getMachineFunction(); 4788 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4789 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4790 bool isPPC64 = Subtarget.isPPC64(); 4791 int SlotSize = isPPC64 ? 8 : 4; 4792 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4793 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4794 NewRetAddrLoc, true); 4795 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4796 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4797 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4798 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4799 4800 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4801 // slot as the FP is never overwritten. 4802 if (Subtarget.isDarwinABI()) { 4803 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4804 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4805 true); 4806 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4807 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4808 MachinePointerInfo::getFixedStack( 4809 DAG.getMachineFunction(), NewFPIdx)); 4810 } 4811 } 4812 return Chain; 4813 } 4814 4815 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4816 /// the position of the argument. 4817 static void 4818 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4819 SDValue Arg, int SPDiff, unsigned ArgOffset, 4820 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4821 int Offset = ArgOffset + SPDiff; 4822 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4823 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4824 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4825 SDValue FIN = DAG.getFrameIndex(FI, VT); 4826 TailCallArgumentInfo Info; 4827 Info.Arg = Arg; 4828 Info.FrameIdxOp = FIN; 4829 Info.FrameIdx = FI; 4830 TailCallArguments.push_back(Info); 4831 } 4832 4833 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4834 /// stack slot. Returns the chain as result and the loaded frame pointers in 4835 /// LROpOut/FPOpout. Used when tail calling. 4836 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4837 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4838 SDValue &FPOpOut, const SDLoc &dl) const { 4839 if (SPDiff) { 4840 // Load the LR and FP stack slot for later adjusting. 4841 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4842 LROpOut = getReturnAddrFrameIndex(DAG); 4843 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4844 Chain = SDValue(LROpOut.getNode(), 1); 4845 4846 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4847 // slot as the FP is never overwritten. 4848 if (Subtarget.isDarwinABI()) { 4849 FPOpOut = getFramePointerFrameIndex(DAG); 4850 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4851 Chain = SDValue(FPOpOut.getNode(), 1); 4852 } 4853 } 4854 return Chain; 4855 } 4856 4857 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4858 /// by "Src" to address "Dst" of size "Size". Alignment information is 4859 /// specified by the specific parameter attribute. The copy will be passed as 4860 /// a byval function parameter. 4861 /// Sometimes what we are copying is the end of a larger object, the part that 4862 /// does not fit in registers. 4863 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4864 SDValue Chain, ISD::ArgFlagsTy Flags, 4865 SelectionDAG &DAG, const SDLoc &dl) { 4866 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4867 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4868 false, false, false, MachinePointerInfo(), 4869 MachinePointerInfo()); 4870 } 4871 4872 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4873 /// tail calls. 4874 static void LowerMemOpCallTo( 4875 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4876 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4877 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4878 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4879 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4880 if (!isTailCall) { 4881 if (isVector) { 4882 SDValue StackPtr; 4883 if (isPPC64) 4884 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4885 else 4886 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4887 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4888 DAG.getConstant(ArgOffset, dl, PtrVT)); 4889 } 4890 MemOpChains.push_back( 4891 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4892 // Calculate and remember argument location. 4893 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4894 TailCallArguments); 4895 } 4896 4897 static void 4898 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4899 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4900 SDValue FPOp, 4901 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4902 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4903 // might overwrite each other in case of tail call optimization. 4904 SmallVector<SDValue, 8> MemOpChains2; 4905 // Do not flag preceding copytoreg stuff together with the following stuff. 4906 InFlag = SDValue(); 4907 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4908 MemOpChains2, dl); 4909 if (!MemOpChains2.empty()) 4910 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4911 4912 // Store the return address to the appropriate stack slot. 4913 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4914 4915 // Emit callseq_end just before tailcall node. 4916 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4917 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4918 InFlag = Chain.getValue(1); 4919 } 4920 4921 // Is this global address that of a function that can be called by name? (as 4922 // opposed to something that must hold a descriptor for an indirect call). 4923 static bool isFunctionGlobalAddress(SDValue Callee) { 4924 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4925 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4926 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4927 return false; 4928 4929 return G->getGlobal()->getValueType()->isFunctionTy(); 4930 } 4931 4932 return false; 4933 } 4934 4935 static unsigned 4936 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4937 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4938 bool isPatchPoint, bool hasNest, 4939 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4940 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4941 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4942 bool isPPC64 = Subtarget.isPPC64(); 4943 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4944 bool is64BitELFv1ABI = isPPC64 && isSVR4ABI && !Subtarget.isELFv2ABI(); 4945 bool isAIXABI = Subtarget.isAIXABI(); 4946 4947 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4948 NodeTys.push_back(MVT::Other); // Returns a chain 4949 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4950 4951 unsigned CallOpc = PPCISD::CALL; 4952 4953 bool needIndirectCall = true; 4954 if (!isSVR4ABI || !isPPC64) 4955 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4956 // If this is an absolute destination address, use the munged value. 4957 Callee = SDValue(Dest, 0); 4958 needIndirectCall = false; 4959 } 4960 4961 // PC-relative references to external symbols should go through $stub, unless 4962 // we're building with the leopard linker or later, which automatically 4963 // synthesizes these stubs. 4964 const TargetMachine &TM = DAG.getTarget(); 4965 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4966 const GlobalValue *GV = nullptr; 4967 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4968 GV = G->getGlobal(); 4969 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4970 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4971 4972 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4973 // every direct call is) turn it into a TargetGlobalAddress / 4974 // TargetExternalSymbol node so that legalize doesn't hack it. 4975 if (isFunctionGlobalAddress(Callee)) { 4976 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4977 4978 // A call to a TLS address is actually an indirect call to a 4979 // thread-specific pointer. 4980 unsigned OpFlags = 0; 4981 if (UsePlt) 4982 OpFlags = PPCII::MO_PLT; 4983 4984 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4985 Callee.getValueType(), 0, OpFlags); 4986 needIndirectCall = false; 4987 } 4988 4989 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4990 unsigned char OpFlags = 0; 4991 4992 if (UsePlt) 4993 OpFlags = PPCII::MO_PLT; 4994 4995 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4996 OpFlags); 4997 needIndirectCall = false; 4998 } 4999 5000 if (isPatchPoint) { 5001 // We'll form an invalid direct call when lowering a patchpoint; the full 5002 // sequence for an indirect call is complicated, and many of the 5003 // instructions introduced might have side effects (and, thus, can't be 5004 // removed later). The call itself will be removed as soon as the 5005 // argument/return lowering is complete, so the fact that it has the wrong 5006 // kind of operands should not really matter. 5007 needIndirectCall = false; 5008 } 5009 5010 if (needIndirectCall) { 5011 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 5012 // to do the call, we can't use PPCISD::CALL. 5013 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 5014 5015 if (is64BitELFv1ABI) { 5016 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5017 // entry point, but to the function descriptor (the function entry point 5018 // address is part of the function descriptor though). 5019 // The function descriptor is a three doubleword structure with the 5020 // following fields: function entry point, TOC base address and 5021 // environment pointer. 5022 // Thus for a call through a function pointer, the following actions need 5023 // to be performed: 5024 // 1. Save the TOC of the caller in the TOC save area of its stack 5025 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5026 // 2. Load the address of the function entry point from the function 5027 // descriptor. 5028 // 3. Load the TOC of the callee from the function descriptor into r2. 5029 // 4. Load the environment pointer from the function descriptor into 5030 // r11. 5031 // 5. Branch to the function entry point address. 5032 // 6. On return of the callee, the TOC of the caller needs to be 5033 // restored (this is done in FinishCall()). 5034 // 5035 // The loads are scheduled at the beginning of the call sequence, and the 5036 // register copies are flagged together to ensure that no other 5037 // operations can be scheduled in between. E.g. without flagging the 5038 // copies together, a TOC access in the caller could be scheduled between 5039 // the assignment of the callee TOC and the branch to the callee, which 5040 // results in the TOC access going through the TOC of the callee instead 5041 // of going through the TOC of the caller, which leads to incorrect code. 5042 5043 // Load the address of the function entry point from the function 5044 // descriptor. 5045 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 5046 if (LDChain.getValueType() == MVT::Glue) 5047 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 5048 5049 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5050 ? (MachineMemOperand::MODereferenceable | 5051 MachineMemOperand::MOInvariant) 5052 : MachineMemOperand::MONone; 5053 5054 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5055 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5056 /* Alignment = */ 8, MMOFlags); 5057 5058 // Load environment pointer into r11. 5059 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5060 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5061 SDValue LoadEnvPtr = 5062 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5063 /* Alignment = */ 8, MMOFlags); 5064 5065 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5066 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5067 SDValue TOCPtr = 5068 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5069 /* Alignment = */ 8, MMOFlags); 5070 5071 setUsesTOCBasePtr(DAG); 5072 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5073 InFlag); 5074 Chain = TOCVal.getValue(0); 5075 InFlag = TOCVal.getValue(1); 5076 5077 // If the function call has an explicit 'nest' parameter, it takes the 5078 // place of the environment pointer. 5079 if (!hasNest) { 5080 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5081 InFlag); 5082 5083 Chain = EnvVal.getValue(0); 5084 InFlag = EnvVal.getValue(1); 5085 } 5086 5087 MTCTROps[0] = Chain; 5088 MTCTROps[1] = LoadFuncPtr; 5089 MTCTROps[2] = InFlag; 5090 } 5091 5092 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5093 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5094 InFlag = Chain.getValue(1); 5095 5096 NodeTys.clear(); 5097 NodeTys.push_back(MVT::Other); 5098 NodeTys.push_back(MVT::Glue); 5099 Ops.push_back(Chain); 5100 CallOpc = PPCISD::BCTRL; 5101 Callee.setNode(nullptr); 5102 // Add use of X11 (holding environment pointer) 5103 if (is64BitELFv1ABI && !hasNest) 5104 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5105 // Add CTR register as callee so a bctr can be emitted later. 5106 if (isTailCall) 5107 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5108 } 5109 5110 // If this is a direct call, pass the chain and the callee. 5111 if (Callee.getNode()) { 5112 Ops.push_back(Chain); 5113 Ops.push_back(Callee); 5114 } 5115 // If this is a tail call add stack pointer delta. 5116 if (isTailCall) 5117 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5118 5119 // Add argument registers to the end of the list so that they are known live 5120 // into the call. 5121 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5122 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5123 RegsToPass[i].second.getValueType())); 5124 5125 // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register 5126 // live into the call. 5127 // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT. 5128 if ((isSVR4ABI && isPPC64) || isAIXABI) { 5129 setUsesTOCBasePtr(DAG); 5130 5131 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5132 // no way to mark dependencies as implicit here. 5133 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5134 if (!isPatchPoint) 5135 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::X2 5136 : PPC::R2, PtrVT)); 5137 } 5138 5139 return CallOpc; 5140 } 5141 5142 SDValue PPCTargetLowering::LowerCallResult( 5143 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5144 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5145 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5146 SmallVector<CCValAssign, 16> RVLocs; 5147 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5148 *DAG.getContext()); 5149 5150 CCRetInfo.AnalyzeCallResult( 5151 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5152 ? RetCC_PPC_Cold 5153 : RetCC_PPC); 5154 5155 // Copy all of the result registers out of their specified physreg. 5156 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5157 CCValAssign &VA = RVLocs[i]; 5158 assert(VA.isRegLoc() && "Can only return in registers!"); 5159 5160 SDValue Val; 5161 5162 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5163 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5164 InFlag); 5165 Chain = Lo.getValue(1); 5166 InFlag = Lo.getValue(2); 5167 VA = RVLocs[++i]; // skip ahead to next loc 5168 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5169 InFlag); 5170 Chain = Hi.getValue(1); 5171 InFlag = Hi.getValue(2); 5172 if (!Subtarget.isLittleEndian()) 5173 std::swap (Lo, Hi); 5174 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5175 } else { 5176 Val = DAG.getCopyFromReg(Chain, dl, 5177 VA.getLocReg(), VA.getLocVT(), InFlag); 5178 Chain = Val.getValue(1); 5179 InFlag = Val.getValue(2); 5180 } 5181 5182 switch (VA.getLocInfo()) { 5183 default: llvm_unreachable("Unknown loc info!"); 5184 case CCValAssign::Full: break; 5185 case CCValAssign::AExt: 5186 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5187 break; 5188 case CCValAssign::ZExt: 5189 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5190 DAG.getValueType(VA.getValVT())); 5191 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5192 break; 5193 case CCValAssign::SExt: 5194 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5195 DAG.getValueType(VA.getValVT())); 5196 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5197 break; 5198 } 5199 5200 InVals.push_back(Val); 5201 } 5202 5203 return Chain; 5204 } 5205 5206 SDValue PPCTargetLowering::FinishCall( 5207 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5208 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5209 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5210 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5211 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5212 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5213 std::vector<EVT> NodeTys; 5214 SmallVector<SDValue, 8> Ops; 5215 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5216 SPDiff, isTailCall, isPatchPoint, hasNest, 5217 RegsToPass, Ops, NodeTys, CS, Subtarget); 5218 5219 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5220 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5221 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5222 5223 // When performing tail call optimization the callee pops its arguments off 5224 // the stack. Account for this here so these bytes can be pushed back on in 5225 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5226 int BytesCalleePops = 5227 (CallConv == CallingConv::Fast && 5228 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5229 5230 // Add a register mask operand representing the call-preserved registers. 5231 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5232 const uint32_t *Mask = 5233 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5234 assert(Mask && "Missing call preserved mask for calling convention"); 5235 Ops.push_back(DAG.getRegisterMask(Mask)); 5236 5237 if (InFlag.getNode()) 5238 Ops.push_back(InFlag); 5239 5240 // Emit tail call. 5241 if (isTailCall) { 5242 assert(((Callee.getOpcode() == ISD::Register && 5243 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5244 Callee.getOpcode() == ISD::TargetExternalSymbol || 5245 Callee.getOpcode() == ISD::TargetGlobalAddress || 5246 isa<ConstantSDNode>(Callee)) && 5247 "Expecting an global address, external symbol, absolute value or register"); 5248 5249 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5250 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5251 } 5252 5253 // Add a NOP immediately after the branch instruction when using the 64-bit 5254 // SVR4 or the AIX ABI. 5255 // At link time, if caller and callee are in a different module and 5256 // thus have a different TOC, the call will be replaced with a call to a stub 5257 // function which saves the current TOC, loads the TOC of the callee and 5258 // branches to the callee. The NOP will be replaced with a load instruction 5259 // which restores the TOC of the caller from the TOC save slot of the current 5260 // stack frame. If caller and callee belong to the same module (and have the 5261 // same TOC), the NOP will remain unchanged, or become some other NOP. 5262 5263 MachineFunction &MF = DAG.getMachineFunction(); 5264 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5265 if (!isTailCall && !isPatchPoint && 5266 ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) || 5267 Subtarget.isAIXABI())) { 5268 if (CallOpc == PPCISD::BCTRL) { 5269 if (Subtarget.isAIXABI()) 5270 report_fatal_error("Indirect call on AIX is not implemented."); 5271 5272 // This is a call through a function pointer. 5273 // Restore the caller TOC from the save area into R2. 5274 // See PrepareCall() for more information about calls through function 5275 // pointers in the 64-bit SVR4 ABI. 5276 // We are using a target-specific load with r2 hard coded, because the 5277 // result of a target-independent load would never go directly into r2, 5278 // since r2 is a reserved register (which prevents the register allocator 5279 // from allocating it), resulting in an additional register being 5280 // allocated and an unnecessary move instruction being generated. 5281 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5282 5283 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5284 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5285 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5286 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5287 5288 // The address needs to go after the chain input but before the flag (or 5289 // any other variadic arguments). 5290 Ops.insert(std::next(Ops.begin()), AddTOC); 5291 } else if (CallOpc == PPCISD::CALL && 5292 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5293 // Otherwise insert NOP for non-local calls. 5294 CallOpc = PPCISD::CALL_NOP; 5295 } 5296 } 5297 5298 if (Subtarget.isAIXABI() && isFunctionGlobalAddress(Callee)) { 5299 // On AIX, direct function calls reference the symbol for the function's 5300 // entry point, which is named by inserting a "." before the function's 5301 // C-linkage name. 5302 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5303 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5304 MCSymbol *S = Context.getOrCreateSymbol(Twine(".") + 5305 Twine(G->getGlobal()->getName())); 5306 Callee = DAG.getMCSymbol(S, PtrVT); 5307 // Replace the GlobalAddressSDNode Callee with the MCSymbolSDNode. 5308 Ops[1] = Callee; 5309 } 5310 5311 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5312 InFlag = Chain.getValue(1); 5313 5314 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5315 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5316 InFlag, dl); 5317 if (!Ins.empty()) 5318 InFlag = Chain.getValue(1); 5319 5320 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5321 Ins, dl, DAG, InVals); 5322 } 5323 5324 SDValue 5325 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5326 SmallVectorImpl<SDValue> &InVals) const { 5327 SelectionDAG &DAG = CLI.DAG; 5328 SDLoc &dl = CLI.DL; 5329 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5330 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5331 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5332 SDValue Chain = CLI.Chain; 5333 SDValue Callee = CLI.Callee; 5334 bool &isTailCall = CLI.IsTailCall; 5335 CallingConv::ID CallConv = CLI.CallConv; 5336 bool isVarArg = CLI.IsVarArg; 5337 bool isPatchPoint = CLI.IsPatchPoint; 5338 ImmutableCallSite CS = CLI.CS; 5339 5340 if (isTailCall) { 5341 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5342 isTailCall = false; 5343 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5344 isTailCall = 5345 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5346 isVarArg, Outs, Ins, DAG); 5347 else 5348 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5349 Ins, DAG); 5350 if (isTailCall) { 5351 ++NumTailCalls; 5352 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5353 ++NumSiblingCalls; 5354 5355 assert(isa<GlobalAddressSDNode>(Callee) && 5356 "Callee should be an llvm::Function object."); 5357 LLVM_DEBUG( 5358 const GlobalValue *GV = 5359 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5360 const unsigned Width = 5361 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5362 dbgs() << "TCO caller: " 5363 << left_justify(DAG.getMachineFunction().getName(), Width) 5364 << ", callee linkage: " << GV->getVisibility() << ", " 5365 << GV->getLinkage() << "\n"); 5366 } 5367 } 5368 5369 if (!isTailCall && CS && CS.isMustTailCall()) 5370 report_fatal_error("failed to perform tail call elimination on a call " 5371 "site marked musttail"); 5372 5373 // When long calls (i.e. indirect calls) are always used, calls are always 5374 // made via function pointer. If we have a function name, first translate it 5375 // into a pointer. 5376 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5377 !isTailCall) 5378 Callee = LowerGlobalAddress(Callee, DAG); 5379 5380 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5381 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5382 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5383 dl, DAG, InVals, CS); 5384 5385 if (Subtarget.isSVR4ABI()) 5386 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5387 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5388 dl, DAG, InVals, CS); 5389 5390 if (Subtarget.isAIXABI()) 5391 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5392 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5393 dl, DAG, InVals, CS); 5394 5395 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5396 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5397 dl, DAG, InVals, CS); 5398 } 5399 5400 SDValue PPCTargetLowering::LowerCall_32SVR4( 5401 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5402 bool isTailCall, bool isPatchPoint, 5403 const SmallVectorImpl<ISD::OutputArg> &Outs, 5404 const SmallVectorImpl<SDValue> &OutVals, 5405 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5406 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5407 ImmutableCallSite CS) const { 5408 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5409 // of the 32-bit SVR4 ABI stack frame layout. 5410 5411 assert((CallConv == CallingConv::C || 5412 CallConv == CallingConv::Cold || 5413 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5414 5415 unsigned PtrByteSize = 4; 5416 5417 MachineFunction &MF = DAG.getMachineFunction(); 5418 5419 // Mark this function as potentially containing a function that contains a 5420 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5421 // and restoring the callers stack pointer in this functions epilog. This is 5422 // done because by tail calling the called function might overwrite the value 5423 // in this function's (MF) stack pointer stack slot 0(SP). 5424 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5425 CallConv == CallingConv::Fast) 5426 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5427 5428 // Count how many bytes are to be pushed on the stack, including the linkage 5429 // area, parameter list area and the part of the local variable space which 5430 // contains copies of aggregates which are passed by value. 5431 5432 // Assign locations to all of the outgoing arguments. 5433 SmallVector<CCValAssign, 16> ArgLocs; 5434 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5435 5436 // Reserve space for the linkage area on the stack. 5437 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5438 PtrByteSize); 5439 if (useSoftFloat()) 5440 CCInfo.PreAnalyzeCallOperands(Outs); 5441 5442 if (isVarArg) { 5443 // Handle fixed and variable vector arguments differently. 5444 // Fixed vector arguments go into registers as long as registers are 5445 // available. Variable vector arguments always go into memory. 5446 unsigned NumArgs = Outs.size(); 5447 5448 for (unsigned i = 0; i != NumArgs; ++i) { 5449 MVT ArgVT = Outs[i].VT; 5450 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5451 bool Result; 5452 5453 if (Outs[i].IsFixed) { 5454 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5455 CCInfo); 5456 } else { 5457 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5458 ArgFlags, CCInfo); 5459 } 5460 5461 if (Result) { 5462 #ifndef NDEBUG 5463 errs() << "Call operand #" << i << " has unhandled type " 5464 << EVT(ArgVT).getEVTString() << "\n"; 5465 #endif 5466 llvm_unreachable(nullptr); 5467 } 5468 } 5469 } else { 5470 // All arguments are treated the same. 5471 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5472 } 5473 CCInfo.clearWasPPCF128(); 5474 5475 // Assign locations to all of the outgoing aggregate by value arguments. 5476 SmallVector<CCValAssign, 16> ByValArgLocs; 5477 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5478 5479 // Reserve stack space for the allocations in CCInfo. 5480 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5481 5482 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5483 5484 // Size of the linkage area, parameter list area and the part of the local 5485 // space variable where copies of aggregates which are passed by value are 5486 // stored. 5487 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5488 5489 // Calculate by how many bytes the stack has to be adjusted in case of tail 5490 // call optimization. 5491 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5492 5493 // Adjust the stack pointer for the new arguments... 5494 // These operations are automatically eliminated by the prolog/epilog pass 5495 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5496 SDValue CallSeqStart = Chain; 5497 5498 // Load the return address and frame pointer so it can be moved somewhere else 5499 // later. 5500 SDValue LROp, FPOp; 5501 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5502 5503 // Set up a copy of the stack pointer for use loading and storing any 5504 // arguments that may not fit in the registers available for argument 5505 // passing. 5506 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5507 5508 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5509 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5510 SmallVector<SDValue, 8> MemOpChains; 5511 5512 bool seenFloatArg = false; 5513 // Walk the register/memloc assignments, inserting copies/loads. 5514 // i - Tracks the index into the list of registers allocated for the call 5515 // RealArgIdx - Tracks the index into the list of actual function arguments 5516 // j - Tracks the index into the list of byval arguments 5517 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5518 i != e; 5519 ++i, ++RealArgIdx) { 5520 CCValAssign &VA = ArgLocs[i]; 5521 SDValue Arg = OutVals[RealArgIdx]; 5522 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5523 5524 if (Flags.isByVal()) { 5525 // Argument is an aggregate which is passed by value, thus we need to 5526 // create a copy of it in the local variable space of the current stack 5527 // frame (which is the stack frame of the caller) and pass the address of 5528 // this copy to the callee. 5529 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5530 CCValAssign &ByValVA = ByValArgLocs[j++]; 5531 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5532 5533 // Memory reserved in the local variable space of the callers stack frame. 5534 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5535 5536 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5537 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5538 StackPtr, PtrOff); 5539 5540 // Create a copy of the argument in the local area of the current 5541 // stack frame. 5542 SDValue MemcpyCall = 5543 CreateCopyOfByValArgument(Arg, PtrOff, 5544 CallSeqStart.getNode()->getOperand(0), 5545 Flags, DAG, dl); 5546 5547 // This must go outside the CALLSEQ_START..END. 5548 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5549 SDLoc(MemcpyCall)); 5550 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5551 NewCallSeqStart.getNode()); 5552 Chain = CallSeqStart = NewCallSeqStart; 5553 5554 // Pass the address of the aggregate copy on the stack either in a 5555 // physical register or in the parameter list area of the current stack 5556 // frame to the callee. 5557 Arg = PtrOff; 5558 } 5559 5560 // When useCRBits() is true, there can be i1 arguments. 5561 // It is because getRegisterType(MVT::i1) => MVT::i1, 5562 // and for other integer types getRegisterType() => MVT::i32. 5563 // Extend i1 and ensure callee will get i32. 5564 if (Arg.getValueType() == MVT::i1) 5565 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5566 dl, MVT::i32, Arg); 5567 5568 if (VA.isRegLoc()) { 5569 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5570 // Put argument in a physical register. 5571 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5572 bool IsLE = Subtarget.isLittleEndian(); 5573 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5574 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5575 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5576 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5577 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5578 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5579 SVal.getValue(0))); 5580 } else 5581 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5582 } else { 5583 // Put argument in the parameter list area of the current stack frame. 5584 assert(VA.isMemLoc()); 5585 unsigned LocMemOffset = VA.getLocMemOffset(); 5586 5587 if (!isTailCall) { 5588 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5589 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5590 StackPtr, PtrOff); 5591 5592 MemOpChains.push_back( 5593 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5594 } else { 5595 // Calculate and remember argument location. 5596 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5597 TailCallArguments); 5598 } 5599 } 5600 } 5601 5602 if (!MemOpChains.empty()) 5603 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5604 5605 // Build a sequence of copy-to-reg nodes chained together with token chain 5606 // and flag operands which copy the outgoing args into the appropriate regs. 5607 SDValue InFlag; 5608 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5609 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5610 RegsToPass[i].second, InFlag); 5611 InFlag = Chain.getValue(1); 5612 } 5613 5614 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5615 // registers. 5616 if (isVarArg) { 5617 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5618 SDValue Ops[] = { Chain, InFlag }; 5619 5620 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5621 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5622 5623 InFlag = Chain.getValue(1); 5624 } 5625 5626 if (isTailCall) 5627 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5628 TailCallArguments); 5629 5630 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5631 /* unused except on PPC64 ELFv1 */ false, DAG, 5632 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5633 NumBytes, Ins, InVals, CS); 5634 } 5635 5636 // Copy an argument into memory, being careful to do this outside the 5637 // call sequence for the call to which the argument belongs. 5638 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5639 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5640 SelectionDAG &DAG, const SDLoc &dl) const { 5641 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5642 CallSeqStart.getNode()->getOperand(0), 5643 Flags, DAG, dl); 5644 // The MEMCPY must go outside the CALLSEQ_START..END. 5645 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5646 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5647 SDLoc(MemcpyCall)); 5648 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5649 NewCallSeqStart.getNode()); 5650 return NewCallSeqStart; 5651 } 5652 5653 SDValue PPCTargetLowering::LowerCall_64SVR4( 5654 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5655 bool isTailCall, bool isPatchPoint, 5656 const SmallVectorImpl<ISD::OutputArg> &Outs, 5657 const SmallVectorImpl<SDValue> &OutVals, 5658 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5659 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5660 ImmutableCallSite CS) const { 5661 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5662 bool isLittleEndian = Subtarget.isLittleEndian(); 5663 unsigned NumOps = Outs.size(); 5664 bool hasNest = false; 5665 bool IsSibCall = false; 5666 5667 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5668 unsigned PtrByteSize = 8; 5669 5670 MachineFunction &MF = DAG.getMachineFunction(); 5671 5672 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5673 IsSibCall = true; 5674 5675 // Mark this function as potentially containing a function that contains a 5676 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5677 // and restoring the callers stack pointer in this functions epilog. This is 5678 // done because by tail calling the called function might overwrite the value 5679 // in this function's (MF) stack pointer stack slot 0(SP). 5680 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5681 CallConv == CallingConv::Fast) 5682 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5683 5684 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5685 "fastcc not supported on varargs functions"); 5686 5687 // Count how many bytes are to be pushed on the stack, including the linkage 5688 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5689 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5690 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5691 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5692 unsigned NumBytes = LinkageSize; 5693 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5694 unsigned &QFPR_idx = FPR_idx; 5695 5696 static const MCPhysReg GPR[] = { 5697 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5698 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5699 }; 5700 static const MCPhysReg VR[] = { 5701 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5702 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5703 }; 5704 5705 const unsigned NumGPRs = array_lengthof(GPR); 5706 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5707 const unsigned NumVRs = array_lengthof(VR); 5708 const unsigned NumQFPRs = NumFPRs; 5709 5710 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5711 // can be passed to the callee in registers. 5712 // For the fast calling convention, there is another check below. 5713 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5714 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5715 if (!HasParameterArea) { 5716 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5717 unsigned AvailableFPRs = NumFPRs; 5718 unsigned AvailableVRs = NumVRs; 5719 unsigned NumBytesTmp = NumBytes; 5720 for (unsigned i = 0; i != NumOps; ++i) { 5721 if (Outs[i].Flags.isNest()) continue; 5722 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5723 PtrByteSize, LinkageSize, ParamAreaSize, 5724 NumBytesTmp, AvailableFPRs, AvailableVRs, 5725 Subtarget.hasQPX())) 5726 HasParameterArea = true; 5727 } 5728 } 5729 5730 // When using the fast calling convention, we don't provide backing for 5731 // arguments that will be in registers. 5732 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5733 5734 // Avoid allocating parameter area for fastcc functions if all the arguments 5735 // can be passed in the registers. 5736 if (CallConv == CallingConv::Fast) 5737 HasParameterArea = false; 5738 5739 // Add up all the space actually used. 5740 for (unsigned i = 0; i != NumOps; ++i) { 5741 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5742 EVT ArgVT = Outs[i].VT; 5743 EVT OrigVT = Outs[i].ArgVT; 5744 5745 if (Flags.isNest()) 5746 continue; 5747 5748 if (CallConv == CallingConv::Fast) { 5749 if (Flags.isByVal()) { 5750 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5751 if (NumGPRsUsed > NumGPRs) 5752 HasParameterArea = true; 5753 } else { 5754 switch (ArgVT.getSimpleVT().SimpleTy) { 5755 default: llvm_unreachable("Unexpected ValueType for argument!"); 5756 case MVT::i1: 5757 case MVT::i32: 5758 case MVT::i64: 5759 if (++NumGPRsUsed <= NumGPRs) 5760 continue; 5761 break; 5762 case MVT::v4i32: 5763 case MVT::v8i16: 5764 case MVT::v16i8: 5765 case MVT::v2f64: 5766 case MVT::v2i64: 5767 case MVT::v1i128: 5768 case MVT::f128: 5769 if (++NumVRsUsed <= NumVRs) 5770 continue; 5771 break; 5772 case MVT::v4f32: 5773 // When using QPX, this is handled like a FP register, otherwise, it 5774 // is an Altivec register. 5775 if (Subtarget.hasQPX()) { 5776 if (++NumFPRsUsed <= NumFPRs) 5777 continue; 5778 } else { 5779 if (++NumVRsUsed <= NumVRs) 5780 continue; 5781 } 5782 break; 5783 case MVT::f32: 5784 case MVT::f64: 5785 case MVT::v4f64: // QPX 5786 case MVT::v4i1: // QPX 5787 if (++NumFPRsUsed <= NumFPRs) 5788 continue; 5789 break; 5790 } 5791 HasParameterArea = true; 5792 } 5793 } 5794 5795 /* Respect alignment of argument on the stack. */ 5796 unsigned Align = 5797 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5798 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5799 5800 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5801 if (Flags.isInConsecutiveRegsLast()) 5802 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5803 } 5804 5805 unsigned NumBytesActuallyUsed = NumBytes; 5806 5807 // In the old ELFv1 ABI, 5808 // the prolog code of the callee may store up to 8 GPR argument registers to 5809 // the stack, allowing va_start to index over them in memory if its varargs. 5810 // Because we cannot tell if this is needed on the caller side, we have to 5811 // conservatively assume that it is needed. As such, make sure we have at 5812 // least enough stack space for the caller to store the 8 GPRs. 5813 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5814 // really requires memory operands, e.g. a vararg function. 5815 if (HasParameterArea) 5816 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5817 else 5818 NumBytes = LinkageSize; 5819 5820 // Tail call needs the stack to be aligned. 5821 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5822 CallConv == CallingConv::Fast) 5823 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5824 5825 int SPDiff = 0; 5826 5827 // Calculate by how many bytes the stack has to be adjusted in case of tail 5828 // call optimization. 5829 if (!IsSibCall) 5830 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5831 5832 // To protect arguments on the stack from being clobbered in a tail call, 5833 // force all the loads to happen before doing any other lowering. 5834 if (isTailCall) 5835 Chain = DAG.getStackArgumentTokenFactor(Chain); 5836 5837 // Adjust the stack pointer for the new arguments... 5838 // These operations are automatically eliminated by the prolog/epilog pass 5839 if (!IsSibCall) 5840 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5841 SDValue CallSeqStart = Chain; 5842 5843 // Load the return address and frame pointer so it can be move somewhere else 5844 // later. 5845 SDValue LROp, FPOp; 5846 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5847 5848 // Set up a copy of the stack pointer for use loading and storing any 5849 // arguments that may not fit in the registers available for argument 5850 // passing. 5851 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5852 5853 // Figure out which arguments are going to go in registers, and which in 5854 // memory. Also, if this is a vararg function, floating point operations 5855 // must be stored to our stack, and loaded into integer regs as well, if 5856 // any integer regs are available for argument passing. 5857 unsigned ArgOffset = LinkageSize; 5858 5859 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5860 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5861 5862 SmallVector<SDValue, 8> MemOpChains; 5863 for (unsigned i = 0; i != NumOps; ++i) { 5864 SDValue Arg = OutVals[i]; 5865 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5866 EVT ArgVT = Outs[i].VT; 5867 EVT OrigVT = Outs[i].ArgVT; 5868 5869 // PtrOff will be used to store the current argument to the stack if a 5870 // register cannot be found for it. 5871 SDValue PtrOff; 5872 5873 // We re-align the argument offset for each argument, except when using the 5874 // fast calling convention, when we need to make sure we do that only when 5875 // we'll actually use a stack slot. 5876 auto ComputePtrOff = [&]() { 5877 /* Respect alignment of argument on the stack. */ 5878 unsigned Align = 5879 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5880 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5881 5882 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5883 5884 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5885 }; 5886 5887 if (CallConv != CallingConv::Fast) { 5888 ComputePtrOff(); 5889 5890 /* Compute GPR index associated with argument offset. */ 5891 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5892 GPR_idx = std::min(GPR_idx, NumGPRs); 5893 } 5894 5895 // Promote integers to 64-bit values. 5896 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5897 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5898 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5899 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5900 } 5901 5902 // FIXME memcpy is used way more than necessary. Correctness first. 5903 // Note: "by value" is code for passing a structure by value, not 5904 // basic types. 5905 if (Flags.isByVal()) { 5906 // Note: Size includes alignment padding, so 5907 // struct x { short a; char b; } 5908 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5909 // These are the proper values we need for right-justifying the 5910 // aggregate in a parameter register. 5911 unsigned Size = Flags.getByValSize(); 5912 5913 // An empty aggregate parameter takes up no storage and no 5914 // registers. 5915 if (Size == 0) 5916 continue; 5917 5918 if (CallConv == CallingConv::Fast) 5919 ComputePtrOff(); 5920 5921 // All aggregates smaller than 8 bytes must be passed right-justified. 5922 if (Size==1 || Size==2 || Size==4) { 5923 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5924 if (GPR_idx != NumGPRs) { 5925 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5926 MachinePointerInfo(), VT); 5927 MemOpChains.push_back(Load.getValue(1)); 5928 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5929 5930 ArgOffset += PtrByteSize; 5931 continue; 5932 } 5933 } 5934 5935 if (GPR_idx == NumGPRs && Size < 8) { 5936 SDValue AddPtr = PtrOff; 5937 if (!isLittleEndian) { 5938 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5939 PtrOff.getValueType()); 5940 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5941 } 5942 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5943 CallSeqStart, 5944 Flags, DAG, dl); 5945 ArgOffset += PtrByteSize; 5946 continue; 5947 } 5948 // Copy entire object into memory. There are cases where gcc-generated 5949 // code assumes it is there, even if it could be put entirely into 5950 // registers. (This is not what the doc says.) 5951 5952 // FIXME: The above statement is likely due to a misunderstanding of the 5953 // documents. All arguments must be copied into the parameter area BY 5954 // THE CALLEE in the event that the callee takes the address of any 5955 // formal argument. That has not yet been implemented. However, it is 5956 // reasonable to use the stack area as a staging area for the register 5957 // load. 5958 5959 // Skip this for small aggregates, as we will use the same slot for a 5960 // right-justified copy, below. 5961 if (Size >= 8) 5962 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5963 CallSeqStart, 5964 Flags, DAG, dl); 5965 5966 // When a register is available, pass a small aggregate right-justified. 5967 if (Size < 8 && GPR_idx != NumGPRs) { 5968 // The easiest way to get this right-justified in a register 5969 // is to copy the structure into the rightmost portion of a 5970 // local variable slot, then load the whole slot into the 5971 // register. 5972 // FIXME: The memcpy seems to produce pretty awful code for 5973 // small aggregates, particularly for packed ones. 5974 // FIXME: It would be preferable to use the slot in the 5975 // parameter save area instead of a new local variable. 5976 SDValue AddPtr = PtrOff; 5977 if (!isLittleEndian) { 5978 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5979 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5980 } 5981 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5982 CallSeqStart, 5983 Flags, DAG, dl); 5984 5985 // Load the slot into the register. 5986 SDValue Load = 5987 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5988 MemOpChains.push_back(Load.getValue(1)); 5989 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5990 5991 // Done with this argument. 5992 ArgOffset += PtrByteSize; 5993 continue; 5994 } 5995 5996 // For aggregates larger than PtrByteSize, copy the pieces of the 5997 // object that fit into registers from the parameter save area. 5998 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5999 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6000 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6001 if (GPR_idx != NumGPRs) { 6002 SDValue Load = 6003 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6004 MemOpChains.push_back(Load.getValue(1)); 6005 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6006 ArgOffset += PtrByteSize; 6007 } else { 6008 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6009 break; 6010 } 6011 } 6012 continue; 6013 } 6014 6015 switch (Arg.getSimpleValueType().SimpleTy) { 6016 default: llvm_unreachable("Unexpected ValueType for argument!"); 6017 case MVT::i1: 6018 case MVT::i32: 6019 case MVT::i64: 6020 if (Flags.isNest()) { 6021 // The 'nest' parameter, if any, is passed in R11. 6022 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6023 hasNest = true; 6024 break; 6025 } 6026 6027 // These can be scalar arguments or elements of an integer array type 6028 // passed directly. Clang may use those instead of "byval" aggregate 6029 // types to avoid forcing arguments to memory unnecessarily. 6030 if (GPR_idx != NumGPRs) { 6031 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6032 } else { 6033 if (CallConv == CallingConv::Fast) 6034 ComputePtrOff(); 6035 6036 assert(HasParameterArea && 6037 "Parameter area must exist to pass an argument in memory."); 6038 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6039 true, isTailCall, false, MemOpChains, 6040 TailCallArguments, dl); 6041 if (CallConv == CallingConv::Fast) 6042 ArgOffset += PtrByteSize; 6043 } 6044 if (CallConv != CallingConv::Fast) 6045 ArgOffset += PtrByteSize; 6046 break; 6047 case MVT::f32: 6048 case MVT::f64: { 6049 // These can be scalar arguments or elements of a float array type 6050 // passed directly. The latter are used to implement ELFv2 homogenous 6051 // float aggregates. 6052 6053 // Named arguments go into FPRs first, and once they overflow, the 6054 // remaining arguments go into GPRs and then the parameter save area. 6055 // Unnamed arguments for vararg functions always go to GPRs and 6056 // then the parameter save area. For now, put all arguments to vararg 6057 // routines always in both locations (FPR *and* GPR or stack slot). 6058 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6059 bool NeededLoad = false; 6060 6061 // First load the argument into the next available FPR. 6062 if (FPR_idx != NumFPRs) 6063 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6064 6065 // Next, load the argument into GPR or stack slot if needed. 6066 if (!NeedGPROrStack) 6067 ; 6068 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6069 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6070 // once we support fp <-> gpr moves. 6071 6072 // In the non-vararg case, this can only ever happen in the 6073 // presence of f32 array types, since otherwise we never run 6074 // out of FPRs before running out of GPRs. 6075 SDValue ArgVal; 6076 6077 // Double values are always passed in a single GPR. 6078 if (Arg.getValueType() != MVT::f32) { 6079 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6080 6081 // Non-array float values are extended and passed in a GPR. 6082 } else if (!Flags.isInConsecutiveRegs()) { 6083 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6084 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6085 6086 // If we have an array of floats, we collect every odd element 6087 // together with its predecessor into one GPR. 6088 } else if (ArgOffset % PtrByteSize != 0) { 6089 SDValue Lo, Hi; 6090 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6091 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6092 if (!isLittleEndian) 6093 std::swap(Lo, Hi); 6094 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6095 6096 // The final element, if even, goes into the first half of a GPR. 6097 } else if (Flags.isInConsecutiveRegsLast()) { 6098 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6099 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6100 if (!isLittleEndian) 6101 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6102 DAG.getConstant(32, dl, MVT::i32)); 6103 6104 // Non-final even elements are skipped; they will be handled 6105 // together the with subsequent argument on the next go-around. 6106 } else 6107 ArgVal = SDValue(); 6108 6109 if (ArgVal.getNode()) 6110 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6111 } else { 6112 if (CallConv == CallingConv::Fast) 6113 ComputePtrOff(); 6114 6115 // Single-precision floating-point values are mapped to the 6116 // second (rightmost) word of the stack doubleword. 6117 if (Arg.getValueType() == MVT::f32 && 6118 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6119 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6120 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6121 } 6122 6123 assert(HasParameterArea && 6124 "Parameter area must exist to pass an argument in memory."); 6125 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6126 true, isTailCall, false, MemOpChains, 6127 TailCallArguments, dl); 6128 6129 NeededLoad = true; 6130 } 6131 // When passing an array of floats, the array occupies consecutive 6132 // space in the argument area; only round up to the next doubleword 6133 // at the end of the array. Otherwise, each float takes 8 bytes. 6134 if (CallConv != CallingConv::Fast || NeededLoad) { 6135 ArgOffset += (Arg.getValueType() == MVT::f32 && 6136 Flags.isInConsecutiveRegs()) ? 4 : 8; 6137 if (Flags.isInConsecutiveRegsLast()) 6138 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6139 } 6140 break; 6141 } 6142 case MVT::v4f32: 6143 case MVT::v4i32: 6144 case MVT::v8i16: 6145 case MVT::v16i8: 6146 case MVT::v2f64: 6147 case MVT::v2i64: 6148 case MVT::v1i128: 6149 case MVT::f128: 6150 if (!Subtarget.hasQPX()) { 6151 // These can be scalar arguments or elements of a vector array type 6152 // passed directly. The latter are used to implement ELFv2 homogenous 6153 // vector aggregates. 6154 6155 // For a varargs call, named arguments go into VRs or on the stack as 6156 // usual; unnamed arguments always go to the stack or the corresponding 6157 // GPRs when within range. For now, we always put the value in both 6158 // locations (or even all three). 6159 if (isVarArg) { 6160 assert(HasParameterArea && 6161 "Parameter area must exist if we have a varargs call."); 6162 // We could elide this store in the case where the object fits 6163 // entirely in R registers. Maybe later. 6164 SDValue Store = 6165 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6166 MemOpChains.push_back(Store); 6167 if (VR_idx != NumVRs) { 6168 SDValue Load = 6169 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6170 MemOpChains.push_back(Load.getValue(1)); 6171 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6172 } 6173 ArgOffset += 16; 6174 for (unsigned i=0; i<16; i+=PtrByteSize) { 6175 if (GPR_idx == NumGPRs) 6176 break; 6177 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6178 DAG.getConstant(i, dl, PtrVT)); 6179 SDValue Load = 6180 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6181 MemOpChains.push_back(Load.getValue(1)); 6182 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6183 } 6184 break; 6185 } 6186 6187 // Non-varargs Altivec params go into VRs or on the stack. 6188 if (VR_idx != NumVRs) { 6189 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6190 } else { 6191 if (CallConv == CallingConv::Fast) 6192 ComputePtrOff(); 6193 6194 assert(HasParameterArea && 6195 "Parameter area must exist to pass an argument in memory."); 6196 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6197 true, isTailCall, true, MemOpChains, 6198 TailCallArguments, dl); 6199 if (CallConv == CallingConv::Fast) 6200 ArgOffset += 16; 6201 } 6202 6203 if (CallConv != CallingConv::Fast) 6204 ArgOffset += 16; 6205 break; 6206 } // not QPX 6207 6208 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6209 "Invalid QPX parameter type"); 6210 6211 LLVM_FALLTHROUGH; 6212 case MVT::v4f64: 6213 case MVT::v4i1: { 6214 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6215 if (isVarArg) { 6216 assert(HasParameterArea && 6217 "Parameter area must exist if we have a varargs call."); 6218 // We could elide this store in the case where the object fits 6219 // entirely in R registers. Maybe later. 6220 SDValue Store = 6221 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6222 MemOpChains.push_back(Store); 6223 if (QFPR_idx != NumQFPRs) { 6224 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6225 PtrOff, MachinePointerInfo()); 6226 MemOpChains.push_back(Load.getValue(1)); 6227 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6228 } 6229 ArgOffset += (IsF32 ? 16 : 32); 6230 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6231 if (GPR_idx == NumGPRs) 6232 break; 6233 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6234 DAG.getConstant(i, dl, PtrVT)); 6235 SDValue Load = 6236 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6237 MemOpChains.push_back(Load.getValue(1)); 6238 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6239 } 6240 break; 6241 } 6242 6243 // Non-varargs QPX params go into registers or on the stack. 6244 if (QFPR_idx != NumQFPRs) { 6245 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6246 } else { 6247 if (CallConv == CallingConv::Fast) 6248 ComputePtrOff(); 6249 6250 assert(HasParameterArea && 6251 "Parameter area must exist to pass an argument in memory."); 6252 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6253 true, isTailCall, true, MemOpChains, 6254 TailCallArguments, dl); 6255 if (CallConv == CallingConv::Fast) 6256 ArgOffset += (IsF32 ? 16 : 32); 6257 } 6258 6259 if (CallConv != CallingConv::Fast) 6260 ArgOffset += (IsF32 ? 16 : 32); 6261 break; 6262 } 6263 } 6264 } 6265 6266 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6267 "mismatch in size of parameter area"); 6268 (void)NumBytesActuallyUsed; 6269 6270 if (!MemOpChains.empty()) 6271 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6272 6273 // Check if this is an indirect call (MTCTR/BCTRL). 6274 // See PrepareCall() for more information about calls through function 6275 // pointers in the 64-bit SVR4 ABI. 6276 if (!isTailCall && !isPatchPoint && 6277 !isFunctionGlobalAddress(Callee) && 6278 !isa<ExternalSymbolSDNode>(Callee)) { 6279 // Load r2 into a virtual register and store it to the TOC save area. 6280 setUsesTOCBasePtr(DAG); 6281 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6282 // TOC save area offset. 6283 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6284 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6285 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6286 Chain = DAG.getStore( 6287 Val.getValue(1), dl, Val, AddPtr, 6288 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6289 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6290 // This does not mean the MTCTR instruction must use R12; it's easier 6291 // to model this as an extra parameter, so do that. 6292 if (isELFv2ABI && !isPatchPoint) 6293 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6294 } 6295 6296 // Build a sequence of copy-to-reg nodes chained together with token chain 6297 // and flag operands which copy the outgoing args into the appropriate regs. 6298 SDValue InFlag; 6299 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6300 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6301 RegsToPass[i].second, InFlag); 6302 InFlag = Chain.getValue(1); 6303 } 6304 6305 if (isTailCall && !IsSibCall) 6306 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6307 TailCallArguments); 6308 6309 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6310 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6311 SPDiff, NumBytes, Ins, InVals, CS); 6312 } 6313 6314 SDValue PPCTargetLowering::LowerCall_Darwin( 6315 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6316 bool isTailCall, bool isPatchPoint, 6317 const SmallVectorImpl<ISD::OutputArg> &Outs, 6318 const SmallVectorImpl<SDValue> &OutVals, 6319 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6320 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6321 ImmutableCallSite CS) const { 6322 unsigned NumOps = Outs.size(); 6323 6324 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6325 bool isPPC64 = PtrVT == MVT::i64; 6326 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6327 6328 MachineFunction &MF = DAG.getMachineFunction(); 6329 6330 // Mark this function as potentially containing a function that contains a 6331 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6332 // and restoring the callers stack pointer in this functions epilog. This is 6333 // done because by tail calling the called function might overwrite the value 6334 // in this function's (MF) stack pointer stack slot 0(SP). 6335 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6336 CallConv == CallingConv::Fast) 6337 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6338 6339 // Count how many bytes are to be pushed on the stack, including the linkage 6340 // area, and parameter passing area. We start with 24/48 bytes, which is 6341 // prereserved space for [SP][CR][LR][3 x unused]. 6342 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6343 unsigned NumBytes = LinkageSize; 6344 6345 // Add up all the space actually used. 6346 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6347 // they all go in registers, but we must reserve stack space for them for 6348 // possible use by the caller. In varargs or 64-bit calls, parameters are 6349 // assigned stack space in order, with padding so Altivec parameters are 6350 // 16-byte aligned. 6351 unsigned nAltivecParamsAtEnd = 0; 6352 for (unsigned i = 0; i != NumOps; ++i) { 6353 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6354 EVT ArgVT = Outs[i].VT; 6355 // Varargs Altivec parameters are padded to a 16 byte boundary. 6356 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6357 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6358 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6359 if (!isVarArg && !isPPC64) { 6360 // Non-varargs Altivec parameters go after all the non-Altivec 6361 // parameters; handle those later so we know how much padding we need. 6362 nAltivecParamsAtEnd++; 6363 continue; 6364 } 6365 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6366 NumBytes = ((NumBytes+15)/16)*16; 6367 } 6368 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6369 } 6370 6371 // Allow for Altivec parameters at the end, if needed. 6372 if (nAltivecParamsAtEnd) { 6373 NumBytes = ((NumBytes+15)/16)*16; 6374 NumBytes += 16*nAltivecParamsAtEnd; 6375 } 6376 6377 // The prolog code of the callee may store up to 8 GPR argument registers to 6378 // the stack, allowing va_start to index over them in memory if its varargs. 6379 // Because we cannot tell if this is needed on the caller side, we have to 6380 // conservatively assume that it is needed. As such, make sure we have at 6381 // least enough stack space for the caller to store the 8 GPRs. 6382 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6383 6384 // Tail call needs the stack to be aligned. 6385 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6386 CallConv == CallingConv::Fast) 6387 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6388 6389 // Calculate by how many bytes the stack has to be adjusted in case of tail 6390 // call optimization. 6391 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6392 6393 // To protect arguments on the stack from being clobbered in a tail call, 6394 // force all the loads to happen before doing any other lowering. 6395 if (isTailCall) 6396 Chain = DAG.getStackArgumentTokenFactor(Chain); 6397 6398 // Adjust the stack pointer for the new arguments... 6399 // These operations are automatically eliminated by the prolog/epilog pass 6400 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6401 SDValue CallSeqStart = Chain; 6402 6403 // Load the return address and frame pointer so it can be move somewhere else 6404 // later. 6405 SDValue LROp, FPOp; 6406 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6407 6408 // Set up a copy of the stack pointer for use loading and storing any 6409 // arguments that may not fit in the registers available for argument 6410 // passing. 6411 SDValue StackPtr; 6412 if (isPPC64) 6413 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6414 else 6415 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6416 6417 // Figure out which arguments are going to go in registers, and which in 6418 // memory. Also, if this is a vararg function, floating point operations 6419 // must be stored to our stack, and loaded into integer regs as well, if 6420 // any integer regs are available for argument passing. 6421 unsigned ArgOffset = LinkageSize; 6422 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6423 6424 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6425 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6426 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6427 }; 6428 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6429 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6430 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6431 }; 6432 static const MCPhysReg VR[] = { 6433 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6434 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6435 }; 6436 const unsigned NumGPRs = array_lengthof(GPR_32); 6437 const unsigned NumFPRs = 13; 6438 const unsigned NumVRs = array_lengthof(VR); 6439 6440 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6441 6442 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6443 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6444 6445 SmallVector<SDValue, 8> MemOpChains; 6446 for (unsigned i = 0; i != NumOps; ++i) { 6447 SDValue Arg = OutVals[i]; 6448 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6449 6450 // PtrOff will be used to store the current argument to the stack if a 6451 // register cannot be found for it. 6452 SDValue PtrOff; 6453 6454 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6455 6456 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6457 6458 // On PPC64, promote integers to 64-bit values. 6459 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6460 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6461 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6462 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6463 } 6464 6465 // FIXME memcpy is used way more than necessary. Correctness first. 6466 // Note: "by value" is code for passing a structure by value, not 6467 // basic types. 6468 if (Flags.isByVal()) { 6469 unsigned Size = Flags.getByValSize(); 6470 // Very small objects are passed right-justified. Everything else is 6471 // passed left-justified. 6472 if (Size==1 || Size==2) { 6473 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6474 if (GPR_idx != NumGPRs) { 6475 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6476 MachinePointerInfo(), VT); 6477 MemOpChains.push_back(Load.getValue(1)); 6478 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6479 6480 ArgOffset += PtrByteSize; 6481 } else { 6482 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6483 PtrOff.getValueType()); 6484 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6485 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6486 CallSeqStart, 6487 Flags, DAG, dl); 6488 ArgOffset += PtrByteSize; 6489 } 6490 continue; 6491 } 6492 // Copy entire object into memory. There are cases where gcc-generated 6493 // code assumes it is there, even if it could be put entirely into 6494 // registers. (This is not what the doc says.) 6495 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6496 CallSeqStart, 6497 Flags, DAG, dl); 6498 6499 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6500 // copy the pieces of the object that fit into registers from the 6501 // parameter save area. 6502 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6503 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6504 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6505 if (GPR_idx != NumGPRs) { 6506 SDValue Load = 6507 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6508 MemOpChains.push_back(Load.getValue(1)); 6509 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6510 ArgOffset += PtrByteSize; 6511 } else { 6512 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6513 break; 6514 } 6515 } 6516 continue; 6517 } 6518 6519 switch (Arg.getSimpleValueType().SimpleTy) { 6520 default: llvm_unreachable("Unexpected ValueType for argument!"); 6521 case MVT::i1: 6522 case MVT::i32: 6523 case MVT::i64: 6524 if (GPR_idx != NumGPRs) { 6525 if (Arg.getValueType() == MVT::i1) 6526 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6527 6528 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6529 } else { 6530 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6531 isPPC64, isTailCall, false, MemOpChains, 6532 TailCallArguments, dl); 6533 } 6534 ArgOffset += PtrByteSize; 6535 break; 6536 case MVT::f32: 6537 case MVT::f64: 6538 if (FPR_idx != NumFPRs) { 6539 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6540 6541 if (isVarArg) { 6542 SDValue Store = 6543 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6544 MemOpChains.push_back(Store); 6545 6546 // Float varargs are always shadowed in available integer registers 6547 if (GPR_idx != NumGPRs) { 6548 SDValue Load = 6549 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6550 MemOpChains.push_back(Load.getValue(1)); 6551 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6552 } 6553 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6554 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6555 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6556 SDValue Load = 6557 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6558 MemOpChains.push_back(Load.getValue(1)); 6559 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6560 } 6561 } else { 6562 // If we have any FPRs remaining, we may also have GPRs remaining. 6563 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6564 // GPRs. 6565 if (GPR_idx != NumGPRs) 6566 ++GPR_idx; 6567 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6568 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6569 ++GPR_idx; 6570 } 6571 } else 6572 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6573 isPPC64, isTailCall, false, MemOpChains, 6574 TailCallArguments, dl); 6575 if (isPPC64) 6576 ArgOffset += 8; 6577 else 6578 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6579 break; 6580 case MVT::v4f32: 6581 case MVT::v4i32: 6582 case MVT::v8i16: 6583 case MVT::v16i8: 6584 if (isVarArg) { 6585 // These go aligned on the stack, or in the corresponding R registers 6586 // when within range. The Darwin PPC ABI doc claims they also go in 6587 // V registers; in fact gcc does this only for arguments that are 6588 // prototyped, not for those that match the ... We do it for all 6589 // arguments, seems to work. 6590 while (ArgOffset % 16 !=0) { 6591 ArgOffset += PtrByteSize; 6592 if (GPR_idx != NumGPRs) 6593 GPR_idx++; 6594 } 6595 // We could elide this store in the case where the object fits 6596 // entirely in R registers. Maybe later. 6597 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6598 DAG.getConstant(ArgOffset, dl, PtrVT)); 6599 SDValue Store = 6600 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6601 MemOpChains.push_back(Store); 6602 if (VR_idx != NumVRs) { 6603 SDValue Load = 6604 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6605 MemOpChains.push_back(Load.getValue(1)); 6606 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6607 } 6608 ArgOffset += 16; 6609 for (unsigned i=0; i<16; i+=PtrByteSize) { 6610 if (GPR_idx == NumGPRs) 6611 break; 6612 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6613 DAG.getConstant(i, dl, PtrVT)); 6614 SDValue Load = 6615 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6616 MemOpChains.push_back(Load.getValue(1)); 6617 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6618 } 6619 break; 6620 } 6621 6622 // Non-varargs Altivec params generally go in registers, but have 6623 // stack space allocated at the end. 6624 if (VR_idx != NumVRs) { 6625 // Doesn't have GPR space allocated. 6626 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6627 } else if (nAltivecParamsAtEnd==0) { 6628 // We are emitting Altivec params in order. 6629 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6630 isPPC64, isTailCall, true, MemOpChains, 6631 TailCallArguments, dl); 6632 ArgOffset += 16; 6633 } 6634 break; 6635 } 6636 } 6637 // If all Altivec parameters fit in registers, as they usually do, 6638 // they get stack space following the non-Altivec parameters. We 6639 // don't track this here because nobody below needs it. 6640 // If there are more Altivec parameters than fit in registers emit 6641 // the stores here. 6642 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6643 unsigned j = 0; 6644 // Offset is aligned; skip 1st 12 params which go in V registers. 6645 ArgOffset = ((ArgOffset+15)/16)*16; 6646 ArgOffset += 12*16; 6647 for (unsigned i = 0; i != NumOps; ++i) { 6648 SDValue Arg = OutVals[i]; 6649 EVT ArgType = Outs[i].VT; 6650 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6651 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6652 if (++j > NumVRs) { 6653 SDValue PtrOff; 6654 // We are emitting Altivec params in order. 6655 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6656 isPPC64, isTailCall, true, MemOpChains, 6657 TailCallArguments, dl); 6658 ArgOffset += 16; 6659 } 6660 } 6661 } 6662 } 6663 6664 if (!MemOpChains.empty()) 6665 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6666 6667 // On Darwin, R12 must contain the address of an indirect callee. This does 6668 // not mean the MTCTR instruction must use R12; it's easier to model this as 6669 // an extra parameter, so do that. 6670 if (!isTailCall && 6671 !isFunctionGlobalAddress(Callee) && 6672 !isa<ExternalSymbolSDNode>(Callee) && 6673 !isBLACompatibleAddress(Callee, DAG)) 6674 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6675 PPC::R12), Callee)); 6676 6677 // Build a sequence of copy-to-reg nodes chained together with token chain 6678 // and flag operands which copy the outgoing args into the appropriate regs. 6679 SDValue InFlag; 6680 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6681 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6682 RegsToPass[i].second, InFlag); 6683 InFlag = Chain.getValue(1); 6684 } 6685 6686 if (isTailCall) 6687 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6688 TailCallArguments); 6689 6690 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6691 /* unused except on PPC64 ELFv1 */ false, DAG, 6692 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6693 NumBytes, Ins, InVals, CS); 6694 } 6695 6696 6697 SDValue PPCTargetLowering::LowerCall_AIX( 6698 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6699 bool isTailCall, bool isPatchPoint, 6700 const SmallVectorImpl<ISD::OutputArg> &Outs, 6701 const SmallVectorImpl<SDValue> &OutVals, 6702 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6703 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6704 ImmutableCallSite CS) const { 6705 6706 assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && 6707 "Unimplemented calling convention!"); 6708 if (isVarArg || isPatchPoint) 6709 report_fatal_error("This call type is unimplemented on AIX."); 6710 6711 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6712 bool isPPC64 = PtrVT == MVT::i64; 6713 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6714 unsigned NumOps = Outs.size(); 6715 6716 6717 // Count how many bytes are to be pushed on the stack, including the linkage 6718 // area, parameter list area. 6719 // On XCOFF, we start with 24/48, which is reserved space for 6720 // [SP][CR][LR][2 x reserved][TOC]. 6721 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6722 6723 // The prolog code of the callee may store up to 8 GPR argument registers to 6724 // the stack, allowing va_start to index over them in memory if the callee 6725 // is variadic. 6726 // Because we cannot tell if this is needed on the caller side, we have to 6727 // conservatively assume that it is needed. As such, make sure we have at 6728 // least enough stack space for the caller to store the 8 GPRs. 6729 unsigned NumBytes = LinkageSize + 8 * PtrByteSize; 6730 6731 // Adjust the stack pointer for the new arguments... 6732 // These operations are automatically eliminated by the prolog/epilog 6733 // inserter pass. 6734 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6735 SDValue CallSeqStart = Chain; 6736 6737 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6738 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6739 PPC::R7, PPC::R8, PPC::R9, PPC::R10 6740 }; 6741 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6742 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6743 PPC::X7, PPC::X8, PPC::X9, PPC::X10 6744 }; 6745 6746 const unsigned NumGPRs = isPPC64 ? array_lengthof(GPR_64) 6747 : array_lengthof(GPR_32); 6748 const unsigned NumFPRs = array_lengthof(FPR); 6749 assert(NumFPRs == 13 && "Only FPR 1-13 could be used for parameter passing " 6750 "on AIX"); 6751 6752 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6753 unsigned GPR_idx = 0, FPR_idx = 0; 6754 6755 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6756 6757 if (isTailCall) 6758 report_fatal_error("Handling of tail call is unimplemented!"); 6759 int SPDiff = 0; 6760 6761 for (unsigned i = 0; i != NumOps; ++i) { 6762 SDValue Arg = OutVals[i]; 6763 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6764 6765 // Promote integers if needed. 6766 if (Arg.getValueType() == MVT::i1 || 6767 (isPPC64 && Arg.getValueType() == MVT::i32)) { 6768 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6769 Arg = DAG.getNode(ExtOp, dl, PtrVT, Arg); 6770 } 6771 6772 // Note: "by value" is code for passing a structure by value, not 6773 // basic types. 6774 if (Flags.isByVal()) 6775 report_fatal_error("Passing structure by value is unimplemented!"); 6776 6777 switch (Arg.getSimpleValueType().SimpleTy) { 6778 default: llvm_unreachable("Unexpected ValueType for argument!"); 6779 case MVT::i1: 6780 case MVT::i32: 6781 case MVT::i64: 6782 if (GPR_idx != NumGPRs) 6783 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6784 else 6785 report_fatal_error("Handling of placing parameters on the stack is " 6786 "unimplemented!"); 6787 break; 6788 case MVT::f32: 6789 case MVT::f64: 6790 if (FPR_idx != NumFPRs) { 6791 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6792 6793 // If we have any FPRs remaining, we may also have GPRs remaining. 6794 // Args passed in FPRs consume 1 or 2 (f64 in 32 bit mode) available 6795 // GPRs. 6796 if (GPR_idx != NumGPRs) 6797 ++GPR_idx; 6798 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64) 6799 ++GPR_idx; 6800 } else 6801 report_fatal_error("Handling of placing parameters on the stack is " 6802 "unimplemented!"); 6803 break; 6804 case MVT::v4f32: 6805 case MVT::v4i32: 6806 case MVT::v8i16: 6807 case MVT::v16i8: 6808 case MVT::v2f64: 6809 case MVT::v2i64: 6810 case MVT::v1i128: 6811 case MVT::f128: 6812 case MVT::v4f64: 6813 case MVT::v4i1: 6814 report_fatal_error("Handling of this parameter type is unimplemented!"); 6815 } 6816 } 6817 6818 if (!isFunctionGlobalAddress(Callee) && 6819 !isa<ExternalSymbolSDNode>(Callee)) 6820 report_fatal_error("Handling of indirect call is unimplemented!"); 6821 6822 // Build a sequence of copy-to-reg nodes chained together with token chain 6823 // and flag operands which copy the outgoing args into the appropriate regs. 6824 SDValue InFlag; 6825 for (auto Reg : RegsToPass) { 6826 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 6827 InFlag = Chain.getValue(1); 6828 } 6829 6830 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6831 /* unused except on PPC64 ELFv1 */ false, DAG, 6832 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6833 NumBytes, Ins, InVals, CS); 6834 } 6835 6836 bool 6837 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6838 MachineFunction &MF, bool isVarArg, 6839 const SmallVectorImpl<ISD::OutputArg> &Outs, 6840 LLVMContext &Context) const { 6841 SmallVector<CCValAssign, 16> RVLocs; 6842 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6843 return CCInfo.CheckReturn( 6844 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6845 ? RetCC_PPC_Cold 6846 : RetCC_PPC); 6847 } 6848 6849 SDValue 6850 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6851 bool isVarArg, 6852 const SmallVectorImpl<ISD::OutputArg> &Outs, 6853 const SmallVectorImpl<SDValue> &OutVals, 6854 const SDLoc &dl, SelectionDAG &DAG) const { 6855 SmallVector<CCValAssign, 16> RVLocs; 6856 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6857 *DAG.getContext()); 6858 CCInfo.AnalyzeReturn(Outs, 6859 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6860 ? RetCC_PPC_Cold 6861 : RetCC_PPC); 6862 6863 SDValue Flag; 6864 SmallVector<SDValue, 4> RetOps(1, Chain); 6865 6866 // Copy the result values into the output registers. 6867 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 6868 CCValAssign &VA = RVLocs[i]; 6869 assert(VA.isRegLoc() && "Can only return in registers!"); 6870 6871 SDValue Arg = OutVals[RealResIdx]; 6872 6873 switch (VA.getLocInfo()) { 6874 default: llvm_unreachable("Unknown loc info!"); 6875 case CCValAssign::Full: break; 6876 case CCValAssign::AExt: 6877 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6878 break; 6879 case CCValAssign::ZExt: 6880 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6881 break; 6882 case CCValAssign::SExt: 6883 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6884 break; 6885 } 6886 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 6887 bool isLittleEndian = Subtarget.isLittleEndian(); 6888 // Legalize ret f64 -> ret 2 x i32. 6889 SDValue SVal = 6890 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6891 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 6892 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6893 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6894 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6895 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 6896 Flag = Chain.getValue(1); 6897 VA = RVLocs[++i]; // skip ahead to next loc 6898 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6899 } else 6900 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6901 Flag = Chain.getValue(1); 6902 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6903 } 6904 6905 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6906 const MCPhysReg *I = 6907 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6908 if (I) { 6909 for (; *I; ++I) { 6910 6911 if (PPC::G8RCRegClass.contains(*I)) 6912 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6913 else if (PPC::F8RCRegClass.contains(*I)) 6914 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6915 else if (PPC::CRRCRegClass.contains(*I)) 6916 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6917 else if (PPC::VRRCRegClass.contains(*I)) 6918 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6919 else 6920 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6921 } 6922 } 6923 6924 RetOps[0] = Chain; // Update chain. 6925 6926 // Add the flag if we have it. 6927 if (Flag.getNode()) 6928 RetOps.push_back(Flag); 6929 6930 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6931 } 6932 6933 SDValue 6934 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6935 SelectionDAG &DAG) const { 6936 SDLoc dl(Op); 6937 6938 // Get the correct type for integers. 6939 EVT IntVT = Op.getValueType(); 6940 6941 // Get the inputs. 6942 SDValue Chain = Op.getOperand(0); 6943 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6944 // Build a DYNAREAOFFSET node. 6945 SDValue Ops[2] = {Chain, FPSIdx}; 6946 SDVTList VTs = DAG.getVTList(IntVT); 6947 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6948 } 6949 6950 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6951 SelectionDAG &DAG) const { 6952 // When we pop the dynamic allocation we need to restore the SP link. 6953 SDLoc dl(Op); 6954 6955 // Get the correct type for pointers. 6956 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6957 6958 // Construct the stack pointer operand. 6959 bool isPPC64 = Subtarget.isPPC64(); 6960 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6961 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6962 6963 // Get the operands for the STACKRESTORE. 6964 SDValue Chain = Op.getOperand(0); 6965 SDValue SaveSP = Op.getOperand(1); 6966 6967 // Load the old link SP. 6968 SDValue LoadLinkSP = 6969 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6970 6971 // Restore the stack pointer. 6972 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6973 6974 // Store the old link SP. 6975 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6976 } 6977 6978 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6979 MachineFunction &MF = DAG.getMachineFunction(); 6980 bool isPPC64 = Subtarget.isPPC64(); 6981 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6982 6983 // Get current frame pointer save index. The users of this index will be 6984 // primarily DYNALLOC instructions. 6985 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6986 int RASI = FI->getReturnAddrSaveIndex(); 6987 6988 // If the frame pointer save index hasn't been defined yet. 6989 if (!RASI) { 6990 // Find out what the fix offset of the frame pointer save area. 6991 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6992 // Allocate the frame index for frame pointer save area. 6993 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6994 // Save the result. 6995 FI->setReturnAddrSaveIndex(RASI); 6996 } 6997 return DAG.getFrameIndex(RASI, PtrVT); 6998 } 6999 7000 SDValue 7001 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7002 MachineFunction &MF = DAG.getMachineFunction(); 7003 bool isPPC64 = Subtarget.isPPC64(); 7004 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7005 7006 // Get current frame pointer save index. The users of this index will be 7007 // primarily DYNALLOC instructions. 7008 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7009 int FPSI = FI->getFramePointerSaveIndex(); 7010 7011 // If the frame pointer save index hasn't been defined yet. 7012 if (!FPSI) { 7013 // Find out what the fix offset of the frame pointer save area. 7014 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7015 // Allocate the frame index for frame pointer save area. 7016 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7017 // Save the result. 7018 FI->setFramePointerSaveIndex(FPSI); 7019 } 7020 return DAG.getFrameIndex(FPSI, PtrVT); 7021 } 7022 7023 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7024 SelectionDAG &DAG) const { 7025 // Get the inputs. 7026 SDValue Chain = Op.getOperand(0); 7027 SDValue Size = Op.getOperand(1); 7028 SDLoc dl(Op); 7029 7030 // Get the correct type for pointers. 7031 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7032 // Negate the size. 7033 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7034 DAG.getConstant(0, dl, PtrVT), Size); 7035 // Construct a node for the frame pointer save index. 7036 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7037 // Build a DYNALLOC node. 7038 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7039 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7040 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7041 } 7042 7043 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7044 SelectionDAG &DAG) const { 7045 MachineFunction &MF = DAG.getMachineFunction(); 7046 7047 bool isPPC64 = Subtarget.isPPC64(); 7048 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7049 7050 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7051 return DAG.getFrameIndex(FI, PtrVT); 7052 } 7053 7054 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7055 SelectionDAG &DAG) const { 7056 SDLoc DL(Op); 7057 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7058 DAG.getVTList(MVT::i32, MVT::Other), 7059 Op.getOperand(0), Op.getOperand(1)); 7060 } 7061 7062 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7063 SelectionDAG &DAG) const { 7064 SDLoc DL(Op); 7065 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7066 Op.getOperand(0), Op.getOperand(1)); 7067 } 7068 7069 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7070 if (Op.getValueType().isVector()) 7071 return LowerVectorLoad(Op, DAG); 7072 7073 assert(Op.getValueType() == MVT::i1 && 7074 "Custom lowering only for i1 loads"); 7075 7076 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7077 7078 SDLoc dl(Op); 7079 LoadSDNode *LD = cast<LoadSDNode>(Op); 7080 7081 SDValue Chain = LD->getChain(); 7082 SDValue BasePtr = LD->getBasePtr(); 7083 MachineMemOperand *MMO = LD->getMemOperand(); 7084 7085 SDValue NewLD = 7086 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7087 BasePtr, MVT::i8, MMO); 7088 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7089 7090 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7091 return DAG.getMergeValues(Ops, dl); 7092 } 7093 7094 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7095 if (Op.getOperand(1).getValueType().isVector()) 7096 return LowerVectorStore(Op, DAG); 7097 7098 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7099 "Custom lowering only for i1 stores"); 7100 7101 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7102 7103 SDLoc dl(Op); 7104 StoreSDNode *ST = cast<StoreSDNode>(Op); 7105 7106 SDValue Chain = ST->getChain(); 7107 SDValue BasePtr = ST->getBasePtr(); 7108 SDValue Value = ST->getValue(); 7109 MachineMemOperand *MMO = ST->getMemOperand(); 7110 7111 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7112 Value); 7113 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7114 } 7115 7116 // FIXME: Remove this once the ANDI glue bug is fixed: 7117 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7118 assert(Op.getValueType() == MVT::i1 && 7119 "Custom lowering only for i1 results"); 7120 7121 SDLoc DL(Op); 7122 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 7123 Op.getOperand(0)); 7124 } 7125 7126 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7127 SelectionDAG &DAG) const { 7128 7129 // Implements a vector truncate that fits in a vector register as a shuffle. 7130 // We want to legalize vector truncates down to where the source fits in 7131 // a vector register (and target is therefore smaller than vector register 7132 // size). At that point legalization will try to custom lower the sub-legal 7133 // result and get here - where we can contain the truncate as a single target 7134 // operation. 7135 7136 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7137 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7138 // 7139 // We will implement it for big-endian ordering as this (where x denotes 7140 // undefined): 7141 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7142 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7143 // 7144 // The same operation in little-endian ordering will be: 7145 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7146 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7147 7148 assert(Op.getValueType().isVector() && "Vector type expected."); 7149 7150 SDLoc DL(Op); 7151 SDValue N1 = Op.getOperand(0); 7152 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7153 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7154 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7155 7156 EVT TrgVT = Op.getValueType(); 7157 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7158 EVT EltVT = TrgVT.getVectorElementType(); 7159 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7160 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7161 7162 // First list the elements we want to keep. 7163 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7164 SmallVector<int, 16> ShuffV; 7165 if (Subtarget.isLittleEndian()) 7166 for (unsigned i = 0; i < TrgNumElts; ++i) 7167 ShuffV.push_back(i * SizeMult); 7168 else 7169 for (unsigned i = 1; i <= TrgNumElts; ++i) 7170 ShuffV.push_back(i * SizeMult - 1); 7171 7172 // Populate the remaining elements with undefs. 7173 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7174 // ShuffV.push_back(i + WideNumElts); 7175 ShuffV.push_back(WideNumElts + 1); 7176 7177 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7178 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7179 } 7180 7181 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7182 /// possible. 7183 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7184 // Not FP? Not a fsel. 7185 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7186 !Op.getOperand(2).getValueType().isFloatingPoint()) 7187 return Op; 7188 7189 // We might be able to do better than this under some circumstances, but in 7190 // general, fsel-based lowering of select is a finite-math-only optimization. 7191 // For more information, see section F.3 of the 2.06 ISA specification. 7192 if (!DAG.getTarget().Options.NoInfsFPMath || 7193 !DAG.getTarget().Options.NoNaNsFPMath) 7194 return Op; 7195 // TODO: Propagate flags from the select rather than global settings. 7196 SDNodeFlags Flags; 7197 Flags.setNoInfs(true); 7198 Flags.setNoNaNs(true); 7199 7200 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7201 7202 EVT ResVT = Op.getValueType(); 7203 EVT CmpVT = Op.getOperand(0).getValueType(); 7204 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7205 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7206 SDLoc dl(Op); 7207 7208 // If the RHS of the comparison is a 0.0, we don't need to do the 7209 // subtraction at all. 7210 SDValue Sel1; 7211 if (isFloatingPointZero(RHS)) 7212 switch (CC) { 7213 default: break; // SETUO etc aren't handled by fsel. 7214 case ISD::SETNE: 7215 std::swap(TV, FV); 7216 LLVM_FALLTHROUGH; 7217 case ISD::SETEQ: 7218 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7219 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7220 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7221 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7222 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7223 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7224 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7225 case ISD::SETULT: 7226 case ISD::SETLT: 7227 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7228 LLVM_FALLTHROUGH; 7229 case ISD::SETOGE: 7230 case ISD::SETGE: 7231 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7232 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7233 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7234 case ISD::SETUGT: 7235 case ISD::SETGT: 7236 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7237 LLVM_FALLTHROUGH; 7238 case ISD::SETOLE: 7239 case ISD::SETLE: 7240 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7241 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7242 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7243 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7244 } 7245 7246 SDValue Cmp; 7247 switch (CC) { 7248 default: break; // SETUO etc aren't handled by fsel. 7249 case ISD::SETNE: 7250 std::swap(TV, FV); 7251 LLVM_FALLTHROUGH; 7252 case ISD::SETEQ: 7253 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7254 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7255 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7256 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7257 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7258 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7259 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7260 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7261 case ISD::SETULT: 7262 case ISD::SETLT: 7263 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7264 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7265 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7266 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7267 case ISD::SETOGE: 7268 case ISD::SETGE: 7269 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7270 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7271 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7272 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7273 case ISD::SETUGT: 7274 case ISD::SETGT: 7275 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7276 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7277 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7278 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7279 case ISD::SETOLE: 7280 case ISD::SETLE: 7281 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7282 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7283 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7284 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7285 } 7286 return Op; 7287 } 7288 7289 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7290 SelectionDAG &DAG, 7291 const SDLoc &dl) const { 7292 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7293 SDValue Src = Op.getOperand(0); 7294 if (Src.getValueType() == MVT::f32) 7295 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7296 7297 SDValue Tmp; 7298 switch (Op.getSimpleValueType().SimpleTy) { 7299 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7300 case MVT::i32: 7301 Tmp = DAG.getNode( 7302 Op.getOpcode() == ISD::FP_TO_SINT 7303 ? PPCISD::FCTIWZ 7304 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7305 dl, MVT::f64, Src); 7306 break; 7307 case MVT::i64: 7308 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7309 "i64 FP_TO_UINT is supported only with FPCVT"); 7310 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7311 PPCISD::FCTIDUZ, 7312 dl, MVT::f64, Src); 7313 break; 7314 } 7315 7316 // Convert the FP value to an int value through memory. 7317 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7318 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7319 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7320 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7321 MachinePointerInfo MPI = 7322 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7323 7324 // Emit a store to the stack slot. 7325 SDValue Chain; 7326 if (i32Stack) { 7327 MachineFunction &MF = DAG.getMachineFunction(); 7328 MachineMemOperand *MMO = 7329 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7330 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7331 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7332 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7333 } else 7334 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7335 7336 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7337 // add in a bias on big endian. 7338 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7339 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7340 DAG.getConstant(4, dl, FIPtr.getValueType())); 7341 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7342 } 7343 7344 RLI.Chain = Chain; 7345 RLI.Ptr = FIPtr; 7346 RLI.MPI = MPI; 7347 } 7348 7349 /// Custom lowers floating point to integer conversions to use 7350 /// the direct move instructions available in ISA 2.07 to avoid the 7351 /// need for load/store combinations. 7352 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7353 SelectionDAG &DAG, 7354 const SDLoc &dl) const { 7355 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7356 SDValue Src = Op.getOperand(0); 7357 7358 if (Src.getValueType() == MVT::f32) 7359 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7360 7361 SDValue Tmp; 7362 switch (Op.getSimpleValueType().SimpleTy) { 7363 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7364 case MVT::i32: 7365 Tmp = DAG.getNode( 7366 Op.getOpcode() == ISD::FP_TO_SINT 7367 ? PPCISD::FCTIWZ 7368 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7369 dl, MVT::f64, Src); 7370 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7371 break; 7372 case MVT::i64: 7373 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7374 "i64 FP_TO_UINT is supported only with FPCVT"); 7375 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7376 PPCISD::FCTIDUZ, 7377 dl, MVT::f64, Src); 7378 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7379 break; 7380 } 7381 return Tmp; 7382 } 7383 7384 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7385 const SDLoc &dl) const { 7386 7387 // FP to INT conversions are legal for f128. 7388 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7389 return Op; 7390 7391 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7392 // PPC (the libcall is not available). 7393 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7394 if (Op.getValueType() == MVT::i32) { 7395 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7396 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7397 MVT::f64, Op.getOperand(0), 7398 DAG.getIntPtrConstant(0, dl)); 7399 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7400 MVT::f64, Op.getOperand(0), 7401 DAG.getIntPtrConstant(1, dl)); 7402 7403 // Add the two halves of the long double in round-to-zero mode. 7404 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7405 7406 // Now use a smaller FP_TO_SINT. 7407 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7408 } 7409 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7410 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7411 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7412 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7413 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7414 // FIXME: generated code sucks. 7415 // TODO: Are there fast-math-flags to propagate to this FSUB? 7416 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7417 Op.getOperand(0), Tmp); 7418 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7419 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7420 DAG.getConstant(0x80000000, dl, MVT::i32)); 7421 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7422 Op.getOperand(0)); 7423 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7424 ISD::SETGE); 7425 } 7426 } 7427 7428 return SDValue(); 7429 } 7430 7431 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7432 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7433 7434 ReuseLoadInfo RLI; 7435 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7436 7437 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7438 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7439 } 7440 7441 // We're trying to insert a regular store, S, and then a load, L. If the 7442 // incoming value, O, is a load, we might just be able to have our load use the 7443 // address used by O. However, we don't know if anything else will store to 7444 // that address before we can load from it. To prevent this situation, we need 7445 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7446 // the same chain operand as O, we create a token factor from the chain results 7447 // of O and L, and we replace all uses of O's chain result with that token 7448 // factor (see spliceIntoChain below for this last part). 7449 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7450 ReuseLoadInfo &RLI, 7451 SelectionDAG &DAG, 7452 ISD::LoadExtType ET) const { 7453 SDLoc dl(Op); 7454 if (ET == ISD::NON_EXTLOAD && 7455 (Op.getOpcode() == ISD::FP_TO_UINT || 7456 Op.getOpcode() == ISD::FP_TO_SINT) && 7457 isOperationLegalOrCustom(Op.getOpcode(), 7458 Op.getOperand(0).getValueType())) { 7459 7460 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7461 return true; 7462 } 7463 7464 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7465 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7466 LD->isNonTemporal()) 7467 return false; 7468 if (LD->getMemoryVT() != MemVT) 7469 return false; 7470 7471 RLI.Ptr = LD->getBasePtr(); 7472 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7473 assert(LD->getAddressingMode() == ISD::PRE_INC && 7474 "Non-pre-inc AM on PPC?"); 7475 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7476 LD->getOffset()); 7477 } 7478 7479 RLI.Chain = LD->getChain(); 7480 RLI.MPI = LD->getPointerInfo(); 7481 RLI.IsDereferenceable = LD->isDereferenceable(); 7482 RLI.IsInvariant = LD->isInvariant(); 7483 RLI.Alignment = LD->getAlignment(); 7484 RLI.AAInfo = LD->getAAInfo(); 7485 RLI.Ranges = LD->getRanges(); 7486 7487 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7488 return true; 7489 } 7490 7491 // Given the head of the old chain, ResChain, insert a token factor containing 7492 // it and NewResChain, and make users of ResChain now be users of that token 7493 // factor. 7494 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7495 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7496 SDValue NewResChain, 7497 SelectionDAG &DAG) const { 7498 if (!ResChain) 7499 return; 7500 7501 SDLoc dl(NewResChain); 7502 7503 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7504 NewResChain, DAG.getUNDEF(MVT::Other)); 7505 assert(TF.getNode() != NewResChain.getNode() && 7506 "A new TF really is required here"); 7507 7508 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7509 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7510 } 7511 7512 /// Analyze profitability of direct move 7513 /// prefer float load to int load plus direct move 7514 /// when there is no integer use of int load 7515 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7516 SDNode *Origin = Op.getOperand(0).getNode(); 7517 if (Origin->getOpcode() != ISD::LOAD) 7518 return true; 7519 7520 // If there is no LXSIBZX/LXSIHZX, like Power8, 7521 // prefer direct move if the memory size is 1 or 2 bytes. 7522 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7523 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7524 return true; 7525 7526 for (SDNode::use_iterator UI = Origin->use_begin(), 7527 UE = Origin->use_end(); 7528 UI != UE; ++UI) { 7529 7530 // Only look at the users of the loaded value. 7531 if (UI.getUse().get().getResNo() != 0) 7532 continue; 7533 7534 if (UI->getOpcode() != ISD::SINT_TO_FP && 7535 UI->getOpcode() != ISD::UINT_TO_FP) 7536 return true; 7537 } 7538 7539 return false; 7540 } 7541 7542 /// Custom lowers integer to floating point conversions to use 7543 /// the direct move instructions available in ISA 2.07 to avoid the 7544 /// need for load/store combinations. 7545 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7546 SelectionDAG &DAG, 7547 const SDLoc &dl) const { 7548 assert((Op.getValueType() == MVT::f32 || 7549 Op.getValueType() == MVT::f64) && 7550 "Invalid floating point type as target of conversion"); 7551 assert(Subtarget.hasFPCVT() && 7552 "Int to FP conversions with direct moves require FPCVT"); 7553 SDValue FP; 7554 SDValue Src = Op.getOperand(0); 7555 bool SinglePrec = Op.getValueType() == MVT::f32; 7556 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7557 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7558 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7559 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7560 7561 if (WordInt) { 7562 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7563 dl, MVT::f64, Src); 7564 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7565 } 7566 else { 7567 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7568 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7569 } 7570 7571 return FP; 7572 } 7573 7574 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7575 7576 EVT VecVT = Vec.getValueType(); 7577 assert(VecVT.isVector() && "Expected a vector type."); 7578 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7579 7580 EVT EltVT = VecVT.getVectorElementType(); 7581 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7582 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7583 7584 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7585 SmallVector<SDValue, 16> Ops(NumConcat); 7586 Ops[0] = Vec; 7587 SDValue UndefVec = DAG.getUNDEF(VecVT); 7588 for (unsigned i = 1; i < NumConcat; ++i) 7589 Ops[i] = UndefVec; 7590 7591 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7592 } 7593 7594 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7595 const SDLoc &dl) const { 7596 7597 unsigned Opc = Op.getOpcode(); 7598 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7599 "Unexpected conversion type"); 7600 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7601 "Supports conversions to v2f64/v4f32 only."); 7602 7603 bool SignedConv = Opc == ISD::SINT_TO_FP; 7604 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7605 7606 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7607 EVT WideVT = Wide.getValueType(); 7608 unsigned WideNumElts = WideVT.getVectorNumElements(); 7609 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7610 7611 SmallVector<int, 16> ShuffV; 7612 for (unsigned i = 0; i < WideNumElts; ++i) 7613 ShuffV.push_back(i + WideNumElts); 7614 7615 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7616 int SaveElts = FourEltRes ? 4 : 2; 7617 if (Subtarget.isLittleEndian()) 7618 for (int i = 0; i < SaveElts; i++) 7619 ShuffV[i * Stride] = i; 7620 else 7621 for (int i = 1; i <= SaveElts; i++) 7622 ShuffV[i * Stride - 1] = i - 1; 7623 7624 SDValue ShuffleSrc2 = 7625 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7626 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7627 unsigned ExtendOp = 7628 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7629 7630 SDValue Extend; 7631 if (!Subtarget.hasP9Altivec() && SignedConv) { 7632 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7633 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7634 DAG.getValueType(Op.getOperand(0).getValueType())); 7635 } else 7636 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7637 7638 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7639 } 7640 7641 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7642 SelectionDAG &DAG) const { 7643 SDLoc dl(Op); 7644 7645 EVT InVT = Op.getOperand(0).getValueType(); 7646 EVT OutVT = Op.getValueType(); 7647 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7648 isOperationCustom(Op.getOpcode(), InVT)) 7649 return LowerINT_TO_FPVector(Op, DAG, dl); 7650 7651 // Conversions to f128 are legal. 7652 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7653 return Op; 7654 7655 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7656 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7657 return SDValue(); 7658 7659 SDValue Value = Op.getOperand(0); 7660 // The values are now known to be -1 (false) or 1 (true). To convert this 7661 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7662 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7663 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7664 7665 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7666 7667 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7668 7669 if (Op.getValueType() != MVT::v4f64) 7670 Value = DAG.getNode(ISD::FP_ROUND, dl, 7671 Op.getValueType(), Value, 7672 DAG.getIntPtrConstant(1, dl)); 7673 return Value; 7674 } 7675 7676 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7677 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7678 return SDValue(); 7679 7680 if (Op.getOperand(0).getValueType() == MVT::i1) 7681 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7682 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7683 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7684 7685 // If we have direct moves, we can do all the conversion, skip the store/load 7686 // however, without FPCVT we can't do most conversions. 7687 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7688 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7689 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7690 7691 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7692 "UINT_TO_FP is supported only with FPCVT"); 7693 7694 // If we have FCFIDS, then use it when converting to single-precision. 7695 // Otherwise, convert to double-precision and then round. 7696 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7697 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7698 : PPCISD::FCFIDS) 7699 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7700 : PPCISD::FCFID); 7701 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7702 ? MVT::f32 7703 : MVT::f64; 7704 7705 if (Op.getOperand(0).getValueType() == MVT::i64) { 7706 SDValue SINT = Op.getOperand(0); 7707 // When converting to single-precision, we actually need to convert 7708 // to double-precision first and then round to single-precision. 7709 // To avoid double-rounding effects during that operation, we have 7710 // to prepare the input operand. Bits that might be truncated when 7711 // converting to double-precision are replaced by a bit that won't 7712 // be lost at this stage, but is below the single-precision rounding 7713 // position. 7714 // 7715 // However, if -enable-unsafe-fp-math is in effect, accept double 7716 // rounding to avoid the extra overhead. 7717 if (Op.getValueType() == MVT::f32 && 7718 !Subtarget.hasFPCVT() && 7719 !DAG.getTarget().Options.UnsafeFPMath) { 7720 7721 // Twiddle input to make sure the low 11 bits are zero. (If this 7722 // is the case, we are guaranteed the value will fit into the 53 bit 7723 // mantissa of an IEEE double-precision value without rounding.) 7724 // If any of those low 11 bits were not zero originally, make sure 7725 // bit 12 (value 2048) is set instead, so that the final rounding 7726 // to single-precision gets the correct result. 7727 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7728 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7729 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7730 Round, DAG.getConstant(2047, dl, MVT::i64)); 7731 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7732 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7733 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7734 7735 // However, we cannot use that value unconditionally: if the magnitude 7736 // of the input value is small, the bit-twiddling we did above might 7737 // end up visibly changing the output. Fortunately, in that case, we 7738 // don't need to twiddle bits since the original input will convert 7739 // exactly to double-precision floating-point already. Therefore, 7740 // construct a conditional to use the original value if the top 11 7741 // bits are all sign-bit copies, and use the rounded value computed 7742 // above otherwise. 7743 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7744 SINT, DAG.getConstant(53, dl, MVT::i32)); 7745 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7746 Cond, DAG.getConstant(1, dl, MVT::i64)); 7747 Cond = DAG.getSetCC(dl, MVT::i32, 7748 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7749 7750 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7751 } 7752 7753 ReuseLoadInfo RLI; 7754 SDValue Bits; 7755 7756 MachineFunction &MF = DAG.getMachineFunction(); 7757 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7758 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7759 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7760 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7761 } else if (Subtarget.hasLFIWAX() && 7762 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7763 MachineMemOperand *MMO = 7764 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7765 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7766 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7767 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7768 DAG.getVTList(MVT::f64, MVT::Other), 7769 Ops, MVT::i32, MMO); 7770 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7771 } else if (Subtarget.hasFPCVT() && 7772 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7773 MachineMemOperand *MMO = 7774 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7775 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7776 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7777 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7778 DAG.getVTList(MVT::f64, MVT::Other), 7779 Ops, MVT::i32, MMO); 7780 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7781 } else if (((Subtarget.hasLFIWAX() && 7782 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7783 (Subtarget.hasFPCVT() && 7784 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7785 SINT.getOperand(0).getValueType() == MVT::i32) { 7786 MachineFrameInfo &MFI = MF.getFrameInfo(); 7787 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7788 7789 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7790 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7791 7792 SDValue Store = 7793 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7794 MachinePointerInfo::getFixedStack( 7795 DAG.getMachineFunction(), FrameIdx)); 7796 7797 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7798 "Expected an i32 store"); 7799 7800 RLI.Ptr = FIdx; 7801 RLI.Chain = Store; 7802 RLI.MPI = 7803 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7804 RLI.Alignment = 4; 7805 7806 MachineMemOperand *MMO = 7807 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7808 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7809 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7810 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7811 PPCISD::LFIWZX : PPCISD::LFIWAX, 7812 dl, DAG.getVTList(MVT::f64, MVT::Other), 7813 Ops, MVT::i32, MMO); 7814 } else 7815 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7816 7817 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7818 7819 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7820 FP = DAG.getNode(ISD::FP_ROUND, dl, 7821 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7822 return FP; 7823 } 7824 7825 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7826 "Unhandled INT_TO_FP type in custom expander!"); 7827 // Since we only generate this in 64-bit mode, we can take advantage of 7828 // 64-bit registers. In particular, sign extend the input value into the 7829 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7830 // then lfd it and fcfid it. 7831 MachineFunction &MF = DAG.getMachineFunction(); 7832 MachineFrameInfo &MFI = MF.getFrameInfo(); 7833 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7834 7835 SDValue Ld; 7836 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7837 ReuseLoadInfo RLI; 7838 bool ReusingLoad; 7839 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7840 DAG))) { 7841 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7842 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7843 7844 SDValue Store = 7845 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7846 MachinePointerInfo::getFixedStack( 7847 DAG.getMachineFunction(), FrameIdx)); 7848 7849 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7850 "Expected an i32 store"); 7851 7852 RLI.Ptr = FIdx; 7853 RLI.Chain = Store; 7854 RLI.MPI = 7855 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7856 RLI.Alignment = 4; 7857 } 7858 7859 MachineMemOperand *MMO = 7860 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7861 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7862 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7863 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7864 PPCISD::LFIWZX : PPCISD::LFIWAX, 7865 dl, DAG.getVTList(MVT::f64, MVT::Other), 7866 Ops, MVT::i32, MMO); 7867 if (ReusingLoad) 7868 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7869 } else { 7870 assert(Subtarget.isPPC64() && 7871 "i32->FP without LFIWAX supported only on PPC64"); 7872 7873 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7874 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7875 7876 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7877 Op.getOperand(0)); 7878 7879 // STD the extended value into the stack slot. 7880 SDValue Store = DAG.getStore( 7881 DAG.getEntryNode(), dl, Ext64, FIdx, 7882 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7883 7884 // Load the value as a double. 7885 Ld = DAG.getLoad( 7886 MVT::f64, dl, Store, FIdx, 7887 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7888 } 7889 7890 // FCFID it and return it. 7891 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7892 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7893 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7894 DAG.getIntPtrConstant(0, dl)); 7895 return FP; 7896 } 7897 7898 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7899 SelectionDAG &DAG) const { 7900 SDLoc dl(Op); 7901 /* 7902 The rounding mode is in bits 30:31 of FPSR, and has the following 7903 settings: 7904 00 Round to nearest 7905 01 Round to 0 7906 10 Round to +inf 7907 11 Round to -inf 7908 7909 FLT_ROUNDS, on the other hand, expects the following: 7910 -1 Undefined 7911 0 Round to 0 7912 1 Round to nearest 7913 2 Round to +inf 7914 3 Round to -inf 7915 7916 To perform the conversion, we do: 7917 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7918 */ 7919 7920 MachineFunction &MF = DAG.getMachineFunction(); 7921 EVT VT = Op.getValueType(); 7922 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7923 7924 // Save FP Control Word to register 7925 EVT NodeTys[] = { 7926 MVT::f64, // return register 7927 MVT::Glue // unused in this context 7928 }; 7929 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7930 7931 // Save FP register to stack slot 7932 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7933 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7934 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7935 MachinePointerInfo()); 7936 7937 // Load FP Control Word from low 32 bits of stack slot. 7938 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7939 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7940 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7941 7942 // Transform as necessary 7943 SDValue CWD1 = 7944 DAG.getNode(ISD::AND, dl, MVT::i32, 7945 CWD, DAG.getConstant(3, dl, MVT::i32)); 7946 SDValue CWD2 = 7947 DAG.getNode(ISD::SRL, dl, MVT::i32, 7948 DAG.getNode(ISD::AND, dl, MVT::i32, 7949 DAG.getNode(ISD::XOR, dl, MVT::i32, 7950 CWD, DAG.getConstant(3, dl, MVT::i32)), 7951 DAG.getConstant(3, dl, MVT::i32)), 7952 DAG.getConstant(1, dl, MVT::i32)); 7953 7954 SDValue RetVal = 7955 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7956 7957 return DAG.getNode((VT.getSizeInBits() < 16 ? 7958 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7959 } 7960 7961 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7962 EVT VT = Op.getValueType(); 7963 unsigned BitWidth = VT.getSizeInBits(); 7964 SDLoc dl(Op); 7965 assert(Op.getNumOperands() == 3 && 7966 VT == Op.getOperand(1).getValueType() && 7967 "Unexpected SHL!"); 7968 7969 // Expand into a bunch of logical ops. Note that these ops 7970 // depend on the PPC behavior for oversized shift amounts. 7971 SDValue Lo = Op.getOperand(0); 7972 SDValue Hi = Op.getOperand(1); 7973 SDValue Amt = Op.getOperand(2); 7974 EVT AmtVT = Amt.getValueType(); 7975 7976 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7977 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7978 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7979 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7980 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7981 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7982 DAG.getConstant(-BitWidth, dl, AmtVT)); 7983 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7984 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7985 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7986 SDValue OutOps[] = { OutLo, OutHi }; 7987 return DAG.getMergeValues(OutOps, dl); 7988 } 7989 7990 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7991 EVT VT = Op.getValueType(); 7992 SDLoc dl(Op); 7993 unsigned BitWidth = VT.getSizeInBits(); 7994 assert(Op.getNumOperands() == 3 && 7995 VT == Op.getOperand(1).getValueType() && 7996 "Unexpected SRL!"); 7997 7998 // Expand into a bunch of logical ops. Note that these ops 7999 // depend on the PPC behavior for oversized shift amounts. 8000 SDValue Lo = Op.getOperand(0); 8001 SDValue Hi = Op.getOperand(1); 8002 SDValue Amt = Op.getOperand(2); 8003 EVT AmtVT = Amt.getValueType(); 8004 8005 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8006 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8007 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8008 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8009 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8010 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8011 DAG.getConstant(-BitWidth, dl, AmtVT)); 8012 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8013 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8014 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8015 SDValue OutOps[] = { OutLo, OutHi }; 8016 return DAG.getMergeValues(OutOps, dl); 8017 } 8018 8019 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8020 SDLoc dl(Op); 8021 EVT VT = Op.getValueType(); 8022 unsigned BitWidth = VT.getSizeInBits(); 8023 assert(Op.getNumOperands() == 3 && 8024 VT == Op.getOperand(1).getValueType() && 8025 "Unexpected SRA!"); 8026 8027 // Expand into a bunch of logical ops, followed by a select_cc. 8028 SDValue Lo = Op.getOperand(0); 8029 SDValue Hi = Op.getOperand(1); 8030 SDValue Amt = Op.getOperand(2); 8031 EVT AmtVT = Amt.getValueType(); 8032 8033 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8034 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8035 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8036 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8037 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8038 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8039 DAG.getConstant(-BitWidth, dl, AmtVT)); 8040 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8041 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8042 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8043 Tmp4, Tmp6, ISD::SETLE); 8044 SDValue OutOps[] = { OutLo, OutHi }; 8045 return DAG.getMergeValues(OutOps, dl); 8046 } 8047 8048 //===----------------------------------------------------------------------===// 8049 // Vector related lowering. 8050 // 8051 8052 /// BuildSplatI - Build a canonical splati of Val with an element size of 8053 /// SplatSize. Cast the result to VT. 8054 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8055 SelectionDAG &DAG, const SDLoc &dl) { 8056 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 8057 8058 static const MVT VTys[] = { // canonical VT to use for each size. 8059 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8060 }; 8061 8062 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8063 8064 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8065 if (Val == -1) 8066 SplatSize = 1; 8067 8068 EVT CanonicalVT = VTys[SplatSize-1]; 8069 8070 // Build a canonical splat for this value. 8071 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8072 } 8073 8074 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8075 /// specified intrinsic ID. 8076 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8077 const SDLoc &dl, EVT DestVT = MVT::Other) { 8078 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8079 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8080 DAG.getConstant(IID, dl, MVT::i32), Op); 8081 } 8082 8083 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8084 /// specified intrinsic ID. 8085 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8086 SelectionDAG &DAG, const SDLoc &dl, 8087 EVT DestVT = MVT::Other) { 8088 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8089 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8090 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8091 } 8092 8093 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8094 /// specified intrinsic ID. 8095 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8096 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8097 EVT DestVT = MVT::Other) { 8098 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8099 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8100 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8101 } 8102 8103 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8104 /// amount. The result has the specified value type. 8105 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8106 SelectionDAG &DAG, const SDLoc &dl) { 8107 // Force LHS/RHS to be the right type. 8108 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8109 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8110 8111 int Ops[16]; 8112 for (unsigned i = 0; i != 16; ++i) 8113 Ops[i] = i + Amt; 8114 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8115 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8116 } 8117 8118 /// Do we have an efficient pattern in a .td file for this node? 8119 /// 8120 /// \param V - pointer to the BuildVectorSDNode being matched 8121 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8122 /// 8123 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8124 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8125 /// the opposite is true (expansion is beneficial) are: 8126 /// - The node builds a vector out of integers that are not 32 or 64-bits 8127 /// - The node builds a vector out of constants 8128 /// - The node is a "load-and-splat" 8129 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8130 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8131 bool HasDirectMove, 8132 bool HasP8Vector) { 8133 EVT VecVT = V->getValueType(0); 8134 bool RightType = VecVT == MVT::v2f64 || 8135 (HasP8Vector && VecVT == MVT::v4f32) || 8136 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8137 if (!RightType) 8138 return false; 8139 8140 bool IsSplat = true; 8141 bool IsLoad = false; 8142 SDValue Op0 = V->getOperand(0); 8143 8144 // This function is called in a block that confirms the node is not a constant 8145 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8146 // different constants. 8147 if (V->isConstant()) 8148 return false; 8149 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8150 if (V->getOperand(i).isUndef()) 8151 return false; 8152 // We want to expand nodes that represent load-and-splat even if the 8153 // loaded value is a floating point truncation or conversion to int. 8154 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8155 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8156 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8157 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8158 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8159 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8160 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8161 IsLoad = true; 8162 // If the operands are different or the input is not a load and has more 8163 // uses than just this BV node, then it isn't a splat. 8164 if (V->getOperand(i) != Op0 || 8165 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8166 IsSplat = false; 8167 } 8168 return !(IsSplat && IsLoad); 8169 } 8170 8171 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8172 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8173 8174 SDLoc dl(Op); 8175 SDValue Op0 = Op->getOperand(0); 8176 8177 if (!EnableQuadPrecision || 8178 (Op.getValueType() != MVT::f128 ) || 8179 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8180 (Op0.getOperand(0).getValueType() != MVT::i64) || 8181 (Op0.getOperand(1).getValueType() != MVT::i64)) 8182 return SDValue(); 8183 8184 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8185 Op0.getOperand(1)); 8186 } 8187 8188 // If this is a case we can't handle, return null and let the default 8189 // expansion code take care of it. If we CAN select this case, and if it 8190 // selects to a single instruction, return Op. Otherwise, if we can codegen 8191 // this case more efficiently than a constant pool load, lower it to the 8192 // sequence of ops that should be used. 8193 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8194 SelectionDAG &DAG) const { 8195 SDLoc dl(Op); 8196 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8197 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8198 8199 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8200 // We first build an i32 vector, load it into a QPX register, 8201 // then convert it to a floating-point vector and compare it 8202 // to a zero vector to get the boolean result. 8203 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8204 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8205 MachinePointerInfo PtrInfo = 8206 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8207 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8208 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8209 8210 assert(BVN->getNumOperands() == 4 && 8211 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8212 8213 bool IsConst = true; 8214 for (unsigned i = 0; i < 4; ++i) { 8215 if (BVN->getOperand(i).isUndef()) continue; 8216 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8217 IsConst = false; 8218 break; 8219 } 8220 } 8221 8222 if (IsConst) { 8223 Constant *One = 8224 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8225 Constant *NegOne = 8226 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8227 8228 Constant *CV[4]; 8229 for (unsigned i = 0; i < 4; ++i) { 8230 if (BVN->getOperand(i).isUndef()) 8231 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8232 else if (isNullConstant(BVN->getOperand(i))) 8233 CV[i] = NegOne; 8234 else 8235 CV[i] = One; 8236 } 8237 8238 Constant *CP = ConstantVector::get(CV); 8239 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8240 16 /* alignment */); 8241 8242 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8243 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8244 return DAG.getMemIntrinsicNode( 8245 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8246 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8247 } 8248 8249 SmallVector<SDValue, 4> Stores; 8250 for (unsigned i = 0; i < 4; ++i) { 8251 if (BVN->getOperand(i).isUndef()) continue; 8252 8253 unsigned Offset = 4*i; 8254 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8255 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8256 8257 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8258 if (StoreSize > 4) { 8259 Stores.push_back( 8260 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8261 PtrInfo.getWithOffset(Offset), MVT::i32)); 8262 } else { 8263 SDValue StoreValue = BVN->getOperand(i); 8264 if (StoreSize < 4) 8265 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8266 8267 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8268 PtrInfo.getWithOffset(Offset))); 8269 } 8270 } 8271 8272 SDValue StoreChain; 8273 if (!Stores.empty()) 8274 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8275 else 8276 StoreChain = DAG.getEntryNode(); 8277 8278 // Now load from v4i32 into the QPX register; this will extend it to 8279 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8280 // is typed as v4f64 because the QPX register integer states are not 8281 // explicitly represented. 8282 8283 SDValue Ops[] = {StoreChain, 8284 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8285 FIdx}; 8286 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8287 8288 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8289 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8290 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8291 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8292 LoadedVect); 8293 8294 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8295 8296 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8297 } 8298 8299 // All other QPX vectors are handled by generic code. 8300 if (Subtarget.hasQPX()) 8301 return SDValue(); 8302 8303 // Check if this is a splat of a constant value. 8304 APInt APSplatBits, APSplatUndef; 8305 unsigned SplatBitSize; 8306 bool HasAnyUndefs; 8307 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8308 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8309 SplatBitSize > 32) { 8310 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8311 // lowered to VSX instructions under certain conditions. 8312 // Without VSX, there is no pattern more efficient than expanding the node. 8313 if (Subtarget.hasVSX() && 8314 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8315 Subtarget.hasP8Vector())) 8316 return Op; 8317 return SDValue(); 8318 } 8319 8320 unsigned SplatBits = APSplatBits.getZExtValue(); 8321 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8322 unsigned SplatSize = SplatBitSize / 8; 8323 8324 // First, handle single instruction cases. 8325 8326 // All zeros? 8327 if (SplatBits == 0) { 8328 // Canonicalize all zero vectors to be v4i32. 8329 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8330 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8331 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8332 } 8333 return Op; 8334 } 8335 8336 // We have XXSPLTIB for constant splats one byte wide 8337 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8338 // This is a splat of 1-byte elements with some elements potentially undef. 8339 // Rather than trying to match undef in the SDAG patterns, ensure that all 8340 // elements are the same constant. 8341 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8342 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8343 dl, MVT::i32)); 8344 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8345 if (Op.getValueType() != MVT::v16i8) 8346 return DAG.getBitcast(Op.getValueType(), NewBV); 8347 return NewBV; 8348 } 8349 8350 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8351 // detect that constant splats like v8i16: 0xABAB are really just splats 8352 // of a 1-byte constant. In this case, we need to convert the node to a 8353 // splat of v16i8 and a bitcast. 8354 if (Op.getValueType() != MVT::v16i8) 8355 return DAG.getBitcast(Op.getValueType(), 8356 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8357 8358 return Op; 8359 } 8360 8361 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8362 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8363 (32-SplatBitSize)); 8364 if (SextVal >= -16 && SextVal <= 15) 8365 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8366 8367 // Two instruction sequences. 8368 8369 // If this value is in the range [-32,30] and is even, use: 8370 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8371 // If this value is in the range [17,31] and is odd, use: 8372 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8373 // If this value is in the range [-31,-17] and is odd, use: 8374 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8375 // Note the last two are three-instruction sequences. 8376 if (SextVal >= -32 && SextVal <= 31) { 8377 // To avoid having these optimizations undone by constant folding, 8378 // we convert to a pseudo that will be expanded later into one of 8379 // the above forms. 8380 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8381 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8382 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8383 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8384 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8385 if (VT == Op.getValueType()) 8386 return RetVal; 8387 else 8388 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8389 } 8390 8391 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8392 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8393 // for fneg/fabs. 8394 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8395 // Make -1 and vspltisw -1: 8396 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8397 8398 // Make the VSLW intrinsic, computing 0x8000_0000. 8399 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8400 OnesV, DAG, dl); 8401 8402 // xor by OnesV to invert it. 8403 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8404 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8405 } 8406 8407 // Check to see if this is a wide variety of vsplti*, binop self cases. 8408 static const signed char SplatCsts[] = { 8409 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8410 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8411 }; 8412 8413 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8414 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8415 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8416 int i = SplatCsts[idx]; 8417 8418 // Figure out what shift amount will be used by altivec if shifted by i in 8419 // this splat size. 8420 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8421 8422 // vsplti + shl self. 8423 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8424 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8425 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8426 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8427 Intrinsic::ppc_altivec_vslw 8428 }; 8429 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8430 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8431 } 8432 8433 // vsplti + srl self. 8434 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8435 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8436 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8437 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8438 Intrinsic::ppc_altivec_vsrw 8439 }; 8440 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8441 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8442 } 8443 8444 // vsplti + sra self. 8445 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8446 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8447 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8448 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8449 Intrinsic::ppc_altivec_vsraw 8450 }; 8451 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8452 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8453 } 8454 8455 // vsplti + rol self. 8456 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8457 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8458 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8459 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8460 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8461 Intrinsic::ppc_altivec_vrlw 8462 }; 8463 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8464 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8465 } 8466 8467 // t = vsplti c, result = vsldoi t, t, 1 8468 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8469 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8470 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8471 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8472 } 8473 // t = vsplti c, result = vsldoi t, t, 2 8474 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8475 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8476 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8477 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8478 } 8479 // t = vsplti c, result = vsldoi t, t, 3 8480 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8481 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8482 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8483 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8484 } 8485 } 8486 8487 return SDValue(); 8488 } 8489 8490 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8491 /// the specified operations to build the shuffle. 8492 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8493 SDValue RHS, SelectionDAG &DAG, 8494 const SDLoc &dl) { 8495 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8496 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8497 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8498 8499 enum { 8500 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8501 OP_VMRGHW, 8502 OP_VMRGLW, 8503 OP_VSPLTISW0, 8504 OP_VSPLTISW1, 8505 OP_VSPLTISW2, 8506 OP_VSPLTISW3, 8507 OP_VSLDOI4, 8508 OP_VSLDOI8, 8509 OP_VSLDOI12 8510 }; 8511 8512 if (OpNum == OP_COPY) { 8513 if (LHSID == (1*9+2)*9+3) return LHS; 8514 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8515 return RHS; 8516 } 8517 8518 SDValue OpLHS, OpRHS; 8519 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8520 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8521 8522 int ShufIdxs[16]; 8523 switch (OpNum) { 8524 default: llvm_unreachable("Unknown i32 permute!"); 8525 case OP_VMRGHW: 8526 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8527 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8528 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8529 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8530 break; 8531 case OP_VMRGLW: 8532 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8533 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8534 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8535 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8536 break; 8537 case OP_VSPLTISW0: 8538 for (unsigned i = 0; i != 16; ++i) 8539 ShufIdxs[i] = (i&3)+0; 8540 break; 8541 case OP_VSPLTISW1: 8542 for (unsigned i = 0; i != 16; ++i) 8543 ShufIdxs[i] = (i&3)+4; 8544 break; 8545 case OP_VSPLTISW2: 8546 for (unsigned i = 0; i != 16; ++i) 8547 ShufIdxs[i] = (i&3)+8; 8548 break; 8549 case OP_VSPLTISW3: 8550 for (unsigned i = 0; i != 16; ++i) 8551 ShufIdxs[i] = (i&3)+12; 8552 break; 8553 case OP_VSLDOI4: 8554 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8555 case OP_VSLDOI8: 8556 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8557 case OP_VSLDOI12: 8558 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8559 } 8560 EVT VT = OpLHS.getValueType(); 8561 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8562 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8563 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8564 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8565 } 8566 8567 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8568 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8569 /// SDValue. 8570 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8571 SelectionDAG &DAG) const { 8572 const unsigned BytesInVector = 16; 8573 bool IsLE = Subtarget.isLittleEndian(); 8574 SDLoc dl(N); 8575 SDValue V1 = N->getOperand(0); 8576 SDValue V2 = N->getOperand(1); 8577 unsigned ShiftElts = 0, InsertAtByte = 0; 8578 bool Swap = false; 8579 8580 // Shifts required to get the byte we want at element 7. 8581 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8582 0, 15, 14, 13, 12, 11, 10, 9}; 8583 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8584 1, 2, 3, 4, 5, 6, 7, 8}; 8585 8586 ArrayRef<int> Mask = N->getMask(); 8587 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8588 8589 // For each mask element, find out if we're just inserting something 8590 // from V2 into V1 or vice versa. 8591 // Possible permutations inserting an element from V2 into V1: 8592 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8593 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8594 // ... 8595 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8596 // Inserting from V1 into V2 will be similar, except mask range will be 8597 // [16,31]. 8598 8599 bool FoundCandidate = false; 8600 // If both vector operands for the shuffle are the same vector, the mask 8601 // will contain only elements from the first one and the second one will be 8602 // undef. 8603 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8604 // Go through the mask of half-words to find an element that's being moved 8605 // from one vector to the other. 8606 for (unsigned i = 0; i < BytesInVector; ++i) { 8607 unsigned CurrentElement = Mask[i]; 8608 // If 2nd operand is undefined, we should only look for element 7 in the 8609 // Mask. 8610 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8611 continue; 8612 8613 bool OtherElementsInOrder = true; 8614 // Examine the other elements in the Mask to see if they're in original 8615 // order. 8616 for (unsigned j = 0; j < BytesInVector; ++j) { 8617 if (j == i) 8618 continue; 8619 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8620 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8621 // in which we always assume we're always picking from the 1st operand. 8622 int MaskOffset = 8623 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8624 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8625 OtherElementsInOrder = false; 8626 break; 8627 } 8628 } 8629 // If other elements are in original order, we record the number of shifts 8630 // we need to get the element we want into element 7. Also record which byte 8631 // in the vector we should insert into. 8632 if (OtherElementsInOrder) { 8633 // If 2nd operand is undefined, we assume no shifts and no swapping. 8634 if (V2.isUndef()) { 8635 ShiftElts = 0; 8636 Swap = false; 8637 } else { 8638 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8639 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8640 : BigEndianShifts[CurrentElement & 0xF]; 8641 Swap = CurrentElement < BytesInVector; 8642 } 8643 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8644 FoundCandidate = true; 8645 break; 8646 } 8647 } 8648 8649 if (!FoundCandidate) 8650 return SDValue(); 8651 8652 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8653 // optionally with VECSHL if shift is required. 8654 if (Swap) 8655 std::swap(V1, V2); 8656 if (V2.isUndef()) 8657 V2 = V1; 8658 if (ShiftElts) { 8659 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8660 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8661 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8662 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8663 } 8664 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8665 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8666 } 8667 8668 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8669 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8670 /// SDValue. 8671 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8672 SelectionDAG &DAG) const { 8673 const unsigned NumHalfWords = 8; 8674 const unsigned BytesInVector = NumHalfWords * 2; 8675 // Check that the shuffle is on half-words. 8676 if (!isNByteElemShuffleMask(N, 2, 1)) 8677 return SDValue(); 8678 8679 bool IsLE = Subtarget.isLittleEndian(); 8680 SDLoc dl(N); 8681 SDValue V1 = N->getOperand(0); 8682 SDValue V2 = N->getOperand(1); 8683 unsigned ShiftElts = 0, InsertAtByte = 0; 8684 bool Swap = false; 8685 8686 // Shifts required to get the half-word we want at element 3. 8687 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8688 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8689 8690 uint32_t Mask = 0; 8691 uint32_t OriginalOrderLow = 0x1234567; 8692 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8693 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8694 // 32-bit space, only need 4-bit nibbles per element. 8695 for (unsigned i = 0; i < NumHalfWords; ++i) { 8696 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8697 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8698 } 8699 8700 // For each mask element, find out if we're just inserting something 8701 // from V2 into V1 or vice versa. Possible permutations inserting an element 8702 // from V2 into V1: 8703 // X, 1, 2, 3, 4, 5, 6, 7 8704 // 0, X, 2, 3, 4, 5, 6, 7 8705 // 0, 1, X, 3, 4, 5, 6, 7 8706 // 0, 1, 2, X, 4, 5, 6, 7 8707 // 0, 1, 2, 3, X, 5, 6, 7 8708 // 0, 1, 2, 3, 4, X, 6, 7 8709 // 0, 1, 2, 3, 4, 5, X, 7 8710 // 0, 1, 2, 3, 4, 5, 6, X 8711 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8712 8713 bool FoundCandidate = false; 8714 // Go through the mask of half-words to find an element that's being moved 8715 // from one vector to the other. 8716 for (unsigned i = 0; i < NumHalfWords; ++i) { 8717 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8718 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8719 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8720 uint32_t TargetOrder = 0x0; 8721 8722 // If both vector operands for the shuffle are the same vector, the mask 8723 // will contain only elements from the first one and the second one will be 8724 // undef. 8725 if (V2.isUndef()) { 8726 ShiftElts = 0; 8727 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8728 TargetOrder = OriginalOrderLow; 8729 Swap = false; 8730 // Skip if not the correct element or mask of other elements don't equal 8731 // to our expected order. 8732 if (MaskOneElt == VINSERTHSrcElem && 8733 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8734 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8735 FoundCandidate = true; 8736 break; 8737 } 8738 } else { // If both operands are defined. 8739 // Target order is [8,15] if the current mask is between [0,7]. 8740 TargetOrder = 8741 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8742 // Skip if mask of other elements don't equal our expected order. 8743 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8744 // We only need the last 3 bits for the number of shifts. 8745 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8746 : BigEndianShifts[MaskOneElt & 0x7]; 8747 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8748 Swap = MaskOneElt < NumHalfWords; 8749 FoundCandidate = true; 8750 break; 8751 } 8752 } 8753 } 8754 8755 if (!FoundCandidate) 8756 return SDValue(); 8757 8758 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8759 // optionally with VECSHL if shift is required. 8760 if (Swap) 8761 std::swap(V1, V2); 8762 if (V2.isUndef()) 8763 V2 = V1; 8764 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8765 if (ShiftElts) { 8766 // Double ShiftElts because we're left shifting on v16i8 type. 8767 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8768 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8769 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8770 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8771 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8772 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8773 } 8774 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8775 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8776 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8777 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8778 } 8779 8780 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8781 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8782 /// return the code it can be lowered into. Worst case, it can always be 8783 /// lowered into a vperm. 8784 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8785 SelectionDAG &DAG) const { 8786 SDLoc dl(Op); 8787 SDValue V1 = Op.getOperand(0); 8788 SDValue V2 = Op.getOperand(1); 8789 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8790 EVT VT = Op.getValueType(); 8791 bool isLittleEndian = Subtarget.isLittleEndian(); 8792 8793 unsigned ShiftElts, InsertAtByte; 8794 bool Swap = false; 8795 if (Subtarget.hasP9Vector() && 8796 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8797 isLittleEndian)) { 8798 if (Swap) 8799 std::swap(V1, V2); 8800 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8801 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8802 if (ShiftElts) { 8803 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8804 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8805 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8806 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8807 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8808 } 8809 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8810 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8811 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8812 } 8813 8814 if (Subtarget.hasP9Altivec()) { 8815 SDValue NewISDNode; 8816 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8817 return NewISDNode; 8818 8819 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8820 return NewISDNode; 8821 } 8822 8823 if (Subtarget.hasVSX() && 8824 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8825 if (Swap) 8826 std::swap(V1, V2); 8827 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8828 SDValue Conv2 = 8829 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8830 8831 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8832 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8833 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8834 } 8835 8836 if (Subtarget.hasVSX() && 8837 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8838 if (Swap) 8839 std::swap(V1, V2); 8840 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8841 SDValue Conv2 = 8842 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8843 8844 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8845 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8846 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8847 } 8848 8849 if (Subtarget.hasP9Vector()) { 8850 if (PPC::isXXBRHShuffleMask(SVOp)) { 8851 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8852 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8853 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8854 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8855 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8856 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8857 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8858 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8859 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8860 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8861 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8862 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8863 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8864 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8865 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8866 } 8867 } 8868 8869 if (Subtarget.hasVSX()) { 8870 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8871 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8872 8873 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8874 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8875 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8876 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8877 } 8878 8879 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8880 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8881 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8882 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8883 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8884 } 8885 } 8886 8887 if (Subtarget.hasQPX()) { 8888 if (VT.getVectorNumElements() != 4) 8889 return SDValue(); 8890 8891 if (V2.isUndef()) V2 = V1; 8892 8893 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8894 if (AlignIdx != -1) { 8895 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8896 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8897 } else if (SVOp->isSplat()) { 8898 int SplatIdx = SVOp->getSplatIndex(); 8899 if (SplatIdx >= 4) { 8900 std::swap(V1, V2); 8901 SplatIdx -= 4; 8902 } 8903 8904 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8905 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8906 } 8907 8908 // Lower this into a qvgpci/qvfperm pair. 8909 8910 // Compute the qvgpci literal 8911 unsigned idx = 0; 8912 for (unsigned i = 0; i < 4; ++i) { 8913 int m = SVOp->getMaskElt(i); 8914 unsigned mm = m >= 0 ? (unsigned) m : i; 8915 idx |= mm << (3-i)*3; 8916 } 8917 8918 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8919 DAG.getConstant(idx, dl, MVT::i32)); 8920 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8921 } 8922 8923 // Cases that are handled by instructions that take permute immediates 8924 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8925 // selected by the instruction selector. 8926 if (V2.isUndef()) { 8927 if (PPC::isSplatShuffleMask(SVOp, 1) || 8928 PPC::isSplatShuffleMask(SVOp, 2) || 8929 PPC::isSplatShuffleMask(SVOp, 4) || 8930 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8931 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8932 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8933 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8934 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8935 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8936 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8937 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8938 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8939 (Subtarget.hasP8Altivec() && ( 8940 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8941 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8942 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8943 return Op; 8944 } 8945 } 8946 8947 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8948 // and produce a fixed permutation. If any of these match, do not lower to 8949 // VPERM. 8950 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8951 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8952 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8953 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8954 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8955 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8956 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8957 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8958 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8959 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8960 (Subtarget.hasP8Altivec() && ( 8961 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8962 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8963 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8964 return Op; 8965 8966 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8967 // perfect shuffle table to emit an optimal matching sequence. 8968 ArrayRef<int> PermMask = SVOp->getMask(); 8969 8970 unsigned PFIndexes[4]; 8971 bool isFourElementShuffle = true; 8972 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8973 unsigned EltNo = 8; // Start out undef. 8974 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8975 if (PermMask[i*4+j] < 0) 8976 continue; // Undef, ignore it. 8977 8978 unsigned ByteSource = PermMask[i*4+j]; 8979 if ((ByteSource & 3) != j) { 8980 isFourElementShuffle = false; 8981 break; 8982 } 8983 8984 if (EltNo == 8) { 8985 EltNo = ByteSource/4; 8986 } else if (EltNo != ByteSource/4) { 8987 isFourElementShuffle = false; 8988 break; 8989 } 8990 } 8991 PFIndexes[i] = EltNo; 8992 } 8993 8994 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8995 // perfect shuffle vector to determine if it is cost effective to do this as 8996 // discrete instructions, or whether we should use a vperm. 8997 // For now, we skip this for little endian until such time as we have a 8998 // little-endian perfect shuffle table. 8999 if (isFourElementShuffle && !isLittleEndian) { 9000 // Compute the index in the perfect shuffle table. 9001 unsigned PFTableIndex = 9002 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9003 9004 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9005 unsigned Cost = (PFEntry >> 30); 9006 9007 // Determining when to avoid vperm is tricky. Many things affect the cost 9008 // of vperm, particularly how many times the perm mask needs to be computed. 9009 // For example, if the perm mask can be hoisted out of a loop or is already 9010 // used (perhaps because there are multiple permutes with the same shuffle 9011 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9012 // the loop requires an extra register. 9013 // 9014 // As a compromise, we only emit discrete instructions if the shuffle can be 9015 // generated in 3 or fewer operations. When we have loop information 9016 // available, if this block is within a loop, we should avoid using vperm 9017 // for 3-operation perms and use a constant pool load instead. 9018 if (Cost < 3) 9019 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9020 } 9021 9022 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9023 // vector that will get spilled to the constant pool. 9024 if (V2.isUndef()) V2 = V1; 9025 9026 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9027 // that it is in input element units, not in bytes. Convert now. 9028 9029 // For little endian, the order of the input vectors is reversed, and 9030 // the permutation mask is complemented with respect to 31. This is 9031 // necessary to produce proper semantics with the big-endian-biased vperm 9032 // instruction. 9033 EVT EltVT = V1.getValueType().getVectorElementType(); 9034 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9035 9036 SmallVector<SDValue, 16> ResultMask; 9037 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9038 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9039 9040 for (unsigned j = 0; j != BytesPerElement; ++j) 9041 if (isLittleEndian) 9042 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9043 dl, MVT::i32)); 9044 else 9045 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9046 MVT::i32)); 9047 } 9048 9049 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9050 if (isLittleEndian) 9051 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9052 V2, V1, VPermMask); 9053 else 9054 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9055 V1, V2, VPermMask); 9056 } 9057 9058 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9059 /// vector comparison. If it is, return true and fill in Opc/isDot with 9060 /// information about the intrinsic. 9061 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9062 bool &isDot, const PPCSubtarget &Subtarget) { 9063 unsigned IntrinsicID = 9064 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9065 CompareOpc = -1; 9066 isDot = false; 9067 switch (IntrinsicID) { 9068 default: 9069 return false; 9070 // Comparison predicates. 9071 case Intrinsic::ppc_altivec_vcmpbfp_p: 9072 CompareOpc = 966; 9073 isDot = true; 9074 break; 9075 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9076 CompareOpc = 198; 9077 isDot = true; 9078 break; 9079 case Intrinsic::ppc_altivec_vcmpequb_p: 9080 CompareOpc = 6; 9081 isDot = true; 9082 break; 9083 case Intrinsic::ppc_altivec_vcmpequh_p: 9084 CompareOpc = 70; 9085 isDot = true; 9086 break; 9087 case Intrinsic::ppc_altivec_vcmpequw_p: 9088 CompareOpc = 134; 9089 isDot = true; 9090 break; 9091 case Intrinsic::ppc_altivec_vcmpequd_p: 9092 if (Subtarget.hasP8Altivec()) { 9093 CompareOpc = 199; 9094 isDot = true; 9095 } else 9096 return false; 9097 break; 9098 case Intrinsic::ppc_altivec_vcmpneb_p: 9099 case Intrinsic::ppc_altivec_vcmpneh_p: 9100 case Intrinsic::ppc_altivec_vcmpnew_p: 9101 case Intrinsic::ppc_altivec_vcmpnezb_p: 9102 case Intrinsic::ppc_altivec_vcmpnezh_p: 9103 case Intrinsic::ppc_altivec_vcmpnezw_p: 9104 if (Subtarget.hasP9Altivec()) { 9105 switch (IntrinsicID) { 9106 default: 9107 llvm_unreachable("Unknown comparison intrinsic."); 9108 case Intrinsic::ppc_altivec_vcmpneb_p: 9109 CompareOpc = 7; 9110 break; 9111 case Intrinsic::ppc_altivec_vcmpneh_p: 9112 CompareOpc = 71; 9113 break; 9114 case Intrinsic::ppc_altivec_vcmpnew_p: 9115 CompareOpc = 135; 9116 break; 9117 case Intrinsic::ppc_altivec_vcmpnezb_p: 9118 CompareOpc = 263; 9119 break; 9120 case Intrinsic::ppc_altivec_vcmpnezh_p: 9121 CompareOpc = 327; 9122 break; 9123 case Intrinsic::ppc_altivec_vcmpnezw_p: 9124 CompareOpc = 391; 9125 break; 9126 } 9127 isDot = true; 9128 } else 9129 return false; 9130 break; 9131 case Intrinsic::ppc_altivec_vcmpgefp_p: 9132 CompareOpc = 454; 9133 isDot = true; 9134 break; 9135 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9136 CompareOpc = 710; 9137 isDot = true; 9138 break; 9139 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9140 CompareOpc = 774; 9141 isDot = true; 9142 break; 9143 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9144 CompareOpc = 838; 9145 isDot = true; 9146 break; 9147 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9148 CompareOpc = 902; 9149 isDot = true; 9150 break; 9151 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9152 if (Subtarget.hasP8Altivec()) { 9153 CompareOpc = 967; 9154 isDot = true; 9155 } else 9156 return false; 9157 break; 9158 case Intrinsic::ppc_altivec_vcmpgtub_p: 9159 CompareOpc = 518; 9160 isDot = true; 9161 break; 9162 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9163 CompareOpc = 582; 9164 isDot = true; 9165 break; 9166 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9167 CompareOpc = 646; 9168 isDot = true; 9169 break; 9170 case Intrinsic::ppc_altivec_vcmpgtud_p: 9171 if (Subtarget.hasP8Altivec()) { 9172 CompareOpc = 711; 9173 isDot = true; 9174 } else 9175 return false; 9176 break; 9177 9178 // VSX predicate comparisons use the same infrastructure 9179 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9180 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9181 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9182 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9183 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9184 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9185 if (Subtarget.hasVSX()) { 9186 switch (IntrinsicID) { 9187 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9188 CompareOpc = 99; 9189 break; 9190 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9191 CompareOpc = 115; 9192 break; 9193 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9194 CompareOpc = 107; 9195 break; 9196 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9197 CompareOpc = 67; 9198 break; 9199 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9200 CompareOpc = 83; 9201 break; 9202 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9203 CompareOpc = 75; 9204 break; 9205 } 9206 isDot = true; 9207 } else 9208 return false; 9209 break; 9210 9211 // Normal Comparisons. 9212 case Intrinsic::ppc_altivec_vcmpbfp: 9213 CompareOpc = 966; 9214 break; 9215 case Intrinsic::ppc_altivec_vcmpeqfp: 9216 CompareOpc = 198; 9217 break; 9218 case Intrinsic::ppc_altivec_vcmpequb: 9219 CompareOpc = 6; 9220 break; 9221 case Intrinsic::ppc_altivec_vcmpequh: 9222 CompareOpc = 70; 9223 break; 9224 case Intrinsic::ppc_altivec_vcmpequw: 9225 CompareOpc = 134; 9226 break; 9227 case Intrinsic::ppc_altivec_vcmpequd: 9228 if (Subtarget.hasP8Altivec()) 9229 CompareOpc = 199; 9230 else 9231 return false; 9232 break; 9233 case Intrinsic::ppc_altivec_vcmpneb: 9234 case Intrinsic::ppc_altivec_vcmpneh: 9235 case Intrinsic::ppc_altivec_vcmpnew: 9236 case Intrinsic::ppc_altivec_vcmpnezb: 9237 case Intrinsic::ppc_altivec_vcmpnezh: 9238 case Intrinsic::ppc_altivec_vcmpnezw: 9239 if (Subtarget.hasP9Altivec()) 9240 switch (IntrinsicID) { 9241 default: 9242 llvm_unreachable("Unknown comparison intrinsic."); 9243 case Intrinsic::ppc_altivec_vcmpneb: 9244 CompareOpc = 7; 9245 break; 9246 case Intrinsic::ppc_altivec_vcmpneh: 9247 CompareOpc = 71; 9248 break; 9249 case Intrinsic::ppc_altivec_vcmpnew: 9250 CompareOpc = 135; 9251 break; 9252 case Intrinsic::ppc_altivec_vcmpnezb: 9253 CompareOpc = 263; 9254 break; 9255 case Intrinsic::ppc_altivec_vcmpnezh: 9256 CompareOpc = 327; 9257 break; 9258 case Intrinsic::ppc_altivec_vcmpnezw: 9259 CompareOpc = 391; 9260 break; 9261 } 9262 else 9263 return false; 9264 break; 9265 case Intrinsic::ppc_altivec_vcmpgefp: 9266 CompareOpc = 454; 9267 break; 9268 case Intrinsic::ppc_altivec_vcmpgtfp: 9269 CompareOpc = 710; 9270 break; 9271 case Intrinsic::ppc_altivec_vcmpgtsb: 9272 CompareOpc = 774; 9273 break; 9274 case Intrinsic::ppc_altivec_vcmpgtsh: 9275 CompareOpc = 838; 9276 break; 9277 case Intrinsic::ppc_altivec_vcmpgtsw: 9278 CompareOpc = 902; 9279 break; 9280 case Intrinsic::ppc_altivec_vcmpgtsd: 9281 if (Subtarget.hasP8Altivec()) 9282 CompareOpc = 967; 9283 else 9284 return false; 9285 break; 9286 case Intrinsic::ppc_altivec_vcmpgtub: 9287 CompareOpc = 518; 9288 break; 9289 case Intrinsic::ppc_altivec_vcmpgtuh: 9290 CompareOpc = 582; 9291 break; 9292 case Intrinsic::ppc_altivec_vcmpgtuw: 9293 CompareOpc = 646; 9294 break; 9295 case Intrinsic::ppc_altivec_vcmpgtud: 9296 if (Subtarget.hasP8Altivec()) 9297 CompareOpc = 711; 9298 else 9299 return false; 9300 break; 9301 } 9302 return true; 9303 } 9304 9305 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9306 /// lower, do it, otherwise return null. 9307 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9308 SelectionDAG &DAG) const { 9309 unsigned IntrinsicID = 9310 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9311 9312 SDLoc dl(Op); 9313 9314 if (IntrinsicID == Intrinsic::thread_pointer) { 9315 // Reads the thread pointer register, used for __builtin_thread_pointer. 9316 if (Subtarget.isPPC64()) 9317 return DAG.getRegister(PPC::X13, MVT::i64); 9318 return DAG.getRegister(PPC::R2, MVT::i32); 9319 } 9320 9321 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9322 // opcode number of the comparison. 9323 int CompareOpc; 9324 bool isDot; 9325 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9326 return SDValue(); // Don't custom lower most intrinsics. 9327 9328 // If this is a non-dot comparison, make the VCMP node and we are done. 9329 if (!isDot) { 9330 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9331 Op.getOperand(1), Op.getOperand(2), 9332 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9333 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9334 } 9335 9336 // Create the PPCISD altivec 'dot' comparison node. 9337 SDValue Ops[] = { 9338 Op.getOperand(2), // LHS 9339 Op.getOperand(3), // RHS 9340 DAG.getConstant(CompareOpc, dl, MVT::i32) 9341 }; 9342 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9343 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9344 9345 // Now that we have the comparison, emit a copy from the CR to a GPR. 9346 // This is flagged to the above dot comparison. 9347 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9348 DAG.getRegister(PPC::CR6, MVT::i32), 9349 CompNode.getValue(1)); 9350 9351 // Unpack the result based on how the target uses it. 9352 unsigned BitNo; // Bit # of CR6. 9353 bool InvertBit; // Invert result? 9354 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9355 default: // Can't happen, don't crash on invalid number though. 9356 case 0: // Return the value of the EQ bit of CR6. 9357 BitNo = 0; InvertBit = false; 9358 break; 9359 case 1: // Return the inverted value of the EQ bit of CR6. 9360 BitNo = 0; InvertBit = true; 9361 break; 9362 case 2: // Return the value of the LT bit of CR6. 9363 BitNo = 2; InvertBit = false; 9364 break; 9365 case 3: // Return the inverted value of the LT bit of CR6. 9366 BitNo = 2; InvertBit = true; 9367 break; 9368 } 9369 9370 // Shift the bit into the low position. 9371 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9372 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9373 // Isolate the bit. 9374 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9375 DAG.getConstant(1, dl, MVT::i32)); 9376 9377 // If we are supposed to, toggle the bit. 9378 if (InvertBit) 9379 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9380 DAG.getConstant(1, dl, MVT::i32)); 9381 return Flags; 9382 } 9383 9384 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9385 SelectionDAG &DAG) const { 9386 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9387 // the beginning of the argument list. 9388 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9389 SDLoc DL(Op); 9390 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9391 case Intrinsic::ppc_cfence: { 9392 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9393 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9394 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9395 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9396 Op.getOperand(ArgStart + 1)), 9397 Op.getOperand(0)), 9398 0); 9399 } 9400 default: 9401 break; 9402 } 9403 return SDValue(); 9404 } 9405 9406 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9407 // Check for a DIV with the same operands as this REM. 9408 for (auto UI : Op.getOperand(1)->uses()) { 9409 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9410 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9411 if (UI->getOperand(0) == Op.getOperand(0) && 9412 UI->getOperand(1) == Op.getOperand(1)) 9413 return SDValue(); 9414 } 9415 return Op; 9416 } 9417 9418 // Lower scalar BSWAP64 to xxbrd. 9419 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9420 SDLoc dl(Op); 9421 // MTVSRDD 9422 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9423 Op.getOperand(0)); 9424 // XXBRD 9425 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9426 // MFVSRD 9427 int VectorIndex = 0; 9428 if (Subtarget.isLittleEndian()) 9429 VectorIndex = 1; 9430 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9431 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9432 return Op; 9433 } 9434 9435 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9436 // compared to a value that is atomically loaded (atomic loads zero-extend). 9437 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9438 SelectionDAG &DAG) const { 9439 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9440 "Expecting an atomic compare-and-swap here."); 9441 SDLoc dl(Op); 9442 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9443 EVT MemVT = AtomicNode->getMemoryVT(); 9444 if (MemVT.getSizeInBits() >= 32) 9445 return Op; 9446 9447 SDValue CmpOp = Op.getOperand(2); 9448 // If this is already correctly zero-extended, leave it alone. 9449 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9450 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9451 return Op; 9452 9453 // Clear the high bits of the compare operand. 9454 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9455 SDValue NewCmpOp = 9456 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9457 DAG.getConstant(MaskVal, dl, MVT::i32)); 9458 9459 // Replace the existing compare operand with the properly zero-extended one. 9460 SmallVector<SDValue, 4> Ops; 9461 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9462 Ops.push_back(AtomicNode->getOperand(i)); 9463 Ops[2] = NewCmpOp; 9464 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9465 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9466 auto NodeTy = 9467 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9468 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9469 } 9470 9471 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9472 SelectionDAG &DAG) const { 9473 SDLoc dl(Op); 9474 // Create a stack slot that is 16-byte aligned. 9475 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9476 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9477 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9478 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9479 9480 // Store the input value into Value#0 of the stack slot. 9481 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9482 MachinePointerInfo()); 9483 // Load it out. 9484 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9485 } 9486 9487 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9488 SelectionDAG &DAG) const { 9489 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9490 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9491 9492 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9493 // We have legal lowering for constant indices but not for variable ones. 9494 if (!C) 9495 return SDValue(); 9496 9497 EVT VT = Op.getValueType(); 9498 SDLoc dl(Op); 9499 SDValue V1 = Op.getOperand(0); 9500 SDValue V2 = Op.getOperand(1); 9501 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9502 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9503 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9504 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9505 unsigned InsertAtElement = C->getZExtValue(); 9506 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9507 if (Subtarget.isLittleEndian()) { 9508 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9509 } 9510 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9511 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9512 } 9513 return Op; 9514 } 9515 9516 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9517 SelectionDAG &DAG) const { 9518 SDLoc dl(Op); 9519 SDNode *N = Op.getNode(); 9520 9521 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9522 "Unknown extract_vector_elt type"); 9523 9524 SDValue Value = N->getOperand(0); 9525 9526 // The first part of this is like the store lowering except that we don't 9527 // need to track the chain. 9528 9529 // The values are now known to be -1 (false) or 1 (true). To convert this 9530 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9531 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9532 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9533 9534 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9535 // understand how to form the extending load. 9536 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9537 9538 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9539 9540 // Now convert to an integer and store. 9541 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9542 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9543 Value); 9544 9545 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9546 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9547 MachinePointerInfo PtrInfo = 9548 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9549 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9550 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9551 9552 SDValue StoreChain = DAG.getEntryNode(); 9553 SDValue Ops[] = {StoreChain, 9554 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9555 Value, FIdx}; 9556 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9557 9558 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9559 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9560 9561 // Extract the value requested. 9562 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9563 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9564 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9565 9566 SDValue IntVal = 9567 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9568 9569 if (!Subtarget.useCRBits()) 9570 return IntVal; 9571 9572 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9573 } 9574 9575 /// Lowering for QPX v4i1 loads 9576 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9577 SelectionDAG &DAG) const { 9578 SDLoc dl(Op); 9579 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9580 SDValue LoadChain = LN->getChain(); 9581 SDValue BasePtr = LN->getBasePtr(); 9582 9583 if (Op.getValueType() == MVT::v4f64 || 9584 Op.getValueType() == MVT::v4f32) { 9585 EVT MemVT = LN->getMemoryVT(); 9586 unsigned Alignment = LN->getAlignment(); 9587 9588 // If this load is properly aligned, then it is legal. 9589 if (Alignment >= MemVT.getStoreSize()) 9590 return Op; 9591 9592 EVT ScalarVT = Op.getValueType().getScalarType(), 9593 ScalarMemVT = MemVT.getScalarType(); 9594 unsigned Stride = ScalarMemVT.getStoreSize(); 9595 9596 SDValue Vals[4], LoadChains[4]; 9597 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9598 SDValue Load; 9599 if (ScalarVT != ScalarMemVT) 9600 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9601 BasePtr, 9602 LN->getPointerInfo().getWithOffset(Idx * Stride), 9603 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9604 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9605 else 9606 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9607 LN->getPointerInfo().getWithOffset(Idx * Stride), 9608 MinAlign(Alignment, Idx * Stride), 9609 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9610 9611 if (Idx == 0 && LN->isIndexed()) { 9612 assert(LN->getAddressingMode() == ISD::PRE_INC && 9613 "Unknown addressing mode on vector load"); 9614 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9615 LN->getAddressingMode()); 9616 } 9617 9618 Vals[Idx] = Load; 9619 LoadChains[Idx] = Load.getValue(1); 9620 9621 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9622 DAG.getConstant(Stride, dl, 9623 BasePtr.getValueType())); 9624 } 9625 9626 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9627 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9628 9629 if (LN->isIndexed()) { 9630 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9631 return DAG.getMergeValues(RetOps, dl); 9632 } 9633 9634 SDValue RetOps[] = { Value, TF }; 9635 return DAG.getMergeValues(RetOps, dl); 9636 } 9637 9638 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9639 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9640 9641 // To lower v4i1 from a byte array, we load the byte elements of the 9642 // vector and then reuse the BUILD_VECTOR logic. 9643 9644 SDValue VectElmts[4], VectElmtChains[4]; 9645 for (unsigned i = 0; i < 4; ++i) { 9646 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9647 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9648 9649 VectElmts[i] = DAG.getExtLoad( 9650 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9651 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9652 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9653 VectElmtChains[i] = VectElmts[i].getValue(1); 9654 } 9655 9656 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9657 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9658 9659 SDValue RVals[] = { Value, LoadChain }; 9660 return DAG.getMergeValues(RVals, dl); 9661 } 9662 9663 /// Lowering for QPX v4i1 stores 9664 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9665 SelectionDAG &DAG) const { 9666 SDLoc dl(Op); 9667 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9668 SDValue StoreChain = SN->getChain(); 9669 SDValue BasePtr = SN->getBasePtr(); 9670 SDValue Value = SN->getValue(); 9671 9672 if (Value.getValueType() == MVT::v4f64 || 9673 Value.getValueType() == MVT::v4f32) { 9674 EVT MemVT = SN->getMemoryVT(); 9675 unsigned Alignment = SN->getAlignment(); 9676 9677 // If this store is properly aligned, then it is legal. 9678 if (Alignment >= MemVT.getStoreSize()) 9679 return Op; 9680 9681 EVT ScalarVT = Value.getValueType().getScalarType(), 9682 ScalarMemVT = MemVT.getScalarType(); 9683 unsigned Stride = ScalarMemVT.getStoreSize(); 9684 9685 SDValue Stores[4]; 9686 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9687 SDValue Ex = DAG.getNode( 9688 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9689 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9690 SDValue Store; 9691 if (ScalarVT != ScalarMemVT) 9692 Store = 9693 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9694 SN->getPointerInfo().getWithOffset(Idx * Stride), 9695 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9696 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9697 else 9698 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9699 SN->getPointerInfo().getWithOffset(Idx * Stride), 9700 MinAlign(Alignment, Idx * Stride), 9701 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9702 9703 if (Idx == 0 && SN->isIndexed()) { 9704 assert(SN->getAddressingMode() == ISD::PRE_INC && 9705 "Unknown addressing mode on vector store"); 9706 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9707 SN->getAddressingMode()); 9708 } 9709 9710 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9711 DAG.getConstant(Stride, dl, 9712 BasePtr.getValueType())); 9713 Stores[Idx] = Store; 9714 } 9715 9716 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9717 9718 if (SN->isIndexed()) { 9719 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9720 return DAG.getMergeValues(RetOps, dl); 9721 } 9722 9723 return TF; 9724 } 9725 9726 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9727 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9728 9729 // The values are now known to be -1 (false) or 1 (true). To convert this 9730 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9731 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9732 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9733 9734 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9735 // understand how to form the extending load. 9736 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9737 9738 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9739 9740 // Now convert to an integer and store. 9741 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9742 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9743 Value); 9744 9745 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9746 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9747 MachinePointerInfo PtrInfo = 9748 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9749 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9750 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9751 9752 SDValue Ops[] = {StoreChain, 9753 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9754 Value, FIdx}; 9755 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9756 9757 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9758 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9759 9760 // Move data into the byte array. 9761 SDValue Loads[4], LoadChains[4]; 9762 for (unsigned i = 0; i < 4; ++i) { 9763 unsigned Offset = 4*i; 9764 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9765 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9766 9767 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9768 PtrInfo.getWithOffset(Offset)); 9769 LoadChains[i] = Loads[i].getValue(1); 9770 } 9771 9772 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9773 9774 SDValue Stores[4]; 9775 for (unsigned i = 0; i < 4; ++i) { 9776 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9777 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9778 9779 Stores[i] = DAG.getTruncStore( 9780 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9781 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9782 SN->getAAInfo()); 9783 } 9784 9785 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9786 9787 return StoreChain; 9788 } 9789 9790 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9791 SDLoc dl(Op); 9792 if (Op.getValueType() == MVT::v4i32) { 9793 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9794 9795 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9796 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9797 9798 SDValue RHSSwap = // = vrlw RHS, 16 9799 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9800 9801 // Shrinkify inputs to v8i16. 9802 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9803 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9804 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9805 9806 // Low parts multiplied together, generating 32-bit results (we ignore the 9807 // top parts). 9808 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9809 LHS, RHS, DAG, dl, MVT::v4i32); 9810 9811 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9812 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9813 // Shift the high parts up 16 bits. 9814 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9815 Neg16, DAG, dl); 9816 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9817 } else if (Op.getValueType() == MVT::v8i16) { 9818 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9819 9820 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9821 9822 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9823 LHS, RHS, Zero, DAG, dl); 9824 } else if (Op.getValueType() == MVT::v16i8) { 9825 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9826 bool isLittleEndian = Subtarget.isLittleEndian(); 9827 9828 // Multiply the even 8-bit parts, producing 16-bit sums. 9829 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9830 LHS, RHS, DAG, dl, MVT::v8i16); 9831 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9832 9833 // Multiply the odd 8-bit parts, producing 16-bit sums. 9834 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9835 LHS, RHS, DAG, dl, MVT::v8i16); 9836 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9837 9838 // Merge the results together. Because vmuleub and vmuloub are 9839 // instructions with a big-endian bias, we must reverse the 9840 // element numbering and reverse the meaning of "odd" and "even" 9841 // when generating little endian code. 9842 int Ops[16]; 9843 for (unsigned i = 0; i != 8; ++i) { 9844 if (isLittleEndian) { 9845 Ops[i*2 ] = 2*i; 9846 Ops[i*2+1] = 2*i+16; 9847 } else { 9848 Ops[i*2 ] = 2*i+1; 9849 Ops[i*2+1] = 2*i+1+16; 9850 } 9851 } 9852 if (isLittleEndian) 9853 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9854 else 9855 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9856 } else { 9857 llvm_unreachable("Unknown mul to lower!"); 9858 } 9859 } 9860 9861 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 9862 9863 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 9864 9865 EVT VT = Op.getValueType(); 9866 assert(VT.isVector() && 9867 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 9868 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 9869 VT == MVT::v16i8) && 9870 "Unexpected vector element type!"); 9871 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 9872 "Current subtarget doesn't support smax v2i64!"); 9873 9874 // For vector abs, it can be lowered to: 9875 // abs x 9876 // ==> 9877 // y = -x 9878 // smax(x, y) 9879 9880 SDLoc dl(Op); 9881 SDValue X = Op.getOperand(0); 9882 SDValue Zero = DAG.getConstant(0, dl, VT); 9883 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 9884 9885 // SMAX patch https://reviews.llvm.org/D47332 9886 // hasn't landed yet, so use intrinsic first here. 9887 // TODO: Should use SMAX directly once SMAX patch landed 9888 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 9889 if (VT == MVT::v2i64) 9890 BifID = Intrinsic::ppc_altivec_vmaxsd; 9891 else if (VT == MVT::v8i16) 9892 BifID = Intrinsic::ppc_altivec_vmaxsh; 9893 else if (VT == MVT::v16i8) 9894 BifID = Intrinsic::ppc_altivec_vmaxsb; 9895 9896 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 9897 } 9898 9899 // Custom lowering for fpext vf32 to v2f64 9900 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 9901 9902 assert(Op.getOpcode() == ISD::FP_EXTEND && 9903 "Should only be called for ISD::FP_EXTEND"); 9904 9905 // We only want to custom lower an extend from v2f32 to v2f64. 9906 if (Op.getValueType() != MVT::v2f64 || 9907 Op.getOperand(0).getValueType() != MVT::v2f32) 9908 return SDValue(); 9909 9910 SDLoc dl(Op); 9911 SDValue Op0 = Op.getOperand(0); 9912 9913 switch (Op0.getOpcode()) { 9914 default: 9915 return SDValue(); 9916 case ISD::FADD: 9917 case ISD::FMUL: 9918 case ISD::FSUB: { 9919 SDValue NewLoad[2]; 9920 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 9921 // Ensure both input are loads. 9922 SDValue LdOp = Op0.getOperand(i); 9923 if (LdOp.getOpcode() != ISD::LOAD) 9924 return SDValue(); 9925 // Generate new load node. 9926 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 9927 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9928 NewLoad[i] = 9929 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9930 DAG.getVTList(MVT::v4f32, MVT::Other), 9931 LoadOps, LD->getMemoryVT(), 9932 LD->getMemOperand()); 9933 } 9934 SDValue NewOp = DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, 9935 NewLoad[0], NewLoad[1], 9936 Op0.getNode()->getFlags()); 9937 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewOp); 9938 } 9939 case ISD::LOAD: { 9940 LoadSDNode *LD = cast<LoadSDNode>(Op0); 9941 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9942 SDValue NewLd = 9943 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9944 DAG.getVTList(MVT::v4f32, MVT::Other), 9945 LoadOps, LD->getMemoryVT(), LD->getMemOperand()); 9946 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewLd); 9947 } 9948 } 9949 llvm_unreachable("ERROR:Should return for all cases within swtich."); 9950 } 9951 9952 /// LowerOperation - Provide custom lowering hooks for some operations. 9953 /// 9954 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9955 switch (Op.getOpcode()) { 9956 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9957 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9958 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9959 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9960 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9961 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9962 case ISD::SETCC: return LowerSETCC(Op, DAG); 9963 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9964 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9965 9966 // Variable argument lowering. 9967 case ISD::VASTART: return LowerVASTART(Op, DAG); 9968 case ISD::VAARG: return LowerVAARG(Op, DAG); 9969 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9970 9971 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9972 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9973 case ISD::GET_DYNAMIC_AREA_OFFSET: 9974 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9975 9976 // Exception handling lowering. 9977 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9978 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9979 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9980 9981 case ISD::LOAD: return LowerLOAD(Op, DAG); 9982 case ISD::STORE: return LowerSTORE(Op, DAG); 9983 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9984 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9985 case ISD::FP_TO_UINT: 9986 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9987 case ISD::UINT_TO_FP: 9988 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9989 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9990 9991 // Lower 64-bit shifts. 9992 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9993 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9994 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9995 9996 // Vector-related lowering. 9997 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9998 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9999 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10000 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10001 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10002 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10003 case ISD::MUL: return LowerMUL(Op, DAG); 10004 case ISD::ABS: return LowerABS(Op, DAG); 10005 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10006 10007 // For counter-based loop handling. 10008 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10009 10010 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10011 10012 // Frame & Return address. 10013 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10014 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10015 10016 case ISD::INTRINSIC_VOID: 10017 return LowerINTRINSIC_VOID(Op, DAG); 10018 case ISD::SREM: 10019 case ISD::UREM: 10020 return LowerREM(Op, DAG); 10021 case ISD::BSWAP: 10022 return LowerBSWAP(Op, DAG); 10023 case ISD::ATOMIC_CMP_SWAP: 10024 return LowerATOMIC_CMP_SWAP(Op, DAG); 10025 } 10026 } 10027 10028 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10029 SmallVectorImpl<SDValue>&Results, 10030 SelectionDAG &DAG) const { 10031 SDLoc dl(N); 10032 switch (N->getOpcode()) { 10033 default: 10034 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10035 case ISD::READCYCLECOUNTER: { 10036 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10037 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10038 10039 Results.push_back(RTB); 10040 Results.push_back(RTB.getValue(1)); 10041 Results.push_back(RTB.getValue(2)); 10042 break; 10043 } 10044 case ISD::INTRINSIC_W_CHAIN: { 10045 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10046 Intrinsic::loop_decrement) 10047 break; 10048 10049 assert(N->getValueType(0) == MVT::i1 && 10050 "Unexpected result type for CTR decrement intrinsic"); 10051 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10052 N->getValueType(0)); 10053 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10054 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10055 N->getOperand(1)); 10056 10057 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10058 Results.push_back(NewInt.getValue(1)); 10059 break; 10060 } 10061 case ISD::VAARG: { 10062 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10063 return; 10064 10065 EVT VT = N->getValueType(0); 10066 10067 if (VT == MVT::i64) { 10068 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10069 10070 Results.push_back(NewNode); 10071 Results.push_back(NewNode.getValue(1)); 10072 } 10073 return; 10074 } 10075 case ISD::FP_TO_SINT: 10076 case ISD::FP_TO_UINT: 10077 // LowerFP_TO_INT() can only handle f32 and f64. 10078 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10079 return; 10080 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10081 return; 10082 case ISD::TRUNCATE: { 10083 EVT TrgVT = N->getValueType(0); 10084 EVT OpVT = N->getOperand(0).getValueType(); 10085 if (TrgVT.isVector() && 10086 isOperationCustom(N->getOpcode(), TrgVT) && 10087 OpVT.getSizeInBits() <= 128 && 10088 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10089 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10090 return; 10091 } 10092 case ISD::BITCAST: 10093 // Don't handle bitcast here. 10094 return; 10095 } 10096 } 10097 10098 //===----------------------------------------------------------------------===// 10099 // Other Lowering Code 10100 //===----------------------------------------------------------------------===// 10101 10102 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10103 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10104 Function *Func = Intrinsic::getDeclaration(M, Id); 10105 return Builder.CreateCall(Func, {}); 10106 } 10107 10108 // The mappings for emitLeading/TrailingFence is taken from 10109 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10110 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10111 Instruction *Inst, 10112 AtomicOrdering Ord) const { 10113 if (Ord == AtomicOrdering::SequentiallyConsistent) 10114 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10115 if (isReleaseOrStronger(Ord)) 10116 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10117 return nullptr; 10118 } 10119 10120 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10121 Instruction *Inst, 10122 AtomicOrdering Ord) const { 10123 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10124 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10125 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10126 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10127 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10128 return Builder.CreateCall( 10129 Intrinsic::getDeclaration( 10130 Builder.GetInsertBlock()->getParent()->getParent(), 10131 Intrinsic::ppc_cfence, {Inst->getType()}), 10132 {Inst}); 10133 // FIXME: Can use isync for rmw operation. 10134 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10135 } 10136 return nullptr; 10137 } 10138 10139 MachineBasicBlock * 10140 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10141 unsigned AtomicSize, 10142 unsigned BinOpcode, 10143 unsigned CmpOpcode, 10144 unsigned CmpPred) const { 10145 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10146 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10147 10148 auto LoadMnemonic = PPC::LDARX; 10149 auto StoreMnemonic = PPC::STDCX; 10150 switch (AtomicSize) { 10151 default: 10152 llvm_unreachable("Unexpected size of atomic entity"); 10153 case 1: 10154 LoadMnemonic = PPC::LBARX; 10155 StoreMnemonic = PPC::STBCX; 10156 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10157 break; 10158 case 2: 10159 LoadMnemonic = PPC::LHARX; 10160 StoreMnemonic = PPC::STHCX; 10161 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10162 break; 10163 case 4: 10164 LoadMnemonic = PPC::LWARX; 10165 StoreMnemonic = PPC::STWCX; 10166 break; 10167 case 8: 10168 LoadMnemonic = PPC::LDARX; 10169 StoreMnemonic = PPC::STDCX; 10170 break; 10171 } 10172 10173 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10174 MachineFunction *F = BB->getParent(); 10175 MachineFunction::iterator It = ++BB->getIterator(); 10176 10177 Register dest = MI.getOperand(0).getReg(); 10178 Register ptrA = MI.getOperand(1).getReg(); 10179 Register ptrB = MI.getOperand(2).getReg(); 10180 Register incr = MI.getOperand(3).getReg(); 10181 DebugLoc dl = MI.getDebugLoc(); 10182 10183 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10184 MachineBasicBlock *loop2MBB = 10185 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10186 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10187 F->insert(It, loopMBB); 10188 if (CmpOpcode) 10189 F->insert(It, loop2MBB); 10190 F->insert(It, exitMBB); 10191 exitMBB->splice(exitMBB->begin(), BB, 10192 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10193 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10194 10195 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10196 Register TmpReg = (!BinOpcode) ? incr : 10197 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10198 : &PPC::GPRCRegClass); 10199 10200 // thisMBB: 10201 // ... 10202 // fallthrough --> loopMBB 10203 BB->addSuccessor(loopMBB); 10204 10205 // loopMBB: 10206 // l[wd]arx dest, ptr 10207 // add r0, dest, incr 10208 // st[wd]cx. r0, ptr 10209 // bne- loopMBB 10210 // fallthrough --> exitMBB 10211 10212 // For max/min... 10213 // loopMBB: 10214 // l[wd]arx dest, ptr 10215 // cmpl?[wd] incr, dest 10216 // bgt exitMBB 10217 // loop2MBB: 10218 // st[wd]cx. dest, ptr 10219 // bne- loopMBB 10220 // fallthrough --> exitMBB 10221 10222 BB = loopMBB; 10223 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10224 .addReg(ptrA).addReg(ptrB); 10225 if (BinOpcode) 10226 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10227 if (CmpOpcode) { 10228 // Signed comparisons of byte or halfword values must be sign-extended. 10229 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10230 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10231 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10232 ExtReg).addReg(dest); 10233 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10234 .addReg(incr).addReg(ExtReg); 10235 } else 10236 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10237 .addReg(incr).addReg(dest); 10238 10239 BuildMI(BB, dl, TII->get(PPC::BCC)) 10240 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10241 BB->addSuccessor(loop2MBB); 10242 BB->addSuccessor(exitMBB); 10243 BB = loop2MBB; 10244 } 10245 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10246 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10247 BuildMI(BB, dl, TII->get(PPC::BCC)) 10248 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10249 BB->addSuccessor(loopMBB); 10250 BB->addSuccessor(exitMBB); 10251 10252 // exitMBB: 10253 // ... 10254 BB = exitMBB; 10255 return BB; 10256 } 10257 10258 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10259 MachineInstr &MI, MachineBasicBlock *BB, 10260 bool is8bit, // operation 10261 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10262 // If we support part-word atomic mnemonics, just use them 10263 if (Subtarget.hasPartwordAtomics()) 10264 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10265 CmpPred); 10266 10267 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10268 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10269 // In 64 bit mode we have to use 64 bits for addresses, even though the 10270 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10271 // registers without caring whether they're 32 or 64, but here we're 10272 // doing actual arithmetic on the addresses. 10273 bool is64bit = Subtarget.isPPC64(); 10274 bool isLittleEndian = Subtarget.isLittleEndian(); 10275 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10276 10277 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10278 MachineFunction *F = BB->getParent(); 10279 MachineFunction::iterator It = ++BB->getIterator(); 10280 10281 Register dest = MI.getOperand(0).getReg(); 10282 Register ptrA = MI.getOperand(1).getReg(); 10283 Register ptrB = MI.getOperand(2).getReg(); 10284 Register incr = MI.getOperand(3).getReg(); 10285 DebugLoc dl = MI.getDebugLoc(); 10286 10287 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10288 MachineBasicBlock *loop2MBB = 10289 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10290 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10291 F->insert(It, loopMBB); 10292 if (CmpOpcode) 10293 F->insert(It, loop2MBB); 10294 F->insert(It, exitMBB); 10295 exitMBB->splice(exitMBB->begin(), BB, 10296 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10297 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10298 10299 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10300 const TargetRegisterClass *RC = 10301 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10302 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10303 10304 Register PtrReg = RegInfo.createVirtualRegister(RC); 10305 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10306 Register ShiftReg = 10307 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10308 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10309 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10310 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10311 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10312 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10313 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10314 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10315 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10316 Register Ptr1Reg; 10317 Register TmpReg = 10318 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10319 10320 // thisMBB: 10321 // ... 10322 // fallthrough --> loopMBB 10323 BB->addSuccessor(loopMBB); 10324 10325 // The 4-byte load must be aligned, while a char or short may be 10326 // anywhere in the word. Hence all this nasty bookkeeping code. 10327 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10328 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10329 // xori shift, shift1, 24 [16] 10330 // rlwinm ptr, ptr1, 0, 0, 29 10331 // slw incr2, incr, shift 10332 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10333 // slw mask, mask2, shift 10334 // loopMBB: 10335 // lwarx tmpDest, ptr 10336 // add tmp, tmpDest, incr2 10337 // andc tmp2, tmpDest, mask 10338 // and tmp3, tmp, mask 10339 // or tmp4, tmp3, tmp2 10340 // stwcx. tmp4, ptr 10341 // bne- loopMBB 10342 // fallthrough --> exitMBB 10343 // srw dest, tmpDest, shift 10344 if (ptrA != ZeroReg) { 10345 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10346 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10347 .addReg(ptrA) 10348 .addReg(ptrB); 10349 } else { 10350 Ptr1Reg = ptrB; 10351 } 10352 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10353 // mode. 10354 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10355 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10356 .addImm(3) 10357 .addImm(27) 10358 .addImm(is8bit ? 28 : 27); 10359 if (!isLittleEndian) 10360 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10361 .addReg(Shift1Reg) 10362 .addImm(is8bit ? 24 : 16); 10363 if (is64bit) 10364 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10365 .addReg(Ptr1Reg) 10366 .addImm(0) 10367 .addImm(61); 10368 else 10369 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10370 .addReg(Ptr1Reg) 10371 .addImm(0) 10372 .addImm(0) 10373 .addImm(29); 10374 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10375 if (is8bit) 10376 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10377 else { 10378 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10379 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10380 .addReg(Mask3Reg) 10381 .addImm(65535); 10382 } 10383 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10384 .addReg(Mask2Reg) 10385 .addReg(ShiftReg); 10386 10387 BB = loopMBB; 10388 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10389 .addReg(ZeroReg) 10390 .addReg(PtrReg); 10391 if (BinOpcode) 10392 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10393 .addReg(Incr2Reg) 10394 .addReg(TmpDestReg); 10395 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10396 .addReg(TmpDestReg) 10397 .addReg(MaskReg); 10398 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10399 if (CmpOpcode) { 10400 // For unsigned comparisons, we can directly compare the shifted values. 10401 // For signed comparisons we shift and sign extend. 10402 Register SReg = RegInfo.createVirtualRegister(GPRC); 10403 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10404 .addReg(TmpDestReg) 10405 .addReg(MaskReg); 10406 unsigned ValueReg = SReg; 10407 unsigned CmpReg = Incr2Reg; 10408 if (CmpOpcode == PPC::CMPW) { 10409 ValueReg = RegInfo.createVirtualRegister(GPRC); 10410 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10411 .addReg(SReg) 10412 .addReg(ShiftReg); 10413 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10414 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10415 .addReg(ValueReg); 10416 ValueReg = ValueSReg; 10417 CmpReg = incr; 10418 } 10419 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10420 .addReg(CmpReg) 10421 .addReg(ValueReg); 10422 BuildMI(BB, dl, TII->get(PPC::BCC)) 10423 .addImm(CmpPred) 10424 .addReg(PPC::CR0) 10425 .addMBB(exitMBB); 10426 BB->addSuccessor(loop2MBB); 10427 BB->addSuccessor(exitMBB); 10428 BB = loop2MBB; 10429 } 10430 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10431 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10432 .addReg(Tmp4Reg) 10433 .addReg(ZeroReg) 10434 .addReg(PtrReg); 10435 BuildMI(BB, dl, TII->get(PPC::BCC)) 10436 .addImm(PPC::PRED_NE) 10437 .addReg(PPC::CR0) 10438 .addMBB(loopMBB); 10439 BB->addSuccessor(loopMBB); 10440 BB->addSuccessor(exitMBB); 10441 10442 // exitMBB: 10443 // ... 10444 BB = exitMBB; 10445 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10446 .addReg(TmpDestReg) 10447 .addReg(ShiftReg); 10448 return BB; 10449 } 10450 10451 llvm::MachineBasicBlock * 10452 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10453 MachineBasicBlock *MBB) const { 10454 DebugLoc DL = MI.getDebugLoc(); 10455 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10456 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10457 10458 MachineFunction *MF = MBB->getParent(); 10459 MachineRegisterInfo &MRI = MF->getRegInfo(); 10460 10461 const BasicBlock *BB = MBB->getBasicBlock(); 10462 MachineFunction::iterator I = ++MBB->getIterator(); 10463 10464 Register DstReg = MI.getOperand(0).getReg(); 10465 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10466 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10467 Register mainDstReg = MRI.createVirtualRegister(RC); 10468 Register restoreDstReg = MRI.createVirtualRegister(RC); 10469 10470 MVT PVT = getPointerTy(MF->getDataLayout()); 10471 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10472 "Invalid Pointer Size!"); 10473 // For v = setjmp(buf), we generate 10474 // 10475 // thisMBB: 10476 // SjLjSetup mainMBB 10477 // bl mainMBB 10478 // v_restore = 1 10479 // b sinkMBB 10480 // 10481 // mainMBB: 10482 // buf[LabelOffset] = LR 10483 // v_main = 0 10484 // 10485 // sinkMBB: 10486 // v = phi(main, restore) 10487 // 10488 10489 MachineBasicBlock *thisMBB = MBB; 10490 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10491 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10492 MF->insert(I, mainMBB); 10493 MF->insert(I, sinkMBB); 10494 10495 MachineInstrBuilder MIB; 10496 10497 // Transfer the remainder of BB and its successor edges to sinkMBB. 10498 sinkMBB->splice(sinkMBB->begin(), MBB, 10499 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10500 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10501 10502 // Note that the structure of the jmp_buf used here is not compatible 10503 // with that used by libc, and is not designed to be. Specifically, it 10504 // stores only those 'reserved' registers that LLVM does not otherwise 10505 // understand how to spill. Also, by convention, by the time this 10506 // intrinsic is called, Clang has already stored the frame address in the 10507 // first slot of the buffer and stack address in the third. Following the 10508 // X86 target code, we'll store the jump address in the second slot. We also 10509 // need to save the TOC pointer (R2) to handle jumps between shared 10510 // libraries, and that will be stored in the fourth slot. The thread 10511 // identifier (R13) is not affected. 10512 10513 // thisMBB: 10514 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10515 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10516 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10517 10518 // Prepare IP either in reg. 10519 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10520 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10521 Register BufReg = MI.getOperand(1).getReg(); 10522 10523 if (Subtarget.is64BitELFABI()) { 10524 setUsesTOCBasePtr(*MBB->getParent()); 10525 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10526 .addReg(PPC::X2) 10527 .addImm(TOCOffset) 10528 .addReg(BufReg) 10529 .cloneMemRefs(MI); 10530 } 10531 10532 // Naked functions never have a base pointer, and so we use r1. For all 10533 // other functions, this decision must be delayed until during PEI. 10534 unsigned BaseReg; 10535 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10536 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10537 else 10538 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10539 10540 MIB = BuildMI(*thisMBB, MI, DL, 10541 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10542 .addReg(BaseReg) 10543 .addImm(BPOffset) 10544 .addReg(BufReg) 10545 .cloneMemRefs(MI); 10546 10547 // Setup 10548 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10549 MIB.addRegMask(TRI->getNoPreservedMask()); 10550 10551 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10552 10553 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10554 .addMBB(mainMBB); 10555 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10556 10557 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10558 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10559 10560 // mainMBB: 10561 // mainDstReg = 0 10562 MIB = 10563 BuildMI(mainMBB, DL, 10564 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10565 10566 // Store IP 10567 if (Subtarget.isPPC64()) { 10568 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10569 .addReg(LabelReg) 10570 .addImm(LabelOffset) 10571 .addReg(BufReg); 10572 } else { 10573 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10574 .addReg(LabelReg) 10575 .addImm(LabelOffset) 10576 .addReg(BufReg); 10577 } 10578 MIB.cloneMemRefs(MI); 10579 10580 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10581 mainMBB->addSuccessor(sinkMBB); 10582 10583 // sinkMBB: 10584 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10585 TII->get(PPC::PHI), DstReg) 10586 .addReg(mainDstReg).addMBB(mainMBB) 10587 .addReg(restoreDstReg).addMBB(thisMBB); 10588 10589 MI.eraseFromParent(); 10590 return sinkMBB; 10591 } 10592 10593 MachineBasicBlock * 10594 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10595 MachineBasicBlock *MBB) const { 10596 DebugLoc DL = MI.getDebugLoc(); 10597 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10598 10599 MachineFunction *MF = MBB->getParent(); 10600 MachineRegisterInfo &MRI = MF->getRegInfo(); 10601 10602 MVT PVT = getPointerTy(MF->getDataLayout()); 10603 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10604 "Invalid Pointer Size!"); 10605 10606 const TargetRegisterClass *RC = 10607 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10608 Register Tmp = MRI.createVirtualRegister(RC); 10609 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10610 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10611 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10612 unsigned BP = 10613 (PVT == MVT::i64) 10614 ? PPC::X30 10615 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10616 : PPC::R30); 10617 10618 MachineInstrBuilder MIB; 10619 10620 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10621 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10622 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10623 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10624 10625 Register BufReg = MI.getOperand(0).getReg(); 10626 10627 // Reload FP (the jumped-to function may not have had a 10628 // frame pointer, and if so, then its r31 will be restored 10629 // as necessary). 10630 if (PVT == MVT::i64) { 10631 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10632 .addImm(0) 10633 .addReg(BufReg); 10634 } else { 10635 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10636 .addImm(0) 10637 .addReg(BufReg); 10638 } 10639 MIB.cloneMemRefs(MI); 10640 10641 // Reload IP 10642 if (PVT == MVT::i64) { 10643 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10644 .addImm(LabelOffset) 10645 .addReg(BufReg); 10646 } else { 10647 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10648 .addImm(LabelOffset) 10649 .addReg(BufReg); 10650 } 10651 MIB.cloneMemRefs(MI); 10652 10653 // Reload SP 10654 if (PVT == MVT::i64) { 10655 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10656 .addImm(SPOffset) 10657 .addReg(BufReg); 10658 } else { 10659 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10660 .addImm(SPOffset) 10661 .addReg(BufReg); 10662 } 10663 MIB.cloneMemRefs(MI); 10664 10665 // Reload BP 10666 if (PVT == MVT::i64) { 10667 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10668 .addImm(BPOffset) 10669 .addReg(BufReg); 10670 } else { 10671 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10672 .addImm(BPOffset) 10673 .addReg(BufReg); 10674 } 10675 MIB.cloneMemRefs(MI); 10676 10677 // Reload TOC 10678 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10679 setUsesTOCBasePtr(*MBB->getParent()); 10680 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10681 .addImm(TOCOffset) 10682 .addReg(BufReg) 10683 .cloneMemRefs(MI); 10684 } 10685 10686 // Jump 10687 BuildMI(*MBB, MI, DL, 10688 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10689 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10690 10691 MI.eraseFromParent(); 10692 return MBB; 10693 } 10694 10695 MachineBasicBlock * 10696 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10697 MachineBasicBlock *BB) const { 10698 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10699 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10700 if (Subtarget.is64BitELFABI() && 10701 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10702 // Call lowering should have added an r2 operand to indicate a dependence 10703 // on the TOC base pointer value. It can't however, because there is no 10704 // way to mark the dependence as implicit there, and so the stackmap code 10705 // will confuse it with a regular operand. Instead, add the dependence 10706 // here. 10707 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10708 } 10709 10710 return emitPatchPoint(MI, BB); 10711 } 10712 10713 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10714 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10715 return emitEHSjLjSetJmp(MI, BB); 10716 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10717 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10718 return emitEHSjLjLongJmp(MI, BB); 10719 } 10720 10721 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10722 10723 // To "insert" these instructions we actually have to insert their 10724 // control-flow patterns. 10725 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10726 MachineFunction::iterator It = ++BB->getIterator(); 10727 10728 MachineFunction *F = BB->getParent(); 10729 10730 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10731 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 10732 MI.getOpcode() == PPC::SELECT_I8) { 10733 SmallVector<MachineOperand, 2> Cond; 10734 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10735 MI.getOpcode() == PPC::SELECT_CC_I8) 10736 Cond.push_back(MI.getOperand(4)); 10737 else 10738 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10739 Cond.push_back(MI.getOperand(1)); 10740 10741 DebugLoc dl = MI.getDebugLoc(); 10742 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10743 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10744 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10745 MI.getOpcode() == PPC::SELECT_CC_I8 || 10746 MI.getOpcode() == PPC::SELECT_CC_F4 || 10747 MI.getOpcode() == PPC::SELECT_CC_F8 || 10748 MI.getOpcode() == PPC::SELECT_CC_F16 || 10749 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10750 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10751 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10752 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10753 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10754 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10755 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10756 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10757 MI.getOpcode() == PPC::SELECT_CC_SPE || 10758 MI.getOpcode() == PPC::SELECT_I4 || 10759 MI.getOpcode() == PPC::SELECT_I8 || 10760 MI.getOpcode() == PPC::SELECT_F4 || 10761 MI.getOpcode() == PPC::SELECT_F8 || 10762 MI.getOpcode() == PPC::SELECT_F16 || 10763 MI.getOpcode() == PPC::SELECT_QFRC || 10764 MI.getOpcode() == PPC::SELECT_QSRC || 10765 MI.getOpcode() == PPC::SELECT_QBRC || 10766 MI.getOpcode() == PPC::SELECT_SPE || 10767 MI.getOpcode() == PPC::SELECT_SPE4 || 10768 MI.getOpcode() == PPC::SELECT_VRRC || 10769 MI.getOpcode() == PPC::SELECT_VSFRC || 10770 MI.getOpcode() == PPC::SELECT_VSSRC || 10771 MI.getOpcode() == PPC::SELECT_VSRC) { 10772 // The incoming instruction knows the destination vreg to set, the 10773 // condition code register to branch on, the true/false values to 10774 // select between, and a branch opcode to use. 10775 10776 // thisMBB: 10777 // ... 10778 // TrueVal = ... 10779 // cmpTY ccX, r1, r2 10780 // bCC copy1MBB 10781 // fallthrough --> copy0MBB 10782 MachineBasicBlock *thisMBB = BB; 10783 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10784 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10785 DebugLoc dl = MI.getDebugLoc(); 10786 F->insert(It, copy0MBB); 10787 F->insert(It, sinkMBB); 10788 10789 // Transfer the remainder of BB and its successor edges to sinkMBB. 10790 sinkMBB->splice(sinkMBB->begin(), BB, 10791 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10792 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10793 10794 // Next, add the true and fallthrough blocks as its successors. 10795 BB->addSuccessor(copy0MBB); 10796 BB->addSuccessor(sinkMBB); 10797 10798 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10799 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10800 MI.getOpcode() == PPC::SELECT_F16 || 10801 MI.getOpcode() == PPC::SELECT_SPE4 || 10802 MI.getOpcode() == PPC::SELECT_SPE || 10803 MI.getOpcode() == PPC::SELECT_QFRC || 10804 MI.getOpcode() == PPC::SELECT_QSRC || 10805 MI.getOpcode() == PPC::SELECT_QBRC || 10806 MI.getOpcode() == PPC::SELECT_VRRC || 10807 MI.getOpcode() == PPC::SELECT_VSFRC || 10808 MI.getOpcode() == PPC::SELECT_VSSRC || 10809 MI.getOpcode() == PPC::SELECT_VSRC) { 10810 BuildMI(BB, dl, TII->get(PPC::BC)) 10811 .addReg(MI.getOperand(1).getReg()) 10812 .addMBB(sinkMBB); 10813 } else { 10814 unsigned SelectPred = MI.getOperand(4).getImm(); 10815 BuildMI(BB, dl, TII->get(PPC::BCC)) 10816 .addImm(SelectPred) 10817 .addReg(MI.getOperand(1).getReg()) 10818 .addMBB(sinkMBB); 10819 } 10820 10821 // copy0MBB: 10822 // %FalseValue = ... 10823 // # fallthrough to sinkMBB 10824 BB = copy0MBB; 10825 10826 // Update machine-CFG edges 10827 BB->addSuccessor(sinkMBB); 10828 10829 // sinkMBB: 10830 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10831 // ... 10832 BB = sinkMBB; 10833 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10834 .addReg(MI.getOperand(3).getReg()) 10835 .addMBB(copy0MBB) 10836 .addReg(MI.getOperand(2).getReg()) 10837 .addMBB(thisMBB); 10838 } else if (MI.getOpcode() == PPC::ReadTB) { 10839 // To read the 64-bit time-base register on a 32-bit target, we read the 10840 // two halves. Should the counter have wrapped while it was being read, we 10841 // need to try again. 10842 // ... 10843 // readLoop: 10844 // mfspr Rx,TBU # load from TBU 10845 // mfspr Ry,TB # load from TB 10846 // mfspr Rz,TBU # load from TBU 10847 // cmpw crX,Rx,Rz # check if 'old'='new' 10848 // bne readLoop # branch if they're not equal 10849 // ... 10850 10851 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10852 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10853 DebugLoc dl = MI.getDebugLoc(); 10854 F->insert(It, readMBB); 10855 F->insert(It, sinkMBB); 10856 10857 // Transfer the remainder of BB and its successor edges to sinkMBB. 10858 sinkMBB->splice(sinkMBB->begin(), BB, 10859 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10860 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10861 10862 BB->addSuccessor(readMBB); 10863 BB = readMBB; 10864 10865 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10866 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10867 Register LoReg = MI.getOperand(0).getReg(); 10868 Register HiReg = MI.getOperand(1).getReg(); 10869 10870 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10871 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10872 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10873 10874 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10875 10876 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10877 .addReg(HiReg) 10878 .addReg(ReadAgainReg); 10879 BuildMI(BB, dl, TII->get(PPC::BCC)) 10880 .addImm(PPC::PRED_NE) 10881 .addReg(CmpReg) 10882 .addMBB(readMBB); 10883 10884 BB->addSuccessor(readMBB); 10885 BB->addSuccessor(sinkMBB); 10886 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10887 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10888 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10889 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10890 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10891 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10892 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10893 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10894 10895 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10896 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10897 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10898 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10899 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10900 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10901 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10902 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10903 10904 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10905 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10906 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10907 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10908 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10909 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10910 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10911 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10912 10913 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10914 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10915 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10916 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10917 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10918 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10919 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10920 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10921 10922 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10923 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10924 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10925 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10926 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10927 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10928 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10929 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10930 10931 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10932 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10933 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10934 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10935 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10936 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10937 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10938 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10939 10940 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10941 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10942 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10943 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10944 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10945 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10946 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10947 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10948 10949 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10950 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10951 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10952 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10953 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10954 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10955 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10956 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10957 10958 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10959 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10960 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10961 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10962 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10963 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10964 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10965 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10966 10967 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10968 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10969 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10970 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10971 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10972 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10973 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10974 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10975 10976 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10977 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10978 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10979 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10980 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10981 BB = EmitAtomicBinary(MI, BB, 4, 0); 10982 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10983 BB = EmitAtomicBinary(MI, BB, 8, 0); 10984 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10985 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10986 (Subtarget.hasPartwordAtomics() && 10987 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10988 (Subtarget.hasPartwordAtomics() && 10989 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10990 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10991 10992 auto LoadMnemonic = PPC::LDARX; 10993 auto StoreMnemonic = PPC::STDCX; 10994 switch (MI.getOpcode()) { 10995 default: 10996 llvm_unreachable("Compare and swap of unknown size"); 10997 case PPC::ATOMIC_CMP_SWAP_I8: 10998 LoadMnemonic = PPC::LBARX; 10999 StoreMnemonic = PPC::STBCX; 11000 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11001 break; 11002 case PPC::ATOMIC_CMP_SWAP_I16: 11003 LoadMnemonic = PPC::LHARX; 11004 StoreMnemonic = PPC::STHCX; 11005 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11006 break; 11007 case PPC::ATOMIC_CMP_SWAP_I32: 11008 LoadMnemonic = PPC::LWARX; 11009 StoreMnemonic = PPC::STWCX; 11010 break; 11011 case PPC::ATOMIC_CMP_SWAP_I64: 11012 LoadMnemonic = PPC::LDARX; 11013 StoreMnemonic = PPC::STDCX; 11014 break; 11015 } 11016 Register dest = MI.getOperand(0).getReg(); 11017 Register ptrA = MI.getOperand(1).getReg(); 11018 Register ptrB = MI.getOperand(2).getReg(); 11019 Register oldval = MI.getOperand(3).getReg(); 11020 Register newval = MI.getOperand(4).getReg(); 11021 DebugLoc dl = MI.getDebugLoc(); 11022 11023 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11024 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11025 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11026 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11027 F->insert(It, loop1MBB); 11028 F->insert(It, loop2MBB); 11029 F->insert(It, midMBB); 11030 F->insert(It, exitMBB); 11031 exitMBB->splice(exitMBB->begin(), BB, 11032 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11033 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11034 11035 // thisMBB: 11036 // ... 11037 // fallthrough --> loopMBB 11038 BB->addSuccessor(loop1MBB); 11039 11040 // loop1MBB: 11041 // l[bhwd]arx dest, ptr 11042 // cmp[wd] dest, oldval 11043 // bne- midMBB 11044 // loop2MBB: 11045 // st[bhwd]cx. newval, ptr 11046 // bne- loopMBB 11047 // b exitBB 11048 // midMBB: 11049 // st[bhwd]cx. dest, ptr 11050 // exitBB: 11051 BB = loop1MBB; 11052 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11053 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11054 .addReg(oldval) 11055 .addReg(dest); 11056 BuildMI(BB, dl, TII->get(PPC::BCC)) 11057 .addImm(PPC::PRED_NE) 11058 .addReg(PPC::CR0) 11059 .addMBB(midMBB); 11060 BB->addSuccessor(loop2MBB); 11061 BB->addSuccessor(midMBB); 11062 11063 BB = loop2MBB; 11064 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11065 .addReg(newval) 11066 .addReg(ptrA) 11067 .addReg(ptrB); 11068 BuildMI(BB, dl, TII->get(PPC::BCC)) 11069 .addImm(PPC::PRED_NE) 11070 .addReg(PPC::CR0) 11071 .addMBB(loop1MBB); 11072 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11073 BB->addSuccessor(loop1MBB); 11074 BB->addSuccessor(exitMBB); 11075 11076 BB = midMBB; 11077 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11078 .addReg(dest) 11079 .addReg(ptrA) 11080 .addReg(ptrB); 11081 BB->addSuccessor(exitMBB); 11082 11083 // exitMBB: 11084 // ... 11085 BB = exitMBB; 11086 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11087 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11088 // We must use 64-bit registers for addresses when targeting 64-bit, 11089 // since we're actually doing arithmetic on them. Other registers 11090 // can be 32-bit. 11091 bool is64bit = Subtarget.isPPC64(); 11092 bool isLittleEndian = Subtarget.isLittleEndian(); 11093 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11094 11095 Register dest = MI.getOperand(0).getReg(); 11096 Register ptrA = MI.getOperand(1).getReg(); 11097 Register ptrB = MI.getOperand(2).getReg(); 11098 Register oldval = MI.getOperand(3).getReg(); 11099 Register newval = MI.getOperand(4).getReg(); 11100 DebugLoc dl = MI.getDebugLoc(); 11101 11102 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11103 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11104 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11105 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11106 F->insert(It, loop1MBB); 11107 F->insert(It, loop2MBB); 11108 F->insert(It, midMBB); 11109 F->insert(It, exitMBB); 11110 exitMBB->splice(exitMBB->begin(), BB, 11111 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11112 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11113 11114 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11115 const TargetRegisterClass *RC = 11116 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11117 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11118 11119 Register PtrReg = RegInfo.createVirtualRegister(RC); 11120 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11121 Register ShiftReg = 11122 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11123 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11124 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11125 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11126 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11127 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11128 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11129 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11130 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11131 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11132 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11133 Register Ptr1Reg; 11134 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11135 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11136 // thisMBB: 11137 // ... 11138 // fallthrough --> loopMBB 11139 BB->addSuccessor(loop1MBB); 11140 11141 // The 4-byte load must be aligned, while a char or short may be 11142 // anywhere in the word. Hence all this nasty bookkeeping code. 11143 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11144 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11145 // xori shift, shift1, 24 [16] 11146 // rlwinm ptr, ptr1, 0, 0, 29 11147 // slw newval2, newval, shift 11148 // slw oldval2, oldval,shift 11149 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11150 // slw mask, mask2, shift 11151 // and newval3, newval2, mask 11152 // and oldval3, oldval2, mask 11153 // loop1MBB: 11154 // lwarx tmpDest, ptr 11155 // and tmp, tmpDest, mask 11156 // cmpw tmp, oldval3 11157 // bne- midMBB 11158 // loop2MBB: 11159 // andc tmp2, tmpDest, mask 11160 // or tmp4, tmp2, newval3 11161 // stwcx. tmp4, ptr 11162 // bne- loop1MBB 11163 // b exitBB 11164 // midMBB: 11165 // stwcx. tmpDest, ptr 11166 // exitBB: 11167 // srw dest, tmpDest, shift 11168 if (ptrA != ZeroReg) { 11169 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11170 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11171 .addReg(ptrA) 11172 .addReg(ptrB); 11173 } else { 11174 Ptr1Reg = ptrB; 11175 } 11176 11177 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11178 // mode. 11179 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11180 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11181 .addImm(3) 11182 .addImm(27) 11183 .addImm(is8bit ? 28 : 27); 11184 if (!isLittleEndian) 11185 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11186 .addReg(Shift1Reg) 11187 .addImm(is8bit ? 24 : 16); 11188 if (is64bit) 11189 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11190 .addReg(Ptr1Reg) 11191 .addImm(0) 11192 .addImm(61); 11193 else 11194 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11195 .addReg(Ptr1Reg) 11196 .addImm(0) 11197 .addImm(0) 11198 .addImm(29); 11199 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11200 .addReg(newval) 11201 .addReg(ShiftReg); 11202 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11203 .addReg(oldval) 11204 .addReg(ShiftReg); 11205 if (is8bit) 11206 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11207 else { 11208 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11209 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11210 .addReg(Mask3Reg) 11211 .addImm(65535); 11212 } 11213 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11214 .addReg(Mask2Reg) 11215 .addReg(ShiftReg); 11216 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11217 .addReg(NewVal2Reg) 11218 .addReg(MaskReg); 11219 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11220 .addReg(OldVal2Reg) 11221 .addReg(MaskReg); 11222 11223 BB = loop1MBB; 11224 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11225 .addReg(ZeroReg) 11226 .addReg(PtrReg); 11227 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11228 .addReg(TmpDestReg) 11229 .addReg(MaskReg); 11230 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11231 .addReg(TmpReg) 11232 .addReg(OldVal3Reg); 11233 BuildMI(BB, dl, TII->get(PPC::BCC)) 11234 .addImm(PPC::PRED_NE) 11235 .addReg(PPC::CR0) 11236 .addMBB(midMBB); 11237 BB->addSuccessor(loop2MBB); 11238 BB->addSuccessor(midMBB); 11239 11240 BB = loop2MBB; 11241 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11242 .addReg(TmpDestReg) 11243 .addReg(MaskReg); 11244 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11245 .addReg(Tmp2Reg) 11246 .addReg(NewVal3Reg); 11247 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11248 .addReg(Tmp4Reg) 11249 .addReg(ZeroReg) 11250 .addReg(PtrReg); 11251 BuildMI(BB, dl, TII->get(PPC::BCC)) 11252 .addImm(PPC::PRED_NE) 11253 .addReg(PPC::CR0) 11254 .addMBB(loop1MBB); 11255 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11256 BB->addSuccessor(loop1MBB); 11257 BB->addSuccessor(exitMBB); 11258 11259 BB = midMBB; 11260 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11261 .addReg(TmpDestReg) 11262 .addReg(ZeroReg) 11263 .addReg(PtrReg); 11264 BB->addSuccessor(exitMBB); 11265 11266 // exitMBB: 11267 // ... 11268 BB = exitMBB; 11269 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11270 .addReg(TmpReg) 11271 .addReg(ShiftReg); 11272 } else if (MI.getOpcode() == PPC::FADDrtz) { 11273 // This pseudo performs an FADD with rounding mode temporarily forced 11274 // to round-to-zero. We emit this via custom inserter since the FPSCR 11275 // is not modeled at the SelectionDAG level. 11276 Register Dest = MI.getOperand(0).getReg(); 11277 Register Src1 = MI.getOperand(1).getReg(); 11278 Register Src2 = MI.getOperand(2).getReg(); 11279 DebugLoc dl = MI.getDebugLoc(); 11280 11281 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11282 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11283 11284 // Save FPSCR value. 11285 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11286 11287 // Set rounding mode to round-to-zero. 11288 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11289 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11290 11291 // Perform addition. 11292 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11293 11294 // Restore FPSCR value. 11295 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11296 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11297 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11298 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11299 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11300 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11301 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11302 ? PPC::ANDIo8 11303 : PPC::ANDIo; 11304 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11305 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11306 11307 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11308 Register Dest = RegInfo.createVirtualRegister( 11309 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11310 11311 DebugLoc dl = MI.getDebugLoc(); 11312 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11313 .addReg(MI.getOperand(1).getReg()) 11314 .addImm(1); 11315 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11316 MI.getOperand(0).getReg()) 11317 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11318 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11319 DebugLoc Dl = MI.getDebugLoc(); 11320 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11321 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11322 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11323 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11324 MI.getOperand(0).getReg()) 11325 .addReg(CRReg); 11326 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11327 DebugLoc Dl = MI.getDebugLoc(); 11328 unsigned Imm = MI.getOperand(1).getImm(); 11329 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11330 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11331 MI.getOperand(0).getReg()) 11332 .addReg(PPC::CR0EQ); 11333 } else if (MI.getOpcode() == PPC::SETRNDi) { 11334 DebugLoc dl = MI.getDebugLoc(); 11335 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11336 11337 // Save FPSCR value. 11338 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11339 11340 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11341 // the following settings: 11342 // 00 Round to nearest 11343 // 01 Round to 0 11344 // 10 Round to +inf 11345 // 11 Round to -inf 11346 11347 // When the operand is immediate, using the two least significant bits of 11348 // the immediate to set the bits 62:63 of FPSCR. 11349 unsigned Mode = MI.getOperand(1).getImm(); 11350 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11351 .addImm(31); 11352 11353 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11354 .addImm(30); 11355 } else if (MI.getOpcode() == PPC::SETRND) { 11356 DebugLoc dl = MI.getDebugLoc(); 11357 11358 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11359 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11360 // If the target doesn't have DirectMove, we should use stack to do the 11361 // conversion, because the target doesn't have the instructions like mtvsrd 11362 // or mfvsrd to do this conversion directly. 11363 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11364 if (Subtarget.hasDirectMove()) { 11365 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11366 .addReg(SrcReg); 11367 } else { 11368 // Use stack to do the register copy. 11369 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11370 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11371 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11372 if (RC == &PPC::F8RCRegClass) { 11373 // Copy register from F8RCRegClass to G8RCRegclass. 11374 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11375 "Unsupported RegClass."); 11376 11377 StoreOp = PPC::STFD; 11378 LoadOp = PPC::LD; 11379 } else { 11380 // Copy register from G8RCRegClass to F8RCRegclass. 11381 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11382 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11383 "Unsupported RegClass."); 11384 } 11385 11386 MachineFrameInfo &MFI = F->getFrameInfo(); 11387 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11388 11389 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11390 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11391 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11392 MFI.getObjectAlignment(FrameIdx)); 11393 11394 // Store the SrcReg into the stack. 11395 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11396 .addReg(SrcReg) 11397 .addImm(0) 11398 .addFrameIndex(FrameIdx) 11399 .addMemOperand(MMOStore); 11400 11401 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11402 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11403 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11404 MFI.getObjectAlignment(FrameIdx)); 11405 11406 // Load from the stack where SrcReg is stored, and save to DestReg, 11407 // so we have done the RegClass conversion from RegClass::SrcReg to 11408 // RegClass::DestReg. 11409 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11410 .addImm(0) 11411 .addFrameIndex(FrameIdx) 11412 .addMemOperand(MMOLoad); 11413 } 11414 }; 11415 11416 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11417 11418 // Save FPSCR value. 11419 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11420 11421 // When the operand is gprc register, use two least significant bits of the 11422 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11423 // 11424 // copy OldFPSCRTmpReg, OldFPSCRReg 11425 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11426 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11427 // copy NewFPSCRReg, NewFPSCRTmpReg 11428 // mtfsf 255, NewFPSCRReg 11429 MachineOperand SrcOp = MI.getOperand(1); 11430 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11431 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11432 11433 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11434 11435 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11436 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11437 11438 // The first operand of INSERT_SUBREG should be a register which has 11439 // subregisters, we only care about its RegClass, so we should use an 11440 // IMPLICIT_DEF register. 11441 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11442 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11443 .addReg(ImDefReg) 11444 .add(SrcOp) 11445 .addImm(1); 11446 11447 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11448 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11449 .addReg(OldFPSCRTmpReg) 11450 .addReg(ExtSrcReg) 11451 .addImm(0) 11452 .addImm(62); 11453 11454 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11455 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11456 11457 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11458 // bits of FPSCR. 11459 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11460 .addImm(255) 11461 .addReg(NewFPSCRReg) 11462 .addImm(0) 11463 .addImm(0); 11464 } else { 11465 llvm_unreachable("Unexpected instr type to insert"); 11466 } 11467 11468 MI.eraseFromParent(); // The pseudo instruction is gone now. 11469 return BB; 11470 } 11471 11472 //===----------------------------------------------------------------------===// 11473 // Target Optimization Hooks 11474 //===----------------------------------------------------------------------===// 11475 11476 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11477 // For the estimates, convergence is quadratic, so we essentially double the 11478 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11479 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11480 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11481 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11482 if (VT.getScalarType() == MVT::f64) 11483 RefinementSteps++; 11484 return RefinementSteps; 11485 } 11486 11487 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11488 int Enabled, int &RefinementSteps, 11489 bool &UseOneConstNR, 11490 bool Reciprocal) const { 11491 EVT VT = Operand.getValueType(); 11492 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11493 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11494 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11495 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11496 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11497 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11498 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11499 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11500 11501 // The Newton-Raphson computation with a single constant does not provide 11502 // enough accuracy on some CPUs. 11503 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11504 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11505 } 11506 return SDValue(); 11507 } 11508 11509 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11510 int Enabled, 11511 int &RefinementSteps) const { 11512 EVT VT = Operand.getValueType(); 11513 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11514 (VT == MVT::f64 && Subtarget.hasFRE()) || 11515 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11516 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11517 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11518 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11519 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11520 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11521 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11522 } 11523 return SDValue(); 11524 } 11525 11526 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11527 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11528 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11529 // enabled for division), this functionality is redundant with the default 11530 // combiner logic (once the division -> reciprocal/multiply transformation 11531 // has taken place). As a result, this matters more for older cores than for 11532 // newer ones. 11533 11534 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11535 // reciprocal if there are two or more FDIVs (for embedded cores with only 11536 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11537 switch (Subtarget.getDarwinDirective()) { 11538 default: 11539 return 3; 11540 case PPC::DIR_440: 11541 case PPC::DIR_A2: 11542 case PPC::DIR_E500: 11543 case PPC::DIR_E500mc: 11544 case PPC::DIR_E5500: 11545 return 2; 11546 } 11547 } 11548 11549 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11550 // collapsed, and so we need to look through chains of them. 11551 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11552 int64_t& Offset, SelectionDAG &DAG) { 11553 if (DAG.isBaseWithConstantOffset(Loc)) { 11554 Base = Loc.getOperand(0); 11555 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11556 11557 // The base might itself be a base plus an offset, and if so, accumulate 11558 // that as well. 11559 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11560 } 11561 } 11562 11563 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11564 unsigned Bytes, int Dist, 11565 SelectionDAG &DAG) { 11566 if (VT.getSizeInBits() / 8 != Bytes) 11567 return false; 11568 11569 SDValue BaseLoc = Base->getBasePtr(); 11570 if (Loc.getOpcode() == ISD::FrameIndex) { 11571 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11572 return false; 11573 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11574 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11575 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11576 int FS = MFI.getObjectSize(FI); 11577 int BFS = MFI.getObjectSize(BFI); 11578 if (FS != BFS || FS != (int)Bytes) return false; 11579 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11580 } 11581 11582 SDValue Base1 = Loc, Base2 = BaseLoc; 11583 int64_t Offset1 = 0, Offset2 = 0; 11584 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11585 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11586 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11587 return true; 11588 11589 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11590 const GlobalValue *GV1 = nullptr; 11591 const GlobalValue *GV2 = nullptr; 11592 Offset1 = 0; 11593 Offset2 = 0; 11594 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11595 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11596 if (isGA1 && isGA2 && GV1 == GV2) 11597 return Offset1 == (Offset2 + Dist*Bytes); 11598 return false; 11599 } 11600 11601 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11602 // not enforce equality of the chain operands. 11603 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11604 unsigned Bytes, int Dist, 11605 SelectionDAG &DAG) { 11606 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11607 EVT VT = LS->getMemoryVT(); 11608 SDValue Loc = LS->getBasePtr(); 11609 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11610 } 11611 11612 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11613 EVT VT; 11614 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11615 default: return false; 11616 case Intrinsic::ppc_qpx_qvlfd: 11617 case Intrinsic::ppc_qpx_qvlfda: 11618 VT = MVT::v4f64; 11619 break; 11620 case Intrinsic::ppc_qpx_qvlfs: 11621 case Intrinsic::ppc_qpx_qvlfsa: 11622 VT = MVT::v4f32; 11623 break; 11624 case Intrinsic::ppc_qpx_qvlfcd: 11625 case Intrinsic::ppc_qpx_qvlfcda: 11626 VT = MVT::v2f64; 11627 break; 11628 case Intrinsic::ppc_qpx_qvlfcs: 11629 case Intrinsic::ppc_qpx_qvlfcsa: 11630 VT = MVT::v2f32; 11631 break; 11632 case Intrinsic::ppc_qpx_qvlfiwa: 11633 case Intrinsic::ppc_qpx_qvlfiwz: 11634 case Intrinsic::ppc_altivec_lvx: 11635 case Intrinsic::ppc_altivec_lvxl: 11636 case Intrinsic::ppc_vsx_lxvw4x: 11637 case Intrinsic::ppc_vsx_lxvw4x_be: 11638 VT = MVT::v4i32; 11639 break; 11640 case Intrinsic::ppc_vsx_lxvd2x: 11641 case Intrinsic::ppc_vsx_lxvd2x_be: 11642 VT = MVT::v2f64; 11643 break; 11644 case Intrinsic::ppc_altivec_lvebx: 11645 VT = MVT::i8; 11646 break; 11647 case Intrinsic::ppc_altivec_lvehx: 11648 VT = MVT::i16; 11649 break; 11650 case Intrinsic::ppc_altivec_lvewx: 11651 VT = MVT::i32; 11652 break; 11653 } 11654 11655 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11656 } 11657 11658 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11659 EVT VT; 11660 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11661 default: return false; 11662 case Intrinsic::ppc_qpx_qvstfd: 11663 case Intrinsic::ppc_qpx_qvstfda: 11664 VT = MVT::v4f64; 11665 break; 11666 case Intrinsic::ppc_qpx_qvstfs: 11667 case Intrinsic::ppc_qpx_qvstfsa: 11668 VT = MVT::v4f32; 11669 break; 11670 case Intrinsic::ppc_qpx_qvstfcd: 11671 case Intrinsic::ppc_qpx_qvstfcda: 11672 VT = MVT::v2f64; 11673 break; 11674 case Intrinsic::ppc_qpx_qvstfcs: 11675 case Intrinsic::ppc_qpx_qvstfcsa: 11676 VT = MVT::v2f32; 11677 break; 11678 case Intrinsic::ppc_qpx_qvstfiw: 11679 case Intrinsic::ppc_qpx_qvstfiwa: 11680 case Intrinsic::ppc_altivec_stvx: 11681 case Intrinsic::ppc_altivec_stvxl: 11682 case Intrinsic::ppc_vsx_stxvw4x: 11683 VT = MVT::v4i32; 11684 break; 11685 case Intrinsic::ppc_vsx_stxvd2x: 11686 VT = MVT::v2f64; 11687 break; 11688 case Intrinsic::ppc_vsx_stxvw4x_be: 11689 VT = MVT::v4i32; 11690 break; 11691 case Intrinsic::ppc_vsx_stxvd2x_be: 11692 VT = MVT::v2f64; 11693 break; 11694 case Intrinsic::ppc_altivec_stvebx: 11695 VT = MVT::i8; 11696 break; 11697 case Intrinsic::ppc_altivec_stvehx: 11698 VT = MVT::i16; 11699 break; 11700 case Intrinsic::ppc_altivec_stvewx: 11701 VT = MVT::i32; 11702 break; 11703 } 11704 11705 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11706 } 11707 11708 return false; 11709 } 11710 11711 // Return true is there is a nearyby consecutive load to the one provided 11712 // (regardless of alignment). We search up and down the chain, looking though 11713 // token factors and other loads (but nothing else). As a result, a true result 11714 // indicates that it is safe to create a new consecutive load adjacent to the 11715 // load provided. 11716 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11717 SDValue Chain = LD->getChain(); 11718 EVT VT = LD->getMemoryVT(); 11719 11720 SmallSet<SDNode *, 16> LoadRoots; 11721 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11722 SmallSet<SDNode *, 16> Visited; 11723 11724 // First, search up the chain, branching to follow all token-factor operands. 11725 // If we find a consecutive load, then we're done, otherwise, record all 11726 // nodes just above the top-level loads and token factors. 11727 while (!Queue.empty()) { 11728 SDNode *ChainNext = Queue.pop_back_val(); 11729 if (!Visited.insert(ChainNext).second) 11730 continue; 11731 11732 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11733 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11734 return true; 11735 11736 if (!Visited.count(ChainLD->getChain().getNode())) 11737 Queue.push_back(ChainLD->getChain().getNode()); 11738 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11739 for (const SDUse &O : ChainNext->ops()) 11740 if (!Visited.count(O.getNode())) 11741 Queue.push_back(O.getNode()); 11742 } else 11743 LoadRoots.insert(ChainNext); 11744 } 11745 11746 // Second, search down the chain, starting from the top-level nodes recorded 11747 // in the first phase. These top-level nodes are the nodes just above all 11748 // loads and token factors. Starting with their uses, recursively look though 11749 // all loads (just the chain uses) and token factors to find a consecutive 11750 // load. 11751 Visited.clear(); 11752 Queue.clear(); 11753 11754 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11755 IE = LoadRoots.end(); I != IE; ++I) { 11756 Queue.push_back(*I); 11757 11758 while (!Queue.empty()) { 11759 SDNode *LoadRoot = Queue.pop_back_val(); 11760 if (!Visited.insert(LoadRoot).second) 11761 continue; 11762 11763 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11764 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11765 return true; 11766 11767 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11768 UE = LoadRoot->use_end(); UI != UE; ++UI) 11769 if (((isa<MemSDNode>(*UI) && 11770 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11771 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11772 Queue.push_back(*UI); 11773 } 11774 } 11775 11776 return false; 11777 } 11778 11779 /// This function is called when we have proved that a SETCC node can be replaced 11780 /// by subtraction (and other supporting instructions) so that the result of 11781 /// comparison is kept in a GPR instead of CR. This function is purely for 11782 /// codegen purposes and has some flags to guide the codegen process. 11783 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11784 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11785 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11786 11787 // Zero extend the operands to the largest legal integer. Originally, they 11788 // must be of a strictly smaller size. 11789 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11790 DAG.getConstant(Size, DL, MVT::i32)); 11791 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11792 DAG.getConstant(Size, DL, MVT::i32)); 11793 11794 // Swap if needed. Depends on the condition code. 11795 if (Swap) 11796 std::swap(Op0, Op1); 11797 11798 // Subtract extended integers. 11799 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11800 11801 // Move the sign bit to the least significant position and zero out the rest. 11802 // Now the least significant bit carries the result of original comparison. 11803 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11804 DAG.getConstant(Size - 1, DL, MVT::i32)); 11805 auto Final = Shifted; 11806 11807 // Complement the result if needed. Based on the condition code. 11808 if (Complement) 11809 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11810 DAG.getConstant(1, DL, MVT::i64)); 11811 11812 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11813 } 11814 11815 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11816 DAGCombinerInfo &DCI) const { 11817 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11818 11819 SelectionDAG &DAG = DCI.DAG; 11820 SDLoc DL(N); 11821 11822 // Size of integers being compared has a critical role in the following 11823 // analysis, so we prefer to do this when all types are legal. 11824 if (!DCI.isAfterLegalizeDAG()) 11825 return SDValue(); 11826 11827 // If all users of SETCC extend its value to a legal integer type 11828 // then we replace SETCC with a subtraction 11829 for (SDNode::use_iterator UI = N->use_begin(), 11830 UE = N->use_end(); UI != UE; ++UI) { 11831 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11832 return SDValue(); 11833 } 11834 11835 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11836 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11837 11838 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11839 11840 if (OpSize < Size) { 11841 switch (CC) { 11842 default: break; 11843 case ISD::SETULT: 11844 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11845 case ISD::SETULE: 11846 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11847 case ISD::SETUGT: 11848 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11849 case ISD::SETUGE: 11850 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11851 } 11852 } 11853 11854 return SDValue(); 11855 } 11856 11857 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11858 DAGCombinerInfo &DCI) const { 11859 SelectionDAG &DAG = DCI.DAG; 11860 SDLoc dl(N); 11861 11862 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11863 // If we're tracking CR bits, we need to be careful that we don't have: 11864 // trunc(binary-ops(zext(x), zext(y))) 11865 // or 11866 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11867 // such that we're unnecessarily moving things into GPRs when it would be 11868 // better to keep them in CR bits. 11869 11870 // Note that trunc here can be an actual i1 trunc, or can be the effective 11871 // truncation that comes from a setcc or select_cc. 11872 if (N->getOpcode() == ISD::TRUNCATE && 11873 N->getValueType(0) != MVT::i1) 11874 return SDValue(); 11875 11876 if (N->getOperand(0).getValueType() != MVT::i32 && 11877 N->getOperand(0).getValueType() != MVT::i64) 11878 return SDValue(); 11879 11880 if (N->getOpcode() == ISD::SETCC || 11881 N->getOpcode() == ISD::SELECT_CC) { 11882 // If we're looking at a comparison, then we need to make sure that the 11883 // high bits (all except for the first) don't matter the result. 11884 ISD::CondCode CC = 11885 cast<CondCodeSDNode>(N->getOperand( 11886 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11887 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11888 11889 if (ISD::isSignedIntSetCC(CC)) { 11890 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11891 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11892 return SDValue(); 11893 } else if (ISD::isUnsignedIntSetCC(CC)) { 11894 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11895 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11896 !DAG.MaskedValueIsZero(N->getOperand(1), 11897 APInt::getHighBitsSet(OpBits, OpBits-1))) 11898 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11899 : SDValue()); 11900 } else { 11901 // This is neither a signed nor an unsigned comparison, just make sure 11902 // that the high bits are equal. 11903 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 11904 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 11905 11906 // We don't really care about what is known about the first bit (if 11907 // anything), so clear it in all masks prior to comparing them. 11908 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11909 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11910 11911 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11912 return SDValue(); 11913 } 11914 } 11915 11916 // We now know that the higher-order bits are irrelevant, we just need to 11917 // make sure that all of the intermediate operations are bit operations, and 11918 // all inputs are extensions. 11919 if (N->getOperand(0).getOpcode() != ISD::AND && 11920 N->getOperand(0).getOpcode() != ISD::OR && 11921 N->getOperand(0).getOpcode() != ISD::XOR && 11922 N->getOperand(0).getOpcode() != ISD::SELECT && 11923 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11924 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11925 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11926 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11927 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11928 return SDValue(); 11929 11930 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11931 N->getOperand(1).getOpcode() != ISD::AND && 11932 N->getOperand(1).getOpcode() != ISD::OR && 11933 N->getOperand(1).getOpcode() != ISD::XOR && 11934 N->getOperand(1).getOpcode() != ISD::SELECT && 11935 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11936 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11937 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11938 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11939 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11940 return SDValue(); 11941 11942 SmallVector<SDValue, 4> Inputs; 11943 SmallVector<SDValue, 8> BinOps, PromOps; 11944 SmallPtrSet<SDNode *, 16> Visited; 11945 11946 for (unsigned i = 0; i < 2; ++i) { 11947 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11948 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11949 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11950 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11951 isa<ConstantSDNode>(N->getOperand(i))) 11952 Inputs.push_back(N->getOperand(i)); 11953 else 11954 BinOps.push_back(N->getOperand(i)); 11955 11956 if (N->getOpcode() == ISD::TRUNCATE) 11957 break; 11958 } 11959 11960 // Visit all inputs, collect all binary operations (and, or, xor and 11961 // select) that are all fed by extensions. 11962 while (!BinOps.empty()) { 11963 SDValue BinOp = BinOps.back(); 11964 BinOps.pop_back(); 11965 11966 if (!Visited.insert(BinOp.getNode()).second) 11967 continue; 11968 11969 PromOps.push_back(BinOp); 11970 11971 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11972 // The condition of the select is not promoted. 11973 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11974 continue; 11975 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11976 continue; 11977 11978 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11979 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11980 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11981 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11982 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11983 Inputs.push_back(BinOp.getOperand(i)); 11984 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11985 BinOp.getOperand(i).getOpcode() == ISD::OR || 11986 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11987 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11988 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11989 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11990 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11991 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11992 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11993 BinOps.push_back(BinOp.getOperand(i)); 11994 } else { 11995 // We have an input that is not an extension or another binary 11996 // operation; we'll abort this transformation. 11997 return SDValue(); 11998 } 11999 } 12000 } 12001 12002 // Make sure that this is a self-contained cluster of operations (which 12003 // is not quite the same thing as saying that everything has only one 12004 // use). 12005 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12006 if (isa<ConstantSDNode>(Inputs[i])) 12007 continue; 12008 12009 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12010 UE = Inputs[i].getNode()->use_end(); 12011 UI != UE; ++UI) { 12012 SDNode *User = *UI; 12013 if (User != N && !Visited.count(User)) 12014 return SDValue(); 12015 12016 // Make sure that we're not going to promote the non-output-value 12017 // operand(s) or SELECT or SELECT_CC. 12018 // FIXME: Although we could sometimes handle this, and it does occur in 12019 // practice that one of the condition inputs to the select is also one of 12020 // the outputs, we currently can't deal with this. 12021 if (User->getOpcode() == ISD::SELECT) { 12022 if (User->getOperand(0) == Inputs[i]) 12023 return SDValue(); 12024 } else if (User->getOpcode() == ISD::SELECT_CC) { 12025 if (User->getOperand(0) == Inputs[i] || 12026 User->getOperand(1) == Inputs[i]) 12027 return SDValue(); 12028 } 12029 } 12030 } 12031 12032 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12033 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12034 UE = PromOps[i].getNode()->use_end(); 12035 UI != UE; ++UI) { 12036 SDNode *User = *UI; 12037 if (User != N && !Visited.count(User)) 12038 return SDValue(); 12039 12040 // Make sure that we're not going to promote the non-output-value 12041 // operand(s) or SELECT or SELECT_CC. 12042 // FIXME: Although we could sometimes handle this, and it does occur in 12043 // practice that one of the condition inputs to the select is also one of 12044 // the outputs, we currently can't deal with this. 12045 if (User->getOpcode() == ISD::SELECT) { 12046 if (User->getOperand(0) == PromOps[i]) 12047 return SDValue(); 12048 } else if (User->getOpcode() == ISD::SELECT_CC) { 12049 if (User->getOperand(0) == PromOps[i] || 12050 User->getOperand(1) == PromOps[i]) 12051 return SDValue(); 12052 } 12053 } 12054 } 12055 12056 // Replace all inputs with the extension operand. 12057 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12058 // Constants may have users outside the cluster of to-be-promoted nodes, 12059 // and so we need to replace those as we do the promotions. 12060 if (isa<ConstantSDNode>(Inputs[i])) 12061 continue; 12062 else 12063 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12064 } 12065 12066 std::list<HandleSDNode> PromOpHandles; 12067 for (auto &PromOp : PromOps) 12068 PromOpHandles.emplace_back(PromOp); 12069 12070 // Replace all operations (these are all the same, but have a different 12071 // (i1) return type). DAG.getNode will validate that the types of 12072 // a binary operator match, so go through the list in reverse so that 12073 // we've likely promoted both operands first. Any intermediate truncations or 12074 // extensions disappear. 12075 while (!PromOpHandles.empty()) { 12076 SDValue PromOp = PromOpHandles.back().getValue(); 12077 PromOpHandles.pop_back(); 12078 12079 if (PromOp.getOpcode() == ISD::TRUNCATE || 12080 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12081 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12082 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12083 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12084 PromOp.getOperand(0).getValueType() != MVT::i1) { 12085 // The operand is not yet ready (see comment below). 12086 PromOpHandles.emplace_front(PromOp); 12087 continue; 12088 } 12089 12090 SDValue RepValue = PromOp.getOperand(0); 12091 if (isa<ConstantSDNode>(RepValue)) 12092 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12093 12094 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12095 continue; 12096 } 12097 12098 unsigned C; 12099 switch (PromOp.getOpcode()) { 12100 default: C = 0; break; 12101 case ISD::SELECT: C = 1; break; 12102 case ISD::SELECT_CC: C = 2; break; 12103 } 12104 12105 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12106 PromOp.getOperand(C).getValueType() != MVT::i1) || 12107 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12108 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12109 // The to-be-promoted operands of this node have not yet been 12110 // promoted (this should be rare because we're going through the 12111 // list backward, but if one of the operands has several users in 12112 // this cluster of to-be-promoted nodes, it is possible). 12113 PromOpHandles.emplace_front(PromOp); 12114 continue; 12115 } 12116 12117 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12118 PromOp.getNode()->op_end()); 12119 12120 // If there are any constant inputs, make sure they're replaced now. 12121 for (unsigned i = 0; i < 2; ++i) 12122 if (isa<ConstantSDNode>(Ops[C+i])) 12123 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12124 12125 DAG.ReplaceAllUsesOfValueWith(PromOp, 12126 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12127 } 12128 12129 // Now we're left with the initial truncation itself. 12130 if (N->getOpcode() == ISD::TRUNCATE) 12131 return N->getOperand(0); 12132 12133 // Otherwise, this is a comparison. The operands to be compared have just 12134 // changed type (to i1), but everything else is the same. 12135 return SDValue(N, 0); 12136 } 12137 12138 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12139 DAGCombinerInfo &DCI) const { 12140 SelectionDAG &DAG = DCI.DAG; 12141 SDLoc dl(N); 12142 12143 // If we're tracking CR bits, we need to be careful that we don't have: 12144 // zext(binary-ops(trunc(x), trunc(y))) 12145 // or 12146 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12147 // such that we're unnecessarily moving things into CR bits that can more 12148 // efficiently stay in GPRs. Note that if we're not certain that the high 12149 // bits are set as required by the final extension, we still may need to do 12150 // some masking to get the proper behavior. 12151 12152 // This same functionality is important on PPC64 when dealing with 12153 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12154 // the return values of functions. Because it is so similar, it is handled 12155 // here as well. 12156 12157 if (N->getValueType(0) != MVT::i32 && 12158 N->getValueType(0) != MVT::i64) 12159 return SDValue(); 12160 12161 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12162 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12163 return SDValue(); 12164 12165 if (N->getOperand(0).getOpcode() != ISD::AND && 12166 N->getOperand(0).getOpcode() != ISD::OR && 12167 N->getOperand(0).getOpcode() != ISD::XOR && 12168 N->getOperand(0).getOpcode() != ISD::SELECT && 12169 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12170 return SDValue(); 12171 12172 SmallVector<SDValue, 4> Inputs; 12173 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12174 SmallPtrSet<SDNode *, 16> Visited; 12175 12176 // Visit all inputs, collect all binary operations (and, or, xor and 12177 // select) that are all fed by truncations. 12178 while (!BinOps.empty()) { 12179 SDValue BinOp = BinOps.back(); 12180 BinOps.pop_back(); 12181 12182 if (!Visited.insert(BinOp.getNode()).second) 12183 continue; 12184 12185 PromOps.push_back(BinOp); 12186 12187 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12188 // The condition of the select is not promoted. 12189 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12190 continue; 12191 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12192 continue; 12193 12194 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12195 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12196 Inputs.push_back(BinOp.getOperand(i)); 12197 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12198 BinOp.getOperand(i).getOpcode() == ISD::OR || 12199 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12200 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12201 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12202 BinOps.push_back(BinOp.getOperand(i)); 12203 } else { 12204 // We have an input that is not a truncation or another binary 12205 // operation; we'll abort this transformation. 12206 return SDValue(); 12207 } 12208 } 12209 } 12210 12211 // The operands of a select that must be truncated when the select is 12212 // promoted because the operand is actually part of the to-be-promoted set. 12213 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12214 12215 // Make sure that this is a self-contained cluster of operations (which 12216 // is not quite the same thing as saying that everything has only one 12217 // use). 12218 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12219 if (isa<ConstantSDNode>(Inputs[i])) 12220 continue; 12221 12222 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12223 UE = Inputs[i].getNode()->use_end(); 12224 UI != UE; ++UI) { 12225 SDNode *User = *UI; 12226 if (User != N && !Visited.count(User)) 12227 return SDValue(); 12228 12229 // If we're going to promote the non-output-value operand(s) or SELECT or 12230 // SELECT_CC, record them for truncation. 12231 if (User->getOpcode() == ISD::SELECT) { 12232 if (User->getOperand(0) == Inputs[i]) 12233 SelectTruncOp[0].insert(std::make_pair(User, 12234 User->getOperand(0).getValueType())); 12235 } else if (User->getOpcode() == ISD::SELECT_CC) { 12236 if (User->getOperand(0) == Inputs[i]) 12237 SelectTruncOp[0].insert(std::make_pair(User, 12238 User->getOperand(0).getValueType())); 12239 if (User->getOperand(1) == Inputs[i]) 12240 SelectTruncOp[1].insert(std::make_pair(User, 12241 User->getOperand(1).getValueType())); 12242 } 12243 } 12244 } 12245 12246 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12247 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12248 UE = PromOps[i].getNode()->use_end(); 12249 UI != UE; ++UI) { 12250 SDNode *User = *UI; 12251 if (User != N && !Visited.count(User)) 12252 return SDValue(); 12253 12254 // If we're going to promote the non-output-value operand(s) or SELECT or 12255 // SELECT_CC, record them for truncation. 12256 if (User->getOpcode() == ISD::SELECT) { 12257 if (User->getOperand(0) == PromOps[i]) 12258 SelectTruncOp[0].insert(std::make_pair(User, 12259 User->getOperand(0).getValueType())); 12260 } else if (User->getOpcode() == ISD::SELECT_CC) { 12261 if (User->getOperand(0) == PromOps[i]) 12262 SelectTruncOp[0].insert(std::make_pair(User, 12263 User->getOperand(0).getValueType())); 12264 if (User->getOperand(1) == PromOps[i]) 12265 SelectTruncOp[1].insert(std::make_pair(User, 12266 User->getOperand(1).getValueType())); 12267 } 12268 } 12269 } 12270 12271 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12272 bool ReallyNeedsExt = false; 12273 if (N->getOpcode() != ISD::ANY_EXTEND) { 12274 // If all of the inputs are not already sign/zero extended, then 12275 // we'll still need to do that at the end. 12276 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12277 if (isa<ConstantSDNode>(Inputs[i])) 12278 continue; 12279 12280 unsigned OpBits = 12281 Inputs[i].getOperand(0).getValueSizeInBits(); 12282 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12283 12284 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12285 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12286 APInt::getHighBitsSet(OpBits, 12287 OpBits-PromBits))) || 12288 (N->getOpcode() == ISD::SIGN_EXTEND && 12289 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12290 (OpBits-(PromBits-1)))) { 12291 ReallyNeedsExt = true; 12292 break; 12293 } 12294 } 12295 } 12296 12297 // Replace all inputs, either with the truncation operand, or a 12298 // truncation or extension to the final output type. 12299 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12300 // Constant inputs need to be replaced with the to-be-promoted nodes that 12301 // use them because they might have users outside of the cluster of 12302 // promoted nodes. 12303 if (isa<ConstantSDNode>(Inputs[i])) 12304 continue; 12305 12306 SDValue InSrc = Inputs[i].getOperand(0); 12307 if (Inputs[i].getValueType() == N->getValueType(0)) 12308 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12309 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12310 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12311 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12312 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12313 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12314 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12315 else 12316 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12317 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12318 } 12319 12320 std::list<HandleSDNode> PromOpHandles; 12321 for (auto &PromOp : PromOps) 12322 PromOpHandles.emplace_back(PromOp); 12323 12324 // Replace all operations (these are all the same, but have a different 12325 // (promoted) return type). DAG.getNode will validate that the types of 12326 // a binary operator match, so go through the list in reverse so that 12327 // we've likely promoted both operands first. 12328 while (!PromOpHandles.empty()) { 12329 SDValue PromOp = PromOpHandles.back().getValue(); 12330 PromOpHandles.pop_back(); 12331 12332 unsigned C; 12333 switch (PromOp.getOpcode()) { 12334 default: C = 0; break; 12335 case ISD::SELECT: C = 1; break; 12336 case ISD::SELECT_CC: C = 2; break; 12337 } 12338 12339 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12340 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12341 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12342 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12343 // The to-be-promoted operands of this node have not yet been 12344 // promoted (this should be rare because we're going through the 12345 // list backward, but if one of the operands has several users in 12346 // this cluster of to-be-promoted nodes, it is possible). 12347 PromOpHandles.emplace_front(PromOp); 12348 continue; 12349 } 12350 12351 // For SELECT and SELECT_CC nodes, we do a similar check for any 12352 // to-be-promoted comparison inputs. 12353 if (PromOp.getOpcode() == ISD::SELECT || 12354 PromOp.getOpcode() == ISD::SELECT_CC) { 12355 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12356 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12357 (SelectTruncOp[1].count(PromOp.getNode()) && 12358 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12359 PromOpHandles.emplace_front(PromOp); 12360 continue; 12361 } 12362 } 12363 12364 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12365 PromOp.getNode()->op_end()); 12366 12367 // If this node has constant inputs, then they'll need to be promoted here. 12368 for (unsigned i = 0; i < 2; ++i) { 12369 if (!isa<ConstantSDNode>(Ops[C+i])) 12370 continue; 12371 if (Ops[C+i].getValueType() == N->getValueType(0)) 12372 continue; 12373 12374 if (N->getOpcode() == ISD::SIGN_EXTEND) 12375 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12376 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12377 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12378 else 12379 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12380 } 12381 12382 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12383 // truncate them again to the original value type. 12384 if (PromOp.getOpcode() == ISD::SELECT || 12385 PromOp.getOpcode() == ISD::SELECT_CC) { 12386 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12387 if (SI0 != SelectTruncOp[0].end()) 12388 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12389 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12390 if (SI1 != SelectTruncOp[1].end()) 12391 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12392 } 12393 12394 DAG.ReplaceAllUsesOfValueWith(PromOp, 12395 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12396 } 12397 12398 // Now we're left with the initial extension itself. 12399 if (!ReallyNeedsExt) 12400 return N->getOperand(0); 12401 12402 // To zero extend, just mask off everything except for the first bit (in the 12403 // i1 case). 12404 if (N->getOpcode() == ISD::ZERO_EXTEND) 12405 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12406 DAG.getConstant(APInt::getLowBitsSet( 12407 N->getValueSizeInBits(0), PromBits), 12408 dl, N->getValueType(0))); 12409 12410 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12411 "Invalid extension type"); 12412 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12413 SDValue ShiftCst = 12414 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12415 return DAG.getNode( 12416 ISD::SRA, dl, N->getValueType(0), 12417 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12418 ShiftCst); 12419 } 12420 12421 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12422 DAGCombinerInfo &DCI) const { 12423 assert(N->getOpcode() == ISD::SETCC && 12424 "Should be called with a SETCC node"); 12425 12426 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12427 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12428 SDValue LHS = N->getOperand(0); 12429 SDValue RHS = N->getOperand(1); 12430 12431 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12432 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12433 LHS.hasOneUse()) 12434 std::swap(LHS, RHS); 12435 12436 // x == 0-y --> x+y == 0 12437 // x != 0-y --> x+y != 0 12438 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12439 RHS.hasOneUse()) { 12440 SDLoc DL(N); 12441 SelectionDAG &DAG = DCI.DAG; 12442 EVT VT = N->getValueType(0); 12443 EVT OpVT = LHS.getValueType(); 12444 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12445 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12446 } 12447 } 12448 12449 return DAGCombineTruncBoolExt(N, DCI); 12450 } 12451 12452 // Is this an extending load from an f32 to an f64? 12453 static bool isFPExtLoad(SDValue Op) { 12454 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12455 return LD->getExtensionType() == ISD::EXTLOAD && 12456 Op.getValueType() == MVT::f64; 12457 return false; 12458 } 12459 12460 /// Reduces the number of fp-to-int conversion when building a vector. 12461 /// 12462 /// If this vector is built out of floating to integer conversions, 12463 /// transform it to a vector built out of floating point values followed by a 12464 /// single floating to integer conversion of the vector. 12465 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12466 /// becomes (fptosi (build_vector ($A, $B, ...))) 12467 SDValue PPCTargetLowering:: 12468 combineElementTruncationToVectorTruncation(SDNode *N, 12469 DAGCombinerInfo &DCI) const { 12470 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12471 "Should be called with a BUILD_VECTOR node"); 12472 12473 SelectionDAG &DAG = DCI.DAG; 12474 SDLoc dl(N); 12475 12476 SDValue FirstInput = N->getOperand(0); 12477 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12478 "The input operand must be an fp-to-int conversion."); 12479 12480 // This combine happens after legalization so the fp_to_[su]i nodes are 12481 // already converted to PPCSISD nodes. 12482 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12483 if (FirstConversion == PPCISD::FCTIDZ || 12484 FirstConversion == PPCISD::FCTIDUZ || 12485 FirstConversion == PPCISD::FCTIWZ || 12486 FirstConversion == PPCISD::FCTIWUZ) { 12487 bool IsSplat = true; 12488 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12489 FirstConversion == PPCISD::FCTIWUZ; 12490 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12491 SmallVector<SDValue, 4> Ops; 12492 EVT TargetVT = N->getValueType(0); 12493 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12494 SDValue NextOp = N->getOperand(i); 12495 if (NextOp.getOpcode() != PPCISD::MFVSR) 12496 return SDValue(); 12497 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12498 if (NextConversion != FirstConversion) 12499 return SDValue(); 12500 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12501 // This is not valid if the input was originally double precision. It is 12502 // also not profitable to do unless this is an extending load in which 12503 // case doing this combine will allow us to combine consecutive loads. 12504 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12505 return SDValue(); 12506 if (N->getOperand(i) != FirstInput) 12507 IsSplat = false; 12508 } 12509 12510 // If this is a splat, we leave it as-is since there will be only a single 12511 // fp-to-int conversion followed by a splat of the integer. This is better 12512 // for 32-bit and smaller ints and neutral for 64-bit ints. 12513 if (IsSplat) 12514 return SDValue(); 12515 12516 // Now that we know we have the right type of node, get its operands 12517 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12518 SDValue In = N->getOperand(i).getOperand(0); 12519 if (Is32Bit) { 12520 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12521 // here, we know that all inputs are extending loads so this is safe). 12522 if (In.isUndef()) 12523 Ops.push_back(DAG.getUNDEF(SrcVT)); 12524 else { 12525 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12526 MVT::f32, In.getOperand(0), 12527 DAG.getIntPtrConstant(1, dl)); 12528 Ops.push_back(Trunc); 12529 } 12530 } else 12531 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12532 } 12533 12534 unsigned Opcode; 12535 if (FirstConversion == PPCISD::FCTIDZ || 12536 FirstConversion == PPCISD::FCTIWZ) 12537 Opcode = ISD::FP_TO_SINT; 12538 else 12539 Opcode = ISD::FP_TO_UINT; 12540 12541 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12542 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12543 return DAG.getNode(Opcode, dl, TargetVT, BV); 12544 } 12545 return SDValue(); 12546 } 12547 12548 /// Reduce the number of loads when building a vector. 12549 /// 12550 /// Building a vector out of multiple loads can be converted to a load 12551 /// of the vector type if the loads are consecutive. If the loads are 12552 /// consecutive but in descending order, a shuffle is added at the end 12553 /// to reorder the vector. 12554 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12555 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12556 "Should be called with a BUILD_VECTOR node"); 12557 12558 SDLoc dl(N); 12559 12560 // Return early for non byte-sized type, as they can't be consecutive. 12561 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12562 return SDValue(); 12563 12564 bool InputsAreConsecutiveLoads = true; 12565 bool InputsAreReverseConsecutive = true; 12566 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12567 SDValue FirstInput = N->getOperand(0); 12568 bool IsRoundOfExtLoad = false; 12569 12570 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12571 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12572 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12573 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12574 } 12575 // Not a build vector of (possibly fp_rounded) loads. 12576 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12577 N->getNumOperands() == 1) 12578 return SDValue(); 12579 12580 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12581 // If any inputs are fp_round(extload), they all must be. 12582 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12583 return SDValue(); 12584 12585 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12586 N->getOperand(i); 12587 if (NextInput.getOpcode() != ISD::LOAD) 12588 return SDValue(); 12589 12590 SDValue PreviousInput = 12591 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12592 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12593 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12594 12595 // If any inputs are fp_round(extload), they all must be. 12596 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12597 return SDValue(); 12598 12599 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12600 InputsAreConsecutiveLoads = false; 12601 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12602 InputsAreReverseConsecutive = false; 12603 12604 // Exit early if the loads are neither consecutive nor reverse consecutive. 12605 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12606 return SDValue(); 12607 } 12608 12609 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12610 "The loads cannot be both consecutive and reverse consecutive."); 12611 12612 SDValue FirstLoadOp = 12613 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12614 SDValue LastLoadOp = 12615 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12616 N->getOperand(N->getNumOperands()-1); 12617 12618 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12619 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12620 if (InputsAreConsecutiveLoads) { 12621 assert(LD1 && "Input needs to be a LoadSDNode."); 12622 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12623 LD1->getBasePtr(), LD1->getPointerInfo(), 12624 LD1->getAlignment()); 12625 } 12626 if (InputsAreReverseConsecutive) { 12627 assert(LDL && "Input needs to be a LoadSDNode."); 12628 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12629 LDL->getBasePtr(), LDL->getPointerInfo(), 12630 LDL->getAlignment()); 12631 SmallVector<int, 16> Ops; 12632 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12633 Ops.push_back(i); 12634 12635 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12636 DAG.getUNDEF(N->getValueType(0)), Ops); 12637 } 12638 return SDValue(); 12639 } 12640 12641 // This function adds the required vector_shuffle needed to get 12642 // the elements of the vector extract in the correct position 12643 // as specified by the CorrectElems encoding. 12644 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12645 SDValue Input, uint64_t Elems, 12646 uint64_t CorrectElems) { 12647 SDLoc dl(N); 12648 12649 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12650 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12651 12652 // Knowing the element indices being extracted from the original 12653 // vector and the order in which they're being inserted, just put 12654 // them at element indices required for the instruction. 12655 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12656 if (DAG.getDataLayout().isLittleEndian()) 12657 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12658 else 12659 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12660 CorrectElems = CorrectElems >> 8; 12661 Elems = Elems >> 8; 12662 } 12663 12664 SDValue Shuffle = 12665 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12666 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12667 12668 EVT Ty = N->getValueType(0); 12669 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12670 return BV; 12671 } 12672 12673 // Look for build vector patterns where input operands come from sign 12674 // extended vector_extract elements of specific indices. If the correct indices 12675 // aren't used, add a vector shuffle to fix up the indices and create a new 12676 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12677 // during instruction selection. 12678 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12679 // This array encodes the indices that the vector sign extend instructions 12680 // extract from when extending from one type to another for both BE and LE. 12681 // The right nibble of each byte corresponds to the LE incides. 12682 // and the left nibble of each byte corresponds to the BE incides. 12683 // For example: 0x3074B8FC byte->word 12684 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12685 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12686 // For example: 0x000070F8 byte->double word 12687 // For LE: the allowed indices are: 0x0,0x8 12688 // For BE: the allowed indices are: 0x7,0xF 12689 uint64_t TargetElems[] = { 12690 0x3074B8FC, // b->w 12691 0x000070F8, // b->d 12692 0x10325476, // h->w 12693 0x00003074, // h->d 12694 0x00001032, // w->d 12695 }; 12696 12697 uint64_t Elems = 0; 12698 int Index; 12699 SDValue Input; 12700 12701 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12702 if (!Op) 12703 return false; 12704 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12705 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12706 return false; 12707 12708 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12709 // of the right width. 12710 SDValue Extract = Op.getOperand(0); 12711 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12712 Extract = Extract.getOperand(0); 12713 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12714 return false; 12715 12716 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12717 if (!ExtOp) 12718 return false; 12719 12720 Index = ExtOp->getZExtValue(); 12721 if (Input && Input != Extract.getOperand(0)) 12722 return false; 12723 12724 if (!Input) 12725 Input = Extract.getOperand(0); 12726 12727 Elems = Elems << 8; 12728 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12729 Elems |= Index; 12730 12731 return true; 12732 }; 12733 12734 // If the build vector operands aren't sign extended vector extracts, 12735 // of the same input vector, then return. 12736 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12737 if (!isSExtOfVecExtract(N->getOperand(i))) { 12738 return SDValue(); 12739 } 12740 } 12741 12742 // If the vector extract indicies are not correct, add the appropriate 12743 // vector_shuffle. 12744 int TgtElemArrayIdx; 12745 int InputSize = Input.getValueType().getScalarSizeInBits(); 12746 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12747 if (InputSize + OutputSize == 40) 12748 TgtElemArrayIdx = 0; 12749 else if (InputSize + OutputSize == 72) 12750 TgtElemArrayIdx = 1; 12751 else if (InputSize + OutputSize == 48) 12752 TgtElemArrayIdx = 2; 12753 else if (InputSize + OutputSize == 80) 12754 TgtElemArrayIdx = 3; 12755 else if (InputSize + OutputSize == 96) 12756 TgtElemArrayIdx = 4; 12757 else 12758 return SDValue(); 12759 12760 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12761 CorrectElems = DAG.getDataLayout().isLittleEndian() 12762 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12763 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12764 if (Elems != CorrectElems) { 12765 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12766 } 12767 12768 // Regular lowering will catch cases where a shuffle is not needed. 12769 return SDValue(); 12770 } 12771 12772 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12773 DAGCombinerInfo &DCI) const { 12774 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12775 "Should be called with a BUILD_VECTOR node"); 12776 12777 SelectionDAG &DAG = DCI.DAG; 12778 SDLoc dl(N); 12779 12780 if (!Subtarget.hasVSX()) 12781 return SDValue(); 12782 12783 // The target independent DAG combiner will leave a build_vector of 12784 // float-to-int conversions intact. We can generate MUCH better code for 12785 // a float-to-int conversion of a vector of floats. 12786 SDValue FirstInput = N->getOperand(0); 12787 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12788 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12789 if (Reduced) 12790 return Reduced; 12791 } 12792 12793 // If we're building a vector out of consecutive loads, just load that 12794 // vector type. 12795 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12796 if (Reduced) 12797 return Reduced; 12798 12799 // If we're building a vector out of extended elements from another vector 12800 // we have P9 vector integer extend instructions. The code assumes legal 12801 // input types (i.e. it can't handle things like v4i16) so do not run before 12802 // legalization. 12803 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12804 Reduced = combineBVOfVecSExt(N, DAG); 12805 if (Reduced) 12806 return Reduced; 12807 } 12808 12809 12810 if (N->getValueType(0) != MVT::v2f64) 12811 return SDValue(); 12812 12813 // Looking for: 12814 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12815 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12816 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12817 return SDValue(); 12818 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12819 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12820 return SDValue(); 12821 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12822 return SDValue(); 12823 12824 SDValue Ext1 = FirstInput.getOperand(0); 12825 SDValue Ext2 = N->getOperand(1).getOperand(0); 12826 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12827 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12828 return SDValue(); 12829 12830 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12831 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12832 if (!Ext1Op || !Ext2Op) 12833 return SDValue(); 12834 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 12835 Ext1.getOperand(0) != Ext2.getOperand(0)) 12836 return SDValue(); 12837 12838 int FirstElem = Ext1Op->getZExtValue(); 12839 int SecondElem = Ext2Op->getZExtValue(); 12840 int SubvecIdx; 12841 if (FirstElem == 0 && SecondElem == 1) 12842 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12843 else if (FirstElem == 2 && SecondElem == 3) 12844 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12845 else 12846 return SDValue(); 12847 12848 SDValue SrcVec = Ext1.getOperand(0); 12849 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12850 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12851 return DAG.getNode(NodeType, dl, MVT::v2f64, 12852 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12853 } 12854 12855 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12856 DAGCombinerInfo &DCI) const { 12857 assert((N->getOpcode() == ISD::SINT_TO_FP || 12858 N->getOpcode() == ISD::UINT_TO_FP) && 12859 "Need an int -> FP conversion node here"); 12860 12861 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12862 return SDValue(); 12863 12864 SelectionDAG &DAG = DCI.DAG; 12865 SDLoc dl(N); 12866 SDValue Op(N, 0); 12867 12868 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12869 // from the hardware. 12870 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12871 return SDValue(); 12872 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12873 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12874 return SDValue(); 12875 12876 SDValue FirstOperand(Op.getOperand(0)); 12877 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12878 (FirstOperand.getValueType() == MVT::i8 || 12879 FirstOperand.getValueType() == MVT::i16); 12880 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12881 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12882 bool DstDouble = Op.getValueType() == MVT::f64; 12883 unsigned ConvOp = Signed ? 12884 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12885 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12886 SDValue WidthConst = 12887 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12888 dl, false); 12889 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12890 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12891 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12892 DAG.getVTList(MVT::f64, MVT::Other), 12893 Ops, MVT::i8, LDN->getMemOperand()); 12894 12895 // For signed conversion, we need to sign-extend the value in the VSR 12896 if (Signed) { 12897 SDValue ExtOps[] = { Ld, WidthConst }; 12898 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12899 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12900 } else 12901 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12902 } 12903 12904 12905 // For i32 intermediate values, unfortunately, the conversion functions 12906 // leave the upper 32 bits of the value are undefined. Within the set of 12907 // scalar instructions, we have no method for zero- or sign-extending the 12908 // value. Thus, we cannot handle i32 intermediate values here. 12909 if (Op.getOperand(0).getValueType() == MVT::i32) 12910 return SDValue(); 12911 12912 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12913 "UINT_TO_FP is supported only with FPCVT"); 12914 12915 // If we have FCFIDS, then use it when converting to single-precision. 12916 // Otherwise, convert to double-precision and then round. 12917 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12918 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12919 : PPCISD::FCFIDS) 12920 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12921 : PPCISD::FCFID); 12922 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12923 ? MVT::f32 12924 : MVT::f64; 12925 12926 // If we're converting from a float, to an int, and back to a float again, 12927 // then we don't need the store/load pair at all. 12928 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12929 Subtarget.hasFPCVT()) || 12930 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12931 SDValue Src = Op.getOperand(0).getOperand(0); 12932 if (Src.getValueType() == MVT::f32) { 12933 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12934 DCI.AddToWorklist(Src.getNode()); 12935 } else if (Src.getValueType() != MVT::f64) { 12936 // Make sure that we don't pick up a ppc_fp128 source value. 12937 return SDValue(); 12938 } 12939 12940 unsigned FCTOp = 12941 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12942 PPCISD::FCTIDUZ; 12943 12944 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12945 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12946 12947 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12948 FP = DAG.getNode(ISD::FP_ROUND, dl, 12949 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12950 DCI.AddToWorklist(FP.getNode()); 12951 } 12952 12953 return FP; 12954 } 12955 12956 return SDValue(); 12957 } 12958 12959 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12960 // builtins) into loads with swaps. 12961 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12962 DAGCombinerInfo &DCI) const { 12963 SelectionDAG &DAG = DCI.DAG; 12964 SDLoc dl(N); 12965 SDValue Chain; 12966 SDValue Base; 12967 MachineMemOperand *MMO; 12968 12969 switch (N->getOpcode()) { 12970 default: 12971 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12972 case ISD::LOAD: { 12973 LoadSDNode *LD = cast<LoadSDNode>(N); 12974 Chain = LD->getChain(); 12975 Base = LD->getBasePtr(); 12976 MMO = LD->getMemOperand(); 12977 // If the MMO suggests this isn't a load of a full vector, leave 12978 // things alone. For a built-in, we have to make the change for 12979 // correctness, so if there is a size problem that will be a bug. 12980 if (MMO->getSize() < 16) 12981 return SDValue(); 12982 break; 12983 } 12984 case ISD::INTRINSIC_W_CHAIN: { 12985 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12986 Chain = Intrin->getChain(); 12987 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12988 // us what we want. Get operand 2 instead. 12989 Base = Intrin->getOperand(2); 12990 MMO = Intrin->getMemOperand(); 12991 break; 12992 } 12993 } 12994 12995 MVT VecTy = N->getValueType(0).getSimpleVT(); 12996 12997 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12998 // aligned and the type is a vector with elements up to 4 bytes 12999 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13000 && VecTy.getScalarSizeInBits() <= 32 ) { 13001 return SDValue(); 13002 } 13003 13004 SDValue LoadOps[] = { Chain, Base }; 13005 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13006 DAG.getVTList(MVT::v2f64, MVT::Other), 13007 LoadOps, MVT::v2f64, MMO); 13008 13009 DCI.AddToWorklist(Load.getNode()); 13010 Chain = Load.getValue(1); 13011 SDValue Swap = DAG.getNode( 13012 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13013 DCI.AddToWorklist(Swap.getNode()); 13014 13015 // Add a bitcast if the resulting load type doesn't match v2f64. 13016 if (VecTy != MVT::v2f64) { 13017 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13018 DCI.AddToWorklist(N.getNode()); 13019 // Package {bitcast value, swap's chain} to match Load's shape. 13020 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13021 N, Swap.getValue(1)); 13022 } 13023 13024 return Swap; 13025 } 13026 13027 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13028 // builtins) into stores with swaps. 13029 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13030 DAGCombinerInfo &DCI) const { 13031 SelectionDAG &DAG = DCI.DAG; 13032 SDLoc dl(N); 13033 SDValue Chain; 13034 SDValue Base; 13035 unsigned SrcOpnd; 13036 MachineMemOperand *MMO; 13037 13038 switch (N->getOpcode()) { 13039 default: 13040 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13041 case ISD::STORE: { 13042 StoreSDNode *ST = cast<StoreSDNode>(N); 13043 Chain = ST->getChain(); 13044 Base = ST->getBasePtr(); 13045 MMO = ST->getMemOperand(); 13046 SrcOpnd = 1; 13047 // If the MMO suggests this isn't a store of a full vector, leave 13048 // things alone. For a built-in, we have to make the change for 13049 // correctness, so if there is a size problem that will be a bug. 13050 if (MMO->getSize() < 16) 13051 return SDValue(); 13052 break; 13053 } 13054 case ISD::INTRINSIC_VOID: { 13055 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13056 Chain = Intrin->getChain(); 13057 // Intrin->getBasePtr() oddly does not get what we want. 13058 Base = Intrin->getOperand(3); 13059 MMO = Intrin->getMemOperand(); 13060 SrcOpnd = 2; 13061 break; 13062 } 13063 } 13064 13065 SDValue Src = N->getOperand(SrcOpnd); 13066 MVT VecTy = Src.getValueType().getSimpleVT(); 13067 13068 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13069 // aligned and the type is a vector with elements up to 4 bytes 13070 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13071 && VecTy.getScalarSizeInBits() <= 32 ) { 13072 return SDValue(); 13073 } 13074 13075 // All stores are done as v2f64 and possible bit cast. 13076 if (VecTy != MVT::v2f64) { 13077 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13078 DCI.AddToWorklist(Src.getNode()); 13079 } 13080 13081 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13082 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13083 DCI.AddToWorklist(Swap.getNode()); 13084 Chain = Swap.getValue(1); 13085 SDValue StoreOps[] = { Chain, Swap, Base }; 13086 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13087 DAG.getVTList(MVT::Other), 13088 StoreOps, VecTy, MMO); 13089 DCI.AddToWorklist(Store.getNode()); 13090 return Store; 13091 } 13092 13093 // Handle DAG combine for STORE (FP_TO_INT F). 13094 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13095 DAGCombinerInfo &DCI) const { 13096 13097 SelectionDAG &DAG = DCI.DAG; 13098 SDLoc dl(N); 13099 unsigned Opcode = N->getOperand(1).getOpcode(); 13100 13101 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13102 && "Not a FP_TO_INT Instruction!"); 13103 13104 SDValue Val = N->getOperand(1).getOperand(0); 13105 EVT Op1VT = N->getOperand(1).getValueType(); 13106 EVT ResVT = Val.getValueType(); 13107 13108 // Floating point types smaller than 32 bits are not legal on Power. 13109 if (ResVT.getScalarSizeInBits() < 32) 13110 return SDValue(); 13111 13112 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13113 bool ValidTypeForStoreFltAsInt = 13114 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13115 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13116 13117 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13118 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13119 return SDValue(); 13120 13121 // Extend f32 values to f64 13122 if (ResVT.getScalarSizeInBits() == 32) { 13123 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13124 DCI.AddToWorklist(Val.getNode()); 13125 } 13126 13127 // Set signed or unsigned conversion opcode. 13128 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13129 PPCISD::FP_TO_SINT_IN_VSR : 13130 PPCISD::FP_TO_UINT_IN_VSR; 13131 13132 Val = DAG.getNode(ConvOpcode, 13133 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13134 DCI.AddToWorklist(Val.getNode()); 13135 13136 // Set number of bytes being converted. 13137 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13138 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13139 DAG.getIntPtrConstant(ByteSize, dl, false), 13140 DAG.getValueType(Op1VT) }; 13141 13142 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13143 DAG.getVTList(MVT::Other), Ops, 13144 cast<StoreSDNode>(N)->getMemoryVT(), 13145 cast<StoreSDNode>(N)->getMemOperand()); 13146 13147 DCI.AddToWorklist(Val.getNode()); 13148 return Val; 13149 } 13150 13151 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13152 LSBaseSDNode *LSBase, 13153 DAGCombinerInfo &DCI) const { 13154 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13155 "Not a reverse memop pattern!"); 13156 13157 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13158 auto Mask = SVN->getMask(); 13159 int i = 0; 13160 auto I = Mask.rbegin(); 13161 auto E = Mask.rend(); 13162 13163 for (; I != E; ++I) { 13164 if (*I != i) 13165 return false; 13166 i++; 13167 } 13168 return true; 13169 }; 13170 13171 SelectionDAG &DAG = DCI.DAG; 13172 EVT VT = SVN->getValueType(0); 13173 13174 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13175 return SDValue(); 13176 13177 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13178 // See comment in PPCVSXSwapRemoval.cpp. 13179 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13180 if (!Subtarget.hasP9Vector()) 13181 return SDValue(); 13182 13183 if(!IsElementReverse(SVN)) 13184 return SDValue(); 13185 13186 if (LSBase->getOpcode() == ISD::LOAD) { 13187 SDLoc dl(SVN); 13188 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13189 return DAG.getMemIntrinsicNode( 13190 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13191 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13192 } 13193 13194 if (LSBase->getOpcode() == ISD::STORE) { 13195 SDLoc dl(LSBase); 13196 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13197 LSBase->getBasePtr()}; 13198 return DAG.getMemIntrinsicNode( 13199 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13200 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13201 } 13202 13203 llvm_unreachable("Expected a load or store node here"); 13204 } 13205 13206 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13207 DAGCombinerInfo &DCI) const { 13208 SelectionDAG &DAG = DCI.DAG; 13209 SDLoc dl(N); 13210 switch (N->getOpcode()) { 13211 default: break; 13212 case ISD::ADD: 13213 return combineADD(N, DCI); 13214 case ISD::SHL: 13215 return combineSHL(N, DCI); 13216 case ISD::SRA: 13217 return combineSRA(N, DCI); 13218 case ISD::SRL: 13219 return combineSRL(N, DCI); 13220 case ISD::MUL: 13221 return combineMUL(N, DCI); 13222 case PPCISD::SHL: 13223 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13224 return N->getOperand(0); 13225 break; 13226 case PPCISD::SRL: 13227 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13228 return N->getOperand(0); 13229 break; 13230 case PPCISD::SRA: 13231 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13232 if (C->isNullValue() || // 0 >>s V -> 0. 13233 C->isAllOnesValue()) // -1 >>s V -> -1. 13234 return N->getOperand(0); 13235 } 13236 break; 13237 case ISD::SIGN_EXTEND: 13238 case ISD::ZERO_EXTEND: 13239 case ISD::ANY_EXTEND: 13240 return DAGCombineExtBoolTrunc(N, DCI); 13241 case ISD::TRUNCATE: 13242 return combineTRUNCATE(N, DCI); 13243 case ISD::SETCC: 13244 if (SDValue CSCC = combineSetCC(N, DCI)) 13245 return CSCC; 13246 LLVM_FALLTHROUGH; 13247 case ISD::SELECT_CC: 13248 return DAGCombineTruncBoolExt(N, DCI); 13249 case ISD::SINT_TO_FP: 13250 case ISD::UINT_TO_FP: 13251 return combineFPToIntToFP(N, DCI); 13252 case ISD::VECTOR_SHUFFLE: 13253 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13254 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13255 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13256 } 13257 break; 13258 case ISD::STORE: { 13259 13260 EVT Op1VT = N->getOperand(1).getValueType(); 13261 unsigned Opcode = N->getOperand(1).getOpcode(); 13262 13263 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13264 SDValue Val= combineStoreFPToInt(N, DCI); 13265 if (Val) 13266 return Val; 13267 } 13268 13269 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13270 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13271 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13272 if (Val) 13273 return Val; 13274 } 13275 13276 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13277 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13278 N->getOperand(1).getNode()->hasOneUse() && 13279 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13280 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13281 13282 // STBRX can only handle simple types and it makes no sense to store less 13283 // two bytes in byte-reversed order. 13284 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13285 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13286 break; 13287 13288 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13289 // Do an any-extend to 32-bits if this is a half-word input. 13290 if (BSwapOp.getValueType() == MVT::i16) 13291 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13292 13293 // If the type of BSWAP operand is wider than stored memory width 13294 // it need to be shifted to the right side before STBRX. 13295 if (Op1VT.bitsGT(mVT)) { 13296 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13297 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13298 DAG.getConstant(Shift, dl, MVT::i32)); 13299 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13300 if (Op1VT == MVT::i64) 13301 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13302 } 13303 13304 SDValue Ops[] = { 13305 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13306 }; 13307 return 13308 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13309 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13310 cast<StoreSDNode>(N)->getMemOperand()); 13311 } 13312 13313 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13314 // So it can increase the chance of CSE constant construction. 13315 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13316 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13317 // Need to sign-extended to 64-bits to handle negative values. 13318 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13319 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13320 MemVT.getSizeInBits()); 13321 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13322 13323 // DAG.getTruncStore() can't be used here because it doesn't accept 13324 // the general (base + offset) addressing mode. 13325 // So we use UpdateNodeOperands and setTruncatingStore instead. 13326 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13327 N->getOperand(3)); 13328 cast<StoreSDNode>(N)->setTruncatingStore(true); 13329 return SDValue(N, 0); 13330 } 13331 13332 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13333 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13334 if (Op1VT.isSimple()) { 13335 MVT StoreVT = Op1VT.getSimpleVT(); 13336 if (Subtarget.needsSwapsForVSXMemOps() && 13337 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13338 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13339 return expandVSXStoreForLE(N, DCI); 13340 } 13341 break; 13342 } 13343 case ISD::LOAD: { 13344 LoadSDNode *LD = cast<LoadSDNode>(N); 13345 EVT VT = LD->getValueType(0); 13346 13347 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13348 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13349 if (VT.isSimple()) { 13350 MVT LoadVT = VT.getSimpleVT(); 13351 if (Subtarget.needsSwapsForVSXMemOps() && 13352 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13353 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13354 return expandVSXLoadForLE(N, DCI); 13355 } 13356 13357 // We sometimes end up with a 64-bit integer load, from which we extract 13358 // two single-precision floating-point numbers. This happens with 13359 // std::complex<float>, and other similar structures, because of the way we 13360 // canonicalize structure copies. However, if we lack direct moves, 13361 // then the final bitcasts from the extracted integer values to the 13362 // floating-point numbers turn into store/load pairs. Even with direct moves, 13363 // just loading the two floating-point numbers is likely better. 13364 auto ReplaceTwoFloatLoad = [&]() { 13365 if (VT != MVT::i64) 13366 return false; 13367 13368 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13369 LD->isVolatile()) 13370 return false; 13371 13372 // We're looking for a sequence like this: 13373 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13374 // t16: i64 = srl t13, Constant:i32<32> 13375 // t17: i32 = truncate t16 13376 // t18: f32 = bitcast t17 13377 // t19: i32 = truncate t13 13378 // t20: f32 = bitcast t19 13379 13380 if (!LD->hasNUsesOfValue(2, 0)) 13381 return false; 13382 13383 auto UI = LD->use_begin(); 13384 while (UI.getUse().getResNo() != 0) ++UI; 13385 SDNode *Trunc = *UI++; 13386 while (UI.getUse().getResNo() != 0) ++UI; 13387 SDNode *RightShift = *UI; 13388 if (Trunc->getOpcode() != ISD::TRUNCATE) 13389 std::swap(Trunc, RightShift); 13390 13391 if (Trunc->getOpcode() != ISD::TRUNCATE || 13392 Trunc->getValueType(0) != MVT::i32 || 13393 !Trunc->hasOneUse()) 13394 return false; 13395 if (RightShift->getOpcode() != ISD::SRL || 13396 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13397 RightShift->getConstantOperandVal(1) != 32 || 13398 !RightShift->hasOneUse()) 13399 return false; 13400 13401 SDNode *Trunc2 = *RightShift->use_begin(); 13402 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13403 Trunc2->getValueType(0) != MVT::i32 || 13404 !Trunc2->hasOneUse()) 13405 return false; 13406 13407 SDNode *Bitcast = *Trunc->use_begin(); 13408 SDNode *Bitcast2 = *Trunc2->use_begin(); 13409 13410 if (Bitcast->getOpcode() != ISD::BITCAST || 13411 Bitcast->getValueType(0) != MVT::f32) 13412 return false; 13413 if (Bitcast2->getOpcode() != ISD::BITCAST || 13414 Bitcast2->getValueType(0) != MVT::f32) 13415 return false; 13416 13417 if (Subtarget.isLittleEndian()) 13418 std::swap(Bitcast, Bitcast2); 13419 13420 // Bitcast has the second float (in memory-layout order) and Bitcast2 13421 // has the first one. 13422 13423 SDValue BasePtr = LD->getBasePtr(); 13424 if (LD->isIndexed()) { 13425 assert(LD->getAddressingMode() == ISD::PRE_INC && 13426 "Non-pre-inc AM on PPC?"); 13427 BasePtr = 13428 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13429 LD->getOffset()); 13430 } 13431 13432 auto MMOFlags = 13433 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13434 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13435 LD->getPointerInfo(), LD->getAlignment(), 13436 MMOFlags, LD->getAAInfo()); 13437 SDValue AddPtr = 13438 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13439 BasePtr, DAG.getIntPtrConstant(4, dl)); 13440 SDValue FloatLoad2 = DAG.getLoad( 13441 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13442 LD->getPointerInfo().getWithOffset(4), 13443 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13444 13445 if (LD->isIndexed()) { 13446 // Note that DAGCombine should re-form any pre-increment load(s) from 13447 // what is produced here if that makes sense. 13448 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13449 } 13450 13451 DCI.CombineTo(Bitcast2, FloatLoad); 13452 DCI.CombineTo(Bitcast, FloatLoad2); 13453 13454 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13455 SDValue(FloatLoad2.getNode(), 1)); 13456 return true; 13457 }; 13458 13459 if (ReplaceTwoFloatLoad()) 13460 return SDValue(N, 0); 13461 13462 EVT MemVT = LD->getMemoryVT(); 13463 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13464 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13465 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13466 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13467 if (LD->isUnindexed() && VT.isVector() && 13468 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13469 // P8 and later hardware should just use LOAD. 13470 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13471 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13472 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13473 LD->getAlignment() >= ScalarABIAlignment)) && 13474 LD->getAlignment() < ABIAlignment) { 13475 // This is a type-legal unaligned Altivec or QPX load. 13476 SDValue Chain = LD->getChain(); 13477 SDValue Ptr = LD->getBasePtr(); 13478 bool isLittleEndian = Subtarget.isLittleEndian(); 13479 13480 // This implements the loading of unaligned vectors as described in 13481 // the venerable Apple Velocity Engine overview. Specifically: 13482 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13483 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13484 // 13485 // The general idea is to expand a sequence of one or more unaligned 13486 // loads into an alignment-based permutation-control instruction (lvsl 13487 // or lvsr), a series of regular vector loads (which always truncate 13488 // their input address to an aligned address), and a series of 13489 // permutations. The results of these permutations are the requested 13490 // loaded values. The trick is that the last "extra" load is not taken 13491 // from the address you might suspect (sizeof(vector) bytes after the 13492 // last requested load), but rather sizeof(vector) - 1 bytes after the 13493 // last requested vector. The point of this is to avoid a page fault if 13494 // the base address happened to be aligned. This works because if the 13495 // base address is aligned, then adding less than a full vector length 13496 // will cause the last vector in the sequence to be (re)loaded. 13497 // Otherwise, the next vector will be fetched as you might suspect was 13498 // necessary. 13499 13500 // We might be able to reuse the permutation generation from 13501 // a different base address offset from this one by an aligned amount. 13502 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13503 // optimization later. 13504 Intrinsic::ID Intr, IntrLD, IntrPerm; 13505 MVT PermCntlTy, PermTy, LDTy; 13506 if (Subtarget.hasAltivec()) { 13507 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13508 Intrinsic::ppc_altivec_lvsl; 13509 IntrLD = Intrinsic::ppc_altivec_lvx; 13510 IntrPerm = Intrinsic::ppc_altivec_vperm; 13511 PermCntlTy = MVT::v16i8; 13512 PermTy = MVT::v4i32; 13513 LDTy = MVT::v4i32; 13514 } else { 13515 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13516 Intrinsic::ppc_qpx_qvlpcls; 13517 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13518 Intrinsic::ppc_qpx_qvlfs; 13519 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13520 PermCntlTy = MVT::v4f64; 13521 PermTy = MVT::v4f64; 13522 LDTy = MemVT.getSimpleVT(); 13523 } 13524 13525 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13526 13527 // Create the new MMO for the new base load. It is like the original MMO, 13528 // but represents an area in memory almost twice the vector size centered 13529 // on the original address. If the address is unaligned, we might start 13530 // reading up to (sizeof(vector)-1) bytes below the address of the 13531 // original unaligned load. 13532 MachineFunction &MF = DAG.getMachineFunction(); 13533 MachineMemOperand *BaseMMO = 13534 MF.getMachineMemOperand(LD->getMemOperand(), 13535 -(long)MemVT.getStoreSize()+1, 13536 2*MemVT.getStoreSize()-1); 13537 13538 // Create the new base load. 13539 SDValue LDXIntID = 13540 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13541 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13542 SDValue BaseLoad = 13543 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13544 DAG.getVTList(PermTy, MVT::Other), 13545 BaseLoadOps, LDTy, BaseMMO); 13546 13547 // Note that the value of IncOffset (which is provided to the next 13548 // load's pointer info offset value, and thus used to calculate the 13549 // alignment), and the value of IncValue (which is actually used to 13550 // increment the pointer value) are different! This is because we 13551 // require the next load to appear to be aligned, even though it 13552 // is actually offset from the base pointer by a lesser amount. 13553 int IncOffset = VT.getSizeInBits() / 8; 13554 int IncValue = IncOffset; 13555 13556 // Walk (both up and down) the chain looking for another load at the real 13557 // (aligned) offset (the alignment of the other load does not matter in 13558 // this case). If found, then do not use the offset reduction trick, as 13559 // that will prevent the loads from being later combined (as they would 13560 // otherwise be duplicates). 13561 if (!findConsecutiveLoad(LD, DAG)) 13562 --IncValue; 13563 13564 SDValue Increment = 13565 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13566 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13567 13568 MachineMemOperand *ExtraMMO = 13569 MF.getMachineMemOperand(LD->getMemOperand(), 13570 1, 2*MemVT.getStoreSize()-1); 13571 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13572 SDValue ExtraLoad = 13573 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13574 DAG.getVTList(PermTy, MVT::Other), 13575 ExtraLoadOps, LDTy, ExtraMMO); 13576 13577 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13578 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13579 13580 // Because vperm has a big-endian bias, we must reverse the order 13581 // of the input vectors and complement the permute control vector 13582 // when generating little endian code. We have already handled the 13583 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13584 // and ExtraLoad here. 13585 SDValue Perm; 13586 if (isLittleEndian) 13587 Perm = BuildIntrinsicOp(IntrPerm, 13588 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13589 else 13590 Perm = BuildIntrinsicOp(IntrPerm, 13591 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13592 13593 if (VT != PermTy) 13594 Perm = Subtarget.hasAltivec() ? 13595 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13596 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13597 DAG.getTargetConstant(1, dl, MVT::i64)); 13598 // second argument is 1 because this rounding 13599 // is always exact. 13600 13601 // The output of the permutation is our loaded result, the TokenFactor is 13602 // our new chain. 13603 DCI.CombineTo(N, Perm, TF); 13604 return SDValue(N, 0); 13605 } 13606 } 13607 break; 13608 case ISD::INTRINSIC_WO_CHAIN: { 13609 bool isLittleEndian = Subtarget.isLittleEndian(); 13610 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13611 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13612 : Intrinsic::ppc_altivec_lvsl); 13613 if ((IID == Intr || 13614 IID == Intrinsic::ppc_qpx_qvlpcld || 13615 IID == Intrinsic::ppc_qpx_qvlpcls) && 13616 N->getOperand(1)->getOpcode() == ISD::ADD) { 13617 SDValue Add = N->getOperand(1); 13618 13619 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13620 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13621 13622 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13623 APInt::getAllOnesValue(Bits /* alignment */) 13624 .zext(Add.getScalarValueSizeInBits()))) { 13625 SDNode *BasePtr = Add->getOperand(0).getNode(); 13626 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13627 UE = BasePtr->use_end(); 13628 UI != UE; ++UI) { 13629 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13630 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13631 // We've found another LVSL/LVSR, and this address is an aligned 13632 // multiple of that one. The results will be the same, so use the 13633 // one we've just found instead. 13634 13635 return SDValue(*UI, 0); 13636 } 13637 } 13638 } 13639 13640 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13641 SDNode *BasePtr = Add->getOperand(0).getNode(); 13642 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13643 UE = BasePtr->use_end(); UI != UE; ++UI) { 13644 if (UI->getOpcode() == ISD::ADD && 13645 isa<ConstantSDNode>(UI->getOperand(1)) && 13646 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13647 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13648 (1ULL << Bits) == 0) { 13649 SDNode *OtherAdd = *UI; 13650 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13651 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13652 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13653 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13654 return SDValue(*VI, 0); 13655 } 13656 } 13657 } 13658 } 13659 } 13660 } 13661 13662 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13663 // Expose the vabsduw/h/b opportunity for down stream 13664 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13665 (IID == Intrinsic::ppc_altivec_vmaxsw || 13666 IID == Intrinsic::ppc_altivec_vmaxsh || 13667 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13668 SDValue V1 = N->getOperand(1); 13669 SDValue V2 = N->getOperand(2); 13670 if ((V1.getSimpleValueType() == MVT::v4i32 || 13671 V1.getSimpleValueType() == MVT::v8i16 || 13672 V1.getSimpleValueType() == MVT::v16i8) && 13673 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13674 // (0-a, a) 13675 if (V1.getOpcode() == ISD::SUB && 13676 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13677 V1.getOperand(1) == V2) { 13678 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 13679 } 13680 // (a, 0-a) 13681 if (V2.getOpcode() == ISD::SUB && 13682 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 13683 V2.getOperand(1) == V1) { 13684 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13685 } 13686 // (x-y, y-x) 13687 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 13688 V1.getOperand(0) == V2.getOperand(1) && 13689 V1.getOperand(1) == V2.getOperand(0)) { 13690 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13691 } 13692 } 13693 } 13694 } 13695 13696 break; 13697 case ISD::INTRINSIC_W_CHAIN: 13698 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13699 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13700 if (Subtarget.needsSwapsForVSXMemOps()) { 13701 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13702 default: 13703 break; 13704 case Intrinsic::ppc_vsx_lxvw4x: 13705 case Intrinsic::ppc_vsx_lxvd2x: 13706 return expandVSXLoadForLE(N, DCI); 13707 } 13708 } 13709 break; 13710 case ISD::INTRINSIC_VOID: 13711 // For little endian, VSX stores require generating xxswapd/stxvd2x. 13712 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13713 if (Subtarget.needsSwapsForVSXMemOps()) { 13714 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13715 default: 13716 break; 13717 case Intrinsic::ppc_vsx_stxvw4x: 13718 case Intrinsic::ppc_vsx_stxvd2x: 13719 return expandVSXStoreForLE(N, DCI); 13720 } 13721 } 13722 break; 13723 case ISD::BSWAP: 13724 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 13725 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 13726 N->getOperand(0).hasOneUse() && 13727 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 13728 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 13729 N->getValueType(0) == MVT::i64))) { 13730 SDValue Load = N->getOperand(0); 13731 LoadSDNode *LD = cast<LoadSDNode>(Load); 13732 // Create the byte-swapping load. 13733 SDValue Ops[] = { 13734 LD->getChain(), // Chain 13735 LD->getBasePtr(), // Ptr 13736 DAG.getValueType(N->getValueType(0)) // VT 13737 }; 13738 SDValue BSLoad = 13739 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 13740 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 13741 MVT::i64 : MVT::i32, MVT::Other), 13742 Ops, LD->getMemoryVT(), LD->getMemOperand()); 13743 13744 // If this is an i16 load, insert the truncate. 13745 SDValue ResVal = BSLoad; 13746 if (N->getValueType(0) == MVT::i16) 13747 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 13748 13749 // First, combine the bswap away. This makes the value produced by the 13750 // load dead. 13751 DCI.CombineTo(N, ResVal); 13752 13753 // Next, combine the load away, we give it a bogus result value but a real 13754 // chain result. The result value is dead because the bswap is dead. 13755 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 13756 13757 // Return N so it doesn't get rechecked! 13758 return SDValue(N, 0); 13759 } 13760 break; 13761 case PPCISD::VCMP: 13762 // If a VCMPo node already exists with exactly the same operands as this 13763 // node, use its result instead of this node (VCMPo computes both a CR6 and 13764 // a normal output). 13765 // 13766 if (!N->getOperand(0).hasOneUse() && 13767 !N->getOperand(1).hasOneUse() && 13768 !N->getOperand(2).hasOneUse()) { 13769 13770 // Scan all of the users of the LHS, looking for VCMPo's that match. 13771 SDNode *VCMPoNode = nullptr; 13772 13773 SDNode *LHSN = N->getOperand(0).getNode(); 13774 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 13775 UI != E; ++UI) 13776 if (UI->getOpcode() == PPCISD::VCMPo && 13777 UI->getOperand(1) == N->getOperand(1) && 13778 UI->getOperand(2) == N->getOperand(2) && 13779 UI->getOperand(0) == N->getOperand(0)) { 13780 VCMPoNode = *UI; 13781 break; 13782 } 13783 13784 // If there is no VCMPo node, or if the flag value has a single use, don't 13785 // transform this. 13786 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13787 break; 13788 13789 // Look at the (necessarily single) use of the flag value. If it has a 13790 // chain, this transformation is more complex. Note that multiple things 13791 // could use the value result, which we should ignore. 13792 SDNode *FlagUser = nullptr; 13793 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13794 FlagUser == nullptr; ++UI) { 13795 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13796 SDNode *User = *UI; 13797 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13798 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13799 FlagUser = User; 13800 break; 13801 } 13802 } 13803 } 13804 13805 // If the user is a MFOCRF instruction, we know this is safe. 13806 // Otherwise we give up for right now. 13807 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13808 return SDValue(VCMPoNode, 0); 13809 } 13810 break; 13811 case ISD::BRCOND: { 13812 SDValue Cond = N->getOperand(1); 13813 SDValue Target = N->getOperand(2); 13814 13815 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13816 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13817 Intrinsic::loop_decrement) { 13818 13819 // We now need to make the intrinsic dead (it cannot be instruction 13820 // selected). 13821 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13822 assert(Cond.getNode()->hasOneUse() && 13823 "Counter decrement has more than one use"); 13824 13825 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13826 N->getOperand(0), Target); 13827 } 13828 } 13829 break; 13830 case ISD::BR_CC: { 13831 // If this is a branch on an altivec predicate comparison, lower this so 13832 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13833 // lowering is done pre-legalize, because the legalizer lowers the predicate 13834 // compare down to code that is difficult to reassemble. 13835 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13836 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13837 13838 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13839 // value. If so, pass-through the AND to get to the intrinsic. 13840 if (LHS.getOpcode() == ISD::AND && 13841 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13842 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13843 Intrinsic::loop_decrement && 13844 isa<ConstantSDNode>(LHS.getOperand(1)) && 13845 !isNullConstant(LHS.getOperand(1))) 13846 LHS = LHS.getOperand(0); 13847 13848 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13849 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13850 Intrinsic::loop_decrement && 13851 isa<ConstantSDNode>(RHS)) { 13852 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13853 "Counter decrement comparison is not EQ or NE"); 13854 13855 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13856 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13857 (CC == ISD::SETNE && !Val); 13858 13859 // We now need to make the intrinsic dead (it cannot be instruction 13860 // selected). 13861 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13862 assert(LHS.getNode()->hasOneUse() && 13863 "Counter decrement has more than one use"); 13864 13865 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13866 N->getOperand(0), N->getOperand(4)); 13867 } 13868 13869 int CompareOpc; 13870 bool isDot; 13871 13872 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13873 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13874 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13875 assert(isDot && "Can't compare against a vector result!"); 13876 13877 // If this is a comparison against something other than 0/1, then we know 13878 // that the condition is never/always true. 13879 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13880 if (Val != 0 && Val != 1) { 13881 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13882 return N->getOperand(0); 13883 // Always !=, turn it into an unconditional branch. 13884 return DAG.getNode(ISD::BR, dl, MVT::Other, 13885 N->getOperand(0), N->getOperand(4)); 13886 } 13887 13888 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13889 13890 // Create the PPCISD altivec 'dot' comparison node. 13891 SDValue Ops[] = { 13892 LHS.getOperand(2), // LHS of compare 13893 LHS.getOperand(3), // RHS of compare 13894 DAG.getConstant(CompareOpc, dl, MVT::i32) 13895 }; 13896 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 13897 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 13898 13899 // Unpack the result based on how the target uses it. 13900 PPC::Predicate CompOpc; 13901 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 13902 default: // Can't happen, don't crash on invalid number though. 13903 case 0: // Branch on the value of the EQ bit of CR6. 13904 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 13905 break; 13906 case 1: // Branch on the inverted value of the EQ bit of CR6. 13907 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 13908 break; 13909 case 2: // Branch on the value of the LT bit of CR6. 13910 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 13911 break; 13912 case 3: // Branch on the inverted value of the LT bit of CR6. 13913 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 13914 break; 13915 } 13916 13917 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 13918 DAG.getConstant(CompOpc, dl, MVT::i32), 13919 DAG.getRegister(PPC::CR6, MVT::i32), 13920 N->getOperand(4), CompNode.getValue(1)); 13921 } 13922 break; 13923 } 13924 case ISD::BUILD_VECTOR: 13925 return DAGCombineBuildVector(N, DCI); 13926 case ISD::ABS: 13927 return combineABS(N, DCI); 13928 case ISD::VSELECT: 13929 return combineVSelect(N, DCI); 13930 } 13931 13932 return SDValue(); 13933 } 13934 13935 SDValue 13936 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 13937 SelectionDAG &DAG, 13938 SmallVectorImpl<SDNode *> &Created) const { 13939 // fold (sdiv X, pow2) 13940 EVT VT = N->getValueType(0); 13941 if (VT == MVT::i64 && !Subtarget.isPPC64()) 13942 return SDValue(); 13943 if ((VT != MVT::i32 && VT != MVT::i64) || 13944 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 13945 return SDValue(); 13946 13947 SDLoc DL(N); 13948 SDValue N0 = N->getOperand(0); 13949 13950 bool IsNegPow2 = (-Divisor).isPowerOf2(); 13951 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 13952 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 13953 13954 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 13955 Created.push_back(Op.getNode()); 13956 13957 if (IsNegPow2) { 13958 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13959 Created.push_back(Op.getNode()); 13960 } 13961 13962 return Op; 13963 } 13964 13965 //===----------------------------------------------------------------------===// 13966 // Inline Assembly Support 13967 //===----------------------------------------------------------------------===// 13968 13969 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13970 KnownBits &Known, 13971 const APInt &DemandedElts, 13972 const SelectionDAG &DAG, 13973 unsigned Depth) const { 13974 Known.resetAll(); 13975 switch (Op.getOpcode()) { 13976 default: break; 13977 case PPCISD::LBRX: { 13978 // lhbrx is known to have the top bits cleared out. 13979 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13980 Known.Zero = 0xFFFF0000; 13981 break; 13982 } 13983 case ISD::INTRINSIC_WO_CHAIN: { 13984 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13985 default: break; 13986 case Intrinsic::ppc_altivec_vcmpbfp_p: 13987 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13988 case Intrinsic::ppc_altivec_vcmpequb_p: 13989 case Intrinsic::ppc_altivec_vcmpequh_p: 13990 case Intrinsic::ppc_altivec_vcmpequw_p: 13991 case Intrinsic::ppc_altivec_vcmpequd_p: 13992 case Intrinsic::ppc_altivec_vcmpgefp_p: 13993 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13994 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13995 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13996 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13997 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13998 case Intrinsic::ppc_altivec_vcmpgtub_p: 13999 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14000 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14001 case Intrinsic::ppc_altivec_vcmpgtud_p: 14002 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14003 break; 14004 } 14005 } 14006 } 14007 } 14008 14009 unsigned PPCTargetLowering::getPrefLoopLogAlignment(MachineLoop *ML) const { 14010 switch (Subtarget.getDarwinDirective()) { 14011 default: break; 14012 case PPC::DIR_970: 14013 case PPC::DIR_PWR4: 14014 case PPC::DIR_PWR5: 14015 case PPC::DIR_PWR5X: 14016 case PPC::DIR_PWR6: 14017 case PPC::DIR_PWR6X: 14018 case PPC::DIR_PWR7: 14019 case PPC::DIR_PWR8: 14020 case PPC::DIR_PWR9: { 14021 if (!ML) 14022 break; 14023 14024 if (!DisableInnermostLoopAlign32) { 14025 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14026 // so that we can decrease cache misses and branch-prediction misses. 14027 // Actual alignment of the loop will depend on the hotness check and other 14028 // logic in alignBlocks. 14029 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14030 return 5; 14031 } 14032 14033 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14034 14035 // For small loops (between 5 and 8 instructions), align to a 32-byte 14036 // boundary so that the entire loop fits in one instruction-cache line. 14037 uint64_t LoopSize = 0; 14038 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14039 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14040 LoopSize += TII->getInstSizeInBytes(*J); 14041 if (LoopSize > 32) 14042 break; 14043 } 14044 14045 if (LoopSize > 16 && LoopSize <= 32) 14046 return 5; 14047 14048 break; 14049 } 14050 } 14051 14052 return TargetLowering::getPrefLoopLogAlignment(ML); 14053 } 14054 14055 /// getConstraintType - Given a constraint, return the type of 14056 /// constraint it is for this target. 14057 PPCTargetLowering::ConstraintType 14058 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14059 if (Constraint.size() == 1) { 14060 switch (Constraint[0]) { 14061 default: break; 14062 case 'b': 14063 case 'r': 14064 case 'f': 14065 case 'd': 14066 case 'v': 14067 case 'y': 14068 return C_RegisterClass; 14069 case 'Z': 14070 // FIXME: While Z does indicate a memory constraint, it specifically 14071 // indicates an r+r address (used in conjunction with the 'y' modifier 14072 // in the replacement string). Currently, we're forcing the base 14073 // register to be r0 in the asm printer (which is interpreted as zero) 14074 // and forming the complete address in the second register. This is 14075 // suboptimal. 14076 return C_Memory; 14077 } 14078 } else if (Constraint == "wc") { // individual CR bits. 14079 return C_RegisterClass; 14080 } else if (Constraint == "wa" || Constraint == "wd" || 14081 Constraint == "wf" || Constraint == "ws" || 14082 Constraint == "wi" || Constraint == "ww") { 14083 return C_RegisterClass; // VSX registers. 14084 } 14085 return TargetLowering::getConstraintType(Constraint); 14086 } 14087 14088 /// Examine constraint type and operand type and determine a weight value. 14089 /// This object must already have been set up with the operand type 14090 /// and the current alternative constraint selected. 14091 TargetLowering::ConstraintWeight 14092 PPCTargetLowering::getSingleConstraintMatchWeight( 14093 AsmOperandInfo &info, const char *constraint) const { 14094 ConstraintWeight weight = CW_Invalid; 14095 Value *CallOperandVal = info.CallOperandVal; 14096 // If we don't have a value, we can't do a match, 14097 // but allow it at the lowest weight. 14098 if (!CallOperandVal) 14099 return CW_Default; 14100 Type *type = CallOperandVal->getType(); 14101 14102 // Look at the constraint type. 14103 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14104 return CW_Register; // an individual CR bit. 14105 else if ((StringRef(constraint) == "wa" || 14106 StringRef(constraint) == "wd" || 14107 StringRef(constraint) == "wf") && 14108 type->isVectorTy()) 14109 return CW_Register; 14110 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14111 return CW_Register; // just hold 64-bit integers data. 14112 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14113 return CW_Register; 14114 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14115 return CW_Register; 14116 14117 switch (*constraint) { 14118 default: 14119 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14120 break; 14121 case 'b': 14122 if (type->isIntegerTy()) 14123 weight = CW_Register; 14124 break; 14125 case 'f': 14126 if (type->isFloatTy()) 14127 weight = CW_Register; 14128 break; 14129 case 'd': 14130 if (type->isDoubleTy()) 14131 weight = CW_Register; 14132 break; 14133 case 'v': 14134 if (type->isVectorTy()) 14135 weight = CW_Register; 14136 break; 14137 case 'y': 14138 weight = CW_Register; 14139 break; 14140 case 'Z': 14141 weight = CW_Memory; 14142 break; 14143 } 14144 return weight; 14145 } 14146 14147 std::pair<unsigned, const TargetRegisterClass *> 14148 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14149 StringRef Constraint, 14150 MVT VT) const { 14151 if (Constraint.size() == 1) { 14152 // GCC RS6000 Constraint Letters 14153 switch (Constraint[0]) { 14154 case 'b': // R1-R31 14155 if (VT == MVT::i64 && Subtarget.isPPC64()) 14156 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14157 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14158 case 'r': // R0-R31 14159 if (VT == MVT::i64 && Subtarget.isPPC64()) 14160 return std::make_pair(0U, &PPC::G8RCRegClass); 14161 return std::make_pair(0U, &PPC::GPRCRegClass); 14162 // 'd' and 'f' constraints are both defined to be "the floating point 14163 // registers", where one is for 32-bit and the other for 64-bit. We don't 14164 // really care overly much here so just give them all the same reg classes. 14165 case 'd': 14166 case 'f': 14167 if (Subtarget.hasSPE()) { 14168 if (VT == MVT::f32 || VT == MVT::i32) 14169 return std::make_pair(0U, &PPC::SPE4RCRegClass); 14170 if (VT == MVT::f64 || VT == MVT::i64) 14171 return std::make_pair(0U, &PPC::SPERCRegClass); 14172 } else { 14173 if (VT == MVT::f32 || VT == MVT::i32) 14174 return std::make_pair(0U, &PPC::F4RCRegClass); 14175 if (VT == MVT::f64 || VT == MVT::i64) 14176 return std::make_pair(0U, &PPC::F8RCRegClass); 14177 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14178 return std::make_pair(0U, &PPC::QFRCRegClass); 14179 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14180 return std::make_pair(0U, &PPC::QSRCRegClass); 14181 } 14182 break; 14183 case 'v': 14184 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14185 return std::make_pair(0U, &PPC::QFRCRegClass); 14186 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14187 return std::make_pair(0U, &PPC::QSRCRegClass); 14188 if (Subtarget.hasAltivec()) 14189 return std::make_pair(0U, &PPC::VRRCRegClass); 14190 break; 14191 case 'y': // crrc 14192 return std::make_pair(0U, &PPC::CRRCRegClass); 14193 } 14194 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14195 // An individual CR bit. 14196 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14197 } else if ((Constraint == "wa" || Constraint == "wd" || 14198 Constraint == "wf" || Constraint == "wi") && 14199 Subtarget.hasVSX()) { 14200 return std::make_pair(0U, &PPC::VSRCRegClass); 14201 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14202 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14203 return std::make_pair(0U, &PPC::VSSRCRegClass); 14204 else 14205 return std::make_pair(0U, &PPC::VSFRCRegClass); 14206 } 14207 14208 std::pair<unsigned, const TargetRegisterClass *> R = 14209 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14210 14211 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14212 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14213 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14214 // register. 14215 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14216 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14217 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14218 PPC::GPRCRegClass.contains(R.first)) 14219 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14220 PPC::sub_32, &PPC::G8RCRegClass), 14221 &PPC::G8RCRegClass); 14222 14223 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14224 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14225 R.first = PPC::CR0; 14226 R.second = &PPC::CRRCRegClass; 14227 } 14228 14229 return R; 14230 } 14231 14232 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14233 /// vector. If it is invalid, don't add anything to Ops. 14234 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14235 std::string &Constraint, 14236 std::vector<SDValue>&Ops, 14237 SelectionDAG &DAG) const { 14238 SDValue Result; 14239 14240 // Only support length 1 constraints. 14241 if (Constraint.length() > 1) return; 14242 14243 char Letter = Constraint[0]; 14244 switch (Letter) { 14245 default: break; 14246 case 'I': 14247 case 'J': 14248 case 'K': 14249 case 'L': 14250 case 'M': 14251 case 'N': 14252 case 'O': 14253 case 'P': { 14254 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14255 if (!CST) return; // Must be an immediate to match. 14256 SDLoc dl(Op); 14257 int64_t Value = CST->getSExtValue(); 14258 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14259 // numbers are printed as such. 14260 switch (Letter) { 14261 default: llvm_unreachable("Unknown constraint letter!"); 14262 case 'I': // "I" is a signed 16-bit constant. 14263 if (isInt<16>(Value)) 14264 Result = DAG.getTargetConstant(Value, dl, TCVT); 14265 break; 14266 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14267 if (isShiftedUInt<16, 16>(Value)) 14268 Result = DAG.getTargetConstant(Value, dl, TCVT); 14269 break; 14270 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14271 if (isShiftedInt<16, 16>(Value)) 14272 Result = DAG.getTargetConstant(Value, dl, TCVT); 14273 break; 14274 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14275 if (isUInt<16>(Value)) 14276 Result = DAG.getTargetConstant(Value, dl, TCVT); 14277 break; 14278 case 'M': // "M" is a constant that is greater than 31. 14279 if (Value > 31) 14280 Result = DAG.getTargetConstant(Value, dl, TCVT); 14281 break; 14282 case 'N': // "N" is a positive constant that is an exact power of two. 14283 if (Value > 0 && isPowerOf2_64(Value)) 14284 Result = DAG.getTargetConstant(Value, dl, TCVT); 14285 break; 14286 case 'O': // "O" is the constant zero. 14287 if (Value == 0) 14288 Result = DAG.getTargetConstant(Value, dl, TCVT); 14289 break; 14290 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14291 if (isInt<16>(-Value)) 14292 Result = DAG.getTargetConstant(Value, dl, TCVT); 14293 break; 14294 } 14295 break; 14296 } 14297 } 14298 14299 if (Result.getNode()) { 14300 Ops.push_back(Result); 14301 return; 14302 } 14303 14304 // Handle standard constraint letters. 14305 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14306 } 14307 14308 // isLegalAddressingMode - Return true if the addressing mode represented 14309 // by AM is legal for this target, for a load/store of the specified type. 14310 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14311 const AddrMode &AM, Type *Ty, 14312 unsigned AS, Instruction *I) const { 14313 // PPC does not allow r+i addressing modes for vectors! 14314 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14315 return false; 14316 14317 // PPC allows a sign-extended 16-bit immediate field. 14318 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14319 return false; 14320 14321 // No global is ever allowed as a base. 14322 if (AM.BaseGV) 14323 return false; 14324 14325 // PPC only support r+r, 14326 switch (AM.Scale) { 14327 case 0: // "r+i" or just "i", depending on HasBaseReg. 14328 break; 14329 case 1: 14330 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14331 return false; 14332 // Otherwise we have r+r or r+i. 14333 break; 14334 case 2: 14335 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14336 return false; 14337 // Allow 2*r as r+r. 14338 break; 14339 default: 14340 // No other scales are supported. 14341 return false; 14342 } 14343 14344 return true; 14345 } 14346 14347 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14348 SelectionDAG &DAG) const { 14349 MachineFunction &MF = DAG.getMachineFunction(); 14350 MachineFrameInfo &MFI = MF.getFrameInfo(); 14351 MFI.setReturnAddressIsTaken(true); 14352 14353 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14354 return SDValue(); 14355 14356 SDLoc dl(Op); 14357 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14358 14359 // Make sure the function does not optimize away the store of the RA to 14360 // the stack. 14361 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14362 FuncInfo->setLRStoreRequired(); 14363 bool isPPC64 = Subtarget.isPPC64(); 14364 auto PtrVT = getPointerTy(MF.getDataLayout()); 14365 14366 if (Depth > 0) { 14367 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14368 SDValue Offset = 14369 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14370 isPPC64 ? MVT::i64 : MVT::i32); 14371 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14372 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14373 MachinePointerInfo()); 14374 } 14375 14376 // Just load the return address off the stack. 14377 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14378 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14379 MachinePointerInfo()); 14380 } 14381 14382 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14383 SelectionDAG &DAG) const { 14384 SDLoc dl(Op); 14385 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14386 14387 MachineFunction &MF = DAG.getMachineFunction(); 14388 MachineFrameInfo &MFI = MF.getFrameInfo(); 14389 MFI.setFrameAddressIsTaken(true); 14390 14391 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14392 bool isPPC64 = PtrVT == MVT::i64; 14393 14394 // Naked functions never have a frame pointer, and so we use r1. For all 14395 // other functions, this decision must be delayed until during PEI. 14396 unsigned FrameReg; 14397 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14398 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14399 else 14400 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14401 14402 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14403 PtrVT); 14404 while (Depth--) 14405 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14406 FrameAddr, MachinePointerInfo()); 14407 return FrameAddr; 14408 } 14409 14410 // FIXME? Maybe this could be a TableGen attribute on some registers and 14411 // this table could be generated automatically from RegInfo. 14412 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14413 SelectionDAG &DAG) const { 14414 bool isPPC64 = Subtarget.isPPC64(); 14415 bool isDarwinABI = Subtarget.isDarwinABI(); 14416 14417 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14418 (!isPPC64 && VT != MVT::i32)) 14419 report_fatal_error("Invalid register global variable type"); 14420 14421 bool is64Bit = isPPC64 && VT == MVT::i64; 14422 unsigned Reg = StringSwitch<unsigned>(RegName) 14423 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14424 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 14425 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 14426 (is64Bit ? PPC::X13 : PPC::R13)) 14427 .Default(0); 14428 14429 if (Reg) 14430 return Reg; 14431 report_fatal_error("Invalid register name global variable"); 14432 } 14433 14434 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14435 // 32-bit SVR4 ABI access everything as got-indirect. 14436 if (Subtarget.is32BitELFABI()) 14437 return true; 14438 14439 // AIX accesses everything indirectly through the TOC, which is similar to 14440 // the GOT. 14441 if (Subtarget.isAIXABI()) 14442 return true; 14443 14444 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14445 // If it is small or large code model, module locals are accessed 14446 // indirectly by loading their address from .toc/.got. 14447 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14448 return true; 14449 14450 // JumpTable and BlockAddress are accessed as got-indirect. 14451 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14452 return true; 14453 14454 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 14455 const GlobalValue *GV = G->getGlobal(); 14456 unsigned char GVFlags = Subtarget.classifyGlobalReference(GV); 14457 // The NLP flag indicates that a global access has to use an 14458 // extra indirection. 14459 if (GVFlags & PPCII::MO_NLP_FLAG) 14460 return true; 14461 } 14462 14463 return false; 14464 } 14465 14466 bool 14467 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14468 // The PowerPC target isn't yet aware of offsets. 14469 return false; 14470 } 14471 14472 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14473 const CallInst &I, 14474 MachineFunction &MF, 14475 unsigned Intrinsic) const { 14476 switch (Intrinsic) { 14477 case Intrinsic::ppc_qpx_qvlfd: 14478 case Intrinsic::ppc_qpx_qvlfs: 14479 case Intrinsic::ppc_qpx_qvlfcd: 14480 case Intrinsic::ppc_qpx_qvlfcs: 14481 case Intrinsic::ppc_qpx_qvlfiwa: 14482 case Intrinsic::ppc_qpx_qvlfiwz: 14483 case Intrinsic::ppc_altivec_lvx: 14484 case Intrinsic::ppc_altivec_lvxl: 14485 case Intrinsic::ppc_altivec_lvebx: 14486 case Intrinsic::ppc_altivec_lvehx: 14487 case Intrinsic::ppc_altivec_lvewx: 14488 case Intrinsic::ppc_vsx_lxvd2x: 14489 case Intrinsic::ppc_vsx_lxvw4x: { 14490 EVT VT; 14491 switch (Intrinsic) { 14492 case Intrinsic::ppc_altivec_lvebx: 14493 VT = MVT::i8; 14494 break; 14495 case Intrinsic::ppc_altivec_lvehx: 14496 VT = MVT::i16; 14497 break; 14498 case Intrinsic::ppc_altivec_lvewx: 14499 VT = MVT::i32; 14500 break; 14501 case Intrinsic::ppc_vsx_lxvd2x: 14502 VT = MVT::v2f64; 14503 break; 14504 case Intrinsic::ppc_qpx_qvlfd: 14505 VT = MVT::v4f64; 14506 break; 14507 case Intrinsic::ppc_qpx_qvlfs: 14508 VT = MVT::v4f32; 14509 break; 14510 case Intrinsic::ppc_qpx_qvlfcd: 14511 VT = MVT::v2f64; 14512 break; 14513 case Intrinsic::ppc_qpx_qvlfcs: 14514 VT = MVT::v2f32; 14515 break; 14516 default: 14517 VT = MVT::v4i32; 14518 break; 14519 } 14520 14521 Info.opc = ISD::INTRINSIC_W_CHAIN; 14522 Info.memVT = VT; 14523 Info.ptrVal = I.getArgOperand(0); 14524 Info.offset = -VT.getStoreSize()+1; 14525 Info.size = 2*VT.getStoreSize()-1; 14526 Info.align = Align(1); 14527 Info.flags = MachineMemOperand::MOLoad; 14528 return true; 14529 } 14530 case Intrinsic::ppc_qpx_qvlfda: 14531 case Intrinsic::ppc_qpx_qvlfsa: 14532 case Intrinsic::ppc_qpx_qvlfcda: 14533 case Intrinsic::ppc_qpx_qvlfcsa: 14534 case Intrinsic::ppc_qpx_qvlfiwaa: 14535 case Intrinsic::ppc_qpx_qvlfiwza: { 14536 EVT VT; 14537 switch (Intrinsic) { 14538 case Intrinsic::ppc_qpx_qvlfda: 14539 VT = MVT::v4f64; 14540 break; 14541 case Intrinsic::ppc_qpx_qvlfsa: 14542 VT = MVT::v4f32; 14543 break; 14544 case Intrinsic::ppc_qpx_qvlfcda: 14545 VT = MVT::v2f64; 14546 break; 14547 case Intrinsic::ppc_qpx_qvlfcsa: 14548 VT = MVT::v2f32; 14549 break; 14550 default: 14551 VT = MVT::v4i32; 14552 break; 14553 } 14554 14555 Info.opc = ISD::INTRINSIC_W_CHAIN; 14556 Info.memVT = VT; 14557 Info.ptrVal = I.getArgOperand(0); 14558 Info.offset = 0; 14559 Info.size = VT.getStoreSize(); 14560 Info.align = Align(1); 14561 Info.flags = MachineMemOperand::MOLoad; 14562 return true; 14563 } 14564 case Intrinsic::ppc_qpx_qvstfd: 14565 case Intrinsic::ppc_qpx_qvstfs: 14566 case Intrinsic::ppc_qpx_qvstfcd: 14567 case Intrinsic::ppc_qpx_qvstfcs: 14568 case Intrinsic::ppc_qpx_qvstfiw: 14569 case Intrinsic::ppc_altivec_stvx: 14570 case Intrinsic::ppc_altivec_stvxl: 14571 case Intrinsic::ppc_altivec_stvebx: 14572 case Intrinsic::ppc_altivec_stvehx: 14573 case Intrinsic::ppc_altivec_stvewx: 14574 case Intrinsic::ppc_vsx_stxvd2x: 14575 case Intrinsic::ppc_vsx_stxvw4x: { 14576 EVT VT; 14577 switch (Intrinsic) { 14578 case Intrinsic::ppc_altivec_stvebx: 14579 VT = MVT::i8; 14580 break; 14581 case Intrinsic::ppc_altivec_stvehx: 14582 VT = MVT::i16; 14583 break; 14584 case Intrinsic::ppc_altivec_stvewx: 14585 VT = MVT::i32; 14586 break; 14587 case Intrinsic::ppc_vsx_stxvd2x: 14588 VT = MVT::v2f64; 14589 break; 14590 case Intrinsic::ppc_qpx_qvstfd: 14591 VT = MVT::v4f64; 14592 break; 14593 case Intrinsic::ppc_qpx_qvstfs: 14594 VT = MVT::v4f32; 14595 break; 14596 case Intrinsic::ppc_qpx_qvstfcd: 14597 VT = MVT::v2f64; 14598 break; 14599 case Intrinsic::ppc_qpx_qvstfcs: 14600 VT = MVT::v2f32; 14601 break; 14602 default: 14603 VT = MVT::v4i32; 14604 break; 14605 } 14606 14607 Info.opc = ISD::INTRINSIC_VOID; 14608 Info.memVT = VT; 14609 Info.ptrVal = I.getArgOperand(1); 14610 Info.offset = -VT.getStoreSize()+1; 14611 Info.size = 2*VT.getStoreSize()-1; 14612 Info.align = Align(1); 14613 Info.flags = MachineMemOperand::MOStore; 14614 return true; 14615 } 14616 case Intrinsic::ppc_qpx_qvstfda: 14617 case Intrinsic::ppc_qpx_qvstfsa: 14618 case Intrinsic::ppc_qpx_qvstfcda: 14619 case Intrinsic::ppc_qpx_qvstfcsa: 14620 case Intrinsic::ppc_qpx_qvstfiwa: { 14621 EVT VT; 14622 switch (Intrinsic) { 14623 case Intrinsic::ppc_qpx_qvstfda: 14624 VT = MVT::v4f64; 14625 break; 14626 case Intrinsic::ppc_qpx_qvstfsa: 14627 VT = MVT::v4f32; 14628 break; 14629 case Intrinsic::ppc_qpx_qvstfcda: 14630 VT = MVT::v2f64; 14631 break; 14632 case Intrinsic::ppc_qpx_qvstfcsa: 14633 VT = MVT::v2f32; 14634 break; 14635 default: 14636 VT = MVT::v4i32; 14637 break; 14638 } 14639 14640 Info.opc = ISD::INTRINSIC_VOID; 14641 Info.memVT = VT; 14642 Info.ptrVal = I.getArgOperand(1); 14643 Info.offset = 0; 14644 Info.size = VT.getStoreSize(); 14645 Info.align = Align(1); 14646 Info.flags = MachineMemOperand::MOStore; 14647 return true; 14648 } 14649 default: 14650 break; 14651 } 14652 14653 return false; 14654 } 14655 14656 /// getOptimalMemOpType - Returns the target specific optimal type for load 14657 /// and store operations as a result of memset, memcpy, and memmove 14658 /// lowering. If DstAlign is zero that means it's safe to destination 14659 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14660 /// means there isn't a need to check it against alignment requirement, 14661 /// probably because the source does not need to be loaded. If 'IsMemset' is 14662 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14663 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14664 /// source is constant so it does not need to be loaded. 14665 /// It returns EVT::Other if the type should be determined using generic 14666 /// target-independent logic. 14667 EVT PPCTargetLowering::getOptimalMemOpType( 14668 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 14669 bool ZeroMemset, bool MemcpyStrSrc, 14670 const AttributeList &FuncAttributes) const { 14671 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 14672 // When expanding a memset, require at least two QPX instructions to cover 14673 // the cost of loading the value to be stored from the constant pool. 14674 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 14675 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 14676 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 14677 return MVT::v4f64; 14678 } 14679 14680 // We should use Altivec/VSX loads and stores when available. For unaligned 14681 // addresses, unaligned VSX loads are only fast starting with the P8. 14682 if (Subtarget.hasAltivec() && Size >= 16 && 14683 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 14684 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 14685 return MVT::v4i32; 14686 } 14687 14688 if (Subtarget.isPPC64()) { 14689 return MVT::i64; 14690 } 14691 14692 return MVT::i32; 14693 } 14694 14695 /// Returns true if it is beneficial to convert a load of a constant 14696 /// to just the constant itself. 14697 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 14698 Type *Ty) const { 14699 assert(Ty->isIntegerTy()); 14700 14701 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 14702 return !(BitSize == 0 || BitSize > 64); 14703 } 14704 14705 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 14706 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 14707 return false; 14708 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 14709 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 14710 return NumBits1 == 64 && NumBits2 == 32; 14711 } 14712 14713 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 14714 if (!VT1.isInteger() || !VT2.isInteger()) 14715 return false; 14716 unsigned NumBits1 = VT1.getSizeInBits(); 14717 unsigned NumBits2 = VT2.getSizeInBits(); 14718 return NumBits1 == 64 && NumBits2 == 32; 14719 } 14720 14721 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 14722 // Generally speaking, zexts are not free, but they are free when they can be 14723 // folded with other operations. 14724 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 14725 EVT MemVT = LD->getMemoryVT(); 14726 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 14727 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 14728 (LD->getExtensionType() == ISD::NON_EXTLOAD || 14729 LD->getExtensionType() == ISD::ZEXTLOAD)) 14730 return true; 14731 } 14732 14733 // FIXME: Add other cases... 14734 // - 32-bit shifts with a zext to i64 14735 // - zext after ctlz, bswap, etc. 14736 // - zext after and by a constant mask 14737 14738 return TargetLowering::isZExtFree(Val, VT2); 14739 } 14740 14741 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 14742 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 14743 "invalid fpext types"); 14744 // Extending to float128 is not free. 14745 if (DestVT == MVT::f128) 14746 return false; 14747 return true; 14748 } 14749 14750 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 14751 return isInt<16>(Imm) || isUInt<16>(Imm); 14752 } 14753 14754 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 14755 return isInt<16>(Imm) || isUInt<16>(Imm); 14756 } 14757 14758 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 14759 unsigned, 14760 unsigned, 14761 MachineMemOperand::Flags, 14762 bool *Fast) const { 14763 if (DisablePPCUnaligned) 14764 return false; 14765 14766 // PowerPC supports unaligned memory access for simple non-vector types. 14767 // Although accessing unaligned addresses is not as efficient as accessing 14768 // aligned addresses, it is generally more efficient than manual expansion, 14769 // and generally only traps for software emulation when crossing page 14770 // boundaries. 14771 14772 if (!VT.isSimple()) 14773 return false; 14774 14775 if (VT.getSimpleVT().isVector()) { 14776 if (Subtarget.hasVSX()) { 14777 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 14778 VT != MVT::v4f32 && VT != MVT::v4i32) 14779 return false; 14780 } else { 14781 return false; 14782 } 14783 } 14784 14785 if (VT == MVT::ppcf128) 14786 return false; 14787 14788 if (Fast) 14789 *Fast = true; 14790 14791 return true; 14792 } 14793 14794 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 14795 VT = VT.getScalarType(); 14796 14797 if (!VT.isSimple()) 14798 return false; 14799 14800 switch (VT.getSimpleVT().SimpleTy) { 14801 case MVT::f32: 14802 case MVT::f64: 14803 return true; 14804 case MVT::f128: 14805 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 14806 default: 14807 break; 14808 } 14809 14810 return false; 14811 } 14812 14813 const MCPhysReg * 14814 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 14815 // LR is a callee-save register, but we must treat it as clobbered by any call 14816 // site. Hence we include LR in the scratch registers, which are in turn added 14817 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 14818 // to CTR, which is used by any indirect call. 14819 static const MCPhysReg ScratchRegs[] = { 14820 PPC::X12, PPC::LR8, PPC::CTR8, 0 14821 }; 14822 14823 return ScratchRegs; 14824 } 14825 14826 unsigned PPCTargetLowering::getExceptionPointerRegister( 14827 const Constant *PersonalityFn) const { 14828 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14829 } 14830 14831 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14832 const Constant *PersonalityFn) const { 14833 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14834 } 14835 14836 bool 14837 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14838 EVT VT , unsigned DefinedValues) const { 14839 if (VT == MVT::v2i64) 14840 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14841 14842 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14843 return true; 14844 14845 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14846 } 14847 14848 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14849 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14850 return TargetLowering::getSchedulingPreference(N); 14851 14852 return Sched::ILP; 14853 } 14854 14855 // Create a fast isel object. 14856 FastISel * 14857 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14858 const TargetLibraryInfo *LibInfo) const { 14859 return PPC::createFastISel(FuncInfo, LibInfo); 14860 } 14861 14862 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14863 if (Subtarget.isDarwinABI()) return; 14864 if (!Subtarget.isPPC64()) return; 14865 14866 // Update IsSplitCSR in PPCFunctionInfo 14867 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14868 PFI->setIsSplitCSR(true); 14869 } 14870 14871 void PPCTargetLowering::insertCopiesSplitCSR( 14872 MachineBasicBlock *Entry, 14873 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14874 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14875 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14876 if (!IStart) 14877 return; 14878 14879 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14880 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14881 MachineBasicBlock::iterator MBBI = Entry->begin(); 14882 for (const MCPhysReg *I = IStart; *I; ++I) { 14883 const TargetRegisterClass *RC = nullptr; 14884 if (PPC::G8RCRegClass.contains(*I)) 14885 RC = &PPC::G8RCRegClass; 14886 else if (PPC::F8RCRegClass.contains(*I)) 14887 RC = &PPC::F8RCRegClass; 14888 else if (PPC::CRRCRegClass.contains(*I)) 14889 RC = &PPC::CRRCRegClass; 14890 else if (PPC::VRRCRegClass.contains(*I)) 14891 RC = &PPC::VRRCRegClass; 14892 else 14893 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14894 14895 Register NewVR = MRI->createVirtualRegister(RC); 14896 // Create copy from CSR to a virtual register. 14897 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14898 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14899 // nounwind. If we want to generalize this later, we may need to emit 14900 // CFI pseudo-instructions. 14901 assert(Entry->getParent()->getFunction().hasFnAttribute( 14902 Attribute::NoUnwind) && 14903 "Function should be nounwind in insertCopiesSplitCSR!"); 14904 Entry->addLiveIn(*I); 14905 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14906 .addReg(*I); 14907 14908 // Insert the copy-back instructions right before the terminator. 14909 for (auto *Exit : Exits) 14910 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14911 TII->get(TargetOpcode::COPY), *I) 14912 .addReg(NewVR); 14913 } 14914 } 14915 14916 // Override to enable LOAD_STACK_GUARD lowering on Linux. 14917 bool PPCTargetLowering::useLoadStackGuardNode() const { 14918 if (!Subtarget.isTargetLinux()) 14919 return TargetLowering::useLoadStackGuardNode(); 14920 return true; 14921 } 14922 14923 // Override to disable global variable loading on Linux. 14924 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 14925 if (!Subtarget.isTargetLinux()) 14926 return TargetLowering::insertSSPDeclarations(M); 14927 } 14928 14929 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 14930 bool ForCodeSize) const { 14931 if (!VT.isSimple() || !Subtarget.hasVSX()) 14932 return false; 14933 14934 switch(VT.getSimpleVT().SimpleTy) { 14935 default: 14936 // For FP types that are currently not supported by PPC backend, return 14937 // false. Examples: f16, f80. 14938 return false; 14939 case MVT::f32: 14940 case MVT::f64: 14941 case MVT::ppcf128: 14942 return Imm.isPosZero(); 14943 } 14944 } 14945 14946 // For vector shift operation op, fold 14947 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 14948 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 14949 SelectionDAG &DAG) { 14950 SDValue N0 = N->getOperand(0); 14951 SDValue N1 = N->getOperand(1); 14952 EVT VT = N0.getValueType(); 14953 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 14954 unsigned Opcode = N->getOpcode(); 14955 unsigned TargetOpcode; 14956 14957 switch (Opcode) { 14958 default: 14959 llvm_unreachable("Unexpected shift operation"); 14960 case ISD::SHL: 14961 TargetOpcode = PPCISD::SHL; 14962 break; 14963 case ISD::SRL: 14964 TargetOpcode = PPCISD::SRL; 14965 break; 14966 case ISD::SRA: 14967 TargetOpcode = PPCISD::SRA; 14968 break; 14969 } 14970 14971 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 14972 N1->getOpcode() == ISD::AND) 14973 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 14974 if (Mask->getZExtValue() == OpSizeInBits - 1) 14975 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 14976 14977 return SDValue(); 14978 } 14979 14980 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 14981 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14982 return Value; 14983 14984 SDValue N0 = N->getOperand(0); 14985 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14986 if (!Subtarget.isISA3_0() || 14987 N0.getOpcode() != ISD::SIGN_EXTEND || 14988 N0.getOperand(0).getValueType() != MVT::i32 || 14989 CN1 == nullptr || N->getValueType(0) != MVT::i64) 14990 return SDValue(); 14991 14992 // We can't save an operation here if the value is already extended, and 14993 // the existing shift is easier to combine. 14994 SDValue ExtsSrc = N0.getOperand(0); 14995 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 14996 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 14997 return SDValue(); 14998 14999 SDLoc DL(N0); 15000 SDValue ShiftBy = SDValue(CN1, 0); 15001 // We want the shift amount to be i32 on the extswli, but the shift could 15002 // have an i64. 15003 if (ShiftBy.getValueType() == MVT::i64) 15004 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15005 15006 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15007 ShiftBy); 15008 } 15009 15010 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15011 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15012 return Value; 15013 15014 return SDValue(); 15015 } 15016 15017 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15018 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15019 return Value; 15020 15021 return SDValue(); 15022 } 15023 15024 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15025 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15026 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15027 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15028 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15029 const PPCSubtarget &Subtarget) { 15030 if (!Subtarget.isPPC64()) 15031 return SDValue(); 15032 15033 SDValue LHS = N->getOperand(0); 15034 SDValue RHS = N->getOperand(1); 15035 15036 auto isZextOfCompareWithConstant = [](SDValue Op) { 15037 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15038 Op.getValueType() != MVT::i64) 15039 return false; 15040 15041 SDValue Cmp = Op.getOperand(0); 15042 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15043 Cmp.getOperand(0).getValueType() != MVT::i64) 15044 return false; 15045 15046 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15047 int64_t NegConstant = 0 - Constant->getSExtValue(); 15048 // Due to the limitations of the addi instruction, 15049 // -C is required to be [-32768, 32767]. 15050 return isInt<16>(NegConstant); 15051 } 15052 15053 return false; 15054 }; 15055 15056 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15057 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15058 15059 // If there is a pattern, canonicalize a zext operand to the RHS. 15060 if (LHSHasPattern && !RHSHasPattern) 15061 std::swap(LHS, RHS); 15062 else if (!LHSHasPattern && !RHSHasPattern) 15063 return SDValue(); 15064 15065 SDLoc DL(N); 15066 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15067 SDValue Cmp = RHS.getOperand(0); 15068 SDValue Z = Cmp.getOperand(0); 15069 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15070 15071 assert(Constant && "Constant Should not be a null pointer."); 15072 int64_t NegConstant = 0 - Constant->getSExtValue(); 15073 15074 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15075 default: break; 15076 case ISD::SETNE: { 15077 // when C == 0 15078 // --> addze X, (addic Z, -1).carry 15079 // / 15080 // add X, (zext(setne Z, C))-- 15081 // \ when -32768 <= -C <= 32767 && C != 0 15082 // --> addze X, (addic (addi Z, -C), -1).carry 15083 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15084 DAG.getConstant(NegConstant, DL, MVT::i64)); 15085 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15086 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15087 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15088 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15089 SDValue(Addc.getNode(), 1)); 15090 } 15091 case ISD::SETEQ: { 15092 // when C == 0 15093 // --> addze X, (subfic Z, 0).carry 15094 // / 15095 // add X, (zext(sete Z, C))-- 15096 // \ when -32768 <= -C <= 32767 && C != 0 15097 // --> addze X, (subfic (addi Z, -C), 0).carry 15098 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15099 DAG.getConstant(NegConstant, DL, MVT::i64)); 15100 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15101 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15102 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15103 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15104 SDValue(Subc.getNode(), 1)); 15105 } 15106 } 15107 15108 return SDValue(); 15109 } 15110 15111 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15112 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15113 return Value; 15114 15115 return SDValue(); 15116 } 15117 15118 // Detect TRUNCATE operations on bitcasts of float128 values. 15119 // What we are looking for here is the situtation where we extract a subset 15120 // of bits from a 128 bit float. 15121 // This can be of two forms: 15122 // 1) BITCAST of f128 feeding TRUNCATE 15123 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15124 // The reason this is required is because we do not have a legal i128 type 15125 // and so we want to prevent having to store the f128 and then reload part 15126 // of it. 15127 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15128 DAGCombinerInfo &DCI) const { 15129 // If we are using CRBits then try that first. 15130 if (Subtarget.useCRBits()) { 15131 // Check if CRBits did anything and return that if it did. 15132 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15133 return CRTruncValue; 15134 } 15135 15136 SDLoc dl(N); 15137 SDValue Op0 = N->getOperand(0); 15138 15139 // Looking for a truncate of i128 to i64. 15140 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15141 return SDValue(); 15142 15143 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15144 15145 // SRL feeding TRUNCATE. 15146 if (Op0.getOpcode() == ISD::SRL) { 15147 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15148 // The right shift has to be by 64 bits. 15149 if (!ConstNode || ConstNode->getZExtValue() != 64) 15150 return SDValue(); 15151 15152 // Switch the element number to extract. 15153 EltToExtract = EltToExtract ? 0 : 1; 15154 // Update Op0 past the SRL. 15155 Op0 = Op0.getOperand(0); 15156 } 15157 15158 // BITCAST feeding a TRUNCATE possibly via SRL. 15159 if (Op0.getOpcode() == ISD::BITCAST && 15160 Op0.getValueType() == MVT::i128 && 15161 Op0.getOperand(0).getValueType() == MVT::f128) { 15162 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15163 return DCI.DAG.getNode( 15164 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15165 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15166 } 15167 return SDValue(); 15168 } 15169 15170 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15171 SelectionDAG &DAG = DCI.DAG; 15172 15173 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15174 if (!ConstOpOrElement) 15175 return SDValue(); 15176 15177 // An imul is usually smaller than the alternative sequence for legal type. 15178 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15179 isOperationLegal(ISD::MUL, N->getValueType(0))) 15180 return SDValue(); 15181 15182 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15183 switch (this->Subtarget.getDarwinDirective()) { 15184 default: 15185 // TODO: enhance the condition for subtarget before pwr8 15186 return false; 15187 case PPC::DIR_PWR8: 15188 // type mul add shl 15189 // scalar 4 1 1 15190 // vector 7 2 2 15191 return true; 15192 case PPC::DIR_PWR9: 15193 // type mul add shl 15194 // scalar 5 2 2 15195 // vector 7 2 2 15196 15197 // The cycle RATIO of related operations are showed as a table above. 15198 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15199 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15200 // are 4, it is always profitable; but for 3 instrs patterns 15201 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15202 // So we should only do it for vector type. 15203 return IsAddOne && IsNeg ? VT.isVector() : true; 15204 } 15205 }; 15206 15207 EVT VT = N->getValueType(0); 15208 SDLoc DL(N); 15209 15210 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15211 bool IsNeg = MulAmt.isNegative(); 15212 APInt MulAmtAbs = MulAmt.abs(); 15213 15214 if ((MulAmtAbs - 1).isPowerOf2()) { 15215 // (mul x, 2^N + 1) => (add (shl x, N), x) 15216 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15217 15218 if (!IsProfitable(IsNeg, true, VT)) 15219 return SDValue(); 15220 15221 SDValue Op0 = N->getOperand(0); 15222 SDValue Op1 = 15223 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15224 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15225 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15226 15227 if (!IsNeg) 15228 return Res; 15229 15230 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15231 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15232 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15233 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15234 15235 if (!IsProfitable(IsNeg, false, VT)) 15236 return SDValue(); 15237 15238 SDValue Op0 = N->getOperand(0); 15239 SDValue Op1 = 15240 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15241 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15242 15243 if (!IsNeg) 15244 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15245 else 15246 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15247 15248 } else { 15249 return SDValue(); 15250 } 15251 } 15252 15253 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15254 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15255 if (!Subtarget.is64BitELFABI()) 15256 return false; 15257 15258 // If not a tail call then no need to proceed. 15259 if (!CI->isTailCall()) 15260 return false; 15261 15262 // If tail calls are disabled for the caller then we are done. 15263 const Function *Caller = CI->getParent()->getParent(); 15264 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 15265 if (Attr.getValueAsString() == "true") 15266 return false; 15267 15268 // If sibling calls have been disabled and tail-calls aren't guaranteed 15269 // there is no reason to duplicate. 15270 auto &TM = getTargetMachine(); 15271 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15272 return false; 15273 15274 // Can't tail call a function called indirectly, or if it has variadic args. 15275 const Function *Callee = CI->getCalledFunction(); 15276 if (!Callee || Callee->isVarArg()) 15277 return false; 15278 15279 // Make sure the callee and caller calling conventions are eligible for tco. 15280 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15281 CI->getCallingConv())) 15282 return false; 15283 15284 // If the function is local then we have a good chance at tail-calling it 15285 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15286 } 15287 15288 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15289 if (!Subtarget.hasVSX()) 15290 return false; 15291 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15292 return true; 15293 return VT == MVT::f32 || VT == MVT::f64 || 15294 VT == MVT::v4f32 || VT == MVT::v2f64; 15295 } 15296 15297 bool PPCTargetLowering:: 15298 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15299 const Value *Mask = AndI.getOperand(1); 15300 // If the mask is suitable for andi. or andis. we should sink the and. 15301 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15302 // Can't handle constants wider than 64-bits. 15303 if (CI->getBitWidth() > 64) 15304 return false; 15305 int64_t ConstVal = CI->getZExtValue(); 15306 return isUInt<16>(ConstVal) || 15307 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15308 } 15309 15310 // For non-constant masks, we can always use the record-form and. 15311 return true; 15312 } 15313 15314 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15315 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15316 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15317 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15318 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15319 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15320 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15321 assert(Subtarget.hasP9Altivec() && 15322 "Only combine this when P9 altivec supported!"); 15323 EVT VT = N->getValueType(0); 15324 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15325 return SDValue(); 15326 15327 SelectionDAG &DAG = DCI.DAG; 15328 SDLoc dl(N); 15329 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15330 // Even for signed integers, if it's known to be positive (as signed 15331 // integer) due to zero-extended inputs. 15332 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15333 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15334 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15335 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15336 (SubOpcd1 == ISD::ZERO_EXTEND || 15337 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15338 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15339 N->getOperand(0)->getOperand(0), 15340 N->getOperand(0)->getOperand(1), 15341 DAG.getTargetConstant(0, dl, MVT::i32)); 15342 } 15343 15344 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15345 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15346 N->getOperand(0).hasOneUse()) { 15347 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15348 N->getOperand(0)->getOperand(0), 15349 N->getOperand(0)->getOperand(1), 15350 DAG.getTargetConstant(1, dl, MVT::i32)); 15351 } 15352 } 15353 15354 return SDValue(); 15355 } 15356 15357 // For type v4i32/v8ii16/v16i8, transform 15358 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15359 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15360 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15361 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15362 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15363 DAGCombinerInfo &DCI) const { 15364 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15365 assert(Subtarget.hasP9Altivec() && 15366 "Only combine this when P9 altivec supported!"); 15367 15368 SelectionDAG &DAG = DCI.DAG; 15369 SDLoc dl(N); 15370 SDValue Cond = N->getOperand(0); 15371 SDValue TrueOpnd = N->getOperand(1); 15372 SDValue FalseOpnd = N->getOperand(2); 15373 EVT VT = N->getOperand(1).getValueType(); 15374 15375 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15376 FalseOpnd.getOpcode() != ISD::SUB) 15377 return SDValue(); 15378 15379 // ABSD only available for type v4i32/v8i16/v16i8 15380 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15381 return SDValue(); 15382 15383 // At least to save one more dependent computation 15384 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15385 return SDValue(); 15386 15387 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15388 15389 // Can only handle unsigned comparison here 15390 switch (CC) { 15391 default: 15392 return SDValue(); 15393 case ISD::SETUGT: 15394 case ISD::SETUGE: 15395 break; 15396 case ISD::SETULT: 15397 case ISD::SETULE: 15398 std::swap(TrueOpnd, FalseOpnd); 15399 break; 15400 } 15401 15402 SDValue CmpOpnd1 = Cond.getOperand(0); 15403 SDValue CmpOpnd2 = Cond.getOperand(1); 15404 15405 // SETCC CmpOpnd1 CmpOpnd2 cond 15406 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15407 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15408 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15409 TrueOpnd.getOperand(1) == CmpOpnd2 && 15410 FalseOpnd.getOperand(0) == CmpOpnd2 && 15411 FalseOpnd.getOperand(1) == CmpOpnd1) { 15412 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15413 CmpOpnd1, CmpOpnd2, 15414 DAG.getTargetConstant(0, dl, MVT::i32)); 15415 } 15416 15417 return SDValue(); 15418 } 15419