1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPerfectShuffle.h"
17 #include "PPCPredicates.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Constants.h"
31 #include "llvm/Function.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/DerivedTypes.h"
39 using namespace llvm;
40 
41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                      CCValAssign::LocInfo &LocInfo,
43                                      ISD::ArgFlagsTy &ArgFlags,
44                                      CCState &State);
45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                             MVT &LocVT,
47                                             CCValAssign::LocInfo &LocInfo,
48                                             ISD::ArgFlagsTy &ArgFlags,
49                                             CCState &State);
50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                               MVT &LocVT,
52                                               CCValAssign::LocInfo &LocInfo,
53                                               ISD::ArgFlagsTy &ArgFlags,
54                                               CCState &State);
55 
56 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                      cl::Hidden);
59 
60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61   if (TM.getSubtargetImpl()->isDarwin())
62     return new TargetLoweringObjectFileMachO();
63 
64   return new TargetLoweringObjectFileELF();
65 }
66 
67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69 
70   setPow2DivIsCheap();
71 
72   // Use _setjmp/_longjmp instead of setjmp/longjmp.
73   setUseUnderscoreSetJmp(true);
74   setUseUnderscoreLongJmp(true);
75 
76   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77   // arguments are at least 4/8 bytes aligned.
78   setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79 
80   // Set up the register classes.
81   addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82   addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83   addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84 
85   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88 
89   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90 
91   // PowerPC has pre-inc load and store's.
92   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102 
103   // This is used in the ppcf128->int sequence.  Note it has different semantics
104   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106 
107   // PowerPC has no SREM/UREM instructions
108   setOperationAction(ISD::SREM, MVT::i32, Expand);
109   setOperationAction(ISD::UREM, MVT::i32, Expand);
110   setOperationAction(ISD::SREM, MVT::i64, Expand);
111   setOperationAction(ISD::UREM, MVT::i64, Expand);
112 
113   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122 
123   // We don't support sin/cos/sqrt/fmod/pow
124   setOperationAction(ISD::FSIN , MVT::f64, Expand);
125   setOperationAction(ISD::FCOS , MVT::f64, Expand);
126   setOperationAction(ISD::FREM , MVT::f64, Expand);
127   setOperationAction(ISD::FPOW , MVT::f64, Expand);
128   setOperationAction(ISD::FSIN , MVT::f32, Expand);
129   setOperationAction(ISD::FCOS , MVT::f32, Expand);
130   setOperationAction(ISD::FREM , MVT::f32, Expand);
131   setOperationAction(ISD::FPOW , MVT::f32, Expand);
132 
133   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
134 
135   // If we're enabling GP optimizations, use hardware square root
136   if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
137     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
138     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
139   }
140 
141   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
142   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
143 
144   // PowerPC does not have BSWAP, CTPOP or CTTZ
145   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
146   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
147   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
148   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
149   setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
150   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
151 
152   // PowerPC does not have ROTR
153   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
154   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
155 
156   // PowerPC does not have Select
157   setOperationAction(ISD::SELECT, MVT::i32, Expand);
158   setOperationAction(ISD::SELECT, MVT::i64, Expand);
159   setOperationAction(ISD::SELECT, MVT::f32, Expand);
160   setOperationAction(ISD::SELECT, MVT::f64, Expand);
161 
162   // PowerPC wants to turn select_cc of FP into fsel when possible.
163   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
164   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
165 
166   // PowerPC wants to optimize integer setcc a bit
167   setOperationAction(ISD::SETCC, MVT::i32, Custom);
168 
169   // PowerPC does not have BRCOND which requires SetCC
170   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171 
172   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
173 
174   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
176 
177   // PowerPC does not have [U|S]INT_TO_FP
178   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
179   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
180 
181   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
182   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
183   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
184   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
185 
186   // We cannot sextinreg(i1).  Expand to shifts.
187   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188 
189   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193 
194 
195   // We want to legalize GlobalAddress and ConstantPool nodes into the
196   // appropriate instructions to materialize the address.
197   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
200   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
201   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
202   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
205   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
206   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
207 
208   // TRAP is legal.
209   setOperationAction(ISD::TRAP, MVT::Other, Legal);
210 
211   // TRAMPOLINE is custom lowered.
212   setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
213 
214   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
216 
217   // VAARG is custom lowered with the 32-bit SVR4 ABI.
218   if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219       && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220     setOperationAction(ISD::VAARG, MVT::Other, Custom);
221   else
222     setOperationAction(ISD::VAARG, MVT::Other, Expand);
223 
224   // Use the default implementation.
225   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
226   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
227   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
228   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
229   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
230   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
231 
232   // We want to custom lower some of our intrinsics.
233   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234 
235   // Comparisons that require checking two conditions.
236   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
248 
249   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250     // They also have instructions for converting between i64 and fp.
251     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255     // This is just the low 32 bits of a (signed) fp->i64 conversion.
256     // We cannot do this with Promote because i64 is not a legal type.
257     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
258 
259     // FIXME: disable this lowered code.  This generates 64-bit register values,
260     // and we don't model the fact that the top part is clobbered by calls.  We
261     // need to flag these together so that the value isn't live across a call.
262     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263   } else {
264     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266   }
267 
268   if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269     // 64-bit PowerPC implementations can support i64 types directly
270     addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273     // 64-bit PowerPC wants to expand i128 shifts itself.
274     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277   } else {
278     // 32-bit PowerPC wants to expand i64 shifts itself.
279     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282   }
283 
284   if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285     // First set operation action for all vector types to expand. Then we
286     // will selectively turn on ones that can be effectively codegen'd.
287     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
290 
291       // add/sub are legal for all supported vector VT's.
292       setOperationAction(ISD::ADD , VT, Legal);
293       setOperationAction(ISD::SUB , VT, Legal);
294 
295       // We promote all shuffles to v16i8.
296       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
298 
299       // We promote all non-typed operations to v4i32.
300       setOperationAction(ISD::AND   , VT, Promote);
301       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
302       setOperationAction(ISD::OR    , VT, Promote);
303       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
304       setOperationAction(ISD::XOR   , VT, Promote);
305       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
306       setOperationAction(ISD::LOAD  , VT, Promote);
307       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
308       setOperationAction(ISD::SELECT, VT, Promote);
309       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310       setOperationAction(ISD::STORE, VT, Promote);
311       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
312 
313       // No other operations are legal.
314       setOperationAction(ISD::MUL , VT, Expand);
315       setOperationAction(ISD::SDIV, VT, Expand);
316       setOperationAction(ISD::SREM, VT, Expand);
317       setOperationAction(ISD::UDIV, VT, Expand);
318       setOperationAction(ISD::UREM, VT, Expand);
319       setOperationAction(ISD::FDIV, VT, Expand);
320       setOperationAction(ISD::FNEG, VT, Expand);
321       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326       setOperationAction(ISD::UDIVREM, VT, Expand);
327       setOperationAction(ISD::SDIVREM, VT, Expand);
328       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329       setOperationAction(ISD::FPOW, VT, Expand);
330       setOperationAction(ISD::CTPOP, VT, Expand);
331       setOperationAction(ISD::CTLZ, VT, Expand);
332       setOperationAction(ISD::CTTZ, VT, Expand);
333     }
334 
335     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336     // with merges, splats, etc.
337     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
338 
339     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
340     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
341     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
342     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
343     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
345 
346     addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347     addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348     addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349     addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
350 
351     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
355 
356     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
358 
359     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363   }
364 
365   setBooleanContents(ZeroOrOneBooleanContent);
366 
367   if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
368     setStackPointerRegisterToSaveRestore(PPC::X1);
369     setExceptionPointerRegister(PPC::X3);
370     setExceptionSelectorRegister(PPC::X4);
371   } else {
372     setStackPointerRegisterToSaveRestore(PPC::R1);
373     setExceptionPointerRegister(PPC::R3);
374     setExceptionSelectorRegister(PPC::R4);
375   }
376 
377   // We have target-specific dag combine patterns for the following nodes:
378   setTargetDAGCombine(ISD::SINT_TO_FP);
379   setTargetDAGCombine(ISD::STORE);
380   setTargetDAGCombine(ISD::BR_CC);
381   setTargetDAGCombine(ISD::BSWAP);
382 
383   // Darwin long double math library functions have $LDBL128 appended.
384   if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
385     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
386     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
387     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
388     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
389     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
390     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
391     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
392     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
393     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
394     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
395   }
396 
397   setMinFunctionAlignment(2);
398   if (PPCSubTarget.isDarwin())
399     setPrefFunctionAlignment(4);
400 
401   computeRegisterProperties();
402 }
403 
404 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
405 /// function arguments in the caller parameter area.
406 unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
407   const TargetMachine &TM = getTargetMachine();
408   // Darwin passes everything on 4 byte boundary.
409   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
410     return 4;
411   // FIXME SVR4 TBD
412   return 4;
413 }
414 
415 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
416   switch (Opcode) {
417   default: return 0;
418   case PPCISD::FSEL:            return "PPCISD::FSEL";
419   case PPCISD::FCFID:           return "PPCISD::FCFID";
420   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
421   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
422   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
423   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
424   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
425   case PPCISD::VPERM:           return "PPCISD::VPERM";
426   case PPCISD::Hi:              return "PPCISD::Hi";
427   case PPCISD::Lo:              return "PPCISD::Lo";
428   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
429   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
430   case PPCISD::LOAD:            return "PPCISD::LOAD";
431   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
432   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
433   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
434   case PPCISD::SRL:             return "PPCISD::SRL";
435   case PPCISD::SRA:             return "PPCISD::SRA";
436   case PPCISD::SHL:             return "PPCISD::SHL";
437   case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
438   case PPCISD::STD_32:          return "PPCISD::STD_32";
439   case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
440   case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
441   case PPCISD::NOP:             return "PPCISD::NOP";
442   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
443   case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
444   case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
445   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
446   case PPCISD::MFCR:            return "PPCISD::MFCR";
447   case PPCISD::VCMP:            return "PPCISD::VCMP";
448   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
449   case PPCISD::LBRX:            return "PPCISD::LBRX";
450   case PPCISD::STBRX:           return "PPCISD::STBRX";
451   case PPCISD::LARX:            return "PPCISD::LARX";
452   case PPCISD::STCX:            return "PPCISD::STCX";
453   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
454   case PPCISD::MFFS:            return "PPCISD::MFFS";
455   case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
456   case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
457   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
458   case PPCISD::MTFSF:           return "PPCISD::MTFSF";
459   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
460   }
461 }
462 
463 MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
464   return MVT::i32;
465 }
466 
467 //===----------------------------------------------------------------------===//
468 // Node matching predicates, for use by the tblgen matching code.
469 //===----------------------------------------------------------------------===//
470 
471 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
472 static bool isFloatingPointZero(SDValue Op) {
473   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
474     return CFP->getValueAPF().isZero();
475   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
476     // Maybe this has already been legalized into the constant pool?
477     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
478       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
479         return CFP->getValueAPF().isZero();
480   }
481   return false;
482 }
483 
484 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
485 /// true if Op is undef or if it matches the specified value.
486 static bool isConstantOrUndef(int Op, int Val) {
487   return Op < 0 || Op == Val;
488 }
489 
490 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
491 /// VPKUHUM instruction.
492 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
493   if (!isUnary) {
494     for (unsigned i = 0; i != 16; ++i)
495       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
496         return false;
497   } else {
498     for (unsigned i = 0; i != 8; ++i)
499       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
500           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
501         return false;
502   }
503   return true;
504 }
505 
506 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
507 /// VPKUWUM instruction.
508 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
509   if (!isUnary) {
510     for (unsigned i = 0; i != 16; i += 2)
511       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
512           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
513         return false;
514   } else {
515     for (unsigned i = 0; i != 8; i += 2)
516       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
517           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
518           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
519           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
520         return false;
521   }
522   return true;
523 }
524 
525 /// isVMerge - Common function, used to match vmrg* shuffles.
526 ///
527 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
528                      unsigned LHSStart, unsigned RHSStart) {
529   assert(N->getValueType(0) == MVT::v16i8 &&
530          "PPC only supports shuffles by bytes!");
531   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
532          "Unsupported merge size!");
533 
534   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
535     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
536       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
537                              LHSStart+j+i*UnitSize) ||
538           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
539                              RHSStart+j+i*UnitSize))
540         return false;
541     }
542   return true;
543 }
544 
545 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
546 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
547 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
548                              bool isUnary) {
549   if (!isUnary)
550     return isVMerge(N, UnitSize, 8, 24);
551   return isVMerge(N, UnitSize, 8, 8);
552 }
553 
554 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
555 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
556 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
557                              bool isUnary) {
558   if (!isUnary)
559     return isVMerge(N, UnitSize, 0, 16);
560   return isVMerge(N, UnitSize, 0, 0);
561 }
562 
563 
564 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
565 /// amount, otherwise return -1.
566 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
567   assert(N->getValueType(0) == MVT::v16i8 &&
568          "PPC only supports shuffles by bytes!");
569 
570   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
571 
572   // Find the first non-undef value in the shuffle mask.
573   unsigned i;
574   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
575     /*search*/;
576 
577   if (i == 16) return -1;  // all undef.
578 
579   // Otherwise, check to see if the rest of the elements are consecutively
580   // numbered from this value.
581   unsigned ShiftAmt = SVOp->getMaskElt(i);
582   if (ShiftAmt < i) return -1;
583   ShiftAmt -= i;
584 
585   if (!isUnary) {
586     // Check the rest of the elements to see if they are consecutive.
587     for (++i; i != 16; ++i)
588       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
589         return -1;
590   } else {
591     // Check the rest of the elements to see if they are consecutive.
592     for (++i; i != 16; ++i)
593       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
594         return -1;
595   }
596   return ShiftAmt;
597 }
598 
599 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
600 /// specifies a splat of a single element that is suitable for input to
601 /// VSPLTB/VSPLTH/VSPLTW.
602 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
603   assert(N->getValueType(0) == MVT::v16i8 &&
604          (EltSize == 1 || EltSize == 2 || EltSize == 4));
605 
606   // This is a splat operation if each element of the permute is the same, and
607   // if the value doesn't reference the second vector.
608   unsigned ElementBase = N->getMaskElt(0);
609 
610   // FIXME: Handle UNDEF elements too!
611   if (ElementBase >= 16)
612     return false;
613 
614   // Check that the indices are consecutive, in the case of a multi-byte element
615   // splatted with a v16i8 mask.
616   for (unsigned i = 1; i != EltSize; ++i)
617     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
618       return false;
619 
620   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
621     if (N->getMaskElt(i) < 0) continue;
622     for (unsigned j = 0; j != EltSize; ++j)
623       if (N->getMaskElt(i+j) != N->getMaskElt(j))
624         return false;
625   }
626   return true;
627 }
628 
629 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
630 /// are -0.0.
631 bool PPC::isAllNegativeZeroVector(SDNode *N) {
632   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
633 
634   APInt APVal, APUndef;
635   unsigned BitSize;
636   bool HasAnyUndefs;
637 
638   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
639     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
640       return CFP->getValueAPF().isNegZero();
641 
642   return false;
643 }
644 
645 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
646 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
647 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
648   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
649   assert(isSplatShuffleMask(SVOp, EltSize));
650   return SVOp->getMaskElt(0) / EltSize;
651 }
652 
653 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
654 /// by using a vspltis[bhw] instruction of the specified element size, return
655 /// the constant being splatted.  The ByteSize field indicates the number of
656 /// bytes of each element [124] -> [bhw].
657 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
658   SDValue OpVal(0, 0);
659 
660   // If ByteSize of the splat is bigger than the element size of the
661   // build_vector, then we have a case where we are checking for a splat where
662   // multiple elements of the buildvector are folded together into a single
663   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
664   unsigned EltSize = 16/N->getNumOperands();
665   if (EltSize < ByteSize) {
666     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
667     SDValue UniquedVals[4];
668     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
669 
670     // See if all of the elements in the buildvector agree across.
671     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
672       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
673       // If the element isn't a constant, bail fully out.
674       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
675 
676 
677       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
678         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
679       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
680         return SDValue();  // no match.
681     }
682 
683     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
684     // either constant or undef values that are identical for each chunk.  See
685     // if these chunks can form into a larger vspltis*.
686 
687     // Check to see if all of the leading entries are either 0 or -1.  If
688     // neither, then this won't fit into the immediate field.
689     bool LeadingZero = true;
690     bool LeadingOnes = true;
691     for (unsigned i = 0; i != Multiple-1; ++i) {
692       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
693 
694       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
695       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
696     }
697     // Finally, check the least significant entry.
698     if (LeadingZero) {
699       if (UniquedVals[Multiple-1].getNode() == 0)
700         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
701       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
702       if (Val < 16)
703         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
704     }
705     if (LeadingOnes) {
706       if (UniquedVals[Multiple-1].getNode() == 0)
707         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
708       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
709       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
710         return DAG.getTargetConstant(Val, MVT::i32);
711     }
712 
713     return SDValue();
714   }
715 
716   // Check to see if this buildvec has a single non-undef value in its elements.
717   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
718     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
719     if (OpVal.getNode() == 0)
720       OpVal = N->getOperand(i);
721     else if (OpVal != N->getOperand(i))
722       return SDValue();
723   }
724 
725   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
726 
727   unsigned ValSizeInBytes = EltSize;
728   uint64_t Value = 0;
729   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
730     Value = CN->getZExtValue();
731   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
732     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
733     Value = FloatToBits(CN->getValueAPF().convertToFloat());
734   }
735 
736   // If the splat value is larger than the element value, then we can never do
737   // this splat.  The only case that we could fit the replicated bits into our
738   // immediate field for would be zero, and we prefer to use vxor for it.
739   if (ValSizeInBytes < ByteSize) return SDValue();
740 
741   // If the element value is larger than the splat value, cut it in half and
742   // check to see if the two halves are equal.  Continue doing this until we
743   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
744   while (ValSizeInBytes > ByteSize) {
745     ValSizeInBytes >>= 1;
746 
747     // If the top half equals the bottom half, we're still ok.
748     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
749          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
750       return SDValue();
751   }
752 
753   // Properly sign extend the value.
754   int ShAmt = (4-ByteSize)*8;
755   int MaskVal = ((int)Value << ShAmt) >> ShAmt;
756 
757   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
758   if (MaskVal == 0) return SDValue();
759 
760   // Finally, if this value fits in a 5 bit sext field, return it
761   if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
762     return DAG.getTargetConstant(MaskVal, MVT::i32);
763   return SDValue();
764 }
765 
766 //===----------------------------------------------------------------------===//
767 //  Addressing Mode Selection
768 //===----------------------------------------------------------------------===//
769 
770 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
771 /// or 64-bit immediate, and if the value can be accurately represented as a
772 /// sign extension from a 16-bit value.  If so, this returns true and the
773 /// immediate.
774 static bool isIntS16Immediate(SDNode *N, short &Imm) {
775   if (N->getOpcode() != ISD::Constant)
776     return false;
777 
778   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
779   if (N->getValueType(0) == MVT::i32)
780     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
781   else
782     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
783 }
784 static bool isIntS16Immediate(SDValue Op, short &Imm) {
785   return isIntS16Immediate(Op.getNode(), Imm);
786 }
787 
788 
789 /// SelectAddressRegReg - Given the specified addressed, check to see if it
790 /// can be represented as an indexed [r+r] operation.  Returns false if it
791 /// can be more efficiently represented with [r+imm].
792 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
793                                             SDValue &Index,
794                                             SelectionDAG &DAG) const {
795   short imm = 0;
796   if (N.getOpcode() == ISD::ADD) {
797     if (isIntS16Immediate(N.getOperand(1), imm))
798       return false;    // r+i
799     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
800       return false;    // r+i
801 
802     Base = N.getOperand(0);
803     Index = N.getOperand(1);
804     return true;
805   } else if (N.getOpcode() == ISD::OR) {
806     if (isIntS16Immediate(N.getOperand(1), imm))
807       return false;    // r+i can fold it if we can.
808 
809     // If this is an or of disjoint bitfields, we can codegen this as an add
810     // (for better address arithmetic) if the LHS and RHS of the OR are provably
811     // disjoint.
812     APInt LHSKnownZero, LHSKnownOne;
813     APInt RHSKnownZero, RHSKnownOne;
814     DAG.ComputeMaskedBits(N.getOperand(0),
815                           APInt::getAllOnesValue(N.getOperand(0)
816                             .getValueSizeInBits()),
817                           LHSKnownZero, LHSKnownOne);
818 
819     if (LHSKnownZero.getBoolValue()) {
820       DAG.ComputeMaskedBits(N.getOperand(1),
821                             APInt::getAllOnesValue(N.getOperand(1)
822                               .getValueSizeInBits()),
823                             RHSKnownZero, RHSKnownOne);
824       // If all of the bits are known zero on the LHS or RHS, the add won't
825       // carry.
826       if (~(LHSKnownZero | RHSKnownZero) == 0) {
827         Base = N.getOperand(0);
828         Index = N.getOperand(1);
829         return true;
830       }
831     }
832   }
833 
834   return false;
835 }
836 
837 /// Returns true if the address N can be represented by a base register plus
838 /// a signed 16-bit displacement [r+imm], and if it is not better
839 /// represented as reg+reg.
840 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
841                                             SDValue &Base,
842                                             SelectionDAG &DAG) const {
843   // FIXME dl should come from parent load or store, not from address
844   DebugLoc dl = N.getDebugLoc();
845   // If this can be more profitably realized as r+r, fail.
846   if (SelectAddressRegReg(N, Disp, Base, DAG))
847     return false;
848 
849   if (N.getOpcode() == ISD::ADD) {
850     short imm = 0;
851     if (isIntS16Immediate(N.getOperand(1), imm)) {
852       Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
853       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
854         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
855       } else {
856         Base = N.getOperand(0);
857       }
858       return true; // [r+i]
859     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
860       // Match LOAD (ADD (X, Lo(G))).
861      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
862              && "Cannot handle constant offsets yet!");
863       Disp = N.getOperand(1).getOperand(0);  // The global address.
864       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
865              Disp.getOpcode() == ISD::TargetConstantPool ||
866              Disp.getOpcode() == ISD::TargetJumpTable);
867       Base = N.getOperand(0);
868       return true;  // [&g+r]
869     }
870   } else if (N.getOpcode() == ISD::OR) {
871     short imm = 0;
872     if (isIntS16Immediate(N.getOperand(1), imm)) {
873       // If this is an or of disjoint bitfields, we can codegen this as an add
874       // (for better address arithmetic) if the LHS and RHS of the OR are
875       // provably disjoint.
876       APInt LHSKnownZero, LHSKnownOne;
877       DAG.ComputeMaskedBits(N.getOperand(0),
878                             APInt::getAllOnesValue(N.getOperand(0)
879                                                    .getValueSizeInBits()),
880                             LHSKnownZero, LHSKnownOne);
881 
882       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
883         // If all of the bits are known zero on the LHS or RHS, the add won't
884         // carry.
885         Base = N.getOperand(0);
886         Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
887         return true;
888       }
889     }
890   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
891     // Loading from a constant address.
892 
893     // If this address fits entirely in a 16-bit sext immediate field, codegen
894     // this as "d, 0"
895     short Imm;
896     if (isIntS16Immediate(CN, Imm)) {
897       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
898       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
899                              CN->getValueType(0));
900       return true;
901     }
902 
903     // Handle 32-bit sext immediates with LIS + addr mode.
904     if (CN->getValueType(0) == MVT::i32 ||
905         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
906       int Addr = (int)CN->getZExtValue();
907 
908       // Otherwise, break this down into an LIS + disp.
909       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
910 
911       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
912       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
913       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
914       return true;
915     }
916   }
917 
918   Disp = DAG.getTargetConstant(0, getPointerTy());
919   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
920     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
921   else
922     Base = N;
923   return true;      // [r+0]
924 }
925 
926 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
927 /// represented as an indexed [r+r] operation.
928 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
929                                                 SDValue &Index,
930                                                 SelectionDAG &DAG) const {
931   // Check to see if we can easily represent this as an [r+r] address.  This
932   // will fail if it thinks that the address is more profitably represented as
933   // reg+imm, e.g. where imm = 0.
934   if (SelectAddressRegReg(N, Base, Index, DAG))
935     return true;
936 
937   // If the operand is an addition, always emit this as [r+r], since this is
938   // better (for code size, and execution, as the memop does the add for free)
939   // than emitting an explicit add.
940   if (N.getOpcode() == ISD::ADD) {
941     Base = N.getOperand(0);
942     Index = N.getOperand(1);
943     return true;
944   }
945 
946   // Otherwise, do it the hard way, using R0 as the base register.
947   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
948                          N.getValueType());
949   Index = N;
950   return true;
951 }
952 
953 /// SelectAddressRegImmShift - Returns true if the address N can be
954 /// represented by a base register plus a signed 14-bit displacement
955 /// [r+imm*4].  Suitable for use by STD and friends.
956 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
957                                                  SDValue &Base,
958                                                  SelectionDAG &DAG) const {
959   // FIXME dl should come from the parent load or store, not the address
960   DebugLoc dl = N.getDebugLoc();
961   // If this can be more profitably realized as r+r, fail.
962   if (SelectAddressRegReg(N, Disp, Base, DAG))
963     return false;
964 
965   if (N.getOpcode() == ISD::ADD) {
966     short imm = 0;
967     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
968       Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
969       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
970         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
971       } else {
972         Base = N.getOperand(0);
973       }
974       return true; // [r+i]
975     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
976       // Match LOAD (ADD (X, Lo(G))).
977      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
978              && "Cannot handle constant offsets yet!");
979       Disp = N.getOperand(1).getOperand(0);  // The global address.
980       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
981              Disp.getOpcode() == ISD::TargetConstantPool ||
982              Disp.getOpcode() == ISD::TargetJumpTable);
983       Base = N.getOperand(0);
984       return true;  // [&g+r]
985     }
986   } else if (N.getOpcode() == ISD::OR) {
987     short imm = 0;
988     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
989       // If this is an or of disjoint bitfields, we can codegen this as an add
990       // (for better address arithmetic) if the LHS and RHS of the OR are
991       // provably disjoint.
992       APInt LHSKnownZero, LHSKnownOne;
993       DAG.ComputeMaskedBits(N.getOperand(0),
994                             APInt::getAllOnesValue(N.getOperand(0)
995                                                    .getValueSizeInBits()),
996                             LHSKnownZero, LHSKnownOne);
997       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
998         // If all of the bits are known zero on the LHS or RHS, the add won't
999         // carry.
1000         Base = N.getOperand(0);
1001         Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1002         return true;
1003       }
1004     }
1005   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1006     // Loading from a constant address.  Verify low two bits are clear.
1007     if ((CN->getZExtValue() & 3) == 0) {
1008       // If this address fits entirely in a 14-bit sext immediate field, codegen
1009       // this as "d, 0"
1010       short Imm;
1011       if (isIntS16Immediate(CN, Imm)) {
1012         Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1013         Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1014                                CN->getValueType(0));
1015         return true;
1016       }
1017 
1018       // Fold the low-part of 32-bit absolute addresses into addr mode.
1019       if (CN->getValueType(0) == MVT::i32 ||
1020           (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1021         int Addr = (int)CN->getZExtValue();
1022 
1023         // Otherwise, break this down into an LIS + disp.
1024         Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1025         Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1026         unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1027         Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1028         return true;
1029       }
1030     }
1031   }
1032 
1033   Disp = DAG.getTargetConstant(0, getPointerTy());
1034   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1035     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1036   else
1037     Base = N;
1038   return true;      // [r+0]
1039 }
1040 
1041 
1042 /// getPreIndexedAddressParts - returns true by value, base pointer and
1043 /// offset pointer and addressing mode by reference if the node's address
1044 /// can be legally represented as pre-indexed load / store address.
1045 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1046                                                   SDValue &Offset,
1047                                                   ISD::MemIndexedMode &AM,
1048                                                   SelectionDAG &DAG) const {
1049   // Disabled by default for now.
1050   if (!EnablePPCPreinc) return false;
1051 
1052   SDValue Ptr;
1053   EVT VT;
1054   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1055     Ptr = LD->getBasePtr();
1056     VT = LD->getMemoryVT();
1057 
1058   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1059     Ptr = ST->getBasePtr();
1060     VT  = ST->getMemoryVT();
1061   } else
1062     return false;
1063 
1064   // PowerPC doesn't have preinc load/store instructions for vectors.
1065   if (VT.isVector())
1066     return false;
1067 
1068   // TODO: Check reg+reg first.
1069 
1070   // LDU/STU use reg+imm*4, others use reg+imm.
1071   if (VT != MVT::i64) {
1072     // reg + imm
1073     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1074       return false;
1075   } else {
1076     // reg + imm * 4.
1077     if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1078       return false;
1079   }
1080 
1081   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1082     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1083     // sext i32 to i64 when addr mode is r+i.
1084     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1085         LD->getExtensionType() == ISD::SEXTLOAD &&
1086         isa<ConstantSDNode>(Offset))
1087       return false;
1088   }
1089 
1090   AM = ISD::PRE_INC;
1091   return true;
1092 }
1093 
1094 //===----------------------------------------------------------------------===//
1095 //  LowerOperation implementation
1096 //===----------------------------------------------------------------------===//
1097 
1098 /// GetLabelAccessInfo - Return true if we should reference labels using a
1099 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1100 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1101                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1102   HiOpFlags = PPCII::MO_HA16;
1103   LoOpFlags = PPCII::MO_LO16;
1104 
1105   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1106   // non-darwin platform.  We don't support PIC on other platforms yet.
1107   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1108                TM.getSubtarget<PPCSubtarget>().isDarwin();
1109   if (isPIC) {
1110     HiOpFlags |= PPCII::MO_PIC_FLAG;
1111     LoOpFlags |= PPCII::MO_PIC_FLAG;
1112   }
1113 
1114   // If this is a reference to a global value that requires a non-lazy-ptr, make
1115   // sure that instruction lowering adds it.
1116   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1117     HiOpFlags |= PPCII::MO_NLP_FLAG;
1118     LoOpFlags |= PPCII::MO_NLP_FLAG;
1119 
1120     if (GV->hasHiddenVisibility()) {
1121       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1122       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1123     }
1124   }
1125 
1126   return isPIC;
1127 }
1128 
1129 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1130                              SelectionDAG &DAG) {
1131   EVT PtrVT = HiPart.getValueType();
1132   SDValue Zero = DAG.getConstant(0, PtrVT);
1133   DebugLoc DL = HiPart.getDebugLoc();
1134 
1135   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1136   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1137 
1138   // With PIC, the first instruction is actually "GR+hi(&G)".
1139   if (isPIC)
1140     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1141                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1142 
1143   // Generate non-pic code that has direct accesses to the constant pool.
1144   // The address of the global is just (hi(&g)+lo(&g)).
1145   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1146 }
1147 
1148 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1149                                              SelectionDAG &DAG) const {
1150   EVT PtrVT = Op.getValueType();
1151   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1152   const Constant *C = CP->getConstVal();
1153 
1154   unsigned MOHiFlag, MOLoFlag;
1155   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1156   SDValue CPIHi =
1157     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1158   SDValue CPILo =
1159     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1160   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1161 }
1162 
1163 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1164   EVT PtrVT = Op.getValueType();
1165   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1166 
1167   unsigned MOHiFlag, MOLoFlag;
1168   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1169   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1170   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1171   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1172 }
1173 
1174 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1175                                              SelectionDAG &DAG) const {
1176   EVT PtrVT = Op.getValueType();
1177 
1178   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1179 
1180   unsigned MOHiFlag, MOLoFlag;
1181   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1182   SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1183   SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1184   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1185 }
1186 
1187 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1188                                               SelectionDAG &DAG) const {
1189   EVT PtrVT = Op.getValueType();
1190   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1191   DebugLoc DL = GSDN->getDebugLoc();
1192   const GlobalValue *GV = GSDN->getGlobal();
1193 
1194   // 64-bit SVR4 ABI code is always position-independent.
1195   // The actual address of the GlobalValue is stored in the TOC.
1196   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1197     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1198     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1199                        DAG.getRegister(PPC::X2, MVT::i64));
1200   }
1201 
1202   unsigned MOHiFlag, MOLoFlag;
1203   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1204 
1205   SDValue GAHi =
1206     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1207   SDValue GALo =
1208     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1209 
1210   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1211 
1212   // If the global reference is actually to a non-lazy-pointer, we have to do an
1213   // extra load to get the address of the global.
1214   if (MOHiFlag & PPCII::MO_NLP_FLAG)
1215     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1216                       false, false, 0);
1217   return Ptr;
1218 }
1219 
1220 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1221   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1222   DebugLoc dl = Op.getDebugLoc();
1223 
1224   // If we're comparing for equality to zero, expose the fact that this is
1225   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1226   // fold the new nodes.
1227   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1228     if (C->isNullValue() && CC == ISD::SETEQ) {
1229       EVT VT = Op.getOperand(0).getValueType();
1230       SDValue Zext = Op.getOperand(0);
1231       if (VT.bitsLT(MVT::i32)) {
1232         VT = MVT::i32;
1233         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1234       }
1235       unsigned Log2b = Log2_32(VT.getSizeInBits());
1236       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1237       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1238                                 DAG.getConstant(Log2b, MVT::i32));
1239       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1240     }
1241     // Leave comparisons against 0 and -1 alone for now, since they're usually
1242     // optimized.  FIXME: revisit this when we can custom lower all setcc
1243     // optimizations.
1244     if (C->isAllOnesValue() || C->isNullValue())
1245       return SDValue();
1246   }
1247 
1248   // If we have an integer seteq/setne, turn it into a compare against zero
1249   // by xor'ing the rhs with the lhs, which is faster than setting a
1250   // condition register, reading it back out, and masking the correct bit.  The
1251   // normal approach here uses sub to do this instead of xor.  Using xor exposes
1252   // the result to other bit-twiddling opportunities.
1253   EVT LHSVT = Op.getOperand(0).getValueType();
1254   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1255     EVT VT = Op.getValueType();
1256     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1257                                 Op.getOperand(1));
1258     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1259   }
1260   return SDValue();
1261 }
1262 
1263 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1264                                       const PPCSubtarget &Subtarget) const {
1265 
1266   llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1267   return SDValue(); // Not reached
1268 }
1269 
1270 SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1271                                            SelectionDAG &DAG) const {
1272   SDValue Chain = Op.getOperand(0);
1273   SDValue Trmp = Op.getOperand(1); // trampoline
1274   SDValue FPtr = Op.getOperand(2); // nested function
1275   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1276   DebugLoc dl = Op.getDebugLoc();
1277 
1278   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1279   bool isPPC64 = (PtrVT == MVT::i64);
1280   const Type *IntPtrTy =
1281     DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1282                                                              *DAG.getContext());
1283 
1284   TargetLowering::ArgListTy Args;
1285   TargetLowering::ArgListEntry Entry;
1286 
1287   Entry.Ty = IntPtrTy;
1288   Entry.Node = Trmp; Args.push_back(Entry);
1289 
1290   // TrampSize == (isPPC64 ? 48 : 40);
1291   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1292                                isPPC64 ? MVT::i64 : MVT::i32);
1293   Args.push_back(Entry);
1294 
1295   Entry.Node = FPtr; Args.push_back(Entry);
1296   Entry.Node = Nest; Args.push_back(Entry);
1297 
1298   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1299   std::pair<SDValue, SDValue> CallResult =
1300     LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1301                 false, false, false, false, 0, CallingConv::C, false,
1302                 /*isReturnValueUsed=*/true,
1303                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1304                 Args, DAG, dl);
1305 
1306   SDValue Ops[] =
1307     { CallResult.first, CallResult.second };
1308 
1309   return DAG.getMergeValues(Ops, 2, dl);
1310 }
1311 
1312 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1313                                         const PPCSubtarget &Subtarget) const {
1314   MachineFunction &MF = DAG.getMachineFunction();
1315   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1316 
1317   DebugLoc dl = Op.getDebugLoc();
1318 
1319   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1320     // vastart just stores the address of the VarArgsFrameIndex slot into the
1321     // memory location argument.
1322     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1323     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1324     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1325     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1326                         MachinePointerInfo(SV),
1327                         false, false, 0);
1328   }
1329 
1330   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1331   // We suppose the given va_list is already allocated.
1332   //
1333   // typedef struct {
1334   //  char gpr;     /* index into the array of 8 GPRs
1335   //                 * stored in the register save area
1336   //                 * gpr=0 corresponds to r3,
1337   //                 * gpr=1 to r4, etc.
1338   //                 */
1339   //  char fpr;     /* index into the array of 8 FPRs
1340   //                 * stored in the register save area
1341   //                 * fpr=0 corresponds to f1,
1342   //                 * fpr=1 to f2, etc.
1343   //                 */
1344   //  char *overflow_arg_area;
1345   //                /* location on stack that holds
1346   //                 * the next overflow argument
1347   //                 */
1348   //  char *reg_save_area;
1349   //               /* where r3:r10 and f1:f8 (if saved)
1350   //                * are stored
1351   //                */
1352   // } va_list[1];
1353 
1354 
1355   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1356   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1357 
1358 
1359   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1360 
1361   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1362                                             PtrVT);
1363   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1364                                  PtrVT);
1365 
1366   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1367   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1368 
1369   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1370   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1371 
1372   uint64_t FPROffset = 1;
1373   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1374 
1375   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1376 
1377   // Store first byte : number of int regs
1378   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1379                                          Op.getOperand(1),
1380                                          MachinePointerInfo(SV),
1381                                          MVT::i8, false, false, 0);
1382   uint64_t nextOffset = FPROffset;
1383   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1384                                   ConstFPROffset);
1385 
1386   // Store second byte : number of float regs
1387   SDValue secondStore =
1388     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1389                       MachinePointerInfo(SV, nextOffset), MVT::i8,
1390                       false, false, 0);
1391   nextOffset += StackOffset;
1392   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1393 
1394   // Store second word : arguments given on stack
1395   SDValue thirdStore =
1396     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1397                  MachinePointerInfo(SV, nextOffset),
1398                  false, false, 0);
1399   nextOffset += FrameOffset;
1400   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1401 
1402   // Store third word : arguments given in registers
1403   return DAG.getStore(thirdStore, dl, FR, nextPtr,
1404                       MachinePointerInfo(SV, nextOffset),
1405                       false, false, 0);
1406 
1407 }
1408 
1409 #include "PPCGenCallingConv.inc"
1410 
1411 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1412                                      CCValAssign::LocInfo &LocInfo,
1413                                      ISD::ArgFlagsTy &ArgFlags,
1414                                      CCState &State) {
1415   return true;
1416 }
1417 
1418 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1419                                             MVT &LocVT,
1420                                             CCValAssign::LocInfo &LocInfo,
1421                                             ISD::ArgFlagsTy &ArgFlags,
1422                                             CCState &State) {
1423   static const unsigned ArgRegs[] = {
1424     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1425     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1426   };
1427   const unsigned NumArgRegs = array_lengthof(ArgRegs);
1428 
1429   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1430 
1431   // Skip one register if the first unallocated register has an even register
1432   // number and there are still argument registers available which have not been
1433   // allocated yet. RegNum is actually an index into ArgRegs, which means we
1434   // need to skip a register if RegNum is odd.
1435   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1436     State.AllocateReg(ArgRegs[RegNum]);
1437   }
1438 
1439   // Always return false here, as this function only makes sure that the first
1440   // unallocated register has an odd register number and does not actually
1441   // allocate a register for the current argument.
1442   return false;
1443 }
1444 
1445 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1446                                               MVT &LocVT,
1447                                               CCValAssign::LocInfo &LocInfo,
1448                                               ISD::ArgFlagsTy &ArgFlags,
1449                                               CCState &State) {
1450   static const unsigned ArgRegs[] = {
1451     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1452     PPC::F8
1453   };
1454 
1455   const unsigned NumArgRegs = array_lengthof(ArgRegs);
1456 
1457   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1458 
1459   // If there is only one Floating-point register left we need to put both f64
1460   // values of a split ppc_fp128 value on the stack.
1461   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1462     State.AllocateReg(ArgRegs[RegNum]);
1463   }
1464 
1465   // Always return false here, as this function only makes sure that the two f64
1466   // values a ppc_fp128 value is split into are both passed in registers or both
1467   // passed on the stack and does not actually allocate a register for the
1468   // current argument.
1469   return false;
1470 }
1471 
1472 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1473 /// on Darwin.
1474 static const unsigned *GetFPR() {
1475   static const unsigned FPR[] = {
1476     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1477     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1478   };
1479 
1480   return FPR;
1481 }
1482 
1483 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1484 /// the stack.
1485 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1486                                        unsigned PtrByteSize) {
1487   unsigned ArgSize = ArgVT.getSizeInBits()/8;
1488   if (Flags.isByVal())
1489     ArgSize = Flags.getByValSize();
1490   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1491 
1492   return ArgSize;
1493 }
1494 
1495 SDValue
1496 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1497                                         CallingConv::ID CallConv, bool isVarArg,
1498                                         const SmallVectorImpl<ISD::InputArg>
1499                                           &Ins,
1500                                         DebugLoc dl, SelectionDAG &DAG,
1501                                         SmallVectorImpl<SDValue> &InVals)
1502                                           const {
1503   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1504     return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1505                                      dl, DAG, InVals);
1506   } else {
1507     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1508                                        dl, DAG, InVals);
1509   }
1510 }
1511 
1512 SDValue
1513 PPCTargetLowering::LowerFormalArguments_SVR4(
1514                                       SDValue Chain,
1515                                       CallingConv::ID CallConv, bool isVarArg,
1516                                       const SmallVectorImpl<ISD::InputArg>
1517                                         &Ins,
1518                                       DebugLoc dl, SelectionDAG &DAG,
1519                                       SmallVectorImpl<SDValue> &InVals) const {
1520 
1521   // 32-bit SVR4 ABI Stack Frame Layout:
1522   //              +-----------------------------------+
1523   //        +-->  |            Back chain             |
1524   //        |     +-----------------------------------+
1525   //        |     | Floating-point register save area |
1526   //        |     +-----------------------------------+
1527   //        |     |    General register save area     |
1528   //        |     +-----------------------------------+
1529   //        |     |          CR save word             |
1530   //        |     +-----------------------------------+
1531   //        |     |         VRSAVE save word          |
1532   //        |     +-----------------------------------+
1533   //        |     |         Alignment padding         |
1534   //        |     +-----------------------------------+
1535   //        |     |     Vector register save area     |
1536   //        |     +-----------------------------------+
1537   //        |     |       Local variable space        |
1538   //        |     +-----------------------------------+
1539   //        |     |        Parameter list area        |
1540   //        |     +-----------------------------------+
1541   //        |     |           LR save word            |
1542   //        |     +-----------------------------------+
1543   // SP-->  +---  |            Back chain             |
1544   //              +-----------------------------------+
1545   //
1546   // Specifications:
1547   //   System V Application Binary Interface PowerPC Processor Supplement
1548   //   AltiVec Technology Programming Interface Manual
1549 
1550   MachineFunction &MF = DAG.getMachineFunction();
1551   MachineFrameInfo *MFI = MF.getFrameInfo();
1552   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1553 
1554   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1555   // Potential tail calls could cause overwriting of argument stack slots.
1556   bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1557   unsigned PtrByteSize = 4;
1558 
1559   // Assign locations to all of the incoming arguments.
1560   SmallVector<CCValAssign, 16> ArgLocs;
1561   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1562                  *DAG.getContext());
1563 
1564   // Reserve space for the linkage area on the stack.
1565   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1566 
1567   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1568 
1569   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1570     CCValAssign &VA = ArgLocs[i];
1571 
1572     // Arguments stored in registers.
1573     if (VA.isRegLoc()) {
1574       TargetRegisterClass *RC;
1575       EVT ValVT = VA.getValVT();
1576 
1577       switch (ValVT.getSimpleVT().SimpleTy) {
1578         default:
1579           llvm_unreachable("ValVT not supported by formal arguments Lowering");
1580         case MVT::i32:
1581           RC = PPC::GPRCRegisterClass;
1582           break;
1583         case MVT::f32:
1584           RC = PPC::F4RCRegisterClass;
1585           break;
1586         case MVT::f64:
1587           RC = PPC::F8RCRegisterClass;
1588           break;
1589         case MVT::v16i8:
1590         case MVT::v8i16:
1591         case MVT::v4i32:
1592         case MVT::v4f32:
1593           RC = PPC::VRRCRegisterClass;
1594           break;
1595       }
1596 
1597       // Transform the arguments stored in physical registers into virtual ones.
1598       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1599       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1600 
1601       InVals.push_back(ArgValue);
1602     } else {
1603       // Argument stored in memory.
1604       assert(VA.isMemLoc());
1605 
1606       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1607       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1608                                       isImmutable);
1609 
1610       // Create load nodes to retrieve arguments from the stack.
1611       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1612       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1613                                    MachinePointerInfo(),
1614                                    false, false, 0));
1615     }
1616   }
1617 
1618   // Assign locations to all of the incoming aggregate by value arguments.
1619   // Aggregates passed by value are stored in the local variable space of the
1620   // caller's stack frame, right above the parameter list area.
1621   SmallVector<CCValAssign, 16> ByValArgLocs;
1622   CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1623                       ByValArgLocs, *DAG.getContext());
1624 
1625   // Reserve stack space for the allocations in CCInfo.
1626   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1627 
1628   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1629 
1630   // Area that is at least reserved in the caller of this function.
1631   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1632 
1633   // Set the size that is at least reserved in caller of this function.  Tail
1634   // call optimized function's reserved stack space needs to be aligned so that
1635   // taking the difference between two stack areas will result in an aligned
1636   // stack.
1637   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1638 
1639   MinReservedArea =
1640     std::max(MinReservedArea,
1641              PPCFrameLowering::getMinCallFrameSize(false, false));
1642 
1643   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1644     getStackAlignment();
1645   unsigned AlignMask = TargetAlign-1;
1646   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1647 
1648   FI->setMinReservedArea(MinReservedArea);
1649 
1650   SmallVector<SDValue, 8> MemOps;
1651 
1652   // If the function takes variable number of arguments, make a frame index for
1653   // the start of the first vararg value... for expansion of llvm.va_start.
1654   if (isVarArg) {
1655     static const unsigned GPArgRegs[] = {
1656       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1657       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1658     };
1659     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1660 
1661     static const unsigned FPArgRegs[] = {
1662       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1663       PPC::F8
1664     };
1665     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1666 
1667     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1668                                                           NumGPArgRegs));
1669     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1670                                                           NumFPArgRegs));
1671 
1672     // Make room for NumGPArgRegs and NumFPArgRegs.
1673     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1674                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1675 
1676     FuncInfo->setVarArgsStackOffset(
1677       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1678                              CCInfo.getNextStackOffset(), true));
1679 
1680     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1681     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1682 
1683     // The fixed integer arguments of a variadic function are stored to the
1684     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1685     // the result of va_next.
1686     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1687       // Get an existing live-in vreg, or add a new one.
1688       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1689       if (!VReg)
1690         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1691 
1692       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1693       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1694                                    MachinePointerInfo(), false, false, 0);
1695       MemOps.push_back(Store);
1696       // Increment the address by four for the next argument to store
1697       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1698       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1699     }
1700 
1701     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1702     // is set.
1703     // The double arguments are stored to the VarArgsFrameIndex
1704     // on the stack.
1705     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1706       // Get an existing live-in vreg, or add a new one.
1707       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1708       if (!VReg)
1709         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1710 
1711       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1712       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1713                                    MachinePointerInfo(), false, false, 0);
1714       MemOps.push_back(Store);
1715       // Increment the address by eight for the next argument to store
1716       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1717                                          PtrVT);
1718       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1719     }
1720   }
1721 
1722   if (!MemOps.empty())
1723     Chain = DAG.getNode(ISD::TokenFactor, dl,
1724                         MVT::Other, &MemOps[0], MemOps.size());
1725 
1726   return Chain;
1727 }
1728 
1729 SDValue
1730 PPCTargetLowering::LowerFormalArguments_Darwin(
1731                                       SDValue Chain,
1732                                       CallingConv::ID CallConv, bool isVarArg,
1733                                       const SmallVectorImpl<ISD::InputArg>
1734                                         &Ins,
1735                                       DebugLoc dl, SelectionDAG &DAG,
1736                                       SmallVectorImpl<SDValue> &InVals) const {
1737   // TODO: add description of PPC stack frame format, or at least some docs.
1738   //
1739   MachineFunction &MF = DAG.getMachineFunction();
1740   MachineFrameInfo *MFI = MF.getFrameInfo();
1741   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1742 
1743   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1744   bool isPPC64 = PtrVT == MVT::i64;
1745   // Potential tail calls could cause overwriting of argument stack slots.
1746   bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1747   unsigned PtrByteSize = isPPC64 ? 8 : 4;
1748 
1749   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1750   // Area that is at least reserved in caller of this function.
1751   unsigned MinReservedArea = ArgOffset;
1752 
1753   static const unsigned GPR_32[] = {           // 32-bit registers.
1754     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1755     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1756   };
1757   static const unsigned GPR_64[] = {           // 64-bit registers.
1758     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1759     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1760   };
1761 
1762   static const unsigned *FPR = GetFPR();
1763 
1764   static const unsigned VR[] = {
1765     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1766     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1767   };
1768 
1769   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1770   const unsigned Num_FPR_Regs = 13;
1771   const unsigned Num_VR_Regs  = array_lengthof( VR);
1772 
1773   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1774 
1775   const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1776 
1777   // In 32-bit non-varargs functions, the stack space for vectors is after the
1778   // stack space for non-vectors.  We do not use this space unless we have
1779   // too many vectors to fit in registers, something that only occurs in
1780   // constructed examples:), but we have to walk the arglist to figure
1781   // that out...for the pathological case, compute VecArgOffset as the
1782   // start of the vector parameter area.  Computing VecArgOffset is the
1783   // entire point of the following loop.
1784   unsigned VecArgOffset = ArgOffset;
1785   if (!isVarArg && !isPPC64) {
1786     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1787          ++ArgNo) {
1788       EVT ObjectVT = Ins[ArgNo].VT;
1789       unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1790       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1791 
1792       if (Flags.isByVal()) {
1793         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1794         ObjSize = Flags.getByValSize();
1795         unsigned ArgSize =
1796                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1797         VecArgOffset += ArgSize;
1798         continue;
1799       }
1800 
1801       switch(ObjectVT.getSimpleVT().SimpleTy) {
1802       default: llvm_unreachable("Unhandled argument type!");
1803       case MVT::i32:
1804       case MVT::f32:
1805         VecArgOffset += isPPC64 ? 8 : 4;
1806         break;
1807       case MVT::i64:  // PPC64
1808       case MVT::f64:
1809         VecArgOffset += 8;
1810         break;
1811       case MVT::v4f32:
1812       case MVT::v4i32:
1813       case MVT::v8i16:
1814       case MVT::v16i8:
1815         // Nothing to do, we're only looking at Nonvector args here.
1816         break;
1817       }
1818     }
1819   }
1820   // We've found where the vector parameter area in memory is.  Skip the
1821   // first 12 parameters; these don't use that memory.
1822   VecArgOffset = ((VecArgOffset+15)/16)*16;
1823   VecArgOffset += 12*16;
1824 
1825   // Add DAG nodes to load the arguments or copy them out of registers.  On
1826   // entry to a function on PPC, the arguments start after the linkage area,
1827   // although the first ones are often in registers.
1828 
1829   SmallVector<SDValue, 8> MemOps;
1830   unsigned nAltivecParamsAtEnd = 0;
1831   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1832     SDValue ArgVal;
1833     bool needsLoad = false;
1834     EVT ObjectVT = Ins[ArgNo].VT;
1835     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1836     unsigned ArgSize = ObjSize;
1837     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1838 
1839     unsigned CurArgOffset = ArgOffset;
1840 
1841     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1842     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1843         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1844       if (isVarArg || isPPC64) {
1845         MinReservedArea = ((MinReservedArea+15)/16)*16;
1846         MinReservedArea += CalculateStackSlotSize(ObjectVT,
1847                                                   Flags,
1848                                                   PtrByteSize);
1849       } else  nAltivecParamsAtEnd++;
1850     } else
1851       // Calculate min reserved area.
1852       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1853                                                 Flags,
1854                                                 PtrByteSize);
1855 
1856     // FIXME the codegen can be much improved in some cases.
1857     // We do not have to keep everything in memory.
1858     if (Flags.isByVal()) {
1859       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1860       ObjSize = Flags.getByValSize();
1861       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1862       // Objects of size 1 and 2 are right justified, everything else is
1863       // left justified.  This means the memory address is adjusted forwards.
1864       if (ObjSize==1 || ObjSize==2) {
1865         CurArgOffset = CurArgOffset + (4 - ObjSize);
1866       }
1867       // The value of the object is its address.
1868       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1869       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1870       InVals.push_back(FIN);
1871       if (ObjSize==1 || ObjSize==2) {
1872         if (GPR_idx != Num_GPR_Regs) {
1873           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1874           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1875           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1876                                             MachinePointerInfo(),
1877                                             ObjSize==1 ? MVT::i8 : MVT::i16,
1878                                             false, false, 0);
1879           MemOps.push_back(Store);
1880           ++GPR_idx;
1881         }
1882 
1883         ArgOffset += PtrByteSize;
1884 
1885         continue;
1886       }
1887       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1888         // Store whatever pieces of the object are in registers
1889         // to memory.  ArgVal will be address of the beginning of
1890         // the object.
1891         if (GPR_idx != Num_GPR_Regs) {
1892           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1893           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
1894           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1895           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1896           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1897                                        MachinePointerInfo(),
1898                                        false, false, 0);
1899           MemOps.push_back(Store);
1900           ++GPR_idx;
1901           ArgOffset += PtrByteSize;
1902         } else {
1903           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1904           break;
1905         }
1906       }
1907       continue;
1908     }
1909 
1910     switch (ObjectVT.getSimpleVT().SimpleTy) {
1911     default: llvm_unreachable("Unhandled argument type!");
1912     case MVT::i32:
1913       if (!isPPC64) {
1914         if (GPR_idx != Num_GPR_Regs) {
1915           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1916           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1917           ++GPR_idx;
1918         } else {
1919           needsLoad = true;
1920           ArgSize = PtrByteSize;
1921         }
1922         // All int arguments reserve stack space in the Darwin ABI.
1923         ArgOffset += PtrByteSize;
1924         break;
1925       }
1926       // FALLTHROUGH
1927     case MVT::i64:  // PPC64
1928       if (GPR_idx != Num_GPR_Regs) {
1929         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1930         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1931 
1932         if (ObjectVT == MVT::i32) {
1933           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1934           // value to MVT::i64 and then truncate to the correct register size.
1935           if (Flags.isSExt())
1936             ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1937                                  DAG.getValueType(ObjectVT));
1938           else if (Flags.isZExt())
1939             ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1940                                  DAG.getValueType(ObjectVT));
1941 
1942           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1943         }
1944 
1945         ++GPR_idx;
1946       } else {
1947         needsLoad = true;
1948         ArgSize = PtrByteSize;
1949       }
1950       // All int arguments reserve stack space in the Darwin ABI.
1951       ArgOffset += 8;
1952       break;
1953 
1954     case MVT::f32:
1955     case MVT::f64:
1956       // Every 4 bytes of argument space consumes one of the GPRs available for
1957       // argument passing.
1958       if (GPR_idx != Num_GPR_Regs) {
1959         ++GPR_idx;
1960         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1961           ++GPR_idx;
1962       }
1963       if (FPR_idx != Num_FPR_Regs) {
1964         unsigned VReg;
1965 
1966         if (ObjectVT == MVT::f32)
1967           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1968         else
1969           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1970 
1971         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1972         ++FPR_idx;
1973       } else {
1974         needsLoad = true;
1975       }
1976 
1977       // All FP arguments reserve stack space in the Darwin ABI.
1978       ArgOffset += isPPC64 ? 8 : ObjSize;
1979       break;
1980     case MVT::v4f32:
1981     case MVT::v4i32:
1982     case MVT::v8i16:
1983     case MVT::v16i8:
1984       // Note that vector arguments in registers don't reserve stack space,
1985       // except in varargs functions.
1986       if (VR_idx != Num_VR_Regs) {
1987         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1988         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1989         if (isVarArg) {
1990           while ((ArgOffset % 16) != 0) {
1991             ArgOffset += PtrByteSize;
1992             if (GPR_idx != Num_GPR_Regs)
1993               GPR_idx++;
1994           }
1995           ArgOffset += 16;
1996           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
1997         }
1998         ++VR_idx;
1999       } else {
2000         if (!isVarArg && !isPPC64) {
2001           // Vectors go after all the nonvectors.
2002           CurArgOffset = VecArgOffset;
2003           VecArgOffset += 16;
2004         } else {
2005           // Vectors are aligned.
2006           ArgOffset = ((ArgOffset+15)/16)*16;
2007           CurArgOffset = ArgOffset;
2008           ArgOffset += 16;
2009         }
2010         needsLoad = true;
2011       }
2012       break;
2013     }
2014 
2015     // We need to load the argument to a virtual register if we determined above
2016     // that we ran out of physical registers of the appropriate type.
2017     if (needsLoad) {
2018       int FI = MFI->CreateFixedObject(ObjSize,
2019                                       CurArgOffset + (ArgSize - ObjSize),
2020                                       isImmutable);
2021       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2022       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2023                            false, false, 0);
2024     }
2025 
2026     InVals.push_back(ArgVal);
2027   }
2028 
2029   // Set the size that is at least reserved in caller of this function.  Tail
2030   // call optimized function's reserved stack space needs to be aligned so that
2031   // taking the difference between two stack areas will result in an aligned
2032   // stack.
2033   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2034   // Add the Altivec parameters at the end, if needed.
2035   if (nAltivecParamsAtEnd) {
2036     MinReservedArea = ((MinReservedArea+15)/16)*16;
2037     MinReservedArea += 16*nAltivecParamsAtEnd;
2038   }
2039   MinReservedArea =
2040     std::max(MinReservedArea,
2041              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2042   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2043     getStackAlignment();
2044   unsigned AlignMask = TargetAlign-1;
2045   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2046   FI->setMinReservedArea(MinReservedArea);
2047 
2048   // If the function takes variable number of arguments, make a frame index for
2049   // the start of the first vararg value... for expansion of llvm.va_start.
2050   if (isVarArg) {
2051     int Depth = ArgOffset;
2052 
2053     FuncInfo->setVarArgsFrameIndex(
2054       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2055                              Depth, true));
2056     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2057 
2058     // If this function is vararg, store any remaining integer argument regs
2059     // to their spots on the stack so that they may be loaded by deferencing the
2060     // result of va_next.
2061     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2062       unsigned VReg;
2063 
2064       if (isPPC64)
2065         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2066       else
2067         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2068 
2069       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2070       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2071                                    MachinePointerInfo(), false, false, 0);
2072       MemOps.push_back(Store);
2073       // Increment the address by four for the next argument to store
2074       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2075       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2076     }
2077   }
2078 
2079   if (!MemOps.empty())
2080     Chain = DAG.getNode(ISD::TokenFactor, dl,
2081                         MVT::Other, &MemOps[0], MemOps.size());
2082 
2083   return Chain;
2084 }
2085 
2086 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2087 /// linkage area for the Darwin ABI.
2088 static unsigned
2089 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2090                                      bool isPPC64,
2091                                      bool isVarArg,
2092                                      unsigned CC,
2093                                      const SmallVectorImpl<ISD::OutputArg>
2094                                        &Outs,
2095                                      const SmallVectorImpl<SDValue> &OutVals,
2096                                      unsigned &nAltivecParamsAtEnd) {
2097   // Count how many bytes are to be pushed on the stack, including the linkage
2098   // area, and parameter passing area.  We start with 24/48 bytes, which is
2099   // prereserved space for [SP][CR][LR][3 x unused].
2100   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2101   unsigned NumOps = Outs.size();
2102   unsigned PtrByteSize = isPPC64 ? 8 : 4;
2103 
2104   // Add up all the space actually used.
2105   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2106   // they all go in registers, but we must reserve stack space for them for
2107   // possible use by the caller.  In varargs or 64-bit calls, parameters are
2108   // assigned stack space in order, with padding so Altivec parameters are
2109   // 16-byte aligned.
2110   nAltivecParamsAtEnd = 0;
2111   for (unsigned i = 0; i != NumOps; ++i) {
2112     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2113     EVT ArgVT = Outs[i].VT;
2114     // Varargs Altivec parameters are padded to a 16 byte boundary.
2115     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2116         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2117       if (!isVarArg && !isPPC64) {
2118         // Non-varargs Altivec parameters go after all the non-Altivec
2119         // parameters; handle those later so we know how much padding we need.
2120         nAltivecParamsAtEnd++;
2121         continue;
2122       }
2123       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2124       NumBytes = ((NumBytes+15)/16)*16;
2125     }
2126     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2127   }
2128 
2129    // Allow for Altivec parameters at the end, if needed.
2130   if (nAltivecParamsAtEnd) {
2131     NumBytes = ((NumBytes+15)/16)*16;
2132     NumBytes += 16*nAltivecParamsAtEnd;
2133   }
2134 
2135   // The prolog code of the callee may store up to 8 GPR argument registers to
2136   // the stack, allowing va_start to index over them in memory if its varargs.
2137   // Because we cannot tell if this is needed on the caller side, we have to
2138   // conservatively assume that it is needed.  As such, make sure we have at
2139   // least enough stack space for the caller to store the 8 GPRs.
2140   NumBytes = std::max(NumBytes,
2141                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2142 
2143   // Tail call needs the stack to be aligned.
2144   if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2145     unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2146       getStackAlignment();
2147     unsigned AlignMask = TargetAlign-1;
2148     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2149   }
2150 
2151   return NumBytes;
2152 }
2153 
2154 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2155 /// adjusted to accommodate the arguments for the tailcall.
2156 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2157                                    unsigned ParamSize) {
2158 
2159   if (!isTailCall) return 0;
2160 
2161   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2162   unsigned CallerMinReservedArea = FI->getMinReservedArea();
2163   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2164   // Remember only if the new adjustement is bigger.
2165   if (SPDiff < FI->getTailCallSPDelta())
2166     FI->setTailCallSPDelta(SPDiff);
2167 
2168   return SPDiff;
2169 }
2170 
2171 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2172 /// for tail call optimization. Targets which want to do tail call
2173 /// optimization should implement this function.
2174 bool
2175 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2176                                                      CallingConv::ID CalleeCC,
2177                                                      bool isVarArg,
2178                                       const SmallVectorImpl<ISD::InputArg> &Ins,
2179                                                      SelectionDAG& DAG) const {
2180   if (!GuaranteedTailCallOpt)
2181     return false;
2182 
2183   // Variable argument functions are not supported.
2184   if (isVarArg)
2185     return false;
2186 
2187   MachineFunction &MF = DAG.getMachineFunction();
2188   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2189   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2190     // Functions containing by val parameters are not supported.
2191     for (unsigned i = 0; i != Ins.size(); i++) {
2192        ISD::ArgFlagsTy Flags = Ins[i].Flags;
2193        if (Flags.isByVal()) return false;
2194     }
2195 
2196     // Non PIC/GOT  tail calls are supported.
2197     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2198       return true;
2199 
2200     // At the moment we can only do local tail calls (in same module, hidden
2201     // or protected) if we are generating PIC.
2202     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2203       return G->getGlobal()->hasHiddenVisibility()
2204           || G->getGlobal()->hasProtectedVisibility();
2205   }
2206 
2207   return false;
2208 }
2209 
2210 /// isCallCompatibleAddress - Return the immediate to use if the specified
2211 /// 32-bit value is representable in the immediate field of a BxA instruction.
2212 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2213   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2214   if (!C) return 0;
2215 
2216   int Addr = C->getZExtValue();
2217   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2218       (Addr << 6 >> 6) != Addr)
2219     return 0;  // Top 6 bits have to be sext of immediate.
2220 
2221   return DAG.getConstant((int)C->getZExtValue() >> 2,
2222                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2223 }
2224 
2225 namespace {
2226 
2227 struct TailCallArgumentInfo {
2228   SDValue Arg;
2229   SDValue FrameIdxOp;
2230   int       FrameIdx;
2231 
2232   TailCallArgumentInfo() : FrameIdx(0) {}
2233 };
2234 
2235 }
2236 
2237 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2238 static void
2239 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2240                                            SDValue Chain,
2241                    const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2242                    SmallVector<SDValue, 8> &MemOpChains,
2243                    DebugLoc dl) {
2244   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2245     SDValue Arg = TailCallArgs[i].Arg;
2246     SDValue FIN = TailCallArgs[i].FrameIdxOp;
2247     int FI = TailCallArgs[i].FrameIdx;
2248     // Store relative to framepointer.
2249     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2250                                        MachinePointerInfo::getFixedStack(FI),
2251                                        false, false, 0));
2252   }
2253 }
2254 
2255 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2256 /// the appropriate stack slot for the tail call optimized function call.
2257 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2258                                                MachineFunction &MF,
2259                                                SDValue Chain,
2260                                                SDValue OldRetAddr,
2261                                                SDValue OldFP,
2262                                                int SPDiff,
2263                                                bool isPPC64,
2264                                                bool isDarwinABI,
2265                                                DebugLoc dl) {
2266   if (SPDiff) {
2267     // Calculate the new stack slot for the return address.
2268     int SlotSize = isPPC64 ? 8 : 4;
2269     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2270                                                                    isDarwinABI);
2271     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2272                                                           NewRetAddrLoc, true);
2273     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2274     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2275     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2276                          MachinePointerInfo::getFixedStack(NewRetAddr),
2277                          false, false, 0);
2278 
2279     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2280     // slot as the FP is never overwritten.
2281     if (isDarwinABI) {
2282       int NewFPLoc =
2283         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2284       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2285                                                           true);
2286       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2287       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2288                            MachinePointerInfo::getFixedStack(NewFPIdx),
2289                            false, false, 0);
2290     }
2291   }
2292   return Chain;
2293 }
2294 
2295 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2296 /// the position of the argument.
2297 static void
2298 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2299                          SDValue Arg, int SPDiff, unsigned ArgOffset,
2300                       SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2301   int Offset = ArgOffset + SPDiff;
2302   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2303   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2304   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2305   SDValue FIN = DAG.getFrameIndex(FI, VT);
2306   TailCallArgumentInfo Info;
2307   Info.Arg = Arg;
2308   Info.FrameIdxOp = FIN;
2309   Info.FrameIdx = FI;
2310   TailCallArguments.push_back(Info);
2311 }
2312 
2313 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2314 /// stack slot. Returns the chain as result and the loaded frame pointers in
2315 /// LROpOut/FPOpout. Used when tail calling.
2316 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2317                                                         int SPDiff,
2318                                                         SDValue Chain,
2319                                                         SDValue &LROpOut,
2320                                                         SDValue &FPOpOut,
2321                                                         bool isDarwinABI,
2322                                                         DebugLoc dl) const {
2323   if (SPDiff) {
2324     // Load the LR and FP stack slot for later adjusting.
2325     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2326     LROpOut = getReturnAddrFrameIndex(DAG);
2327     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2328                           false, false, 0);
2329     Chain = SDValue(LROpOut.getNode(), 1);
2330 
2331     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2332     // slot as the FP is never overwritten.
2333     if (isDarwinABI) {
2334       FPOpOut = getFramePointerFrameIndex(DAG);
2335       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2336                             false, false, 0);
2337       Chain = SDValue(FPOpOut.getNode(), 1);
2338     }
2339   }
2340   return Chain;
2341 }
2342 
2343 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2344 /// by "Src" to address "Dst" of size "Size".  Alignment information is
2345 /// specified by the specific parameter attribute. The copy will be passed as
2346 /// a byval function parameter.
2347 /// Sometimes what we are copying is the end of a larger object, the part that
2348 /// does not fit in registers.
2349 static SDValue
2350 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2351                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2352                           DebugLoc dl) {
2353   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2354   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2355                        false, false, MachinePointerInfo(0),
2356                        MachinePointerInfo(0));
2357 }
2358 
2359 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2360 /// tail calls.
2361 static void
2362 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2363                  SDValue Arg, SDValue PtrOff, int SPDiff,
2364                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
2365                  bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2366                  SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2367                  DebugLoc dl) {
2368   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2369   if (!isTailCall) {
2370     if (isVector) {
2371       SDValue StackPtr;
2372       if (isPPC64)
2373         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2374       else
2375         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2376       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2377                            DAG.getConstant(ArgOffset, PtrVT));
2378     }
2379     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2380                                        MachinePointerInfo(), false, false, 0));
2381   // Calculate and remember argument location.
2382   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2383                                   TailCallArguments);
2384 }
2385 
2386 static
2387 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2388                      DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2389                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
2390                      SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2391   MachineFunction &MF = DAG.getMachineFunction();
2392 
2393   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2394   // might overwrite each other in case of tail call optimization.
2395   SmallVector<SDValue, 8> MemOpChains2;
2396   // Do not flag preceding copytoreg stuff together with the following stuff.
2397   InFlag = SDValue();
2398   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2399                                     MemOpChains2, dl);
2400   if (!MemOpChains2.empty())
2401     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2402                         &MemOpChains2[0], MemOpChains2.size());
2403 
2404   // Store the return address to the appropriate stack slot.
2405   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2406                                         isPPC64, isDarwinABI, dl);
2407 
2408   // Emit callseq_end just before tailcall node.
2409   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2410                              DAG.getIntPtrConstant(0, true), InFlag);
2411   InFlag = Chain.getValue(1);
2412 }
2413 
2414 static
2415 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2416                      SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2417                      SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2418                      SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2419                      const PPCSubtarget &PPCSubTarget) {
2420 
2421   bool isPPC64 = PPCSubTarget.isPPC64();
2422   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2423 
2424   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2425   NodeTys.push_back(MVT::Other);   // Returns a chain
2426   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2427 
2428   unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2429 
2430   bool needIndirectCall = true;
2431   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2432     // If this is an absolute destination address, use the munged value.
2433     Callee = SDValue(Dest, 0);
2434     needIndirectCall = false;
2435   }
2436 
2437   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2438     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2439     // Use indirect calls for ALL functions calls in JIT mode, since the
2440     // far-call stubs may be outside relocation limits for a BL instruction.
2441     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2442       unsigned OpFlags = 0;
2443       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2444           (!PPCSubTarget.getTargetTriple().isMacOSX() ||
2445            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2446           (G->getGlobal()->isDeclaration() ||
2447            G->getGlobal()->isWeakForLinker())) {
2448         // PC-relative references to external symbols should go through $stub,
2449         // unless we're building with the leopard linker or later, which
2450         // automatically synthesizes these stubs.
2451         OpFlags = PPCII::MO_DARWIN_STUB;
2452       }
2453 
2454       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2455       // every direct call is) turn it into a TargetGlobalAddress /
2456       // TargetExternalSymbol node so that legalize doesn't hack it.
2457       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2458                                           Callee.getValueType(),
2459                                           0, OpFlags);
2460       needIndirectCall = false;
2461     }
2462   }
2463 
2464   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2465     unsigned char OpFlags = 0;
2466 
2467     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2468         (!PPCSubTarget.getTargetTriple().isMacOSX() ||
2469          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2470       // PC-relative references to external symbols should go through $stub,
2471       // unless we're building with the leopard linker or later, which
2472       // automatically synthesizes these stubs.
2473       OpFlags = PPCII::MO_DARWIN_STUB;
2474     }
2475 
2476     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2477                                          OpFlags);
2478     needIndirectCall = false;
2479   }
2480 
2481   if (needIndirectCall) {
2482     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2483     // to do the call, we can't use PPCISD::CALL.
2484     SDValue MTCTROps[] = {Chain, Callee, InFlag};
2485 
2486     if (isSVR4ABI && isPPC64) {
2487       // Function pointers in the 64-bit SVR4 ABI do not point to the function
2488       // entry point, but to the function descriptor (the function entry point
2489       // address is part of the function descriptor though).
2490       // The function descriptor is a three doubleword structure with the
2491       // following fields: function entry point, TOC base address and
2492       // environment pointer.
2493       // Thus for a call through a function pointer, the following actions need
2494       // to be performed:
2495       //   1. Save the TOC of the caller in the TOC save area of its stack
2496       //      frame (this is done in LowerCall_Darwin()).
2497       //   2. Load the address of the function entry point from the function
2498       //      descriptor.
2499       //   3. Load the TOC of the callee from the function descriptor into r2.
2500       //   4. Load the environment pointer from the function descriptor into
2501       //      r11.
2502       //   5. Branch to the function entry point address.
2503       //   6. On return of the callee, the TOC of the caller needs to be
2504       //      restored (this is done in FinishCall()).
2505       //
2506       // All those operations are flagged together to ensure that no other
2507       // operations can be scheduled in between. E.g. without flagging the
2508       // operations together, a TOC access in the caller could be scheduled
2509       // between the load of the callee TOC and the branch to the callee, which
2510       // results in the TOC access going through the TOC of the callee instead
2511       // of going through the TOC of the caller, which leads to incorrect code.
2512 
2513       // Load the address of the function entry point from the function
2514       // descriptor.
2515       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2516       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2517                                         InFlag.getNode() ? 3 : 2);
2518       Chain = LoadFuncPtr.getValue(1);
2519       InFlag = LoadFuncPtr.getValue(2);
2520 
2521       // Load environment pointer into r11.
2522       // Offset of the environment pointer within the function descriptor.
2523       SDValue PtrOff = DAG.getIntPtrConstant(16);
2524 
2525       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2526       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2527                                        InFlag);
2528       Chain = LoadEnvPtr.getValue(1);
2529       InFlag = LoadEnvPtr.getValue(2);
2530 
2531       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2532                                         InFlag);
2533       Chain = EnvVal.getValue(0);
2534       InFlag = EnvVal.getValue(1);
2535 
2536       // Load TOC of the callee into r2. We are using a target-specific load
2537       // with r2 hard coded, because the result of a target-independent load
2538       // would never go directly into r2, since r2 is a reserved register (which
2539       // prevents the register allocator from allocating it), resulting in an
2540       // additional register being allocated and an unnecessary move instruction
2541       // being generated.
2542       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2543       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2544                                        Callee, InFlag);
2545       Chain = LoadTOCPtr.getValue(0);
2546       InFlag = LoadTOCPtr.getValue(1);
2547 
2548       MTCTROps[0] = Chain;
2549       MTCTROps[1] = LoadFuncPtr;
2550       MTCTROps[2] = InFlag;
2551     }
2552 
2553     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2554                         2 + (InFlag.getNode() != 0));
2555     InFlag = Chain.getValue(1);
2556 
2557     NodeTys.clear();
2558     NodeTys.push_back(MVT::Other);
2559     NodeTys.push_back(MVT::Glue);
2560     Ops.push_back(Chain);
2561     CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2562     Callee.setNode(0);
2563     // Add CTR register as callee so a bctr can be emitted later.
2564     if (isTailCall)
2565       Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2566   }
2567 
2568   // If this is a direct call, pass the chain and the callee.
2569   if (Callee.getNode()) {
2570     Ops.push_back(Chain);
2571     Ops.push_back(Callee);
2572   }
2573   // If this is a tail call add stack pointer delta.
2574   if (isTailCall)
2575     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2576 
2577   // Add argument registers to the end of the list so that they are known live
2578   // into the call.
2579   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2580     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2581                                   RegsToPass[i].second.getValueType()));
2582 
2583   return CallOpc;
2584 }
2585 
2586 SDValue
2587 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2588                                    CallingConv::ID CallConv, bool isVarArg,
2589                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2590                                    DebugLoc dl, SelectionDAG &DAG,
2591                                    SmallVectorImpl<SDValue> &InVals) const {
2592 
2593   SmallVector<CCValAssign, 16> RVLocs;
2594   CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2595                     RVLocs, *DAG.getContext());
2596   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2597 
2598   // Copy all of the result registers out of their specified physreg.
2599   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2600     CCValAssign &VA = RVLocs[i];
2601     EVT VT = VA.getValVT();
2602     assert(VA.isRegLoc() && "Can only return in registers!");
2603     Chain = DAG.getCopyFromReg(Chain, dl,
2604                                VA.getLocReg(), VT, InFlag).getValue(1);
2605     InVals.push_back(Chain.getValue(0));
2606     InFlag = Chain.getValue(2);
2607   }
2608 
2609   return Chain;
2610 }
2611 
2612 SDValue
2613 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2614                               bool isTailCall, bool isVarArg,
2615                               SelectionDAG &DAG,
2616                               SmallVector<std::pair<unsigned, SDValue>, 8>
2617                                 &RegsToPass,
2618                               SDValue InFlag, SDValue Chain,
2619                               SDValue &Callee,
2620                               int SPDiff, unsigned NumBytes,
2621                               const SmallVectorImpl<ISD::InputArg> &Ins,
2622                               SmallVectorImpl<SDValue> &InVals) const {
2623   std::vector<EVT> NodeTys;
2624   SmallVector<SDValue, 8> Ops;
2625   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2626                                  isTailCall, RegsToPass, Ops, NodeTys,
2627                                  PPCSubTarget);
2628 
2629   // When performing tail call optimization the callee pops its arguments off
2630   // the stack. Account for this here so these bytes can be pushed back on in
2631   // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2632   int BytesCalleePops =
2633     (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2634 
2635   if (InFlag.getNode())
2636     Ops.push_back(InFlag);
2637 
2638   // Emit tail call.
2639   if (isTailCall) {
2640     // If this is the first return lowered for this function, add the regs
2641     // to the liveout set for the function.
2642     if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2643       SmallVector<CCValAssign, 16> RVLocs;
2644       CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2645                      *DAG.getContext());
2646       CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2647       for (unsigned i = 0; i != RVLocs.size(); ++i)
2648         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2649     }
2650 
2651     assert(((Callee.getOpcode() == ISD::Register &&
2652              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2653             Callee.getOpcode() == ISD::TargetExternalSymbol ||
2654             Callee.getOpcode() == ISD::TargetGlobalAddress ||
2655             isa<ConstantSDNode>(Callee)) &&
2656     "Expecting an global address, external symbol, absolute value or register");
2657 
2658     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2659   }
2660 
2661   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2662   InFlag = Chain.getValue(1);
2663 
2664   // Add a NOP immediately after the branch instruction when using the 64-bit
2665   // SVR4 ABI. At link time, if caller and callee are in a different module and
2666   // thus have a different TOC, the call will be replaced with a call to a stub
2667   // function which saves the current TOC, loads the TOC of the callee and
2668   // branches to the callee. The NOP will be replaced with a load instruction
2669   // which restores the TOC of the caller from the TOC save slot of the current
2670   // stack frame. If caller and callee belong to the same module (and have the
2671   // same TOC), the NOP will remain unchanged.
2672   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2673     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2674     if (CallOpc == PPCISD::BCTRL_SVR4) {
2675       // This is a call through a function pointer.
2676       // Restore the caller TOC from the save area into R2.
2677       // See PrepareCall() for more information about calls through function
2678       // pointers in the 64-bit SVR4 ABI.
2679       // We are using a target-specific load with r2 hard coded, because the
2680       // result of a target-independent load would never go directly into r2,
2681       // since r2 is a reserved register (which prevents the register allocator
2682       // from allocating it), resulting in an additional register being
2683       // allocated and an unnecessary move instruction being generated.
2684       Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2685       InFlag = Chain.getValue(1);
2686     } else {
2687       // Otherwise insert NOP.
2688       InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2689     }
2690   }
2691 
2692   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2693                              DAG.getIntPtrConstant(BytesCalleePops, true),
2694                              InFlag);
2695   if (!Ins.empty())
2696     InFlag = Chain.getValue(1);
2697 
2698   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2699                          Ins, dl, DAG, InVals);
2700 }
2701 
2702 SDValue
2703 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2704                              CallingConv::ID CallConv, bool isVarArg,
2705                              bool &isTailCall,
2706                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2707                              const SmallVectorImpl<SDValue> &OutVals,
2708                              const SmallVectorImpl<ISD::InputArg> &Ins,
2709                              DebugLoc dl, SelectionDAG &DAG,
2710                              SmallVectorImpl<SDValue> &InVals) const {
2711   if (isTailCall)
2712     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2713                                                    Ins, DAG);
2714 
2715   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2716     return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2717                           isTailCall, Outs, OutVals, Ins,
2718                           dl, DAG, InVals);
2719 
2720   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2721                           isTailCall, Outs, OutVals, Ins,
2722                           dl, DAG, InVals);
2723 }
2724 
2725 SDValue
2726 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2727                                   CallingConv::ID CallConv, bool isVarArg,
2728                                   bool isTailCall,
2729                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2730                                   const SmallVectorImpl<SDValue> &OutVals,
2731                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2732                                   DebugLoc dl, SelectionDAG &DAG,
2733                                   SmallVectorImpl<SDValue> &InVals) const {
2734   // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2735   // of the 32-bit SVR4 ABI stack frame layout.
2736 
2737   assert((CallConv == CallingConv::C ||
2738           CallConv == CallingConv::Fast) && "Unknown calling convention!");
2739 
2740   unsigned PtrByteSize = 4;
2741 
2742   MachineFunction &MF = DAG.getMachineFunction();
2743 
2744   // Mark this function as potentially containing a function that contains a
2745   // tail call. As a consequence the frame pointer will be used for dynamicalloc
2746   // and restoring the callers stack pointer in this functions epilog. This is
2747   // done because by tail calling the called function might overwrite the value
2748   // in this function's (MF) stack pointer stack slot 0(SP).
2749   if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2750     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2751 
2752   // Count how many bytes are to be pushed on the stack, including the linkage
2753   // area, parameter list area and the part of the local variable space which
2754   // contains copies of aggregates which are passed by value.
2755 
2756   // Assign locations to all of the outgoing arguments.
2757   SmallVector<CCValAssign, 16> ArgLocs;
2758   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2759                  ArgLocs, *DAG.getContext());
2760 
2761   // Reserve space for the linkage area on the stack.
2762   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2763 
2764   if (isVarArg) {
2765     // Handle fixed and variable vector arguments differently.
2766     // Fixed vector arguments go into registers as long as registers are
2767     // available. Variable vector arguments always go into memory.
2768     unsigned NumArgs = Outs.size();
2769 
2770     for (unsigned i = 0; i != NumArgs; ++i) {
2771       MVT ArgVT = Outs[i].VT;
2772       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2773       bool Result;
2774 
2775       if (Outs[i].IsFixed) {
2776         Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2777                              CCInfo);
2778       } else {
2779         Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2780                                     ArgFlags, CCInfo);
2781       }
2782 
2783       if (Result) {
2784 #ifndef NDEBUG
2785         errs() << "Call operand #" << i << " has unhandled type "
2786              << EVT(ArgVT).getEVTString() << "\n";
2787 #endif
2788         llvm_unreachable(0);
2789       }
2790     }
2791   } else {
2792     // All arguments are treated the same.
2793     CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2794   }
2795 
2796   // Assign locations to all of the outgoing aggregate by value arguments.
2797   SmallVector<CCValAssign, 16> ByValArgLocs;
2798   CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2799                       *DAG.getContext());
2800 
2801   // Reserve stack space for the allocations in CCInfo.
2802   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2803 
2804   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2805 
2806   // Size of the linkage area, parameter list area and the part of the local
2807   // space variable where copies of aggregates which are passed by value are
2808   // stored.
2809   unsigned NumBytes = CCByValInfo.getNextStackOffset();
2810 
2811   // Calculate by how many bytes the stack has to be adjusted in case of tail
2812   // call optimization.
2813   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2814 
2815   // Adjust the stack pointer for the new arguments...
2816   // These operations are automatically eliminated by the prolog/epilog pass
2817   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2818   SDValue CallSeqStart = Chain;
2819 
2820   // Load the return address and frame pointer so it can be moved somewhere else
2821   // later.
2822   SDValue LROp, FPOp;
2823   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2824                                        dl);
2825 
2826   // Set up a copy of the stack pointer for use loading and storing any
2827   // arguments that may not fit in the registers available for argument
2828   // passing.
2829   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2830 
2831   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2832   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2833   SmallVector<SDValue, 8> MemOpChains;
2834 
2835   // Walk the register/memloc assignments, inserting copies/loads.
2836   for (unsigned i = 0, j = 0, e = ArgLocs.size();
2837        i != e;
2838        ++i) {
2839     CCValAssign &VA = ArgLocs[i];
2840     SDValue Arg = OutVals[i];
2841     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2842 
2843     if (Flags.isByVal()) {
2844       // Argument is an aggregate which is passed by value, thus we need to
2845       // create a copy of it in the local variable space of the current stack
2846       // frame (which is the stack frame of the caller) and pass the address of
2847       // this copy to the callee.
2848       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2849       CCValAssign &ByValVA = ByValArgLocs[j++];
2850       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2851 
2852       // Memory reserved in the local variable space of the callers stack frame.
2853       unsigned LocMemOffset = ByValVA.getLocMemOffset();
2854 
2855       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2856       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2857 
2858       // Create a copy of the argument in the local area of the current
2859       // stack frame.
2860       SDValue MemcpyCall =
2861         CreateCopyOfByValArgument(Arg, PtrOff,
2862                                   CallSeqStart.getNode()->getOperand(0),
2863                                   Flags, DAG, dl);
2864 
2865       // This must go outside the CALLSEQ_START..END.
2866       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2867                            CallSeqStart.getNode()->getOperand(1));
2868       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2869                              NewCallSeqStart.getNode());
2870       Chain = CallSeqStart = NewCallSeqStart;
2871 
2872       // Pass the address of the aggregate copy on the stack either in a
2873       // physical register or in the parameter list area of the current stack
2874       // frame to the callee.
2875       Arg = PtrOff;
2876     }
2877 
2878     if (VA.isRegLoc()) {
2879       // Put argument in a physical register.
2880       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2881     } else {
2882       // Put argument in the parameter list area of the current stack frame.
2883       assert(VA.isMemLoc());
2884       unsigned LocMemOffset = VA.getLocMemOffset();
2885 
2886       if (!isTailCall) {
2887         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2888         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2889 
2890         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2891                                            MachinePointerInfo(),
2892                                            false, false, 0));
2893       } else {
2894         // Calculate and remember argument location.
2895         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2896                                  TailCallArguments);
2897       }
2898     }
2899   }
2900 
2901   if (!MemOpChains.empty())
2902     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2903                         &MemOpChains[0], MemOpChains.size());
2904 
2905   // Build a sequence of copy-to-reg nodes chained together with token chain
2906   // and flag operands which copy the outgoing args into the appropriate regs.
2907   SDValue InFlag;
2908   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2909     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2910                              RegsToPass[i].second, InFlag);
2911     InFlag = Chain.getValue(1);
2912   }
2913 
2914   // Set CR6 to true if this is a vararg call.
2915   if (isVarArg) {
2916     SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2917     Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2918     InFlag = Chain.getValue(1);
2919   }
2920 
2921   if (isTailCall)
2922     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2923                     false, TailCallArguments);
2924 
2925   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2926                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2927                     Ins, InVals);
2928 }
2929 
2930 SDValue
2931 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2932                                     CallingConv::ID CallConv, bool isVarArg,
2933                                     bool isTailCall,
2934                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2935                                     const SmallVectorImpl<SDValue> &OutVals,
2936                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2937                                     DebugLoc dl, SelectionDAG &DAG,
2938                                     SmallVectorImpl<SDValue> &InVals) const {
2939 
2940   unsigned NumOps  = Outs.size();
2941 
2942   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2943   bool isPPC64 = PtrVT == MVT::i64;
2944   unsigned PtrByteSize = isPPC64 ? 8 : 4;
2945 
2946   MachineFunction &MF = DAG.getMachineFunction();
2947 
2948   // Mark this function as potentially containing a function that contains a
2949   // tail call. As a consequence the frame pointer will be used for dynamicalloc
2950   // and restoring the callers stack pointer in this functions epilog. This is
2951   // done because by tail calling the called function might overwrite the value
2952   // in this function's (MF) stack pointer stack slot 0(SP).
2953   if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2954     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2955 
2956   unsigned nAltivecParamsAtEnd = 0;
2957 
2958   // Count how many bytes are to be pushed on the stack, including the linkage
2959   // area, and parameter passing area.  We start with 24/48 bytes, which is
2960   // prereserved space for [SP][CR][LR][3 x unused].
2961   unsigned NumBytes =
2962     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2963                                          Outs, OutVals,
2964                                          nAltivecParamsAtEnd);
2965 
2966   // Calculate by how many bytes the stack has to be adjusted in case of tail
2967   // call optimization.
2968   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2969 
2970   // To protect arguments on the stack from being clobbered in a tail call,
2971   // force all the loads to happen before doing any other lowering.
2972   if (isTailCall)
2973     Chain = DAG.getStackArgumentTokenFactor(Chain);
2974 
2975   // Adjust the stack pointer for the new arguments...
2976   // These operations are automatically eliminated by the prolog/epilog pass
2977   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2978   SDValue CallSeqStart = Chain;
2979 
2980   // Load the return address and frame pointer so it can be move somewhere else
2981   // later.
2982   SDValue LROp, FPOp;
2983   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2984                                        dl);
2985 
2986   // Set up a copy of the stack pointer for use loading and storing any
2987   // arguments that may not fit in the registers available for argument
2988   // passing.
2989   SDValue StackPtr;
2990   if (isPPC64)
2991     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2992   else
2993     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2994 
2995   // Figure out which arguments are going to go in registers, and which in
2996   // memory.  Also, if this is a vararg function, floating point operations
2997   // must be stored to our stack, and loaded into integer regs as well, if
2998   // any integer regs are available for argument passing.
2999   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3000   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3001 
3002   static const unsigned GPR_32[] = {           // 32-bit registers.
3003     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3004     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3005   };
3006   static const unsigned GPR_64[] = {           // 64-bit registers.
3007     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3008     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3009   };
3010   static const unsigned *FPR = GetFPR();
3011 
3012   static const unsigned VR[] = {
3013     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3014     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3015   };
3016   const unsigned NumGPRs = array_lengthof(GPR_32);
3017   const unsigned NumFPRs = 13;
3018   const unsigned NumVRs  = array_lengthof(VR);
3019 
3020   const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3021 
3022   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3023   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3024 
3025   SmallVector<SDValue, 8> MemOpChains;
3026   for (unsigned i = 0; i != NumOps; ++i) {
3027     SDValue Arg = OutVals[i];
3028     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3029 
3030     // PtrOff will be used to store the current argument to the stack if a
3031     // register cannot be found for it.
3032     SDValue PtrOff;
3033 
3034     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3035 
3036     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3037 
3038     // On PPC64, promote integers to 64-bit values.
3039     if (isPPC64 && Arg.getValueType() == MVT::i32) {
3040       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3041       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3042       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3043     }
3044 
3045     // FIXME memcpy is used way more than necessary.  Correctness first.
3046     if (Flags.isByVal()) {
3047       unsigned Size = Flags.getByValSize();
3048       if (Size==1 || Size==2) {
3049         // Very small objects are passed right-justified.
3050         // Everything else is passed left-justified.
3051         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3052         if (GPR_idx != NumGPRs) {
3053           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3054                                         MachinePointerInfo(), VT,
3055                                         false, false, 0);
3056           MemOpChains.push_back(Load.getValue(1));
3057           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3058 
3059           ArgOffset += PtrByteSize;
3060         } else {
3061           SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3062           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3063           SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3064                                 CallSeqStart.getNode()->getOperand(0),
3065                                 Flags, DAG, dl);
3066           // This must go outside the CALLSEQ_START..END.
3067           SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3068                                CallSeqStart.getNode()->getOperand(1));
3069           DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3070                                  NewCallSeqStart.getNode());
3071           Chain = CallSeqStart = NewCallSeqStart;
3072           ArgOffset += PtrByteSize;
3073         }
3074         continue;
3075       }
3076       // Copy entire object into memory.  There are cases where gcc-generated
3077       // code assumes it is there, even if it could be put entirely into
3078       // registers.  (This is not what the doc says.)
3079       SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3080                             CallSeqStart.getNode()->getOperand(0),
3081                             Flags, DAG, dl);
3082       // This must go outside the CALLSEQ_START..END.
3083       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3084                            CallSeqStart.getNode()->getOperand(1));
3085       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3086       Chain = CallSeqStart = NewCallSeqStart;
3087       // And copy the pieces of it that fit into registers.
3088       for (unsigned j=0; j<Size; j+=PtrByteSize) {
3089         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3090         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3091         if (GPR_idx != NumGPRs) {
3092           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3093                                      MachinePointerInfo(),
3094                                      false, false, 0);
3095           MemOpChains.push_back(Load.getValue(1));
3096           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3097           ArgOffset += PtrByteSize;
3098         } else {
3099           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3100           break;
3101         }
3102       }
3103       continue;
3104     }
3105 
3106     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3107     default: llvm_unreachable("Unexpected ValueType for argument!");
3108     case MVT::i32:
3109     case MVT::i64:
3110       if (GPR_idx != NumGPRs) {
3111         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3112       } else {
3113         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3114                          isPPC64, isTailCall, false, MemOpChains,
3115                          TailCallArguments, dl);
3116       }
3117       ArgOffset += PtrByteSize;
3118       break;
3119     case MVT::f32:
3120     case MVT::f64:
3121       if (FPR_idx != NumFPRs) {
3122         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3123 
3124         if (isVarArg) {
3125           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3126                                        MachinePointerInfo(), false, false, 0);
3127           MemOpChains.push_back(Store);
3128 
3129           // Float varargs are always shadowed in available integer registers
3130           if (GPR_idx != NumGPRs) {
3131             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3132                                        MachinePointerInfo(), false, false, 0);
3133             MemOpChains.push_back(Load.getValue(1));
3134             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3135           }
3136           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3137             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3138             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3139             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3140                                        MachinePointerInfo(),
3141                                        false, false, 0);
3142             MemOpChains.push_back(Load.getValue(1));
3143             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3144           }
3145         } else {
3146           // If we have any FPRs remaining, we may also have GPRs remaining.
3147           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3148           // GPRs.
3149           if (GPR_idx != NumGPRs)
3150             ++GPR_idx;
3151           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3152               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3153             ++GPR_idx;
3154         }
3155       } else {
3156         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3157                          isPPC64, isTailCall, false, MemOpChains,
3158                          TailCallArguments, dl);
3159       }
3160       if (isPPC64)
3161         ArgOffset += 8;
3162       else
3163         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3164       break;
3165     case MVT::v4f32:
3166     case MVT::v4i32:
3167     case MVT::v8i16:
3168     case MVT::v16i8:
3169       if (isVarArg) {
3170         // These go aligned on the stack, or in the corresponding R registers
3171         // when within range.  The Darwin PPC ABI doc claims they also go in
3172         // V registers; in fact gcc does this only for arguments that are
3173         // prototyped, not for those that match the ...  We do it for all
3174         // arguments, seems to work.
3175         while (ArgOffset % 16 !=0) {
3176           ArgOffset += PtrByteSize;
3177           if (GPR_idx != NumGPRs)
3178             GPR_idx++;
3179         }
3180         // We could elide this store in the case where the object fits
3181         // entirely in R registers.  Maybe later.
3182         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3183                             DAG.getConstant(ArgOffset, PtrVT));
3184         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3185                                      MachinePointerInfo(), false, false, 0);
3186         MemOpChains.push_back(Store);
3187         if (VR_idx != NumVRs) {
3188           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3189                                      MachinePointerInfo(),
3190                                      false, false, 0);
3191           MemOpChains.push_back(Load.getValue(1));
3192           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3193         }
3194         ArgOffset += 16;
3195         for (unsigned i=0; i<16; i+=PtrByteSize) {
3196           if (GPR_idx == NumGPRs)
3197             break;
3198           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3199                                   DAG.getConstant(i, PtrVT));
3200           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3201                                      false, false, 0);
3202           MemOpChains.push_back(Load.getValue(1));
3203           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3204         }
3205         break;
3206       }
3207 
3208       // Non-varargs Altivec params generally go in registers, but have
3209       // stack space allocated at the end.
3210       if (VR_idx != NumVRs) {
3211         // Doesn't have GPR space allocated.
3212         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3213       } else if (nAltivecParamsAtEnd==0) {
3214         // We are emitting Altivec params in order.
3215         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3216                          isPPC64, isTailCall, true, MemOpChains,
3217                          TailCallArguments, dl);
3218         ArgOffset += 16;
3219       }
3220       break;
3221     }
3222   }
3223   // If all Altivec parameters fit in registers, as they usually do,
3224   // they get stack space following the non-Altivec parameters.  We
3225   // don't track this here because nobody below needs it.
3226   // If there are more Altivec parameters than fit in registers emit
3227   // the stores here.
3228   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3229     unsigned j = 0;
3230     // Offset is aligned; skip 1st 12 params which go in V registers.
3231     ArgOffset = ((ArgOffset+15)/16)*16;
3232     ArgOffset += 12*16;
3233     for (unsigned i = 0; i != NumOps; ++i) {
3234       SDValue Arg = OutVals[i];
3235       EVT ArgType = Outs[i].VT;
3236       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3237           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3238         if (++j > NumVRs) {
3239           SDValue PtrOff;
3240           // We are emitting Altivec params in order.
3241           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3242                            isPPC64, isTailCall, true, MemOpChains,
3243                            TailCallArguments, dl);
3244           ArgOffset += 16;
3245         }
3246       }
3247     }
3248   }
3249 
3250   if (!MemOpChains.empty())
3251     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3252                         &MemOpChains[0], MemOpChains.size());
3253 
3254   // Check if this is an indirect call (MTCTR/BCTRL).
3255   // See PrepareCall() for more information about calls through function
3256   // pointers in the 64-bit SVR4 ABI.
3257   if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3258       !dyn_cast<GlobalAddressSDNode>(Callee) &&
3259       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3260       !isBLACompatibleAddress(Callee, DAG)) {
3261     // Load r2 into a virtual register and store it to the TOC save area.
3262     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3263     // TOC save area offset.
3264     SDValue PtrOff = DAG.getIntPtrConstant(40);
3265     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3266     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3267                          false, false, 0);
3268   }
3269 
3270   // On Darwin, R12 must contain the address of an indirect callee.  This does
3271   // not mean the MTCTR instruction must use R12; it's easier to model this as
3272   // an extra parameter, so do that.
3273   if (!isTailCall &&
3274       !dyn_cast<GlobalAddressSDNode>(Callee) &&
3275       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3276       !isBLACompatibleAddress(Callee, DAG))
3277     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3278                                                    PPC::R12), Callee));
3279 
3280   // Build a sequence of copy-to-reg nodes chained together with token chain
3281   // and flag operands which copy the outgoing args into the appropriate regs.
3282   SDValue InFlag;
3283   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3284     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3285                              RegsToPass[i].second, InFlag);
3286     InFlag = Chain.getValue(1);
3287   }
3288 
3289   if (isTailCall)
3290     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3291                     FPOp, true, TailCallArguments);
3292 
3293   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3294                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3295                     Ins, InVals);
3296 }
3297 
3298 SDValue
3299 PPCTargetLowering::LowerReturn(SDValue Chain,
3300                                CallingConv::ID CallConv, bool isVarArg,
3301                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3302                                const SmallVectorImpl<SDValue> &OutVals,
3303                                DebugLoc dl, SelectionDAG &DAG) const {
3304 
3305   SmallVector<CCValAssign, 16> RVLocs;
3306   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3307                  RVLocs, *DAG.getContext());
3308   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3309 
3310   // If this is the first return lowered for this function, add the regs to the
3311   // liveout set for the function.
3312   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3313     for (unsigned i = 0; i != RVLocs.size(); ++i)
3314       DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3315   }
3316 
3317   SDValue Flag;
3318 
3319   // Copy the result values into the output registers.
3320   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3321     CCValAssign &VA = RVLocs[i];
3322     assert(VA.isRegLoc() && "Can only return in registers!");
3323     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3324                              OutVals[i], Flag);
3325     Flag = Chain.getValue(1);
3326   }
3327 
3328   if (Flag.getNode())
3329     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3330   else
3331     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3332 }
3333 
3334 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3335                                    const PPCSubtarget &Subtarget) const {
3336   // When we pop the dynamic allocation we need to restore the SP link.
3337   DebugLoc dl = Op.getDebugLoc();
3338 
3339   // Get the corect type for pointers.
3340   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3341 
3342   // Construct the stack pointer operand.
3343   bool isPPC64 = Subtarget.isPPC64();
3344   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3345   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3346 
3347   // Get the operands for the STACKRESTORE.
3348   SDValue Chain = Op.getOperand(0);
3349   SDValue SaveSP = Op.getOperand(1);
3350 
3351   // Load the old link SP.
3352   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3353                                    MachinePointerInfo(),
3354                                    false, false, 0);
3355 
3356   // Restore the stack pointer.
3357   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3358 
3359   // Store the old link SP.
3360   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3361                       false, false, 0);
3362 }
3363 
3364 
3365 
3366 SDValue
3367 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3368   MachineFunction &MF = DAG.getMachineFunction();
3369   bool isPPC64 = PPCSubTarget.isPPC64();
3370   bool isDarwinABI = PPCSubTarget.isDarwinABI();
3371   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3372 
3373   // Get current frame pointer save index.  The users of this index will be
3374   // primarily DYNALLOC instructions.
3375   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3376   int RASI = FI->getReturnAddrSaveIndex();
3377 
3378   // If the frame pointer save index hasn't been defined yet.
3379   if (!RASI) {
3380     // Find out what the fix offset of the frame pointer save area.
3381     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3382     // Allocate the frame index for frame pointer save area.
3383     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3384     // Save the result.
3385     FI->setReturnAddrSaveIndex(RASI);
3386   }
3387   return DAG.getFrameIndex(RASI, PtrVT);
3388 }
3389 
3390 SDValue
3391 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3392   MachineFunction &MF = DAG.getMachineFunction();
3393   bool isPPC64 = PPCSubTarget.isPPC64();
3394   bool isDarwinABI = PPCSubTarget.isDarwinABI();
3395   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3396 
3397   // Get current frame pointer save index.  The users of this index will be
3398   // primarily DYNALLOC instructions.
3399   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3400   int FPSI = FI->getFramePointerSaveIndex();
3401 
3402   // If the frame pointer save index hasn't been defined yet.
3403   if (!FPSI) {
3404     // Find out what the fix offset of the frame pointer save area.
3405     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3406                                                            isDarwinABI);
3407 
3408     // Allocate the frame index for frame pointer save area.
3409     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3410     // Save the result.
3411     FI->setFramePointerSaveIndex(FPSI);
3412   }
3413   return DAG.getFrameIndex(FPSI, PtrVT);
3414 }
3415 
3416 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3417                                          SelectionDAG &DAG,
3418                                          const PPCSubtarget &Subtarget) const {
3419   // Get the inputs.
3420   SDValue Chain = Op.getOperand(0);
3421   SDValue Size  = Op.getOperand(1);
3422   DebugLoc dl = Op.getDebugLoc();
3423 
3424   // Get the corect type for pointers.
3425   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3426   // Negate the size.
3427   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3428                                   DAG.getConstant(0, PtrVT), Size);
3429   // Construct a node for the frame pointer save index.
3430   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3431   // Build a DYNALLOC node.
3432   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3433   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3434   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3435 }
3436 
3437 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3438 /// possible.
3439 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3440   // Not FP? Not a fsel.
3441   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3442       !Op.getOperand(2).getValueType().isFloatingPoint())
3443     return Op;
3444 
3445   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3446 
3447   // Cannot handle SETEQ/SETNE.
3448   if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3449 
3450   EVT ResVT = Op.getValueType();
3451   EVT CmpVT = Op.getOperand(0).getValueType();
3452   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3453   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3454   DebugLoc dl = Op.getDebugLoc();
3455 
3456   // If the RHS of the comparison is a 0.0, we don't need to do the
3457   // subtraction at all.
3458   if (isFloatingPointZero(RHS))
3459     switch (CC) {
3460     default: break;       // SETUO etc aren't handled by fsel.
3461     case ISD::SETULT:
3462     case ISD::SETLT:
3463       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3464     case ISD::SETOGE:
3465     case ISD::SETGE:
3466       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3467         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3468       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3469     case ISD::SETUGT:
3470     case ISD::SETGT:
3471       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3472     case ISD::SETOLE:
3473     case ISD::SETLE:
3474       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3475         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3476       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3477                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3478     }
3479 
3480   SDValue Cmp;
3481   switch (CC) {
3482   default: break;       // SETUO etc aren't handled by fsel.
3483   case ISD::SETULT:
3484   case ISD::SETLT:
3485     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3486     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3487       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3488       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3489   case ISD::SETOGE:
3490   case ISD::SETGE:
3491     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3492     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3493       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3494       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3495   case ISD::SETUGT:
3496   case ISD::SETGT:
3497     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3498     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3499       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3500       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3501   case ISD::SETOLE:
3502   case ISD::SETLE:
3503     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3504     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3505       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3506       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3507   }
3508   return Op;
3509 }
3510 
3511 // FIXME: Split this code up when LegalizeDAGTypes lands.
3512 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3513                                            DebugLoc dl) const {
3514   assert(Op.getOperand(0).getValueType().isFloatingPoint());
3515   SDValue Src = Op.getOperand(0);
3516   if (Src.getValueType() == MVT::f32)
3517     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3518 
3519   SDValue Tmp;
3520   switch (Op.getValueType().getSimpleVT().SimpleTy) {
3521   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3522   case MVT::i32:
3523     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3524                                                          PPCISD::FCTIDZ,
3525                       dl, MVT::f64, Src);
3526     break;
3527   case MVT::i64:
3528     Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3529     break;
3530   }
3531 
3532   // Convert the FP value to an int value through memory.
3533   SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3534 
3535   // Emit a store to the stack slot.
3536   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3537                                MachinePointerInfo(), false, false, 0);
3538 
3539   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3540   // add in a bias.
3541   if (Op.getValueType() == MVT::i32)
3542     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3543                         DAG.getConstant(4, FIPtr.getValueType()));
3544   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3545                      false, false, 0);
3546 }
3547 
3548 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3549                                            SelectionDAG &DAG) const {
3550   DebugLoc dl = Op.getDebugLoc();
3551   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3552   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3553     return SDValue();
3554 
3555   if (Op.getOperand(0).getValueType() == MVT::i64) {
3556     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3557     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3558     if (Op.getValueType() == MVT::f32)
3559       FP = DAG.getNode(ISD::FP_ROUND, dl,
3560                        MVT::f32, FP, DAG.getIntPtrConstant(0));
3561     return FP;
3562   }
3563 
3564   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3565          "Unhandled SINT_TO_FP type in custom expander!");
3566   // Since we only generate this in 64-bit mode, we can take advantage of
3567   // 64-bit registers.  In particular, sign extend the input value into the
3568   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3569   // then lfd it and fcfid it.
3570   MachineFunction &MF = DAG.getMachineFunction();
3571   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3572   int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3573   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3574   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3575 
3576   SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3577                                 Op.getOperand(0));
3578 
3579   // STD the extended value into the stack slot.
3580   MachineMemOperand *MMO =
3581     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3582                             MachineMemOperand::MOStore, 8, 8);
3583   SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3584   SDValue Store =
3585     DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3586                             Ops, 4, MVT::i64, MMO);
3587   // Load the value as a double.
3588   SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3589                            false, false, 0);
3590 
3591   // FCFID it and return it.
3592   SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3593   if (Op.getValueType() == MVT::f32)
3594     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3595   return FP;
3596 }
3597 
3598 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3599                                             SelectionDAG &DAG) const {
3600   DebugLoc dl = Op.getDebugLoc();
3601   /*
3602    The rounding mode is in bits 30:31 of FPSR, and has the following
3603    settings:
3604      00 Round to nearest
3605      01 Round to 0
3606      10 Round to +inf
3607      11 Round to -inf
3608 
3609   FLT_ROUNDS, on the other hand, expects the following:
3610     -1 Undefined
3611      0 Round to 0
3612      1 Round to nearest
3613      2 Round to +inf
3614      3 Round to -inf
3615 
3616   To perform the conversion, we do:
3617     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3618   */
3619 
3620   MachineFunction &MF = DAG.getMachineFunction();
3621   EVT VT = Op.getValueType();
3622   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3623   std::vector<EVT> NodeTys;
3624   SDValue MFFSreg, InFlag;
3625 
3626   // Save FP Control Word to register
3627   NodeTys.push_back(MVT::f64);    // return register
3628   NodeTys.push_back(MVT::Glue);   // unused in this context
3629   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3630 
3631   // Save FP register to stack slot
3632   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3633   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3634   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3635                                StackSlot, MachinePointerInfo(), false, false,0);
3636 
3637   // Load FP Control Word from low 32 bits of stack slot.
3638   SDValue Four = DAG.getConstant(4, PtrVT);
3639   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3640   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3641                             false, false, 0);
3642 
3643   // Transform as necessary
3644   SDValue CWD1 =
3645     DAG.getNode(ISD::AND, dl, MVT::i32,
3646                 CWD, DAG.getConstant(3, MVT::i32));
3647   SDValue CWD2 =
3648     DAG.getNode(ISD::SRL, dl, MVT::i32,
3649                 DAG.getNode(ISD::AND, dl, MVT::i32,
3650                             DAG.getNode(ISD::XOR, dl, MVT::i32,
3651                                         CWD, DAG.getConstant(3, MVT::i32)),
3652                             DAG.getConstant(3, MVT::i32)),
3653                 DAG.getConstant(1, MVT::i32));
3654 
3655   SDValue RetVal =
3656     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3657 
3658   return DAG.getNode((VT.getSizeInBits() < 16 ?
3659                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3660 }
3661 
3662 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3663   EVT VT = Op.getValueType();
3664   unsigned BitWidth = VT.getSizeInBits();
3665   DebugLoc dl = Op.getDebugLoc();
3666   assert(Op.getNumOperands() == 3 &&
3667          VT == Op.getOperand(1).getValueType() &&
3668          "Unexpected SHL!");
3669 
3670   // Expand into a bunch of logical ops.  Note that these ops
3671   // depend on the PPC behavior for oversized shift amounts.
3672   SDValue Lo = Op.getOperand(0);
3673   SDValue Hi = Op.getOperand(1);
3674   SDValue Amt = Op.getOperand(2);
3675   EVT AmtVT = Amt.getValueType();
3676 
3677   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3678                              DAG.getConstant(BitWidth, AmtVT), Amt);
3679   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3680   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3681   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3682   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3683                              DAG.getConstant(-BitWidth, AmtVT));
3684   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3685   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3686   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3687   SDValue OutOps[] = { OutLo, OutHi };
3688   return DAG.getMergeValues(OutOps, 2, dl);
3689 }
3690 
3691 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3692   EVT VT = Op.getValueType();
3693   DebugLoc dl = Op.getDebugLoc();
3694   unsigned BitWidth = VT.getSizeInBits();
3695   assert(Op.getNumOperands() == 3 &&
3696          VT == Op.getOperand(1).getValueType() &&
3697          "Unexpected SRL!");
3698 
3699   // Expand into a bunch of logical ops.  Note that these ops
3700   // depend on the PPC behavior for oversized shift amounts.
3701   SDValue Lo = Op.getOperand(0);
3702   SDValue Hi = Op.getOperand(1);
3703   SDValue Amt = Op.getOperand(2);
3704   EVT AmtVT = Amt.getValueType();
3705 
3706   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3707                              DAG.getConstant(BitWidth, AmtVT), Amt);
3708   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3709   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3710   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3711   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3712                              DAG.getConstant(-BitWidth, AmtVT));
3713   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3714   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3715   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3716   SDValue OutOps[] = { OutLo, OutHi };
3717   return DAG.getMergeValues(OutOps, 2, dl);
3718 }
3719 
3720 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3721   DebugLoc dl = Op.getDebugLoc();
3722   EVT VT = Op.getValueType();
3723   unsigned BitWidth = VT.getSizeInBits();
3724   assert(Op.getNumOperands() == 3 &&
3725          VT == Op.getOperand(1).getValueType() &&
3726          "Unexpected SRA!");
3727 
3728   // Expand into a bunch of logical ops, followed by a select_cc.
3729   SDValue Lo = Op.getOperand(0);
3730   SDValue Hi = Op.getOperand(1);
3731   SDValue Amt = Op.getOperand(2);
3732   EVT AmtVT = Amt.getValueType();
3733 
3734   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3735                              DAG.getConstant(BitWidth, AmtVT), Amt);
3736   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3737   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3738   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3739   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3740                              DAG.getConstant(-BitWidth, AmtVT));
3741   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3742   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3743   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3744                                   Tmp4, Tmp6, ISD::SETLE);
3745   SDValue OutOps[] = { OutLo, OutHi };
3746   return DAG.getMergeValues(OutOps, 2, dl);
3747 }
3748 
3749 //===----------------------------------------------------------------------===//
3750 // Vector related lowering.
3751 //
3752 
3753 /// BuildSplatI - Build a canonical splati of Val with an element size of
3754 /// SplatSize.  Cast the result to VT.
3755 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3756                              SelectionDAG &DAG, DebugLoc dl) {
3757   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3758 
3759   static const EVT VTys[] = { // canonical VT to use for each size.
3760     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3761   };
3762 
3763   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3764 
3765   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3766   if (Val == -1)
3767     SplatSize = 1;
3768 
3769   EVT CanonicalVT = VTys[SplatSize-1];
3770 
3771   // Build a canonical splat for this value.
3772   SDValue Elt = DAG.getConstant(Val, MVT::i32);
3773   SmallVector<SDValue, 8> Ops;
3774   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3775   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3776                               &Ops[0], Ops.size());
3777   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3778 }
3779 
3780 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3781 /// specified intrinsic ID.
3782 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3783                                 SelectionDAG &DAG, DebugLoc dl,
3784                                 EVT DestVT = MVT::Other) {
3785   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3786   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3787                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
3788 }
3789 
3790 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3791 /// specified intrinsic ID.
3792 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3793                                 SDValue Op2, SelectionDAG &DAG,
3794                                 DebugLoc dl, EVT DestVT = MVT::Other) {
3795   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3796   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3797                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3798 }
3799 
3800 
3801 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3802 /// amount.  The result has the specified value type.
3803 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3804                              EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3805   // Force LHS/RHS to be the right type.
3806   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3807   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3808 
3809   int Ops[16];
3810   for (unsigned i = 0; i != 16; ++i)
3811     Ops[i] = i + Amt;
3812   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3813   return DAG.getNode(ISD::BITCAST, dl, VT, T);
3814 }
3815 
3816 // If this is a case we can't handle, return null and let the default
3817 // expansion code take care of it.  If we CAN select this case, and if it
3818 // selects to a single instruction, return Op.  Otherwise, if we can codegen
3819 // this case more efficiently than a constant pool load, lower it to the
3820 // sequence of ops that should be used.
3821 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3822                                              SelectionDAG &DAG) const {
3823   DebugLoc dl = Op.getDebugLoc();
3824   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3825   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3826 
3827   // Check if this is a splat of a constant value.
3828   APInt APSplatBits, APSplatUndef;
3829   unsigned SplatBitSize;
3830   bool HasAnyUndefs;
3831   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3832                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
3833     return SDValue();
3834 
3835   unsigned SplatBits = APSplatBits.getZExtValue();
3836   unsigned SplatUndef = APSplatUndef.getZExtValue();
3837   unsigned SplatSize = SplatBitSize / 8;
3838 
3839   // First, handle single instruction cases.
3840 
3841   // All zeros?
3842   if (SplatBits == 0) {
3843     // Canonicalize all zero vectors to be v4i32.
3844     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3845       SDValue Z = DAG.getConstant(0, MVT::i32);
3846       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3847       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3848     }
3849     return Op;
3850   }
3851 
3852   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3853   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3854                     (32-SplatBitSize));
3855   if (SextVal >= -16 && SextVal <= 15)
3856     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3857 
3858 
3859   // Two instruction sequences.
3860 
3861   // If this value is in the range [-32,30] and is even, use:
3862   //    tmp = VSPLTI[bhw], result = add tmp, tmp
3863   if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3864     SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3865     Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3866     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3867   }
3868 
3869   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3870   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3871   // for fneg/fabs.
3872   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3873     // Make -1 and vspltisw -1:
3874     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3875 
3876     // Make the VSLW intrinsic, computing 0x8000_0000.
3877     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3878                                    OnesV, DAG, dl);
3879 
3880     // xor by OnesV to invert it.
3881     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3882     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3883   }
3884 
3885   // Check to see if this is a wide variety of vsplti*, binop self cases.
3886   static const signed char SplatCsts[] = {
3887     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3888     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3889   };
3890 
3891   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3892     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3893     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3894     int i = SplatCsts[idx];
3895 
3896     // Figure out what shift amount will be used by altivec if shifted by i in
3897     // this splat size.
3898     unsigned TypeShiftAmt = i & (SplatBitSize-1);
3899 
3900     // vsplti + shl self.
3901     if (SextVal == (i << (int)TypeShiftAmt)) {
3902       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3903       static const unsigned IIDs[] = { // Intrinsic to use for each size.
3904         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3905         Intrinsic::ppc_altivec_vslw
3906       };
3907       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3908       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3909     }
3910 
3911     // vsplti + srl self.
3912     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3913       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3914       static const unsigned IIDs[] = { // Intrinsic to use for each size.
3915         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3916         Intrinsic::ppc_altivec_vsrw
3917       };
3918       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3919       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3920     }
3921 
3922     // vsplti + sra self.
3923     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3924       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3925       static const unsigned IIDs[] = { // Intrinsic to use for each size.
3926         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3927         Intrinsic::ppc_altivec_vsraw
3928       };
3929       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3930       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3931     }
3932 
3933     // vsplti + rol self.
3934     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3935                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3936       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3937       static const unsigned IIDs[] = { // Intrinsic to use for each size.
3938         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3939         Intrinsic::ppc_altivec_vrlw
3940       };
3941       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3942       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3943     }
3944 
3945     // t = vsplti c, result = vsldoi t, t, 1
3946     if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
3947       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3948       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3949     }
3950     // t = vsplti c, result = vsldoi t, t, 2
3951     if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
3952       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3953       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3954     }
3955     // t = vsplti c, result = vsldoi t, t, 3
3956     if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
3957       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3958       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3959     }
3960   }
3961 
3962   // Three instruction sequences.
3963 
3964   // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3965   if (SextVal >= 0 && SextVal <= 31) {
3966     SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3967     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3968     LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3969     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
3970   }
3971   // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3972   if (SextVal >= -31 && SextVal <= 0) {
3973     SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3974     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3975     LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3976     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
3977   }
3978 
3979   return SDValue();
3980 }
3981 
3982 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3983 /// the specified operations to build the shuffle.
3984 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3985                                       SDValue RHS, SelectionDAG &DAG,
3986                                       DebugLoc dl) {
3987   unsigned OpNum = (PFEntry >> 26) & 0x0F;
3988   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3989   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3990 
3991   enum {
3992     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3993     OP_VMRGHW,
3994     OP_VMRGLW,
3995     OP_VSPLTISW0,
3996     OP_VSPLTISW1,
3997     OP_VSPLTISW2,
3998     OP_VSPLTISW3,
3999     OP_VSLDOI4,
4000     OP_VSLDOI8,
4001     OP_VSLDOI12
4002   };
4003 
4004   if (OpNum == OP_COPY) {
4005     if (LHSID == (1*9+2)*9+3) return LHS;
4006     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4007     return RHS;
4008   }
4009 
4010   SDValue OpLHS, OpRHS;
4011   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4012   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4013 
4014   int ShufIdxs[16];
4015   switch (OpNum) {
4016   default: llvm_unreachable("Unknown i32 permute!");
4017   case OP_VMRGHW:
4018     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4019     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4020     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4021     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4022     break;
4023   case OP_VMRGLW:
4024     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4025     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4026     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4027     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4028     break;
4029   case OP_VSPLTISW0:
4030     for (unsigned i = 0; i != 16; ++i)
4031       ShufIdxs[i] = (i&3)+0;
4032     break;
4033   case OP_VSPLTISW1:
4034     for (unsigned i = 0; i != 16; ++i)
4035       ShufIdxs[i] = (i&3)+4;
4036     break;
4037   case OP_VSPLTISW2:
4038     for (unsigned i = 0; i != 16; ++i)
4039       ShufIdxs[i] = (i&3)+8;
4040     break;
4041   case OP_VSPLTISW3:
4042     for (unsigned i = 0; i != 16; ++i)
4043       ShufIdxs[i] = (i&3)+12;
4044     break;
4045   case OP_VSLDOI4:
4046     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4047   case OP_VSLDOI8:
4048     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4049   case OP_VSLDOI12:
4050     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4051   }
4052   EVT VT = OpLHS.getValueType();
4053   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4054   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4055   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4056   return DAG.getNode(ISD::BITCAST, dl, VT, T);
4057 }
4058 
4059 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4060 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4061 /// return the code it can be lowered into.  Worst case, it can always be
4062 /// lowered into a vperm.
4063 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4064                                                SelectionDAG &DAG) const {
4065   DebugLoc dl = Op.getDebugLoc();
4066   SDValue V1 = Op.getOperand(0);
4067   SDValue V2 = Op.getOperand(1);
4068   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4069   EVT VT = Op.getValueType();
4070 
4071   // Cases that are handled by instructions that take permute immediates
4072   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4073   // selected by the instruction selector.
4074   if (V2.getOpcode() == ISD::UNDEF) {
4075     if (PPC::isSplatShuffleMask(SVOp, 1) ||
4076         PPC::isSplatShuffleMask(SVOp, 2) ||
4077         PPC::isSplatShuffleMask(SVOp, 4) ||
4078         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4079         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4080         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4081         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4082         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4083         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4084         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4085         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4086         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4087       return Op;
4088     }
4089   }
4090 
4091   // Altivec has a variety of "shuffle immediates" that take two vector inputs
4092   // and produce a fixed permutation.  If any of these match, do not lower to
4093   // VPERM.
4094   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4095       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4096       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4097       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4098       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4099       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4100       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4101       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4102       PPC::isVMRGHShuffleMask(SVOp, 4, false))
4103     return Op;
4104 
4105   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4106   // perfect shuffle table to emit an optimal matching sequence.
4107   SmallVector<int, 16> PermMask;
4108   SVOp->getMask(PermMask);
4109 
4110   unsigned PFIndexes[4];
4111   bool isFourElementShuffle = true;
4112   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4113     unsigned EltNo = 8;   // Start out undef.
4114     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4115       if (PermMask[i*4+j] < 0)
4116         continue;   // Undef, ignore it.
4117 
4118       unsigned ByteSource = PermMask[i*4+j];
4119       if ((ByteSource & 3) != j) {
4120         isFourElementShuffle = false;
4121         break;
4122       }
4123 
4124       if (EltNo == 8) {
4125         EltNo = ByteSource/4;
4126       } else if (EltNo != ByteSource/4) {
4127         isFourElementShuffle = false;
4128         break;
4129       }
4130     }
4131     PFIndexes[i] = EltNo;
4132   }
4133 
4134   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4135   // perfect shuffle vector to determine if it is cost effective to do this as
4136   // discrete instructions, or whether we should use a vperm.
4137   if (isFourElementShuffle) {
4138     // Compute the index in the perfect shuffle table.
4139     unsigned PFTableIndex =
4140       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4141 
4142     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4143     unsigned Cost  = (PFEntry >> 30);
4144 
4145     // Determining when to avoid vperm is tricky.  Many things affect the cost
4146     // of vperm, particularly how many times the perm mask needs to be computed.
4147     // For example, if the perm mask can be hoisted out of a loop or is already
4148     // used (perhaps because there are multiple permutes with the same shuffle
4149     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4150     // the loop requires an extra register.
4151     //
4152     // As a compromise, we only emit discrete instructions if the shuffle can be
4153     // generated in 3 or fewer operations.  When we have loop information
4154     // available, if this block is within a loop, we should avoid using vperm
4155     // for 3-operation perms and use a constant pool load instead.
4156     if (Cost < 3)
4157       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4158   }
4159 
4160   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4161   // vector that will get spilled to the constant pool.
4162   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4163 
4164   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4165   // that it is in input element units, not in bytes.  Convert now.
4166   EVT EltVT = V1.getValueType().getVectorElementType();
4167   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4168 
4169   SmallVector<SDValue, 16> ResultMask;
4170   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4171     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4172 
4173     for (unsigned j = 0; j != BytesPerElement; ++j)
4174       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4175                                            MVT::i32));
4176   }
4177 
4178   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4179                                     &ResultMask[0], ResultMask.size());
4180   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4181 }
4182 
4183 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4184 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
4185 /// information about the intrinsic.
4186 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4187                                   bool &isDot) {
4188   unsigned IntrinsicID =
4189     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4190   CompareOpc = -1;
4191   isDot = false;
4192   switch (IntrinsicID) {
4193   default: return false;
4194     // Comparison predicates.
4195   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4196   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4197   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4198   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4199   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4200   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4201   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4202   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4203   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4204   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4205   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4206   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4207   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4208 
4209     // Normal Comparisons.
4210   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4211   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4212   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4213   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4214   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4215   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4216   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4217   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4218   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4219   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4220   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4221   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4222   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4223   }
4224   return true;
4225 }
4226 
4227 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4228 /// lower, do it, otherwise return null.
4229 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4230                                                    SelectionDAG &DAG) const {
4231   // If this is a lowered altivec predicate compare, CompareOpc is set to the
4232   // opcode number of the comparison.
4233   DebugLoc dl = Op.getDebugLoc();
4234   int CompareOpc;
4235   bool isDot;
4236   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4237     return SDValue();    // Don't custom lower most intrinsics.
4238 
4239   // If this is a non-dot comparison, make the VCMP node and we are done.
4240   if (!isDot) {
4241     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4242                               Op.getOperand(1), Op.getOperand(2),
4243                               DAG.getConstant(CompareOpc, MVT::i32));
4244     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4245   }
4246 
4247   // Create the PPCISD altivec 'dot' comparison node.
4248   SDValue Ops[] = {
4249     Op.getOperand(2),  // LHS
4250     Op.getOperand(3),  // RHS
4251     DAG.getConstant(CompareOpc, MVT::i32)
4252   };
4253   std::vector<EVT> VTs;
4254   VTs.push_back(Op.getOperand(2).getValueType());
4255   VTs.push_back(MVT::Glue);
4256   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4257 
4258   // Now that we have the comparison, emit a copy from the CR to a GPR.
4259   // This is flagged to the above dot comparison.
4260   SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4261                                 DAG.getRegister(PPC::CR6, MVT::i32),
4262                                 CompNode.getValue(1));
4263 
4264   // Unpack the result based on how the target uses it.
4265   unsigned BitNo;   // Bit # of CR6.
4266   bool InvertBit;   // Invert result?
4267   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4268   default:  // Can't happen, don't crash on invalid number though.
4269   case 0:   // Return the value of the EQ bit of CR6.
4270     BitNo = 0; InvertBit = false;
4271     break;
4272   case 1:   // Return the inverted value of the EQ bit of CR6.
4273     BitNo = 0; InvertBit = true;
4274     break;
4275   case 2:   // Return the value of the LT bit of CR6.
4276     BitNo = 2; InvertBit = false;
4277     break;
4278   case 3:   // Return the inverted value of the LT bit of CR6.
4279     BitNo = 2; InvertBit = true;
4280     break;
4281   }
4282 
4283   // Shift the bit into the low position.
4284   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4285                       DAG.getConstant(8-(3-BitNo), MVT::i32));
4286   // Isolate the bit.
4287   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4288                       DAG.getConstant(1, MVT::i32));
4289 
4290   // If we are supposed to, toggle the bit.
4291   if (InvertBit)
4292     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4293                         DAG.getConstant(1, MVT::i32));
4294   return Flags;
4295 }
4296 
4297 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4298                                                    SelectionDAG &DAG) const {
4299   DebugLoc dl = Op.getDebugLoc();
4300   // Create a stack slot that is 16-byte aligned.
4301   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4302   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4303   EVT PtrVT = getPointerTy();
4304   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4305 
4306   // Store the input value into Value#0 of the stack slot.
4307   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4308                                Op.getOperand(0), FIdx, MachinePointerInfo(),
4309                                false, false, 0);
4310   // Load it out.
4311   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4312                      false, false, 0);
4313 }
4314 
4315 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4316   DebugLoc dl = Op.getDebugLoc();
4317   if (Op.getValueType() == MVT::v4i32) {
4318     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4319 
4320     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4321     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4322 
4323     SDValue RHSSwap =   // = vrlw RHS, 16
4324       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4325 
4326     // Shrinkify inputs to v8i16.
4327     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4328     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4329     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4330 
4331     // Low parts multiplied together, generating 32-bit results (we ignore the
4332     // top parts).
4333     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4334                                         LHS, RHS, DAG, dl, MVT::v4i32);
4335 
4336     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4337                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4338     // Shift the high parts up 16 bits.
4339     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4340                               Neg16, DAG, dl);
4341     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4342   } else if (Op.getValueType() == MVT::v8i16) {
4343     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4344 
4345     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4346 
4347     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4348                             LHS, RHS, Zero, DAG, dl);
4349   } else if (Op.getValueType() == MVT::v16i8) {
4350     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4351 
4352     // Multiply the even 8-bit parts, producing 16-bit sums.
4353     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4354                                            LHS, RHS, DAG, dl, MVT::v8i16);
4355     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4356 
4357     // Multiply the odd 8-bit parts, producing 16-bit sums.
4358     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4359                                           LHS, RHS, DAG, dl, MVT::v8i16);
4360     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4361 
4362     // Merge the results together.
4363     int Ops[16];
4364     for (unsigned i = 0; i != 8; ++i) {
4365       Ops[i*2  ] = 2*i+1;
4366       Ops[i*2+1] = 2*i+1+16;
4367     }
4368     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4369   } else {
4370     llvm_unreachable("Unknown mul to lower!");
4371   }
4372 }
4373 
4374 /// LowerOperation - Provide custom lowering hooks for some operations.
4375 ///
4376 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4377   switch (Op.getOpcode()) {
4378   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4379   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4380   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4381   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4382   case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4383   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4384   case ISD::SETCC:              return LowerSETCC(Op, DAG);
4385   case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4386   case ISD::VASTART:
4387     return LowerVASTART(Op, DAG, PPCSubTarget);
4388 
4389   case ISD::VAARG:
4390     return LowerVAARG(Op, DAG, PPCSubTarget);
4391 
4392   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4393   case ISD::DYNAMIC_STACKALLOC:
4394     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4395 
4396   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4397   case ISD::FP_TO_UINT:
4398   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4399                                                        Op.getDebugLoc());
4400   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4401   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4402 
4403   // Lower 64-bit shifts.
4404   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4405   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4406   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4407 
4408   // Vector-related lowering.
4409   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4410   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4411   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4412   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4413   case ISD::MUL:                return LowerMUL(Op, DAG);
4414 
4415   // Frame & Return address.
4416   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4417   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4418   }
4419   return SDValue();
4420 }
4421 
4422 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4423                                            SmallVectorImpl<SDValue>&Results,
4424                                            SelectionDAG &DAG) const {
4425   DebugLoc dl = N->getDebugLoc();
4426   switch (N->getOpcode()) {
4427   default:
4428     assert(false && "Do not know how to custom type legalize this operation!");
4429     return;
4430   case ISD::FP_ROUND_INREG: {
4431     assert(N->getValueType(0) == MVT::ppcf128);
4432     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4433     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4434                              MVT::f64, N->getOperand(0),
4435                              DAG.getIntPtrConstant(0));
4436     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4437                              MVT::f64, N->getOperand(0),
4438                              DAG.getIntPtrConstant(1));
4439 
4440     // This sequence changes FPSCR to do round-to-zero, adds the two halves
4441     // of the long double, and puts FPSCR back the way it was.  We do not
4442     // actually model FPSCR.
4443     std::vector<EVT> NodeTys;
4444     SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4445 
4446     NodeTys.push_back(MVT::f64);   // Return register
4447     NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4448     Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4449     MFFSreg = Result.getValue(0);
4450     InFlag = Result.getValue(1);
4451 
4452     NodeTys.clear();
4453     NodeTys.push_back(MVT::Glue);   // Returns a flag
4454     Ops[0] = DAG.getConstant(31, MVT::i32);
4455     Ops[1] = InFlag;
4456     Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4457     InFlag = Result.getValue(0);
4458 
4459     NodeTys.clear();
4460     NodeTys.push_back(MVT::Glue);   // Returns a flag
4461     Ops[0] = DAG.getConstant(30, MVT::i32);
4462     Ops[1] = InFlag;
4463     Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4464     InFlag = Result.getValue(0);
4465 
4466     NodeTys.clear();
4467     NodeTys.push_back(MVT::f64);    // result of add
4468     NodeTys.push_back(MVT::Glue);   // Returns a flag
4469     Ops[0] = Lo;
4470     Ops[1] = Hi;
4471     Ops[2] = InFlag;
4472     Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4473     FPreg = Result.getValue(0);
4474     InFlag = Result.getValue(1);
4475 
4476     NodeTys.clear();
4477     NodeTys.push_back(MVT::f64);
4478     Ops[0] = DAG.getConstant(1, MVT::i32);
4479     Ops[1] = MFFSreg;
4480     Ops[2] = FPreg;
4481     Ops[3] = InFlag;
4482     Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4483     FPreg = Result.getValue(0);
4484 
4485     // We know the low half is about to be thrown away, so just use something
4486     // convenient.
4487     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4488                                 FPreg, FPreg));
4489     return;
4490   }
4491   case ISD::FP_TO_SINT:
4492     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4493     return;
4494   }
4495 }
4496 
4497 
4498 //===----------------------------------------------------------------------===//
4499 //  Other Lowering Code
4500 //===----------------------------------------------------------------------===//
4501 
4502 MachineBasicBlock *
4503 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4504                                     bool is64bit, unsigned BinOpcode) const {
4505   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4506   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4507 
4508   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4509   MachineFunction *F = BB->getParent();
4510   MachineFunction::iterator It = BB;
4511   ++It;
4512 
4513   unsigned dest = MI->getOperand(0).getReg();
4514   unsigned ptrA = MI->getOperand(1).getReg();
4515   unsigned ptrB = MI->getOperand(2).getReg();
4516   unsigned incr = MI->getOperand(3).getReg();
4517   DebugLoc dl = MI->getDebugLoc();
4518 
4519   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4520   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4521   F->insert(It, loopMBB);
4522   F->insert(It, exitMBB);
4523   exitMBB->splice(exitMBB->begin(), BB,
4524                   llvm::next(MachineBasicBlock::iterator(MI)),
4525                   BB->end());
4526   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4527 
4528   MachineRegisterInfo &RegInfo = F->getRegInfo();
4529   unsigned TmpReg = (!BinOpcode) ? incr :
4530     RegInfo.createVirtualRegister(
4531        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4532                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
4533 
4534   //  thisMBB:
4535   //   ...
4536   //   fallthrough --> loopMBB
4537   BB->addSuccessor(loopMBB);
4538 
4539   //  loopMBB:
4540   //   l[wd]arx dest, ptr
4541   //   add r0, dest, incr
4542   //   st[wd]cx. r0, ptr
4543   //   bne- loopMBB
4544   //   fallthrough --> exitMBB
4545   BB = loopMBB;
4546   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4547     .addReg(ptrA).addReg(ptrB);
4548   if (BinOpcode)
4549     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4550   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4551     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4552   BuildMI(BB, dl, TII->get(PPC::BCC))
4553     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4554   BB->addSuccessor(loopMBB);
4555   BB->addSuccessor(exitMBB);
4556 
4557   //  exitMBB:
4558   //   ...
4559   BB = exitMBB;
4560   return BB;
4561 }
4562 
4563 MachineBasicBlock *
4564 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4565                                             MachineBasicBlock *BB,
4566                                             bool is8bit,    // operation
4567                                             unsigned BinOpcode) const {
4568   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4569   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4570   // In 64 bit mode we have to use 64 bits for addresses, even though the
4571   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4572   // registers without caring whether they're 32 or 64, but here we're
4573   // doing actual arithmetic on the addresses.
4574   bool is64bit = PPCSubTarget.isPPC64();
4575   unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4576 
4577   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4578   MachineFunction *F = BB->getParent();
4579   MachineFunction::iterator It = BB;
4580   ++It;
4581 
4582   unsigned dest = MI->getOperand(0).getReg();
4583   unsigned ptrA = MI->getOperand(1).getReg();
4584   unsigned ptrB = MI->getOperand(2).getReg();
4585   unsigned incr = MI->getOperand(3).getReg();
4586   DebugLoc dl = MI->getDebugLoc();
4587 
4588   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4589   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4590   F->insert(It, loopMBB);
4591   F->insert(It, exitMBB);
4592   exitMBB->splice(exitMBB->begin(), BB,
4593                   llvm::next(MachineBasicBlock::iterator(MI)),
4594                   BB->end());
4595   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4596 
4597   MachineRegisterInfo &RegInfo = F->getRegInfo();
4598   const TargetRegisterClass *RC =
4599     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4600               (const TargetRegisterClass *) &PPC::GPRCRegClass;
4601   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4602   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4603   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4604   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4605   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4606   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4607   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4608   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4609   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4610   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4611   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4612   unsigned Ptr1Reg;
4613   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4614 
4615   //  thisMBB:
4616   //   ...
4617   //   fallthrough --> loopMBB
4618   BB->addSuccessor(loopMBB);
4619 
4620   // The 4-byte load must be aligned, while a char or short may be
4621   // anywhere in the word.  Hence all this nasty bookkeeping code.
4622   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4623   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4624   //   xori shift, shift1, 24 [16]
4625   //   rlwinm ptr, ptr1, 0, 0, 29
4626   //   slw incr2, incr, shift
4627   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4628   //   slw mask, mask2, shift
4629   //  loopMBB:
4630   //   lwarx tmpDest, ptr
4631   //   add tmp, tmpDest, incr2
4632   //   andc tmp2, tmpDest, mask
4633   //   and tmp3, tmp, mask
4634   //   or tmp4, tmp3, tmp2
4635   //   stwcx. tmp4, ptr
4636   //   bne- loopMBB
4637   //   fallthrough --> exitMBB
4638   //   srw dest, tmpDest, shift
4639   if (ptrA != ZeroReg) {
4640     Ptr1Reg = RegInfo.createVirtualRegister(RC);
4641     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4642       .addReg(ptrA).addReg(ptrB);
4643   } else {
4644     Ptr1Reg = ptrB;
4645   }
4646   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4647       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4648   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4649       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4650   if (is64bit)
4651     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4652       .addReg(Ptr1Reg).addImm(0).addImm(61);
4653   else
4654     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4655       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4656   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4657       .addReg(incr).addReg(ShiftReg);
4658   if (is8bit)
4659     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4660   else {
4661     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4662     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4663   }
4664   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4665       .addReg(Mask2Reg).addReg(ShiftReg);
4666 
4667   BB = loopMBB;
4668   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4669     .addReg(ZeroReg).addReg(PtrReg);
4670   if (BinOpcode)
4671     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4672       .addReg(Incr2Reg).addReg(TmpDestReg);
4673   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4674     .addReg(TmpDestReg).addReg(MaskReg);
4675   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4676     .addReg(TmpReg).addReg(MaskReg);
4677   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4678     .addReg(Tmp3Reg).addReg(Tmp2Reg);
4679   BuildMI(BB, dl, TII->get(PPC::STWCX))
4680     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4681   BuildMI(BB, dl, TII->get(PPC::BCC))
4682     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4683   BB->addSuccessor(loopMBB);
4684   BB->addSuccessor(exitMBB);
4685 
4686   //  exitMBB:
4687   //   ...
4688   BB = exitMBB;
4689   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4690     .addReg(ShiftReg);
4691   return BB;
4692 }
4693 
4694 MachineBasicBlock *
4695 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4696                                                MachineBasicBlock *BB) const {
4697   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4698 
4699   // To "insert" these instructions we actually have to insert their
4700   // control-flow patterns.
4701   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4702   MachineFunction::iterator It = BB;
4703   ++It;
4704 
4705   MachineFunction *F = BB->getParent();
4706 
4707   if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4708       MI->getOpcode() == PPC::SELECT_CC_I8 ||
4709       MI->getOpcode() == PPC::SELECT_CC_F4 ||
4710       MI->getOpcode() == PPC::SELECT_CC_F8 ||
4711       MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4712 
4713     // The incoming instruction knows the destination vreg to set, the
4714     // condition code register to branch on, the true/false values to
4715     // select between, and a branch opcode to use.
4716 
4717     //  thisMBB:
4718     //  ...
4719     //   TrueVal = ...
4720     //   cmpTY ccX, r1, r2
4721     //   bCC copy1MBB
4722     //   fallthrough --> copy0MBB
4723     MachineBasicBlock *thisMBB = BB;
4724     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4725     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4726     unsigned SelectPred = MI->getOperand(4).getImm();
4727     DebugLoc dl = MI->getDebugLoc();
4728     F->insert(It, copy0MBB);
4729     F->insert(It, sinkMBB);
4730 
4731     // Transfer the remainder of BB and its successor edges to sinkMBB.
4732     sinkMBB->splice(sinkMBB->begin(), BB,
4733                     llvm::next(MachineBasicBlock::iterator(MI)),
4734                     BB->end());
4735     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4736 
4737     // Next, add the true and fallthrough blocks as its successors.
4738     BB->addSuccessor(copy0MBB);
4739     BB->addSuccessor(sinkMBB);
4740 
4741     BuildMI(BB, dl, TII->get(PPC::BCC))
4742       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4743 
4744     //  copy0MBB:
4745     //   %FalseValue = ...
4746     //   # fallthrough to sinkMBB
4747     BB = copy0MBB;
4748 
4749     // Update machine-CFG edges
4750     BB->addSuccessor(sinkMBB);
4751 
4752     //  sinkMBB:
4753     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4754     //  ...
4755     BB = sinkMBB;
4756     BuildMI(*BB, BB->begin(), dl,
4757             TII->get(PPC::PHI), MI->getOperand(0).getReg())
4758       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4759       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4760   }
4761   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4762     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4763   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4764     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4765   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4766     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4767   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4768     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4769 
4770   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4771     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4772   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4773     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4774   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4775     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4776   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4777     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4778 
4779   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4780     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4781   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4782     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4783   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4784     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4785   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4786     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4787 
4788   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4789     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4790   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4791     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4792   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4793     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4794   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4795     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4796 
4797   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4798     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4799   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4800     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4801   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4802     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4803   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4804     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4805 
4806   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4807     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4808   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4809     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4810   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4811     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4812   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4813     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4814 
4815   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4816     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4817   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4818     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4819   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4820     BB = EmitAtomicBinary(MI, BB, false, 0);
4821   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4822     BB = EmitAtomicBinary(MI, BB, true, 0);
4823 
4824   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4825            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4826     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4827 
4828     unsigned dest   = MI->getOperand(0).getReg();
4829     unsigned ptrA   = MI->getOperand(1).getReg();
4830     unsigned ptrB   = MI->getOperand(2).getReg();
4831     unsigned oldval = MI->getOperand(3).getReg();
4832     unsigned newval = MI->getOperand(4).getReg();
4833     DebugLoc dl     = MI->getDebugLoc();
4834 
4835     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4836     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4837     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4838     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4839     F->insert(It, loop1MBB);
4840     F->insert(It, loop2MBB);
4841     F->insert(It, midMBB);
4842     F->insert(It, exitMBB);
4843     exitMBB->splice(exitMBB->begin(), BB,
4844                     llvm::next(MachineBasicBlock::iterator(MI)),
4845                     BB->end());
4846     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4847 
4848     //  thisMBB:
4849     //   ...
4850     //   fallthrough --> loopMBB
4851     BB->addSuccessor(loop1MBB);
4852 
4853     // loop1MBB:
4854     //   l[wd]arx dest, ptr
4855     //   cmp[wd] dest, oldval
4856     //   bne- midMBB
4857     // loop2MBB:
4858     //   st[wd]cx. newval, ptr
4859     //   bne- loopMBB
4860     //   b exitBB
4861     // midMBB:
4862     //   st[wd]cx. dest, ptr
4863     // exitBB:
4864     BB = loop1MBB;
4865     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4866       .addReg(ptrA).addReg(ptrB);
4867     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4868       .addReg(oldval).addReg(dest);
4869     BuildMI(BB, dl, TII->get(PPC::BCC))
4870       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4871     BB->addSuccessor(loop2MBB);
4872     BB->addSuccessor(midMBB);
4873 
4874     BB = loop2MBB;
4875     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4876       .addReg(newval).addReg(ptrA).addReg(ptrB);
4877     BuildMI(BB, dl, TII->get(PPC::BCC))
4878       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4879     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4880     BB->addSuccessor(loop1MBB);
4881     BB->addSuccessor(exitMBB);
4882 
4883     BB = midMBB;
4884     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4885       .addReg(dest).addReg(ptrA).addReg(ptrB);
4886     BB->addSuccessor(exitMBB);
4887 
4888     //  exitMBB:
4889     //   ...
4890     BB = exitMBB;
4891   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4892              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4893     // We must use 64-bit registers for addresses when targeting 64-bit,
4894     // since we're actually doing arithmetic on them.  Other registers
4895     // can be 32-bit.
4896     bool is64bit = PPCSubTarget.isPPC64();
4897     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4898 
4899     unsigned dest   = MI->getOperand(0).getReg();
4900     unsigned ptrA   = MI->getOperand(1).getReg();
4901     unsigned ptrB   = MI->getOperand(2).getReg();
4902     unsigned oldval = MI->getOperand(3).getReg();
4903     unsigned newval = MI->getOperand(4).getReg();
4904     DebugLoc dl     = MI->getDebugLoc();
4905 
4906     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4907     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4908     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4909     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4910     F->insert(It, loop1MBB);
4911     F->insert(It, loop2MBB);
4912     F->insert(It, midMBB);
4913     F->insert(It, exitMBB);
4914     exitMBB->splice(exitMBB->begin(), BB,
4915                     llvm::next(MachineBasicBlock::iterator(MI)),
4916                     BB->end());
4917     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4918 
4919     MachineRegisterInfo &RegInfo = F->getRegInfo();
4920     const TargetRegisterClass *RC =
4921       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4922                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
4923     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4924     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4925     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4926     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4927     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4928     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4929     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4930     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4931     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4932     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4933     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4934     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4935     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4936     unsigned Ptr1Reg;
4937     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4938     unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4939     //  thisMBB:
4940     //   ...
4941     //   fallthrough --> loopMBB
4942     BB->addSuccessor(loop1MBB);
4943 
4944     // The 4-byte load must be aligned, while a char or short may be
4945     // anywhere in the word.  Hence all this nasty bookkeeping code.
4946     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4947     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4948     //   xori shift, shift1, 24 [16]
4949     //   rlwinm ptr, ptr1, 0, 0, 29
4950     //   slw newval2, newval, shift
4951     //   slw oldval2, oldval,shift
4952     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4953     //   slw mask, mask2, shift
4954     //   and newval3, newval2, mask
4955     //   and oldval3, oldval2, mask
4956     // loop1MBB:
4957     //   lwarx tmpDest, ptr
4958     //   and tmp, tmpDest, mask
4959     //   cmpw tmp, oldval3
4960     //   bne- midMBB
4961     // loop2MBB:
4962     //   andc tmp2, tmpDest, mask
4963     //   or tmp4, tmp2, newval3
4964     //   stwcx. tmp4, ptr
4965     //   bne- loop1MBB
4966     //   b exitBB
4967     // midMBB:
4968     //   stwcx. tmpDest, ptr
4969     // exitBB:
4970     //   srw dest, tmpDest, shift
4971     if (ptrA != ZeroReg) {
4972       Ptr1Reg = RegInfo.createVirtualRegister(RC);
4973       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4974         .addReg(ptrA).addReg(ptrB);
4975     } else {
4976       Ptr1Reg = ptrB;
4977     }
4978     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4979         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4980     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4981         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4982     if (is64bit)
4983       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4984         .addReg(Ptr1Reg).addImm(0).addImm(61);
4985     else
4986       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4987         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4988     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4989         .addReg(newval).addReg(ShiftReg);
4990     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4991         .addReg(oldval).addReg(ShiftReg);
4992     if (is8bit)
4993       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4994     else {
4995       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4996       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4997         .addReg(Mask3Reg).addImm(65535);
4998     }
4999     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5000         .addReg(Mask2Reg).addReg(ShiftReg);
5001     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5002         .addReg(NewVal2Reg).addReg(MaskReg);
5003     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5004         .addReg(OldVal2Reg).addReg(MaskReg);
5005 
5006     BB = loop1MBB;
5007     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5008         .addReg(ZeroReg).addReg(PtrReg);
5009     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5010         .addReg(TmpDestReg).addReg(MaskReg);
5011     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5012         .addReg(TmpReg).addReg(OldVal3Reg);
5013     BuildMI(BB, dl, TII->get(PPC::BCC))
5014         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5015     BB->addSuccessor(loop2MBB);
5016     BB->addSuccessor(midMBB);
5017 
5018     BB = loop2MBB;
5019     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5020         .addReg(TmpDestReg).addReg(MaskReg);
5021     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5022         .addReg(Tmp2Reg).addReg(NewVal3Reg);
5023     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5024         .addReg(ZeroReg).addReg(PtrReg);
5025     BuildMI(BB, dl, TII->get(PPC::BCC))
5026       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5027     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5028     BB->addSuccessor(loop1MBB);
5029     BB->addSuccessor(exitMBB);
5030 
5031     BB = midMBB;
5032     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5033       .addReg(ZeroReg).addReg(PtrReg);
5034     BB->addSuccessor(exitMBB);
5035 
5036     //  exitMBB:
5037     //   ...
5038     BB = exitMBB;
5039     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5040       .addReg(ShiftReg);
5041   } else {
5042     llvm_unreachable("Unexpected instr type to insert");
5043   }
5044 
5045   MI->eraseFromParent();   // The pseudo instruction is gone now.
5046   return BB;
5047 }
5048 
5049 //===----------------------------------------------------------------------===//
5050 // Target Optimization Hooks
5051 //===----------------------------------------------------------------------===//
5052 
5053 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5054                                              DAGCombinerInfo &DCI) const {
5055   const TargetMachine &TM = getTargetMachine();
5056   SelectionDAG &DAG = DCI.DAG;
5057   DebugLoc dl = N->getDebugLoc();
5058   switch (N->getOpcode()) {
5059   default: break;
5060   case PPCISD::SHL:
5061     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5062       if (C->isNullValue())   // 0 << V -> 0.
5063         return N->getOperand(0);
5064     }
5065     break;
5066   case PPCISD::SRL:
5067     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5068       if (C->isNullValue())   // 0 >>u V -> 0.
5069         return N->getOperand(0);
5070     }
5071     break;
5072   case PPCISD::SRA:
5073     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5074       if (C->isNullValue() ||   //  0 >>s V -> 0.
5075           C->isAllOnesValue())    // -1 >>s V -> -1.
5076         return N->getOperand(0);
5077     }
5078     break;
5079 
5080   case ISD::SINT_TO_FP:
5081     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5082       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5083         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5084         // We allow the src/dst to be either f32/f64, but the intermediate
5085         // type must be i64.
5086         if (N->getOperand(0).getValueType() == MVT::i64 &&
5087             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5088           SDValue Val = N->getOperand(0).getOperand(0);
5089           if (Val.getValueType() == MVT::f32) {
5090             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5091             DCI.AddToWorklist(Val.getNode());
5092           }
5093 
5094           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5095           DCI.AddToWorklist(Val.getNode());
5096           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5097           DCI.AddToWorklist(Val.getNode());
5098           if (N->getValueType(0) == MVT::f32) {
5099             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5100                               DAG.getIntPtrConstant(0));
5101             DCI.AddToWorklist(Val.getNode());
5102           }
5103           return Val;
5104         } else if (N->getOperand(0).getValueType() == MVT::i32) {
5105           // If the intermediate type is i32, we can avoid the load/store here
5106           // too.
5107         }
5108       }
5109     }
5110     break;
5111   case ISD::STORE:
5112     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5113     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5114         !cast<StoreSDNode>(N)->isTruncatingStore() &&
5115         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5116         N->getOperand(1).getValueType() == MVT::i32 &&
5117         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5118       SDValue Val = N->getOperand(1).getOperand(0);
5119       if (Val.getValueType() == MVT::f32) {
5120         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5121         DCI.AddToWorklist(Val.getNode());
5122       }
5123       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5124       DCI.AddToWorklist(Val.getNode());
5125 
5126       Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5127                         N->getOperand(2), N->getOperand(3));
5128       DCI.AddToWorklist(Val.getNode());
5129       return Val;
5130     }
5131 
5132     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5133     if (cast<StoreSDNode>(N)->isUnindexed() &&
5134         N->getOperand(1).getOpcode() == ISD::BSWAP &&
5135         N->getOperand(1).getNode()->hasOneUse() &&
5136         (N->getOperand(1).getValueType() == MVT::i32 ||
5137          N->getOperand(1).getValueType() == MVT::i16)) {
5138       SDValue BSwapOp = N->getOperand(1).getOperand(0);
5139       // Do an any-extend to 32-bits if this is a half-word input.
5140       if (BSwapOp.getValueType() == MVT::i16)
5141         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5142 
5143       SDValue Ops[] = {
5144         N->getOperand(0), BSwapOp, N->getOperand(2),
5145         DAG.getValueType(N->getOperand(1).getValueType())
5146       };
5147       return
5148         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5149                                 Ops, array_lengthof(Ops),
5150                                 cast<StoreSDNode>(N)->getMemoryVT(),
5151                                 cast<StoreSDNode>(N)->getMemOperand());
5152     }
5153     break;
5154   case ISD::BSWAP:
5155     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5156     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5157         N->getOperand(0).hasOneUse() &&
5158         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5159       SDValue Load = N->getOperand(0);
5160       LoadSDNode *LD = cast<LoadSDNode>(Load);
5161       // Create the byte-swapping load.
5162       SDValue Ops[] = {
5163         LD->getChain(),    // Chain
5164         LD->getBasePtr(),  // Ptr
5165         DAG.getValueType(N->getValueType(0)) // VT
5166       };
5167       SDValue BSLoad =
5168         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5169                                 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5170                                 LD->getMemoryVT(), LD->getMemOperand());
5171 
5172       // If this is an i16 load, insert the truncate.
5173       SDValue ResVal = BSLoad;
5174       if (N->getValueType(0) == MVT::i16)
5175         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5176 
5177       // First, combine the bswap away.  This makes the value produced by the
5178       // load dead.
5179       DCI.CombineTo(N, ResVal);
5180 
5181       // Next, combine the load away, we give it a bogus result value but a real
5182       // chain result.  The result value is dead because the bswap is dead.
5183       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5184 
5185       // Return N so it doesn't get rechecked!
5186       return SDValue(N, 0);
5187     }
5188 
5189     break;
5190   case PPCISD::VCMP: {
5191     // If a VCMPo node already exists with exactly the same operands as this
5192     // node, use its result instead of this node (VCMPo computes both a CR6 and
5193     // a normal output).
5194     //
5195     if (!N->getOperand(0).hasOneUse() &&
5196         !N->getOperand(1).hasOneUse() &&
5197         !N->getOperand(2).hasOneUse()) {
5198 
5199       // Scan all of the users of the LHS, looking for VCMPo's that match.
5200       SDNode *VCMPoNode = 0;
5201 
5202       SDNode *LHSN = N->getOperand(0).getNode();
5203       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5204            UI != E; ++UI)
5205         if (UI->getOpcode() == PPCISD::VCMPo &&
5206             UI->getOperand(1) == N->getOperand(1) &&
5207             UI->getOperand(2) == N->getOperand(2) &&
5208             UI->getOperand(0) == N->getOperand(0)) {
5209           VCMPoNode = *UI;
5210           break;
5211         }
5212 
5213       // If there is no VCMPo node, or if the flag value has a single use, don't
5214       // transform this.
5215       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5216         break;
5217 
5218       // Look at the (necessarily single) use of the flag value.  If it has a
5219       // chain, this transformation is more complex.  Note that multiple things
5220       // could use the value result, which we should ignore.
5221       SDNode *FlagUser = 0;
5222       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5223            FlagUser == 0; ++UI) {
5224         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5225         SDNode *User = *UI;
5226         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5227           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5228             FlagUser = User;
5229             break;
5230           }
5231         }
5232       }
5233 
5234       // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5235       // give up for right now.
5236       if (FlagUser->getOpcode() == PPCISD::MFCR)
5237         return SDValue(VCMPoNode, 0);
5238     }
5239     break;
5240   }
5241   case ISD::BR_CC: {
5242     // If this is a branch on an altivec predicate comparison, lower this so
5243     // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5244     // lowering is done pre-legalize, because the legalizer lowers the predicate
5245     // compare down to code that is difficult to reassemble.
5246     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5247     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5248     int CompareOpc;
5249     bool isDot;
5250 
5251     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5252         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5253         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5254       assert(isDot && "Can't compare against a vector result!");
5255 
5256       // If this is a comparison against something other than 0/1, then we know
5257       // that the condition is never/always true.
5258       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5259       if (Val != 0 && Val != 1) {
5260         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5261           return N->getOperand(0);
5262         // Always !=, turn it into an unconditional branch.
5263         return DAG.getNode(ISD::BR, dl, MVT::Other,
5264                            N->getOperand(0), N->getOperand(4));
5265       }
5266 
5267       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5268 
5269       // Create the PPCISD altivec 'dot' comparison node.
5270       std::vector<EVT> VTs;
5271       SDValue Ops[] = {
5272         LHS.getOperand(2),  // LHS of compare
5273         LHS.getOperand(3),  // RHS of compare
5274         DAG.getConstant(CompareOpc, MVT::i32)
5275       };
5276       VTs.push_back(LHS.getOperand(2).getValueType());
5277       VTs.push_back(MVT::Glue);
5278       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5279 
5280       // Unpack the result based on how the target uses it.
5281       PPC::Predicate CompOpc;
5282       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5283       default:  // Can't happen, don't crash on invalid number though.
5284       case 0:   // Branch on the value of the EQ bit of CR6.
5285         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5286         break;
5287       case 1:   // Branch on the inverted value of the EQ bit of CR6.
5288         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5289         break;
5290       case 2:   // Branch on the value of the LT bit of CR6.
5291         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5292         break;
5293       case 3:   // Branch on the inverted value of the LT bit of CR6.
5294         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5295         break;
5296       }
5297 
5298       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5299                          DAG.getConstant(CompOpc, MVT::i32),
5300                          DAG.getRegister(PPC::CR6, MVT::i32),
5301                          N->getOperand(4), CompNode.getValue(1));
5302     }
5303     break;
5304   }
5305   }
5306 
5307   return SDValue();
5308 }
5309 
5310 //===----------------------------------------------------------------------===//
5311 // Inline Assembly Support
5312 //===----------------------------------------------------------------------===//
5313 
5314 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5315                                                        const APInt &Mask,
5316                                                        APInt &KnownZero,
5317                                                        APInt &KnownOne,
5318                                                        const SelectionDAG &DAG,
5319                                                        unsigned Depth) const {
5320   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5321   switch (Op.getOpcode()) {
5322   default: break;
5323   case PPCISD::LBRX: {
5324     // lhbrx is known to have the top bits cleared out.
5325     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5326       KnownZero = 0xFFFF0000;
5327     break;
5328   }
5329   case ISD::INTRINSIC_WO_CHAIN: {
5330     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5331     default: break;
5332     case Intrinsic::ppc_altivec_vcmpbfp_p:
5333     case Intrinsic::ppc_altivec_vcmpeqfp_p:
5334     case Intrinsic::ppc_altivec_vcmpequb_p:
5335     case Intrinsic::ppc_altivec_vcmpequh_p:
5336     case Intrinsic::ppc_altivec_vcmpequw_p:
5337     case Intrinsic::ppc_altivec_vcmpgefp_p:
5338     case Intrinsic::ppc_altivec_vcmpgtfp_p:
5339     case Intrinsic::ppc_altivec_vcmpgtsb_p:
5340     case Intrinsic::ppc_altivec_vcmpgtsh_p:
5341     case Intrinsic::ppc_altivec_vcmpgtsw_p:
5342     case Intrinsic::ppc_altivec_vcmpgtub_p:
5343     case Intrinsic::ppc_altivec_vcmpgtuh_p:
5344     case Intrinsic::ppc_altivec_vcmpgtuw_p:
5345       KnownZero = ~1U;  // All bits but the low one are known to be zero.
5346       break;
5347     }
5348   }
5349   }
5350 }
5351 
5352 
5353 /// getConstraintType - Given a constraint, return the type of
5354 /// constraint it is for this target.
5355 PPCTargetLowering::ConstraintType
5356 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5357   if (Constraint.size() == 1) {
5358     switch (Constraint[0]) {
5359     default: break;
5360     case 'b':
5361     case 'r':
5362     case 'f':
5363     case 'v':
5364     case 'y':
5365       return C_RegisterClass;
5366     }
5367   }
5368   return TargetLowering::getConstraintType(Constraint);
5369 }
5370 
5371 /// Examine constraint type and operand type and determine a weight value.
5372 /// This object must already have been set up with the operand type
5373 /// and the current alternative constraint selected.
5374 TargetLowering::ConstraintWeight
5375 PPCTargetLowering::getSingleConstraintMatchWeight(
5376     AsmOperandInfo &info, const char *constraint) const {
5377   ConstraintWeight weight = CW_Invalid;
5378   Value *CallOperandVal = info.CallOperandVal;
5379     // If we don't have a value, we can't do a match,
5380     // but allow it at the lowest weight.
5381   if (CallOperandVal == NULL)
5382     return CW_Default;
5383   const Type *type = CallOperandVal->getType();
5384   // Look at the constraint type.
5385   switch (*constraint) {
5386   default:
5387     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5388     break;
5389   case 'b':
5390     if (type->isIntegerTy())
5391       weight = CW_Register;
5392     break;
5393   case 'f':
5394     if (type->isFloatTy())
5395       weight = CW_Register;
5396     break;
5397   case 'd':
5398     if (type->isDoubleTy())
5399       weight = CW_Register;
5400     break;
5401   case 'v':
5402     if (type->isVectorTy())
5403       weight = CW_Register;
5404     break;
5405   case 'y':
5406     weight = CW_Register;
5407     break;
5408   }
5409   return weight;
5410 }
5411 
5412 std::pair<unsigned, const TargetRegisterClass*>
5413 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5414                                                 EVT VT) const {
5415   if (Constraint.size() == 1) {
5416     // GCC RS6000 Constraint Letters
5417     switch (Constraint[0]) {
5418     case 'b':   // R1-R31
5419     case 'r':   // R0-R31
5420       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5421         return std::make_pair(0U, PPC::G8RCRegisterClass);
5422       return std::make_pair(0U, PPC::GPRCRegisterClass);
5423     case 'f':
5424       if (VT == MVT::f32)
5425         return std::make_pair(0U, PPC::F4RCRegisterClass);
5426       else if (VT == MVT::f64)
5427         return std::make_pair(0U, PPC::F8RCRegisterClass);
5428       break;
5429     case 'v':
5430       return std::make_pair(0U, PPC::VRRCRegisterClass);
5431     case 'y':   // crrc
5432       return std::make_pair(0U, PPC::CRRCRegisterClass);
5433     }
5434   }
5435 
5436   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5437 }
5438 
5439 
5440 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5441 /// vector.  If it is invalid, don't add anything to Ops.
5442 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5443                                                      std::string &Constraint,
5444                                                      std::vector<SDValue>&Ops,
5445                                                      SelectionDAG &DAG) const {
5446   SDValue Result(0,0);
5447 
5448   // Only support length 1 constraints.
5449   if (Constraint.length() > 1) return;
5450 
5451   char Letter = Constraint[0];
5452   switch (Letter) {
5453   default: break;
5454   case 'I':
5455   case 'J':
5456   case 'K':
5457   case 'L':
5458   case 'M':
5459   case 'N':
5460   case 'O':
5461   case 'P': {
5462     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5463     if (!CST) return; // Must be an immediate to match.
5464     unsigned Value = CST->getZExtValue();
5465     switch (Letter) {
5466     default: llvm_unreachable("Unknown constraint letter!");
5467     case 'I':  // "I" is a signed 16-bit constant.
5468       if ((short)Value == (int)Value)
5469         Result = DAG.getTargetConstant(Value, Op.getValueType());
5470       break;
5471     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5472     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5473       if ((short)Value == 0)
5474         Result = DAG.getTargetConstant(Value, Op.getValueType());
5475       break;
5476     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5477       if ((Value >> 16) == 0)
5478         Result = DAG.getTargetConstant(Value, Op.getValueType());
5479       break;
5480     case 'M':  // "M" is a constant that is greater than 31.
5481       if (Value > 31)
5482         Result = DAG.getTargetConstant(Value, Op.getValueType());
5483       break;
5484     case 'N':  // "N" is a positive constant that is an exact power of two.
5485       if ((int)Value > 0 && isPowerOf2_32(Value))
5486         Result = DAG.getTargetConstant(Value, Op.getValueType());
5487       break;
5488     case 'O':  // "O" is the constant zero.
5489       if (Value == 0)
5490         Result = DAG.getTargetConstant(Value, Op.getValueType());
5491       break;
5492     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5493       if ((short)-Value == (int)-Value)
5494         Result = DAG.getTargetConstant(Value, Op.getValueType());
5495       break;
5496     }
5497     break;
5498   }
5499   }
5500 
5501   if (Result.getNode()) {
5502     Ops.push_back(Result);
5503     return;
5504   }
5505 
5506   // Handle standard constraint letters.
5507   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5508 }
5509 
5510 // isLegalAddressingMode - Return true if the addressing mode represented
5511 // by AM is legal for this target, for a load/store of the specified type.
5512 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5513                                               const Type *Ty) const {
5514   // FIXME: PPC does not allow r+i addressing modes for vectors!
5515 
5516   // PPC allows a sign-extended 16-bit immediate field.
5517   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5518     return false;
5519 
5520   // No global is ever allowed as a base.
5521   if (AM.BaseGV)
5522     return false;
5523 
5524   // PPC only support r+r,
5525   switch (AM.Scale) {
5526   case 0:  // "r+i" or just "i", depending on HasBaseReg.
5527     break;
5528   case 1:
5529     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5530       return false;
5531     // Otherwise we have r+r or r+i.
5532     break;
5533   case 2:
5534     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5535       return false;
5536     // Allow 2*r as r+r.
5537     break;
5538   default:
5539     // No other scales are supported.
5540     return false;
5541   }
5542 
5543   return true;
5544 }
5545 
5546 /// isLegalAddressImmediate - Return true if the integer value can be used
5547 /// as the offset of the target addressing mode for load / store of the
5548 /// given type.
5549 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5550   // PPC allows a sign-extended 16-bit immediate field.
5551   return (V > -(1 << 16) && V < (1 << 16)-1);
5552 }
5553 
5554 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5555   return false;
5556 }
5557 
5558 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5559                                            SelectionDAG &DAG) const {
5560   MachineFunction &MF = DAG.getMachineFunction();
5561   MachineFrameInfo *MFI = MF.getFrameInfo();
5562   MFI->setReturnAddressIsTaken(true);
5563 
5564   DebugLoc dl = Op.getDebugLoc();
5565   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5566 
5567   // Make sure the function does not optimize away the store of the RA to
5568   // the stack.
5569   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5570   FuncInfo->setLRStoreRequired();
5571   bool isPPC64 = PPCSubTarget.isPPC64();
5572   bool isDarwinABI = PPCSubTarget.isDarwinABI();
5573 
5574   if (Depth > 0) {
5575     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5576     SDValue Offset =
5577 
5578       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5579                       isPPC64? MVT::i64 : MVT::i32);
5580     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5581                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
5582                                    FrameAddr, Offset),
5583                        MachinePointerInfo(), false, false, 0);
5584   }
5585 
5586   // Just load the return address off the stack.
5587   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5588   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5589                      RetAddrFI, MachinePointerInfo(), false, false, 0);
5590 }
5591 
5592 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5593                                           SelectionDAG &DAG) const {
5594   DebugLoc dl = Op.getDebugLoc();
5595   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5596 
5597   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5598   bool isPPC64 = PtrVT == MVT::i64;
5599 
5600   MachineFunction &MF = DAG.getMachineFunction();
5601   MachineFrameInfo *MFI = MF.getFrameInfo();
5602   MFI->setFrameAddressIsTaken(true);
5603   bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5604                   MFI->getStackSize() &&
5605                   !MF.getFunction()->hasFnAttr(Attribute::Naked);
5606   unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5607                                 (is31 ? PPC::R31 : PPC::R1);
5608   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5609                                          PtrVT);
5610   while (Depth--)
5611     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5612                             FrameAddr, MachinePointerInfo(), false, false, 0);
5613   return FrameAddr;
5614 }
5615 
5616 bool
5617 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5618   // The PowerPC target isn't yet aware of offsets.
5619   return false;
5620 }
5621 
5622 /// getOptimalMemOpType - Returns the target specific optimal type for load
5623 /// and store operations as a result of memset, memcpy, and memmove
5624 /// lowering. If DstAlign is zero that means it's safe to destination
5625 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5626 /// means there isn't a need to check it against alignment requirement,
5627 /// probably because the source does not need to be loaded. If
5628 /// 'NonScalarIntSafe' is true, that means it's safe to return a
5629 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
5630 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5631 /// constant so it does not need to be loaded.
5632 /// It returns EVT::Other if the type should be determined using generic
5633 /// target-independent logic.
5634 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5635                                            unsigned DstAlign, unsigned SrcAlign,
5636                                            bool NonScalarIntSafe,
5637                                            bool MemcpyStrSrc,
5638                                            MachineFunction &MF) const {
5639   if (this->PPCSubTarget.isPPC64()) {
5640     return MVT::i64;
5641   } else {
5642     return MVT::i32;
5643   }
5644 }
5645