1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCContext.h" 74 #include "llvm/MC/MCExpr.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCSymbolXCOFF.h" 77 #include "llvm/Support/AtomicOrdering.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CodeGen.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/Format.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MachineValueType.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Target/TargetMachine.h" 91 #include "llvm/Target/TargetOptions.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <list> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 102 #define DEBUG_TYPE "ppc-lowering" 103 104 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 106 107 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 109 110 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 112 113 static cl::opt<bool> DisableSCO("disable-ppc-sco", 114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 115 116 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 118 119 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 120 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 121 122 STATISTIC(NumTailCalls, "Number of tail calls"); 123 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 124 125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 126 127 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 128 129 // FIXME: Remove this once the bug has been fixed! 130 extern cl::opt<bool> ANDIGlueBug; 131 132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 133 const PPCSubtarget &STI) 134 : TargetLowering(TM), Subtarget(STI) { 135 // Use _setjmp/_longjmp instead of setjmp/longjmp. 136 setUseUnderscoreSetJmp(true); 137 setUseUnderscoreLongJmp(true); 138 139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 140 // arguments are at least 4/8 bytes aligned. 141 bool isPPC64 = Subtarget.isPPC64(); 142 setMinStackArgumentAlignment(isPPC64 ? 8:4); 143 144 // Set up the register classes. 145 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 146 if (!useSoftFloat()) { 147 if (hasSPE()) { 148 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass); 149 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 150 } else { 151 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 152 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 153 } 154 } 155 156 // Match BITREVERSE to customized fast code sequence in the td file. 157 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 158 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 159 160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 161 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 162 163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 164 for (MVT VT : MVT::integer_valuetypes()) { 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 167 } 168 169 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 170 171 // PowerPC has pre-inc load and store's. 172 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 177 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 182 if (!Subtarget.hasSPE()) { 183 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 185 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 187 } 188 189 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 190 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 191 for (MVT VT : ScalarIntVTs) { 192 setOperationAction(ISD::ADDC, VT, Legal); 193 setOperationAction(ISD::ADDE, VT, Legal); 194 setOperationAction(ISD::SUBC, VT, Legal); 195 setOperationAction(ISD::SUBE, VT, Legal); 196 } 197 198 if (Subtarget.useCRBits()) { 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 200 201 if (isPPC64 || Subtarget.hasFPCVT()) { 202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 203 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 204 isPPC64 ? MVT::i64 : MVT::i32); 205 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 206 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 207 isPPC64 ? MVT::i64 : MVT::i32); 208 } else { 209 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 210 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 211 } 212 213 // PowerPC does not support direct load/store of condition registers. 214 setOperationAction(ISD::LOAD, MVT::i1, Custom); 215 setOperationAction(ISD::STORE, MVT::i1, Custom); 216 217 // FIXME: Remove this once the ANDI glue bug is fixed: 218 if (ANDIGlueBug) 219 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 220 221 for (MVT VT : MVT::integer_valuetypes()) { 222 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 223 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 224 setTruncStoreAction(VT, MVT::i1, Expand); 225 } 226 227 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 228 } 229 230 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 231 // PPC (the libcall is not available). 232 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 233 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 234 235 // We do not currently implement these libm ops for PowerPC. 236 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 237 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 242 243 // PowerPC has no SREM/UREM instructions unless we are on P9 244 // On P9 we may use a hardware instruction to compute the remainder. 245 // The instructions are not legalized directly because in the cases where the 246 // result of both the remainder and the division is required it is more 247 // efficient to compute the remainder from the result of the division rather 248 // than use the remainder instruction. 249 if (Subtarget.isISA3_0()) { 250 setOperationAction(ISD::SREM, MVT::i32, Custom); 251 setOperationAction(ISD::UREM, MVT::i32, Custom); 252 setOperationAction(ISD::SREM, MVT::i64, Custom); 253 setOperationAction(ISD::UREM, MVT::i64, Custom); 254 } else { 255 setOperationAction(ISD::SREM, MVT::i32, Expand); 256 setOperationAction(ISD::UREM, MVT::i32, Expand); 257 setOperationAction(ISD::SREM, MVT::i64, Expand); 258 setOperationAction(ISD::UREM, MVT::i64, Expand); 259 } 260 261 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 262 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 263 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 265 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 267 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 269 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 270 271 // We don't support sin/cos/sqrt/fmod/pow 272 setOperationAction(ISD::FSIN , MVT::f64, Expand); 273 setOperationAction(ISD::FCOS , MVT::f64, Expand); 274 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 275 setOperationAction(ISD::FREM , MVT::f64, Expand); 276 setOperationAction(ISD::FPOW , MVT::f64, Expand); 277 setOperationAction(ISD::FSIN , MVT::f32, Expand); 278 setOperationAction(ISD::FCOS , MVT::f32, Expand); 279 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 280 setOperationAction(ISD::FREM , MVT::f32, Expand); 281 setOperationAction(ISD::FPOW , MVT::f32, Expand); 282 if (Subtarget.hasSPE()) { 283 setOperationAction(ISD::FMA , MVT::f64, Expand); 284 setOperationAction(ISD::FMA , MVT::f32, Expand); 285 } else { 286 setOperationAction(ISD::FMA , MVT::f64, Legal); 287 setOperationAction(ISD::FMA , MVT::f32, Legal); 288 } 289 290 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 291 292 // If we're enabling GP optimizations, use hardware square root 293 if (!Subtarget.hasFSQRT() && 294 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 295 Subtarget.hasFRE())) 296 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 297 298 if (!Subtarget.hasFSQRT() && 299 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 300 Subtarget.hasFRES())) 301 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 302 303 if (Subtarget.hasFCPSGN()) { 304 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 305 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 306 } else { 307 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 308 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 309 } 310 311 if (Subtarget.hasFPRND()) { 312 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 313 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 314 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 315 setOperationAction(ISD::FROUND, MVT::f64, Legal); 316 317 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 318 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 319 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 320 setOperationAction(ISD::FROUND, MVT::f32, Legal); 321 } 322 323 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 324 // to speed up scalar BSWAP64. 325 // CTPOP or CTTZ were introduced in P8/P9 respectively 326 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 327 if (Subtarget.hasP9Vector()) 328 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 329 else 330 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 331 if (Subtarget.isISA3_0()) { 332 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 333 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 334 } else { 335 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 336 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 337 } 338 339 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 340 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 341 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 342 } else { 343 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 344 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 345 } 346 347 // PowerPC does not have ROTR 348 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 349 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 350 351 if (!Subtarget.useCRBits()) { 352 // PowerPC does not have Select 353 setOperationAction(ISD::SELECT, MVT::i32, Expand); 354 setOperationAction(ISD::SELECT, MVT::i64, Expand); 355 setOperationAction(ISD::SELECT, MVT::f32, Expand); 356 setOperationAction(ISD::SELECT, MVT::f64, Expand); 357 } 358 359 // PowerPC wants to turn select_cc of FP into fsel when possible. 360 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 361 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 362 363 // PowerPC wants to optimize integer setcc a bit 364 if (!Subtarget.useCRBits()) 365 setOperationAction(ISD::SETCC, MVT::i32, Custom); 366 367 // PowerPC does not have BRCOND which requires SetCC 368 if (!Subtarget.useCRBits()) 369 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 370 371 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 372 373 if (Subtarget.hasSPE()) { 374 // SPE has built-in conversions 375 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 376 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 378 } else { 379 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 380 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 381 382 // PowerPC does not have [U|S]INT_TO_FP 383 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 384 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 385 } 386 387 if (Subtarget.hasDirectMove() && isPPC64) { 388 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 389 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 390 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 391 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 392 } else { 393 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 394 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 395 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 396 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 397 } 398 399 // We cannot sextinreg(i1). Expand to shifts. 400 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 401 402 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 403 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 404 // support continuation, user-level threading, and etc.. As a result, no 405 // other SjLj exception interfaces are implemented and please don't build 406 // your own exception handling based on them. 407 // LLVM/Clang supports zero-cost DWARF exception handling. 408 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 409 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 410 411 // We want to legalize GlobalAddress and ConstantPool nodes into the 412 // appropriate instructions to materialize the address. 413 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 414 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 415 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 416 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 417 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 418 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 419 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 420 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 421 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 422 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 423 424 // TRAP is legal. 425 setOperationAction(ISD::TRAP, MVT::Other, Legal); 426 427 // TRAMPOLINE is custom lowered. 428 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 429 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 430 431 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 432 setOperationAction(ISD::VASTART , MVT::Other, Custom); 433 434 if (Subtarget.isSVR4ABI()) { 435 if (isPPC64) { 436 // VAARG always uses double-word chunks, so promote anything smaller. 437 setOperationAction(ISD::VAARG, MVT::i1, Promote); 438 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 439 setOperationAction(ISD::VAARG, MVT::i8, Promote); 440 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 441 setOperationAction(ISD::VAARG, MVT::i16, Promote); 442 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 443 setOperationAction(ISD::VAARG, MVT::i32, Promote); 444 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 445 setOperationAction(ISD::VAARG, MVT::Other, Expand); 446 } else { 447 // VAARG is custom lowered with the 32-bit SVR4 ABI. 448 setOperationAction(ISD::VAARG, MVT::Other, Custom); 449 setOperationAction(ISD::VAARG, MVT::i64, Custom); 450 } 451 } else 452 setOperationAction(ISD::VAARG, MVT::Other, Expand); 453 454 if (Subtarget.isSVR4ABI() && !isPPC64) 455 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 456 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 457 else 458 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 459 460 // Use the default implementation. 461 setOperationAction(ISD::VAEND , MVT::Other, Expand); 462 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 463 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 464 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 465 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 466 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 467 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 468 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 469 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 470 471 // We want to custom lower some of our intrinsics. 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 473 474 // To handle counter-based loop conditions. 475 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 476 477 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 478 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 479 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 480 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 481 482 // Comparisons that require checking two conditions. 483 if (Subtarget.hasSPE()) { 484 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 485 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 486 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 487 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 488 } 489 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 490 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 491 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 492 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 493 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 494 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 495 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 496 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 497 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 498 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 499 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 500 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 501 502 if (Subtarget.has64BitSupport()) { 503 // They also have instructions for converting between i64 and fp. 504 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 505 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 506 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 507 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 508 // This is just the low 32 bits of a (signed) fp->i64 conversion. 509 // We cannot do this with Promote because i64 is not a legal type. 510 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 511 512 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 513 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 514 } else { 515 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 516 if (Subtarget.hasSPE()) 517 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 518 else 519 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 520 } 521 522 // With the instructions enabled under FPCVT, we can do everything. 523 if (Subtarget.hasFPCVT()) { 524 if (Subtarget.has64BitSupport()) { 525 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 526 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 527 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 528 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 529 } 530 531 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 532 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 533 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 534 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 535 } 536 537 if (Subtarget.use64BitRegs()) { 538 // 64-bit PowerPC implementations can support i64 types directly 539 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 540 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 541 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 542 // 64-bit PowerPC wants to expand i128 shifts itself. 543 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 544 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 545 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 546 } else { 547 // 32-bit PowerPC wants to expand i64 shifts itself. 548 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 549 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 550 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 551 } 552 553 if (Subtarget.hasAltivec()) { 554 // First set operation action for all vector types to expand. Then we 555 // will selectively turn on ones that can be effectively codegen'd. 556 for (MVT VT : MVT::vector_valuetypes()) { 557 // add/sub are legal for all supported vector VT's. 558 setOperationAction(ISD::ADD, VT, Legal); 559 setOperationAction(ISD::SUB, VT, Legal); 560 561 // For v2i64, these are only valid with P8Vector. This is corrected after 562 // the loop. 563 setOperationAction(ISD::SMAX, VT, Legal); 564 setOperationAction(ISD::SMIN, VT, Legal); 565 setOperationAction(ISD::UMAX, VT, Legal); 566 setOperationAction(ISD::UMIN, VT, Legal); 567 568 if (Subtarget.hasVSX()) { 569 setOperationAction(ISD::FMAXNUM, VT, Legal); 570 setOperationAction(ISD::FMINNUM, VT, Legal); 571 } 572 573 // Vector instructions introduced in P8 574 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 575 setOperationAction(ISD::CTPOP, VT, Legal); 576 setOperationAction(ISD::CTLZ, VT, Legal); 577 } 578 else { 579 setOperationAction(ISD::CTPOP, VT, Expand); 580 setOperationAction(ISD::CTLZ, VT, Expand); 581 } 582 583 // Vector instructions introduced in P9 584 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 585 setOperationAction(ISD::CTTZ, VT, Legal); 586 else 587 setOperationAction(ISD::CTTZ, VT, Expand); 588 589 // We promote all shuffles to v16i8. 590 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 591 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 592 593 // We promote all non-typed operations to v4i32. 594 setOperationAction(ISD::AND , VT, Promote); 595 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 596 setOperationAction(ISD::OR , VT, Promote); 597 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 598 setOperationAction(ISD::XOR , VT, Promote); 599 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 600 setOperationAction(ISD::LOAD , VT, Promote); 601 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 602 setOperationAction(ISD::SELECT, VT, Promote); 603 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 604 setOperationAction(ISD::VSELECT, VT, Legal); 605 setOperationAction(ISD::SELECT_CC, VT, Promote); 606 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 607 setOperationAction(ISD::STORE, VT, Promote); 608 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 609 610 // No other operations are legal. 611 setOperationAction(ISD::MUL , VT, Expand); 612 setOperationAction(ISD::SDIV, VT, Expand); 613 setOperationAction(ISD::SREM, VT, Expand); 614 setOperationAction(ISD::UDIV, VT, Expand); 615 setOperationAction(ISD::UREM, VT, Expand); 616 setOperationAction(ISD::FDIV, VT, Expand); 617 setOperationAction(ISD::FREM, VT, Expand); 618 setOperationAction(ISD::FNEG, VT, Expand); 619 setOperationAction(ISD::FSQRT, VT, Expand); 620 setOperationAction(ISD::FLOG, VT, Expand); 621 setOperationAction(ISD::FLOG10, VT, Expand); 622 setOperationAction(ISD::FLOG2, VT, Expand); 623 setOperationAction(ISD::FEXP, VT, Expand); 624 setOperationAction(ISD::FEXP2, VT, Expand); 625 setOperationAction(ISD::FSIN, VT, Expand); 626 setOperationAction(ISD::FCOS, VT, Expand); 627 setOperationAction(ISD::FABS, VT, Expand); 628 setOperationAction(ISD::FFLOOR, VT, Expand); 629 setOperationAction(ISD::FCEIL, VT, Expand); 630 setOperationAction(ISD::FTRUNC, VT, Expand); 631 setOperationAction(ISD::FRINT, VT, Expand); 632 setOperationAction(ISD::FNEARBYINT, VT, Expand); 633 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 634 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 635 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 636 setOperationAction(ISD::MULHU, VT, Expand); 637 setOperationAction(ISD::MULHS, VT, Expand); 638 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 639 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 640 setOperationAction(ISD::UDIVREM, VT, Expand); 641 setOperationAction(ISD::SDIVREM, VT, Expand); 642 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 643 setOperationAction(ISD::FPOW, VT, Expand); 644 setOperationAction(ISD::BSWAP, VT, Expand); 645 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 646 setOperationAction(ISD::ROTL, VT, Expand); 647 setOperationAction(ISD::ROTR, VT, Expand); 648 649 for (MVT InnerVT : MVT::vector_valuetypes()) { 650 setTruncStoreAction(VT, InnerVT, Expand); 651 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 652 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 653 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 654 } 655 } 656 if (!Subtarget.hasP8Vector()) { 657 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 658 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 659 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 660 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 661 } 662 663 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 664 setOperationAction(ISD::ABS, VT, Custom); 665 666 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 667 // with merges, splats, etc. 668 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 669 670 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 671 // are cheap, so handle them before they get expanded to scalar. 672 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 673 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 674 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 675 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 676 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 677 678 setOperationAction(ISD::AND , MVT::v4i32, Legal); 679 setOperationAction(ISD::OR , MVT::v4i32, Legal); 680 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 681 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 682 setOperationAction(ISD::SELECT, MVT::v4i32, 683 Subtarget.useCRBits() ? Legal : Expand); 684 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 685 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 686 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 687 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 688 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 689 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 690 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 691 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 692 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 693 694 // Without hasP8Altivec set, v2i64 SMAX isn't available. 695 // But ABS custom lowering requires SMAX support. 696 if (!Subtarget.hasP8Altivec()) 697 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 698 699 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 700 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 701 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 702 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 703 704 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 705 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 706 707 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 708 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 709 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 710 } 711 712 if (Subtarget.hasP8Altivec()) 713 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 714 else 715 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 716 717 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 718 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 719 720 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 721 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 722 723 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 724 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 725 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 726 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 727 728 // Altivec does not contain unordered floating-point compare instructions 729 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 730 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 731 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 732 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 733 734 if (Subtarget.hasVSX()) { 735 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 736 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 737 if (Subtarget.hasP8Vector()) { 738 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 740 } 741 if (Subtarget.hasDirectMove() && isPPC64) { 742 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 743 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 744 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 745 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 746 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 747 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 748 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 749 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 750 } 751 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 752 753 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 754 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 755 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 756 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 757 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 758 759 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 760 761 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 762 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 763 764 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 765 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 766 767 // Share the Altivec comparison restrictions. 768 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 769 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 770 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 771 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 772 773 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 774 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 775 776 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 777 778 if (Subtarget.hasP8Vector()) 779 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 780 781 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 782 783 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 784 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 785 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 786 787 if (Subtarget.hasP8Altivec()) { 788 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 789 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 790 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 791 792 // 128 bit shifts can be accomplished via 3 instructions for SHL and 793 // SRL, but not for SRA because of the instructions available: 794 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 795 // doing 796 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 797 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 798 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 799 800 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 801 } 802 else { 803 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 804 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 805 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 806 807 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 808 809 // VSX v2i64 only supports non-arithmetic operations. 810 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 811 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 812 } 813 814 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 815 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 816 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 817 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 818 819 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 820 821 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 822 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 823 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 824 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 825 826 // Custom handling for partial vectors of integers converted to 827 // floating point. We already have optimal handling for v2i32 through 828 // the DAG combine, so those aren't necessary. 829 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 830 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 831 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 832 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 833 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 834 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 835 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 836 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 837 838 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 839 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 840 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 841 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 842 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 843 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 844 845 if (Subtarget.hasDirectMove()) 846 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 847 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 848 849 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 850 } 851 852 if (Subtarget.hasP8Altivec()) { 853 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 854 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 855 } 856 857 if (Subtarget.hasP9Vector()) { 858 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 859 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 860 861 // 128 bit shifts can be accomplished via 3 instructions for SHL and 862 // SRL, but not for SRA because of the instructions available: 863 // VS{RL} and VS{RL}O. 864 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 865 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 866 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 867 868 if (EnableQuadPrecision) { 869 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 870 setOperationAction(ISD::FADD, MVT::f128, Legal); 871 setOperationAction(ISD::FSUB, MVT::f128, Legal); 872 setOperationAction(ISD::FDIV, MVT::f128, Legal); 873 setOperationAction(ISD::FMUL, MVT::f128, Legal); 874 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 875 // No extending loads to f128 on PPC. 876 for (MVT FPT : MVT::fp_valuetypes()) 877 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 878 setOperationAction(ISD::FMA, MVT::f128, Legal); 879 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 880 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 881 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 882 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 883 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 884 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 885 886 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 887 setOperationAction(ISD::FRINT, MVT::f128, Legal); 888 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 889 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 890 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 891 setOperationAction(ISD::FROUND, MVT::f128, Legal); 892 893 setOperationAction(ISD::SELECT, MVT::f128, Expand); 894 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 895 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 896 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 897 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 898 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 899 // No implementation for these ops for PowerPC. 900 setOperationAction(ISD::FSIN , MVT::f128, Expand); 901 setOperationAction(ISD::FCOS , MVT::f128, Expand); 902 setOperationAction(ISD::FPOW, MVT::f128, Expand); 903 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 904 setOperationAction(ISD::FREM, MVT::f128, Expand); 905 } 906 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 907 908 } 909 910 if (Subtarget.hasP9Altivec()) { 911 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 912 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 913 } 914 } 915 916 if (Subtarget.hasQPX()) { 917 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 918 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 919 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 920 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 921 922 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 923 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 924 925 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 926 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 927 928 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 929 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 930 931 if (!Subtarget.useCRBits()) 932 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 933 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 934 935 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 936 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 937 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 938 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 939 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 940 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 941 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 942 943 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 944 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 945 946 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 947 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 948 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 949 950 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 951 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 952 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 953 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 954 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 955 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 956 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 957 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 958 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 959 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 960 961 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 962 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 963 964 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 965 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 966 967 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 968 969 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 970 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 971 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 972 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 973 974 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 975 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 976 977 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 978 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 979 980 if (!Subtarget.useCRBits()) 981 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 982 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 983 984 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 985 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 986 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 987 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 988 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 989 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 990 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 991 992 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 993 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 994 995 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 996 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 997 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 998 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 999 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1000 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1001 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1002 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1003 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1004 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1005 1006 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1007 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1008 1009 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1010 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1011 1012 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1013 1014 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1015 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1016 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1017 1018 if (!Subtarget.useCRBits()) 1019 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1020 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1021 1022 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1023 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1024 1025 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1026 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1027 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1028 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1029 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1030 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1031 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1032 1033 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1034 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1035 1036 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1037 1038 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1039 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1040 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1041 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1042 1043 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1044 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1045 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1046 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1047 1048 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1049 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1050 1051 // These need to set FE_INEXACT, and so cannot be vectorized here. 1052 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1053 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1054 1055 if (TM.Options.UnsafeFPMath) { 1056 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1057 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1058 1059 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1060 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1061 } else { 1062 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1063 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1064 1065 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1066 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1067 } 1068 } 1069 1070 if (Subtarget.has64BitSupport()) 1071 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1072 1073 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1074 1075 if (!isPPC64) { 1076 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1077 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1078 } 1079 1080 setBooleanContents(ZeroOrOneBooleanContent); 1081 1082 if (Subtarget.hasAltivec()) { 1083 // Altivec instructions set fields to all zeros or all ones. 1084 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1085 } 1086 1087 if (!isPPC64) { 1088 // These libcalls are not available in 32-bit. 1089 setLibcallName(RTLIB::SHL_I128, nullptr); 1090 setLibcallName(RTLIB::SRL_I128, nullptr); 1091 setLibcallName(RTLIB::SRA_I128, nullptr); 1092 } 1093 1094 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1095 1096 // We have target-specific dag combine patterns for the following nodes: 1097 setTargetDAGCombine(ISD::ADD); 1098 setTargetDAGCombine(ISD::SHL); 1099 setTargetDAGCombine(ISD::SRA); 1100 setTargetDAGCombine(ISD::SRL); 1101 setTargetDAGCombine(ISD::MUL); 1102 setTargetDAGCombine(ISD::SINT_TO_FP); 1103 setTargetDAGCombine(ISD::BUILD_VECTOR); 1104 if (Subtarget.hasFPCVT()) 1105 setTargetDAGCombine(ISD::UINT_TO_FP); 1106 setTargetDAGCombine(ISD::LOAD); 1107 setTargetDAGCombine(ISD::STORE); 1108 setTargetDAGCombine(ISD::BR_CC); 1109 if (Subtarget.useCRBits()) 1110 setTargetDAGCombine(ISD::BRCOND); 1111 setTargetDAGCombine(ISD::BSWAP); 1112 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1113 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1114 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1115 1116 setTargetDAGCombine(ISD::SIGN_EXTEND); 1117 setTargetDAGCombine(ISD::ZERO_EXTEND); 1118 setTargetDAGCombine(ISD::ANY_EXTEND); 1119 1120 setTargetDAGCombine(ISD::TRUNCATE); 1121 1122 if (Subtarget.useCRBits()) { 1123 setTargetDAGCombine(ISD::TRUNCATE); 1124 setTargetDAGCombine(ISD::SETCC); 1125 setTargetDAGCombine(ISD::SELECT_CC); 1126 } 1127 1128 // Use reciprocal estimates. 1129 if (TM.Options.UnsafeFPMath) { 1130 setTargetDAGCombine(ISD::FDIV); 1131 setTargetDAGCombine(ISD::FSQRT); 1132 } 1133 1134 if (Subtarget.hasP9Altivec()) { 1135 setTargetDAGCombine(ISD::ABS); 1136 setTargetDAGCombine(ISD::VSELECT); 1137 } 1138 1139 // Darwin long double math library functions have $LDBL128 appended. 1140 if (Subtarget.isDarwin()) { 1141 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1142 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1143 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1144 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1145 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1146 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1147 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1148 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1149 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1150 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1151 } 1152 1153 if (EnableQuadPrecision) { 1154 setLibcallName(RTLIB::LOG_F128, "logf128"); 1155 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1156 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1157 setLibcallName(RTLIB::EXP_F128, "expf128"); 1158 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1159 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1160 setLibcallName(RTLIB::COS_F128, "cosf128"); 1161 setLibcallName(RTLIB::POW_F128, "powf128"); 1162 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1163 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1164 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1165 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1166 } 1167 1168 // With 32 condition bits, we don't need to sink (and duplicate) compares 1169 // aggressively in CodeGenPrep. 1170 if (Subtarget.useCRBits()) { 1171 setHasMultipleConditionRegisters(); 1172 setJumpIsExpensive(); 1173 } 1174 1175 setMinFunctionAlignment(2); 1176 if (Subtarget.isDarwin()) 1177 setPrefFunctionAlignment(4); 1178 1179 switch (Subtarget.getDarwinDirective()) { 1180 default: break; 1181 case PPC::DIR_970: 1182 case PPC::DIR_A2: 1183 case PPC::DIR_E500: 1184 case PPC::DIR_E500mc: 1185 case PPC::DIR_E5500: 1186 case PPC::DIR_PWR4: 1187 case PPC::DIR_PWR5: 1188 case PPC::DIR_PWR5X: 1189 case PPC::DIR_PWR6: 1190 case PPC::DIR_PWR6X: 1191 case PPC::DIR_PWR7: 1192 case PPC::DIR_PWR8: 1193 case PPC::DIR_PWR9: 1194 setPrefFunctionAlignment(4); 1195 setPrefLoopAlignment(4); 1196 break; 1197 } 1198 1199 if (Subtarget.enableMachineScheduler()) 1200 setSchedulingPreference(Sched::Source); 1201 else 1202 setSchedulingPreference(Sched::Hybrid); 1203 1204 computeRegisterProperties(STI.getRegisterInfo()); 1205 1206 // The Freescale cores do better with aggressive inlining of memcpy and 1207 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1208 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1209 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1210 MaxStoresPerMemset = 32; 1211 MaxStoresPerMemsetOptSize = 16; 1212 MaxStoresPerMemcpy = 32; 1213 MaxStoresPerMemcpyOptSize = 8; 1214 MaxStoresPerMemmove = 32; 1215 MaxStoresPerMemmoveOptSize = 8; 1216 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1217 // The A2 also benefits from (very) aggressive inlining of memcpy and 1218 // friends. The overhead of a the function call, even when warm, can be 1219 // over one hundred cycles. 1220 MaxStoresPerMemset = 128; 1221 MaxStoresPerMemcpy = 128; 1222 MaxStoresPerMemmove = 128; 1223 MaxLoadsPerMemcmp = 128; 1224 } else { 1225 MaxLoadsPerMemcmp = 8; 1226 MaxLoadsPerMemcmpOptSize = 4; 1227 } 1228 } 1229 1230 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1231 /// the desired ByVal argument alignment. 1232 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1233 unsigned MaxMaxAlign) { 1234 if (MaxAlign == MaxMaxAlign) 1235 return; 1236 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1237 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1238 MaxAlign = 32; 1239 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1240 MaxAlign = 16; 1241 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1242 unsigned EltAlign = 0; 1243 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1244 if (EltAlign > MaxAlign) 1245 MaxAlign = EltAlign; 1246 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1247 for (auto *EltTy : STy->elements()) { 1248 unsigned EltAlign = 0; 1249 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1250 if (EltAlign > MaxAlign) 1251 MaxAlign = EltAlign; 1252 if (MaxAlign == MaxMaxAlign) 1253 break; 1254 } 1255 } 1256 } 1257 1258 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1259 /// function arguments in the caller parameter area. 1260 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1261 const DataLayout &DL) const { 1262 // Darwin passes everything on 4 byte boundary. 1263 if (Subtarget.isDarwin()) 1264 return 4; 1265 1266 // 16byte and wider vectors are passed on 16byte boundary. 1267 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1268 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1269 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1270 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1271 return Align; 1272 } 1273 1274 bool PPCTargetLowering::useSoftFloat() const { 1275 return Subtarget.useSoftFloat(); 1276 } 1277 1278 bool PPCTargetLowering::hasSPE() const { 1279 return Subtarget.hasSPE(); 1280 } 1281 1282 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1283 return VT.isScalarInteger(); 1284 } 1285 1286 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1287 switch ((PPCISD::NodeType)Opcode) { 1288 case PPCISD::FIRST_NUMBER: break; 1289 case PPCISD::FSEL: return "PPCISD::FSEL"; 1290 case PPCISD::FCFID: return "PPCISD::FCFID"; 1291 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1292 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1293 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1294 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1295 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1296 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1297 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1298 case PPCISD::FP_TO_UINT_IN_VSR: 1299 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1300 case PPCISD::FP_TO_SINT_IN_VSR: 1301 return "PPCISD::FP_TO_SINT_IN_VSR"; 1302 case PPCISD::FRE: return "PPCISD::FRE"; 1303 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1304 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1305 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1306 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1307 case PPCISD::VPERM: return "PPCISD::VPERM"; 1308 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1309 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1310 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1311 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1312 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1313 case PPCISD::CMPB: return "PPCISD::CMPB"; 1314 case PPCISD::Hi: return "PPCISD::Hi"; 1315 case PPCISD::Lo: return "PPCISD::Lo"; 1316 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1317 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1318 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1319 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1320 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1321 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1322 case PPCISD::SRL: return "PPCISD::SRL"; 1323 case PPCISD::SRA: return "PPCISD::SRA"; 1324 case PPCISD::SHL: return "PPCISD::SHL"; 1325 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1326 case PPCISD::CALL: return "PPCISD::CALL"; 1327 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1328 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1329 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1330 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1331 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1332 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1333 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1334 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1335 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1336 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1337 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1338 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1339 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1340 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1341 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1342 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1343 case PPCISD::VCMP: return "PPCISD::VCMP"; 1344 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1345 case PPCISD::LBRX: return "PPCISD::LBRX"; 1346 case PPCISD::STBRX: return "PPCISD::STBRX"; 1347 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1348 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1349 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1350 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1351 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1352 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1353 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1354 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1355 case PPCISD::ST_VSR_SCAL_INT: 1356 return "PPCISD::ST_VSR_SCAL_INT"; 1357 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1358 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1359 case PPCISD::BDZ: return "PPCISD::BDZ"; 1360 case PPCISD::MFFS: return "PPCISD::MFFS"; 1361 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1362 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1363 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1364 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1365 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1366 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1367 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1368 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1369 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1370 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1371 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1372 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1373 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1374 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1375 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1376 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1377 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1378 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1379 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1380 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1381 case PPCISD::SC: return "PPCISD::SC"; 1382 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1383 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1384 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1385 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1386 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1387 case PPCISD::VABSD: return "PPCISD::VABSD"; 1388 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1389 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1390 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1391 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1392 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1393 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1394 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1395 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1396 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1397 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1398 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1399 case PPCISD::FP_EXTEND_LH: return "PPCISD::FP_EXTEND_LH"; 1400 } 1401 return nullptr; 1402 } 1403 1404 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1405 EVT VT) const { 1406 if (!VT.isVector()) 1407 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1408 1409 if (Subtarget.hasQPX()) 1410 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1411 1412 return VT.changeVectorElementTypeToInteger(); 1413 } 1414 1415 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1416 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1417 return true; 1418 } 1419 1420 //===----------------------------------------------------------------------===// 1421 // Node matching predicates, for use by the tblgen matching code. 1422 //===----------------------------------------------------------------------===// 1423 1424 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1425 static bool isFloatingPointZero(SDValue Op) { 1426 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1427 return CFP->getValueAPF().isZero(); 1428 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1429 // Maybe this has already been legalized into the constant pool? 1430 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1431 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1432 return CFP->getValueAPF().isZero(); 1433 } 1434 return false; 1435 } 1436 1437 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1438 /// true if Op is undef or if it matches the specified value. 1439 static bool isConstantOrUndef(int Op, int Val) { 1440 return Op < 0 || Op == Val; 1441 } 1442 1443 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1444 /// VPKUHUM instruction. 1445 /// The ShuffleKind distinguishes between big-endian operations with 1446 /// two different inputs (0), either-endian operations with two identical 1447 /// inputs (1), and little-endian operations with two different inputs (2). 1448 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1449 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1450 SelectionDAG &DAG) { 1451 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1452 if (ShuffleKind == 0) { 1453 if (IsLE) 1454 return false; 1455 for (unsigned i = 0; i != 16; ++i) 1456 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1457 return false; 1458 } else if (ShuffleKind == 2) { 1459 if (!IsLE) 1460 return false; 1461 for (unsigned i = 0; i != 16; ++i) 1462 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1463 return false; 1464 } else if (ShuffleKind == 1) { 1465 unsigned j = IsLE ? 0 : 1; 1466 for (unsigned i = 0; i != 8; ++i) 1467 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1468 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1469 return false; 1470 } 1471 return true; 1472 } 1473 1474 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1475 /// VPKUWUM instruction. 1476 /// The ShuffleKind distinguishes between big-endian operations with 1477 /// two different inputs (0), either-endian operations with two identical 1478 /// inputs (1), and little-endian operations with two different inputs (2). 1479 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1480 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1481 SelectionDAG &DAG) { 1482 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1483 if (ShuffleKind == 0) { 1484 if (IsLE) 1485 return false; 1486 for (unsigned i = 0; i != 16; i += 2) 1487 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1488 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1489 return false; 1490 } else if (ShuffleKind == 2) { 1491 if (!IsLE) 1492 return false; 1493 for (unsigned i = 0; i != 16; i += 2) 1494 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1495 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1496 return false; 1497 } else if (ShuffleKind == 1) { 1498 unsigned j = IsLE ? 0 : 2; 1499 for (unsigned i = 0; i != 8; i += 2) 1500 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1501 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1502 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1503 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1504 return false; 1505 } 1506 return true; 1507 } 1508 1509 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1510 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1511 /// current subtarget. 1512 /// 1513 /// The ShuffleKind distinguishes between big-endian operations with 1514 /// two different inputs (0), either-endian operations with two identical 1515 /// inputs (1), and little-endian operations with two different inputs (2). 1516 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1517 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1518 SelectionDAG &DAG) { 1519 const PPCSubtarget& Subtarget = 1520 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1521 if (!Subtarget.hasP8Vector()) 1522 return false; 1523 1524 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1525 if (ShuffleKind == 0) { 1526 if (IsLE) 1527 return false; 1528 for (unsigned i = 0; i != 16; i += 4) 1529 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1530 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1531 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1532 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1533 return false; 1534 } else if (ShuffleKind == 2) { 1535 if (!IsLE) 1536 return false; 1537 for (unsigned i = 0; i != 16; i += 4) 1538 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1539 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1540 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1541 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1542 return false; 1543 } else if (ShuffleKind == 1) { 1544 unsigned j = IsLE ? 0 : 4; 1545 for (unsigned i = 0; i != 8; i += 4) 1546 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1547 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1548 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1549 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1550 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1551 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1552 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1553 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1554 return false; 1555 } 1556 return true; 1557 } 1558 1559 /// isVMerge - Common function, used to match vmrg* shuffles. 1560 /// 1561 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1562 unsigned LHSStart, unsigned RHSStart) { 1563 if (N->getValueType(0) != MVT::v16i8) 1564 return false; 1565 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1566 "Unsupported merge size!"); 1567 1568 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1569 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1570 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1571 LHSStart+j+i*UnitSize) || 1572 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1573 RHSStart+j+i*UnitSize)) 1574 return false; 1575 } 1576 return true; 1577 } 1578 1579 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1580 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1581 /// The ShuffleKind distinguishes between big-endian merges with two 1582 /// different inputs (0), either-endian merges with two identical inputs (1), 1583 /// and little-endian merges with two different inputs (2). For the latter, 1584 /// the input operands are swapped (see PPCInstrAltivec.td). 1585 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1586 unsigned ShuffleKind, SelectionDAG &DAG) { 1587 if (DAG.getDataLayout().isLittleEndian()) { 1588 if (ShuffleKind == 1) // unary 1589 return isVMerge(N, UnitSize, 0, 0); 1590 else if (ShuffleKind == 2) // swapped 1591 return isVMerge(N, UnitSize, 0, 16); 1592 else 1593 return false; 1594 } else { 1595 if (ShuffleKind == 1) // unary 1596 return isVMerge(N, UnitSize, 8, 8); 1597 else if (ShuffleKind == 0) // normal 1598 return isVMerge(N, UnitSize, 8, 24); 1599 else 1600 return false; 1601 } 1602 } 1603 1604 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1605 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1606 /// The ShuffleKind distinguishes between big-endian merges with two 1607 /// different inputs (0), either-endian merges with two identical inputs (1), 1608 /// and little-endian merges with two different inputs (2). For the latter, 1609 /// the input operands are swapped (see PPCInstrAltivec.td). 1610 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1611 unsigned ShuffleKind, SelectionDAG &DAG) { 1612 if (DAG.getDataLayout().isLittleEndian()) { 1613 if (ShuffleKind == 1) // unary 1614 return isVMerge(N, UnitSize, 8, 8); 1615 else if (ShuffleKind == 2) // swapped 1616 return isVMerge(N, UnitSize, 8, 24); 1617 else 1618 return false; 1619 } else { 1620 if (ShuffleKind == 1) // unary 1621 return isVMerge(N, UnitSize, 0, 0); 1622 else if (ShuffleKind == 0) // normal 1623 return isVMerge(N, UnitSize, 0, 16); 1624 else 1625 return false; 1626 } 1627 } 1628 1629 /** 1630 * Common function used to match vmrgew and vmrgow shuffles 1631 * 1632 * The indexOffset determines whether to look for even or odd words in 1633 * the shuffle mask. This is based on the of the endianness of the target 1634 * machine. 1635 * - Little Endian: 1636 * - Use offset of 0 to check for odd elements 1637 * - Use offset of 4 to check for even elements 1638 * - Big Endian: 1639 * - Use offset of 0 to check for even elements 1640 * - Use offset of 4 to check for odd elements 1641 * A detailed description of the vector element ordering for little endian and 1642 * big endian can be found at 1643 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1644 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1645 * compiler differences mean to you 1646 * 1647 * The mask to the shuffle vector instruction specifies the indices of the 1648 * elements from the two input vectors to place in the result. The elements are 1649 * numbered in array-access order, starting with the first vector. These vectors 1650 * are always of type v16i8, thus each vector will contain 16 elements of size 1651 * 8. More info on the shuffle vector can be found in the 1652 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1653 * Language Reference. 1654 * 1655 * The RHSStartValue indicates whether the same input vectors are used (unary) 1656 * or two different input vectors are used, based on the following: 1657 * - If the instruction uses the same vector for both inputs, the range of the 1658 * indices will be 0 to 15. In this case, the RHSStart value passed should 1659 * be 0. 1660 * - If the instruction has two different vectors then the range of the 1661 * indices will be 0 to 31. In this case, the RHSStart value passed should 1662 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1663 * to 31 specify elements in the second vector). 1664 * 1665 * \param[in] N The shuffle vector SD Node to analyze 1666 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1667 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1668 * vector to the shuffle_vector instruction 1669 * \return true iff this shuffle vector represents an even or odd word merge 1670 */ 1671 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1672 unsigned RHSStartValue) { 1673 if (N->getValueType(0) != MVT::v16i8) 1674 return false; 1675 1676 for (unsigned i = 0; i < 2; ++i) 1677 for (unsigned j = 0; j < 4; ++j) 1678 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1679 i*RHSStartValue+j+IndexOffset) || 1680 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1681 i*RHSStartValue+j+IndexOffset+8)) 1682 return false; 1683 return true; 1684 } 1685 1686 /** 1687 * Determine if the specified shuffle mask is suitable for the vmrgew or 1688 * vmrgow instructions. 1689 * 1690 * \param[in] N The shuffle vector SD Node to analyze 1691 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1692 * \param[in] ShuffleKind Identify the type of merge: 1693 * - 0 = big-endian merge with two different inputs; 1694 * - 1 = either-endian merge with two identical inputs; 1695 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1696 * little-endian merges). 1697 * \param[in] DAG The current SelectionDAG 1698 * \return true iff this shuffle mask 1699 */ 1700 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1701 unsigned ShuffleKind, SelectionDAG &DAG) { 1702 if (DAG.getDataLayout().isLittleEndian()) { 1703 unsigned indexOffset = CheckEven ? 4 : 0; 1704 if (ShuffleKind == 1) // Unary 1705 return isVMerge(N, indexOffset, 0); 1706 else if (ShuffleKind == 2) // swapped 1707 return isVMerge(N, indexOffset, 16); 1708 else 1709 return false; 1710 } 1711 else { 1712 unsigned indexOffset = CheckEven ? 0 : 4; 1713 if (ShuffleKind == 1) // Unary 1714 return isVMerge(N, indexOffset, 0); 1715 else if (ShuffleKind == 0) // Normal 1716 return isVMerge(N, indexOffset, 16); 1717 else 1718 return false; 1719 } 1720 return false; 1721 } 1722 1723 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1724 /// amount, otherwise return -1. 1725 /// The ShuffleKind distinguishes between big-endian operations with two 1726 /// different inputs (0), either-endian operations with two identical inputs 1727 /// (1), and little-endian operations with two different inputs (2). For the 1728 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1729 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1730 SelectionDAG &DAG) { 1731 if (N->getValueType(0) != MVT::v16i8) 1732 return -1; 1733 1734 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1735 1736 // Find the first non-undef value in the shuffle mask. 1737 unsigned i; 1738 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1739 /*search*/; 1740 1741 if (i == 16) return -1; // all undef. 1742 1743 // Otherwise, check to see if the rest of the elements are consecutively 1744 // numbered from this value. 1745 unsigned ShiftAmt = SVOp->getMaskElt(i); 1746 if (ShiftAmt < i) return -1; 1747 1748 ShiftAmt -= i; 1749 bool isLE = DAG.getDataLayout().isLittleEndian(); 1750 1751 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1752 // Check the rest of the elements to see if they are consecutive. 1753 for (++i; i != 16; ++i) 1754 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1755 return -1; 1756 } else if (ShuffleKind == 1) { 1757 // Check the rest of the elements to see if they are consecutive. 1758 for (++i; i != 16; ++i) 1759 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1760 return -1; 1761 } else 1762 return -1; 1763 1764 if (isLE) 1765 ShiftAmt = 16 - ShiftAmt; 1766 1767 return ShiftAmt; 1768 } 1769 1770 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1771 /// specifies a splat of a single element that is suitable for input to 1772 /// VSPLTB/VSPLTH/VSPLTW. 1773 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1774 assert(N->getValueType(0) == MVT::v16i8 && 1775 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1776 1777 // The consecutive indices need to specify an element, not part of two 1778 // different elements. So abandon ship early if this isn't the case. 1779 if (N->getMaskElt(0) % EltSize != 0) 1780 return false; 1781 1782 // This is a splat operation if each element of the permute is the same, and 1783 // if the value doesn't reference the second vector. 1784 unsigned ElementBase = N->getMaskElt(0); 1785 1786 // FIXME: Handle UNDEF elements too! 1787 if (ElementBase >= 16) 1788 return false; 1789 1790 // Check that the indices are consecutive, in the case of a multi-byte element 1791 // splatted with a v16i8 mask. 1792 for (unsigned i = 1; i != EltSize; ++i) 1793 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1794 return false; 1795 1796 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1797 if (N->getMaskElt(i) < 0) continue; 1798 for (unsigned j = 0; j != EltSize; ++j) 1799 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1800 return false; 1801 } 1802 return true; 1803 } 1804 1805 /// Check that the mask is shuffling N byte elements. Within each N byte 1806 /// element of the mask, the indices could be either in increasing or 1807 /// decreasing order as long as they are consecutive. 1808 /// \param[in] N the shuffle vector SD Node to analyze 1809 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1810 /// Word/DoubleWord/QuadWord). 1811 /// \param[in] StepLen the delta indices number among the N byte element, if 1812 /// the mask is in increasing/decreasing order then it is 1/-1. 1813 /// \return true iff the mask is shuffling N byte elements. 1814 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1815 int StepLen) { 1816 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1817 "Unexpected element width."); 1818 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1819 1820 unsigned NumOfElem = 16 / Width; 1821 unsigned MaskVal[16]; // Width is never greater than 16 1822 for (unsigned i = 0; i < NumOfElem; ++i) { 1823 MaskVal[0] = N->getMaskElt(i * Width); 1824 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1825 return false; 1826 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1827 return false; 1828 } 1829 1830 for (unsigned int j = 1; j < Width; ++j) { 1831 MaskVal[j] = N->getMaskElt(i * Width + j); 1832 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1833 return false; 1834 } 1835 } 1836 } 1837 1838 return true; 1839 } 1840 1841 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1842 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1843 if (!isNByteElemShuffleMask(N, 4, 1)) 1844 return false; 1845 1846 // Now we look at mask elements 0,4,8,12 1847 unsigned M0 = N->getMaskElt(0) / 4; 1848 unsigned M1 = N->getMaskElt(4) / 4; 1849 unsigned M2 = N->getMaskElt(8) / 4; 1850 unsigned M3 = N->getMaskElt(12) / 4; 1851 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1852 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1853 1854 // Below, let H and L be arbitrary elements of the shuffle mask 1855 // where H is in the range [4,7] and L is in the range [0,3]. 1856 // H, 1, 2, 3 or L, 5, 6, 7 1857 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1858 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1859 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1860 InsertAtByte = IsLE ? 12 : 0; 1861 Swap = M0 < 4; 1862 return true; 1863 } 1864 // 0, H, 2, 3 or 4, L, 6, 7 1865 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1866 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1867 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1868 InsertAtByte = IsLE ? 8 : 4; 1869 Swap = M1 < 4; 1870 return true; 1871 } 1872 // 0, 1, H, 3 or 4, 5, L, 7 1873 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1874 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1875 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1876 InsertAtByte = IsLE ? 4 : 8; 1877 Swap = M2 < 4; 1878 return true; 1879 } 1880 // 0, 1, 2, H or 4, 5, 6, L 1881 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1882 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1883 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1884 InsertAtByte = IsLE ? 0 : 12; 1885 Swap = M3 < 4; 1886 return true; 1887 } 1888 1889 // If both vector operands for the shuffle are the same vector, the mask will 1890 // contain only elements from the first one and the second one will be undef. 1891 if (N->getOperand(1).isUndef()) { 1892 ShiftElts = 0; 1893 Swap = true; 1894 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1895 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1896 InsertAtByte = IsLE ? 12 : 0; 1897 return true; 1898 } 1899 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1900 InsertAtByte = IsLE ? 8 : 4; 1901 return true; 1902 } 1903 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1904 InsertAtByte = IsLE ? 4 : 8; 1905 return true; 1906 } 1907 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1908 InsertAtByte = IsLE ? 0 : 12; 1909 return true; 1910 } 1911 } 1912 1913 return false; 1914 } 1915 1916 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1917 bool &Swap, bool IsLE) { 1918 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1919 // Ensure each byte index of the word is consecutive. 1920 if (!isNByteElemShuffleMask(N, 4, 1)) 1921 return false; 1922 1923 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1924 unsigned M0 = N->getMaskElt(0) / 4; 1925 unsigned M1 = N->getMaskElt(4) / 4; 1926 unsigned M2 = N->getMaskElt(8) / 4; 1927 unsigned M3 = N->getMaskElt(12) / 4; 1928 1929 // If both vector operands for the shuffle are the same vector, the mask will 1930 // contain only elements from the first one and the second one will be undef. 1931 if (N->getOperand(1).isUndef()) { 1932 assert(M0 < 4 && "Indexing into an undef vector?"); 1933 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1934 return false; 1935 1936 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1937 Swap = false; 1938 return true; 1939 } 1940 1941 // Ensure each word index of the ShuffleVector Mask is consecutive. 1942 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1943 return false; 1944 1945 if (IsLE) { 1946 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1947 // Input vectors don't need to be swapped if the leading element 1948 // of the result is one of the 3 left elements of the second vector 1949 // (or if there is no shift to be done at all). 1950 Swap = false; 1951 ShiftElts = (8 - M0) % 8; 1952 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1953 // Input vectors need to be swapped if the leading element 1954 // of the result is one of the 3 left elements of the first vector 1955 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1956 Swap = true; 1957 ShiftElts = (4 - M0) % 4; 1958 } 1959 1960 return true; 1961 } else { // BE 1962 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1963 // Input vectors don't need to be swapped if the leading element 1964 // of the result is one of the 4 elements of the first vector. 1965 Swap = false; 1966 ShiftElts = M0; 1967 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1968 // Input vectors need to be swapped if the leading element 1969 // of the result is one of the 4 elements of the right vector. 1970 Swap = true; 1971 ShiftElts = M0 - 4; 1972 } 1973 1974 return true; 1975 } 1976 } 1977 1978 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1979 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1980 1981 if (!isNByteElemShuffleMask(N, Width, -1)) 1982 return false; 1983 1984 for (int i = 0; i < 16; i += Width) 1985 if (N->getMaskElt(i) != i + Width - 1) 1986 return false; 1987 1988 return true; 1989 } 1990 1991 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1992 return isXXBRShuffleMaskHelper(N, 2); 1993 } 1994 1995 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1996 return isXXBRShuffleMaskHelper(N, 4); 1997 } 1998 1999 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2000 return isXXBRShuffleMaskHelper(N, 8); 2001 } 2002 2003 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2004 return isXXBRShuffleMaskHelper(N, 16); 2005 } 2006 2007 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2008 /// if the inputs to the instruction should be swapped and set \p DM to the 2009 /// value for the immediate. 2010 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2011 /// AND element 0 of the result comes from the first input (LE) or second input 2012 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2013 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2014 /// mask. 2015 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2016 bool &Swap, bool IsLE) { 2017 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2018 2019 // Ensure each byte index of the double word is consecutive. 2020 if (!isNByteElemShuffleMask(N, 8, 1)) 2021 return false; 2022 2023 unsigned M0 = N->getMaskElt(0) / 8; 2024 unsigned M1 = N->getMaskElt(8) / 8; 2025 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2026 2027 // If both vector operands for the shuffle are the same vector, the mask will 2028 // contain only elements from the first one and the second one will be undef. 2029 if (N->getOperand(1).isUndef()) { 2030 if ((M0 | M1) < 2) { 2031 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2032 Swap = false; 2033 return true; 2034 } else 2035 return false; 2036 } 2037 2038 if (IsLE) { 2039 if (M0 > 1 && M1 < 2) { 2040 Swap = false; 2041 } else if (M0 < 2 && M1 > 1) { 2042 M0 = (M0 + 2) % 4; 2043 M1 = (M1 + 2) % 4; 2044 Swap = true; 2045 } else 2046 return false; 2047 2048 // Note: if control flow comes here that means Swap is already set above 2049 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2050 return true; 2051 } else { // BE 2052 if (M0 < 2 && M1 > 1) { 2053 Swap = false; 2054 } else if (M0 > 1 && M1 < 2) { 2055 M0 = (M0 + 2) % 4; 2056 M1 = (M1 + 2) % 4; 2057 Swap = true; 2058 } else 2059 return false; 2060 2061 // Note: if control flow comes here that means Swap is already set above 2062 DM = (M0 << 1) + (M1 & 1); 2063 return true; 2064 } 2065 } 2066 2067 2068 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 2069 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 2070 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 2071 SelectionDAG &DAG) { 2072 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2073 assert(isSplatShuffleMask(SVOp, EltSize)); 2074 if (DAG.getDataLayout().isLittleEndian()) 2075 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2076 else 2077 return SVOp->getMaskElt(0) / EltSize; 2078 } 2079 2080 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2081 /// by using a vspltis[bhw] instruction of the specified element size, return 2082 /// the constant being splatted. The ByteSize field indicates the number of 2083 /// bytes of each element [124] -> [bhw]. 2084 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2085 SDValue OpVal(nullptr, 0); 2086 2087 // If ByteSize of the splat is bigger than the element size of the 2088 // build_vector, then we have a case where we are checking for a splat where 2089 // multiple elements of the buildvector are folded together into a single 2090 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2091 unsigned EltSize = 16/N->getNumOperands(); 2092 if (EltSize < ByteSize) { 2093 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2094 SDValue UniquedVals[4]; 2095 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2096 2097 // See if all of the elements in the buildvector agree across. 2098 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2099 if (N->getOperand(i).isUndef()) continue; 2100 // If the element isn't a constant, bail fully out. 2101 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2102 2103 if (!UniquedVals[i&(Multiple-1)].getNode()) 2104 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2105 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2106 return SDValue(); // no match. 2107 } 2108 2109 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2110 // either constant or undef values that are identical for each chunk. See 2111 // if these chunks can form into a larger vspltis*. 2112 2113 // Check to see if all of the leading entries are either 0 or -1. If 2114 // neither, then this won't fit into the immediate field. 2115 bool LeadingZero = true; 2116 bool LeadingOnes = true; 2117 for (unsigned i = 0; i != Multiple-1; ++i) { 2118 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2119 2120 LeadingZero &= isNullConstant(UniquedVals[i]); 2121 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2122 } 2123 // Finally, check the least significant entry. 2124 if (LeadingZero) { 2125 if (!UniquedVals[Multiple-1].getNode()) 2126 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2127 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2128 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2129 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2130 } 2131 if (LeadingOnes) { 2132 if (!UniquedVals[Multiple-1].getNode()) 2133 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2134 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2135 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2136 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2137 } 2138 2139 return SDValue(); 2140 } 2141 2142 // Check to see if this buildvec has a single non-undef value in its elements. 2143 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2144 if (N->getOperand(i).isUndef()) continue; 2145 if (!OpVal.getNode()) 2146 OpVal = N->getOperand(i); 2147 else if (OpVal != N->getOperand(i)) 2148 return SDValue(); 2149 } 2150 2151 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2152 2153 unsigned ValSizeInBytes = EltSize; 2154 uint64_t Value = 0; 2155 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2156 Value = CN->getZExtValue(); 2157 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2158 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2159 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2160 } 2161 2162 // If the splat value is larger than the element value, then we can never do 2163 // this splat. The only case that we could fit the replicated bits into our 2164 // immediate field for would be zero, and we prefer to use vxor for it. 2165 if (ValSizeInBytes < ByteSize) return SDValue(); 2166 2167 // If the element value is larger than the splat value, check if it consists 2168 // of a repeated bit pattern of size ByteSize. 2169 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2170 return SDValue(); 2171 2172 // Properly sign extend the value. 2173 int MaskVal = SignExtend32(Value, ByteSize * 8); 2174 2175 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2176 if (MaskVal == 0) return SDValue(); 2177 2178 // Finally, if this value fits in a 5 bit sext field, return it 2179 if (SignExtend32<5>(MaskVal) == MaskVal) 2180 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2181 return SDValue(); 2182 } 2183 2184 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2185 /// amount, otherwise return -1. 2186 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2187 EVT VT = N->getValueType(0); 2188 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2189 return -1; 2190 2191 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2192 2193 // Find the first non-undef value in the shuffle mask. 2194 unsigned i; 2195 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2196 /*search*/; 2197 2198 if (i == 4) return -1; // all undef. 2199 2200 // Otherwise, check to see if the rest of the elements are consecutively 2201 // numbered from this value. 2202 unsigned ShiftAmt = SVOp->getMaskElt(i); 2203 if (ShiftAmt < i) return -1; 2204 ShiftAmt -= i; 2205 2206 // Check the rest of the elements to see if they are consecutive. 2207 for (++i; i != 4; ++i) 2208 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2209 return -1; 2210 2211 return ShiftAmt; 2212 } 2213 2214 //===----------------------------------------------------------------------===// 2215 // Addressing Mode Selection 2216 //===----------------------------------------------------------------------===// 2217 2218 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2219 /// or 64-bit immediate, and if the value can be accurately represented as a 2220 /// sign extension from a 16-bit value. If so, this returns true and the 2221 /// immediate. 2222 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2223 if (!isa<ConstantSDNode>(N)) 2224 return false; 2225 2226 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2227 if (N->getValueType(0) == MVT::i32) 2228 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2229 else 2230 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2231 } 2232 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2233 return isIntS16Immediate(Op.getNode(), Imm); 2234 } 2235 2236 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2237 /// can be represented as an indexed [r+r] operation. Returns false if it 2238 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2239 /// non-zero and N can be represented by a base register plus a signed 16-bit 2240 /// displacement, make a more precise judgement by checking (displacement % \p 2241 /// EncodingAlignment). 2242 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2243 SDValue &Index, SelectionDAG &DAG, 2244 unsigned EncodingAlignment) const { 2245 int16_t imm = 0; 2246 if (N.getOpcode() == ISD::ADD) { 2247 if (isIntS16Immediate(N.getOperand(1), imm) && 2248 (!EncodingAlignment || !(imm % EncodingAlignment))) 2249 return false; // r+i 2250 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2251 return false; // r+i 2252 2253 Base = N.getOperand(0); 2254 Index = N.getOperand(1); 2255 return true; 2256 } else if (N.getOpcode() == ISD::OR) { 2257 if (isIntS16Immediate(N.getOperand(1), imm) && 2258 (!EncodingAlignment || !(imm % EncodingAlignment))) 2259 return false; // r+i can fold it if we can. 2260 2261 // If this is an or of disjoint bitfields, we can codegen this as an add 2262 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2263 // disjoint. 2264 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2265 2266 if (LHSKnown.Zero.getBoolValue()) { 2267 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2268 // If all of the bits are known zero on the LHS or RHS, the add won't 2269 // carry. 2270 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2271 Base = N.getOperand(0); 2272 Index = N.getOperand(1); 2273 return true; 2274 } 2275 } 2276 } 2277 2278 return false; 2279 } 2280 2281 // If we happen to be doing an i64 load or store into a stack slot that has 2282 // less than a 4-byte alignment, then the frame-index elimination may need to 2283 // use an indexed load or store instruction (because the offset may not be a 2284 // multiple of 4). The extra register needed to hold the offset comes from the 2285 // register scavenger, and it is possible that the scavenger will need to use 2286 // an emergency spill slot. As a result, we need to make sure that a spill slot 2287 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2288 // stack slot. 2289 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2290 // FIXME: This does not handle the LWA case. 2291 if (VT != MVT::i64) 2292 return; 2293 2294 // NOTE: We'll exclude negative FIs here, which come from argument 2295 // lowering, because there are no known test cases triggering this problem 2296 // using packed structures (or similar). We can remove this exclusion if 2297 // we find such a test case. The reason why this is so test-case driven is 2298 // because this entire 'fixup' is only to prevent crashes (from the 2299 // register scavenger) on not-really-valid inputs. For example, if we have: 2300 // %a = alloca i1 2301 // %b = bitcast i1* %a to i64* 2302 // store i64* a, i64 b 2303 // then the store should really be marked as 'align 1', but is not. If it 2304 // were marked as 'align 1' then the indexed form would have been 2305 // instruction-selected initially, and the problem this 'fixup' is preventing 2306 // won't happen regardless. 2307 if (FrameIdx < 0) 2308 return; 2309 2310 MachineFunction &MF = DAG.getMachineFunction(); 2311 MachineFrameInfo &MFI = MF.getFrameInfo(); 2312 2313 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2314 if (Align >= 4) 2315 return; 2316 2317 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2318 FuncInfo->setHasNonRISpills(); 2319 } 2320 2321 /// Returns true if the address N can be represented by a base register plus 2322 /// a signed 16-bit displacement [r+imm], and if it is not better 2323 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2324 /// displacements that are multiples of that value. 2325 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2326 SDValue &Base, 2327 SelectionDAG &DAG, 2328 unsigned EncodingAlignment) const { 2329 // FIXME dl should come from parent load or store, not from address 2330 SDLoc dl(N); 2331 // If this can be more profitably realized as r+r, fail. 2332 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2333 return false; 2334 2335 if (N.getOpcode() == ISD::ADD) { 2336 int16_t imm = 0; 2337 if (isIntS16Immediate(N.getOperand(1), imm) && 2338 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2339 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2340 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2341 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2342 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2343 } else { 2344 Base = N.getOperand(0); 2345 } 2346 return true; // [r+i] 2347 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2348 // Match LOAD (ADD (X, Lo(G))). 2349 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2350 && "Cannot handle constant offsets yet!"); 2351 Disp = N.getOperand(1).getOperand(0); // The global address. 2352 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2353 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2354 Disp.getOpcode() == ISD::TargetConstantPool || 2355 Disp.getOpcode() == ISD::TargetJumpTable); 2356 Base = N.getOperand(0); 2357 return true; // [&g+r] 2358 } 2359 } else if (N.getOpcode() == ISD::OR) { 2360 int16_t imm = 0; 2361 if (isIntS16Immediate(N.getOperand(1), imm) && 2362 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2363 // If this is an or of disjoint bitfields, we can codegen this as an add 2364 // (for better address arithmetic) if the LHS and RHS of the OR are 2365 // provably disjoint. 2366 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2367 2368 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2369 // If all of the bits are known zero on the LHS or RHS, the add won't 2370 // carry. 2371 if (FrameIndexSDNode *FI = 2372 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2373 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2374 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2375 } else { 2376 Base = N.getOperand(0); 2377 } 2378 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2379 return true; 2380 } 2381 } 2382 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2383 // Loading from a constant address. 2384 2385 // If this address fits entirely in a 16-bit sext immediate field, codegen 2386 // this as "d, 0" 2387 int16_t Imm; 2388 if (isIntS16Immediate(CN, Imm) && 2389 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2390 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2391 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2392 CN->getValueType(0)); 2393 return true; 2394 } 2395 2396 // Handle 32-bit sext immediates with LIS + addr mode. 2397 if ((CN->getValueType(0) == MVT::i32 || 2398 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2399 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2400 int Addr = (int)CN->getZExtValue(); 2401 2402 // Otherwise, break this down into an LIS + disp. 2403 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2404 2405 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2406 MVT::i32); 2407 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2408 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2409 return true; 2410 } 2411 } 2412 2413 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2414 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2415 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2416 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2417 } else 2418 Base = N; 2419 return true; // [r+0] 2420 } 2421 2422 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2423 /// represented as an indexed [r+r] operation. 2424 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2425 SDValue &Index, 2426 SelectionDAG &DAG) const { 2427 // Check to see if we can easily represent this as an [r+r] address. This 2428 // will fail if it thinks that the address is more profitably represented as 2429 // reg+imm, e.g. where imm = 0. 2430 if (SelectAddressRegReg(N, Base, Index, DAG)) 2431 return true; 2432 2433 // If the address is the result of an add, we will utilize the fact that the 2434 // address calculation includes an implicit add. However, we can reduce 2435 // register pressure if we do not materialize a constant just for use as the 2436 // index register. We only get rid of the add if it is not an add of a 2437 // value and a 16-bit signed constant and both have a single use. 2438 int16_t imm = 0; 2439 if (N.getOpcode() == ISD::ADD && 2440 (!isIntS16Immediate(N.getOperand(1), imm) || 2441 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2442 Base = N.getOperand(0); 2443 Index = N.getOperand(1); 2444 return true; 2445 } 2446 2447 // Otherwise, do it the hard way, using R0 as the base register. 2448 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2449 N.getValueType()); 2450 Index = N; 2451 return true; 2452 } 2453 2454 /// Returns true if we should use a direct load into vector instruction 2455 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2456 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2457 2458 // If there are any other uses other than scalar to vector, then we should 2459 // keep it as a scalar load -> direct move pattern to prevent multiple 2460 // loads. 2461 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2462 if (!LD) 2463 return false; 2464 2465 EVT MemVT = LD->getMemoryVT(); 2466 if (!MemVT.isSimple()) 2467 return false; 2468 switch(MemVT.getSimpleVT().SimpleTy) { 2469 case MVT::i64: 2470 break; 2471 case MVT::i32: 2472 if (!ST.hasP8Vector()) 2473 return false; 2474 break; 2475 case MVT::i16: 2476 case MVT::i8: 2477 if (!ST.hasP9Vector()) 2478 return false; 2479 break; 2480 default: 2481 return false; 2482 } 2483 2484 SDValue LoadedVal(N, 0); 2485 if (!LoadedVal.hasOneUse()) 2486 return false; 2487 2488 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2489 UI != UE; ++UI) 2490 if (UI.getUse().get().getResNo() == 0 && 2491 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2492 return false; 2493 2494 return true; 2495 } 2496 2497 /// getPreIndexedAddressParts - returns true by value, base pointer and 2498 /// offset pointer and addressing mode by reference if the node's address 2499 /// can be legally represented as pre-indexed load / store address. 2500 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2501 SDValue &Offset, 2502 ISD::MemIndexedMode &AM, 2503 SelectionDAG &DAG) const { 2504 if (DisablePPCPreinc) return false; 2505 2506 bool isLoad = true; 2507 SDValue Ptr; 2508 EVT VT; 2509 unsigned Alignment; 2510 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2511 Ptr = LD->getBasePtr(); 2512 VT = LD->getMemoryVT(); 2513 Alignment = LD->getAlignment(); 2514 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2515 Ptr = ST->getBasePtr(); 2516 VT = ST->getMemoryVT(); 2517 Alignment = ST->getAlignment(); 2518 isLoad = false; 2519 } else 2520 return false; 2521 2522 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2523 // instructions because we can fold these into a more efficient instruction 2524 // instead, (such as LXSD). 2525 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2526 return false; 2527 } 2528 2529 // PowerPC doesn't have preinc load/store instructions for vectors (except 2530 // for QPX, which does have preinc r+r forms). 2531 if (VT.isVector()) { 2532 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2533 return false; 2534 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2535 AM = ISD::PRE_INC; 2536 return true; 2537 } 2538 } 2539 2540 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2541 // Common code will reject creating a pre-inc form if the base pointer 2542 // is a frame index, or if N is a store and the base pointer is either 2543 // the same as or a predecessor of the value being stored. Check for 2544 // those situations here, and try with swapped Base/Offset instead. 2545 bool Swap = false; 2546 2547 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2548 Swap = true; 2549 else if (!isLoad) { 2550 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2551 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2552 Swap = true; 2553 } 2554 2555 if (Swap) 2556 std::swap(Base, Offset); 2557 2558 AM = ISD::PRE_INC; 2559 return true; 2560 } 2561 2562 // LDU/STU can only handle immediates that are a multiple of 4. 2563 if (VT != MVT::i64) { 2564 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2565 return false; 2566 } else { 2567 // LDU/STU need an address with at least 4-byte alignment. 2568 if (Alignment < 4) 2569 return false; 2570 2571 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2572 return false; 2573 } 2574 2575 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2576 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2577 // sext i32 to i64 when addr mode is r+i. 2578 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2579 LD->getExtensionType() == ISD::SEXTLOAD && 2580 isa<ConstantSDNode>(Offset)) 2581 return false; 2582 } 2583 2584 AM = ISD::PRE_INC; 2585 return true; 2586 } 2587 2588 //===----------------------------------------------------------------------===// 2589 // LowerOperation implementation 2590 //===----------------------------------------------------------------------===// 2591 2592 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2593 /// and LoOpFlags to the target MO flags. 2594 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2595 unsigned &HiOpFlags, unsigned &LoOpFlags, 2596 const GlobalValue *GV = nullptr) { 2597 HiOpFlags = PPCII::MO_HA; 2598 LoOpFlags = PPCII::MO_LO; 2599 2600 // Don't use the pic base if not in PIC relocation model. 2601 if (IsPIC) { 2602 HiOpFlags |= PPCII::MO_PIC_FLAG; 2603 LoOpFlags |= PPCII::MO_PIC_FLAG; 2604 } 2605 2606 // If this is a reference to a global value that requires a non-lazy-ptr, make 2607 // sure that instruction lowering adds it. 2608 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2609 HiOpFlags |= PPCII::MO_NLP_FLAG; 2610 LoOpFlags |= PPCII::MO_NLP_FLAG; 2611 2612 if (GV->hasHiddenVisibility()) { 2613 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2614 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2615 } 2616 } 2617 } 2618 2619 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2620 SelectionDAG &DAG) { 2621 SDLoc DL(HiPart); 2622 EVT PtrVT = HiPart.getValueType(); 2623 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2624 2625 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2626 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2627 2628 // With PIC, the first instruction is actually "GR+hi(&G)". 2629 if (isPIC) 2630 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2631 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2632 2633 // Generate non-pic code that has direct accesses to the constant pool. 2634 // The address of the global is just (hi(&g)+lo(&g)). 2635 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2636 } 2637 2638 static void setUsesTOCBasePtr(MachineFunction &MF) { 2639 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2640 FuncInfo->setUsesTOCBasePtr(); 2641 } 2642 2643 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2644 setUsesTOCBasePtr(DAG.getMachineFunction()); 2645 } 2646 2647 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2648 SDValue GA) { 2649 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2650 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2651 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2652 2653 SDValue Ops[] = { GA, Reg }; 2654 return DAG.getMemIntrinsicNode( 2655 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2656 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2657 MachineMemOperand::MOLoad); 2658 } 2659 2660 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2661 SelectionDAG &DAG) const { 2662 EVT PtrVT = Op.getValueType(); 2663 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2664 const Constant *C = CP->getConstVal(); 2665 2666 // 64-bit SVR4 ABI code is always position-independent. 2667 // The actual address of the GlobalValue is stored in the TOC. 2668 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2669 setUsesTOCBasePtr(DAG); 2670 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2671 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2672 } 2673 2674 unsigned MOHiFlag, MOLoFlag; 2675 bool IsPIC = isPositionIndependent(); 2676 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2677 2678 if (IsPIC && Subtarget.isSVR4ABI()) { 2679 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2680 PPCII::MO_PIC_FLAG); 2681 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2682 } 2683 2684 SDValue CPIHi = 2685 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2686 SDValue CPILo = 2687 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2688 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2689 } 2690 2691 // For 64-bit PowerPC, prefer the more compact relative encodings. 2692 // This trades 32 bits per jump table entry for one or two instructions 2693 // on the jump site. 2694 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2695 if (isJumpTableRelative()) 2696 return MachineJumpTableInfo::EK_LabelDifference32; 2697 2698 return TargetLowering::getJumpTableEncoding(); 2699 } 2700 2701 bool PPCTargetLowering::isJumpTableRelative() const { 2702 if (Subtarget.isPPC64()) 2703 return true; 2704 return TargetLowering::isJumpTableRelative(); 2705 } 2706 2707 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2708 SelectionDAG &DAG) const { 2709 if (!Subtarget.isPPC64()) 2710 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2711 2712 switch (getTargetMachine().getCodeModel()) { 2713 case CodeModel::Small: 2714 case CodeModel::Medium: 2715 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2716 default: 2717 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2718 getPointerTy(DAG.getDataLayout())); 2719 } 2720 } 2721 2722 const MCExpr * 2723 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2724 unsigned JTI, 2725 MCContext &Ctx) const { 2726 if (!Subtarget.isPPC64()) 2727 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2728 2729 switch (getTargetMachine().getCodeModel()) { 2730 case CodeModel::Small: 2731 case CodeModel::Medium: 2732 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2733 default: 2734 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2735 } 2736 } 2737 2738 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2739 EVT PtrVT = Op.getValueType(); 2740 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2741 2742 // 64-bit SVR4 ABI code is always position-independent. 2743 // The actual address of the GlobalValue is stored in the TOC. 2744 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2745 setUsesTOCBasePtr(DAG); 2746 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2747 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2748 } 2749 2750 unsigned MOHiFlag, MOLoFlag; 2751 bool IsPIC = isPositionIndependent(); 2752 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2753 2754 if (IsPIC && Subtarget.isSVR4ABI()) { 2755 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2756 PPCII::MO_PIC_FLAG); 2757 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2758 } 2759 2760 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2761 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2762 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2763 } 2764 2765 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2766 SelectionDAG &DAG) const { 2767 EVT PtrVT = Op.getValueType(); 2768 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2769 const BlockAddress *BA = BASDN->getBlockAddress(); 2770 2771 // 64-bit SVR4 ABI code is always position-independent. 2772 // The actual BlockAddress is stored in the TOC. 2773 if (Subtarget.isSVR4ABI() && 2774 (Subtarget.isPPC64() || isPositionIndependent())) { 2775 if (Subtarget.isPPC64()) 2776 setUsesTOCBasePtr(DAG); 2777 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2778 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA); 2779 } 2780 2781 unsigned MOHiFlag, MOLoFlag; 2782 bool IsPIC = isPositionIndependent(); 2783 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2784 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2785 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2786 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2787 } 2788 2789 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2790 SelectionDAG &DAG) const { 2791 // FIXME: TLS addresses currently use medium model code sequences, 2792 // which is the most useful form. Eventually support for small and 2793 // large models could be added if users need it, at the cost of 2794 // additional complexity. 2795 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2796 if (DAG.getTarget().useEmulatedTLS()) 2797 return LowerToTLSEmulatedModel(GA, DAG); 2798 2799 SDLoc dl(GA); 2800 const GlobalValue *GV = GA->getGlobal(); 2801 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2802 bool is64bit = Subtarget.isPPC64(); 2803 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2804 PICLevel::Level picLevel = M->getPICLevel(); 2805 2806 const TargetMachine &TM = getTargetMachine(); 2807 TLSModel::Model Model = TM.getTLSModel(GV); 2808 2809 if (Model == TLSModel::LocalExec) { 2810 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2811 PPCII::MO_TPREL_HA); 2812 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2813 PPCII::MO_TPREL_LO); 2814 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2815 : DAG.getRegister(PPC::R2, MVT::i32); 2816 2817 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2818 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2819 } 2820 2821 if (Model == TLSModel::InitialExec) { 2822 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2823 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2824 PPCII::MO_TLS); 2825 SDValue GOTPtr; 2826 if (is64bit) { 2827 setUsesTOCBasePtr(DAG); 2828 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2829 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2830 PtrVT, GOTReg, TGA); 2831 } else { 2832 if (!TM.isPositionIndependent()) 2833 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2834 else if (picLevel == PICLevel::SmallPIC) 2835 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2836 else 2837 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2838 } 2839 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2840 PtrVT, TGA, GOTPtr); 2841 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2842 } 2843 2844 if (Model == TLSModel::GeneralDynamic) { 2845 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2846 SDValue GOTPtr; 2847 if (is64bit) { 2848 setUsesTOCBasePtr(DAG); 2849 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2850 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2851 GOTReg, TGA); 2852 } else { 2853 if (picLevel == PICLevel::SmallPIC) 2854 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2855 else 2856 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2857 } 2858 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2859 GOTPtr, TGA, TGA); 2860 } 2861 2862 if (Model == TLSModel::LocalDynamic) { 2863 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2864 SDValue GOTPtr; 2865 if (is64bit) { 2866 setUsesTOCBasePtr(DAG); 2867 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2868 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2869 GOTReg, TGA); 2870 } else { 2871 if (picLevel == PICLevel::SmallPIC) 2872 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2873 else 2874 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2875 } 2876 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2877 PtrVT, GOTPtr, TGA, TGA); 2878 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2879 PtrVT, TLSAddr, TGA); 2880 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2881 } 2882 2883 llvm_unreachable("Unknown TLS model!"); 2884 } 2885 2886 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2887 SelectionDAG &DAG) const { 2888 EVT PtrVT = Op.getValueType(); 2889 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2890 SDLoc DL(GSDN); 2891 const GlobalValue *GV = GSDN->getGlobal(); 2892 2893 // 64-bit SVR4 ABI code is always position-independent. 2894 // The actual address of the GlobalValue is stored in the TOC. 2895 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2896 setUsesTOCBasePtr(DAG); 2897 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2898 return getTOCEntry(DAG, DL, true, GA); 2899 } 2900 2901 unsigned MOHiFlag, MOLoFlag; 2902 bool IsPIC = isPositionIndependent(); 2903 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2904 2905 if (IsPIC && Subtarget.isSVR4ABI()) { 2906 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2907 GSDN->getOffset(), 2908 PPCII::MO_PIC_FLAG); 2909 return getTOCEntry(DAG, DL, false, GA); 2910 } 2911 2912 SDValue GAHi = 2913 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2914 SDValue GALo = 2915 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2916 2917 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2918 2919 // If the global reference is actually to a non-lazy-pointer, we have to do an 2920 // extra load to get the address of the global. 2921 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2922 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2923 return Ptr; 2924 } 2925 2926 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2927 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2928 SDLoc dl(Op); 2929 2930 if (Op.getValueType() == MVT::v2i64) { 2931 // When the operands themselves are v2i64 values, we need to do something 2932 // special because VSX has no underlying comparison operations for these. 2933 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2934 // Equality can be handled by casting to the legal type for Altivec 2935 // comparisons, everything else needs to be expanded. 2936 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2937 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2938 DAG.getSetCC(dl, MVT::v4i32, 2939 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2940 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2941 CC)); 2942 } 2943 2944 return SDValue(); 2945 } 2946 2947 // We handle most of these in the usual way. 2948 return Op; 2949 } 2950 2951 // If we're comparing for equality to zero, expose the fact that this is 2952 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2953 // fold the new nodes. 2954 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2955 return V; 2956 2957 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2958 // Leave comparisons against 0 and -1 alone for now, since they're usually 2959 // optimized. FIXME: revisit this when we can custom lower all setcc 2960 // optimizations. 2961 if (C->isAllOnesValue() || C->isNullValue()) 2962 return SDValue(); 2963 } 2964 2965 // If we have an integer seteq/setne, turn it into a compare against zero 2966 // by xor'ing the rhs with the lhs, which is faster than setting a 2967 // condition register, reading it back out, and masking the correct bit. The 2968 // normal approach here uses sub to do this instead of xor. Using xor exposes 2969 // the result to other bit-twiddling opportunities. 2970 EVT LHSVT = Op.getOperand(0).getValueType(); 2971 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2972 EVT VT = Op.getValueType(); 2973 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2974 Op.getOperand(1)); 2975 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2976 } 2977 return SDValue(); 2978 } 2979 2980 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2981 SDNode *Node = Op.getNode(); 2982 EVT VT = Node->getValueType(0); 2983 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2984 SDValue InChain = Node->getOperand(0); 2985 SDValue VAListPtr = Node->getOperand(1); 2986 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2987 SDLoc dl(Node); 2988 2989 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2990 2991 // gpr_index 2992 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2993 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2994 InChain = GprIndex.getValue(1); 2995 2996 if (VT == MVT::i64) { 2997 // Check if GprIndex is even 2998 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2999 DAG.getConstant(1, dl, MVT::i32)); 3000 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3001 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3002 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3003 DAG.getConstant(1, dl, MVT::i32)); 3004 // Align GprIndex to be even if it isn't 3005 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3006 GprIndex); 3007 } 3008 3009 // fpr index is 1 byte after gpr 3010 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3011 DAG.getConstant(1, dl, MVT::i32)); 3012 3013 // fpr 3014 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3015 FprPtr, MachinePointerInfo(SV), MVT::i8); 3016 InChain = FprIndex.getValue(1); 3017 3018 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3019 DAG.getConstant(8, dl, MVT::i32)); 3020 3021 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3022 DAG.getConstant(4, dl, MVT::i32)); 3023 3024 // areas 3025 SDValue OverflowArea = 3026 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3027 InChain = OverflowArea.getValue(1); 3028 3029 SDValue RegSaveArea = 3030 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3031 InChain = RegSaveArea.getValue(1); 3032 3033 // select overflow_area if index > 8 3034 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3035 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3036 3037 // adjustment constant gpr_index * 4/8 3038 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3039 VT.isInteger() ? GprIndex : FprIndex, 3040 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3041 MVT::i32)); 3042 3043 // OurReg = RegSaveArea + RegConstant 3044 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3045 RegConstant); 3046 3047 // Floating types are 32 bytes into RegSaveArea 3048 if (VT.isFloatingPoint()) 3049 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3050 DAG.getConstant(32, dl, MVT::i32)); 3051 3052 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3053 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3054 VT.isInteger() ? GprIndex : FprIndex, 3055 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3056 MVT::i32)); 3057 3058 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3059 VT.isInteger() ? VAListPtr : FprPtr, 3060 MachinePointerInfo(SV), MVT::i8); 3061 3062 // determine if we should load from reg_save_area or overflow_area 3063 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3064 3065 // increase overflow_area by 4/8 if gpr/fpr > 8 3066 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3067 DAG.getConstant(VT.isInteger() ? 4 : 8, 3068 dl, MVT::i32)); 3069 3070 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3071 OverflowAreaPlusN); 3072 3073 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3074 MachinePointerInfo(), MVT::i32); 3075 3076 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3077 } 3078 3079 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3080 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3081 3082 // We have to copy the entire va_list struct: 3083 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3084 return DAG.getMemcpy(Op.getOperand(0), Op, 3085 Op.getOperand(1), Op.getOperand(2), 3086 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3087 false, MachinePointerInfo(), MachinePointerInfo()); 3088 } 3089 3090 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3091 SelectionDAG &DAG) const { 3092 return Op.getOperand(0); 3093 } 3094 3095 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3096 SelectionDAG &DAG) const { 3097 SDValue Chain = Op.getOperand(0); 3098 SDValue Trmp = Op.getOperand(1); // trampoline 3099 SDValue FPtr = Op.getOperand(2); // nested function 3100 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3101 SDLoc dl(Op); 3102 3103 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3104 bool isPPC64 = (PtrVT == MVT::i64); 3105 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3106 3107 TargetLowering::ArgListTy Args; 3108 TargetLowering::ArgListEntry Entry; 3109 3110 Entry.Ty = IntPtrTy; 3111 Entry.Node = Trmp; Args.push_back(Entry); 3112 3113 // TrampSize == (isPPC64 ? 48 : 40); 3114 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3115 isPPC64 ? MVT::i64 : MVT::i32); 3116 Args.push_back(Entry); 3117 3118 Entry.Node = FPtr; Args.push_back(Entry); 3119 Entry.Node = Nest; Args.push_back(Entry); 3120 3121 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3122 TargetLowering::CallLoweringInfo CLI(DAG); 3123 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3124 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3125 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3126 3127 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3128 return CallResult.second; 3129 } 3130 3131 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3132 MachineFunction &MF = DAG.getMachineFunction(); 3133 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3134 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3135 3136 SDLoc dl(Op); 3137 3138 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3139 // vastart just stores the address of the VarArgsFrameIndex slot into the 3140 // memory location argument. 3141 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3142 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3143 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3144 MachinePointerInfo(SV)); 3145 } 3146 3147 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3148 // We suppose the given va_list is already allocated. 3149 // 3150 // typedef struct { 3151 // char gpr; /* index into the array of 8 GPRs 3152 // * stored in the register save area 3153 // * gpr=0 corresponds to r3, 3154 // * gpr=1 to r4, etc. 3155 // */ 3156 // char fpr; /* index into the array of 8 FPRs 3157 // * stored in the register save area 3158 // * fpr=0 corresponds to f1, 3159 // * fpr=1 to f2, etc. 3160 // */ 3161 // char *overflow_arg_area; 3162 // /* location on stack that holds 3163 // * the next overflow argument 3164 // */ 3165 // char *reg_save_area; 3166 // /* where r3:r10 and f1:f8 (if saved) 3167 // * are stored 3168 // */ 3169 // } va_list[1]; 3170 3171 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3172 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3173 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3174 PtrVT); 3175 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3176 PtrVT); 3177 3178 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3179 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3180 3181 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3182 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3183 3184 uint64_t FPROffset = 1; 3185 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3186 3187 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3188 3189 // Store first byte : number of int regs 3190 SDValue firstStore = 3191 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3192 MachinePointerInfo(SV), MVT::i8); 3193 uint64_t nextOffset = FPROffset; 3194 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3195 ConstFPROffset); 3196 3197 // Store second byte : number of float regs 3198 SDValue secondStore = 3199 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3200 MachinePointerInfo(SV, nextOffset), MVT::i8); 3201 nextOffset += StackOffset; 3202 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3203 3204 // Store second word : arguments given on stack 3205 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3206 MachinePointerInfo(SV, nextOffset)); 3207 nextOffset += FrameOffset; 3208 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3209 3210 // Store third word : arguments given in registers 3211 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3212 MachinePointerInfo(SV, nextOffset)); 3213 } 3214 3215 /// FPR - The set of FP registers that should be allocated for arguments, 3216 /// on Darwin. 3217 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3218 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3219 PPC::F11, PPC::F12, PPC::F13}; 3220 3221 /// QFPR - The set of QPX registers that should be allocated for arguments. 3222 static const MCPhysReg QFPR[] = { 3223 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3224 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3225 3226 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3227 /// the stack. 3228 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3229 unsigned PtrByteSize) { 3230 unsigned ArgSize = ArgVT.getStoreSize(); 3231 if (Flags.isByVal()) 3232 ArgSize = Flags.getByValSize(); 3233 3234 // Round up to multiples of the pointer size, except for array members, 3235 // which are always packed. 3236 if (!Flags.isInConsecutiveRegs()) 3237 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3238 3239 return ArgSize; 3240 } 3241 3242 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3243 /// on the stack. 3244 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3245 ISD::ArgFlagsTy Flags, 3246 unsigned PtrByteSize) { 3247 unsigned Align = PtrByteSize; 3248 3249 // Altivec parameters are padded to a 16 byte boundary. 3250 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3251 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3252 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3253 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3254 Align = 16; 3255 // QPX vector types stored in double-precision are padded to a 32 byte 3256 // boundary. 3257 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3258 Align = 32; 3259 3260 // ByVal parameters are aligned as requested. 3261 if (Flags.isByVal()) { 3262 unsigned BVAlign = Flags.getByValAlign(); 3263 if (BVAlign > PtrByteSize) { 3264 if (BVAlign % PtrByteSize != 0) 3265 llvm_unreachable( 3266 "ByVal alignment is not a multiple of the pointer size"); 3267 3268 Align = BVAlign; 3269 } 3270 } 3271 3272 // Array members are always packed to their original alignment. 3273 if (Flags.isInConsecutiveRegs()) { 3274 // If the array member was split into multiple registers, the first 3275 // needs to be aligned to the size of the full type. (Except for 3276 // ppcf128, which is only aligned as its f64 components.) 3277 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3278 Align = OrigVT.getStoreSize(); 3279 else 3280 Align = ArgVT.getStoreSize(); 3281 } 3282 3283 return Align; 3284 } 3285 3286 /// CalculateStackSlotUsed - Return whether this argument will use its 3287 /// stack slot (instead of being passed in registers). ArgOffset, 3288 /// AvailableFPRs, and AvailableVRs must hold the current argument 3289 /// position, and will be updated to account for this argument. 3290 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3291 ISD::ArgFlagsTy Flags, 3292 unsigned PtrByteSize, 3293 unsigned LinkageSize, 3294 unsigned ParamAreaSize, 3295 unsigned &ArgOffset, 3296 unsigned &AvailableFPRs, 3297 unsigned &AvailableVRs, bool HasQPX) { 3298 bool UseMemory = false; 3299 3300 // Respect alignment of argument on the stack. 3301 unsigned Align = 3302 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3303 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3304 // If there's no space left in the argument save area, we must 3305 // use memory (this check also catches zero-sized arguments). 3306 if (ArgOffset >= LinkageSize + ParamAreaSize) 3307 UseMemory = true; 3308 3309 // Allocate argument on the stack. 3310 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3311 if (Flags.isInConsecutiveRegsLast()) 3312 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3313 // If we overran the argument save area, we must use memory 3314 // (this check catches arguments passed partially in memory) 3315 if (ArgOffset > LinkageSize + ParamAreaSize) 3316 UseMemory = true; 3317 3318 // However, if the argument is actually passed in an FPR or a VR, 3319 // we don't use memory after all. 3320 if (!Flags.isByVal()) { 3321 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3322 // QPX registers overlap with the scalar FP registers. 3323 (HasQPX && (ArgVT == MVT::v4f32 || 3324 ArgVT == MVT::v4f64 || 3325 ArgVT == MVT::v4i1))) 3326 if (AvailableFPRs > 0) { 3327 --AvailableFPRs; 3328 return false; 3329 } 3330 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3331 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3332 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3333 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3334 if (AvailableVRs > 0) { 3335 --AvailableVRs; 3336 return false; 3337 } 3338 } 3339 3340 return UseMemory; 3341 } 3342 3343 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3344 /// ensure minimum alignment required for target. 3345 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3346 unsigned NumBytes) { 3347 unsigned TargetAlign = Lowering->getStackAlignment(); 3348 unsigned AlignMask = TargetAlign - 1; 3349 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3350 return NumBytes; 3351 } 3352 3353 SDValue PPCTargetLowering::LowerFormalArguments( 3354 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3355 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3356 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3357 if (Subtarget.isSVR4ABI()) { 3358 if (Subtarget.isPPC64()) 3359 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3360 dl, DAG, InVals); 3361 else 3362 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3363 dl, DAG, InVals); 3364 } else { 3365 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3366 dl, DAG, InVals); 3367 } 3368 } 3369 3370 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3371 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3372 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3373 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3374 3375 // 32-bit SVR4 ABI Stack Frame Layout: 3376 // +-----------------------------------+ 3377 // +--> | Back chain | 3378 // | +-----------------------------------+ 3379 // | | Floating-point register save area | 3380 // | +-----------------------------------+ 3381 // | | General register save area | 3382 // | +-----------------------------------+ 3383 // | | CR save word | 3384 // | +-----------------------------------+ 3385 // | | VRSAVE save word | 3386 // | +-----------------------------------+ 3387 // | | Alignment padding | 3388 // | +-----------------------------------+ 3389 // | | Vector register save area | 3390 // | +-----------------------------------+ 3391 // | | Local variable space | 3392 // | +-----------------------------------+ 3393 // | | Parameter list area | 3394 // | +-----------------------------------+ 3395 // | | LR save word | 3396 // | +-----------------------------------+ 3397 // SP--> +--- | Back chain | 3398 // +-----------------------------------+ 3399 // 3400 // Specifications: 3401 // System V Application Binary Interface PowerPC Processor Supplement 3402 // AltiVec Technology Programming Interface Manual 3403 3404 MachineFunction &MF = DAG.getMachineFunction(); 3405 MachineFrameInfo &MFI = MF.getFrameInfo(); 3406 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3407 3408 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3409 // Potential tail calls could cause overwriting of argument stack slots. 3410 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3411 (CallConv == CallingConv::Fast)); 3412 unsigned PtrByteSize = 4; 3413 3414 // Assign locations to all of the incoming arguments. 3415 SmallVector<CCValAssign, 16> ArgLocs; 3416 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3417 *DAG.getContext()); 3418 3419 // Reserve space for the linkage area on the stack. 3420 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3421 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3422 if (useSoftFloat()) 3423 CCInfo.PreAnalyzeFormalArguments(Ins); 3424 3425 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3426 CCInfo.clearWasPPCF128(); 3427 3428 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3429 CCValAssign &VA = ArgLocs[i]; 3430 3431 // Arguments stored in registers. 3432 if (VA.isRegLoc()) { 3433 const TargetRegisterClass *RC; 3434 EVT ValVT = VA.getValVT(); 3435 3436 switch (ValVT.getSimpleVT().SimpleTy) { 3437 default: 3438 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3439 case MVT::i1: 3440 case MVT::i32: 3441 RC = &PPC::GPRCRegClass; 3442 break; 3443 case MVT::f32: 3444 if (Subtarget.hasP8Vector()) 3445 RC = &PPC::VSSRCRegClass; 3446 else if (Subtarget.hasSPE()) 3447 RC = &PPC::SPE4RCRegClass; 3448 else 3449 RC = &PPC::F4RCRegClass; 3450 break; 3451 case MVT::f64: 3452 if (Subtarget.hasVSX()) 3453 RC = &PPC::VSFRCRegClass; 3454 else if (Subtarget.hasSPE()) 3455 // SPE passes doubles in GPR pairs. 3456 RC = &PPC::GPRCRegClass; 3457 else 3458 RC = &PPC::F8RCRegClass; 3459 break; 3460 case MVT::v16i8: 3461 case MVT::v8i16: 3462 case MVT::v4i32: 3463 RC = &PPC::VRRCRegClass; 3464 break; 3465 case MVT::v4f32: 3466 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3467 break; 3468 case MVT::v2f64: 3469 case MVT::v2i64: 3470 RC = &PPC::VRRCRegClass; 3471 break; 3472 case MVT::v4f64: 3473 RC = &PPC::QFRCRegClass; 3474 break; 3475 case MVT::v4i1: 3476 RC = &PPC::QBRCRegClass; 3477 break; 3478 } 3479 3480 SDValue ArgValue; 3481 // Transform the arguments stored in physical registers into 3482 // virtual ones. 3483 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3484 assert(i + 1 < e && "No second half of double precision argument"); 3485 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3486 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3487 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3488 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3489 if (!Subtarget.isLittleEndian()) 3490 std::swap (ArgValueLo, ArgValueHi); 3491 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3492 ArgValueHi); 3493 } else { 3494 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3495 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3496 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3497 if (ValVT == MVT::i1) 3498 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3499 } 3500 3501 InVals.push_back(ArgValue); 3502 } else { 3503 // Argument stored in memory. 3504 assert(VA.isMemLoc()); 3505 3506 // Get the extended size of the argument type in stack 3507 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3508 // Get the actual size of the argument type 3509 unsigned ObjSize = VA.getValVT().getStoreSize(); 3510 unsigned ArgOffset = VA.getLocMemOffset(); 3511 // Stack objects in PPC32 are right justified. 3512 ArgOffset += ArgSize - ObjSize; 3513 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3514 3515 // Create load nodes to retrieve arguments from the stack. 3516 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3517 InVals.push_back( 3518 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3519 } 3520 } 3521 3522 // Assign locations to all of the incoming aggregate by value arguments. 3523 // Aggregates passed by value are stored in the local variable space of the 3524 // caller's stack frame, right above the parameter list area. 3525 SmallVector<CCValAssign, 16> ByValArgLocs; 3526 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3527 ByValArgLocs, *DAG.getContext()); 3528 3529 // Reserve stack space for the allocations in CCInfo. 3530 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3531 3532 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3533 3534 // Area that is at least reserved in the caller of this function. 3535 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3536 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3537 3538 // Set the size that is at least reserved in caller of this function. Tail 3539 // call optimized function's reserved stack space needs to be aligned so that 3540 // taking the difference between two stack areas will result in an aligned 3541 // stack. 3542 MinReservedArea = 3543 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3544 FuncInfo->setMinReservedArea(MinReservedArea); 3545 3546 SmallVector<SDValue, 8> MemOps; 3547 3548 // If the function takes variable number of arguments, make a frame index for 3549 // the start of the first vararg value... for expansion of llvm.va_start. 3550 if (isVarArg) { 3551 static const MCPhysReg GPArgRegs[] = { 3552 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3553 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3554 }; 3555 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3556 3557 static const MCPhysReg FPArgRegs[] = { 3558 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3559 PPC::F8 3560 }; 3561 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3562 3563 if (useSoftFloat() || hasSPE()) 3564 NumFPArgRegs = 0; 3565 3566 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3567 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3568 3569 // Make room for NumGPArgRegs and NumFPArgRegs. 3570 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3571 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3572 3573 FuncInfo->setVarArgsStackOffset( 3574 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3575 CCInfo.getNextStackOffset(), true)); 3576 3577 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3578 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3579 3580 // The fixed integer arguments of a variadic function are stored to the 3581 // VarArgsFrameIndex on the stack so that they may be loaded by 3582 // dereferencing the result of va_next. 3583 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3584 // Get an existing live-in vreg, or add a new one. 3585 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3586 if (!VReg) 3587 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3588 3589 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3590 SDValue Store = 3591 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3592 MemOps.push_back(Store); 3593 // Increment the address by four for the next argument to store 3594 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3595 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3596 } 3597 3598 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3599 // is set. 3600 // The double arguments are stored to the VarArgsFrameIndex 3601 // on the stack. 3602 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3603 // Get an existing live-in vreg, or add a new one. 3604 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3605 if (!VReg) 3606 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3607 3608 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3609 SDValue Store = 3610 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3611 MemOps.push_back(Store); 3612 // Increment the address by eight for the next argument to store 3613 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3614 PtrVT); 3615 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3616 } 3617 } 3618 3619 if (!MemOps.empty()) 3620 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3621 3622 return Chain; 3623 } 3624 3625 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3626 // value to MVT::i64 and then truncate to the correct register size. 3627 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3628 EVT ObjectVT, SelectionDAG &DAG, 3629 SDValue ArgVal, 3630 const SDLoc &dl) const { 3631 if (Flags.isSExt()) 3632 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3633 DAG.getValueType(ObjectVT)); 3634 else if (Flags.isZExt()) 3635 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3636 DAG.getValueType(ObjectVT)); 3637 3638 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3639 } 3640 3641 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3642 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3643 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3644 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3645 // TODO: add description of PPC stack frame format, or at least some docs. 3646 // 3647 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3648 bool isLittleEndian = Subtarget.isLittleEndian(); 3649 MachineFunction &MF = DAG.getMachineFunction(); 3650 MachineFrameInfo &MFI = MF.getFrameInfo(); 3651 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3652 3653 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3654 "fastcc not supported on varargs functions"); 3655 3656 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3657 // Potential tail calls could cause overwriting of argument stack slots. 3658 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3659 (CallConv == CallingConv::Fast)); 3660 unsigned PtrByteSize = 8; 3661 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3662 3663 static const MCPhysReg GPR[] = { 3664 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3665 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3666 }; 3667 static const MCPhysReg VR[] = { 3668 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3669 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3670 }; 3671 3672 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3673 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3674 const unsigned Num_VR_Regs = array_lengthof(VR); 3675 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3676 3677 // Do a first pass over the arguments to determine whether the ABI 3678 // guarantees that our caller has allocated the parameter save area 3679 // on its stack frame. In the ELFv1 ABI, this is always the case; 3680 // in the ELFv2 ABI, it is true if this is a vararg function or if 3681 // any parameter is located in a stack slot. 3682 3683 bool HasParameterArea = !isELFv2ABI || isVarArg; 3684 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3685 unsigned NumBytes = LinkageSize; 3686 unsigned AvailableFPRs = Num_FPR_Regs; 3687 unsigned AvailableVRs = Num_VR_Regs; 3688 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3689 if (Ins[i].Flags.isNest()) 3690 continue; 3691 3692 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3693 PtrByteSize, LinkageSize, ParamAreaSize, 3694 NumBytes, AvailableFPRs, AvailableVRs, 3695 Subtarget.hasQPX())) 3696 HasParameterArea = true; 3697 } 3698 3699 // Add DAG nodes to load the arguments or copy them out of registers. On 3700 // entry to a function on PPC, the arguments start after the linkage area, 3701 // although the first ones are often in registers. 3702 3703 unsigned ArgOffset = LinkageSize; 3704 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3705 unsigned &QFPR_idx = FPR_idx; 3706 SmallVector<SDValue, 8> MemOps; 3707 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3708 unsigned CurArgIdx = 0; 3709 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3710 SDValue ArgVal; 3711 bool needsLoad = false; 3712 EVT ObjectVT = Ins[ArgNo].VT; 3713 EVT OrigVT = Ins[ArgNo].ArgVT; 3714 unsigned ObjSize = ObjectVT.getStoreSize(); 3715 unsigned ArgSize = ObjSize; 3716 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3717 if (Ins[ArgNo].isOrigArg()) { 3718 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3719 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3720 } 3721 // We re-align the argument offset for each argument, except when using the 3722 // fast calling convention, when we need to make sure we do that only when 3723 // we'll actually use a stack slot. 3724 unsigned CurArgOffset, Align; 3725 auto ComputeArgOffset = [&]() { 3726 /* Respect alignment of argument on the stack. */ 3727 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3728 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3729 CurArgOffset = ArgOffset; 3730 }; 3731 3732 if (CallConv != CallingConv::Fast) { 3733 ComputeArgOffset(); 3734 3735 /* Compute GPR index associated with argument offset. */ 3736 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3737 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3738 } 3739 3740 // FIXME the codegen can be much improved in some cases. 3741 // We do not have to keep everything in memory. 3742 if (Flags.isByVal()) { 3743 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3744 3745 if (CallConv == CallingConv::Fast) 3746 ComputeArgOffset(); 3747 3748 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3749 ObjSize = Flags.getByValSize(); 3750 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3751 // Empty aggregate parameters do not take up registers. Examples: 3752 // struct { } a; 3753 // union { } b; 3754 // int c[0]; 3755 // etc. However, we have to provide a place-holder in InVals, so 3756 // pretend we have an 8-byte item at the current address for that 3757 // purpose. 3758 if (!ObjSize) { 3759 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3760 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3761 InVals.push_back(FIN); 3762 continue; 3763 } 3764 3765 // Create a stack object covering all stack doublewords occupied 3766 // by the argument. If the argument is (fully or partially) on 3767 // the stack, or if the argument is fully in registers but the 3768 // caller has allocated the parameter save anyway, we can refer 3769 // directly to the caller's stack frame. Otherwise, create a 3770 // local copy in our own frame. 3771 int FI; 3772 if (HasParameterArea || 3773 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3774 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3775 else 3776 FI = MFI.CreateStackObject(ArgSize, Align, false); 3777 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3778 3779 // Handle aggregates smaller than 8 bytes. 3780 if (ObjSize < PtrByteSize) { 3781 // The value of the object is its address, which differs from the 3782 // address of the enclosing doubleword on big-endian systems. 3783 SDValue Arg = FIN; 3784 if (!isLittleEndian) { 3785 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3786 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3787 } 3788 InVals.push_back(Arg); 3789 3790 if (GPR_idx != Num_GPR_Regs) { 3791 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3792 FuncInfo->addLiveInAttr(VReg, Flags); 3793 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3794 SDValue Store; 3795 3796 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3797 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3798 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3799 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3800 MachinePointerInfo(&*FuncArg), ObjType); 3801 } else { 3802 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3803 // store the whole register as-is to the parameter save area 3804 // slot. 3805 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3806 MachinePointerInfo(&*FuncArg)); 3807 } 3808 3809 MemOps.push_back(Store); 3810 } 3811 // Whether we copied from a register or not, advance the offset 3812 // into the parameter save area by a full doubleword. 3813 ArgOffset += PtrByteSize; 3814 continue; 3815 } 3816 3817 // The value of the object is its address, which is the address of 3818 // its first stack doubleword. 3819 InVals.push_back(FIN); 3820 3821 // Store whatever pieces of the object are in registers to memory. 3822 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3823 if (GPR_idx == Num_GPR_Regs) 3824 break; 3825 3826 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3827 FuncInfo->addLiveInAttr(VReg, Flags); 3828 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3829 SDValue Addr = FIN; 3830 if (j) { 3831 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3832 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3833 } 3834 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3835 MachinePointerInfo(&*FuncArg, j)); 3836 MemOps.push_back(Store); 3837 ++GPR_idx; 3838 } 3839 ArgOffset += ArgSize; 3840 continue; 3841 } 3842 3843 switch (ObjectVT.getSimpleVT().SimpleTy) { 3844 default: llvm_unreachable("Unhandled argument type!"); 3845 case MVT::i1: 3846 case MVT::i32: 3847 case MVT::i64: 3848 if (Flags.isNest()) { 3849 // The 'nest' parameter, if any, is passed in R11. 3850 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3851 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3852 3853 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3854 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3855 3856 break; 3857 } 3858 3859 // These can be scalar arguments or elements of an integer array type 3860 // passed directly. Clang may use those instead of "byval" aggregate 3861 // types to avoid forcing arguments to memory unnecessarily. 3862 if (GPR_idx != Num_GPR_Regs) { 3863 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3864 FuncInfo->addLiveInAttr(VReg, Flags); 3865 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3866 3867 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3868 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3869 // value to MVT::i64 and then truncate to the correct register size. 3870 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3871 } else { 3872 if (CallConv == CallingConv::Fast) 3873 ComputeArgOffset(); 3874 3875 needsLoad = true; 3876 ArgSize = PtrByteSize; 3877 } 3878 if (CallConv != CallingConv::Fast || needsLoad) 3879 ArgOffset += 8; 3880 break; 3881 3882 case MVT::f32: 3883 case MVT::f64: 3884 // These can be scalar arguments or elements of a float array type 3885 // passed directly. The latter are used to implement ELFv2 homogenous 3886 // float aggregates. 3887 if (FPR_idx != Num_FPR_Regs) { 3888 unsigned VReg; 3889 3890 if (ObjectVT == MVT::f32) 3891 VReg = MF.addLiveIn(FPR[FPR_idx], 3892 Subtarget.hasP8Vector() 3893 ? &PPC::VSSRCRegClass 3894 : &PPC::F4RCRegClass); 3895 else 3896 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3897 ? &PPC::VSFRCRegClass 3898 : &PPC::F8RCRegClass); 3899 3900 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3901 ++FPR_idx; 3902 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3903 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3904 // once we support fp <-> gpr moves. 3905 3906 // This can only ever happen in the presence of f32 array types, 3907 // since otherwise we never run out of FPRs before running out 3908 // of GPRs. 3909 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3910 FuncInfo->addLiveInAttr(VReg, Flags); 3911 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3912 3913 if (ObjectVT == MVT::f32) { 3914 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3915 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3916 DAG.getConstant(32, dl, MVT::i32)); 3917 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3918 } 3919 3920 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3921 } else { 3922 if (CallConv == CallingConv::Fast) 3923 ComputeArgOffset(); 3924 3925 needsLoad = true; 3926 } 3927 3928 // When passing an array of floats, the array occupies consecutive 3929 // space in the argument area; only round up to the next doubleword 3930 // at the end of the array. Otherwise, each float takes 8 bytes. 3931 if (CallConv != CallingConv::Fast || needsLoad) { 3932 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3933 ArgOffset += ArgSize; 3934 if (Flags.isInConsecutiveRegsLast()) 3935 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3936 } 3937 break; 3938 case MVT::v4f32: 3939 case MVT::v4i32: 3940 case MVT::v8i16: 3941 case MVT::v16i8: 3942 case MVT::v2f64: 3943 case MVT::v2i64: 3944 case MVT::v1i128: 3945 case MVT::f128: 3946 if (!Subtarget.hasQPX()) { 3947 // These can be scalar arguments or elements of a vector array type 3948 // passed directly. The latter are used to implement ELFv2 homogenous 3949 // vector aggregates. 3950 if (VR_idx != Num_VR_Regs) { 3951 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3952 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3953 ++VR_idx; 3954 } else { 3955 if (CallConv == CallingConv::Fast) 3956 ComputeArgOffset(); 3957 needsLoad = true; 3958 } 3959 if (CallConv != CallingConv::Fast || needsLoad) 3960 ArgOffset += 16; 3961 break; 3962 } // not QPX 3963 3964 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3965 "Invalid QPX parameter type"); 3966 LLVM_FALLTHROUGH; 3967 3968 case MVT::v4f64: 3969 case MVT::v4i1: 3970 // QPX vectors are treated like their scalar floating-point subregisters 3971 // (except that they're larger). 3972 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3973 if (QFPR_idx != Num_QFPR_Regs) { 3974 const TargetRegisterClass *RC; 3975 switch (ObjectVT.getSimpleVT().SimpleTy) { 3976 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3977 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3978 default: RC = &PPC::QBRCRegClass; break; 3979 } 3980 3981 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3982 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3983 ++QFPR_idx; 3984 } else { 3985 if (CallConv == CallingConv::Fast) 3986 ComputeArgOffset(); 3987 needsLoad = true; 3988 } 3989 if (CallConv != CallingConv::Fast || needsLoad) 3990 ArgOffset += Sz; 3991 break; 3992 } 3993 3994 // We need to load the argument to a virtual register if we determined 3995 // above that we ran out of physical registers of the appropriate type. 3996 if (needsLoad) { 3997 if (ObjSize < ArgSize && !isLittleEndian) 3998 CurArgOffset += ArgSize - ObjSize; 3999 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4000 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4001 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4002 } 4003 4004 InVals.push_back(ArgVal); 4005 } 4006 4007 // Area that is at least reserved in the caller of this function. 4008 unsigned MinReservedArea; 4009 if (HasParameterArea) 4010 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4011 else 4012 MinReservedArea = LinkageSize; 4013 4014 // Set the size that is at least reserved in caller of this function. Tail 4015 // call optimized functions' reserved stack space needs to be aligned so that 4016 // taking the difference between two stack areas will result in an aligned 4017 // stack. 4018 MinReservedArea = 4019 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4020 FuncInfo->setMinReservedArea(MinReservedArea); 4021 4022 // If the function takes variable number of arguments, make a frame index for 4023 // the start of the first vararg value... for expansion of llvm.va_start. 4024 if (isVarArg) { 4025 int Depth = ArgOffset; 4026 4027 FuncInfo->setVarArgsFrameIndex( 4028 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4029 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4030 4031 // If this function is vararg, store any remaining integer argument regs 4032 // to their spots on the stack so that they may be loaded by dereferencing 4033 // the result of va_next. 4034 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4035 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4036 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4037 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4038 SDValue Store = 4039 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4040 MemOps.push_back(Store); 4041 // Increment the address by four for the next argument to store 4042 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4043 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4044 } 4045 } 4046 4047 if (!MemOps.empty()) 4048 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4049 4050 return Chain; 4051 } 4052 4053 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4054 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4055 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4056 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4057 // TODO: add description of PPC stack frame format, or at least some docs. 4058 // 4059 MachineFunction &MF = DAG.getMachineFunction(); 4060 MachineFrameInfo &MFI = MF.getFrameInfo(); 4061 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4062 4063 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4064 bool isPPC64 = PtrVT == MVT::i64; 4065 // Potential tail calls could cause overwriting of argument stack slots. 4066 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4067 (CallConv == CallingConv::Fast)); 4068 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4069 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4070 unsigned ArgOffset = LinkageSize; 4071 // Area that is at least reserved in caller of this function. 4072 unsigned MinReservedArea = ArgOffset; 4073 4074 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4075 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4076 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4077 }; 4078 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4079 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4080 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4081 }; 4082 static const MCPhysReg VR[] = { 4083 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4084 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4085 }; 4086 4087 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4088 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4089 const unsigned Num_VR_Regs = array_lengthof( VR); 4090 4091 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4092 4093 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4094 4095 // In 32-bit non-varargs functions, the stack space for vectors is after the 4096 // stack space for non-vectors. We do not use this space unless we have 4097 // too many vectors to fit in registers, something that only occurs in 4098 // constructed examples:), but we have to walk the arglist to figure 4099 // that out...for the pathological case, compute VecArgOffset as the 4100 // start of the vector parameter area. Computing VecArgOffset is the 4101 // entire point of the following loop. 4102 unsigned VecArgOffset = ArgOffset; 4103 if (!isVarArg && !isPPC64) { 4104 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4105 ++ArgNo) { 4106 EVT ObjectVT = Ins[ArgNo].VT; 4107 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4108 4109 if (Flags.isByVal()) { 4110 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4111 unsigned ObjSize = Flags.getByValSize(); 4112 unsigned ArgSize = 4113 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4114 VecArgOffset += ArgSize; 4115 continue; 4116 } 4117 4118 switch(ObjectVT.getSimpleVT().SimpleTy) { 4119 default: llvm_unreachable("Unhandled argument type!"); 4120 case MVT::i1: 4121 case MVT::i32: 4122 case MVT::f32: 4123 VecArgOffset += 4; 4124 break; 4125 case MVT::i64: // PPC64 4126 case MVT::f64: 4127 // FIXME: We are guaranteed to be !isPPC64 at this point. 4128 // Does MVT::i64 apply? 4129 VecArgOffset += 8; 4130 break; 4131 case MVT::v4f32: 4132 case MVT::v4i32: 4133 case MVT::v8i16: 4134 case MVT::v16i8: 4135 // Nothing to do, we're only looking at Nonvector args here. 4136 break; 4137 } 4138 } 4139 } 4140 // We've found where the vector parameter area in memory is. Skip the 4141 // first 12 parameters; these don't use that memory. 4142 VecArgOffset = ((VecArgOffset+15)/16)*16; 4143 VecArgOffset += 12*16; 4144 4145 // Add DAG nodes to load the arguments or copy them out of registers. On 4146 // entry to a function on PPC, the arguments start after the linkage area, 4147 // although the first ones are often in registers. 4148 4149 SmallVector<SDValue, 8> MemOps; 4150 unsigned nAltivecParamsAtEnd = 0; 4151 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4152 unsigned CurArgIdx = 0; 4153 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4154 SDValue ArgVal; 4155 bool needsLoad = false; 4156 EVT ObjectVT = Ins[ArgNo].VT; 4157 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4158 unsigned ArgSize = ObjSize; 4159 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4160 if (Ins[ArgNo].isOrigArg()) { 4161 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4162 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4163 } 4164 unsigned CurArgOffset = ArgOffset; 4165 4166 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4167 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4168 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4169 if (isVarArg || isPPC64) { 4170 MinReservedArea = ((MinReservedArea+15)/16)*16; 4171 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4172 Flags, 4173 PtrByteSize); 4174 } else nAltivecParamsAtEnd++; 4175 } else 4176 // Calculate min reserved area. 4177 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4178 Flags, 4179 PtrByteSize); 4180 4181 // FIXME the codegen can be much improved in some cases. 4182 // We do not have to keep everything in memory. 4183 if (Flags.isByVal()) { 4184 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4185 4186 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4187 ObjSize = Flags.getByValSize(); 4188 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4189 // Objects of size 1 and 2 are right justified, everything else is 4190 // left justified. This means the memory address is adjusted forwards. 4191 if (ObjSize==1 || ObjSize==2) { 4192 CurArgOffset = CurArgOffset + (4 - ObjSize); 4193 } 4194 // The value of the object is its address. 4195 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4196 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4197 InVals.push_back(FIN); 4198 if (ObjSize==1 || ObjSize==2) { 4199 if (GPR_idx != Num_GPR_Regs) { 4200 unsigned VReg; 4201 if (isPPC64) 4202 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4203 else 4204 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4205 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4206 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4207 SDValue Store = 4208 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4209 MachinePointerInfo(&*FuncArg), ObjType); 4210 MemOps.push_back(Store); 4211 ++GPR_idx; 4212 } 4213 4214 ArgOffset += PtrByteSize; 4215 4216 continue; 4217 } 4218 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4219 // Store whatever pieces of the object are in registers 4220 // to memory. ArgOffset will be the address of the beginning 4221 // of the object. 4222 if (GPR_idx != Num_GPR_Regs) { 4223 unsigned VReg; 4224 if (isPPC64) 4225 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4226 else 4227 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4228 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4229 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4230 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4231 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4232 MachinePointerInfo(&*FuncArg, j)); 4233 MemOps.push_back(Store); 4234 ++GPR_idx; 4235 ArgOffset += PtrByteSize; 4236 } else { 4237 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4238 break; 4239 } 4240 } 4241 continue; 4242 } 4243 4244 switch (ObjectVT.getSimpleVT().SimpleTy) { 4245 default: llvm_unreachable("Unhandled argument type!"); 4246 case MVT::i1: 4247 case MVT::i32: 4248 if (!isPPC64) { 4249 if (GPR_idx != Num_GPR_Regs) { 4250 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4251 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4252 4253 if (ObjectVT == MVT::i1) 4254 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4255 4256 ++GPR_idx; 4257 } else { 4258 needsLoad = true; 4259 ArgSize = PtrByteSize; 4260 } 4261 // All int arguments reserve stack space in the Darwin ABI. 4262 ArgOffset += PtrByteSize; 4263 break; 4264 } 4265 LLVM_FALLTHROUGH; 4266 case MVT::i64: // PPC64 4267 if (GPR_idx != Num_GPR_Regs) { 4268 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4269 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4270 4271 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4272 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4273 // value to MVT::i64 and then truncate to the correct register size. 4274 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4275 4276 ++GPR_idx; 4277 } else { 4278 needsLoad = true; 4279 ArgSize = PtrByteSize; 4280 } 4281 // All int arguments reserve stack space in the Darwin ABI. 4282 ArgOffset += 8; 4283 break; 4284 4285 case MVT::f32: 4286 case MVT::f64: 4287 // Every 4 bytes of argument space consumes one of the GPRs available for 4288 // argument passing. 4289 if (GPR_idx != Num_GPR_Regs) { 4290 ++GPR_idx; 4291 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4292 ++GPR_idx; 4293 } 4294 if (FPR_idx != Num_FPR_Regs) { 4295 unsigned VReg; 4296 4297 if (ObjectVT == MVT::f32) 4298 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4299 else 4300 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4301 4302 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4303 ++FPR_idx; 4304 } else { 4305 needsLoad = true; 4306 } 4307 4308 // All FP arguments reserve stack space in the Darwin ABI. 4309 ArgOffset += isPPC64 ? 8 : ObjSize; 4310 break; 4311 case MVT::v4f32: 4312 case MVT::v4i32: 4313 case MVT::v8i16: 4314 case MVT::v16i8: 4315 // Note that vector arguments in registers don't reserve stack space, 4316 // except in varargs functions. 4317 if (VR_idx != Num_VR_Regs) { 4318 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4319 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4320 if (isVarArg) { 4321 while ((ArgOffset % 16) != 0) { 4322 ArgOffset += PtrByteSize; 4323 if (GPR_idx != Num_GPR_Regs) 4324 GPR_idx++; 4325 } 4326 ArgOffset += 16; 4327 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4328 } 4329 ++VR_idx; 4330 } else { 4331 if (!isVarArg && !isPPC64) { 4332 // Vectors go after all the nonvectors. 4333 CurArgOffset = VecArgOffset; 4334 VecArgOffset += 16; 4335 } else { 4336 // Vectors are aligned. 4337 ArgOffset = ((ArgOffset+15)/16)*16; 4338 CurArgOffset = ArgOffset; 4339 ArgOffset += 16; 4340 } 4341 needsLoad = true; 4342 } 4343 break; 4344 } 4345 4346 // We need to load the argument to a virtual register if we determined above 4347 // that we ran out of physical registers of the appropriate type. 4348 if (needsLoad) { 4349 int FI = MFI.CreateFixedObject(ObjSize, 4350 CurArgOffset + (ArgSize - ObjSize), 4351 isImmutable); 4352 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4353 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4354 } 4355 4356 InVals.push_back(ArgVal); 4357 } 4358 4359 // Allow for Altivec parameters at the end, if needed. 4360 if (nAltivecParamsAtEnd) { 4361 MinReservedArea = ((MinReservedArea+15)/16)*16; 4362 MinReservedArea += 16*nAltivecParamsAtEnd; 4363 } 4364 4365 // Area that is at least reserved in the caller of this function. 4366 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4367 4368 // Set the size that is at least reserved in caller of this function. Tail 4369 // call optimized functions' reserved stack space needs to be aligned so that 4370 // taking the difference between two stack areas will result in an aligned 4371 // stack. 4372 MinReservedArea = 4373 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4374 FuncInfo->setMinReservedArea(MinReservedArea); 4375 4376 // If the function takes variable number of arguments, make a frame index for 4377 // the start of the first vararg value... for expansion of llvm.va_start. 4378 if (isVarArg) { 4379 int Depth = ArgOffset; 4380 4381 FuncInfo->setVarArgsFrameIndex( 4382 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4383 Depth, true)); 4384 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4385 4386 // If this function is vararg, store any remaining integer argument regs 4387 // to their spots on the stack so that they may be loaded by dereferencing 4388 // the result of va_next. 4389 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4390 unsigned VReg; 4391 4392 if (isPPC64) 4393 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4394 else 4395 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4396 4397 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4398 SDValue Store = 4399 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4400 MemOps.push_back(Store); 4401 // Increment the address by four for the next argument to store 4402 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4403 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4404 } 4405 } 4406 4407 if (!MemOps.empty()) 4408 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4409 4410 return Chain; 4411 } 4412 4413 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4414 /// adjusted to accommodate the arguments for the tailcall. 4415 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4416 unsigned ParamSize) { 4417 4418 if (!isTailCall) return 0; 4419 4420 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4421 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4422 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4423 // Remember only if the new adjustment is bigger. 4424 if (SPDiff < FI->getTailCallSPDelta()) 4425 FI->setTailCallSPDelta(SPDiff); 4426 4427 return SPDiff; 4428 } 4429 4430 static bool isFunctionGlobalAddress(SDValue Callee); 4431 4432 static bool 4433 callsShareTOCBase(const Function *Caller, SDValue Callee, 4434 const TargetMachine &TM) { 4435 // Need a GlobalValue to determine if a Caller and Callee share the same 4436 // TOCBase. 4437 const GlobalValue *GV = nullptr; 4438 4439 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4440 GV = G->getGlobal(); 4441 } else if (MCSymbolSDNode *M = dyn_cast<MCSymbolSDNode>(Callee)) { 4442 // On AIX only, we replace GlobalAddressSDNode with MCSymbolSDNode for 4443 // the callee of a direct function call. The MCSymbolSDNode contains the 4444 // MCSymbol for the funtion entry point. 4445 const auto *S = cast<MCSymbolXCOFF>(M->getMCSymbol()); 4446 GV = S->getGlobalValue(); 4447 } 4448 4449 // If we failed to get a GlobalValue, then pessimistically assume they do not 4450 // share a TOCBase. 4451 if (!GV) 4452 return false; 4453 4454 // The medium and large code models are expected to provide a sufficiently 4455 // large TOC to provide all data addressing needs of a module with a 4456 // single TOC. Since each module will be addressed with a single TOC then we 4457 // only need to check that caller and callee don't cross dso boundaries. 4458 if (CodeModel::Medium == TM.getCodeModel() || 4459 CodeModel::Large == TM.getCodeModel()) 4460 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4461 4462 // Otherwise we need to ensure callee and caller are in the same section, 4463 // since the linker may allocate multiple TOCs, and we don't know which 4464 // sections will belong to the same TOC base. 4465 4466 if (!GV->isStrongDefinitionForLinker()) 4467 return false; 4468 4469 // Any explicitly-specified sections and section prefixes must also match. 4470 // Also, if we're using -ffunction-sections, then each function is always in 4471 // a different section (the same is true for COMDAT functions). 4472 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4473 GV->getSection() != Caller->getSection()) 4474 return false; 4475 if (const auto *F = dyn_cast<Function>(GV)) { 4476 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4477 return false; 4478 } 4479 4480 // If the callee might be interposed, then we can't assume the ultimate call 4481 // target will be in the same section. Even in cases where we can assume that 4482 // interposition won't happen, in any case where the linker might insert a 4483 // stub to allow for interposition, we must generate code as though 4484 // interposition might occur. To understand why this matters, consider a 4485 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4486 // in the same section, but a is in a different module (i.e. has a different 4487 // TOC base pointer). If the linker allows for interposition between b and c, 4488 // then it will generate a stub for the call edge between b and c which will 4489 // save the TOC pointer into the designated stack slot allocated by b. If we 4490 // return true here, and therefore allow a tail call between b and c, that 4491 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4492 // pointer into the stack slot allocated by a (where the a -> b stub saved 4493 // a's TOC base pointer). If we're not considering a tail call, but rather, 4494 // whether a nop is needed after the call instruction in b, because the linker 4495 // will insert a stub, it might complain about a missing nop if we omit it 4496 // (although many don't complain in this case). 4497 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4498 return false; 4499 4500 return true; 4501 } 4502 4503 static bool 4504 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4505 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4506 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4507 4508 const unsigned PtrByteSize = 8; 4509 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4510 4511 static const MCPhysReg GPR[] = { 4512 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4513 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4514 }; 4515 static const MCPhysReg VR[] = { 4516 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4517 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4518 }; 4519 4520 const unsigned NumGPRs = array_lengthof(GPR); 4521 const unsigned NumFPRs = 13; 4522 const unsigned NumVRs = array_lengthof(VR); 4523 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4524 4525 unsigned NumBytes = LinkageSize; 4526 unsigned AvailableFPRs = NumFPRs; 4527 unsigned AvailableVRs = NumVRs; 4528 4529 for (const ISD::OutputArg& Param : Outs) { 4530 if (Param.Flags.isNest()) continue; 4531 4532 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4533 PtrByteSize, LinkageSize, ParamAreaSize, 4534 NumBytes, AvailableFPRs, AvailableVRs, 4535 Subtarget.hasQPX())) 4536 return true; 4537 } 4538 return false; 4539 } 4540 4541 static bool 4542 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4543 if (CS.arg_size() != CallerFn->arg_size()) 4544 return false; 4545 4546 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4547 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4548 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4549 4550 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4551 const Value* CalleeArg = *CalleeArgIter; 4552 const Value* CallerArg = &(*CallerArgIter); 4553 if (CalleeArg == CallerArg) 4554 continue; 4555 4556 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4557 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4558 // } 4559 // 1st argument of callee is undef and has the same type as caller. 4560 if (CalleeArg->getType() == CallerArg->getType() && 4561 isa<UndefValue>(CalleeArg)) 4562 continue; 4563 4564 return false; 4565 } 4566 4567 return true; 4568 } 4569 4570 // Returns true if TCO is possible between the callers and callees 4571 // calling conventions. 4572 static bool 4573 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4574 CallingConv::ID CalleeCC) { 4575 // Tail calls are possible with fastcc and ccc. 4576 auto isTailCallableCC = [] (CallingConv::ID CC){ 4577 return CC == CallingConv::C || CC == CallingConv::Fast; 4578 }; 4579 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4580 return false; 4581 4582 // We can safely tail call both fastcc and ccc callees from a c calling 4583 // convention caller. If the caller is fastcc, we may have less stack space 4584 // than a non-fastcc caller with the same signature so disable tail-calls in 4585 // that case. 4586 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4587 } 4588 4589 bool 4590 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4591 SDValue Callee, 4592 CallingConv::ID CalleeCC, 4593 ImmutableCallSite CS, 4594 bool isVarArg, 4595 const SmallVectorImpl<ISD::OutputArg> &Outs, 4596 const SmallVectorImpl<ISD::InputArg> &Ins, 4597 SelectionDAG& DAG) const { 4598 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4599 4600 if (DisableSCO && !TailCallOpt) return false; 4601 4602 // Variadic argument functions are not supported. 4603 if (isVarArg) return false; 4604 4605 auto &Caller = DAG.getMachineFunction().getFunction(); 4606 // Check that the calling conventions are compatible for tco. 4607 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4608 return false; 4609 4610 // Caller contains any byval parameter is not supported. 4611 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4612 return false; 4613 4614 // Callee contains any byval parameter is not supported, too. 4615 // Note: This is a quick work around, because in some cases, e.g. 4616 // caller's stack size > callee's stack size, we are still able to apply 4617 // sibling call optimization. For example, gcc is able to do SCO for caller1 4618 // in the following example, but not for caller2. 4619 // struct test { 4620 // long int a; 4621 // char ary[56]; 4622 // } gTest; 4623 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4624 // b->a = v.a; 4625 // return 0; 4626 // } 4627 // void caller1(struct test a, struct test c, struct test *b) { 4628 // callee(gTest, b); } 4629 // void caller2(struct test *b) { callee(gTest, b); } 4630 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4631 return false; 4632 4633 // If callee and caller use different calling conventions, we cannot pass 4634 // parameters on stack since offsets for the parameter area may be different. 4635 if (Caller.getCallingConv() != CalleeCC && 4636 needStackSlotPassParameters(Subtarget, Outs)) 4637 return false; 4638 4639 // No TCO/SCO on indirect call because Caller have to restore its TOC 4640 if (!isFunctionGlobalAddress(Callee) && 4641 !isa<ExternalSymbolSDNode>(Callee)) 4642 return false; 4643 4644 // If the caller and callee potentially have different TOC bases then we 4645 // cannot tail call since we need to restore the TOC pointer after the call. 4646 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4647 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4648 return false; 4649 4650 // TCO allows altering callee ABI, so we don't have to check further. 4651 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4652 return true; 4653 4654 if (DisableSCO) return false; 4655 4656 // If callee use the same argument list that caller is using, then we can 4657 // apply SCO on this case. If it is not, then we need to check if callee needs 4658 // stack for passing arguments. 4659 if (!hasSameArgumentList(&Caller, CS) && 4660 needStackSlotPassParameters(Subtarget, Outs)) { 4661 return false; 4662 } 4663 4664 return true; 4665 } 4666 4667 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4668 /// for tail call optimization. Targets which want to do tail call 4669 /// optimization should implement this function. 4670 bool 4671 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4672 CallingConv::ID CalleeCC, 4673 bool isVarArg, 4674 const SmallVectorImpl<ISD::InputArg> &Ins, 4675 SelectionDAG& DAG) const { 4676 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4677 return false; 4678 4679 // Variable argument functions are not supported. 4680 if (isVarArg) 4681 return false; 4682 4683 MachineFunction &MF = DAG.getMachineFunction(); 4684 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4685 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4686 // Functions containing by val parameters are not supported. 4687 for (unsigned i = 0; i != Ins.size(); i++) { 4688 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4689 if (Flags.isByVal()) return false; 4690 } 4691 4692 // Non-PIC/GOT tail calls are supported. 4693 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4694 return true; 4695 4696 // At the moment we can only do local tail calls (in same module, hidden 4697 // or protected) if we are generating PIC. 4698 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4699 return G->getGlobal()->hasHiddenVisibility() 4700 || G->getGlobal()->hasProtectedVisibility(); 4701 } 4702 4703 return false; 4704 } 4705 4706 /// isCallCompatibleAddress - Return the immediate to use if the specified 4707 /// 32-bit value is representable in the immediate field of a BxA instruction. 4708 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4709 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4710 if (!C) return nullptr; 4711 4712 int Addr = C->getZExtValue(); 4713 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4714 SignExtend32<26>(Addr) != Addr) 4715 return nullptr; // Top 6 bits have to be sext of immediate. 4716 4717 return DAG 4718 .getConstant( 4719 (int)C->getZExtValue() >> 2, SDLoc(Op), 4720 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4721 .getNode(); 4722 } 4723 4724 namespace { 4725 4726 struct TailCallArgumentInfo { 4727 SDValue Arg; 4728 SDValue FrameIdxOp; 4729 int FrameIdx = 0; 4730 4731 TailCallArgumentInfo() = default; 4732 }; 4733 4734 } // end anonymous namespace 4735 4736 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4737 static void StoreTailCallArgumentsToStackSlot( 4738 SelectionDAG &DAG, SDValue Chain, 4739 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4740 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4741 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4742 SDValue Arg = TailCallArgs[i].Arg; 4743 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4744 int FI = TailCallArgs[i].FrameIdx; 4745 // Store relative to framepointer. 4746 MemOpChains.push_back(DAG.getStore( 4747 Chain, dl, Arg, FIN, 4748 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4749 } 4750 } 4751 4752 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4753 /// the appropriate stack slot for the tail call optimized function call. 4754 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4755 SDValue OldRetAddr, SDValue OldFP, 4756 int SPDiff, const SDLoc &dl) { 4757 if (SPDiff) { 4758 // Calculate the new stack slot for the return address. 4759 MachineFunction &MF = DAG.getMachineFunction(); 4760 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4761 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4762 bool isPPC64 = Subtarget.isPPC64(); 4763 int SlotSize = isPPC64 ? 8 : 4; 4764 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4765 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4766 NewRetAddrLoc, true); 4767 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4768 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4769 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4770 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4771 4772 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4773 // slot as the FP is never overwritten. 4774 if (Subtarget.isDarwinABI()) { 4775 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4776 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4777 true); 4778 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4779 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4780 MachinePointerInfo::getFixedStack( 4781 DAG.getMachineFunction(), NewFPIdx)); 4782 } 4783 } 4784 return Chain; 4785 } 4786 4787 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4788 /// the position of the argument. 4789 static void 4790 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4791 SDValue Arg, int SPDiff, unsigned ArgOffset, 4792 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4793 int Offset = ArgOffset + SPDiff; 4794 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4795 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4796 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4797 SDValue FIN = DAG.getFrameIndex(FI, VT); 4798 TailCallArgumentInfo Info; 4799 Info.Arg = Arg; 4800 Info.FrameIdxOp = FIN; 4801 Info.FrameIdx = FI; 4802 TailCallArguments.push_back(Info); 4803 } 4804 4805 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4806 /// stack slot. Returns the chain as result and the loaded frame pointers in 4807 /// LROpOut/FPOpout. Used when tail calling. 4808 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4809 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4810 SDValue &FPOpOut, const SDLoc &dl) const { 4811 if (SPDiff) { 4812 // Load the LR and FP stack slot for later adjusting. 4813 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4814 LROpOut = getReturnAddrFrameIndex(DAG); 4815 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4816 Chain = SDValue(LROpOut.getNode(), 1); 4817 4818 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4819 // slot as the FP is never overwritten. 4820 if (Subtarget.isDarwinABI()) { 4821 FPOpOut = getFramePointerFrameIndex(DAG); 4822 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4823 Chain = SDValue(FPOpOut.getNode(), 1); 4824 } 4825 } 4826 return Chain; 4827 } 4828 4829 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4830 /// by "Src" to address "Dst" of size "Size". Alignment information is 4831 /// specified by the specific parameter attribute. The copy will be passed as 4832 /// a byval function parameter. 4833 /// Sometimes what we are copying is the end of a larger object, the part that 4834 /// does not fit in registers. 4835 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4836 SDValue Chain, ISD::ArgFlagsTy Flags, 4837 SelectionDAG &DAG, const SDLoc &dl) { 4838 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4839 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4840 false, false, false, MachinePointerInfo(), 4841 MachinePointerInfo()); 4842 } 4843 4844 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4845 /// tail calls. 4846 static void LowerMemOpCallTo( 4847 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4848 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4849 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4850 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4851 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4852 if (!isTailCall) { 4853 if (isVector) { 4854 SDValue StackPtr; 4855 if (isPPC64) 4856 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4857 else 4858 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4859 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4860 DAG.getConstant(ArgOffset, dl, PtrVT)); 4861 } 4862 MemOpChains.push_back( 4863 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4864 // Calculate and remember argument location. 4865 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4866 TailCallArguments); 4867 } 4868 4869 static void 4870 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4871 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4872 SDValue FPOp, 4873 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4874 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4875 // might overwrite each other in case of tail call optimization. 4876 SmallVector<SDValue, 8> MemOpChains2; 4877 // Do not flag preceding copytoreg stuff together with the following stuff. 4878 InFlag = SDValue(); 4879 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4880 MemOpChains2, dl); 4881 if (!MemOpChains2.empty()) 4882 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4883 4884 // Store the return address to the appropriate stack slot. 4885 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4886 4887 // Emit callseq_end just before tailcall node. 4888 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4889 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4890 InFlag = Chain.getValue(1); 4891 } 4892 4893 // Is this global address that of a function that can be called by name? (as 4894 // opposed to something that must hold a descriptor for an indirect call). 4895 static bool isFunctionGlobalAddress(SDValue Callee) { 4896 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4897 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4898 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4899 return false; 4900 4901 return G->getGlobal()->getValueType()->isFunctionTy(); 4902 } 4903 4904 return false; 4905 } 4906 4907 static unsigned 4908 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4909 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4910 bool isPatchPoint, bool hasNest, 4911 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4912 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4913 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4914 bool isPPC64 = Subtarget.isPPC64(); 4915 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4916 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4917 bool isAIXABI = Subtarget.isAIXABI(); 4918 4919 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4920 NodeTys.push_back(MVT::Other); // Returns a chain 4921 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4922 4923 unsigned CallOpc = PPCISD::CALL; 4924 4925 bool needIndirectCall = true; 4926 if (!isSVR4ABI || !isPPC64) 4927 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4928 // If this is an absolute destination address, use the munged value. 4929 Callee = SDValue(Dest, 0); 4930 needIndirectCall = false; 4931 } 4932 4933 // PC-relative references to external symbols should go through $stub, unless 4934 // we're building with the leopard linker or later, which automatically 4935 // synthesizes these stubs. 4936 const TargetMachine &TM = DAG.getTarget(); 4937 MachineFunction &MF = DAG.getMachineFunction(); 4938 const Module *Mod = MF.getFunction().getParent(); 4939 const GlobalValue *GV = nullptr; 4940 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4941 GV = G->getGlobal(); 4942 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4943 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4944 4945 if (isFunctionGlobalAddress(Callee)) { 4946 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4947 4948 if (TM.getTargetTriple().isOSAIX()) { 4949 // Direct function calls reference the symbol for the function's entry 4950 // point, which is named by inserting a "." before the function's 4951 // C-linkage name. 4952 auto &Context = MF.getMMI().getContext(); 4953 MCSymbol *S = Context.getOrCreateSymbol(Twine(".") + 4954 Twine(G->getGlobal()->getName())); 4955 cast<MCSymbolXCOFF>(S)->setGlobalValue(GV); 4956 Callee = DAG.getMCSymbol(S, PtrVT); 4957 } else { 4958 // A call to a TLS address is actually an indirect call to a 4959 // thread-specific pointer. 4960 unsigned OpFlags = 0; 4961 if (UsePlt) 4962 OpFlags = PPCII::MO_PLT; 4963 4964 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4965 // every direct call is) turn it into a TargetGlobalAddress / 4966 // TargetExternalSymbol node so that legalize doesn't hack it. 4967 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4968 Callee.getValueType(), 0, OpFlags); 4969 } 4970 needIndirectCall = false; 4971 } 4972 4973 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4974 unsigned char OpFlags = 0; 4975 4976 if (UsePlt) 4977 OpFlags = PPCII::MO_PLT; 4978 4979 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4980 OpFlags); 4981 needIndirectCall = false; 4982 } 4983 4984 if (isPatchPoint) { 4985 // We'll form an invalid direct call when lowering a patchpoint; the full 4986 // sequence for an indirect call is complicated, and many of the 4987 // instructions introduced might have side effects (and, thus, can't be 4988 // removed later). The call itself will be removed as soon as the 4989 // argument/return lowering is complete, so the fact that it has the wrong 4990 // kind of operands should not really matter. 4991 needIndirectCall = false; 4992 } 4993 4994 if (needIndirectCall) { 4995 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4996 // to do the call, we can't use PPCISD::CALL. 4997 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4998 4999 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 5000 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5001 // entry point, but to the function descriptor (the function entry point 5002 // address is part of the function descriptor though). 5003 // The function descriptor is a three doubleword structure with the 5004 // following fields: function entry point, TOC base address and 5005 // environment pointer. 5006 // Thus for a call through a function pointer, the following actions need 5007 // to be performed: 5008 // 1. Save the TOC of the caller in the TOC save area of its stack 5009 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5010 // 2. Load the address of the function entry point from the function 5011 // descriptor. 5012 // 3. Load the TOC of the callee from the function descriptor into r2. 5013 // 4. Load the environment pointer from the function descriptor into 5014 // r11. 5015 // 5. Branch to the function entry point address. 5016 // 6. On return of the callee, the TOC of the caller needs to be 5017 // restored (this is done in FinishCall()). 5018 // 5019 // The loads are scheduled at the beginning of the call sequence, and the 5020 // register copies are flagged together to ensure that no other 5021 // operations can be scheduled in between. E.g. without flagging the 5022 // copies together, a TOC access in the caller could be scheduled between 5023 // the assignment of the callee TOC and the branch to the callee, which 5024 // results in the TOC access going through the TOC of the callee instead 5025 // of going through the TOC of the caller, which leads to incorrect code. 5026 5027 // Load the address of the function entry point from the function 5028 // descriptor. 5029 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 5030 if (LDChain.getValueType() == MVT::Glue) 5031 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 5032 5033 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5034 ? (MachineMemOperand::MODereferenceable | 5035 MachineMemOperand::MOInvariant) 5036 : MachineMemOperand::MONone; 5037 5038 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5039 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 5040 /* Alignment = */ 8, MMOFlags); 5041 5042 // Load environment pointer into r11. 5043 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 5044 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 5045 SDValue LoadEnvPtr = 5046 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 5047 /* Alignment = */ 8, MMOFlags); 5048 5049 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 5050 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 5051 SDValue TOCPtr = 5052 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 5053 /* Alignment = */ 8, MMOFlags); 5054 5055 setUsesTOCBasePtr(DAG); 5056 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 5057 InFlag); 5058 Chain = TOCVal.getValue(0); 5059 InFlag = TOCVal.getValue(1); 5060 5061 // If the function call has an explicit 'nest' parameter, it takes the 5062 // place of the environment pointer. 5063 if (!hasNest) { 5064 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 5065 InFlag); 5066 5067 Chain = EnvVal.getValue(0); 5068 InFlag = EnvVal.getValue(1); 5069 } 5070 5071 MTCTROps[0] = Chain; 5072 MTCTROps[1] = LoadFuncPtr; 5073 MTCTROps[2] = InFlag; 5074 } 5075 5076 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 5077 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 5078 InFlag = Chain.getValue(1); 5079 5080 NodeTys.clear(); 5081 NodeTys.push_back(MVT::Other); 5082 NodeTys.push_back(MVT::Glue); 5083 Ops.push_back(Chain); 5084 CallOpc = PPCISD::BCTRL; 5085 Callee.setNode(nullptr); 5086 // Add use of X11 (holding environment pointer) 5087 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 5088 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 5089 // Add CTR register as callee so a bctr can be emitted later. 5090 if (isTailCall) 5091 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 5092 } 5093 5094 // If this is a direct call, pass the chain and the callee. 5095 if (Callee.getNode()) { 5096 Ops.push_back(Chain); 5097 Ops.push_back(Callee); 5098 } 5099 // If this is a tail call add stack pointer delta. 5100 if (isTailCall) 5101 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5102 5103 // Add argument registers to the end of the list so that they are known live 5104 // into the call. 5105 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5106 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5107 RegsToPass[i].second.getValueType())); 5108 5109 // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register 5110 // live into the call. 5111 // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT. 5112 if ((isSVR4ABI && isPPC64) || isAIXABI) { 5113 setUsesTOCBasePtr(DAG); 5114 5115 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5116 // no way to mark dependencies as implicit here. 5117 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5118 if (!isPatchPoint) 5119 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::X2 5120 : PPC::R2, PtrVT)); 5121 } 5122 5123 return CallOpc; 5124 } 5125 5126 SDValue PPCTargetLowering::LowerCallResult( 5127 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5128 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5129 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5130 SmallVector<CCValAssign, 16> RVLocs; 5131 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5132 *DAG.getContext()); 5133 5134 CCRetInfo.AnalyzeCallResult( 5135 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5136 ? RetCC_PPC_Cold 5137 : RetCC_PPC); 5138 5139 // Copy all of the result registers out of their specified physreg. 5140 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5141 CCValAssign &VA = RVLocs[i]; 5142 assert(VA.isRegLoc() && "Can only return in registers!"); 5143 5144 SDValue Val; 5145 5146 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5147 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5148 InFlag); 5149 Chain = Lo.getValue(1); 5150 InFlag = Lo.getValue(2); 5151 VA = RVLocs[++i]; // skip ahead to next loc 5152 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5153 InFlag); 5154 Chain = Hi.getValue(1); 5155 InFlag = Hi.getValue(2); 5156 if (!Subtarget.isLittleEndian()) 5157 std::swap (Lo, Hi); 5158 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5159 } else { 5160 Val = DAG.getCopyFromReg(Chain, dl, 5161 VA.getLocReg(), VA.getLocVT(), InFlag); 5162 Chain = Val.getValue(1); 5163 InFlag = Val.getValue(2); 5164 } 5165 5166 switch (VA.getLocInfo()) { 5167 default: llvm_unreachable("Unknown loc info!"); 5168 case CCValAssign::Full: break; 5169 case CCValAssign::AExt: 5170 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5171 break; 5172 case CCValAssign::ZExt: 5173 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5174 DAG.getValueType(VA.getValVT())); 5175 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5176 break; 5177 case CCValAssign::SExt: 5178 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5179 DAG.getValueType(VA.getValVT())); 5180 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5181 break; 5182 } 5183 5184 InVals.push_back(Val); 5185 } 5186 5187 return Chain; 5188 } 5189 5190 SDValue PPCTargetLowering::FinishCall( 5191 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5192 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5193 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5194 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5195 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5196 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5197 std::vector<EVT> NodeTys; 5198 SmallVector<SDValue, 8> Ops; 5199 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5200 SPDiff, isTailCall, isPatchPoint, hasNest, 5201 RegsToPass, Ops, NodeTys, CS, Subtarget); 5202 5203 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5204 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5205 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5206 5207 // When performing tail call optimization the callee pops its arguments off 5208 // the stack. Account for this here so these bytes can be pushed back on in 5209 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5210 int BytesCalleePops = 5211 (CallConv == CallingConv::Fast && 5212 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5213 5214 // Add a register mask operand representing the call-preserved registers. 5215 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5216 const uint32_t *Mask = 5217 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5218 assert(Mask && "Missing call preserved mask for calling convention"); 5219 Ops.push_back(DAG.getRegisterMask(Mask)); 5220 5221 if (InFlag.getNode()) 5222 Ops.push_back(InFlag); 5223 5224 // Emit tail call. 5225 if (isTailCall) { 5226 assert(((Callee.getOpcode() == ISD::Register && 5227 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5228 Callee.getOpcode() == ISD::TargetExternalSymbol || 5229 Callee.getOpcode() == ISD::TargetGlobalAddress || 5230 isa<ConstantSDNode>(Callee)) && 5231 "Expecting an global address, external symbol, absolute value or register"); 5232 5233 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5234 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5235 } 5236 5237 // Add a NOP immediately after the branch instruction when using the 64-bit 5238 // SVR4 or the AIX ABI. 5239 // At link time, if caller and callee are in a different module and 5240 // thus have a different TOC, the call will be replaced with a call to a stub 5241 // function which saves the current TOC, loads the TOC of the callee and 5242 // branches to the callee. The NOP will be replaced with a load instruction 5243 // which restores the TOC of the caller from the TOC save slot of the current 5244 // stack frame. If caller and callee belong to the same module (and have the 5245 // same TOC), the NOP will remain unchanged, or become some other NOP. 5246 5247 MachineFunction &MF = DAG.getMachineFunction(); 5248 if (!isTailCall && !isPatchPoint && 5249 ((Subtarget.isSVR4ABI() && Subtarget.isPPC64()) || 5250 Subtarget.isAIXABI())) { 5251 if (CallOpc == PPCISD::BCTRL) { 5252 if (Subtarget.isAIXABI()) 5253 report_fatal_error("Indirect call on AIX is not implemented."); 5254 5255 // This is a call through a function pointer. 5256 // Restore the caller TOC from the save area into R2. 5257 // See PrepareCall() for more information about calls through function 5258 // pointers in the 64-bit SVR4 ABI. 5259 // We are using a target-specific load with r2 hard coded, because the 5260 // result of a target-independent load would never go directly into r2, 5261 // since r2 is a reserved register (which prevents the register allocator 5262 // from allocating it), resulting in an additional register being 5263 // allocated and an unnecessary move instruction being generated. 5264 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5265 5266 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5267 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5268 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5269 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5270 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5271 5272 // The address needs to go after the chain input but before the flag (or 5273 // any other variadic arguments). 5274 Ops.insert(std::next(Ops.begin()), AddTOC); 5275 } else if (CallOpc == PPCISD::CALL && 5276 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5277 // Otherwise insert NOP for non-local calls. 5278 CallOpc = PPCISD::CALL_NOP; 5279 } 5280 } 5281 5282 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5283 InFlag = Chain.getValue(1); 5284 5285 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5286 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5287 InFlag, dl); 5288 if (!Ins.empty()) 5289 InFlag = Chain.getValue(1); 5290 5291 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5292 Ins, dl, DAG, InVals); 5293 } 5294 5295 SDValue 5296 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5297 SmallVectorImpl<SDValue> &InVals) const { 5298 SelectionDAG &DAG = CLI.DAG; 5299 SDLoc &dl = CLI.DL; 5300 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5301 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5302 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5303 SDValue Chain = CLI.Chain; 5304 SDValue Callee = CLI.Callee; 5305 bool &isTailCall = CLI.IsTailCall; 5306 CallingConv::ID CallConv = CLI.CallConv; 5307 bool isVarArg = CLI.IsVarArg; 5308 bool isPatchPoint = CLI.IsPatchPoint; 5309 ImmutableCallSite CS = CLI.CS; 5310 5311 if (isTailCall) { 5312 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5313 isTailCall = false; 5314 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5315 isTailCall = 5316 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5317 isVarArg, Outs, Ins, DAG); 5318 else 5319 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5320 Ins, DAG); 5321 if (isTailCall) { 5322 ++NumTailCalls; 5323 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5324 ++NumSiblingCalls; 5325 5326 assert(isa<GlobalAddressSDNode>(Callee) && 5327 "Callee should be an llvm::Function object."); 5328 LLVM_DEBUG( 5329 const GlobalValue *GV = 5330 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5331 const unsigned Width = 5332 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5333 dbgs() << "TCO caller: " 5334 << left_justify(DAG.getMachineFunction().getName(), Width) 5335 << ", callee linkage: " << GV->getVisibility() << ", " 5336 << GV->getLinkage() << "\n"); 5337 } 5338 } 5339 5340 if (!isTailCall && CS && CS.isMustTailCall()) 5341 report_fatal_error("failed to perform tail call elimination on a call " 5342 "site marked musttail"); 5343 5344 // When long calls (i.e. indirect calls) are always used, calls are always 5345 // made via function pointer. If we have a function name, first translate it 5346 // into a pointer. 5347 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5348 !isTailCall) 5349 Callee = LowerGlobalAddress(Callee, DAG); 5350 5351 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5352 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5353 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5354 dl, DAG, InVals, CS); 5355 5356 if (Subtarget.isSVR4ABI()) 5357 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5358 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5359 dl, DAG, InVals, CS); 5360 5361 if (Subtarget.isAIXABI()) 5362 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5363 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5364 dl, DAG, InVals, CS); 5365 5366 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5367 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5368 dl, DAG, InVals, CS); 5369 } 5370 5371 SDValue PPCTargetLowering::LowerCall_32SVR4( 5372 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5373 bool isTailCall, bool isPatchPoint, 5374 const SmallVectorImpl<ISD::OutputArg> &Outs, 5375 const SmallVectorImpl<SDValue> &OutVals, 5376 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5377 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5378 ImmutableCallSite CS) const { 5379 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5380 // of the 32-bit SVR4 ABI stack frame layout. 5381 5382 assert((CallConv == CallingConv::C || 5383 CallConv == CallingConv::Cold || 5384 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5385 5386 unsigned PtrByteSize = 4; 5387 5388 MachineFunction &MF = DAG.getMachineFunction(); 5389 5390 // Mark this function as potentially containing a function that contains a 5391 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5392 // and restoring the callers stack pointer in this functions epilog. This is 5393 // done because by tail calling the called function might overwrite the value 5394 // in this function's (MF) stack pointer stack slot 0(SP). 5395 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5396 CallConv == CallingConv::Fast) 5397 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5398 5399 // Count how many bytes are to be pushed on the stack, including the linkage 5400 // area, parameter list area and the part of the local variable space which 5401 // contains copies of aggregates which are passed by value. 5402 5403 // Assign locations to all of the outgoing arguments. 5404 SmallVector<CCValAssign, 16> ArgLocs; 5405 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5406 5407 // Reserve space for the linkage area on the stack. 5408 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5409 PtrByteSize); 5410 if (useSoftFloat()) 5411 CCInfo.PreAnalyzeCallOperands(Outs); 5412 5413 if (isVarArg) { 5414 // Handle fixed and variable vector arguments differently. 5415 // Fixed vector arguments go into registers as long as registers are 5416 // available. Variable vector arguments always go into memory. 5417 unsigned NumArgs = Outs.size(); 5418 5419 for (unsigned i = 0; i != NumArgs; ++i) { 5420 MVT ArgVT = Outs[i].VT; 5421 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5422 bool Result; 5423 5424 if (Outs[i].IsFixed) { 5425 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5426 CCInfo); 5427 } else { 5428 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5429 ArgFlags, CCInfo); 5430 } 5431 5432 if (Result) { 5433 #ifndef NDEBUG 5434 errs() << "Call operand #" << i << " has unhandled type " 5435 << EVT(ArgVT).getEVTString() << "\n"; 5436 #endif 5437 llvm_unreachable(nullptr); 5438 } 5439 } 5440 } else { 5441 // All arguments are treated the same. 5442 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5443 } 5444 CCInfo.clearWasPPCF128(); 5445 5446 // Assign locations to all of the outgoing aggregate by value arguments. 5447 SmallVector<CCValAssign, 16> ByValArgLocs; 5448 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5449 5450 // Reserve stack space for the allocations in CCInfo. 5451 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5452 5453 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5454 5455 // Size of the linkage area, parameter list area and the part of the local 5456 // space variable where copies of aggregates which are passed by value are 5457 // stored. 5458 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5459 5460 // Calculate by how many bytes the stack has to be adjusted in case of tail 5461 // call optimization. 5462 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5463 5464 // Adjust the stack pointer for the new arguments... 5465 // These operations are automatically eliminated by the prolog/epilog pass 5466 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5467 SDValue CallSeqStart = Chain; 5468 5469 // Load the return address and frame pointer so it can be moved somewhere else 5470 // later. 5471 SDValue LROp, FPOp; 5472 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5473 5474 // Set up a copy of the stack pointer for use loading and storing any 5475 // arguments that may not fit in the registers available for argument 5476 // passing. 5477 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5478 5479 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5480 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5481 SmallVector<SDValue, 8> MemOpChains; 5482 5483 bool seenFloatArg = false; 5484 // Walk the register/memloc assignments, inserting copies/loads. 5485 // i - Tracks the index into the list of registers allocated for the call 5486 // RealArgIdx - Tracks the index into the list of actual function arguments 5487 // j - Tracks the index into the list of byval arguments 5488 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5489 i != e; 5490 ++i, ++RealArgIdx) { 5491 CCValAssign &VA = ArgLocs[i]; 5492 SDValue Arg = OutVals[RealArgIdx]; 5493 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5494 5495 if (Flags.isByVal()) { 5496 // Argument is an aggregate which is passed by value, thus we need to 5497 // create a copy of it in the local variable space of the current stack 5498 // frame (which is the stack frame of the caller) and pass the address of 5499 // this copy to the callee. 5500 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5501 CCValAssign &ByValVA = ByValArgLocs[j++]; 5502 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5503 5504 // Memory reserved in the local variable space of the callers stack frame. 5505 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5506 5507 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5508 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5509 StackPtr, PtrOff); 5510 5511 // Create a copy of the argument in the local area of the current 5512 // stack frame. 5513 SDValue MemcpyCall = 5514 CreateCopyOfByValArgument(Arg, PtrOff, 5515 CallSeqStart.getNode()->getOperand(0), 5516 Flags, DAG, dl); 5517 5518 // This must go outside the CALLSEQ_START..END. 5519 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5520 SDLoc(MemcpyCall)); 5521 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5522 NewCallSeqStart.getNode()); 5523 Chain = CallSeqStart = NewCallSeqStart; 5524 5525 // Pass the address of the aggregate copy on the stack either in a 5526 // physical register or in the parameter list area of the current stack 5527 // frame to the callee. 5528 Arg = PtrOff; 5529 } 5530 5531 // When useCRBits() is true, there can be i1 arguments. 5532 // It is because getRegisterType(MVT::i1) => MVT::i1, 5533 // and for other integer types getRegisterType() => MVT::i32. 5534 // Extend i1 and ensure callee will get i32. 5535 if (Arg.getValueType() == MVT::i1) 5536 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5537 dl, MVT::i32, Arg); 5538 5539 if (VA.isRegLoc()) { 5540 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5541 // Put argument in a physical register. 5542 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5543 bool IsLE = Subtarget.isLittleEndian(); 5544 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5545 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5546 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5547 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5548 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5549 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5550 SVal.getValue(0))); 5551 } else 5552 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5553 } else { 5554 // Put argument in the parameter list area of the current stack frame. 5555 assert(VA.isMemLoc()); 5556 unsigned LocMemOffset = VA.getLocMemOffset(); 5557 5558 if (!isTailCall) { 5559 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5560 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5561 StackPtr, PtrOff); 5562 5563 MemOpChains.push_back( 5564 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5565 } else { 5566 // Calculate and remember argument location. 5567 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5568 TailCallArguments); 5569 } 5570 } 5571 } 5572 5573 if (!MemOpChains.empty()) 5574 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5575 5576 // Build a sequence of copy-to-reg nodes chained together with token chain 5577 // and flag operands which copy the outgoing args into the appropriate regs. 5578 SDValue InFlag; 5579 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5580 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5581 RegsToPass[i].second, InFlag); 5582 InFlag = Chain.getValue(1); 5583 } 5584 5585 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5586 // registers. 5587 if (isVarArg) { 5588 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5589 SDValue Ops[] = { Chain, InFlag }; 5590 5591 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5592 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5593 5594 InFlag = Chain.getValue(1); 5595 } 5596 5597 if (isTailCall) 5598 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5599 TailCallArguments); 5600 5601 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5602 /* unused except on PPC64 ELFv1 */ false, DAG, 5603 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5604 NumBytes, Ins, InVals, CS); 5605 } 5606 5607 // Copy an argument into memory, being careful to do this outside the 5608 // call sequence for the call to which the argument belongs. 5609 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5610 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5611 SelectionDAG &DAG, const SDLoc &dl) const { 5612 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5613 CallSeqStart.getNode()->getOperand(0), 5614 Flags, DAG, dl); 5615 // The MEMCPY must go outside the CALLSEQ_START..END. 5616 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5617 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5618 SDLoc(MemcpyCall)); 5619 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5620 NewCallSeqStart.getNode()); 5621 return NewCallSeqStart; 5622 } 5623 5624 SDValue PPCTargetLowering::LowerCall_64SVR4( 5625 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5626 bool isTailCall, bool isPatchPoint, 5627 const SmallVectorImpl<ISD::OutputArg> &Outs, 5628 const SmallVectorImpl<SDValue> &OutVals, 5629 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5630 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5631 ImmutableCallSite CS) const { 5632 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5633 bool isLittleEndian = Subtarget.isLittleEndian(); 5634 unsigned NumOps = Outs.size(); 5635 bool hasNest = false; 5636 bool IsSibCall = false; 5637 5638 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5639 unsigned PtrByteSize = 8; 5640 5641 MachineFunction &MF = DAG.getMachineFunction(); 5642 5643 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5644 IsSibCall = true; 5645 5646 // Mark this function as potentially containing a function that contains a 5647 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5648 // and restoring the callers stack pointer in this functions epilog. This is 5649 // done because by tail calling the called function might overwrite the value 5650 // in this function's (MF) stack pointer stack slot 0(SP). 5651 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5652 CallConv == CallingConv::Fast) 5653 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5654 5655 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5656 "fastcc not supported on varargs functions"); 5657 5658 // Count how many bytes are to be pushed on the stack, including the linkage 5659 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5660 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5661 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5662 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5663 unsigned NumBytes = LinkageSize; 5664 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5665 unsigned &QFPR_idx = FPR_idx; 5666 5667 static const MCPhysReg GPR[] = { 5668 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5669 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5670 }; 5671 static const MCPhysReg VR[] = { 5672 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5673 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5674 }; 5675 5676 const unsigned NumGPRs = array_lengthof(GPR); 5677 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5678 const unsigned NumVRs = array_lengthof(VR); 5679 const unsigned NumQFPRs = NumFPRs; 5680 5681 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5682 // can be passed to the callee in registers. 5683 // For the fast calling convention, there is another check below. 5684 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5685 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5686 if (!HasParameterArea) { 5687 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5688 unsigned AvailableFPRs = NumFPRs; 5689 unsigned AvailableVRs = NumVRs; 5690 unsigned NumBytesTmp = NumBytes; 5691 for (unsigned i = 0; i != NumOps; ++i) { 5692 if (Outs[i].Flags.isNest()) continue; 5693 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5694 PtrByteSize, LinkageSize, ParamAreaSize, 5695 NumBytesTmp, AvailableFPRs, AvailableVRs, 5696 Subtarget.hasQPX())) 5697 HasParameterArea = true; 5698 } 5699 } 5700 5701 // When using the fast calling convention, we don't provide backing for 5702 // arguments that will be in registers. 5703 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5704 5705 // Avoid allocating parameter area for fastcc functions if all the arguments 5706 // can be passed in the registers. 5707 if (CallConv == CallingConv::Fast) 5708 HasParameterArea = false; 5709 5710 // Add up all the space actually used. 5711 for (unsigned i = 0; i != NumOps; ++i) { 5712 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5713 EVT ArgVT = Outs[i].VT; 5714 EVT OrigVT = Outs[i].ArgVT; 5715 5716 if (Flags.isNest()) 5717 continue; 5718 5719 if (CallConv == CallingConv::Fast) { 5720 if (Flags.isByVal()) { 5721 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5722 if (NumGPRsUsed > NumGPRs) 5723 HasParameterArea = true; 5724 } else { 5725 switch (ArgVT.getSimpleVT().SimpleTy) { 5726 default: llvm_unreachable("Unexpected ValueType for argument!"); 5727 case MVT::i1: 5728 case MVT::i32: 5729 case MVT::i64: 5730 if (++NumGPRsUsed <= NumGPRs) 5731 continue; 5732 break; 5733 case MVT::v4i32: 5734 case MVT::v8i16: 5735 case MVT::v16i8: 5736 case MVT::v2f64: 5737 case MVT::v2i64: 5738 case MVT::v1i128: 5739 case MVT::f128: 5740 if (++NumVRsUsed <= NumVRs) 5741 continue; 5742 break; 5743 case MVT::v4f32: 5744 // When using QPX, this is handled like a FP register, otherwise, it 5745 // is an Altivec register. 5746 if (Subtarget.hasQPX()) { 5747 if (++NumFPRsUsed <= NumFPRs) 5748 continue; 5749 } else { 5750 if (++NumVRsUsed <= NumVRs) 5751 continue; 5752 } 5753 break; 5754 case MVT::f32: 5755 case MVT::f64: 5756 case MVT::v4f64: // QPX 5757 case MVT::v4i1: // QPX 5758 if (++NumFPRsUsed <= NumFPRs) 5759 continue; 5760 break; 5761 } 5762 HasParameterArea = true; 5763 } 5764 } 5765 5766 /* Respect alignment of argument on the stack. */ 5767 unsigned Align = 5768 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5769 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5770 5771 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5772 if (Flags.isInConsecutiveRegsLast()) 5773 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5774 } 5775 5776 unsigned NumBytesActuallyUsed = NumBytes; 5777 5778 // In the old ELFv1 ABI, 5779 // the prolog code of the callee may store up to 8 GPR argument registers to 5780 // the stack, allowing va_start to index over them in memory if its varargs. 5781 // Because we cannot tell if this is needed on the caller side, we have to 5782 // conservatively assume that it is needed. As such, make sure we have at 5783 // least enough stack space for the caller to store the 8 GPRs. 5784 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5785 // really requires memory operands, e.g. a vararg function. 5786 if (HasParameterArea) 5787 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5788 else 5789 NumBytes = LinkageSize; 5790 5791 // Tail call needs the stack to be aligned. 5792 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5793 CallConv == CallingConv::Fast) 5794 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5795 5796 int SPDiff = 0; 5797 5798 // Calculate by how many bytes the stack has to be adjusted in case of tail 5799 // call optimization. 5800 if (!IsSibCall) 5801 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5802 5803 // To protect arguments on the stack from being clobbered in a tail call, 5804 // force all the loads to happen before doing any other lowering. 5805 if (isTailCall) 5806 Chain = DAG.getStackArgumentTokenFactor(Chain); 5807 5808 // Adjust the stack pointer for the new arguments... 5809 // These operations are automatically eliminated by the prolog/epilog pass 5810 if (!IsSibCall) 5811 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5812 SDValue CallSeqStart = Chain; 5813 5814 // Load the return address and frame pointer so it can be move somewhere else 5815 // later. 5816 SDValue LROp, FPOp; 5817 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5818 5819 // Set up a copy of the stack pointer for use loading and storing any 5820 // arguments that may not fit in the registers available for argument 5821 // passing. 5822 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5823 5824 // Figure out which arguments are going to go in registers, and which in 5825 // memory. Also, if this is a vararg function, floating point operations 5826 // must be stored to our stack, and loaded into integer regs as well, if 5827 // any integer regs are available for argument passing. 5828 unsigned ArgOffset = LinkageSize; 5829 5830 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5831 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5832 5833 SmallVector<SDValue, 8> MemOpChains; 5834 for (unsigned i = 0; i != NumOps; ++i) { 5835 SDValue Arg = OutVals[i]; 5836 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5837 EVT ArgVT = Outs[i].VT; 5838 EVT OrigVT = Outs[i].ArgVT; 5839 5840 // PtrOff will be used to store the current argument to the stack if a 5841 // register cannot be found for it. 5842 SDValue PtrOff; 5843 5844 // We re-align the argument offset for each argument, except when using the 5845 // fast calling convention, when we need to make sure we do that only when 5846 // we'll actually use a stack slot. 5847 auto ComputePtrOff = [&]() { 5848 /* Respect alignment of argument on the stack. */ 5849 unsigned Align = 5850 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5851 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5852 5853 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5854 5855 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5856 }; 5857 5858 if (CallConv != CallingConv::Fast) { 5859 ComputePtrOff(); 5860 5861 /* Compute GPR index associated with argument offset. */ 5862 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5863 GPR_idx = std::min(GPR_idx, NumGPRs); 5864 } 5865 5866 // Promote integers to 64-bit values. 5867 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5868 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5869 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5870 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5871 } 5872 5873 // FIXME memcpy is used way more than necessary. Correctness first. 5874 // Note: "by value" is code for passing a structure by value, not 5875 // basic types. 5876 if (Flags.isByVal()) { 5877 // Note: Size includes alignment padding, so 5878 // struct x { short a; char b; } 5879 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5880 // These are the proper values we need for right-justifying the 5881 // aggregate in a parameter register. 5882 unsigned Size = Flags.getByValSize(); 5883 5884 // An empty aggregate parameter takes up no storage and no 5885 // registers. 5886 if (Size == 0) 5887 continue; 5888 5889 if (CallConv == CallingConv::Fast) 5890 ComputePtrOff(); 5891 5892 // All aggregates smaller than 8 bytes must be passed right-justified. 5893 if (Size==1 || Size==2 || Size==4) { 5894 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5895 if (GPR_idx != NumGPRs) { 5896 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5897 MachinePointerInfo(), VT); 5898 MemOpChains.push_back(Load.getValue(1)); 5899 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5900 5901 ArgOffset += PtrByteSize; 5902 continue; 5903 } 5904 } 5905 5906 if (GPR_idx == NumGPRs && Size < 8) { 5907 SDValue AddPtr = PtrOff; 5908 if (!isLittleEndian) { 5909 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5910 PtrOff.getValueType()); 5911 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5912 } 5913 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5914 CallSeqStart, 5915 Flags, DAG, dl); 5916 ArgOffset += PtrByteSize; 5917 continue; 5918 } 5919 // Copy entire object into memory. There are cases where gcc-generated 5920 // code assumes it is there, even if it could be put entirely into 5921 // registers. (This is not what the doc says.) 5922 5923 // FIXME: The above statement is likely due to a misunderstanding of the 5924 // documents. All arguments must be copied into the parameter area BY 5925 // THE CALLEE in the event that the callee takes the address of any 5926 // formal argument. That has not yet been implemented. However, it is 5927 // reasonable to use the stack area as a staging area for the register 5928 // load. 5929 5930 // Skip this for small aggregates, as we will use the same slot for a 5931 // right-justified copy, below. 5932 if (Size >= 8) 5933 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5934 CallSeqStart, 5935 Flags, DAG, dl); 5936 5937 // When a register is available, pass a small aggregate right-justified. 5938 if (Size < 8 && GPR_idx != NumGPRs) { 5939 // The easiest way to get this right-justified in a register 5940 // is to copy the structure into the rightmost portion of a 5941 // local variable slot, then load the whole slot into the 5942 // register. 5943 // FIXME: The memcpy seems to produce pretty awful code for 5944 // small aggregates, particularly for packed ones. 5945 // FIXME: It would be preferable to use the slot in the 5946 // parameter save area instead of a new local variable. 5947 SDValue AddPtr = PtrOff; 5948 if (!isLittleEndian) { 5949 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5950 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5951 } 5952 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5953 CallSeqStart, 5954 Flags, DAG, dl); 5955 5956 // Load the slot into the register. 5957 SDValue Load = 5958 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5959 MemOpChains.push_back(Load.getValue(1)); 5960 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5961 5962 // Done with this argument. 5963 ArgOffset += PtrByteSize; 5964 continue; 5965 } 5966 5967 // For aggregates larger than PtrByteSize, copy the pieces of the 5968 // object that fit into registers from the parameter save area. 5969 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5970 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5971 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5972 if (GPR_idx != NumGPRs) { 5973 SDValue Load = 5974 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5975 MemOpChains.push_back(Load.getValue(1)); 5976 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5977 ArgOffset += PtrByteSize; 5978 } else { 5979 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5980 break; 5981 } 5982 } 5983 continue; 5984 } 5985 5986 switch (Arg.getSimpleValueType().SimpleTy) { 5987 default: llvm_unreachable("Unexpected ValueType for argument!"); 5988 case MVT::i1: 5989 case MVT::i32: 5990 case MVT::i64: 5991 if (Flags.isNest()) { 5992 // The 'nest' parameter, if any, is passed in R11. 5993 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5994 hasNest = true; 5995 break; 5996 } 5997 5998 // These can be scalar arguments or elements of an integer array type 5999 // passed directly. Clang may use those instead of "byval" aggregate 6000 // types to avoid forcing arguments to memory unnecessarily. 6001 if (GPR_idx != NumGPRs) { 6002 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6003 } else { 6004 if (CallConv == CallingConv::Fast) 6005 ComputePtrOff(); 6006 6007 assert(HasParameterArea && 6008 "Parameter area must exist to pass an argument in memory."); 6009 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6010 true, isTailCall, false, MemOpChains, 6011 TailCallArguments, dl); 6012 if (CallConv == CallingConv::Fast) 6013 ArgOffset += PtrByteSize; 6014 } 6015 if (CallConv != CallingConv::Fast) 6016 ArgOffset += PtrByteSize; 6017 break; 6018 case MVT::f32: 6019 case MVT::f64: { 6020 // These can be scalar arguments or elements of a float array type 6021 // passed directly. The latter are used to implement ELFv2 homogenous 6022 // float aggregates. 6023 6024 // Named arguments go into FPRs first, and once they overflow, the 6025 // remaining arguments go into GPRs and then the parameter save area. 6026 // Unnamed arguments for vararg functions always go to GPRs and 6027 // then the parameter save area. For now, put all arguments to vararg 6028 // routines always in both locations (FPR *and* GPR or stack slot). 6029 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6030 bool NeededLoad = false; 6031 6032 // First load the argument into the next available FPR. 6033 if (FPR_idx != NumFPRs) 6034 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6035 6036 // Next, load the argument into GPR or stack slot if needed. 6037 if (!NeedGPROrStack) 6038 ; 6039 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6040 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6041 // once we support fp <-> gpr moves. 6042 6043 // In the non-vararg case, this can only ever happen in the 6044 // presence of f32 array types, since otherwise we never run 6045 // out of FPRs before running out of GPRs. 6046 SDValue ArgVal; 6047 6048 // Double values are always passed in a single GPR. 6049 if (Arg.getValueType() != MVT::f32) { 6050 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6051 6052 // Non-array float values are extended and passed in a GPR. 6053 } else if (!Flags.isInConsecutiveRegs()) { 6054 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6055 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6056 6057 // If we have an array of floats, we collect every odd element 6058 // together with its predecessor into one GPR. 6059 } else if (ArgOffset % PtrByteSize != 0) { 6060 SDValue Lo, Hi; 6061 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6062 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6063 if (!isLittleEndian) 6064 std::swap(Lo, Hi); 6065 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6066 6067 // The final element, if even, goes into the first half of a GPR. 6068 } else if (Flags.isInConsecutiveRegsLast()) { 6069 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6070 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6071 if (!isLittleEndian) 6072 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6073 DAG.getConstant(32, dl, MVT::i32)); 6074 6075 // Non-final even elements are skipped; they will be handled 6076 // together the with subsequent argument on the next go-around. 6077 } else 6078 ArgVal = SDValue(); 6079 6080 if (ArgVal.getNode()) 6081 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6082 } else { 6083 if (CallConv == CallingConv::Fast) 6084 ComputePtrOff(); 6085 6086 // Single-precision floating-point values are mapped to the 6087 // second (rightmost) word of the stack doubleword. 6088 if (Arg.getValueType() == MVT::f32 && 6089 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6090 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6091 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6092 } 6093 6094 assert(HasParameterArea && 6095 "Parameter area must exist to pass an argument in memory."); 6096 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6097 true, isTailCall, false, MemOpChains, 6098 TailCallArguments, dl); 6099 6100 NeededLoad = true; 6101 } 6102 // When passing an array of floats, the array occupies consecutive 6103 // space in the argument area; only round up to the next doubleword 6104 // at the end of the array. Otherwise, each float takes 8 bytes. 6105 if (CallConv != CallingConv::Fast || NeededLoad) { 6106 ArgOffset += (Arg.getValueType() == MVT::f32 && 6107 Flags.isInConsecutiveRegs()) ? 4 : 8; 6108 if (Flags.isInConsecutiveRegsLast()) 6109 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6110 } 6111 break; 6112 } 6113 case MVT::v4f32: 6114 case MVT::v4i32: 6115 case MVT::v8i16: 6116 case MVT::v16i8: 6117 case MVT::v2f64: 6118 case MVT::v2i64: 6119 case MVT::v1i128: 6120 case MVT::f128: 6121 if (!Subtarget.hasQPX()) { 6122 // These can be scalar arguments or elements of a vector array type 6123 // passed directly. The latter are used to implement ELFv2 homogenous 6124 // vector aggregates. 6125 6126 // For a varargs call, named arguments go into VRs or on the stack as 6127 // usual; unnamed arguments always go to the stack or the corresponding 6128 // GPRs when within range. For now, we always put the value in both 6129 // locations (or even all three). 6130 if (isVarArg) { 6131 assert(HasParameterArea && 6132 "Parameter area must exist if we have a varargs call."); 6133 // We could elide this store in the case where the object fits 6134 // entirely in R registers. Maybe later. 6135 SDValue Store = 6136 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6137 MemOpChains.push_back(Store); 6138 if (VR_idx != NumVRs) { 6139 SDValue Load = 6140 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6141 MemOpChains.push_back(Load.getValue(1)); 6142 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6143 } 6144 ArgOffset += 16; 6145 for (unsigned i=0; i<16; i+=PtrByteSize) { 6146 if (GPR_idx == NumGPRs) 6147 break; 6148 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6149 DAG.getConstant(i, dl, PtrVT)); 6150 SDValue Load = 6151 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6152 MemOpChains.push_back(Load.getValue(1)); 6153 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6154 } 6155 break; 6156 } 6157 6158 // Non-varargs Altivec params go into VRs or on the stack. 6159 if (VR_idx != NumVRs) { 6160 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6161 } else { 6162 if (CallConv == CallingConv::Fast) 6163 ComputePtrOff(); 6164 6165 assert(HasParameterArea && 6166 "Parameter area must exist to pass an argument in memory."); 6167 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6168 true, isTailCall, true, MemOpChains, 6169 TailCallArguments, dl); 6170 if (CallConv == CallingConv::Fast) 6171 ArgOffset += 16; 6172 } 6173 6174 if (CallConv != CallingConv::Fast) 6175 ArgOffset += 16; 6176 break; 6177 } // not QPX 6178 6179 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6180 "Invalid QPX parameter type"); 6181 6182 LLVM_FALLTHROUGH; 6183 case MVT::v4f64: 6184 case MVT::v4i1: { 6185 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6186 if (isVarArg) { 6187 assert(HasParameterArea && 6188 "Parameter area must exist if we have a varargs call."); 6189 // We could elide this store in the case where the object fits 6190 // entirely in R registers. Maybe later. 6191 SDValue Store = 6192 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6193 MemOpChains.push_back(Store); 6194 if (QFPR_idx != NumQFPRs) { 6195 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6196 PtrOff, MachinePointerInfo()); 6197 MemOpChains.push_back(Load.getValue(1)); 6198 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6199 } 6200 ArgOffset += (IsF32 ? 16 : 32); 6201 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6202 if (GPR_idx == NumGPRs) 6203 break; 6204 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6205 DAG.getConstant(i, dl, PtrVT)); 6206 SDValue Load = 6207 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6208 MemOpChains.push_back(Load.getValue(1)); 6209 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6210 } 6211 break; 6212 } 6213 6214 // Non-varargs QPX params go into registers or on the stack. 6215 if (QFPR_idx != NumQFPRs) { 6216 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6217 } else { 6218 if (CallConv == CallingConv::Fast) 6219 ComputePtrOff(); 6220 6221 assert(HasParameterArea && 6222 "Parameter area must exist to pass an argument in memory."); 6223 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6224 true, isTailCall, true, MemOpChains, 6225 TailCallArguments, dl); 6226 if (CallConv == CallingConv::Fast) 6227 ArgOffset += (IsF32 ? 16 : 32); 6228 } 6229 6230 if (CallConv != CallingConv::Fast) 6231 ArgOffset += (IsF32 ? 16 : 32); 6232 break; 6233 } 6234 } 6235 } 6236 6237 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6238 "mismatch in size of parameter area"); 6239 (void)NumBytesActuallyUsed; 6240 6241 if (!MemOpChains.empty()) 6242 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6243 6244 // Check if this is an indirect call (MTCTR/BCTRL). 6245 // See PrepareCall() for more information about calls through function 6246 // pointers in the 64-bit SVR4 ABI. 6247 if (!isTailCall && !isPatchPoint && 6248 !isFunctionGlobalAddress(Callee) && 6249 !isa<ExternalSymbolSDNode>(Callee)) { 6250 // Load r2 into a virtual register and store it to the TOC save area. 6251 setUsesTOCBasePtr(DAG); 6252 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6253 // TOC save area offset. 6254 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6255 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6256 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6257 Chain = DAG.getStore( 6258 Val.getValue(1), dl, Val, AddPtr, 6259 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6260 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6261 // This does not mean the MTCTR instruction must use R12; it's easier 6262 // to model this as an extra parameter, so do that. 6263 if (isELFv2ABI && !isPatchPoint) 6264 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6265 } 6266 6267 // Build a sequence of copy-to-reg nodes chained together with token chain 6268 // and flag operands which copy the outgoing args into the appropriate regs. 6269 SDValue InFlag; 6270 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6271 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6272 RegsToPass[i].second, InFlag); 6273 InFlag = Chain.getValue(1); 6274 } 6275 6276 if (isTailCall && !IsSibCall) 6277 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6278 TailCallArguments); 6279 6280 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6281 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6282 SPDiff, NumBytes, Ins, InVals, CS); 6283 } 6284 6285 SDValue PPCTargetLowering::LowerCall_Darwin( 6286 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6287 bool isTailCall, bool isPatchPoint, 6288 const SmallVectorImpl<ISD::OutputArg> &Outs, 6289 const SmallVectorImpl<SDValue> &OutVals, 6290 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6291 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6292 ImmutableCallSite CS) const { 6293 unsigned NumOps = Outs.size(); 6294 6295 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6296 bool isPPC64 = PtrVT == MVT::i64; 6297 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6298 6299 MachineFunction &MF = DAG.getMachineFunction(); 6300 6301 // Mark this function as potentially containing a function that contains a 6302 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6303 // and restoring the callers stack pointer in this functions epilog. This is 6304 // done because by tail calling the called function might overwrite the value 6305 // in this function's (MF) stack pointer stack slot 0(SP). 6306 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6307 CallConv == CallingConv::Fast) 6308 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6309 6310 // Count how many bytes are to be pushed on the stack, including the linkage 6311 // area, and parameter passing area. We start with 24/48 bytes, which is 6312 // prereserved space for [SP][CR][LR][3 x unused]. 6313 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6314 unsigned NumBytes = LinkageSize; 6315 6316 // Add up all the space actually used. 6317 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6318 // they all go in registers, but we must reserve stack space for them for 6319 // possible use by the caller. In varargs or 64-bit calls, parameters are 6320 // assigned stack space in order, with padding so Altivec parameters are 6321 // 16-byte aligned. 6322 unsigned nAltivecParamsAtEnd = 0; 6323 for (unsigned i = 0; i != NumOps; ++i) { 6324 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6325 EVT ArgVT = Outs[i].VT; 6326 // Varargs Altivec parameters are padded to a 16 byte boundary. 6327 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6328 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6329 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6330 if (!isVarArg && !isPPC64) { 6331 // Non-varargs Altivec parameters go after all the non-Altivec 6332 // parameters; handle those later so we know how much padding we need. 6333 nAltivecParamsAtEnd++; 6334 continue; 6335 } 6336 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6337 NumBytes = ((NumBytes+15)/16)*16; 6338 } 6339 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6340 } 6341 6342 // Allow for Altivec parameters at the end, if needed. 6343 if (nAltivecParamsAtEnd) { 6344 NumBytes = ((NumBytes+15)/16)*16; 6345 NumBytes += 16*nAltivecParamsAtEnd; 6346 } 6347 6348 // The prolog code of the callee may store up to 8 GPR argument registers to 6349 // the stack, allowing va_start to index over them in memory if its varargs. 6350 // Because we cannot tell if this is needed on the caller side, we have to 6351 // conservatively assume that it is needed. As such, make sure we have at 6352 // least enough stack space for the caller to store the 8 GPRs. 6353 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6354 6355 // Tail call needs the stack to be aligned. 6356 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6357 CallConv == CallingConv::Fast) 6358 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6359 6360 // Calculate by how many bytes the stack has to be adjusted in case of tail 6361 // call optimization. 6362 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6363 6364 // To protect arguments on the stack from being clobbered in a tail call, 6365 // force all the loads to happen before doing any other lowering. 6366 if (isTailCall) 6367 Chain = DAG.getStackArgumentTokenFactor(Chain); 6368 6369 // Adjust the stack pointer for the new arguments... 6370 // These operations are automatically eliminated by the prolog/epilog pass 6371 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6372 SDValue CallSeqStart = Chain; 6373 6374 // Load the return address and frame pointer so it can be move somewhere else 6375 // later. 6376 SDValue LROp, FPOp; 6377 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6378 6379 // Set up a copy of the stack pointer for use loading and storing any 6380 // arguments that may not fit in the registers available for argument 6381 // passing. 6382 SDValue StackPtr; 6383 if (isPPC64) 6384 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6385 else 6386 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6387 6388 // Figure out which arguments are going to go in registers, and which in 6389 // memory. Also, if this is a vararg function, floating point operations 6390 // must be stored to our stack, and loaded into integer regs as well, if 6391 // any integer regs are available for argument passing. 6392 unsigned ArgOffset = LinkageSize; 6393 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6394 6395 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6396 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6397 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6398 }; 6399 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6400 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6401 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6402 }; 6403 static const MCPhysReg VR[] = { 6404 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6405 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6406 }; 6407 const unsigned NumGPRs = array_lengthof(GPR_32); 6408 const unsigned NumFPRs = 13; 6409 const unsigned NumVRs = array_lengthof(VR); 6410 6411 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6412 6413 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6414 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6415 6416 SmallVector<SDValue, 8> MemOpChains; 6417 for (unsigned i = 0; i != NumOps; ++i) { 6418 SDValue Arg = OutVals[i]; 6419 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6420 6421 // PtrOff will be used to store the current argument to the stack if a 6422 // register cannot be found for it. 6423 SDValue PtrOff; 6424 6425 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6426 6427 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6428 6429 // On PPC64, promote integers to 64-bit values. 6430 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6431 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6432 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6433 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6434 } 6435 6436 // FIXME memcpy is used way more than necessary. Correctness first. 6437 // Note: "by value" is code for passing a structure by value, not 6438 // basic types. 6439 if (Flags.isByVal()) { 6440 unsigned Size = Flags.getByValSize(); 6441 // Very small objects are passed right-justified. Everything else is 6442 // passed left-justified. 6443 if (Size==1 || Size==2) { 6444 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6445 if (GPR_idx != NumGPRs) { 6446 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6447 MachinePointerInfo(), VT); 6448 MemOpChains.push_back(Load.getValue(1)); 6449 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6450 6451 ArgOffset += PtrByteSize; 6452 } else { 6453 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6454 PtrOff.getValueType()); 6455 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6456 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6457 CallSeqStart, 6458 Flags, DAG, dl); 6459 ArgOffset += PtrByteSize; 6460 } 6461 continue; 6462 } 6463 // Copy entire object into memory. There are cases where gcc-generated 6464 // code assumes it is there, even if it could be put entirely into 6465 // registers. (This is not what the doc says.) 6466 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6467 CallSeqStart, 6468 Flags, DAG, dl); 6469 6470 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6471 // copy the pieces of the object that fit into registers from the 6472 // parameter save area. 6473 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6474 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6475 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6476 if (GPR_idx != NumGPRs) { 6477 SDValue Load = 6478 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6479 MemOpChains.push_back(Load.getValue(1)); 6480 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6481 ArgOffset += PtrByteSize; 6482 } else { 6483 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6484 break; 6485 } 6486 } 6487 continue; 6488 } 6489 6490 switch (Arg.getSimpleValueType().SimpleTy) { 6491 default: llvm_unreachable("Unexpected ValueType for argument!"); 6492 case MVT::i1: 6493 case MVT::i32: 6494 case MVT::i64: 6495 if (GPR_idx != NumGPRs) { 6496 if (Arg.getValueType() == MVT::i1) 6497 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6498 6499 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6500 } else { 6501 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6502 isPPC64, isTailCall, false, MemOpChains, 6503 TailCallArguments, dl); 6504 } 6505 ArgOffset += PtrByteSize; 6506 break; 6507 case MVT::f32: 6508 case MVT::f64: 6509 if (FPR_idx != NumFPRs) { 6510 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6511 6512 if (isVarArg) { 6513 SDValue Store = 6514 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6515 MemOpChains.push_back(Store); 6516 6517 // Float varargs are always shadowed in available integer registers 6518 if (GPR_idx != NumGPRs) { 6519 SDValue Load = 6520 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6521 MemOpChains.push_back(Load.getValue(1)); 6522 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6523 } 6524 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6525 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6526 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6527 SDValue Load = 6528 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6529 MemOpChains.push_back(Load.getValue(1)); 6530 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6531 } 6532 } else { 6533 // If we have any FPRs remaining, we may also have GPRs remaining. 6534 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6535 // GPRs. 6536 if (GPR_idx != NumGPRs) 6537 ++GPR_idx; 6538 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6539 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6540 ++GPR_idx; 6541 } 6542 } else 6543 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6544 isPPC64, isTailCall, false, MemOpChains, 6545 TailCallArguments, dl); 6546 if (isPPC64) 6547 ArgOffset += 8; 6548 else 6549 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6550 break; 6551 case MVT::v4f32: 6552 case MVT::v4i32: 6553 case MVT::v8i16: 6554 case MVT::v16i8: 6555 if (isVarArg) { 6556 // These go aligned on the stack, or in the corresponding R registers 6557 // when within range. The Darwin PPC ABI doc claims they also go in 6558 // V registers; in fact gcc does this only for arguments that are 6559 // prototyped, not for those that match the ... We do it for all 6560 // arguments, seems to work. 6561 while (ArgOffset % 16 !=0) { 6562 ArgOffset += PtrByteSize; 6563 if (GPR_idx != NumGPRs) 6564 GPR_idx++; 6565 } 6566 // We could elide this store in the case where the object fits 6567 // entirely in R registers. Maybe later. 6568 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6569 DAG.getConstant(ArgOffset, dl, PtrVT)); 6570 SDValue Store = 6571 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6572 MemOpChains.push_back(Store); 6573 if (VR_idx != NumVRs) { 6574 SDValue Load = 6575 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6576 MemOpChains.push_back(Load.getValue(1)); 6577 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6578 } 6579 ArgOffset += 16; 6580 for (unsigned i=0; i<16; i+=PtrByteSize) { 6581 if (GPR_idx == NumGPRs) 6582 break; 6583 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6584 DAG.getConstant(i, dl, PtrVT)); 6585 SDValue Load = 6586 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6587 MemOpChains.push_back(Load.getValue(1)); 6588 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6589 } 6590 break; 6591 } 6592 6593 // Non-varargs Altivec params generally go in registers, but have 6594 // stack space allocated at the end. 6595 if (VR_idx != NumVRs) { 6596 // Doesn't have GPR space allocated. 6597 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6598 } else if (nAltivecParamsAtEnd==0) { 6599 // We are emitting Altivec params in order. 6600 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6601 isPPC64, isTailCall, true, MemOpChains, 6602 TailCallArguments, dl); 6603 ArgOffset += 16; 6604 } 6605 break; 6606 } 6607 } 6608 // If all Altivec parameters fit in registers, as they usually do, 6609 // they get stack space following the non-Altivec parameters. We 6610 // don't track this here because nobody below needs it. 6611 // If there are more Altivec parameters than fit in registers emit 6612 // the stores here. 6613 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6614 unsigned j = 0; 6615 // Offset is aligned; skip 1st 12 params which go in V registers. 6616 ArgOffset = ((ArgOffset+15)/16)*16; 6617 ArgOffset += 12*16; 6618 for (unsigned i = 0; i != NumOps; ++i) { 6619 SDValue Arg = OutVals[i]; 6620 EVT ArgType = Outs[i].VT; 6621 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6622 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6623 if (++j > NumVRs) { 6624 SDValue PtrOff; 6625 // We are emitting Altivec params in order. 6626 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6627 isPPC64, isTailCall, true, MemOpChains, 6628 TailCallArguments, dl); 6629 ArgOffset += 16; 6630 } 6631 } 6632 } 6633 } 6634 6635 if (!MemOpChains.empty()) 6636 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6637 6638 // On Darwin, R12 must contain the address of an indirect callee. This does 6639 // not mean the MTCTR instruction must use R12; it's easier to model this as 6640 // an extra parameter, so do that. 6641 if (!isTailCall && 6642 !isFunctionGlobalAddress(Callee) && 6643 !isa<ExternalSymbolSDNode>(Callee) && 6644 !isBLACompatibleAddress(Callee, DAG)) 6645 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6646 PPC::R12), Callee)); 6647 6648 // Build a sequence of copy-to-reg nodes chained together with token chain 6649 // and flag operands which copy the outgoing args into the appropriate regs. 6650 SDValue InFlag; 6651 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6652 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6653 RegsToPass[i].second, InFlag); 6654 InFlag = Chain.getValue(1); 6655 } 6656 6657 if (isTailCall) 6658 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6659 TailCallArguments); 6660 6661 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6662 /* unused except on PPC64 ELFv1 */ false, DAG, 6663 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6664 NumBytes, Ins, InVals, CS); 6665 } 6666 6667 6668 SDValue PPCTargetLowering::LowerCall_AIX( 6669 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6670 bool isTailCall, bool isPatchPoint, 6671 const SmallVectorImpl<ISD::OutputArg> &Outs, 6672 const SmallVectorImpl<SDValue> &OutVals, 6673 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6674 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6675 ImmutableCallSite CS) const { 6676 6677 assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && 6678 "Unimplemented calling convention!"); 6679 if (isVarArg || isPatchPoint) 6680 report_fatal_error("This call type is unimplemented on AIX."); 6681 6682 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6683 bool isPPC64 = PtrVT == MVT::i64; 6684 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6685 unsigned NumOps = Outs.size(); 6686 6687 6688 // Count how many bytes are to be pushed on the stack, including the linkage 6689 // area, parameter list area. 6690 // On XCOFF, we start with 24/48, which is reserved space for 6691 // [SP][CR][LR][2 x reserved][TOC]. 6692 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6693 6694 // The prolog code of the callee may store up to 8 GPR argument registers to 6695 // the stack, allowing va_start to index over them in memory if the callee 6696 // is variadic. 6697 // Because we cannot tell if this is needed on the caller side, we have to 6698 // conservatively assume that it is needed. As such, make sure we have at 6699 // least enough stack space for the caller to store the 8 GPRs. 6700 unsigned NumBytes = LinkageSize + 8 * PtrByteSize; 6701 6702 // Adjust the stack pointer for the new arguments... 6703 // These operations are automatically eliminated by the prolog/epilog 6704 // inserter pass. 6705 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6706 SDValue CallSeqStart = Chain; 6707 6708 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6709 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6710 PPC::R7, PPC::R8, PPC::R9, PPC::R10 6711 }; 6712 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6713 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6714 PPC::X7, PPC::X8, PPC::X9, PPC::X10 6715 }; 6716 6717 const unsigned NumGPRs = isPPC64 ? array_lengthof(GPR_64) 6718 : array_lengthof(GPR_32); 6719 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6720 unsigned GPR_idx = 0; 6721 6722 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6723 6724 if (isTailCall) 6725 report_fatal_error("Handling of tail call is unimplemented!"); 6726 int SPDiff = 0; 6727 6728 for (unsigned i = 0; i != NumOps; ++i) { 6729 SDValue Arg = OutVals[i]; 6730 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6731 6732 // Promote integers if needed. 6733 if (Arg.getValueType() == MVT::i1 || 6734 (isPPC64 && Arg.getValueType() == MVT::i32)) { 6735 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6736 Arg = DAG.getNode(ExtOp, dl, PtrVT, Arg); 6737 } 6738 6739 // Note: "by value" is code for passing a structure by value, not 6740 // basic types. 6741 if (Flags.isByVal()) 6742 report_fatal_error("Passing structure by value is unimplemented!"); 6743 6744 switch (Arg.getSimpleValueType().SimpleTy) { 6745 default: llvm_unreachable("Unexpected ValueType for argument!"); 6746 case MVT::i1: 6747 case MVT::i32: 6748 case MVT::i64: 6749 if (GPR_idx != NumGPRs) 6750 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6751 else 6752 report_fatal_error("Handling of placing parameters on the stack is " 6753 "unimplemented!"); 6754 break; 6755 case MVT::f32: 6756 case MVT::f64: 6757 case MVT::v4f32: 6758 case MVT::v4i32: 6759 case MVT::v8i16: 6760 case MVT::v16i8: 6761 case MVT::v2f64: 6762 case MVT::v2i64: 6763 case MVT::v1i128: 6764 case MVT::f128: 6765 case MVT::v4f64: 6766 case MVT::v4i1: 6767 report_fatal_error("Handling of this parameter type is unimplemented!"); 6768 } 6769 } 6770 6771 if (!isFunctionGlobalAddress(Callee) && 6772 !isa<ExternalSymbolSDNode>(Callee)) 6773 report_fatal_error("Handling of indirect call is unimplemented!"); 6774 6775 // Build a sequence of copy-to-reg nodes chained together with token chain 6776 // and flag operands which copy the outgoing args into the appropriate regs. 6777 SDValue InFlag; 6778 for (auto Reg : RegsToPass) { 6779 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 6780 InFlag = Chain.getValue(1); 6781 } 6782 6783 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6784 /* unused except on PPC64 ELFv1 */ false, DAG, 6785 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6786 NumBytes, Ins, InVals, CS); 6787 } 6788 6789 bool 6790 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6791 MachineFunction &MF, bool isVarArg, 6792 const SmallVectorImpl<ISD::OutputArg> &Outs, 6793 LLVMContext &Context) const { 6794 SmallVector<CCValAssign, 16> RVLocs; 6795 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6796 return CCInfo.CheckReturn( 6797 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6798 ? RetCC_PPC_Cold 6799 : RetCC_PPC); 6800 } 6801 6802 SDValue 6803 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6804 bool isVarArg, 6805 const SmallVectorImpl<ISD::OutputArg> &Outs, 6806 const SmallVectorImpl<SDValue> &OutVals, 6807 const SDLoc &dl, SelectionDAG &DAG) const { 6808 SmallVector<CCValAssign, 16> RVLocs; 6809 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6810 *DAG.getContext()); 6811 CCInfo.AnalyzeReturn(Outs, 6812 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6813 ? RetCC_PPC_Cold 6814 : RetCC_PPC); 6815 6816 SDValue Flag; 6817 SmallVector<SDValue, 4> RetOps(1, Chain); 6818 6819 // Copy the result values into the output registers. 6820 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 6821 CCValAssign &VA = RVLocs[i]; 6822 assert(VA.isRegLoc() && "Can only return in registers!"); 6823 6824 SDValue Arg = OutVals[RealResIdx]; 6825 6826 switch (VA.getLocInfo()) { 6827 default: llvm_unreachable("Unknown loc info!"); 6828 case CCValAssign::Full: break; 6829 case CCValAssign::AExt: 6830 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6831 break; 6832 case CCValAssign::ZExt: 6833 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6834 break; 6835 case CCValAssign::SExt: 6836 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6837 break; 6838 } 6839 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 6840 bool isLittleEndian = Subtarget.isLittleEndian(); 6841 // Legalize ret f64 -> ret 2 x i32. 6842 SDValue SVal = 6843 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6844 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 6845 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6846 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6847 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 6848 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 6849 Flag = Chain.getValue(1); 6850 VA = RVLocs[++i]; // skip ahead to next loc 6851 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 6852 } else 6853 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6854 Flag = Chain.getValue(1); 6855 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6856 } 6857 6858 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6859 const MCPhysReg *I = 6860 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6861 if (I) { 6862 for (; *I; ++I) { 6863 6864 if (PPC::G8RCRegClass.contains(*I)) 6865 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6866 else if (PPC::F8RCRegClass.contains(*I)) 6867 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6868 else if (PPC::CRRCRegClass.contains(*I)) 6869 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6870 else if (PPC::VRRCRegClass.contains(*I)) 6871 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6872 else 6873 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6874 } 6875 } 6876 6877 RetOps[0] = Chain; // Update chain. 6878 6879 // Add the flag if we have it. 6880 if (Flag.getNode()) 6881 RetOps.push_back(Flag); 6882 6883 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6884 } 6885 6886 SDValue 6887 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6888 SelectionDAG &DAG) const { 6889 SDLoc dl(Op); 6890 6891 // Get the correct type for integers. 6892 EVT IntVT = Op.getValueType(); 6893 6894 // Get the inputs. 6895 SDValue Chain = Op.getOperand(0); 6896 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6897 // Build a DYNAREAOFFSET node. 6898 SDValue Ops[2] = {Chain, FPSIdx}; 6899 SDVTList VTs = DAG.getVTList(IntVT); 6900 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6901 } 6902 6903 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6904 SelectionDAG &DAG) const { 6905 // When we pop the dynamic allocation we need to restore the SP link. 6906 SDLoc dl(Op); 6907 6908 // Get the correct type for pointers. 6909 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6910 6911 // Construct the stack pointer operand. 6912 bool isPPC64 = Subtarget.isPPC64(); 6913 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6914 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6915 6916 // Get the operands for the STACKRESTORE. 6917 SDValue Chain = Op.getOperand(0); 6918 SDValue SaveSP = Op.getOperand(1); 6919 6920 // Load the old link SP. 6921 SDValue LoadLinkSP = 6922 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6923 6924 // Restore the stack pointer. 6925 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6926 6927 // Store the old link SP. 6928 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6929 } 6930 6931 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6932 MachineFunction &MF = DAG.getMachineFunction(); 6933 bool isPPC64 = Subtarget.isPPC64(); 6934 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6935 6936 // Get current frame pointer save index. The users of this index will be 6937 // primarily DYNALLOC instructions. 6938 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6939 int RASI = FI->getReturnAddrSaveIndex(); 6940 6941 // If the frame pointer save index hasn't been defined yet. 6942 if (!RASI) { 6943 // Find out what the fix offset of the frame pointer save area. 6944 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6945 // Allocate the frame index for frame pointer save area. 6946 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6947 // Save the result. 6948 FI->setReturnAddrSaveIndex(RASI); 6949 } 6950 return DAG.getFrameIndex(RASI, PtrVT); 6951 } 6952 6953 SDValue 6954 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6955 MachineFunction &MF = DAG.getMachineFunction(); 6956 bool isPPC64 = Subtarget.isPPC64(); 6957 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6958 6959 // Get current frame pointer save index. The users of this index will be 6960 // primarily DYNALLOC instructions. 6961 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6962 int FPSI = FI->getFramePointerSaveIndex(); 6963 6964 // If the frame pointer save index hasn't been defined yet. 6965 if (!FPSI) { 6966 // Find out what the fix offset of the frame pointer save area. 6967 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6968 // Allocate the frame index for frame pointer save area. 6969 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6970 // Save the result. 6971 FI->setFramePointerSaveIndex(FPSI); 6972 } 6973 return DAG.getFrameIndex(FPSI, PtrVT); 6974 } 6975 6976 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6977 SelectionDAG &DAG) const { 6978 // Get the inputs. 6979 SDValue Chain = Op.getOperand(0); 6980 SDValue Size = Op.getOperand(1); 6981 SDLoc dl(Op); 6982 6983 // Get the correct type for pointers. 6984 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6985 // Negate the size. 6986 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6987 DAG.getConstant(0, dl, PtrVT), Size); 6988 // Construct a node for the frame pointer save index. 6989 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6990 // Build a DYNALLOC node. 6991 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6992 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6993 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6994 } 6995 6996 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6997 SelectionDAG &DAG) const { 6998 MachineFunction &MF = DAG.getMachineFunction(); 6999 7000 bool isPPC64 = Subtarget.isPPC64(); 7001 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7002 7003 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7004 return DAG.getFrameIndex(FI, PtrVT); 7005 } 7006 7007 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7008 SelectionDAG &DAG) const { 7009 SDLoc DL(Op); 7010 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7011 DAG.getVTList(MVT::i32, MVT::Other), 7012 Op.getOperand(0), Op.getOperand(1)); 7013 } 7014 7015 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7016 SelectionDAG &DAG) const { 7017 SDLoc DL(Op); 7018 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7019 Op.getOperand(0), Op.getOperand(1)); 7020 } 7021 7022 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7023 if (Op.getValueType().isVector()) 7024 return LowerVectorLoad(Op, DAG); 7025 7026 assert(Op.getValueType() == MVT::i1 && 7027 "Custom lowering only for i1 loads"); 7028 7029 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7030 7031 SDLoc dl(Op); 7032 LoadSDNode *LD = cast<LoadSDNode>(Op); 7033 7034 SDValue Chain = LD->getChain(); 7035 SDValue BasePtr = LD->getBasePtr(); 7036 MachineMemOperand *MMO = LD->getMemOperand(); 7037 7038 SDValue NewLD = 7039 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7040 BasePtr, MVT::i8, MMO); 7041 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7042 7043 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7044 return DAG.getMergeValues(Ops, dl); 7045 } 7046 7047 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7048 if (Op.getOperand(1).getValueType().isVector()) 7049 return LowerVectorStore(Op, DAG); 7050 7051 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7052 "Custom lowering only for i1 stores"); 7053 7054 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7055 7056 SDLoc dl(Op); 7057 StoreSDNode *ST = cast<StoreSDNode>(Op); 7058 7059 SDValue Chain = ST->getChain(); 7060 SDValue BasePtr = ST->getBasePtr(); 7061 SDValue Value = ST->getValue(); 7062 MachineMemOperand *MMO = ST->getMemOperand(); 7063 7064 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7065 Value); 7066 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7067 } 7068 7069 // FIXME: Remove this once the ANDI glue bug is fixed: 7070 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7071 assert(Op.getValueType() == MVT::i1 && 7072 "Custom lowering only for i1 results"); 7073 7074 SDLoc DL(Op); 7075 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 7076 Op.getOperand(0)); 7077 } 7078 7079 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7080 SelectionDAG &DAG) const { 7081 7082 // Implements a vector truncate that fits in a vector register as a shuffle. 7083 // We want to legalize vector truncates down to where the source fits in 7084 // a vector register (and target is therefore smaller than vector register 7085 // size). At that point legalization will try to custom lower the sub-legal 7086 // result and get here - where we can contain the truncate as a single target 7087 // operation. 7088 7089 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7090 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7091 // 7092 // We will implement it for big-endian ordering as this (where x denotes 7093 // undefined): 7094 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7095 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7096 // 7097 // The same operation in little-endian ordering will be: 7098 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7099 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7100 7101 assert(Op.getValueType().isVector() && "Vector type expected."); 7102 7103 SDLoc DL(Op); 7104 SDValue N1 = Op.getOperand(0); 7105 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7106 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7107 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7108 7109 EVT TrgVT = Op.getValueType(); 7110 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7111 EVT EltVT = TrgVT.getVectorElementType(); 7112 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7113 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7114 7115 // First list the elements we want to keep. 7116 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7117 SmallVector<int, 16> ShuffV; 7118 if (Subtarget.isLittleEndian()) 7119 for (unsigned i = 0; i < TrgNumElts; ++i) 7120 ShuffV.push_back(i * SizeMult); 7121 else 7122 for (unsigned i = 1; i <= TrgNumElts; ++i) 7123 ShuffV.push_back(i * SizeMult - 1); 7124 7125 // Populate the remaining elements with undefs. 7126 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7127 // ShuffV.push_back(i + WideNumElts); 7128 ShuffV.push_back(WideNumElts + 1); 7129 7130 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7131 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7132 } 7133 7134 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7135 /// possible. 7136 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7137 // Not FP? Not a fsel. 7138 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7139 !Op.getOperand(2).getValueType().isFloatingPoint()) 7140 return Op; 7141 7142 // We might be able to do better than this under some circumstances, but in 7143 // general, fsel-based lowering of select is a finite-math-only optimization. 7144 // For more information, see section F.3 of the 2.06 ISA specification. 7145 if (!DAG.getTarget().Options.NoInfsFPMath || 7146 !DAG.getTarget().Options.NoNaNsFPMath) 7147 return Op; 7148 // TODO: Propagate flags from the select rather than global settings. 7149 SDNodeFlags Flags; 7150 Flags.setNoInfs(true); 7151 Flags.setNoNaNs(true); 7152 7153 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7154 7155 EVT ResVT = Op.getValueType(); 7156 EVT CmpVT = Op.getOperand(0).getValueType(); 7157 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7158 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7159 SDLoc dl(Op); 7160 7161 // If the RHS of the comparison is a 0.0, we don't need to do the 7162 // subtraction at all. 7163 SDValue Sel1; 7164 if (isFloatingPointZero(RHS)) 7165 switch (CC) { 7166 default: break; // SETUO etc aren't handled by fsel. 7167 case ISD::SETNE: 7168 std::swap(TV, FV); 7169 LLVM_FALLTHROUGH; 7170 case ISD::SETEQ: 7171 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7172 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7173 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7174 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7175 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7176 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7177 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7178 case ISD::SETULT: 7179 case ISD::SETLT: 7180 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7181 LLVM_FALLTHROUGH; 7182 case ISD::SETOGE: 7183 case ISD::SETGE: 7184 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7185 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7186 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7187 case ISD::SETUGT: 7188 case ISD::SETGT: 7189 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7190 LLVM_FALLTHROUGH; 7191 case ISD::SETOLE: 7192 case ISD::SETLE: 7193 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7194 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7195 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7196 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7197 } 7198 7199 SDValue Cmp; 7200 switch (CC) { 7201 default: break; // SETUO etc aren't handled by fsel. 7202 case ISD::SETNE: 7203 std::swap(TV, FV); 7204 LLVM_FALLTHROUGH; 7205 case ISD::SETEQ: 7206 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7207 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7208 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7209 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7210 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7211 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7212 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7213 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7214 case ISD::SETULT: 7215 case ISD::SETLT: 7216 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7217 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7218 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7219 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7220 case ISD::SETOGE: 7221 case ISD::SETGE: 7222 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7223 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7224 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7225 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7226 case ISD::SETUGT: 7227 case ISD::SETGT: 7228 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7229 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7230 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7231 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7232 case ISD::SETOLE: 7233 case ISD::SETLE: 7234 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7235 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7236 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7237 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7238 } 7239 return Op; 7240 } 7241 7242 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7243 SelectionDAG &DAG, 7244 const SDLoc &dl) const { 7245 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7246 SDValue Src = Op.getOperand(0); 7247 if (Src.getValueType() == MVT::f32) 7248 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7249 7250 SDValue Tmp; 7251 switch (Op.getSimpleValueType().SimpleTy) { 7252 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7253 case MVT::i32: 7254 Tmp = DAG.getNode( 7255 Op.getOpcode() == ISD::FP_TO_SINT 7256 ? PPCISD::FCTIWZ 7257 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7258 dl, MVT::f64, Src); 7259 break; 7260 case MVT::i64: 7261 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7262 "i64 FP_TO_UINT is supported only with FPCVT"); 7263 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7264 PPCISD::FCTIDUZ, 7265 dl, MVT::f64, Src); 7266 break; 7267 } 7268 7269 // Convert the FP value to an int value through memory. 7270 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7271 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7272 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7273 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7274 MachinePointerInfo MPI = 7275 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7276 7277 // Emit a store to the stack slot. 7278 SDValue Chain; 7279 if (i32Stack) { 7280 MachineFunction &MF = DAG.getMachineFunction(); 7281 MachineMemOperand *MMO = 7282 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7283 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7284 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7285 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7286 } else 7287 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7288 7289 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7290 // add in a bias on big endian. 7291 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7292 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7293 DAG.getConstant(4, dl, FIPtr.getValueType())); 7294 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7295 } 7296 7297 RLI.Chain = Chain; 7298 RLI.Ptr = FIPtr; 7299 RLI.MPI = MPI; 7300 } 7301 7302 /// Custom lowers floating point to integer conversions to use 7303 /// the direct move instructions available in ISA 2.07 to avoid the 7304 /// need for load/store combinations. 7305 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7306 SelectionDAG &DAG, 7307 const SDLoc &dl) const { 7308 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7309 SDValue Src = Op.getOperand(0); 7310 7311 if (Src.getValueType() == MVT::f32) 7312 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7313 7314 SDValue Tmp; 7315 switch (Op.getSimpleValueType().SimpleTy) { 7316 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7317 case MVT::i32: 7318 Tmp = DAG.getNode( 7319 Op.getOpcode() == ISD::FP_TO_SINT 7320 ? PPCISD::FCTIWZ 7321 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7322 dl, MVT::f64, Src); 7323 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7324 break; 7325 case MVT::i64: 7326 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7327 "i64 FP_TO_UINT is supported only with FPCVT"); 7328 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7329 PPCISD::FCTIDUZ, 7330 dl, MVT::f64, Src); 7331 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7332 break; 7333 } 7334 return Tmp; 7335 } 7336 7337 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7338 const SDLoc &dl) const { 7339 7340 // FP to INT conversions are legal for f128. 7341 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7342 return Op; 7343 7344 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7345 // PPC (the libcall is not available). 7346 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7347 if (Op.getValueType() == MVT::i32) { 7348 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7349 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7350 MVT::f64, Op.getOperand(0), 7351 DAG.getIntPtrConstant(0, dl)); 7352 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7353 MVT::f64, Op.getOperand(0), 7354 DAG.getIntPtrConstant(1, dl)); 7355 7356 // Add the two halves of the long double in round-to-zero mode. 7357 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7358 7359 // Now use a smaller FP_TO_SINT. 7360 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7361 } 7362 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7363 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7364 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7365 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7366 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7367 // FIXME: generated code sucks. 7368 // TODO: Are there fast-math-flags to propagate to this FSUB? 7369 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7370 Op.getOperand(0), Tmp); 7371 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7372 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7373 DAG.getConstant(0x80000000, dl, MVT::i32)); 7374 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7375 Op.getOperand(0)); 7376 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7377 ISD::SETGE); 7378 } 7379 } 7380 7381 return SDValue(); 7382 } 7383 7384 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7385 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7386 7387 ReuseLoadInfo RLI; 7388 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7389 7390 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7391 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7392 } 7393 7394 // We're trying to insert a regular store, S, and then a load, L. If the 7395 // incoming value, O, is a load, we might just be able to have our load use the 7396 // address used by O. However, we don't know if anything else will store to 7397 // that address before we can load from it. To prevent this situation, we need 7398 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7399 // the same chain operand as O, we create a token factor from the chain results 7400 // of O and L, and we replace all uses of O's chain result with that token 7401 // factor (see spliceIntoChain below for this last part). 7402 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7403 ReuseLoadInfo &RLI, 7404 SelectionDAG &DAG, 7405 ISD::LoadExtType ET) const { 7406 SDLoc dl(Op); 7407 if (ET == ISD::NON_EXTLOAD && 7408 (Op.getOpcode() == ISD::FP_TO_UINT || 7409 Op.getOpcode() == ISD::FP_TO_SINT) && 7410 isOperationLegalOrCustom(Op.getOpcode(), 7411 Op.getOperand(0).getValueType())) { 7412 7413 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7414 return true; 7415 } 7416 7417 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7418 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7419 LD->isNonTemporal()) 7420 return false; 7421 if (LD->getMemoryVT() != MemVT) 7422 return false; 7423 7424 RLI.Ptr = LD->getBasePtr(); 7425 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7426 assert(LD->getAddressingMode() == ISD::PRE_INC && 7427 "Non-pre-inc AM on PPC?"); 7428 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7429 LD->getOffset()); 7430 } 7431 7432 RLI.Chain = LD->getChain(); 7433 RLI.MPI = LD->getPointerInfo(); 7434 RLI.IsDereferenceable = LD->isDereferenceable(); 7435 RLI.IsInvariant = LD->isInvariant(); 7436 RLI.Alignment = LD->getAlignment(); 7437 RLI.AAInfo = LD->getAAInfo(); 7438 RLI.Ranges = LD->getRanges(); 7439 7440 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7441 return true; 7442 } 7443 7444 // Given the head of the old chain, ResChain, insert a token factor containing 7445 // it and NewResChain, and make users of ResChain now be users of that token 7446 // factor. 7447 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7448 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7449 SDValue NewResChain, 7450 SelectionDAG &DAG) const { 7451 if (!ResChain) 7452 return; 7453 7454 SDLoc dl(NewResChain); 7455 7456 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7457 NewResChain, DAG.getUNDEF(MVT::Other)); 7458 assert(TF.getNode() != NewResChain.getNode() && 7459 "A new TF really is required here"); 7460 7461 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7462 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7463 } 7464 7465 /// Analyze profitability of direct move 7466 /// prefer float load to int load plus direct move 7467 /// when there is no integer use of int load 7468 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7469 SDNode *Origin = Op.getOperand(0).getNode(); 7470 if (Origin->getOpcode() != ISD::LOAD) 7471 return true; 7472 7473 // If there is no LXSIBZX/LXSIHZX, like Power8, 7474 // prefer direct move if the memory size is 1 or 2 bytes. 7475 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7476 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7477 return true; 7478 7479 for (SDNode::use_iterator UI = Origin->use_begin(), 7480 UE = Origin->use_end(); 7481 UI != UE; ++UI) { 7482 7483 // Only look at the users of the loaded value. 7484 if (UI.getUse().get().getResNo() != 0) 7485 continue; 7486 7487 if (UI->getOpcode() != ISD::SINT_TO_FP && 7488 UI->getOpcode() != ISD::UINT_TO_FP) 7489 return true; 7490 } 7491 7492 return false; 7493 } 7494 7495 /// Custom lowers integer to floating point conversions to use 7496 /// the direct move instructions available in ISA 2.07 to avoid the 7497 /// need for load/store combinations. 7498 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7499 SelectionDAG &DAG, 7500 const SDLoc &dl) const { 7501 assert((Op.getValueType() == MVT::f32 || 7502 Op.getValueType() == MVT::f64) && 7503 "Invalid floating point type as target of conversion"); 7504 assert(Subtarget.hasFPCVT() && 7505 "Int to FP conversions with direct moves require FPCVT"); 7506 SDValue FP; 7507 SDValue Src = Op.getOperand(0); 7508 bool SinglePrec = Op.getValueType() == MVT::f32; 7509 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7510 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7511 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7512 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7513 7514 if (WordInt) { 7515 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7516 dl, MVT::f64, Src); 7517 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7518 } 7519 else { 7520 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7521 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7522 } 7523 7524 return FP; 7525 } 7526 7527 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7528 7529 EVT VecVT = Vec.getValueType(); 7530 assert(VecVT.isVector() && "Expected a vector type."); 7531 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7532 7533 EVT EltVT = VecVT.getVectorElementType(); 7534 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7535 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7536 7537 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7538 SmallVector<SDValue, 16> Ops(NumConcat); 7539 Ops[0] = Vec; 7540 SDValue UndefVec = DAG.getUNDEF(VecVT); 7541 for (unsigned i = 1; i < NumConcat; ++i) 7542 Ops[i] = UndefVec; 7543 7544 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7545 } 7546 7547 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7548 const SDLoc &dl) const { 7549 7550 unsigned Opc = Op.getOpcode(); 7551 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 7552 "Unexpected conversion type"); 7553 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7554 "Supports conversions to v2f64/v4f32 only."); 7555 7556 bool SignedConv = Opc == ISD::SINT_TO_FP; 7557 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7558 7559 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 7560 EVT WideVT = Wide.getValueType(); 7561 unsigned WideNumElts = WideVT.getVectorNumElements(); 7562 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7563 7564 SmallVector<int, 16> ShuffV; 7565 for (unsigned i = 0; i < WideNumElts; ++i) 7566 ShuffV.push_back(i + WideNumElts); 7567 7568 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7569 int SaveElts = FourEltRes ? 4 : 2; 7570 if (Subtarget.isLittleEndian()) 7571 for (int i = 0; i < SaveElts; i++) 7572 ShuffV[i * Stride] = i; 7573 else 7574 for (int i = 1; i <= SaveElts; i++) 7575 ShuffV[i * Stride - 1] = i - 1; 7576 7577 SDValue ShuffleSrc2 = 7578 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7579 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7580 unsigned ExtendOp = 7581 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 7582 7583 SDValue Extend; 7584 if (!Subtarget.hasP9Altivec() && SignedConv) { 7585 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7586 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7587 DAG.getValueType(Op.getOperand(0).getValueType())); 7588 } else 7589 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 7590 7591 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7592 } 7593 7594 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7595 SelectionDAG &DAG) const { 7596 SDLoc dl(Op); 7597 7598 EVT InVT = Op.getOperand(0).getValueType(); 7599 EVT OutVT = Op.getValueType(); 7600 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7601 isOperationCustom(Op.getOpcode(), InVT)) 7602 return LowerINT_TO_FPVector(Op, DAG, dl); 7603 7604 // Conversions to f128 are legal. 7605 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7606 return Op; 7607 7608 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7609 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7610 return SDValue(); 7611 7612 SDValue Value = Op.getOperand(0); 7613 // The values are now known to be -1 (false) or 1 (true). To convert this 7614 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7615 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7616 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7617 7618 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7619 7620 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7621 7622 if (Op.getValueType() != MVT::v4f64) 7623 Value = DAG.getNode(ISD::FP_ROUND, dl, 7624 Op.getValueType(), Value, 7625 DAG.getIntPtrConstant(1, dl)); 7626 return Value; 7627 } 7628 7629 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7630 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7631 return SDValue(); 7632 7633 if (Op.getOperand(0).getValueType() == MVT::i1) 7634 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7635 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7636 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7637 7638 // If we have direct moves, we can do all the conversion, skip the store/load 7639 // however, without FPCVT we can't do most conversions. 7640 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7641 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7642 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7643 7644 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7645 "UINT_TO_FP is supported only with FPCVT"); 7646 7647 // If we have FCFIDS, then use it when converting to single-precision. 7648 // Otherwise, convert to double-precision and then round. 7649 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7650 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7651 : PPCISD::FCFIDS) 7652 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7653 : PPCISD::FCFID); 7654 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7655 ? MVT::f32 7656 : MVT::f64; 7657 7658 if (Op.getOperand(0).getValueType() == MVT::i64) { 7659 SDValue SINT = Op.getOperand(0); 7660 // When converting to single-precision, we actually need to convert 7661 // to double-precision first and then round to single-precision. 7662 // To avoid double-rounding effects during that operation, we have 7663 // to prepare the input operand. Bits that might be truncated when 7664 // converting to double-precision are replaced by a bit that won't 7665 // be lost at this stage, but is below the single-precision rounding 7666 // position. 7667 // 7668 // However, if -enable-unsafe-fp-math is in effect, accept double 7669 // rounding to avoid the extra overhead. 7670 if (Op.getValueType() == MVT::f32 && 7671 !Subtarget.hasFPCVT() && 7672 !DAG.getTarget().Options.UnsafeFPMath) { 7673 7674 // Twiddle input to make sure the low 11 bits are zero. (If this 7675 // is the case, we are guaranteed the value will fit into the 53 bit 7676 // mantissa of an IEEE double-precision value without rounding.) 7677 // If any of those low 11 bits were not zero originally, make sure 7678 // bit 12 (value 2048) is set instead, so that the final rounding 7679 // to single-precision gets the correct result. 7680 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7681 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7682 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7683 Round, DAG.getConstant(2047, dl, MVT::i64)); 7684 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7685 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7686 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7687 7688 // However, we cannot use that value unconditionally: if the magnitude 7689 // of the input value is small, the bit-twiddling we did above might 7690 // end up visibly changing the output. Fortunately, in that case, we 7691 // don't need to twiddle bits since the original input will convert 7692 // exactly to double-precision floating-point already. Therefore, 7693 // construct a conditional to use the original value if the top 11 7694 // bits are all sign-bit copies, and use the rounded value computed 7695 // above otherwise. 7696 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7697 SINT, DAG.getConstant(53, dl, MVT::i32)); 7698 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7699 Cond, DAG.getConstant(1, dl, MVT::i64)); 7700 Cond = DAG.getSetCC(dl, MVT::i32, 7701 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7702 7703 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7704 } 7705 7706 ReuseLoadInfo RLI; 7707 SDValue Bits; 7708 7709 MachineFunction &MF = DAG.getMachineFunction(); 7710 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7711 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7712 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7713 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7714 } else if (Subtarget.hasLFIWAX() && 7715 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7716 MachineMemOperand *MMO = 7717 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7718 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7719 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7720 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7721 DAG.getVTList(MVT::f64, MVT::Other), 7722 Ops, MVT::i32, MMO); 7723 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7724 } else if (Subtarget.hasFPCVT() && 7725 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7726 MachineMemOperand *MMO = 7727 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7728 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7729 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7730 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7731 DAG.getVTList(MVT::f64, MVT::Other), 7732 Ops, MVT::i32, MMO); 7733 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7734 } else if (((Subtarget.hasLFIWAX() && 7735 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7736 (Subtarget.hasFPCVT() && 7737 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7738 SINT.getOperand(0).getValueType() == MVT::i32) { 7739 MachineFrameInfo &MFI = MF.getFrameInfo(); 7740 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7741 7742 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7743 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7744 7745 SDValue Store = 7746 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7747 MachinePointerInfo::getFixedStack( 7748 DAG.getMachineFunction(), FrameIdx)); 7749 7750 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7751 "Expected an i32 store"); 7752 7753 RLI.Ptr = FIdx; 7754 RLI.Chain = Store; 7755 RLI.MPI = 7756 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7757 RLI.Alignment = 4; 7758 7759 MachineMemOperand *MMO = 7760 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7761 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7762 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7763 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7764 PPCISD::LFIWZX : PPCISD::LFIWAX, 7765 dl, DAG.getVTList(MVT::f64, MVT::Other), 7766 Ops, MVT::i32, MMO); 7767 } else 7768 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7769 7770 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7771 7772 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7773 FP = DAG.getNode(ISD::FP_ROUND, dl, 7774 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7775 return FP; 7776 } 7777 7778 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7779 "Unhandled INT_TO_FP type in custom expander!"); 7780 // Since we only generate this in 64-bit mode, we can take advantage of 7781 // 64-bit registers. In particular, sign extend the input value into the 7782 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7783 // then lfd it and fcfid it. 7784 MachineFunction &MF = DAG.getMachineFunction(); 7785 MachineFrameInfo &MFI = MF.getFrameInfo(); 7786 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7787 7788 SDValue Ld; 7789 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7790 ReuseLoadInfo RLI; 7791 bool ReusingLoad; 7792 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7793 DAG))) { 7794 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7795 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7796 7797 SDValue Store = 7798 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7799 MachinePointerInfo::getFixedStack( 7800 DAG.getMachineFunction(), FrameIdx)); 7801 7802 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7803 "Expected an i32 store"); 7804 7805 RLI.Ptr = FIdx; 7806 RLI.Chain = Store; 7807 RLI.MPI = 7808 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7809 RLI.Alignment = 4; 7810 } 7811 7812 MachineMemOperand *MMO = 7813 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7814 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7815 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7816 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7817 PPCISD::LFIWZX : PPCISD::LFIWAX, 7818 dl, DAG.getVTList(MVT::f64, MVT::Other), 7819 Ops, MVT::i32, MMO); 7820 if (ReusingLoad) 7821 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7822 } else { 7823 assert(Subtarget.isPPC64() && 7824 "i32->FP without LFIWAX supported only on PPC64"); 7825 7826 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7827 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7828 7829 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7830 Op.getOperand(0)); 7831 7832 // STD the extended value into the stack slot. 7833 SDValue Store = DAG.getStore( 7834 DAG.getEntryNode(), dl, Ext64, FIdx, 7835 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7836 7837 // Load the value as a double. 7838 Ld = DAG.getLoad( 7839 MVT::f64, dl, Store, FIdx, 7840 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7841 } 7842 7843 // FCFID it and return it. 7844 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7845 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7846 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7847 DAG.getIntPtrConstant(0, dl)); 7848 return FP; 7849 } 7850 7851 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7852 SelectionDAG &DAG) const { 7853 SDLoc dl(Op); 7854 /* 7855 The rounding mode is in bits 30:31 of FPSR, and has the following 7856 settings: 7857 00 Round to nearest 7858 01 Round to 0 7859 10 Round to +inf 7860 11 Round to -inf 7861 7862 FLT_ROUNDS, on the other hand, expects the following: 7863 -1 Undefined 7864 0 Round to 0 7865 1 Round to nearest 7866 2 Round to +inf 7867 3 Round to -inf 7868 7869 To perform the conversion, we do: 7870 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7871 */ 7872 7873 MachineFunction &MF = DAG.getMachineFunction(); 7874 EVT VT = Op.getValueType(); 7875 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7876 7877 // Save FP Control Word to register 7878 EVT NodeTys[] = { 7879 MVT::f64, // return register 7880 MVT::Glue // unused in this context 7881 }; 7882 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7883 7884 // Save FP register to stack slot 7885 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7886 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7887 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7888 MachinePointerInfo()); 7889 7890 // Load FP Control Word from low 32 bits of stack slot. 7891 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7892 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7893 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7894 7895 // Transform as necessary 7896 SDValue CWD1 = 7897 DAG.getNode(ISD::AND, dl, MVT::i32, 7898 CWD, DAG.getConstant(3, dl, MVT::i32)); 7899 SDValue CWD2 = 7900 DAG.getNode(ISD::SRL, dl, MVT::i32, 7901 DAG.getNode(ISD::AND, dl, MVT::i32, 7902 DAG.getNode(ISD::XOR, dl, MVT::i32, 7903 CWD, DAG.getConstant(3, dl, MVT::i32)), 7904 DAG.getConstant(3, dl, MVT::i32)), 7905 DAG.getConstant(1, dl, MVT::i32)); 7906 7907 SDValue RetVal = 7908 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7909 7910 return DAG.getNode((VT.getSizeInBits() < 16 ? 7911 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7912 } 7913 7914 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7915 EVT VT = Op.getValueType(); 7916 unsigned BitWidth = VT.getSizeInBits(); 7917 SDLoc dl(Op); 7918 assert(Op.getNumOperands() == 3 && 7919 VT == Op.getOperand(1).getValueType() && 7920 "Unexpected SHL!"); 7921 7922 // Expand into a bunch of logical ops. Note that these ops 7923 // depend on the PPC behavior for oversized shift amounts. 7924 SDValue Lo = Op.getOperand(0); 7925 SDValue Hi = Op.getOperand(1); 7926 SDValue Amt = Op.getOperand(2); 7927 EVT AmtVT = Amt.getValueType(); 7928 7929 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7930 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7931 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7932 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7933 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7934 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7935 DAG.getConstant(-BitWidth, dl, AmtVT)); 7936 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7937 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7938 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7939 SDValue OutOps[] = { OutLo, OutHi }; 7940 return DAG.getMergeValues(OutOps, dl); 7941 } 7942 7943 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7944 EVT VT = Op.getValueType(); 7945 SDLoc dl(Op); 7946 unsigned BitWidth = VT.getSizeInBits(); 7947 assert(Op.getNumOperands() == 3 && 7948 VT == Op.getOperand(1).getValueType() && 7949 "Unexpected SRL!"); 7950 7951 // Expand into a bunch of logical ops. Note that these ops 7952 // depend on the PPC behavior for oversized shift amounts. 7953 SDValue Lo = Op.getOperand(0); 7954 SDValue Hi = Op.getOperand(1); 7955 SDValue Amt = Op.getOperand(2); 7956 EVT AmtVT = Amt.getValueType(); 7957 7958 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7959 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7960 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7961 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7962 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7963 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7964 DAG.getConstant(-BitWidth, dl, AmtVT)); 7965 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7966 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7967 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7968 SDValue OutOps[] = { OutLo, OutHi }; 7969 return DAG.getMergeValues(OutOps, dl); 7970 } 7971 7972 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7973 SDLoc dl(Op); 7974 EVT VT = Op.getValueType(); 7975 unsigned BitWidth = VT.getSizeInBits(); 7976 assert(Op.getNumOperands() == 3 && 7977 VT == Op.getOperand(1).getValueType() && 7978 "Unexpected SRA!"); 7979 7980 // Expand into a bunch of logical ops, followed by a select_cc. 7981 SDValue Lo = Op.getOperand(0); 7982 SDValue Hi = Op.getOperand(1); 7983 SDValue Amt = Op.getOperand(2); 7984 EVT AmtVT = Amt.getValueType(); 7985 7986 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7987 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7988 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7989 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7990 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7991 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7992 DAG.getConstant(-BitWidth, dl, AmtVT)); 7993 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7994 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7995 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7996 Tmp4, Tmp6, ISD::SETLE); 7997 SDValue OutOps[] = { OutLo, OutHi }; 7998 return DAG.getMergeValues(OutOps, dl); 7999 } 8000 8001 //===----------------------------------------------------------------------===// 8002 // Vector related lowering. 8003 // 8004 8005 /// BuildSplatI - Build a canonical splati of Val with an element size of 8006 /// SplatSize. Cast the result to VT. 8007 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8008 SelectionDAG &DAG, const SDLoc &dl) { 8009 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 8010 8011 static const MVT VTys[] = { // canonical VT to use for each size. 8012 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8013 }; 8014 8015 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8016 8017 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8018 if (Val == -1) 8019 SplatSize = 1; 8020 8021 EVT CanonicalVT = VTys[SplatSize-1]; 8022 8023 // Build a canonical splat for this value. 8024 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8025 } 8026 8027 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8028 /// specified intrinsic ID. 8029 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8030 const SDLoc &dl, EVT DestVT = MVT::Other) { 8031 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8032 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8033 DAG.getConstant(IID, dl, MVT::i32), Op); 8034 } 8035 8036 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8037 /// specified intrinsic ID. 8038 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8039 SelectionDAG &DAG, const SDLoc &dl, 8040 EVT DestVT = MVT::Other) { 8041 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8042 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8043 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8044 } 8045 8046 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8047 /// specified intrinsic ID. 8048 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8049 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8050 EVT DestVT = MVT::Other) { 8051 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8052 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8053 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8054 } 8055 8056 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8057 /// amount. The result has the specified value type. 8058 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8059 SelectionDAG &DAG, const SDLoc &dl) { 8060 // Force LHS/RHS to be the right type. 8061 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8062 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8063 8064 int Ops[16]; 8065 for (unsigned i = 0; i != 16; ++i) 8066 Ops[i] = i + Amt; 8067 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8068 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8069 } 8070 8071 /// Do we have an efficient pattern in a .td file for this node? 8072 /// 8073 /// \param V - pointer to the BuildVectorSDNode being matched 8074 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8075 /// 8076 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8077 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8078 /// the opposite is true (expansion is beneficial) are: 8079 /// - The node builds a vector out of integers that are not 32 or 64-bits 8080 /// - The node builds a vector out of constants 8081 /// - The node is a "load-and-splat" 8082 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8083 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8084 bool HasDirectMove, 8085 bool HasP8Vector) { 8086 EVT VecVT = V->getValueType(0); 8087 bool RightType = VecVT == MVT::v2f64 || 8088 (HasP8Vector && VecVT == MVT::v4f32) || 8089 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8090 if (!RightType) 8091 return false; 8092 8093 bool IsSplat = true; 8094 bool IsLoad = false; 8095 SDValue Op0 = V->getOperand(0); 8096 8097 // This function is called in a block that confirms the node is not a constant 8098 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8099 // different constants. 8100 if (V->isConstant()) 8101 return false; 8102 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8103 if (V->getOperand(i).isUndef()) 8104 return false; 8105 // We want to expand nodes that represent load-and-splat even if the 8106 // loaded value is a floating point truncation or conversion to int. 8107 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8108 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8109 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8110 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8111 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8112 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8113 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8114 IsLoad = true; 8115 // If the operands are different or the input is not a load and has more 8116 // uses than just this BV node, then it isn't a splat. 8117 if (V->getOperand(i) != Op0 || 8118 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8119 IsSplat = false; 8120 } 8121 return !(IsSplat && IsLoad); 8122 } 8123 8124 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8125 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8126 8127 SDLoc dl(Op); 8128 SDValue Op0 = Op->getOperand(0); 8129 8130 if (!EnableQuadPrecision || 8131 (Op.getValueType() != MVT::f128 ) || 8132 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8133 (Op0.getOperand(0).getValueType() != MVT::i64) || 8134 (Op0.getOperand(1).getValueType() != MVT::i64)) 8135 return SDValue(); 8136 8137 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8138 Op0.getOperand(1)); 8139 } 8140 8141 // If this is a case we can't handle, return null and let the default 8142 // expansion code take care of it. If we CAN select this case, and if it 8143 // selects to a single instruction, return Op. Otherwise, if we can codegen 8144 // this case more efficiently than a constant pool load, lower it to the 8145 // sequence of ops that should be used. 8146 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8147 SelectionDAG &DAG) const { 8148 SDLoc dl(Op); 8149 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8150 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8151 8152 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8153 // We first build an i32 vector, load it into a QPX register, 8154 // then convert it to a floating-point vector and compare it 8155 // to a zero vector to get the boolean result. 8156 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8157 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8158 MachinePointerInfo PtrInfo = 8159 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8160 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8161 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8162 8163 assert(BVN->getNumOperands() == 4 && 8164 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8165 8166 bool IsConst = true; 8167 for (unsigned i = 0; i < 4; ++i) { 8168 if (BVN->getOperand(i).isUndef()) continue; 8169 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8170 IsConst = false; 8171 break; 8172 } 8173 } 8174 8175 if (IsConst) { 8176 Constant *One = 8177 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8178 Constant *NegOne = 8179 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8180 8181 Constant *CV[4]; 8182 for (unsigned i = 0; i < 4; ++i) { 8183 if (BVN->getOperand(i).isUndef()) 8184 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8185 else if (isNullConstant(BVN->getOperand(i))) 8186 CV[i] = NegOne; 8187 else 8188 CV[i] = One; 8189 } 8190 8191 Constant *CP = ConstantVector::get(CV); 8192 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8193 16 /* alignment */); 8194 8195 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8196 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8197 return DAG.getMemIntrinsicNode( 8198 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8199 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8200 } 8201 8202 SmallVector<SDValue, 4> Stores; 8203 for (unsigned i = 0; i < 4; ++i) { 8204 if (BVN->getOperand(i).isUndef()) continue; 8205 8206 unsigned Offset = 4*i; 8207 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8208 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8209 8210 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8211 if (StoreSize > 4) { 8212 Stores.push_back( 8213 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8214 PtrInfo.getWithOffset(Offset), MVT::i32)); 8215 } else { 8216 SDValue StoreValue = BVN->getOperand(i); 8217 if (StoreSize < 4) 8218 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8219 8220 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8221 PtrInfo.getWithOffset(Offset))); 8222 } 8223 } 8224 8225 SDValue StoreChain; 8226 if (!Stores.empty()) 8227 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8228 else 8229 StoreChain = DAG.getEntryNode(); 8230 8231 // Now load from v4i32 into the QPX register; this will extend it to 8232 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8233 // is typed as v4f64 because the QPX register integer states are not 8234 // explicitly represented. 8235 8236 SDValue Ops[] = {StoreChain, 8237 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8238 FIdx}; 8239 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8240 8241 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8242 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8243 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8244 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8245 LoadedVect); 8246 8247 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8248 8249 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8250 } 8251 8252 // All other QPX vectors are handled by generic code. 8253 if (Subtarget.hasQPX()) 8254 return SDValue(); 8255 8256 // Check if this is a splat of a constant value. 8257 APInt APSplatBits, APSplatUndef; 8258 unsigned SplatBitSize; 8259 bool HasAnyUndefs; 8260 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8261 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8262 SplatBitSize > 32) { 8263 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8264 // lowered to VSX instructions under certain conditions. 8265 // Without VSX, there is no pattern more efficient than expanding the node. 8266 if (Subtarget.hasVSX() && 8267 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8268 Subtarget.hasP8Vector())) 8269 return Op; 8270 return SDValue(); 8271 } 8272 8273 unsigned SplatBits = APSplatBits.getZExtValue(); 8274 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8275 unsigned SplatSize = SplatBitSize / 8; 8276 8277 // First, handle single instruction cases. 8278 8279 // All zeros? 8280 if (SplatBits == 0) { 8281 // Canonicalize all zero vectors to be v4i32. 8282 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8283 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8284 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8285 } 8286 return Op; 8287 } 8288 8289 // We have XXSPLTIB for constant splats one byte wide 8290 if (Subtarget.hasP9Vector() && SplatSize == 1) { 8291 // This is a splat of 1-byte elements with some elements potentially undef. 8292 // Rather than trying to match undef in the SDAG patterns, ensure that all 8293 // elements are the same constant. 8294 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 8295 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 8296 dl, MVT::i32)); 8297 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 8298 if (Op.getValueType() != MVT::v16i8) 8299 return DAG.getBitcast(Op.getValueType(), NewBV); 8300 return NewBV; 8301 } 8302 8303 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 8304 // detect that constant splats like v8i16: 0xABAB are really just splats 8305 // of a 1-byte constant. In this case, we need to convert the node to a 8306 // splat of v16i8 and a bitcast. 8307 if (Op.getValueType() != MVT::v16i8) 8308 return DAG.getBitcast(Op.getValueType(), 8309 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 8310 8311 return Op; 8312 } 8313 8314 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8315 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8316 (32-SplatBitSize)); 8317 if (SextVal >= -16 && SextVal <= 15) 8318 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8319 8320 // Two instruction sequences. 8321 8322 // If this value is in the range [-32,30] and is even, use: 8323 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8324 // If this value is in the range [17,31] and is odd, use: 8325 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8326 // If this value is in the range [-31,-17] and is odd, use: 8327 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8328 // Note the last two are three-instruction sequences. 8329 if (SextVal >= -32 && SextVal <= 31) { 8330 // To avoid having these optimizations undone by constant folding, 8331 // we convert to a pseudo that will be expanded later into one of 8332 // the above forms. 8333 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8334 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8335 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8336 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8337 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8338 if (VT == Op.getValueType()) 8339 return RetVal; 8340 else 8341 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8342 } 8343 8344 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8345 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8346 // for fneg/fabs. 8347 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8348 // Make -1 and vspltisw -1: 8349 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8350 8351 // Make the VSLW intrinsic, computing 0x8000_0000. 8352 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8353 OnesV, DAG, dl); 8354 8355 // xor by OnesV to invert it. 8356 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8357 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8358 } 8359 8360 // Check to see if this is a wide variety of vsplti*, binop self cases. 8361 static const signed char SplatCsts[] = { 8362 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8363 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8364 }; 8365 8366 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8367 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8368 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8369 int i = SplatCsts[idx]; 8370 8371 // Figure out what shift amount will be used by altivec if shifted by i in 8372 // this splat size. 8373 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8374 8375 // vsplti + shl self. 8376 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8377 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8378 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8379 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8380 Intrinsic::ppc_altivec_vslw 8381 }; 8382 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8383 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8384 } 8385 8386 // vsplti + srl self. 8387 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8388 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8389 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8390 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8391 Intrinsic::ppc_altivec_vsrw 8392 }; 8393 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8394 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8395 } 8396 8397 // vsplti + sra self. 8398 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8399 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8400 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8401 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8402 Intrinsic::ppc_altivec_vsraw 8403 }; 8404 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8405 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8406 } 8407 8408 // vsplti + rol self. 8409 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8410 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8411 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8412 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8413 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8414 Intrinsic::ppc_altivec_vrlw 8415 }; 8416 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8417 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8418 } 8419 8420 // t = vsplti c, result = vsldoi t, t, 1 8421 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8422 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8423 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8424 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8425 } 8426 // t = vsplti c, result = vsldoi t, t, 2 8427 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8428 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8429 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8430 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8431 } 8432 // t = vsplti c, result = vsldoi t, t, 3 8433 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8434 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8435 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8436 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8437 } 8438 } 8439 8440 return SDValue(); 8441 } 8442 8443 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8444 /// the specified operations to build the shuffle. 8445 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8446 SDValue RHS, SelectionDAG &DAG, 8447 const SDLoc &dl) { 8448 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8449 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8450 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8451 8452 enum { 8453 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8454 OP_VMRGHW, 8455 OP_VMRGLW, 8456 OP_VSPLTISW0, 8457 OP_VSPLTISW1, 8458 OP_VSPLTISW2, 8459 OP_VSPLTISW3, 8460 OP_VSLDOI4, 8461 OP_VSLDOI8, 8462 OP_VSLDOI12 8463 }; 8464 8465 if (OpNum == OP_COPY) { 8466 if (LHSID == (1*9+2)*9+3) return LHS; 8467 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8468 return RHS; 8469 } 8470 8471 SDValue OpLHS, OpRHS; 8472 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8473 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8474 8475 int ShufIdxs[16]; 8476 switch (OpNum) { 8477 default: llvm_unreachable("Unknown i32 permute!"); 8478 case OP_VMRGHW: 8479 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8480 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8481 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8482 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8483 break; 8484 case OP_VMRGLW: 8485 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8486 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8487 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8488 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8489 break; 8490 case OP_VSPLTISW0: 8491 for (unsigned i = 0; i != 16; ++i) 8492 ShufIdxs[i] = (i&3)+0; 8493 break; 8494 case OP_VSPLTISW1: 8495 for (unsigned i = 0; i != 16; ++i) 8496 ShufIdxs[i] = (i&3)+4; 8497 break; 8498 case OP_VSPLTISW2: 8499 for (unsigned i = 0; i != 16; ++i) 8500 ShufIdxs[i] = (i&3)+8; 8501 break; 8502 case OP_VSPLTISW3: 8503 for (unsigned i = 0; i != 16; ++i) 8504 ShufIdxs[i] = (i&3)+12; 8505 break; 8506 case OP_VSLDOI4: 8507 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8508 case OP_VSLDOI8: 8509 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8510 case OP_VSLDOI12: 8511 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8512 } 8513 EVT VT = OpLHS.getValueType(); 8514 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8515 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8516 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8517 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8518 } 8519 8520 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8521 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8522 /// SDValue. 8523 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8524 SelectionDAG &DAG) const { 8525 const unsigned BytesInVector = 16; 8526 bool IsLE = Subtarget.isLittleEndian(); 8527 SDLoc dl(N); 8528 SDValue V1 = N->getOperand(0); 8529 SDValue V2 = N->getOperand(1); 8530 unsigned ShiftElts = 0, InsertAtByte = 0; 8531 bool Swap = false; 8532 8533 // Shifts required to get the byte we want at element 7. 8534 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8535 0, 15, 14, 13, 12, 11, 10, 9}; 8536 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8537 1, 2, 3, 4, 5, 6, 7, 8}; 8538 8539 ArrayRef<int> Mask = N->getMask(); 8540 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8541 8542 // For each mask element, find out if we're just inserting something 8543 // from V2 into V1 or vice versa. 8544 // Possible permutations inserting an element from V2 into V1: 8545 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8546 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8547 // ... 8548 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8549 // Inserting from V1 into V2 will be similar, except mask range will be 8550 // [16,31]. 8551 8552 bool FoundCandidate = false; 8553 // If both vector operands for the shuffle are the same vector, the mask 8554 // will contain only elements from the first one and the second one will be 8555 // undef. 8556 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8557 // Go through the mask of half-words to find an element that's being moved 8558 // from one vector to the other. 8559 for (unsigned i = 0; i < BytesInVector; ++i) { 8560 unsigned CurrentElement = Mask[i]; 8561 // If 2nd operand is undefined, we should only look for element 7 in the 8562 // Mask. 8563 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8564 continue; 8565 8566 bool OtherElementsInOrder = true; 8567 // Examine the other elements in the Mask to see if they're in original 8568 // order. 8569 for (unsigned j = 0; j < BytesInVector; ++j) { 8570 if (j == i) 8571 continue; 8572 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8573 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8574 // in which we always assume we're always picking from the 1st operand. 8575 int MaskOffset = 8576 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8577 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8578 OtherElementsInOrder = false; 8579 break; 8580 } 8581 } 8582 // If other elements are in original order, we record the number of shifts 8583 // we need to get the element we want into element 7. Also record which byte 8584 // in the vector we should insert into. 8585 if (OtherElementsInOrder) { 8586 // If 2nd operand is undefined, we assume no shifts and no swapping. 8587 if (V2.isUndef()) { 8588 ShiftElts = 0; 8589 Swap = false; 8590 } else { 8591 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8592 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8593 : BigEndianShifts[CurrentElement & 0xF]; 8594 Swap = CurrentElement < BytesInVector; 8595 } 8596 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8597 FoundCandidate = true; 8598 break; 8599 } 8600 } 8601 8602 if (!FoundCandidate) 8603 return SDValue(); 8604 8605 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8606 // optionally with VECSHL if shift is required. 8607 if (Swap) 8608 std::swap(V1, V2); 8609 if (V2.isUndef()) 8610 V2 = V1; 8611 if (ShiftElts) { 8612 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8613 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8614 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8615 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8616 } 8617 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8618 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8619 } 8620 8621 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8622 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8623 /// SDValue. 8624 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8625 SelectionDAG &DAG) const { 8626 const unsigned NumHalfWords = 8; 8627 const unsigned BytesInVector = NumHalfWords * 2; 8628 // Check that the shuffle is on half-words. 8629 if (!isNByteElemShuffleMask(N, 2, 1)) 8630 return SDValue(); 8631 8632 bool IsLE = Subtarget.isLittleEndian(); 8633 SDLoc dl(N); 8634 SDValue V1 = N->getOperand(0); 8635 SDValue V2 = N->getOperand(1); 8636 unsigned ShiftElts = 0, InsertAtByte = 0; 8637 bool Swap = false; 8638 8639 // Shifts required to get the half-word we want at element 3. 8640 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8641 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8642 8643 uint32_t Mask = 0; 8644 uint32_t OriginalOrderLow = 0x1234567; 8645 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8646 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8647 // 32-bit space, only need 4-bit nibbles per element. 8648 for (unsigned i = 0; i < NumHalfWords; ++i) { 8649 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8650 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8651 } 8652 8653 // For each mask element, find out if we're just inserting something 8654 // from V2 into V1 or vice versa. Possible permutations inserting an element 8655 // from V2 into V1: 8656 // X, 1, 2, 3, 4, 5, 6, 7 8657 // 0, X, 2, 3, 4, 5, 6, 7 8658 // 0, 1, X, 3, 4, 5, 6, 7 8659 // 0, 1, 2, X, 4, 5, 6, 7 8660 // 0, 1, 2, 3, X, 5, 6, 7 8661 // 0, 1, 2, 3, 4, X, 6, 7 8662 // 0, 1, 2, 3, 4, 5, X, 7 8663 // 0, 1, 2, 3, 4, 5, 6, X 8664 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8665 8666 bool FoundCandidate = false; 8667 // Go through the mask of half-words to find an element that's being moved 8668 // from one vector to the other. 8669 for (unsigned i = 0; i < NumHalfWords; ++i) { 8670 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8671 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8672 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8673 uint32_t TargetOrder = 0x0; 8674 8675 // If both vector operands for the shuffle are the same vector, the mask 8676 // will contain only elements from the first one and the second one will be 8677 // undef. 8678 if (V2.isUndef()) { 8679 ShiftElts = 0; 8680 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8681 TargetOrder = OriginalOrderLow; 8682 Swap = false; 8683 // Skip if not the correct element or mask of other elements don't equal 8684 // to our expected order. 8685 if (MaskOneElt == VINSERTHSrcElem && 8686 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8687 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8688 FoundCandidate = true; 8689 break; 8690 } 8691 } else { // If both operands are defined. 8692 // Target order is [8,15] if the current mask is between [0,7]. 8693 TargetOrder = 8694 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8695 // Skip if mask of other elements don't equal our expected order. 8696 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8697 // We only need the last 3 bits for the number of shifts. 8698 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8699 : BigEndianShifts[MaskOneElt & 0x7]; 8700 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8701 Swap = MaskOneElt < NumHalfWords; 8702 FoundCandidate = true; 8703 break; 8704 } 8705 } 8706 } 8707 8708 if (!FoundCandidate) 8709 return SDValue(); 8710 8711 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8712 // optionally with VECSHL if shift is required. 8713 if (Swap) 8714 std::swap(V1, V2); 8715 if (V2.isUndef()) 8716 V2 = V1; 8717 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8718 if (ShiftElts) { 8719 // Double ShiftElts because we're left shifting on v16i8 type. 8720 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8721 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8722 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8723 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8724 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8725 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8726 } 8727 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8728 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8729 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8730 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8731 } 8732 8733 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8734 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8735 /// return the code it can be lowered into. Worst case, it can always be 8736 /// lowered into a vperm. 8737 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8738 SelectionDAG &DAG) const { 8739 SDLoc dl(Op); 8740 SDValue V1 = Op.getOperand(0); 8741 SDValue V2 = Op.getOperand(1); 8742 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8743 EVT VT = Op.getValueType(); 8744 bool isLittleEndian = Subtarget.isLittleEndian(); 8745 8746 unsigned ShiftElts, InsertAtByte; 8747 bool Swap = false; 8748 if (Subtarget.hasP9Vector() && 8749 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8750 isLittleEndian)) { 8751 if (Swap) 8752 std::swap(V1, V2); 8753 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8754 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8755 if (ShiftElts) { 8756 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8757 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8758 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8759 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8760 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8761 } 8762 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8763 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8764 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8765 } 8766 8767 if (Subtarget.hasP9Altivec()) { 8768 SDValue NewISDNode; 8769 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8770 return NewISDNode; 8771 8772 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8773 return NewISDNode; 8774 } 8775 8776 if (Subtarget.hasVSX() && 8777 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8778 if (Swap) 8779 std::swap(V1, V2); 8780 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8781 SDValue Conv2 = 8782 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8783 8784 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8785 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8786 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8787 } 8788 8789 if (Subtarget.hasVSX() && 8790 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8791 if (Swap) 8792 std::swap(V1, V2); 8793 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8794 SDValue Conv2 = 8795 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8796 8797 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8798 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8799 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8800 } 8801 8802 if (Subtarget.hasP9Vector()) { 8803 if (PPC::isXXBRHShuffleMask(SVOp)) { 8804 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8805 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8806 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8807 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8808 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8809 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8810 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8811 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8812 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8813 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8814 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8815 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8816 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8817 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8818 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8819 } 8820 } 8821 8822 if (Subtarget.hasVSX()) { 8823 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8824 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8825 8826 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8827 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8828 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8829 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8830 } 8831 8832 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8833 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8834 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8835 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8836 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8837 } 8838 } 8839 8840 if (Subtarget.hasQPX()) { 8841 if (VT.getVectorNumElements() != 4) 8842 return SDValue(); 8843 8844 if (V2.isUndef()) V2 = V1; 8845 8846 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8847 if (AlignIdx != -1) { 8848 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8849 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8850 } else if (SVOp->isSplat()) { 8851 int SplatIdx = SVOp->getSplatIndex(); 8852 if (SplatIdx >= 4) { 8853 std::swap(V1, V2); 8854 SplatIdx -= 4; 8855 } 8856 8857 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8858 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8859 } 8860 8861 // Lower this into a qvgpci/qvfperm pair. 8862 8863 // Compute the qvgpci literal 8864 unsigned idx = 0; 8865 for (unsigned i = 0; i < 4; ++i) { 8866 int m = SVOp->getMaskElt(i); 8867 unsigned mm = m >= 0 ? (unsigned) m : i; 8868 idx |= mm << (3-i)*3; 8869 } 8870 8871 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8872 DAG.getConstant(idx, dl, MVT::i32)); 8873 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8874 } 8875 8876 // Cases that are handled by instructions that take permute immediates 8877 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8878 // selected by the instruction selector. 8879 if (V2.isUndef()) { 8880 if (PPC::isSplatShuffleMask(SVOp, 1) || 8881 PPC::isSplatShuffleMask(SVOp, 2) || 8882 PPC::isSplatShuffleMask(SVOp, 4) || 8883 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8884 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8885 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8886 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8887 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8888 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8889 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8890 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8891 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8892 (Subtarget.hasP8Altivec() && ( 8893 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8894 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8895 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8896 return Op; 8897 } 8898 } 8899 8900 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8901 // and produce a fixed permutation. If any of these match, do not lower to 8902 // VPERM. 8903 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8904 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8905 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8906 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8907 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8908 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8909 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8910 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8911 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8912 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8913 (Subtarget.hasP8Altivec() && ( 8914 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8915 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8916 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8917 return Op; 8918 8919 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8920 // perfect shuffle table to emit an optimal matching sequence. 8921 ArrayRef<int> PermMask = SVOp->getMask(); 8922 8923 unsigned PFIndexes[4]; 8924 bool isFourElementShuffle = true; 8925 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8926 unsigned EltNo = 8; // Start out undef. 8927 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8928 if (PermMask[i*4+j] < 0) 8929 continue; // Undef, ignore it. 8930 8931 unsigned ByteSource = PermMask[i*4+j]; 8932 if ((ByteSource & 3) != j) { 8933 isFourElementShuffle = false; 8934 break; 8935 } 8936 8937 if (EltNo == 8) { 8938 EltNo = ByteSource/4; 8939 } else if (EltNo != ByteSource/4) { 8940 isFourElementShuffle = false; 8941 break; 8942 } 8943 } 8944 PFIndexes[i] = EltNo; 8945 } 8946 8947 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8948 // perfect shuffle vector to determine if it is cost effective to do this as 8949 // discrete instructions, or whether we should use a vperm. 8950 // For now, we skip this for little endian until such time as we have a 8951 // little-endian perfect shuffle table. 8952 if (isFourElementShuffle && !isLittleEndian) { 8953 // Compute the index in the perfect shuffle table. 8954 unsigned PFTableIndex = 8955 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8956 8957 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8958 unsigned Cost = (PFEntry >> 30); 8959 8960 // Determining when to avoid vperm is tricky. Many things affect the cost 8961 // of vperm, particularly how many times the perm mask needs to be computed. 8962 // For example, if the perm mask can be hoisted out of a loop or is already 8963 // used (perhaps because there are multiple permutes with the same shuffle 8964 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8965 // the loop requires an extra register. 8966 // 8967 // As a compromise, we only emit discrete instructions if the shuffle can be 8968 // generated in 3 or fewer operations. When we have loop information 8969 // available, if this block is within a loop, we should avoid using vperm 8970 // for 3-operation perms and use a constant pool load instead. 8971 if (Cost < 3) 8972 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8973 } 8974 8975 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8976 // vector that will get spilled to the constant pool. 8977 if (V2.isUndef()) V2 = V1; 8978 8979 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8980 // that it is in input element units, not in bytes. Convert now. 8981 8982 // For little endian, the order of the input vectors is reversed, and 8983 // the permutation mask is complemented with respect to 31. This is 8984 // necessary to produce proper semantics with the big-endian-biased vperm 8985 // instruction. 8986 EVT EltVT = V1.getValueType().getVectorElementType(); 8987 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 8988 8989 SmallVector<SDValue, 16> ResultMask; 8990 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 8991 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 8992 8993 for (unsigned j = 0; j != BytesPerElement; ++j) 8994 if (isLittleEndian) 8995 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 8996 dl, MVT::i32)); 8997 else 8998 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 8999 MVT::i32)); 9000 } 9001 9002 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9003 if (isLittleEndian) 9004 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9005 V2, V1, VPermMask); 9006 else 9007 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9008 V1, V2, VPermMask); 9009 } 9010 9011 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9012 /// vector comparison. If it is, return true and fill in Opc/isDot with 9013 /// information about the intrinsic. 9014 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9015 bool &isDot, const PPCSubtarget &Subtarget) { 9016 unsigned IntrinsicID = 9017 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9018 CompareOpc = -1; 9019 isDot = false; 9020 switch (IntrinsicID) { 9021 default: 9022 return false; 9023 // Comparison predicates. 9024 case Intrinsic::ppc_altivec_vcmpbfp_p: 9025 CompareOpc = 966; 9026 isDot = true; 9027 break; 9028 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9029 CompareOpc = 198; 9030 isDot = true; 9031 break; 9032 case Intrinsic::ppc_altivec_vcmpequb_p: 9033 CompareOpc = 6; 9034 isDot = true; 9035 break; 9036 case Intrinsic::ppc_altivec_vcmpequh_p: 9037 CompareOpc = 70; 9038 isDot = true; 9039 break; 9040 case Intrinsic::ppc_altivec_vcmpequw_p: 9041 CompareOpc = 134; 9042 isDot = true; 9043 break; 9044 case Intrinsic::ppc_altivec_vcmpequd_p: 9045 if (Subtarget.hasP8Altivec()) { 9046 CompareOpc = 199; 9047 isDot = true; 9048 } else 9049 return false; 9050 break; 9051 case Intrinsic::ppc_altivec_vcmpneb_p: 9052 case Intrinsic::ppc_altivec_vcmpneh_p: 9053 case Intrinsic::ppc_altivec_vcmpnew_p: 9054 case Intrinsic::ppc_altivec_vcmpnezb_p: 9055 case Intrinsic::ppc_altivec_vcmpnezh_p: 9056 case Intrinsic::ppc_altivec_vcmpnezw_p: 9057 if (Subtarget.hasP9Altivec()) { 9058 switch (IntrinsicID) { 9059 default: 9060 llvm_unreachable("Unknown comparison intrinsic."); 9061 case Intrinsic::ppc_altivec_vcmpneb_p: 9062 CompareOpc = 7; 9063 break; 9064 case Intrinsic::ppc_altivec_vcmpneh_p: 9065 CompareOpc = 71; 9066 break; 9067 case Intrinsic::ppc_altivec_vcmpnew_p: 9068 CompareOpc = 135; 9069 break; 9070 case Intrinsic::ppc_altivec_vcmpnezb_p: 9071 CompareOpc = 263; 9072 break; 9073 case Intrinsic::ppc_altivec_vcmpnezh_p: 9074 CompareOpc = 327; 9075 break; 9076 case Intrinsic::ppc_altivec_vcmpnezw_p: 9077 CompareOpc = 391; 9078 break; 9079 } 9080 isDot = true; 9081 } else 9082 return false; 9083 break; 9084 case Intrinsic::ppc_altivec_vcmpgefp_p: 9085 CompareOpc = 454; 9086 isDot = true; 9087 break; 9088 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9089 CompareOpc = 710; 9090 isDot = true; 9091 break; 9092 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9093 CompareOpc = 774; 9094 isDot = true; 9095 break; 9096 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9097 CompareOpc = 838; 9098 isDot = true; 9099 break; 9100 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9101 CompareOpc = 902; 9102 isDot = true; 9103 break; 9104 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9105 if (Subtarget.hasP8Altivec()) { 9106 CompareOpc = 967; 9107 isDot = true; 9108 } else 9109 return false; 9110 break; 9111 case Intrinsic::ppc_altivec_vcmpgtub_p: 9112 CompareOpc = 518; 9113 isDot = true; 9114 break; 9115 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9116 CompareOpc = 582; 9117 isDot = true; 9118 break; 9119 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9120 CompareOpc = 646; 9121 isDot = true; 9122 break; 9123 case Intrinsic::ppc_altivec_vcmpgtud_p: 9124 if (Subtarget.hasP8Altivec()) { 9125 CompareOpc = 711; 9126 isDot = true; 9127 } else 9128 return false; 9129 break; 9130 9131 // VSX predicate comparisons use the same infrastructure 9132 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9133 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9134 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9135 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9136 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9137 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9138 if (Subtarget.hasVSX()) { 9139 switch (IntrinsicID) { 9140 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9141 CompareOpc = 99; 9142 break; 9143 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9144 CompareOpc = 115; 9145 break; 9146 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9147 CompareOpc = 107; 9148 break; 9149 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9150 CompareOpc = 67; 9151 break; 9152 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9153 CompareOpc = 83; 9154 break; 9155 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9156 CompareOpc = 75; 9157 break; 9158 } 9159 isDot = true; 9160 } else 9161 return false; 9162 break; 9163 9164 // Normal Comparisons. 9165 case Intrinsic::ppc_altivec_vcmpbfp: 9166 CompareOpc = 966; 9167 break; 9168 case Intrinsic::ppc_altivec_vcmpeqfp: 9169 CompareOpc = 198; 9170 break; 9171 case Intrinsic::ppc_altivec_vcmpequb: 9172 CompareOpc = 6; 9173 break; 9174 case Intrinsic::ppc_altivec_vcmpequh: 9175 CompareOpc = 70; 9176 break; 9177 case Intrinsic::ppc_altivec_vcmpequw: 9178 CompareOpc = 134; 9179 break; 9180 case Intrinsic::ppc_altivec_vcmpequd: 9181 if (Subtarget.hasP8Altivec()) 9182 CompareOpc = 199; 9183 else 9184 return false; 9185 break; 9186 case Intrinsic::ppc_altivec_vcmpneb: 9187 case Intrinsic::ppc_altivec_vcmpneh: 9188 case Intrinsic::ppc_altivec_vcmpnew: 9189 case Intrinsic::ppc_altivec_vcmpnezb: 9190 case Intrinsic::ppc_altivec_vcmpnezh: 9191 case Intrinsic::ppc_altivec_vcmpnezw: 9192 if (Subtarget.hasP9Altivec()) 9193 switch (IntrinsicID) { 9194 default: 9195 llvm_unreachable("Unknown comparison intrinsic."); 9196 case Intrinsic::ppc_altivec_vcmpneb: 9197 CompareOpc = 7; 9198 break; 9199 case Intrinsic::ppc_altivec_vcmpneh: 9200 CompareOpc = 71; 9201 break; 9202 case Intrinsic::ppc_altivec_vcmpnew: 9203 CompareOpc = 135; 9204 break; 9205 case Intrinsic::ppc_altivec_vcmpnezb: 9206 CompareOpc = 263; 9207 break; 9208 case Intrinsic::ppc_altivec_vcmpnezh: 9209 CompareOpc = 327; 9210 break; 9211 case Intrinsic::ppc_altivec_vcmpnezw: 9212 CompareOpc = 391; 9213 break; 9214 } 9215 else 9216 return false; 9217 break; 9218 case Intrinsic::ppc_altivec_vcmpgefp: 9219 CompareOpc = 454; 9220 break; 9221 case Intrinsic::ppc_altivec_vcmpgtfp: 9222 CompareOpc = 710; 9223 break; 9224 case Intrinsic::ppc_altivec_vcmpgtsb: 9225 CompareOpc = 774; 9226 break; 9227 case Intrinsic::ppc_altivec_vcmpgtsh: 9228 CompareOpc = 838; 9229 break; 9230 case Intrinsic::ppc_altivec_vcmpgtsw: 9231 CompareOpc = 902; 9232 break; 9233 case Intrinsic::ppc_altivec_vcmpgtsd: 9234 if (Subtarget.hasP8Altivec()) 9235 CompareOpc = 967; 9236 else 9237 return false; 9238 break; 9239 case Intrinsic::ppc_altivec_vcmpgtub: 9240 CompareOpc = 518; 9241 break; 9242 case Intrinsic::ppc_altivec_vcmpgtuh: 9243 CompareOpc = 582; 9244 break; 9245 case Intrinsic::ppc_altivec_vcmpgtuw: 9246 CompareOpc = 646; 9247 break; 9248 case Intrinsic::ppc_altivec_vcmpgtud: 9249 if (Subtarget.hasP8Altivec()) 9250 CompareOpc = 711; 9251 else 9252 return false; 9253 break; 9254 } 9255 return true; 9256 } 9257 9258 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9259 /// lower, do it, otherwise return null. 9260 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9261 SelectionDAG &DAG) const { 9262 unsigned IntrinsicID = 9263 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9264 9265 SDLoc dl(Op); 9266 9267 if (IntrinsicID == Intrinsic::thread_pointer) { 9268 // Reads the thread pointer register, used for __builtin_thread_pointer. 9269 if (Subtarget.isPPC64()) 9270 return DAG.getRegister(PPC::X13, MVT::i64); 9271 return DAG.getRegister(PPC::R2, MVT::i32); 9272 } 9273 9274 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9275 // opcode number of the comparison. 9276 int CompareOpc; 9277 bool isDot; 9278 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9279 return SDValue(); // Don't custom lower most intrinsics. 9280 9281 // If this is a non-dot comparison, make the VCMP node and we are done. 9282 if (!isDot) { 9283 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9284 Op.getOperand(1), Op.getOperand(2), 9285 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9286 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9287 } 9288 9289 // Create the PPCISD altivec 'dot' comparison node. 9290 SDValue Ops[] = { 9291 Op.getOperand(2), // LHS 9292 Op.getOperand(3), // RHS 9293 DAG.getConstant(CompareOpc, dl, MVT::i32) 9294 }; 9295 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9296 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9297 9298 // Now that we have the comparison, emit a copy from the CR to a GPR. 9299 // This is flagged to the above dot comparison. 9300 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9301 DAG.getRegister(PPC::CR6, MVT::i32), 9302 CompNode.getValue(1)); 9303 9304 // Unpack the result based on how the target uses it. 9305 unsigned BitNo; // Bit # of CR6. 9306 bool InvertBit; // Invert result? 9307 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9308 default: // Can't happen, don't crash on invalid number though. 9309 case 0: // Return the value of the EQ bit of CR6. 9310 BitNo = 0; InvertBit = false; 9311 break; 9312 case 1: // Return the inverted value of the EQ bit of CR6. 9313 BitNo = 0; InvertBit = true; 9314 break; 9315 case 2: // Return the value of the LT bit of CR6. 9316 BitNo = 2; InvertBit = false; 9317 break; 9318 case 3: // Return the inverted value of the LT bit of CR6. 9319 BitNo = 2; InvertBit = true; 9320 break; 9321 } 9322 9323 // Shift the bit into the low position. 9324 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9325 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9326 // Isolate the bit. 9327 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9328 DAG.getConstant(1, dl, MVT::i32)); 9329 9330 // If we are supposed to, toggle the bit. 9331 if (InvertBit) 9332 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9333 DAG.getConstant(1, dl, MVT::i32)); 9334 return Flags; 9335 } 9336 9337 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9338 SelectionDAG &DAG) const { 9339 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9340 // the beginning of the argument list. 9341 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9342 SDLoc DL(Op); 9343 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9344 case Intrinsic::ppc_cfence: { 9345 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9346 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9347 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9348 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9349 Op.getOperand(ArgStart + 1)), 9350 Op.getOperand(0)), 9351 0); 9352 } 9353 default: 9354 break; 9355 } 9356 return SDValue(); 9357 } 9358 9359 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9360 // Check for a DIV with the same operands as this REM. 9361 for (auto UI : Op.getOperand(1)->uses()) { 9362 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9363 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9364 if (UI->getOperand(0) == Op.getOperand(0) && 9365 UI->getOperand(1) == Op.getOperand(1)) 9366 return SDValue(); 9367 } 9368 return Op; 9369 } 9370 9371 // Lower scalar BSWAP64 to xxbrd. 9372 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9373 SDLoc dl(Op); 9374 // MTVSRDD 9375 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9376 Op.getOperand(0)); 9377 // XXBRD 9378 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 9379 // MFVSRD 9380 int VectorIndex = 0; 9381 if (Subtarget.isLittleEndian()) 9382 VectorIndex = 1; 9383 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9384 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9385 return Op; 9386 } 9387 9388 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9389 // compared to a value that is atomically loaded (atomic loads zero-extend). 9390 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9391 SelectionDAG &DAG) const { 9392 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9393 "Expecting an atomic compare-and-swap here."); 9394 SDLoc dl(Op); 9395 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9396 EVT MemVT = AtomicNode->getMemoryVT(); 9397 if (MemVT.getSizeInBits() >= 32) 9398 return Op; 9399 9400 SDValue CmpOp = Op.getOperand(2); 9401 // If this is already correctly zero-extended, leave it alone. 9402 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9403 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9404 return Op; 9405 9406 // Clear the high bits of the compare operand. 9407 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9408 SDValue NewCmpOp = 9409 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9410 DAG.getConstant(MaskVal, dl, MVT::i32)); 9411 9412 // Replace the existing compare operand with the properly zero-extended one. 9413 SmallVector<SDValue, 4> Ops; 9414 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9415 Ops.push_back(AtomicNode->getOperand(i)); 9416 Ops[2] = NewCmpOp; 9417 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9418 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9419 auto NodeTy = 9420 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9421 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9422 } 9423 9424 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9425 SelectionDAG &DAG) const { 9426 SDLoc dl(Op); 9427 // Create a stack slot that is 16-byte aligned. 9428 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9429 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9430 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9431 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9432 9433 // Store the input value into Value#0 of the stack slot. 9434 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9435 MachinePointerInfo()); 9436 // Load it out. 9437 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9438 } 9439 9440 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9441 SelectionDAG &DAG) const { 9442 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9443 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9444 9445 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9446 // We have legal lowering for constant indices but not for variable ones. 9447 if (!C) 9448 return SDValue(); 9449 9450 EVT VT = Op.getValueType(); 9451 SDLoc dl(Op); 9452 SDValue V1 = Op.getOperand(0); 9453 SDValue V2 = Op.getOperand(1); 9454 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9455 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9456 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9457 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9458 unsigned InsertAtElement = C->getZExtValue(); 9459 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9460 if (Subtarget.isLittleEndian()) { 9461 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9462 } 9463 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9464 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9465 } 9466 return Op; 9467 } 9468 9469 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9470 SelectionDAG &DAG) const { 9471 SDLoc dl(Op); 9472 SDNode *N = Op.getNode(); 9473 9474 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9475 "Unknown extract_vector_elt type"); 9476 9477 SDValue Value = N->getOperand(0); 9478 9479 // The first part of this is like the store lowering except that we don't 9480 // need to track the chain. 9481 9482 // The values are now known to be -1 (false) or 1 (true). To convert this 9483 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9484 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9485 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9486 9487 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9488 // understand how to form the extending load. 9489 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9490 9491 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9492 9493 // Now convert to an integer and store. 9494 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9495 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9496 Value); 9497 9498 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9499 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9500 MachinePointerInfo PtrInfo = 9501 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9502 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9503 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9504 9505 SDValue StoreChain = DAG.getEntryNode(); 9506 SDValue Ops[] = {StoreChain, 9507 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9508 Value, FIdx}; 9509 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9510 9511 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9512 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9513 9514 // Extract the value requested. 9515 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9516 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9517 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9518 9519 SDValue IntVal = 9520 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9521 9522 if (!Subtarget.useCRBits()) 9523 return IntVal; 9524 9525 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9526 } 9527 9528 /// Lowering for QPX v4i1 loads 9529 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9530 SelectionDAG &DAG) const { 9531 SDLoc dl(Op); 9532 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9533 SDValue LoadChain = LN->getChain(); 9534 SDValue BasePtr = LN->getBasePtr(); 9535 9536 if (Op.getValueType() == MVT::v4f64 || 9537 Op.getValueType() == MVT::v4f32) { 9538 EVT MemVT = LN->getMemoryVT(); 9539 unsigned Alignment = LN->getAlignment(); 9540 9541 // If this load is properly aligned, then it is legal. 9542 if (Alignment >= MemVT.getStoreSize()) 9543 return Op; 9544 9545 EVT ScalarVT = Op.getValueType().getScalarType(), 9546 ScalarMemVT = MemVT.getScalarType(); 9547 unsigned Stride = ScalarMemVT.getStoreSize(); 9548 9549 SDValue Vals[4], LoadChains[4]; 9550 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9551 SDValue Load; 9552 if (ScalarVT != ScalarMemVT) 9553 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9554 BasePtr, 9555 LN->getPointerInfo().getWithOffset(Idx * Stride), 9556 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9557 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9558 else 9559 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9560 LN->getPointerInfo().getWithOffset(Idx * Stride), 9561 MinAlign(Alignment, Idx * Stride), 9562 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9563 9564 if (Idx == 0 && LN->isIndexed()) { 9565 assert(LN->getAddressingMode() == ISD::PRE_INC && 9566 "Unknown addressing mode on vector load"); 9567 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9568 LN->getAddressingMode()); 9569 } 9570 9571 Vals[Idx] = Load; 9572 LoadChains[Idx] = Load.getValue(1); 9573 9574 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9575 DAG.getConstant(Stride, dl, 9576 BasePtr.getValueType())); 9577 } 9578 9579 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9580 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9581 9582 if (LN->isIndexed()) { 9583 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9584 return DAG.getMergeValues(RetOps, dl); 9585 } 9586 9587 SDValue RetOps[] = { Value, TF }; 9588 return DAG.getMergeValues(RetOps, dl); 9589 } 9590 9591 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9592 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9593 9594 // To lower v4i1 from a byte array, we load the byte elements of the 9595 // vector and then reuse the BUILD_VECTOR logic. 9596 9597 SDValue VectElmts[4], VectElmtChains[4]; 9598 for (unsigned i = 0; i < 4; ++i) { 9599 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9600 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9601 9602 VectElmts[i] = DAG.getExtLoad( 9603 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9604 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9605 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9606 VectElmtChains[i] = VectElmts[i].getValue(1); 9607 } 9608 9609 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9610 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9611 9612 SDValue RVals[] = { Value, LoadChain }; 9613 return DAG.getMergeValues(RVals, dl); 9614 } 9615 9616 /// Lowering for QPX v4i1 stores 9617 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9618 SelectionDAG &DAG) const { 9619 SDLoc dl(Op); 9620 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9621 SDValue StoreChain = SN->getChain(); 9622 SDValue BasePtr = SN->getBasePtr(); 9623 SDValue Value = SN->getValue(); 9624 9625 if (Value.getValueType() == MVT::v4f64 || 9626 Value.getValueType() == MVT::v4f32) { 9627 EVT MemVT = SN->getMemoryVT(); 9628 unsigned Alignment = SN->getAlignment(); 9629 9630 // If this store is properly aligned, then it is legal. 9631 if (Alignment >= MemVT.getStoreSize()) 9632 return Op; 9633 9634 EVT ScalarVT = Value.getValueType().getScalarType(), 9635 ScalarMemVT = MemVT.getScalarType(); 9636 unsigned Stride = ScalarMemVT.getStoreSize(); 9637 9638 SDValue Stores[4]; 9639 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9640 SDValue Ex = DAG.getNode( 9641 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9642 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9643 SDValue Store; 9644 if (ScalarVT != ScalarMemVT) 9645 Store = 9646 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9647 SN->getPointerInfo().getWithOffset(Idx * Stride), 9648 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9649 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9650 else 9651 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9652 SN->getPointerInfo().getWithOffset(Idx * Stride), 9653 MinAlign(Alignment, Idx * Stride), 9654 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9655 9656 if (Idx == 0 && SN->isIndexed()) { 9657 assert(SN->getAddressingMode() == ISD::PRE_INC && 9658 "Unknown addressing mode on vector store"); 9659 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9660 SN->getAddressingMode()); 9661 } 9662 9663 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9664 DAG.getConstant(Stride, dl, 9665 BasePtr.getValueType())); 9666 Stores[Idx] = Store; 9667 } 9668 9669 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9670 9671 if (SN->isIndexed()) { 9672 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9673 return DAG.getMergeValues(RetOps, dl); 9674 } 9675 9676 return TF; 9677 } 9678 9679 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9680 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9681 9682 // The values are now known to be -1 (false) or 1 (true). To convert this 9683 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9684 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9685 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9686 9687 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9688 // understand how to form the extending load. 9689 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9690 9691 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9692 9693 // Now convert to an integer and store. 9694 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9695 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9696 Value); 9697 9698 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9699 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9700 MachinePointerInfo PtrInfo = 9701 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9702 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9703 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9704 9705 SDValue Ops[] = {StoreChain, 9706 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9707 Value, FIdx}; 9708 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9709 9710 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9711 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9712 9713 // Move data into the byte array. 9714 SDValue Loads[4], LoadChains[4]; 9715 for (unsigned i = 0; i < 4; ++i) { 9716 unsigned Offset = 4*i; 9717 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9718 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9719 9720 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9721 PtrInfo.getWithOffset(Offset)); 9722 LoadChains[i] = Loads[i].getValue(1); 9723 } 9724 9725 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9726 9727 SDValue Stores[4]; 9728 for (unsigned i = 0; i < 4; ++i) { 9729 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9730 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9731 9732 Stores[i] = DAG.getTruncStore( 9733 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9734 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9735 SN->getAAInfo()); 9736 } 9737 9738 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9739 9740 return StoreChain; 9741 } 9742 9743 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9744 SDLoc dl(Op); 9745 if (Op.getValueType() == MVT::v4i32) { 9746 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9747 9748 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9749 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9750 9751 SDValue RHSSwap = // = vrlw RHS, 16 9752 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9753 9754 // Shrinkify inputs to v8i16. 9755 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9756 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9757 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9758 9759 // Low parts multiplied together, generating 32-bit results (we ignore the 9760 // top parts). 9761 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9762 LHS, RHS, DAG, dl, MVT::v4i32); 9763 9764 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9765 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9766 // Shift the high parts up 16 bits. 9767 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9768 Neg16, DAG, dl); 9769 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9770 } else if (Op.getValueType() == MVT::v8i16) { 9771 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9772 9773 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9774 9775 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9776 LHS, RHS, Zero, DAG, dl); 9777 } else if (Op.getValueType() == MVT::v16i8) { 9778 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9779 bool isLittleEndian = Subtarget.isLittleEndian(); 9780 9781 // Multiply the even 8-bit parts, producing 16-bit sums. 9782 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9783 LHS, RHS, DAG, dl, MVT::v8i16); 9784 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9785 9786 // Multiply the odd 8-bit parts, producing 16-bit sums. 9787 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9788 LHS, RHS, DAG, dl, MVT::v8i16); 9789 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9790 9791 // Merge the results together. Because vmuleub and vmuloub are 9792 // instructions with a big-endian bias, we must reverse the 9793 // element numbering and reverse the meaning of "odd" and "even" 9794 // when generating little endian code. 9795 int Ops[16]; 9796 for (unsigned i = 0; i != 8; ++i) { 9797 if (isLittleEndian) { 9798 Ops[i*2 ] = 2*i; 9799 Ops[i*2+1] = 2*i+16; 9800 } else { 9801 Ops[i*2 ] = 2*i+1; 9802 Ops[i*2+1] = 2*i+1+16; 9803 } 9804 } 9805 if (isLittleEndian) 9806 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9807 else 9808 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9809 } else { 9810 llvm_unreachable("Unknown mul to lower!"); 9811 } 9812 } 9813 9814 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 9815 9816 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 9817 9818 EVT VT = Op.getValueType(); 9819 assert(VT.isVector() && 9820 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 9821 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 9822 VT == MVT::v16i8) && 9823 "Unexpected vector element type!"); 9824 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 9825 "Current subtarget doesn't support smax v2i64!"); 9826 9827 // For vector abs, it can be lowered to: 9828 // abs x 9829 // ==> 9830 // y = -x 9831 // smax(x, y) 9832 9833 SDLoc dl(Op); 9834 SDValue X = Op.getOperand(0); 9835 SDValue Zero = DAG.getConstant(0, dl, VT); 9836 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 9837 9838 // SMAX patch https://reviews.llvm.org/D47332 9839 // hasn't landed yet, so use intrinsic first here. 9840 // TODO: Should use SMAX directly once SMAX patch landed 9841 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 9842 if (VT == MVT::v2i64) 9843 BifID = Intrinsic::ppc_altivec_vmaxsd; 9844 else if (VT == MVT::v8i16) 9845 BifID = Intrinsic::ppc_altivec_vmaxsh; 9846 else if (VT == MVT::v16i8) 9847 BifID = Intrinsic::ppc_altivec_vmaxsb; 9848 9849 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 9850 } 9851 9852 // Custom lowering for fpext vf32 to v2f64 9853 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 9854 9855 assert(Op.getOpcode() == ISD::FP_EXTEND && 9856 "Should only be called for ISD::FP_EXTEND"); 9857 9858 // We only want to custom lower an extend from v2f32 to v2f64. 9859 if (Op.getValueType() != MVT::v2f64 || 9860 Op.getOperand(0).getValueType() != MVT::v2f32) 9861 return SDValue(); 9862 9863 SDLoc dl(Op); 9864 SDValue Op0 = Op.getOperand(0); 9865 9866 switch (Op0.getOpcode()) { 9867 default: 9868 return SDValue(); 9869 case ISD::FADD: 9870 case ISD::FMUL: 9871 case ISD::FSUB: { 9872 SDValue NewLoad[2]; 9873 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 9874 // Ensure both input are loads. 9875 SDValue LdOp = Op0.getOperand(i); 9876 if (LdOp.getOpcode() != ISD::LOAD) 9877 return SDValue(); 9878 // Generate new load node. 9879 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 9880 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9881 NewLoad[i] = 9882 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9883 DAG.getVTList(MVT::v4f32, MVT::Other), 9884 LoadOps, LD->getMemoryVT(), 9885 LD->getMemOperand()); 9886 } 9887 SDValue NewOp = DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, 9888 NewLoad[0], NewLoad[1], 9889 Op0.getNode()->getFlags()); 9890 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewOp); 9891 } 9892 case ISD::LOAD: { 9893 LoadSDNode *LD = cast<LoadSDNode>(Op0); 9894 SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr() }; 9895 SDValue NewLd = 9896 DAG.getMemIntrinsicNode(PPCISD::LD_VSX_LH, dl, 9897 DAG.getVTList(MVT::v4f32, MVT::Other), 9898 LoadOps, LD->getMemoryVT(), LD->getMemOperand()); 9899 return DAG.getNode(PPCISD::FP_EXTEND_LH, dl, MVT::v2f64, NewLd); 9900 } 9901 } 9902 llvm_unreachable("ERROR:Should return for all cases within swtich."); 9903 } 9904 9905 /// LowerOperation - Provide custom lowering hooks for some operations. 9906 /// 9907 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9908 switch (Op.getOpcode()) { 9909 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9910 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9911 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9912 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9913 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9914 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9915 case ISD::SETCC: return LowerSETCC(Op, DAG); 9916 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9917 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9918 9919 // Variable argument lowering. 9920 case ISD::VASTART: return LowerVASTART(Op, DAG); 9921 case ISD::VAARG: return LowerVAARG(Op, DAG); 9922 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9923 9924 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9925 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9926 case ISD::GET_DYNAMIC_AREA_OFFSET: 9927 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9928 9929 // Exception handling lowering. 9930 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9931 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9932 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9933 9934 case ISD::LOAD: return LowerLOAD(Op, DAG); 9935 case ISD::STORE: return LowerSTORE(Op, DAG); 9936 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9937 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9938 case ISD::FP_TO_UINT: 9939 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9940 case ISD::UINT_TO_FP: 9941 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9942 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9943 9944 // Lower 64-bit shifts. 9945 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9946 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9947 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9948 9949 // Vector-related lowering. 9950 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9951 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9952 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9953 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9954 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9955 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9956 case ISD::MUL: return LowerMUL(Op, DAG); 9957 case ISD::ABS: return LowerABS(Op, DAG); 9958 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 9959 9960 // For counter-based loop handling. 9961 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9962 9963 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 9964 9965 // Frame & Return address. 9966 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9967 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9968 9969 case ISD::INTRINSIC_VOID: 9970 return LowerINTRINSIC_VOID(Op, DAG); 9971 case ISD::SREM: 9972 case ISD::UREM: 9973 return LowerREM(Op, DAG); 9974 case ISD::BSWAP: 9975 return LowerBSWAP(Op, DAG); 9976 case ISD::ATOMIC_CMP_SWAP: 9977 return LowerATOMIC_CMP_SWAP(Op, DAG); 9978 } 9979 } 9980 9981 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9982 SmallVectorImpl<SDValue>&Results, 9983 SelectionDAG &DAG) const { 9984 SDLoc dl(N); 9985 switch (N->getOpcode()) { 9986 default: 9987 llvm_unreachable("Do not know how to custom type legalize this operation!"); 9988 case ISD::READCYCLECOUNTER: { 9989 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 9990 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 9991 9992 Results.push_back(RTB); 9993 Results.push_back(RTB.getValue(1)); 9994 Results.push_back(RTB.getValue(2)); 9995 break; 9996 } 9997 case ISD::INTRINSIC_W_CHAIN: { 9998 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 9999 Intrinsic::loop_decrement) 10000 break; 10001 10002 assert(N->getValueType(0) == MVT::i1 && 10003 "Unexpected result type for CTR decrement intrinsic"); 10004 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10005 N->getValueType(0)); 10006 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10007 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10008 N->getOperand(1)); 10009 10010 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10011 Results.push_back(NewInt.getValue(1)); 10012 break; 10013 } 10014 case ISD::VAARG: { 10015 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10016 return; 10017 10018 EVT VT = N->getValueType(0); 10019 10020 if (VT == MVT::i64) { 10021 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10022 10023 Results.push_back(NewNode); 10024 Results.push_back(NewNode.getValue(1)); 10025 } 10026 return; 10027 } 10028 case ISD::FP_TO_SINT: 10029 case ISD::FP_TO_UINT: 10030 // LowerFP_TO_INT() can only handle f32 and f64. 10031 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10032 return; 10033 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10034 return; 10035 case ISD::TRUNCATE: { 10036 EVT TrgVT = N->getValueType(0); 10037 if (TrgVT.isVector() && 10038 isOperationCustom(N->getOpcode(), TrgVT) && 10039 N->getOperand(0).getValueType().getSizeInBits() <= 128) 10040 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10041 return; 10042 } 10043 case ISD::BITCAST: 10044 // Don't handle bitcast here. 10045 return; 10046 } 10047 } 10048 10049 //===----------------------------------------------------------------------===// 10050 // Other Lowering Code 10051 //===----------------------------------------------------------------------===// 10052 10053 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10054 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10055 Function *Func = Intrinsic::getDeclaration(M, Id); 10056 return Builder.CreateCall(Func, {}); 10057 } 10058 10059 // The mappings for emitLeading/TrailingFence is taken from 10060 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10061 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10062 Instruction *Inst, 10063 AtomicOrdering Ord) const { 10064 if (Ord == AtomicOrdering::SequentiallyConsistent) 10065 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10066 if (isReleaseOrStronger(Ord)) 10067 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10068 return nullptr; 10069 } 10070 10071 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10072 Instruction *Inst, 10073 AtomicOrdering Ord) const { 10074 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10075 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10076 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10077 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10078 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10079 return Builder.CreateCall( 10080 Intrinsic::getDeclaration( 10081 Builder.GetInsertBlock()->getParent()->getParent(), 10082 Intrinsic::ppc_cfence, {Inst->getType()}), 10083 {Inst}); 10084 // FIXME: Can use isync for rmw operation. 10085 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10086 } 10087 return nullptr; 10088 } 10089 10090 MachineBasicBlock * 10091 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10092 unsigned AtomicSize, 10093 unsigned BinOpcode, 10094 unsigned CmpOpcode, 10095 unsigned CmpPred) const { 10096 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10097 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10098 10099 auto LoadMnemonic = PPC::LDARX; 10100 auto StoreMnemonic = PPC::STDCX; 10101 switch (AtomicSize) { 10102 default: 10103 llvm_unreachable("Unexpected size of atomic entity"); 10104 case 1: 10105 LoadMnemonic = PPC::LBARX; 10106 StoreMnemonic = PPC::STBCX; 10107 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10108 break; 10109 case 2: 10110 LoadMnemonic = PPC::LHARX; 10111 StoreMnemonic = PPC::STHCX; 10112 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10113 break; 10114 case 4: 10115 LoadMnemonic = PPC::LWARX; 10116 StoreMnemonic = PPC::STWCX; 10117 break; 10118 case 8: 10119 LoadMnemonic = PPC::LDARX; 10120 StoreMnemonic = PPC::STDCX; 10121 break; 10122 } 10123 10124 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10125 MachineFunction *F = BB->getParent(); 10126 MachineFunction::iterator It = ++BB->getIterator(); 10127 10128 Register dest = MI.getOperand(0).getReg(); 10129 Register ptrA = MI.getOperand(1).getReg(); 10130 Register ptrB = MI.getOperand(2).getReg(); 10131 Register incr = MI.getOperand(3).getReg(); 10132 DebugLoc dl = MI.getDebugLoc(); 10133 10134 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10135 MachineBasicBlock *loop2MBB = 10136 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10137 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10138 F->insert(It, loopMBB); 10139 if (CmpOpcode) 10140 F->insert(It, loop2MBB); 10141 F->insert(It, exitMBB); 10142 exitMBB->splice(exitMBB->begin(), BB, 10143 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10144 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10145 10146 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10147 Register TmpReg = (!BinOpcode) ? incr : 10148 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10149 : &PPC::GPRCRegClass); 10150 10151 // thisMBB: 10152 // ... 10153 // fallthrough --> loopMBB 10154 BB->addSuccessor(loopMBB); 10155 10156 // loopMBB: 10157 // l[wd]arx dest, ptr 10158 // add r0, dest, incr 10159 // st[wd]cx. r0, ptr 10160 // bne- loopMBB 10161 // fallthrough --> exitMBB 10162 10163 // For max/min... 10164 // loopMBB: 10165 // l[wd]arx dest, ptr 10166 // cmpl?[wd] incr, dest 10167 // bgt exitMBB 10168 // loop2MBB: 10169 // st[wd]cx. dest, ptr 10170 // bne- loopMBB 10171 // fallthrough --> exitMBB 10172 10173 BB = loopMBB; 10174 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10175 .addReg(ptrA).addReg(ptrB); 10176 if (BinOpcode) 10177 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10178 if (CmpOpcode) { 10179 // Signed comparisons of byte or halfword values must be sign-extended. 10180 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10181 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10182 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10183 ExtReg).addReg(dest); 10184 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10185 .addReg(incr).addReg(ExtReg); 10186 } else 10187 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10188 .addReg(incr).addReg(dest); 10189 10190 BuildMI(BB, dl, TII->get(PPC::BCC)) 10191 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10192 BB->addSuccessor(loop2MBB); 10193 BB->addSuccessor(exitMBB); 10194 BB = loop2MBB; 10195 } 10196 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10197 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10198 BuildMI(BB, dl, TII->get(PPC::BCC)) 10199 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10200 BB->addSuccessor(loopMBB); 10201 BB->addSuccessor(exitMBB); 10202 10203 // exitMBB: 10204 // ... 10205 BB = exitMBB; 10206 return BB; 10207 } 10208 10209 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10210 MachineInstr &MI, MachineBasicBlock *BB, 10211 bool is8bit, // operation 10212 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10213 // If we support part-word atomic mnemonics, just use them 10214 if (Subtarget.hasPartwordAtomics()) 10215 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10216 CmpPred); 10217 10218 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10219 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10220 // In 64 bit mode we have to use 64 bits for addresses, even though the 10221 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10222 // registers without caring whether they're 32 or 64, but here we're 10223 // doing actual arithmetic on the addresses. 10224 bool is64bit = Subtarget.isPPC64(); 10225 bool isLittleEndian = Subtarget.isLittleEndian(); 10226 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10227 10228 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10229 MachineFunction *F = BB->getParent(); 10230 MachineFunction::iterator It = ++BB->getIterator(); 10231 10232 unsigned dest = MI.getOperand(0).getReg(); 10233 unsigned ptrA = MI.getOperand(1).getReg(); 10234 unsigned ptrB = MI.getOperand(2).getReg(); 10235 unsigned incr = MI.getOperand(3).getReg(); 10236 DebugLoc dl = MI.getDebugLoc(); 10237 10238 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10239 MachineBasicBlock *loop2MBB = 10240 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10241 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10242 F->insert(It, loopMBB); 10243 if (CmpOpcode) 10244 F->insert(It, loop2MBB); 10245 F->insert(It, exitMBB); 10246 exitMBB->splice(exitMBB->begin(), BB, 10247 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10248 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10249 10250 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10251 const TargetRegisterClass *RC = 10252 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10253 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10254 10255 Register PtrReg = RegInfo.createVirtualRegister(RC); 10256 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10257 Register ShiftReg = 10258 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10259 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10260 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10261 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10262 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10263 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10264 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10265 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10266 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10267 Register Ptr1Reg; 10268 Register TmpReg = 10269 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10270 10271 // thisMBB: 10272 // ... 10273 // fallthrough --> loopMBB 10274 BB->addSuccessor(loopMBB); 10275 10276 // The 4-byte load must be aligned, while a char or short may be 10277 // anywhere in the word. Hence all this nasty bookkeeping code. 10278 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10279 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10280 // xori shift, shift1, 24 [16] 10281 // rlwinm ptr, ptr1, 0, 0, 29 10282 // slw incr2, incr, shift 10283 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10284 // slw mask, mask2, shift 10285 // loopMBB: 10286 // lwarx tmpDest, ptr 10287 // add tmp, tmpDest, incr2 10288 // andc tmp2, tmpDest, mask 10289 // and tmp3, tmp, mask 10290 // or tmp4, tmp3, tmp2 10291 // stwcx. tmp4, ptr 10292 // bne- loopMBB 10293 // fallthrough --> exitMBB 10294 // srw dest, tmpDest, shift 10295 if (ptrA != ZeroReg) { 10296 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10297 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10298 .addReg(ptrA) 10299 .addReg(ptrB); 10300 } else { 10301 Ptr1Reg = ptrB; 10302 } 10303 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10304 // mode. 10305 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10306 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10307 .addImm(3) 10308 .addImm(27) 10309 .addImm(is8bit ? 28 : 27); 10310 if (!isLittleEndian) 10311 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10312 .addReg(Shift1Reg) 10313 .addImm(is8bit ? 24 : 16); 10314 if (is64bit) 10315 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10316 .addReg(Ptr1Reg) 10317 .addImm(0) 10318 .addImm(61); 10319 else 10320 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10321 .addReg(Ptr1Reg) 10322 .addImm(0) 10323 .addImm(0) 10324 .addImm(29); 10325 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10326 if (is8bit) 10327 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10328 else { 10329 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10330 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10331 .addReg(Mask3Reg) 10332 .addImm(65535); 10333 } 10334 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10335 .addReg(Mask2Reg) 10336 .addReg(ShiftReg); 10337 10338 BB = loopMBB; 10339 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10340 .addReg(ZeroReg) 10341 .addReg(PtrReg); 10342 if (BinOpcode) 10343 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10344 .addReg(Incr2Reg) 10345 .addReg(TmpDestReg); 10346 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10347 .addReg(TmpDestReg) 10348 .addReg(MaskReg); 10349 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10350 if (CmpOpcode) { 10351 // For unsigned comparisons, we can directly compare the shifted values. 10352 // For signed comparisons we shift and sign extend. 10353 unsigned SReg = RegInfo.createVirtualRegister(GPRC); 10354 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10355 .addReg(TmpDestReg) 10356 .addReg(MaskReg); 10357 unsigned ValueReg = SReg; 10358 unsigned CmpReg = Incr2Reg; 10359 if (CmpOpcode == PPC::CMPW) { 10360 ValueReg = RegInfo.createVirtualRegister(GPRC); 10361 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10362 .addReg(SReg) 10363 .addReg(ShiftReg); 10364 unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC); 10365 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10366 .addReg(ValueReg); 10367 ValueReg = ValueSReg; 10368 CmpReg = incr; 10369 } 10370 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10371 .addReg(CmpReg) 10372 .addReg(ValueReg); 10373 BuildMI(BB, dl, TII->get(PPC::BCC)) 10374 .addImm(CmpPred) 10375 .addReg(PPC::CR0) 10376 .addMBB(exitMBB); 10377 BB->addSuccessor(loop2MBB); 10378 BB->addSuccessor(exitMBB); 10379 BB = loop2MBB; 10380 } 10381 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10382 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10383 .addReg(Tmp4Reg) 10384 .addReg(ZeroReg) 10385 .addReg(PtrReg); 10386 BuildMI(BB, dl, TII->get(PPC::BCC)) 10387 .addImm(PPC::PRED_NE) 10388 .addReg(PPC::CR0) 10389 .addMBB(loopMBB); 10390 BB->addSuccessor(loopMBB); 10391 BB->addSuccessor(exitMBB); 10392 10393 // exitMBB: 10394 // ... 10395 BB = exitMBB; 10396 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10397 .addReg(TmpDestReg) 10398 .addReg(ShiftReg); 10399 return BB; 10400 } 10401 10402 llvm::MachineBasicBlock * 10403 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10404 MachineBasicBlock *MBB) const { 10405 DebugLoc DL = MI.getDebugLoc(); 10406 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10407 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10408 10409 MachineFunction *MF = MBB->getParent(); 10410 MachineRegisterInfo &MRI = MF->getRegInfo(); 10411 10412 const BasicBlock *BB = MBB->getBasicBlock(); 10413 MachineFunction::iterator I = ++MBB->getIterator(); 10414 10415 unsigned DstReg = MI.getOperand(0).getReg(); 10416 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10417 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10418 unsigned mainDstReg = MRI.createVirtualRegister(RC); 10419 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 10420 10421 MVT PVT = getPointerTy(MF->getDataLayout()); 10422 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10423 "Invalid Pointer Size!"); 10424 // For v = setjmp(buf), we generate 10425 // 10426 // thisMBB: 10427 // SjLjSetup mainMBB 10428 // bl mainMBB 10429 // v_restore = 1 10430 // b sinkMBB 10431 // 10432 // mainMBB: 10433 // buf[LabelOffset] = LR 10434 // v_main = 0 10435 // 10436 // sinkMBB: 10437 // v = phi(main, restore) 10438 // 10439 10440 MachineBasicBlock *thisMBB = MBB; 10441 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10442 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10443 MF->insert(I, mainMBB); 10444 MF->insert(I, sinkMBB); 10445 10446 MachineInstrBuilder MIB; 10447 10448 // Transfer the remainder of BB and its successor edges to sinkMBB. 10449 sinkMBB->splice(sinkMBB->begin(), MBB, 10450 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10451 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10452 10453 // Note that the structure of the jmp_buf used here is not compatible 10454 // with that used by libc, and is not designed to be. Specifically, it 10455 // stores only those 'reserved' registers that LLVM does not otherwise 10456 // understand how to spill. Also, by convention, by the time this 10457 // intrinsic is called, Clang has already stored the frame address in the 10458 // first slot of the buffer and stack address in the third. Following the 10459 // X86 target code, we'll store the jump address in the second slot. We also 10460 // need to save the TOC pointer (R2) to handle jumps between shared 10461 // libraries, and that will be stored in the fourth slot. The thread 10462 // identifier (R13) is not affected. 10463 10464 // thisMBB: 10465 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10466 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10467 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10468 10469 // Prepare IP either in reg. 10470 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10471 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 10472 unsigned BufReg = MI.getOperand(1).getReg(); 10473 10474 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 10475 setUsesTOCBasePtr(*MBB->getParent()); 10476 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10477 .addReg(PPC::X2) 10478 .addImm(TOCOffset) 10479 .addReg(BufReg) 10480 .cloneMemRefs(MI); 10481 } 10482 10483 // Naked functions never have a base pointer, and so we use r1. For all 10484 // other functions, this decision must be delayed until during PEI. 10485 unsigned BaseReg; 10486 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10487 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10488 else 10489 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10490 10491 MIB = BuildMI(*thisMBB, MI, DL, 10492 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10493 .addReg(BaseReg) 10494 .addImm(BPOffset) 10495 .addReg(BufReg) 10496 .cloneMemRefs(MI); 10497 10498 // Setup 10499 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 10500 MIB.addRegMask(TRI->getNoPreservedMask()); 10501 10502 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 10503 10504 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 10505 .addMBB(mainMBB); 10506 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 10507 10508 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 10509 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 10510 10511 // mainMBB: 10512 // mainDstReg = 0 10513 MIB = 10514 BuildMI(mainMBB, DL, 10515 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 10516 10517 // Store IP 10518 if (Subtarget.isPPC64()) { 10519 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 10520 .addReg(LabelReg) 10521 .addImm(LabelOffset) 10522 .addReg(BufReg); 10523 } else { 10524 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 10525 .addReg(LabelReg) 10526 .addImm(LabelOffset) 10527 .addReg(BufReg); 10528 } 10529 MIB.cloneMemRefs(MI); 10530 10531 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 10532 mainMBB->addSuccessor(sinkMBB); 10533 10534 // sinkMBB: 10535 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 10536 TII->get(PPC::PHI), DstReg) 10537 .addReg(mainDstReg).addMBB(mainMBB) 10538 .addReg(restoreDstReg).addMBB(thisMBB); 10539 10540 MI.eraseFromParent(); 10541 return sinkMBB; 10542 } 10543 10544 MachineBasicBlock * 10545 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 10546 MachineBasicBlock *MBB) const { 10547 DebugLoc DL = MI.getDebugLoc(); 10548 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10549 10550 MachineFunction *MF = MBB->getParent(); 10551 MachineRegisterInfo &MRI = MF->getRegInfo(); 10552 10553 MVT PVT = getPointerTy(MF->getDataLayout()); 10554 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10555 "Invalid Pointer Size!"); 10556 10557 const TargetRegisterClass *RC = 10558 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10559 unsigned Tmp = MRI.createVirtualRegister(RC); 10560 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10561 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10562 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10563 unsigned BP = 10564 (PVT == MVT::i64) 10565 ? PPC::X30 10566 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10567 : PPC::R30); 10568 10569 MachineInstrBuilder MIB; 10570 10571 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10572 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10573 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10574 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10575 10576 unsigned BufReg = MI.getOperand(0).getReg(); 10577 10578 // Reload FP (the jumped-to function may not have had a 10579 // frame pointer, and if so, then its r31 will be restored 10580 // as necessary). 10581 if (PVT == MVT::i64) { 10582 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10583 .addImm(0) 10584 .addReg(BufReg); 10585 } else { 10586 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10587 .addImm(0) 10588 .addReg(BufReg); 10589 } 10590 MIB.cloneMemRefs(MI); 10591 10592 // Reload IP 10593 if (PVT == MVT::i64) { 10594 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10595 .addImm(LabelOffset) 10596 .addReg(BufReg); 10597 } else { 10598 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10599 .addImm(LabelOffset) 10600 .addReg(BufReg); 10601 } 10602 MIB.cloneMemRefs(MI); 10603 10604 // Reload SP 10605 if (PVT == MVT::i64) { 10606 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10607 .addImm(SPOffset) 10608 .addReg(BufReg); 10609 } else { 10610 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10611 .addImm(SPOffset) 10612 .addReg(BufReg); 10613 } 10614 MIB.cloneMemRefs(MI); 10615 10616 // Reload BP 10617 if (PVT == MVT::i64) { 10618 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10619 .addImm(BPOffset) 10620 .addReg(BufReg); 10621 } else { 10622 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10623 .addImm(BPOffset) 10624 .addReg(BufReg); 10625 } 10626 MIB.cloneMemRefs(MI); 10627 10628 // Reload TOC 10629 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10630 setUsesTOCBasePtr(*MBB->getParent()); 10631 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10632 .addImm(TOCOffset) 10633 .addReg(BufReg) 10634 .cloneMemRefs(MI); 10635 } 10636 10637 // Jump 10638 BuildMI(*MBB, MI, DL, 10639 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10640 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10641 10642 MI.eraseFromParent(); 10643 return MBB; 10644 } 10645 10646 MachineBasicBlock * 10647 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10648 MachineBasicBlock *BB) const { 10649 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10650 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10651 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10652 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10653 // Call lowering should have added an r2 operand to indicate a dependence 10654 // on the TOC base pointer value. It can't however, because there is no 10655 // way to mark the dependence as implicit there, and so the stackmap code 10656 // will confuse it with a regular operand. Instead, add the dependence 10657 // here. 10658 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10659 } 10660 10661 return emitPatchPoint(MI, BB); 10662 } 10663 10664 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10665 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10666 return emitEHSjLjSetJmp(MI, BB); 10667 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10668 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10669 return emitEHSjLjLongJmp(MI, BB); 10670 } 10671 10672 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10673 10674 // To "insert" these instructions we actually have to insert their 10675 // control-flow patterns. 10676 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10677 MachineFunction::iterator It = ++BB->getIterator(); 10678 10679 MachineFunction *F = BB->getParent(); 10680 10681 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10682 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 10683 MI.getOpcode() == PPC::SELECT_I8) { 10684 SmallVector<MachineOperand, 2> Cond; 10685 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10686 MI.getOpcode() == PPC::SELECT_CC_I8) 10687 Cond.push_back(MI.getOperand(4)); 10688 else 10689 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10690 Cond.push_back(MI.getOperand(1)); 10691 10692 DebugLoc dl = MI.getDebugLoc(); 10693 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10694 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10695 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10696 MI.getOpcode() == PPC::SELECT_CC_I8 || 10697 MI.getOpcode() == PPC::SELECT_CC_F4 || 10698 MI.getOpcode() == PPC::SELECT_CC_F8 || 10699 MI.getOpcode() == PPC::SELECT_CC_F16 || 10700 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10701 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10702 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10703 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10704 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10705 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10706 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10707 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 10708 MI.getOpcode() == PPC::SELECT_CC_SPE || 10709 MI.getOpcode() == PPC::SELECT_I4 || 10710 MI.getOpcode() == PPC::SELECT_I8 || 10711 MI.getOpcode() == PPC::SELECT_F4 || 10712 MI.getOpcode() == PPC::SELECT_F8 || 10713 MI.getOpcode() == PPC::SELECT_F16 || 10714 MI.getOpcode() == PPC::SELECT_QFRC || 10715 MI.getOpcode() == PPC::SELECT_QSRC || 10716 MI.getOpcode() == PPC::SELECT_QBRC || 10717 MI.getOpcode() == PPC::SELECT_SPE || 10718 MI.getOpcode() == PPC::SELECT_SPE4 || 10719 MI.getOpcode() == PPC::SELECT_VRRC || 10720 MI.getOpcode() == PPC::SELECT_VSFRC || 10721 MI.getOpcode() == PPC::SELECT_VSSRC || 10722 MI.getOpcode() == PPC::SELECT_VSRC) { 10723 // The incoming instruction knows the destination vreg to set, the 10724 // condition code register to branch on, the true/false values to 10725 // select between, and a branch opcode to use. 10726 10727 // thisMBB: 10728 // ... 10729 // TrueVal = ... 10730 // cmpTY ccX, r1, r2 10731 // bCC copy1MBB 10732 // fallthrough --> copy0MBB 10733 MachineBasicBlock *thisMBB = BB; 10734 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10735 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10736 DebugLoc dl = MI.getDebugLoc(); 10737 F->insert(It, copy0MBB); 10738 F->insert(It, sinkMBB); 10739 10740 // Transfer the remainder of BB and its successor edges to sinkMBB. 10741 sinkMBB->splice(sinkMBB->begin(), BB, 10742 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10743 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10744 10745 // Next, add the true and fallthrough blocks as its successors. 10746 BB->addSuccessor(copy0MBB); 10747 BB->addSuccessor(sinkMBB); 10748 10749 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10750 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10751 MI.getOpcode() == PPC::SELECT_F16 || 10752 MI.getOpcode() == PPC::SELECT_SPE4 || 10753 MI.getOpcode() == PPC::SELECT_SPE || 10754 MI.getOpcode() == PPC::SELECT_QFRC || 10755 MI.getOpcode() == PPC::SELECT_QSRC || 10756 MI.getOpcode() == PPC::SELECT_QBRC || 10757 MI.getOpcode() == PPC::SELECT_VRRC || 10758 MI.getOpcode() == PPC::SELECT_VSFRC || 10759 MI.getOpcode() == PPC::SELECT_VSSRC || 10760 MI.getOpcode() == PPC::SELECT_VSRC) { 10761 BuildMI(BB, dl, TII->get(PPC::BC)) 10762 .addReg(MI.getOperand(1).getReg()) 10763 .addMBB(sinkMBB); 10764 } else { 10765 unsigned SelectPred = MI.getOperand(4).getImm(); 10766 BuildMI(BB, dl, TII->get(PPC::BCC)) 10767 .addImm(SelectPred) 10768 .addReg(MI.getOperand(1).getReg()) 10769 .addMBB(sinkMBB); 10770 } 10771 10772 // copy0MBB: 10773 // %FalseValue = ... 10774 // # fallthrough to sinkMBB 10775 BB = copy0MBB; 10776 10777 // Update machine-CFG edges 10778 BB->addSuccessor(sinkMBB); 10779 10780 // sinkMBB: 10781 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10782 // ... 10783 BB = sinkMBB; 10784 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10785 .addReg(MI.getOperand(3).getReg()) 10786 .addMBB(copy0MBB) 10787 .addReg(MI.getOperand(2).getReg()) 10788 .addMBB(thisMBB); 10789 } else if (MI.getOpcode() == PPC::ReadTB) { 10790 // To read the 64-bit time-base register on a 32-bit target, we read the 10791 // two halves. Should the counter have wrapped while it was being read, we 10792 // need to try again. 10793 // ... 10794 // readLoop: 10795 // mfspr Rx,TBU # load from TBU 10796 // mfspr Ry,TB # load from TB 10797 // mfspr Rz,TBU # load from TBU 10798 // cmpw crX,Rx,Rz # check if 'old'='new' 10799 // bne readLoop # branch if they're not equal 10800 // ... 10801 10802 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10803 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10804 DebugLoc dl = MI.getDebugLoc(); 10805 F->insert(It, readMBB); 10806 F->insert(It, sinkMBB); 10807 10808 // Transfer the remainder of BB and its successor edges to sinkMBB. 10809 sinkMBB->splice(sinkMBB->begin(), BB, 10810 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10811 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10812 10813 BB->addSuccessor(readMBB); 10814 BB = readMBB; 10815 10816 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10817 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10818 unsigned LoReg = MI.getOperand(0).getReg(); 10819 unsigned HiReg = MI.getOperand(1).getReg(); 10820 10821 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10822 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10823 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10824 10825 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10826 10827 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10828 .addReg(HiReg) 10829 .addReg(ReadAgainReg); 10830 BuildMI(BB, dl, TII->get(PPC::BCC)) 10831 .addImm(PPC::PRED_NE) 10832 .addReg(CmpReg) 10833 .addMBB(readMBB); 10834 10835 BB->addSuccessor(readMBB); 10836 BB->addSuccessor(sinkMBB); 10837 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10838 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10839 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10840 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10841 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10842 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10843 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10844 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10845 10846 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10847 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10848 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10849 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10850 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10851 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10852 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10853 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10854 10855 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10856 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10857 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10858 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10859 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10860 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10861 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10862 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10863 10864 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10865 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10866 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10867 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10868 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10869 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10870 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10871 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10872 10873 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10874 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10875 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10876 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10877 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10878 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10879 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10880 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10881 10882 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10883 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10884 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10885 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10886 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10887 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10888 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10889 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10890 10891 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10892 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10893 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10894 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10895 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10896 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10897 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10898 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10899 10900 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10901 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10902 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10903 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10904 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10905 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10906 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10907 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10908 10909 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10910 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10911 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10912 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10913 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10914 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10915 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10916 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10917 10918 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10919 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10920 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10921 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10922 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10923 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10924 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10925 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10926 10927 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10928 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10929 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10930 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10931 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10932 BB = EmitAtomicBinary(MI, BB, 4, 0); 10933 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10934 BB = EmitAtomicBinary(MI, BB, 8, 0); 10935 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10936 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10937 (Subtarget.hasPartwordAtomics() && 10938 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10939 (Subtarget.hasPartwordAtomics() && 10940 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10941 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10942 10943 auto LoadMnemonic = PPC::LDARX; 10944 auto StoreMnemonic = PPC::STDCX; 10945 switch (MI.getOpcode()) { 10946 default: 10947 llvm_unreachable("Compare and swap of unknown size"); 10948 case PPC::ATOMIC_CMP_SWAP_I8: 10949 LoadMnemonic = PPC::LBARX; 10950 StoreMnemonic = PPC::STBCX; 10951 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10952 break; 10953 case PPC::ATOMIC_CMP_SWAP_I16: 10954 LoadMnemonic = PPC::LHARX; 10955 StoreMnemonic = PPC::STHCX; 10956 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10957 break; 10958 case PPC::ATOMIC_CMP_SWAP_I32: 10959 LoadMnemonic = PPC::LWARX; 10960 StoreMnemonic = PPC::STWCX; 10961 break; 10962 case PPC::ATOMIC_CMP_SWAP_I64: 10963 LoadMnemonic = PPC::LDARX; 10964 StoreMnemonic = PPC::STDCX; 10965 break; 10966 } 10967 unsigned dest = MI.getOperand(0).getReg(); 10968 unsigned ptrA = MI.getOperand(1).getReg(); 10969 unsigned ptrB = MI.getOperand(2).getReg(); 10970 unsigned oldval = MI.getOperand(3).getReg(); 10971 unsigned newval = MI.getOperand(4).getReg(); 10972 DebugLoc dl = MI.getDebugLoc(); 10973 10974 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10975 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10976 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10977 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10978 F->insert(It, loop1MBB); 10979 F->insert(It, loop2MBB); 10980 F->insert(It, midMBB); 10981 F->insert(It, exitMBB); 10982 exitMBB->splice(exitMBB->begin(), BB, 10983 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10984 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10985 10986 // thisMBB: 10987 // ... 10988 // fallthrough --> loopMBB 10989 BB->addSuccessor(loop1MBB); 10990 10991 // loop1MBB: 10992 // l[bhwd]arx dest, ptr 10993 // cmp[wd] dest, oldval 10994 // bne- midMBB 10995 // loop2MBB: 10996 // st[bhwd]cx. newval, ptr 10997 // bne- loopMBB 10998 // b exitBB 10999 // midMBB: 11000 // st[bhwd]cx. dest, ptr 11001 // exitBB: 11002 BB = loop1MBB; 11003 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11004 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11005 .addReg(oldval) 11006 .addReg(dest); 11007 BuildMI(BB, dl, TII->get(PPC::BCC)) 11008 .addImm(PPC::PRED_NE) 11009 .addReg(PPC::CR0) 11010 .addMBB(midMBB); 11011 BB->addSuccessor(loop2MBB); 11012 BB->addSuccessor(midMBB); 11013 11014 BB = loop2MBB; 11015 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11016 .addReg(newval) 11017 .addReg(ptrA) 11018 .addReg(ptrB); 11019 BuildMI(BB, dl, TII->get(PPC::BCC)) 11020 .addImm(PPC::PRED_NE) 11021 .addReg(PPC::CR0) 11022 .addMBB(loop1MBB); 11023 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11024 BB->addSuccessor(loop1MBB); 11025 BB->addSuccessor(exitMBB); 11026 11027 BB = midMBB; 11028 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11029 .addReg(dest) 11030 .addReg(ptrA) 11031 .addReg(ptrB); 11032 BB->addSuccessor(exitMBB); 11033 11034 // exitMBB: 11035 // ... 11036 BB = exitMBB; 11037 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11038 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11039 // We must use 64-bit registers for addresses when targeting 64-bit, 11040 // since we're actually doing arithmetic on them. Other registers 11041 // can be 32-bit. 11042 bool is64bit = Subtarget.isPPC64(); 11043 bool isLittleEndian = Subtarget.isLittleEndian(); 11044 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11045 11046 unsigned dest = MI.getOperand(0).getReg(); 11047 unsigned ptrA = MI.getOperand(1).getReg(); 11048 unsigned ptrB = MI.getOperand(2).getReg(); 11049 unsigned oldval = MI.getOperand(3).getReg(); 11050 unsigned newval = MI.getOperand(4).getReg(); 11051 DebugLoc dl = MI.getDebugLoc(); 11052 11053 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11054 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11055 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11056 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11057 F->insert(It, loop1MBB); 11058 F->insert(It, loop2MBB); 11059 F->insert(It, midMBB); 11060 F->insert(It, exitMBB); 11061 exitMBB->splice(exitMBB->begin(), BB, 11062 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11063 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11064 11065 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11066 const TargetRegisterClass *RC = 11067 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11068 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11069 11070 Register PtrReg = RegInfo.createVirtualRegister(RC); 11071 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11072 Register ShiftReg = 11073 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11074 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11075 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11076 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11077 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11078 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11079 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11080 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11081 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11082 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11083 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11084 Register Ptr1Reg; 11085 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11086 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11087 // thisMBB: 11088 // ... 11089 // fallthrough --> loopMBB 11090 BB->addSuccessor(loop1MBB); 11091 11092 // The 4-byte load must be aligned, while a char or short may be 11093 // anywhere in the word. Hence all this nasty bookkeeping code. 11094 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11095 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11096 // xori shift, shift1, 24 [16] 11097 // rlwinm ptr, ptr1, 0, 0, 29 11098 // slw newval2, newval, shift 11099 // slw oldval2, oldval,shift 11100 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11101 // slw mask, mask2, shift 11102 // and newval3, newval2, mask 11103 // and oldval3, oldval2, mask 11104 // loop1MBB: 11105 // lwarx tmpDest, ptr 11106 // and tmp, tmpDest, mask 11107 // cmpw tmp, oldval3 11108 // bne- midMBB 11109 // loop2MBB: 11110 // andc tmp2, tmpDest, mask 11111 // or tmp4, tmp2, newval3 11112 // stwcx. tmp4, ptr 11113 // bne- loop1MBB 11114 // b exitBB 11115 // midMBB: 11116 // stwcx. tmpDest, ptr 11117 // exitBB: 11118 // srw dest, tmpDest, shift 11119 if (ptrA != ZeroReg) { 11120 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11121 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11122 .addReg(ptrA) 11123 .addReg(ptrB); 11124 } else { 11125 Ptr1Reg = ptrB; 11126 } 11127 11128 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11129 // mode. 11130 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11131 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11132 .addImm(3) 11133 .addImm(27) 11134 .addImm(is8bit ? 28 : 27); 11135 if (!isLittleEndian) 11136 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11137 .addReg(Shift1Reg) 11138 .addImm(is8bit ? 24 : 16); 11139 if (is64bit) 11140 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11141 .addReg(Ptr1Reg) 11142 .addImm(0) 11143 .addImm(61); 11144 else 11145 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11146 .addReg(Ptr1Reg) 11147 .addImm(0) 11148 .addImm(0) 11149 .addImm(29); 11150 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11151 .addReg(newval) 11152 .addReg(ShiftReg); 11153 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11154 .addReg(oldval) 11155 .addReg(ShiftReg); 11156 if (is8bit) 11157 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11158 else { 11159 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11160 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11161 .addReg(Mask3Reg) 11162 .addImm(65535); 11163 } 11164 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11165 .addReg(Mask2Reg) 11166 .addReg(ShiftReg); 11167 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11168 .addReg(NewVal2Reg) 11169 .addReg(MaskReg); 11170 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11171 .addReg(OldVal2Reg) 11172 .addReg(MaskReg); 11173 11174 BB = loop1MBB; 11175 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11176 .addReg(ZeroReg) 11177 .addReg(PtrReg); 11178 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11179 .addReg(TmpDestReg) 11180 .addReg(MaskReg); 11181 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11182 .addReg(TmpReg) 11183 .addReg(OldVal3Reg); 11184 BuildMI(BB, dl, TII->get(PPC::BCC)) 11185 .addImm(PPC::PRED_NE) 11186 .addReg(PPC::CR0) 11187 .addMBB(midMBB); 11188 BB->addSuccessor(loop2MBB); 11189 BB->addSuccessor(midMBB); 11190 11191 BB = loop2MBB; 11192 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11193 .addReg(TmpDestReg) 11194 .addReg(MaskReg); 11195 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11196 .addReg(Tmp2Reg) 11197 .addReg(NewVal3Reg); 11198 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11199 .addReg(Tmp4Reg) 11200 .addReg(ZeroReg) 11201 .addReg(PtrReg); 11202 BuildMI(BB, dl, TII->get(PPC::BCC)) 11203 .addImm(PPC::PRED_NE) 11204 .addReg(PPC::CR0) 11205 .addMBB(loop1MBB); 11206 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11207 BB->addSuccessor(loop1MBB); 11208 BB->addSuccessor(exitMBB); 11209 11210 BB = midMBB; 11211 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11212 .addReg(TmpDestReg) 11213 .addReg(ZeroReg) 11214 .addReg(PtrReg); 11215 BB->addSuccessor(exitMBB); 11216 11217 // exitMBB: 11218 // ... 11219 BB = exitMBB; 11220 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11221 .addReg(TmpReg) 11222 .addReg(ShiftReg); 11223 } else if (MI.getOpcode() == PPC::FADDrtz) { 11224 // This pseudo performs an FADD with rounding mode temporarily forced 11225 // to round-to-zero. We emit this via custom inserter since the FPSCR 11226 // is not modeled at the SelectionDAG level. 11227 unsigned Dest = MI.getOperand(0).getReg(); 11228 unsigned Src1 = MI.getOperand(1).getReg(); 11229 unsigned Src2 = MI.getOperand(2).getReg(); 11230 DebugLoc dl = MI.getDebugLoc(); 11231 11232 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11233 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11234 11235 // Save FPSCR value. 11236 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11237 11238 // Set rounding mode to round-to-zero. 11239 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11240 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11241 11242 // Perform addition. 11243 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11244 11245 // Restore FPSCR value. 11246 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11247 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11248 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 11249 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11250 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 11251 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 11252 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 11253 ? PPC::ANDIo8 11254 : PPC::ANDIo; 11255 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 11256 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 11257 11258 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11259 unsigned Dest = RegInfo.createVirtualRegister( 11260 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11261 11262 DebugLoc dl = MI.getDebugLoc(); 11263 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 11264 .addReg(MI.getOperand(1).getReg()) 11265 .addImm(1); 11266 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 11267 MI.getOperand(0).getReg()) 11268 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 11269 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11270 DebugLoc Dl = MI.getDebugLoc(); 11271 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11272 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11273 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11274 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11275 MI.getOperand(0).getReg()) 11276 .addReg(CRReg); 11277 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11278 DebugLoc Dl = MI.getDebugLoc(); 11279 unsigned Imm = MI.getOperand(1).getImm(); 11280 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11281 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11282 MI.getOperand(0).getReg()) 11283 .addReg(PPC::CR0EQ); 11284 } else if (MI.getOpcode() == PPC::SETRNDi) { 11285 DebugLoc dl = MI.getDebugLoc(); 11286 unsigned OldFPSCRReg = MI.getOperand(0).getReg(); 11287 11288 // Save FPSCR value. 11289 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11290 11291 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11292 // the following settings: 11293 // 00 Round to nearest 11294 // 01 Round to 0 11295 // 10 Round to +inf 11296 // 11 Round to -inf 11297 11298 // When the operand is immediate, using the two least significant bits of 11299 // the immediate to set the bits 62:63 of FPSCR. 11300 unsigned Mode = MI.getOperand(1).getImm(); 11301 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11302 .addImm(31); 11303 11304 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11305 .addImm(30); 11306 } else if (MI.getOpcode() == PPC::SETRND) { 11307 DebugLoc dl = MI.getDebugLoc(); 11308 11309 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11310 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11311 // If the target doesn't have DirectMove, we should use stack to do the 11312 // conversion, because the target doesn't have the instructions like mtvsrd 11313 // or mfvsrd to do this conversion directly. 11314 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11315 if (Subtarget.hasDirectMove()) { 11316 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11317 .addReg(SrcReg); 11318 } else { 11319 // Use stack to do the register copy. 11320 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11321 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11322 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11323 if (RC == &PPC::F8RCRegClass) { 11324 // Copy register from F8RCRegClass to G8RCRegclass. 11325 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11326 "Unsupported RegClass."); 11327 11328 StoreOp = PPC::STFD; 11329 LoadOp = PPC::LD; 11330 } else { 11331 // Copy register from G8RCRegClass to F8RCRegclass. 11332 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11333 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11334 "Unsupported RegClass."); 11335 } 11336 11337 MachineFrameInfo &MFI = F->getFrameInfo(); 11338 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11339 11340 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11341 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11342 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11343 MFI.getObjectAlignment(FrameIdx)); 11344 11345 // Store the SrcReg into the stack. 11346 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11347 .addReg(SrcReg) 11348 .addImm(0) 11349 .addFrameIndex(FrameIdx) 11350 .addMemOperand(MMOStore); 11351 11352 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11353 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11354 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11355 MFI.getObjectAlignment(FrameIdx)); 11356 11357 // Load from the stack where SrcReg is stored, and save to DestReg, 11358 // so we have done the RegClass conversion from RegClass::SrcReg to 11359 // RegClass::DestReg. 11360 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11361 .addImm(0) 11362 .addFrameIndex(FrameIdx) 11363 .addMemOperand(MMOLoad); 11364 } 11365 }; 11366 11367 unsigned OldFPSCRReg = MI.getOperand(0).getReg(); 11368 11369 // Save FPSCR value. 11370 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11371 11372 // When the operand is gprc register, use two least significant bits of the 11373 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11374 // 11375 // copy OldFPSCRTmpReg, OldFPSCRReg 11376 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11377 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11378 // copy NewFPSCRReg, NewFPSCRTmpReg 11379 // mtfsf 255, NewFPSCRReg 11380 MachineOperand SrcOp = MI.getOperand(1); 11381 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11382 unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11383 11384 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11385 11386 unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11387 unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11388 11389 // The first operand of INSERT_SUBREG should be a register which has 11390 // subregisters, we only care about its RegClass, so we should use an 11391 // IMPLICIT_DEF register. 11392 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11393 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11394 .addReg(ImDefReg) 11395 .add(SrcOp) 11396 .addImm(1); 11397 11398 unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11399 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11400 .addReg(OldFPSCRTmpReg) 11401 .addReg(ExtSrcReg) 11402 .addImm(0) 11403 .addImm(62); 11404 11405 unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11406 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11407 11408 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11409 // bits of FPSCR. 11410 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11411 .addImm(255) 11412 .addReg(NewFPSCRReg) 11413 .addImm(0) 11414 .addImm(0); 11415 } else { 11416 llvm_unreachable("Unexpected instr type to insert"); 11417 } 11418 11419 MI.eraseFromParent(); // The pseudo instruction is gone now. 11420 return BB; 11421 } 11422 11423 //===----------------------------------------------------------------------===// 11424 // Target Optimization Hooks 11425 //===----------------------------------------------------------------------===// 11426 11427 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11428 // For the estimates, convergence is quadratic, so we essentially double the 11429 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11430 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11431 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11432 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11433 if (VT.getScalarType() == MVT::f64) 11434 RefinementSteps++; 11435 return RefinementSteps; 11436 } 11437 11438 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11439 int Enabled, int &RefinementSteps, 11440 bool &UseOneConstNR, 11441 bool Reciprocal) const { 11442 EVT VT = Operand.getValueType(); 11443 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11444 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11445 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11446 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11447 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11448 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11449 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11450 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11451 11452 // The Newton-Raphson computation with a single constant does not provide 11453 // enough accuracy on some CPUs. 11454 UseOneConstNR = !Subtarget.needsTwoConstNR(); 11455 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 11456 } 11457 return SDValue(); 11458 } 11459 11460 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 11461 int Enabled, 11462 int &RefinementSteps) const { 11463 EVT VT = Operand.getValueType(); 11464 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 11465 (VT == MVT::f64 && Subtarget.hasFRE()) || 11466 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 11467 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 11468 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 11469 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 11470 if (RefinementSteps == ReciprocalEstimate::Unspecified) 11471 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 11472 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 11473 } 11474 return SDValue(); 11475 } 11476 11477 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 11478 // Note: This functionality is used only when unsafe-fp-math is enabled, and 11479 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 11480 // enabled for division), this functionality is redundant with the default 11481 // combiner logic (once the division -> reciprocal/multiply transformation 11482 // has taken place). As a result, this matters more for older cores than for 11483 // newer ones. 11484 11485 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 11486 // reciprocal if there are two or more FDIVs (for embedded cores with only 11487 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 11488 switch (Subtarget.getDarwinDirective()) { 11489 default: 11490 return 3; 11491 case PPC::DIR_440: 11492 case PPC::DIR_A2: 11493 case PPC::DIR_E500: 11494 case PPC::DIR_E500mc: 11495 case PPC::DIR_E5500: 11496 return 2; 11497 } 11498 } 11499 11500 // isConsecutiveLSLoc needs to work even if all adds have not yet been 11501 // collapsed, and so we need to look through chains of them. 11502 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 11503 int64_t& Offset, SelectionDAG &DAG) { 11504 if (DAG.isBaseWithConstantOffset(Loc)) { 11505 Base = Loc.getOperand(0); 11506 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 11507 11508 // The base might itself be a base plus an offset, and if so, accumulate 11509 // that as well. 11510 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 11511 } 11512 } 11513 11514 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 11515 unsigned Bytes, int Dist, 11516 SelectionDAG &DAG) { 11517 if (VT.getSizeInBits() / 8 != Bytes) 11518 return false; 11519 11520 SDValue BaseLoc = Base->getBasePtr(); 11521 if (Loc.getOpcode() == ISD::FrameIndex) { 11522 if (BaseLoc.getOpcode() != ISD::FrameIndex) 11523 return false; 11524 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 11525 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 11526 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 11527 int FS = MFI.getObjectSize(FI); 11528 int BFS = MFI.getObjectSize(BFI); 11529 if (FS != BFS || FS != (int)Bytes) return false; 11530 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 11531 } 11532 11533 SDValue Base1 = Loc, Base2 = BaseLoc; 11534 int64_t Offset1 = 0, Offset2 = 0; 11535 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 11536 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 11537 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 11538 return true; 11539 11540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11541 const GlobalValue *GV1 = nullptr; 11542 const GlobalValue *GV2 = nullptr; 11543 Offset1 = 0; 11544 Offset2 = 0; 11545 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 11546 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 11547 if (isGA1 && isGA2 && GV1 == GV2) 11548 return Offset1 == (Offset2 + Dist*Bytes); 11549 return false; 11550 } 11551 11552 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 11553 // not enforce equality of the chain operands. 11554 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 11555 unsigned Bytes, int Dist, 11556 SelectionDAG &DAG) { 11557 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 11558 EVT VT = LS->getMemoryVT(); 11559 SDValue Loc = LS->getBasePtr(); 11560 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 11561 } 11562 11563 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 11564 EVT VT; 11565 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11566 default: return false; 11567 case Intrinsic::ppc_qpx_qvlfd: 11568 case Intrinsic::ppc_qpx_qvlfda: 11569 VT = MVT::v4f64; 11570 break; 11571 case Intrinsic::ppc_qpx_qvlfs: 11572 case Intrinsic::ppc_qpx_qvlfsa: 11573 VT = MVT::v4f32; 11574 break; 11575 case Intrinsic::ppc_qpx_qvlfcd: 11576 case Intrinsic::ppc_qpx_qvlfcda: 11577 VT = MVT::v2f64; 11578 break; 11579 case Intrinsic::ppc_qpx_qvlfcs: 11580 case Intrinsic::ppc_qpx_qvlfcsa: 11581 VT = MVT::v2f32; 11582 break; 11583 case Intrinsic::ppc_qpx_qvlfiwa: 11584 case Intrinsic::ppc_qpx_qvlfiwz: 11585 case Intrinsic::ppc_altivec_lvx: 11586 case Intrinsic::ppc_altivec_lvxl: 11587 case Intrinsic::ppc_vsx_lxvw4x: 11588 case Intrinsic::ppc_vsx_lxvw4x_be: 11589 VT = MVT::v4i32; 11590 break; 11591 case Intrinsic::ppc_vsx_lxvd2x: 11592 case Intrinsic::ppc_vsx_lxvd2x_be: 11593 VT = MVT::v2f64; 11594 break; 11595 case Intrinsic::ppc_altivec_lvebx: 11596 VT = MVT::i8; 11597 break; 11598 case Intrinsic::ppc_altivec_lvehx: 11599 VT = MVT::i16; 11600 break; 11601 case Intrinsic::ppc_altivec_lvewx: 11602 VT = MVT::i32; 11603 break; 11604 } 11605 11606 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 11607 } 11608 11609 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 11610 EVT VT; 11611 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 11612 default: return false; 11613 case Intrinsic::ppc_qpx_qvstfd: 11614 case Intrinsic::ppc_qpx_qvstfda: 11615 VT = MVT::v4f64; 11616 break; 11617 case Intrinsic::ppc_qpx_qvstfs: 11618 case Intrinsic::ppc_qpx_qvstfsa: 11619 VT = MVT::v4f32; 11620 break; 11621 case Intrinsic::ppc_qpx_qvstfcd: 11622 case Intrinsic::ppc_qpx_qvstfcda: 11623 VT = MVT::v2f64; 11624 break; 11625 case Intrinsic::ppc_qpx_qvstfcs: 11626 case Intrinsic::ppc_qpx_qvstfcsa: 11627 VT = MVT::v2f32; 11628 break; 11629 case Intrinsic::ppc_qpx_qvstfiw: 11630 case Intrinsic::ppc_qpx_qvstfiwa: 11631 case Intrinsic::ppc_altivec_stvx: 11632 case Intrinsic::ppc_altivec_stvxl: 11633 case Intrinsic::ppc_vsx_stxvw4x: 11634 VT = MVT::v4i32; 11635 break; 11636 case Intrinsic::ppc_vsx_stxvd2x: 11637 VT = MVT::v2f64; 11638 break; 11639 case Intrinsic::ppc_vsx_stxvw4x_be: 11640 VT = MVT::v4i32; 11641 break; 11642 case Intrinsic::ppc_vsx_stxvd2x_be: 11643 VT = MVT::v2f64; 11644 break; 11645 case Intrinsic::ppc_altivec_stvebx: 11646 VT = MVT::i8; 11647 break; 11648 case Intrinsic::ppc_altivec_stvehx: 11649 VT = MVT::i16; 11650 break; 11651 case Intrinsic::ppc_altivec_stvewx: 11652 VT = MVT::i32; 11653 break; 11654 } 11655 11656 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 11657 } 11658 11659 return false; 11660 } 11661 11662 // Return true is there is a nearyby consecutive load to the one provided 11663 // (regardless of alignment). We search up and down the chain, looking though 11664 // token factors and other loads (but nothing else). As a result, a true result 11665 // indicates that it is safe to create a new consecutive load adjacent to the 11666 // load provided. 11667 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 11668 SDValue Chain = LD->getChain(); 11669 EVT VT = LD->getMemoryVT(); 11670 11671 SmallSet<SDNode *, 16> LoadRoots; 11672 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 11673 SmallSet<SDNode *, 16> Visited; 11674 11675 // First, search up the chain, branching to follow all token-factor operands. 11676 // If we find a consecutive load, then we're done, otherwise, record all 11677 // nodes just above the top-level loads and token factors. 11678 while (!Queue.empty()) { 11679 SDNode *ChainNext = Queue.pop_back_val(); 11680 if (!Visited.insert(ChainNext).second) 11681 continue; 11682 11683 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 11684 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11685 return true; 11686 11687 if (!Visited.count(ChainLD->getChain().getNode())) 11688 Queue.push_back(ChainLD->getChain().getNode()); 11689 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 11690 for (const SDUse &O : ChainNext->ops()) 11691 if (!Visited.count(O.getNode())) 11692 Queue.push_back(O.getNode()); 11693 } else 11694 LoadRoots.insert(ChainNext); 11695 } 11696 11697 // Second, search down the chain, starting from the top-level nodes recorded 11698 // in the first phase. These top-level nodes are the nodes just above all 11699 // loads and token factors. Starting with their uses, recursively look though 11700 // all loads (just the chain uses) and token factors to find a consecutive 11701 // load. 11702 Visited.clear(); 11703 Queue.clear(); 11704 11705 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 11706 IE = LoadRoots.end(); I != IE; ++I) { 11707 Queue.push_back(*I); 11708 11709 while (!Queue.empty()) { 11710 SDNode *LoadRoot = Queue.pop_back_val(); 11711 if (!Visited.insert(LoadRoot).second) 11712 continue; 11713 11714 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 11715 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 11716 return true; 11717 11718 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 11719 UE = LoadRoot->use_end(); UI != UE; ++UI) 11720 if (((isa<MemSDNode>(*UI) && 11721 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 11722 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 11723 Queue.push_back(*UI); 11724 } 11725 } 11726 11727 return false; 11728 } 11729 11730 /// This function is called when we have proved that a SETCC node can be replaced 11731 /// by subtraction (and other supporting instructions) so that the result of 11732 /// comparison is kept in a GPR instead of CR. This function is purely for 11733 /// codegen purposes and has some flags to guide the codegen process. 11734 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 11735 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 11736 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11737 11738 // Zero extend the operands to the largest legal integer. Originally, they 11739 // must be of a strictly smaller size. 11740 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11741 DAG.getConstant(Size, DL, MVT::i32)); 11742 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11743 DAG.getConstant(Size, DL, MVT::i32)); 11744 11745 // Swap if needed. Depends on the condition code. 11746 if (Swap) 11747 std::swap(Op0, Op1); 11748 11749 // Subtract extended integers. 11750 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11751 11752 // Move the sign bit to the least significant position and zero out the rest. 11753 // Now the least significant bit carries the result of original comparison. 11754 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11755 DAG.getConstant(Size - 1, DL, MVT::i32)); 11756 auto Final = Shifted; 11757 11758 // Complement the result if needed. Based on the condition code. 11759 if (Complement) 11760 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11761 DAG.getConstant(1, DL, MVT::i64)); 11762 11763 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11764 } 11765 11766 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11767 DAGCombinerInfo &DCI) const { 11768 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11769 11770 SelectionDAG &DAG = DCI.DAG; 11771 SDLoc DL(N); 11772 11773 // Size of integers being compared has a critical role in the following 11774 // analysis, so we prefer to do this when all types are legal. 11775 if (!DCI.isAfterLegalizeDAG()) 11776 return SDValue(); 11777 11778 // If all users of SETCC extend its value to a legal integer type 11779 // then we replace SETCC with a subtraction 11780 for (SDNode::use_iterator UI = N->use_begin(), 11781 UE = N->use_end(); UI != UE; ++UI) { 11782 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11783 return SDValue(); 11784 } 11785 11786 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11787 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11788 11789 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11790 11791 if (OpSize < Size) { 11792 switch (CC) { 11793 default: break; 11794 case ISD::SETULT: 11795 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11796 case ISD::SETULE: 11797 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11798 case ISD::SETUGT: 11799 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11800 case ISD::SETUGE: 11801 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11802 } 11803 } 11804 11805 return SDValue(); 11806 } 11807 11808 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11809 DAGCombinerInfo &DCI) const { 11810 SelectionDAG &DAG = DCI.DAG; 11811 SDLoc dl(N); 11812 11813 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11814 // If we're tracking CR bits, we need to be careful that we don't have: 11815 // trunc(binary-ops(zext(x), zext(y))) 11816 // or 11817 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11818 // such that we're unnecessarily moving things into GPRs when it would be 11819 // better to keep them in CR bits. 11820 11821 // Note that trunc here can be an actual i1 trunc, or can be the effective 11822 // truncation that comes from a setcc or select_cc. 11823 if (N->getOpcode() == ISD::TRUNCATE && 11824 N->getValueType(0) != MVT::i1) 11825 return SDValue(); 11826 11827 if (N->getOperand(0).getValueType() != MVT::i32 && 11828 N->getOperand(0).getValueType() != MVT::i64) 11829 return SDValue(); 11830 11831 if (N->getOpcode() == ISD::SETCC || 11832 N->getOpcode() == ISD::SELECT_CC) { 11833 // If we're looking at a comparison, then we need to make sure that the 11834 // high bits (all except for the first) don't matter the result. 11835 ISD::CondCode CC = 11836 cast<CondCodeSDNode>(N->getOperand( 11837 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11838 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11839 11840 if (ISD::isSignedIntSetCC(CC)) { 11841 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11842 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11843 return SDValue(); 11844 } else if (ISD::isUnsignedIntSetCC(CC)) { 11845 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11846 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11847 !DAG.MaskedValueIsZero(N->getOperand(1), 11848 APInt::getHighBitsSet(OpBits, OpBits-1))) 11849 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11850 : SDValue()); 11851 } else { 11852 // This is neither a signed nor an unsigned comparison, just make sure 11853 // that the high bits are equal. 11854 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 11855 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 11856 11857 // We don't really care about what is known about the first bit (if 11858 // anything), so clear it in all masks prior to comparing them. 11859 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11860 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11861 11862 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11863 return SDValue(); 11864 } 11865 } 11866 11867 // We now know that the higher-order bits are irrelevant, we just need to 11868 // make sure that all of the intermediate operations are bit operations, and 11869 // all inputs are extensions. 11870 if (N->getOperand(0).getOpcode() != ISD::AND && 11871 N->getOperand(0).getOpcode() != ISD::OR && 11872 N->getOperand(0).getOpcode() != ISD::XOR && 11873 N->getOperand(0).getOpcode() != ISD::SELECT && 11874 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11875 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11876 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11877 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11878 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11879 return SDValue(); 11880 11881 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11882 N->getOperand(1).getOpcode() != ISD::AND && 11883 N->getOperand(1).getOpcode() != ISD::OR && 11884 N->getOperand(1).getOpcode() != ISD::XOR && 11885 N->getOperand(1).getOpcode() != ISD::SELECT && 11886 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11887 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11888 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11889 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11890 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11891 return SDValue(); 11892 11893 SmallVector<SDValue, 4> Inputs; 11894 SmallVector<SDValue, 8> BinOps, PromOps; 11895 SmallPtrSet<SDNode *, 16> Visited; 11896 11897 for (unsigned i = 0; i < 2; ++i) { 11898 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11899 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11900 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11901 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11902 isa<ConstantSDNode>(N->getOperand(i))) 11903 Inputs.push_back(N->getOperand(i)); 11904 else 11905 BinOps.push_back(N->getOperand(i)); 11906 11907 if (N->getOpcode() == ISD::TRUNCATE) 11908 break; 11909 } 11910 11911 // Visit all inputs, collect all binary operations (and, or, xor and 11912 // select) that are all fed by extensions. 11913 while (!BinOps.empty()) { 11914 SDValue BinOp = BinOps.back(); 11915 BinOps.pop_back(); 11916 11917 if (!Visited.insert(BinOp.getNode()).second) 11918 continue; 11919 11920 PromOps.push_back(BinOp); 11921 11922 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11923 // The condition of the select is not promoted. 11924 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11925 continue; 11926 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11927 continue; 11928 11929 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11930 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11931 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11932 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11933 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11934 Inputs.push_back(BinOp.getOperand(i)); 11935 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11936 BinOp.getOperand(i).getOpcode() == ISD::OR || 11937 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11938 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11939 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11940 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11941 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11942 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11943 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11944 BinOps.push_back(BinOp.getOperand(i)); 11945 } else { 11946 // We have an input that is not an extension or another binary 11947 // operation; we'll abort this transformation. 11948 return SDValue(); 11949 } 11950 } 11951 } 11952 11953 // Make sure that this is a self-contained cluster of operations (which 11954 // is not quite the same thing as saying that everything has only one 11955 // use). 11956 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11957 if (isa<ConstantSDNode>(Inputs[i])) 11958 continue; 11959 11960 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11961 UE = Inputs[i].getNode()->use_end(); 11962 UI != UE; ++UI) { 11963 SDNode *User = *UI; 11964 if (User != N && !Visited.count(User)) 11965 return SDValue(); 11966 11967 // Make sure that we're not going to promote the non-output-value 11968 // operand(s) or SELECT or SELECT_CC. 11969 // FIXME: Although we could sometimes handle this, and it does occur in 11970 // practice that one of the condition inputs to the select is also one of 11971 // the outputs, we currently can't deal with this. 11972 if (User->getOpcode() == ISD::SELECT) { 11973 if (User->getOperand(0) == Inputs[i]) 11974 return SDValue(); 11975 } else if (User->getOpcode() == ISD::SELECT_CC) { 11976 if (User->getOperand(0) == Inputs[i] || 11977 User->getOperand(1) == Inputs[i]) 11978 return SDValue(); 11979 } 11980 } 11981 } 11982 11983 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11984 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11985 UE = PromOps[i].getNode()->use_end(); 11986 UI != UE; ++UI) { 11987 SDNode *User = *UI; 11988 if (User != N && !Visited.count(User)) 11989 return SDValue(); 11990 11991 // Make sure that we're not going to promote the non-output-value 11992 // operand(s) or SELECT or SELECT_CC. 11993 // FIXME: Although we could sometimes handle this, and it does occur in 11994 // practice that one of the condition inputs to the select is also one of 11995 // the outputs, we currently can't deal with this. 11996 if (User->getOpcode() == ISD::SELECT) { 11997 if (User->getOperand(0) == PromOps[i]) 11998 return SDValue(); 11999 } else if (User->getOpcode() == ISD::SELECT_CC) { 12000 if (User->getOperand(0) == PromOps[i] || 12001 User->getOperand(1) == PromOps[i]) 12002 return SDValue(); 12003 } 12004 } 12005 } 12006 12007 // Replace all inputs with the extension operand. 12008 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12009 // Constants may have users outside the cluster of to-be-promoted nodes, 12010 // and so we need to replace those as we do the promotions. 12011 if (isa<ConstantSDNode>(Inputs[i])) 12012 continue; 12013 else 12014 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12015 } 12016 12017 std::list<HandleSDNode> PromOpHandles; 12018 for (auto &PromOp : PromOps) 12019 PromOpHandles.emplace_back(PromOp); 12020 12021 // Replace all operations (these are all the same, but have a different 12022 // (i1) return type). DAG.getNode will validate that the types of 12023 // a binary operator match, so go through the list in reverse so that 12024 // we've likely promoted both operands first. Any intermediate truncations or 12025 // extensions disappear. 12026 while (!PromOpHandles.empty()) { 12027 SDValue PromOp = PromOpHandles.back().getValue(); 12028 PromOpHandles.pop_back(); 12029 12030 if (PromOp.getOpcode() == ISD::TRUNCATE || 12031 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12032 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12033 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12034 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12035 PromOp.getOperand(0).getValueType() != MVT::i1) { 12036 // The operand is not yet ready (see comment below). 12037 PromOpHandles.emplace_front(PromOp); 12038 continue; 12039 } 12040 12041 SDValue RepValue = PromOp.getOperand(0); 12042 if (isa<ConstantSDNode>(RepValue)) 12043 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12044 12045 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12046 continue; 12047 } 12048 12049 unsigned C; 12050 switch (PromOp.getOpcode()) { 12051 default: C = 0; break; 12052 case ISD::SELECT: C = 1; break; 12053 case ISD::SELECT_CC: C = 2; break; 12054 } 12055 12056 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12057 PromOp.getOperand(C).getValueType() != MVT::i1) || 12058 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12059 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12060 // The to-be-promoted operands of this node have not yet been 12061 // promoted (this should be rare because we're going through the 12062 // list backward, but if one of the operands has several users in 12063 // this cluster of to-be-promoted nodes, it is possible). 12064 PromOpHandles.emplace_front(PromOp); 12065 continue; 12066 } 12067 12068 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12069 PromOp.getNode()->op_end()); 12070 12071 // If there are any constant inputs, make sure they're replaced now. 12072 for (unsigned i = 0; i < 2; ++i) 12073 if (isa<ConstantSDNode>(Ops[C+i])) 12074 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12075 12076 DAG.ReplaceAllUsesOfValueWith(PromOp, 12077 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12078 } 12079 12080 // Now we're left with the initial truncation itself. 12081 if (N->getOpcode() == ISD::TRUNCATE) 12082 return N->getOperand(0); 12083 12084 // Otherwise, this is a comparison. The operands to be compared have just 12085 // changed type (to i1), but everything else is the same. 12086 return SDValue(N, 0); 12087 } 12088 12089 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12090 DAGCombinerInfo &DCI) const { 12091 SelectionDAG &DAG = DCI.DAG; 12092 SDLoc dl(N); 12093 12094 // If we're tracking CR bits, we need to be careful that we don't have: 12095 // zext(binary-ops(trunc(x), trunc(y))) 12096 // or 12097 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12098 // such that we're unnecessarily moving things into CR bits that can more 12099 // efficiently stay in GPRs. Note that if we're not certain that the high 12100 // bits are set as required by the final extension, we still may need to do 12101 // some masking to get the proper behavior. 12102 12103 // This same functionality is important on PPC64 when dealing with 12104 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12105 // the return values of functions. Because it is so similar, it is handled 12106 // here as well. 12107 12108 if (N->getValueType(0) != MVT::i32 && 12109 N->getValueType(0) != MVT::i64) 12110 return SDValue(); 12111 12112 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12113 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12114 return SDValue(); 12115 12116 if (N->getOperand(0).getOpcode() != ISD::AND && 12117 N->getOperand(0).getOpcode() != ISD::OR && 12118 N->getOperand(0).getOpcode() != ISD::XOR && 12119 N->getOperand(0).getOpcode() != ISD::SELECT && 12120 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12121 return SDValue(); 12122 12123 SmallVector<SDValue, 4> Inputs; 12124 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12125 SmallPtrSet<SDNode *, 16> Visited; 12126 12127 // Visit all inputs, collect all binary operations (and, or, xor and 12128 // select) that are all fed by truncations. 12129 while (!BinOps.empty()) { 12130 SDValue BinOp = BinOps.back(); 12131 BinOps.pop_back(); 12132 12133 if (!Visited.insert(BinOp.getNode()).second) 12134 continue; 12135 12136 PromOps.push_back(BinOp); 12137 12138 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12139 // The condition of the select is not promoted. 12140 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12141 continue; 12142 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12143 continue; 12144 12145 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12146 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12147 Inputs.push_back(BinOp.getOperand(i)); 12148 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12149 BinOp.getOperand(i).getOpcode() == ISD::OR || 12150 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12151 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12152 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12153 BinOps.push_back(BinOp.getOperand(i)); 12154 } else { 12155 // We have an input that is not a truncation or another binary 12156 // operation; we'll abort this transformation. 12157 return SDValue(); 12158 } 12159 } 12160 } 12161 12162 // The operands of a select that must be truncated when the select is 12163 // promoted because the operand is actually part of the to-be-promoted set. 12164 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12165 12166 // Make sure that this is a self-contained cluster of operations (which 12167 // is not quite the same thing as saying that everything has only one 12168 // use). 12169 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12170 if (isa<ConstantSDNode>(Inputs[i])) 12171 continue; 12172 12173 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12174 UE = Inputs[i].getNode()->use_end(); 12175 UI != UE; ++UI) { 12176 SDNode *User = *UI; 12177 if (User != N && !Visited.count(User)) 12178 return SDValue(); 12179 12180 // If we're going to promote the non-output-value operand(s) or SELECT or 12181 // SELECT_CC, record them for truncation. 12182 if (User->getOpcode() == ISD::SELECT) { 12183 if (User->getOperand(0) == Inputs[i]) 12184 SelectTruncOp[0].insert(std::make_pair(User, 12185 User->getOperand(0).getValueType())); 12186 } else if (User->getOpcode() == ISD::SELECT_CC) { 12187 if (User->getOperand(0) == Inputs[i]) 12188 SelectTruncOp[0].insert(std::make_pair(User, 12189 User->getOperand(0).getValueType())); 12190 if (User->getOperand(1) == Inputs[i]) 12191 SelectTruncOp[1].insert(std::make_pair(User, 12192 User->getOperand(1).getValueType())); 12193 } 12194 } 12195 } 12196 12197 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12198 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12199 UE = PromOps[i].getNode()->use_end(); 12200 UI != UE; ++UI) { 12201 SDNode *User = *UI; 12202 if (User != N && !Visited.count(User)) 12203 return SDValue(); 12204 12205 // If we're going to promote the non-output-value operand(s) or SELECT or 12206 // SELECT_CC, record them for truncation. 12207 if (User->getOpcode() == ISD::SELECT) { 12208 if (User->getOperand(0) == PromOps[i]) 12209 SelectTruncOp[0].insert(std::make_pair(User, 12210 User->getOperand(0).getValueType())); 12211 } else if (User->getOpcode() == ISD::SELECT_CC) { 12212 if (User->getOperand(0) == PromOps[i]) 12213 SelectTruncOp[0].insert(std::make_pair(User, 12214 User->getOperand(0).getValueType())); 12215 if (User->getOperand(1) == PromOps[i]) 12216 SelectTruncOp[1].insert(std::make_pair(User, 12217 User->getOperand(1).getValueType())); 12218 } 12219 } 12220 } 12221 12222 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12223 bool ReallyNeedsExt = false; 12224 if (N->getOpcode() != ISD::ANY_EXTEND) { 12225 // If all of the inputs are not already sign/zero extended, then 12226 // we'll still need to do that at the end. 12227 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12228 if (isa<ConstantSDNode>(Inputs[i])) 12229 continue; 12230 12231 unsigned OpBits = 12232 Inputs[i].getOperand(0).getValueSizeInBits(); 12233 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12234 12235 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12236 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12237 APInt::getHighBitsSet(OpBits, 12238 OpBits-PromBits))) || 12239 (N->getOpcode() == ISD::SIGN_EXTEND && 12240 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12241 (OpBits-(PromBits-1)))) { 12242 ReallyNeedsExt = true; 12243 break; 12244 } 12245 } 12246 } 12247 12248 // Replace all inputs, either with the truncation operand, or a 12249 // truncation or extension to the final output type. 12250 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12251 // Constant inputs need to be replaced with the to-be-promoted nodes that 12252 // use them because they might have users outside of the cluster of 12253 // promoted nodes. 12254 if (isa<ConstantSDNode>(Inputs[i])) 12255 continue; 12256 12257 SDValue InSrc = Inputs[i].getOperand(0); 12258 if (Inputs[i].getValueType() == N->getValueType(0)) 12259 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12260 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12261 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12262 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12263 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12264 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12265 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12266 else 12267 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12268 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12269 } 12270 12271 std::list<HandleSDNode> PromOpHandles; 12272 for (auto &PromOp : PromOps) 12273 PromOpHandles.emplace_back(PromOp); 12274 12275 // Replace all operations (these are all the same, but have a different 12276 // (promoted) return type). DAG.getNode will validate that the types of 12277 // a binary operator match, so go through the list in reverse so that 12278 // we've likely promoted both operands first. 12279 while (!PromOpHandles.empty()) { 12280 SDValue PromOp = PromOpHandles.back().getValue(); 12281 PromOpHandles.pop_back(); 12282 12283 unsigned C; 12284 switch (PromOp.getOpcode()) { 12285 default: C = 0; break; 12286 case ISD::SELECT: C = 1; break; 12287 case ISD::SELECT_CC: C = 2; break; 12288 } 12289 12290 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12291 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12292 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12293 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12294 // The to-be-promoted operands of this node have not yet been 12295 // promoted (this should be rare because we're going through the 12296 // list backward, but if one of the operands has several users in 12297 // this cluster of to-be-promoted nodes, it is possible). 12298 PromOpHandles.emplace_front(PromOp); 12299 continue; 12300 } 12301 12302 // For SELECT and SELECT_CC nodes, we do a similar check for any 12303 // to-be-promoted comparison inputs. 12304 if (PromOp.getOpcode() == ISD::SELECT || 12305 PromOp.getOpcode() == ISD::SELECT_CC) { 12306 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12307 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12308 (SelectTruncOp[1].count(PromOp.getNode()) && 12309 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12310 PromOpHandles.emplace_front(PromOp); 12311 continue; 12312 } 12313 } 12314 12315 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12316 PromOp.getNode()->op_end()); 12317 12318 // If this node has constant inputs, then they'll need to be promoted here. 12319 for (unsigned i = 0; i < 2; ++i) { 12320 if (!isa<ConstantSDNode>(Ops[C+i])) 12321 continue; 12322 if (Ops[C+i].getValueType() == N->getValueType(0)) 12323 continue; 12324 12325 if (N->getOpcode() == ISD::SIGN_EXTEND) 12326 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12327 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12328 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12329 else 12330 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12331 } 12332 12333 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12334 // truncate them again to the original value type. 12335 if (PromOp.getOpcode() == ISD::SELECT || 12336 PromOp.getOpcode() == ISD::SELECT_CC) { 12337 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12338 if (SI0 != SelectTruncOp[0].end()) 12339 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12340 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12341 if (SI1 != SelectTruncOp[1].end()) 12342 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12343 } 12344 12345 DAG.ReplaceAllUsesOfValueWith(PromOp, 12346 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12347 } 12348 12349 // Now we're left with the initial extension itself. 12350 if (!ReallyNeedsExt) 12351 return N->getOperand(0); 12352 12353 // To zero extend, just mask off everything except for the first bit (in the 12354 // i1 case). 12355 if (N->getOpcode() == ISD::ZERO_EXTEND) 12356 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12357 DAG.getConstant(APInt::getLowBitsSet( 12358 N->getValueSizeInBits(0), PromBits), 12359 dl, N->getValueType(0))); 12360 12361 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12362 "Invalid extension type"); 12363 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12364 SDValue ShiftCst = 12365 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12366 return DAG.getNode( 12367 ISD::SRA, dl, N->getValueType(0), 12368 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12369 ShiftCst); 12370 } 12371 12372 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12373 DAGCombinerInfo &DCI) const { 12374 assert(N->getOpcode() == ISD::SETCC && 12375 "Should be called with a SETCC node"); 12376 12377 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12378 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12379 SDValue LHS = N->getOperand(0); 12380 SDValue RHS = N->getOperand(1); 12381 12382 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12383 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12384 LHS.hasOneUse()) 12385 std::swap(LHS, RHS); 12386 12387 // x == 0-y --> x+y == 0 12388 // x != 0-y --> x+y != 0 12389 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12390 RHS.hasOneUse()) { 12391 SDLoc DL(N); 12392 SelectionDAG &DAG = DCI.DAG; 12393 EVT VT = N->getValueType(0); 12394 EVT OpVT = LHS.getValueType(); 12395 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12396 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12397 } 12398 } 12399 12400 return DAGCombineTruncBoolExt(N, DCI); 12401 } 12402 12403 // Is this an extending load from an f32 to an f64? 12404 static bool isFPExtLoad(SDValue Op) { 12405 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12406 return LD->getExtensionType() == ISD::EXTLOAD && 12407 Op.getValueType() == MVT::f64; 12408 return false; 12409 } 12410 12411 /// Reduces the number of fp-to-int conversion when building a vector. 12412 /// 12413 /// If this vector is built out of floating to integer conversions, 12414 /// transform it to a vector built out of floating point values followed by a 12415 /// single floating to integer conversion of the vector. 12416 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12417 /// becomes (fptosi (build_vector ($A, $B, ...))) 12418 SDValue PPCTargetLowering:: 12419 combineElementTruncationToVectorTruncation(SDNode *N, 12420 DAGCombinerInfo &DCI) const { 12421 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12422 "Should be called with a BUILD_VECTOR node"); 12423 12424 SelectionDAG &DAG = DCI.DAG; 12425 SDLoc dl(N); 12426 12427 SDValue FirstInput = N->getOperand(0); 12428 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12429 "The input operand must be an fp-to-int conversion."); 12430 12431 // This combine happens after legalization so the fp_to_[su]i nodes are 12432 // already converted to PPCSISD nodes. 12433 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12434 if (FirstConversion == PPCISD::FCTIDZ || 12435 FirstConversion == PPCISD::FCTIDUZ || 12436 FirstConversion == PPCISD::FCTIWZ || 12437 FirstConversion == PPCISD::FCTIWUZ) { 12438 bool IsSplat = true; 12439 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12440 FirstConversion == PPCISD::FCTIWUZ; 12441 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12442 SmallVector<SDValue, 4> Ops; 12443 EVT TargetVT = N->getValueType(0); 12444 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12445 SDValue NextOp = N->getOperand(i); 12446 if (NextOp.getOpcode() != PPCISD::MFVSR) 12447 return SDValue(); 12448 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 12449 if (NextConversion != FirstConversion) 12450 return SDValue(); 12451 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 12452 // This is not valid if the input was originally double precision. It is 12453 // also not profitable to do unless this is an extending load in which 12454 // case doing this combine will allow us to combine consecutive loads. 12455 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 12456 return SDValue(); 12457 if (N->getOperand(i) != FirstInput) 12458 IsSplat = false; 12459 } 12460 12461 // If this is a splat, we leave it as-is since there will be only a single 12462 // fp-to-int conversion followed by a splat of the integer. This is better 12463 // for 32-bit and smaller ints and neutral for 64-bit ints. 12464 if (IsSplat) 12465 return SDValue(); 12466 12467 // Now that we know we have the right type of node, get its operands 12468 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12469 SDValue In = N->getOperand(i).getOperand(0); 12470 if (Is32Bit) { 12471 // For 32-bit values, we need to add an FP_ROUND node (if we made it 12472 // here, we know that all inputs are extending loads so this is safe). 12473 if (In.isUndef()) 12474 Ops.push_back(DAG.getUNDEF(SrcVT)); 12475 else { 12476 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 12477 MVT::f32, In.getOperand(0), 12478 DAG.getIntPtrConstant(1, dl)); 12479 Ops.push_back(Trunc); 12480 } 12481 } else 12482 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 12483 } 12484 12485 unsigned Opcode; 12486 if (FirstConversion == PPCISD::FCTIDZ || 12487 FirstConversion == PPCISD::FCTIWZ) 12488 Opcode = ISD::FP_TO_SINT; 12489 else 12490 Opcode = ISD::FP_TO_UINT; 12491 12492 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 12493 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 12494 return DAG.getNode(Opcode, dl, TargetVT, BV); 12495 } 12496 return SDValue(); 12497 } 12498 12499 /// Reduce the number of loads when building a vector. 12500 /// 12501 /// Building a vector out of multiple loads can be converted to a load 12502 /// of the vector type if the loads are consecutive. If the loads are 12503 /// consecutive but in descending order, a shuffle is added at the end 12504 /// to reorder the vector. 12505 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 12506 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12507 "Should be called with a BUILD_VECTOR node"); 12508 12509 SDLoc dl(N); 12510 12511 // Return early for non byte-sized type, as they can't be consecutive. 12512 if (!N->getValueType(0).getVectorElementType().isByteSized()) 12513 return SDValue(); 12514 12515 bool InputsAreConsecutiveLoads = true; 12516 bool InputsAreReverseConsecutive = true; 12517 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 12518 SDValue FirstInput = N->getOperand(0); 12519 bool IsRoundOfExtLoad = false; 12520 12521 if (FirstInput.getOpcode() == ISD::FP_ROUND && 12522 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 12523 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 12524 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 12525 } 12526 // Not a build vector of (possibly fp_rounded) loads. 12527 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 12528 N->getNumOperands() == 1) 12529 return SDValue(); 12530 12531 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 12532 // If any inputs are fp_round(extload), they all must be. 12533 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 12534 return SDValue(); 12535 12536 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 12537 N->getOperand(i); 12538 if (NextInput.getOpcode() != ISD::LOAD) 12539 return SDValue(); 12540 12541 SDValue PreviousInput = 12542 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 12543 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 12544 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 12545 12546 // If any inputs are fp_round(extload), they all must be. 12547 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 12548 return SDValue(); 12549 12550 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 12551 InputsAreConsecutiveLoads = false; 12552 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 12553 InputsAreReverseConsecutive = false; 12554 12555 // Exit early if the loads are neither consecutive nor reverse consecutive. 12556 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 12557 return SDValue(); 12558 } 12559 12560 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 12561 "The loads cannot be both consecutive and reverse consecutive."); 12562 12563 SDValue FirstLoadOp = 12564 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 12565 SDValue LastLoadOp = 12566 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 12567 N->getOperand(N->getNumOperands()-1); 12568 12569 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 12570 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 12571 if (InputsAreConsecutiveLoads) { 12572 assert(LD1 && "Input needs to be a LoadSDNode."); 12573 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 12574 LD1->getBasePtr(), LD1->getPointerInfo(), 12575 LD1->getAlignment()); 12576 } 12577 if (InputsAreReverseConsecutive) { 12578 assert(LDL && "Input needs to be a LoadSDNode."); 12579 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 12580 LDL->getBasePtr(), LDL->getPointerInfo(), 12581 LDL->getAlignment()); 12582 SmallVector<int, 16> Ops; 12583 for (int i = N->getNumOperands() - 1; i >= 0; i--) 12584 Ops.push_back(i); 12585 12586 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 12587 DAG.getUNDEF(N->getValueType(0)), Ops); 12588 } 12589 return SDValue(); 12590 } 12591 12592 // This function adds the required vector_shuffle needed to get 12593 // the elements of the vector extract in the correct position 12594 // as specified by the CorrectElems encoding. 12595 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 12596 SDValue Input, uint64_t Elems, 12597 uint64_t CorrectElems) { 12598 SDLoc dl(N); 12599 12600 unsigned NumElems = Input.getValueType().getVectorNumElements(); 12601 SmallVector<int, 16> ShuffleMask(NumElems, -1); 12602 12603 // Knowing the element indices being extracted from the original 12604 // vector and the order in which they're being inserted, just put 12605 // them at element indices required for the instruction. 12606 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12607 if (DAG.getDataLayout().isLittleEndian()) 12608 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 12609 else 12610 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 12611 CorrectElems = CorrectElems >> 8; 12612 Elems = Elems >> 8; 12613 } 12614 12615 SDValue Shuffle = 12616 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 12617 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 12618 12619 EVT Ty = N->getValueType(0); 12620 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 12621 return BV; 12622 } 12623 12624 // Look for build vector patterns where input operands come from sign 12625 // extended vector_extract elements of specific indices. If the correct indices 12626 // aren't used, add a vector shuffle to fix up the indices and create a new 12627 // PPCISD:SExtVElems node which selects the vector sign extend instructions 12628 // during instruction selection. 12629 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 12630 // This array encodes the indices that the vector sign extend instructions 12631 // extract from when extending from one type to another for both BE and LE. 12632 // The right nibble of each byte corresponds to the LE incides. 12633 // and the left nibble of each byte corresponds to the BE incides. 12634 // For example: 0x3074B8FC byte->word 12635 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 12636 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 12637 // For example: 0x000070F8 byte->double word 12638 // For LE: the allowed indices are: 0x0,0x8 12639 // For BE: the allowed indices are: 0x7,0xF 12640 uint64_t TargetElems[] = { 12641 0x3074B8FC, // b->w 12642 0x000070F8, // b->d 12643 0x10325476, // h->w 12644 0x00003074, // h->d 12645 0x00001032, // w->d 12646 }; 12647 12648 uint64_t Elems = 0; 12649 int Index; 12650 SDValue Input; 12651 12652 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 12653 if (!Op) 12654 return false; 12655 if (Op.getOpcode() != ISD::SIGN_EXTEND && 12656 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 12657 return false; 12658 12659 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 12660 // of the right width. 12661 SDValue Extract = Op.getOperand(0); 12662 if (Extract.getOpcode() == ISD::ANY_EXTEND) 12663 Extract = Extract.getOperand(0); 12664 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12665 return false; 12666 12667 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 12668 if (!ExtOp) 12669 return false; 12670 12671 Index = ExtOp->getZExtValue(); 12672 if (Input && Input != Extract.getOperand(0)) 12673 return false; 12674 12675 if (!Input) 12676 Input = Extract.getOperand(0); 12677 12678 Elems = Elems << 8; 12679 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 12680 Elems |= Index; 12681 12682 return true; 12683 }; 12684 12685 // If the build vector operands aren't sign extended vector extracts, 12686 // of the same input vector, then return. 12687 for (unsigned i = 0; i < N->getNumOperands(); i++) { 12688 if (!isSExtOfVecExtract(N->getOperand(i))) { 12689 return SDValue(); 12690 } 12691 } 12692 12693 // If the vector extract indicies are not correct, add the appropriate 12694 // vector_shuffle. 12695 int TgtElemArrayIdx; 12696 int InputSize = Input.getValueType().getScalarSizeInBits(); 12697 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 12698 if (InputSize + OutputSize == 40) 12699 TgtElemArrayIdx = 0; 12700 else if (InputSize + OutputSize == 72) 12701 TgtElemArrayIdx = 1; 12702 else if (InputSize + OutputSize == 48) 12703 TgtElemArrayIdx = 2; 12704 else if (InputSize + OutputSize == 80) 12705 TgtElemArrayIdx = 3; 12706 else if (InputSize + OutputSize == 96) 12707 TgtElemArrayIdx = 4; 12708 else 12709 return SDValue(); 12710 12711 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 12712 CorrectElems = DAG.getDataLayout().isLittleEndian() 12713 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 12714 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 12715 if (Elems != CorrectElems) { 12716 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 12717 } 12718 12719 // Regular lowering will catch cases where a shuffle is not needed. 12720 return SDValue(); 12721 } 12722 12723 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 12724 DAGCombinerInfo &DCI) const { 12725 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12726 "Should be called with a BUILD_VECTOR node"); 12727 12728 SelectionDAG &DAG = DCI.DAG; 12729 SDLoc dl(N); 12730 12731 if (!Subtarget.hasVSX()) 12732 return SDValue(); 12733 12734 // The target independent DAG combiner will leave a build_vector of 12735 // float-to-int conversions intact. We can generate MUCH better code for 12736 // a float-to-int conversion of a vector of floats. 12737 SDValue FirstInput = N->getOperand(0); 12738 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 12739 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 12740 if (Reduced) 12741 return Reduced; 12742 } 12743 12744 // If we're building a vector out of consecutive loads, just load that 12745 // vector type. 12746 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 12747 if (Reduced) 12748 return Reduced; 12749 12750 // If we're building a vector out of extended elements from another vector 12751 // we have P9 vector integer extend instructions. The code assumes legal 12752 // input types (i.e. it can't handle things like v4i16) so do not run before 12753 // legalization. 12754 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 12755 Reduced = combineBVOfVecSExt(N, DAG); 12756 if (Reduced) 12757 return Reduced; 12758 } 12759 12760 12761 if (N->getValueType(0) != MVT::v2f64) 12762 return SDValue(); 12763 12764 // Looking for: 12765 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 12766 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 12767 FirstInput.getOpcode() != ISD::UINT_TO_FP) 12768 return SDValue(); 12769 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 12770 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 12771 return SDValue(); 12772 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 12773 return SDValue(); 12774 12775 SDValue Ext1 = FirstInput.getOperand(0); 12776 SDValue Ext2 = N->getOperand(1).getOperand(0); 12777 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12778 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12779 return SDValue(); 12780 12781 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 12782 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 12783 if (!Ext1Op || !Ext2Op) 12784 return SDValue(); 12785 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 12786 Ext1.getOperand(0) != Ext2.getOperand(0)) 12787 return SDValue(); 12788 12789 int FirstElem = Ext1Op->getZExtValue(); 12790 int SecondElem = Ext2Op->getZExtValue(); 12791 int SubvecIdx; 12792 if (FirstElem == 0 && SecondElem == 1) 12793 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 12794 else if (FirstElem == 2 && SecondElem == 3) 12795 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 12796 else 12797 return SDValue(); 12798 12799 SDValue SrcVec = Ext1.getOperand(0); 12800 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12801 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12802 return DAG.getNode(NodeType, dl, MVT::v2f64, 12803 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12804 } 12805 12806 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12807 DAGCombinerInfo &DCI) const { 12808 assert((N->getOpcode() == ISD::SINT_TO_FP || 12809 N->getOpcode() == ISD::UINT_TO_FP) && 12810 "Need an int -> FP conversion node here"); 12811 12812 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12813 return SDValue(); 12814 12815 SelectionDAG &DAG = DCI.DAG; 12816 SDLoc dl(N); 12817 SDValue Op(N, 0); 12818 12819 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12820 // from the hardware. 12821 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12822 return SDValue(); 12823 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12824 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12825 return SDValue(); 12826 12827 SDValue FirstOperand(Op.getOperand(0)); 12828 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12829 (FirstOperand.getValueType() == MVT::i8 || 12830 FirstOperand.getValueType() == MVT::i16); 12831 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12832 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12833 bool DstDouble = Op.getValueType() == MVT::f64; 12834 unsigned ConvOp = Signed ? 12835 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12836 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12837 SDValue WidthConst = 12838 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12839 dl, false); 12840 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12841 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12842 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12843 DAG.getVTList(MVT::f64, MVT::Other), 12844 Ops, MVT::i8, LDN->getMemOperand()); 12845 12846 // For signed conversion, we need to sign-extend the value in the VSR 12847 if (Signed) { 12848 SDValue ExtOps[] = { Ld, WidthConst }; 12849 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12850 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12851 } else 12852 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12853 } 12854 12855 12856 // For i32 intermediate values, unfortunately, the conversion functions 12857 // leave the upper 32 bits of the value are undefined. Within the set of 12858 // scalar instructions, we have no method for zero- or sign-extending the 12859 // value. Thus, we cannot handle i32 intermediate values here. 12860 if (Op.getOperand(0).getValueType() == MVT::i32) 12861 return SDValue(); 12862 12863 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12864 "UINT_TO_FP is supported only with FPCVT"); 12865 12866 // If we have FCFIDS, then use it when converting to single-precision. 12867 // Otherwise, convert to double-precision and then round. 12868 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12869 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12870 : PPCISD::FCFIDS) 12871 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12872 : PPCISD::FCFID); 12873 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12874 ? MVT::f32 12875 : MVT::f64; 12876 12877 // If we're converting from a float, to an int, and back to a float again, 12878 // then we don't need the store/load pair at all. 12879 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12880 Subtarget.hasFPCVT()) || 12881 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12882 SDValue Src = Op.getOperand(0).getOperand(0); 12883 if (Src.getValueType() == MVT::f32) { 12884 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12885 DCI.AddToWorklist(Src.getNode()); 12886 } else if (Src.getValueType() != MVT::f64) { 12887 // Make sure that we don't pick up a ppc_fp128 source value. 12888 return SDValue(); 12889 } 12890 12891 unsigned FCTOp = 12892 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12893 PPCISD::FCTIDUZ; 12894 12895 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12896 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12897 12898 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12899 FP = DAG.getNode(ISD::FP_ROUND, dl, 12900 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12901 DCI.AddToWorklist(FP.getNode()); 12902 } 12903 12904 return FP; 12905 } 12906 12907 return SDValue(); 12908 } 12909 12910 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12911 // builtins) into loads with swaps. 12912 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12913 DAGCombinerInfo &DCI) const { 12914 SelectionDAG &DAG = DCI.DAG; 12915 SDLoc dl(N); 12916 SDValue Chain; 12917 SDValue Base; 12918 MachineMemOperand *MMO; 12919 12920 switch (N->getOpcode()) { 12921 default: 12922 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12923 case ISD::LOAD: { 12924 LoadSDNode *LD = cast<LoadSDNode>(N); 12925 Chain = LD->getChain(); 12926 Base = LD->getBasePtr(); 12927 MMO = LD->getMemOperand(); 12928 // If the MMO suggests this isn't a load of a full vector, leave 12929 // things alone. For a built-in, we have to make the change for 12930 // correctness, so if there is a size problem that will be a bug. 12931 if (MMO->getSize() < 16) 12932 return SDValue(); 12933 break; 12934 } 12935 case ISD::INTRINSIC_W_CHAIN: { 12936 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12937 Chain = Intrin->getChain(); 12938 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12939 // us what we want. Get operand 2 instead. 12940 Base = Intrin->getOperand(2); 12941 MMO = Intrin->getMemOperand(); 12942 break; 12943 } 12944 } 12945 12946 MVT VecTy = N->getValueType(0).getSimpleVT(); 12947 12948 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12949 // aligned and the type is a vector with elements up to 4 bytes 12950 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12951 && VecTy.getScalarSizeInBits() <= 32 ) { 12952 return SDValue(); 12953 } 12954 12955 SDValue LoadOps[] = { Chain, Base }; 12956 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12957 DAG.getVTList(MVT::v2f64, MVT::Other), 12958 LoadOps, MVT::v2f64, MMO); 12959 12960 DCI.AddToWorklist(Load.getNode()); 12961 Chain = Load.getValue(1); 12962 SDValue Swap = DAG.getNode( 12963 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12964 DCI.AddToWorklist(Swap.getNode()); 12965 12966 // Add a bitcast if the resulting load type doesn't match v2f64. 12967 if (VecTy != MVT::v2f64) { 12968 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12969 DCI.AddToWorklist(N.getNode()); 12970 // Package {bitcast value, swap's chain} to match Load's shape. 12971 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12972 N, Swap.getValue(1)); 12973 } 12974 12975 return Swap; 12976 } 12977 12978 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12979 // builtins) into stores with swaps. 12980 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12981 DAGCombinerInfo &DCI) const { 12982 SelectionDAG &DAG = DCI.DAG; 12983 SDLoc dl(N); 12984 SDValue Chain; 12985 SDValue Base; 12986 unsigned SrcOpnd; 12987 MachineMemOperand *MMO; 12988 12989 switch (N->getOpcode()) { 12990 default: 12991 llvm_unreachable("Unexpected opcode for little endian VSX store"); 12992 case ISD::STORE: { 12993 StoreSDNode *ST = cast<StoreSDNode>(N); 12994 Chain = ST->getChain(); 12995 Base = ST->getBasePtr(); 12996 MMO = ST->getMemOperand(); 12997 SrcOpnd = 1; 12998 // If the MMO suggests this isn't a store of a full vector, leave 12999 // things alone. For a built-in, we have to make the change for 13000 // correctness, so if there is a size problem that will be a bug. 13001 if (MMO->getSize() < 16) 13002 return SDValue(); 13003 break; 13004 } 13005 case ISD::INTRINSIC_VOID: { 13006 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13007 Chain = Intrin->getChain(); 13008 // Intrin->getBasePtr() oddly does not get what we want. 13009 Base = Intrin->getOperand(3); 13010 MMO = Intrin->getMemOperand(); 13011 SrcOpnd = 2; 13012 break; 13013 } 13014 } 13015 13016 SDValue Src = N->getOperand(SrcOpnd); 13017 MVT VecTy = Src.getValueType().getSimpleVT(); 13018 13019 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13020 // aligned and the type is a vector with elements up to 4 bytes 13021 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13022 && VecTy.getScalarSizeInBits() <= 32 ) { 13023 return SDValue(); 13024 } 13025 13026 // All stores are done as v2f64 and possible bit cast. 13027 if (VecTy != MVT::v2f64) { 13028 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13029 DCI.AddToWorklist(Src.getNode()); 13030 } 13031 13032 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13033 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13034 DCI.AddToWorklist(Swap.getNode()); 13035 Chain = Swap.getValue(1); 13036 SDValue StoreOps[] = { Chain, Swap, Base }; 13037 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13038 DAG.getVTList(MVT::Other), 13039 StoreOps, VecTy, MMO); 13040 DCI.AddToWorklist(Store.getNode()); 13041 return Store; 13042 } 13043 13044 // Handle DAG combine for STORE (FP_TO_INT F). 13045 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13046 DAGCombinerInfo &DCI) const { 13047 13048 SelectionDAG &DAG = DCI.DAG; 13049 SDLoc dl(N); 13050 unsigned Opcode = N->getOperand(1).getOpcode(); 13051 13052 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13053 && "Not a FP_TO_INT Instruction!"); 13054 13055 SDValue Val = N->getOperand(1).getOperand(0); 13056 EVT Op1VT = N->getOperand(1).getValueType(); 13057 EVT ResVT = Val.getValueType(); 13058 13059 // Floating point types smaller than 32 bits are not legal on Power. 13060 if (ResVT.getScalarSizeInBits() < 32) 13061 return SDValue(); 13062 13063 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13064 bool ValidTypeForStoreFltAsInt = 13065 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13066 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13067 13068 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13069 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13070 return SDValue(); 13071 13072 // Extend f32 values to f64 13073 if (ResVT.getScalarSizeInBits() == 32) { 13074 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13075 DCI.AddToWorklist(Val.getNode()); 13076 } 13077 13078 // Set signed or unsigned conversion opcode. 13079 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13080 PPCISD::FP_TO_SINT_IN_VSR : 13081 PPCISD::FP_TO_UINT_IN_VSR; 13082 13083 Val = DAG.getNode(ConvOpcode, 13084 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13085 DCI.AddToWorklist(Val.getNode()); 13086 13087 // Set number of bytes being converted. 13088 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13089 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13090 DAG.getIntPtrConstant(ByteSize, dl, false), 13091 DAG.getValueType(Op1VT) }; 13092 13093 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13094 DAG.getVTList(MVT::Other), Ops, 13095 cast<StoreSDNode>(N)->getMemoryVT(), 13096 cast<StoreSDNode>(N)->getMemOperand()); 13097 13098 DCI.AddToWorklist(Val.getNode()); 13099 return Val; 13100 } 13101 13102 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13103 DAGCombinerInfo &DCI) const { 13104 SelectionDAG &DAG = DCI.DAG; 13105 SDLoc dl(N); 13106 switch (N->getOpcode()) { 13107 default: break; 13108 case ISD::ADD: 13109 return combineADD(N, DCI); 13110 case ISD::SHL: 13111 return combineSHL(N, DCI); 13112 case ISD::SRA: 13113 return combineSRA(N, DCI); 13114 case ISD::SRL: 13115 return combineSRL(N, DCI); 13116 case ISD::MUL: 13117 return combineMUL(N, DCI); 13118 case PPCISD::SHL: 13119 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13120 return N->getOperand(0); 13121 break; 13122 case PPCISD::SRL: 13123 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13124 return N->getOperand(0); 13125 break; 13126 case PPCISD::SRA: 13127 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13128 if (C->isNullValue() || // 0 >>s V -> 0. 13129 C->isAllOnesValue()) // -1 >>s V -> -1. 13130 return N->getOperand(0); 13131 } 13132 break; 13133 case ISD::SIGN_EXTEND: 13134 case ISD::ZERO_EXTEND: 13135 case ISD::ANY_EXTEND: 13136 return DAGCombineExtBoolTrunc(N, DCI); 13137 case ISD::TRUNCATE: 13138 return combineTRUNCATE(N, DCI); 13139 case ISD::SETCC: 13140 if (SDValue CSCC = combineSetCC(N, DCI)) 13141 return CSCC; 13142 LLVM_FALLTHROUGH; 13143 case ISD::SELECT_CC: 13144 return DAGCombineTruncBoolExt(N, DCI); 13145 case ISD::SINT_TO_FP: 13146 case ISD::UINT_TO_FP: 13147 return combineFPToIntToFP(N, DCI); 13148 case ISD::STORE: { 13149 13150 EVT Op1VT = N->getOperand(1).getValueType(); 13151 unsigned Opcode = N->getOperand(1).getOpcode(); 13152 13153 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13154 SDValue Val= combineStoreFPToInt(N, DCI); 13155 if (Val) 13156 return Val; 13157 } 13158 13159 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13160 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13161 N->getOperand(1).getNode()->hasOneUse() && 13162 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13163 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13164 13165 // STBRX can only handle simple types and it makes no sense to store less 13166 // two bytes in byte-reversed order. 13167 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13168 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13169 break; 13170 13171 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13172 // Do an any-extend to 32-bits if this is a half-word input. 13173 if (BSwapOp.getValueType() == MVT::i16) 13174 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13175 13176 // If the type of BSWAP operand is wider than stored memory width 13177 // it need to be shifted to the right side before STBRX. 13178 if (Op1VT.bitsGT(mVT)) { 13179 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13180 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13181 DAG.getConstant(Shift, dl, MVT::i32)); 13182 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13183 if (Op1VT == MVT::i64) 13184 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13185 } 13186 13187 SDValue Ops[] = { 13188 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13189 }; 13190 return 13191 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13192 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13193 cast<StoreSDNode>(N)->getMemOperand()); 13194 } 13195 13196 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13197 // So it can increase the chance of CSE constant construction. 13198 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13199 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13200 // Need to sign-extended to 64-bits to handle negative values. 13201 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13202 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13203 MemVT.getSizeInBits()); 13204 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13205 13206 // DAG.getTruncStore() can't be used here because it doesn't accept 13207 // the general (base + offset) addressing mode. 13208 // So we use UpdateNodeOperands and setTruncatingStore instead. 13209 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13210 N->getOperand(3)); 13211 cast<StoreSDNode>(N)->setTruncatingStore(true); 13212 return SDValue(N, 0); 13213 } 13214 13215 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13216 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13217 if (Op1VT.isSimple()) { 13218 MVT StoreVT = Op1VT.getSimpleVT(); 13219 if (Subtarget.needsSwapsForVSXMemOps() && 13220 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13221 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13222 return expandVSXStoreForLE(N, DCI); 13223 } 13224 break; 13225 } 13226 case ISD::LOAD: { 13227 LoadSDNode *LD = cast<LoadSDNode>(N); 13228 EVT VT = LD->getValueType(0); 13229 13230 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13231 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13232 if (VT.isSimple()) { 13233 MVT LoadVT = VT.getSimpleVT(); 13234 if (Subtarget.needsSwapsForVSXMemOps() && 13235 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13236 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13237 return expandVSXLoadForLE(N, DCI); 13238 } 13239 13240 // We sometimes end up with a 64-bit integer load, from which we extract 13241 // two single-precision floating-point numbers. This happens with 13242 // std::complex<float>, and other similar structures, because of the way we 13243 // canonicalize structure copies. However, if we lack direct moves, 13244 // then the final bitcasts from the extracted integer values to the 13245 // floating-point numbers turn into store/load pairs. Even with direct moves, 13246 // just loading the two floating-point numbers is likely better. 13247 auto ReplaceTwoFloatLoad = [&]() { 13248 if (VT != MVT::i64) 13249 return false; 13250 13251 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13252 LD->isVolatile()) 13253 return false; 13254 13255 // We're looking for a sequence like this: 13256 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13257 // t16: i64 = srl t13, Constant:i32<32> 13258 // t17: i32 = truncate t16 13259 // t18: f32 = bitcast t17 13260 // t19: i32 = truncate t13 13261 // t20: f32 = bitcast t19 13262 13263 if (!LD->hasNUsesOfValue(2, 0)) 13264 return false; 13265 13266 auto UI = LD->use_begin(); 13267 while (UI.getUse().getResNo() != 0) ++UI; 13268 SDNode *Trunc = *UI++; 13269 while (UI.getUse().getResNo() != 0) ++UI; 13270 SDNode *RightShift = *UI; 13271 if (Trunc->getOpcode() != ISD::TRUNCATE) 13272 std::swap(Trunc, RightShift); 13273 13274 if (Trunc->getOpcode() != ISD::TRUNCATE || 13275 Trunc->getValueType(0) != MVT::i32 || 13276 !Trunc->hasOneUse()) 13277 return false; 13278 if (RightShift->getOpcode() != ISD::SRL || 13279 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13280 RightShift->getConstantOperandVal(1) != 32 || 13281 !RightShift->hasOneUse()) 13282 return false; 13283 13284 SDNode *Trunc2 = *RightShift->use_begin(); 13285 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13286 Trunc2->getValueType(0) != MVT::i32 || 13287 !Trunc2->hasOneUse()) 13288 return false; 13289 13290 SDNode *Bitcast = *Trunc->use_begin(); 13291 SDNode *Bitcast2 = *Trunc2->use_begin(); 13292 13293 if (Bitcast->getOpcode() != ISD::BITCAST || 13294 Bitcast->getValueType(0) != MVT::f32) 13295 return false; 13296 if (Bitcast2->getOpcode() != ISD::BITCAST || 13297 Bitcast2->getValueType(0) != MVT::f32) 13298 return false; 13299 13300 if (Subtarget.isLittleEndian()) 13301 std::swap(Bitcast, Bitcast2); 13302 13303 // Bitcast has the second float (in memory-layout order) and Bitcast2 13304 // has the first one. 13305 13306 SDValue BasePtr = LD->getBasePtr(); 13307 if (LD->isIndexed()) { 13308 assert(LD->getAddressingMode() == ISD::PRE_INC && 13309 "Non-pre-inc AM on PPC?"); 13310 BasePtr = 13311 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13312 LD->getOffset()); 13313 } 13314 13315 auto MMOFlags = 13316 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13317 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13318 LD->getPointerInfo(), LD->getAlignment(), 13319 MMOFlags, LD->getAAInfo()); 13320 SDValue AddPtr = 13321 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13322 BasePtr, DAG.getIntPtrConstant(4, dl)); 13323 SDValue FloatLoad2 = DAG.getLoad( 13324 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13325 LD->getPointerInfo().getWithOffset(4), 13326 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13327 13328 if (LD->isIndexed()) { 13329 // Note that DAGCombine should re-form any pre-increment load(s) from 13330 // what is produced here if that makes sense. 13331 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13332 } 13333 13334 DCI.CombineTo(Bitcast2, FloatLoad); 13335 DCI.CombineTo(Bitcast, FloatLoad2); 13336 13337 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13338 SDValue(FloatLoad2.getNode(), 1)); 13339 return true; 13340 }; 13341 13342 if (ReplaceTwoFloatLoad()) 13343 return SDValue(N, 0); 13344 13345 EVT MemVT = LD->getMemoryVT(); 13346 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13347 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13348 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13349 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13350 if (LD->isUnindexed() && VT.isVector() && 13351 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13352 // P8 and later hardware should just use LOAD. 13353 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13354 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13355 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13356 LD->getAlignment() >= ScalarABIAlignment)) && 13357 LD->getAlignment() < ABIAlignment) { 13358 // This is a type-legal unaligned Altivec or QPX load. 13359 SDValue Chain = LD->getChain(); 13360 SDValue Ptr = LD->getBasePtr(); 13361 bool isLittleEndian = Subtarget.isLittleEndian(); 13362 13363 // This implements the loading of unaligned vectors as described in 13364 // the venerable Apple Velocity Engine overview. Specifically: 13365 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13366 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13367 // 13368 // The general idea is to expand a sequence of one or more unaligned 13369 // loads into an alignment-based permutation-control instruction (lvsl 13370 // or lvsr), a series of regular vector loads (which always truncate 13371 // their input address to an aligned address), and a series of 13372 // permutations. The results of these permutations are the requested 13373 // loaded values. The trick is that the last "extra" load is not taken 13374 // from the address you might suspect (sizeof(vector) bytes after the 13375 // last requested load), but rather sizeof(vector) - 1 bytes after the 13376 // last requested vector. The point of this is to avoid a page fault if 13377 // the base address happened to be aligned. This works because if the 13378 // base address is aligned, then adding less than a full vector length 13379 // will cause the last vector in the sequence to be (re)loaded. 13380 // Otherwise, the next vector will be fetched as you might suspect was 13381 // necessary. 13382 13383 // We might be able to reuse the permutation generation from 13384 // a different base address offset from this one by an aligned amount. 13385 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 13386 // optimization later. 13387 Intrinsic::ID Intr, IntrLD, IntrPerm; 13388 MVT PermCntlTy, PermTy, LDTy; 13389 if (Subtarget.hasAltivec()) { 13390 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 13391 Intrinsic::ppc_altivec_lvsl; 13392 IntrLD = Intrinsic::ppc_altivec_lvx; 13393 IntrPerm = Intrinsic::ppc_altivec_vperm; 13394 PermCntlTy = MVT::v16i8; 13395 PermTy = MVT::v4i32; 13396 LDTy = MVT::v4i32; 13397 } else { 13398 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 13399 Intrinsic::ppc_qpx_qvlpcls; 13400 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 13401 Intrinsic::ppc_qpx_qvlfs; 13402 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 13403 PermCntlTy = MVT::v4f64; 13404 PermTy = MVT::v4f64; 13405 LDTy = MemVT.getSimpleVT(); 13406 } 13407 13408 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 13409 13410 // Create the new MMO for the new base load. It is like the original MMO, 13411 // but represents an area in memory almost twice the vector size centered 13412 // on the original address. If the address is unaligned, we might start 13413 // reading up to (sizeof(vector)-1) bytes below the address of the 13414 // original unaligned load. 13415 MachineFunction &MF = DAG.getMachineFunction(); 13416 MachineMemOperand *BaseMMO = 13417 MF.getMachineMemOperand(LD->getMemOperand(), 13418 -(long)MemVT.getStoreSize()+1, 13419 2*MemVT.getStoreSize()-1); 13420 13421 // Create the new base load. 13422 SDValue LDXIntID = 13423 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 13424 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 13425 SDValue BaseLoad = 13426 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13427 DAG.getVTList(PermTy, MVT::Other), 13428 BaseLoadOps, LDTy, BaseMMO); 13429 13430 // Note that the value of IncOffset (which is provided to the next 13431 // load's pointer info offset value, and thus used to calculate the 13432 // alignment), and the value of IncValue (which is actually used to 13433 // increment the pointer value) are different! This is because we 13434 // require the next load to appear to be aligned, even though it 13435 // is actually offset from the base pointer by a lesser amount. 13436 int IncOffset = VT.getSizeInBits() / 8; 13437 int IncValue = IncOffset; 13438 13439 // Walk (both up and down) the chain looking for another load at the real 13440 // (aligned) offset (the alignment of the other load does not matter in 13441 // this case). If found, then do not use the offset reduction trick, as 13442 // that will prevent the loads from being later combined (as they would 13443 // otherwise be duplicates). 13444 if (!findConsecutiveLoad(LD, DAG)) 13445 --IncValue; 13446 13447 SDValue Increment = 13448 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 13449 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 13450 13451 MachineMemOperand *ExtraMMO = 13452 MF.getMachineMemOperand(LD->getMemOperand(), 13453 1, 2*MemVT.getStoreSize()-1); 13454 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 13455 SDValue ExtraLoad = 13456 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 13457 DAG.getVTList(PermTy, MVT::Other), 13458 ExtraLoadOps, LDTy, ExtraMMO); 13459 13460 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 13461 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 13462 13463 // Because vperm has a big-endian bias, we must reverse the order 13464 // of the input vectors and complement the permute control vector 13465 // when generating little endian code. We have already handled the 13466 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 13467 // and ExtraLoad here. 13468 SDValue Perm; 13469 if (isLittleEndian) 13470 Perm = BuildIntrinsicOp(IntrPerm, 13471 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 13472 else 13473 Perm = BuildIntrinsicOp(IntrPerm, 13474 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 13475 13476 if (VT != PermTy) 13477 Perm = Subtarget.hasAltivec() ? 13478 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 13479 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 13480 DAG.getTargetConstant(1, dl, MVT::i64)); 13481 // second argument is 1 because this rounding 13482 // is always exact. 13483 13484 // The output of the permutation is our loaded result, the TokenFactor is 13485 // our new chain. 13486 DCI.CombineTo(N, Perm, TF); 13487 return SDValue(N, 0); 13488 } 13489 } 13490 break; 13491 case ISD::INTRINSIC_WO_CHAIN: { 13492 bool isLittleEndian = Subtarget.isLittleEndian(); 13493 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 13494 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 13495 : Intrinsic::ppc_altivec_lvsl); 13496 if ((IID == Intr || 13497 IID == Intrinsic::ppc_qpx_qvlpcld || 13498 IID == Intrinsic::ppc_qpx_qvlpcls) && 13499 N->getOperand(1)->getOpcode() == ISD::ADD) { 13500 SDValue Add = N->getOperand(1); 13501 13502 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 13503 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 13504 13505 if (DAG.MaskedValueIsZero(Add->getOperand(1), 13506 APInt::getAllOnesValue(Bits /* alignment */) 13507 .zext(Add.getScalarValueSizeInBits()))) { 13508 SDNode *BasePtr = Add->getOperand(0).getNode(); 13509 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13510 UE = BasePtr->use_end(); 13511 UI != UE; ++UI) { 13512 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13513 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 13514 // We've found another LVSL/LVSR, and this address is an aligned 13515 // multiple of that one. The results will be the same, so use the 13516 // one we've just found instead. 13517 13518 return SDValue(*UI, 0); 13519 } 13520 } 13521 } 13522 13523 if (isa<ConstantSDNode>(Add->getOperand(1))) { 13524 SDNode *BasePtr = Add->getOperand(0).getNode(); 13525 for (SDNode::use_iterator UI = BasePtr->use_begin(), 13526 UE = BasePtr->use_end(); UI != UE; ++UI) { 13527 if (UI->getOpcode() == ISD::ADD && 13528 isa<ConstantSDNode>(UI->getOperand(1)) && 13529 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 13530 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 13531 (1ULL << Bits) == 0) { 13532 SDNode *OtherAdd = *UI; 13533 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 13534 VE = OtherAdd->use_end(); VI != VE; ++VI) { 13535 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13536 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 13537 return SDValue(*VI, 0); 13538 } 13539 } 13540 } 13541 } 13542 } 13543 } 13544 13545 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 13546 // Expose the vabsduw/h/b opportunity for down stream 13547 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 13548 (IID == Intrinsic::ppc_altivec_vmaxsw || 13549 IID == Intrinsic::ppc_altivec_vmaxsh || 13550 IID == Intrinsic::ppc_altivec_vmaxsb)) { 13551 SDValue V1 = N->getOperand(1); 13552 SDValue V2 = N->getOperand(2); 13553 if ((V1.getSimpleValueType() == MVT::v4i32 || 13554 V1.getSimpleValueType() == MVT::v8i16 || 13555 V1.getSimpleValueType() == MVT::v16i8) && 13556 V1.getSimpleValueType() == V2.getSimpleValueType()) { 13557 // (0-a, a) 13558 if (V1.getOpcode() == ISD::SUB && 13559 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 13560 V1.getOperand(1) == V2) { 13561 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 13562 } 13563 // (a, 0-a) 13564 if (V2.getOpcode() == ISD::SUB && 13565 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 13566 V2.getOperand(1) == V1) { 13567 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13568 } 13569 // (x-y, y-x) 13570 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 13571 V1.getOperand(0) == V2.getOperand(1) && 13572 V1.getOperand(1) == V2.getOperand(0)) { 13573 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 13574 } 13575 } 13576 } 13577 } 13578 13579 break; 13580 case ISD::INTRINSIC_W_CHAIN: 13581 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13582 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13583 if (Subtarget.needsSwapsForVSXMemOps()) { 13584 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13585 default: 13586 break; 13587 case Intrinsic::ppc_vsx_lxvw4x: 13588 case Intrinsic::ppc_vsx_lxvd2x: 13589 return expandVSXLoadForLE(N, DCI); 13590 } 13591 } 13592 break; 13593 case ISD::INTRINSIC_VOID: 13594 // For little endian, VSX stores require generating xxswapd/stxvd2x. 13595 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13596 if (Subtarget.needsSwapsForVSXMemOps()) { 13597 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13598 default: 13599 break; 13600 case Intrinsic::ppc_vsx_stxvw4x: 13601 case Intrinsic::ppc_vsx_stxvd2x: 13602 return expandVSXStoreForLE(N, DCI); 13603 } 13604 } 13605 break; 13606 case ISD::BSWAP: 13607 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 13608 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 13609 N->getOperand(0).hasOneUse() && 13610 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 13611 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 13612 N->getValueType(0) == MVT::i64))) { 13613 SDValue Load = N->getOperand(0); 13614 LoadSDNode *LD = cast<LoadSDNode>(Load); 13615 // Create the byte-swapping load. 13616 SDValue Ops[] = { 13617 LD->getChain(), // Chain 13618 LD->getBasePtr(), // Ptr 13619 DAG.getValueType(N->getValueType(0)) // VT 13620 }; 13621 SDValue BSLoad = 13622 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 13623 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 13624 MVT::i64 : MVT::i32, MVT::Other), 13625 Ops, LD->getMemoryVT(), LD->getMemOperand()); 13626 13627 // If this is an i16 load, insert the truncate. 13628 SDValue ResVal = BSLoad; 13629 if (N->getValueType(0) == MVT::i16) 13630 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 13631 13632 // First, combine the bswap away. This makes the value produced by the 13633 // load dead. 13634 DCI.CombineTo(N, ResVal); 13635 13636 // Next, combine the load away, we give it a bogus result value but a real 13637 // chain result. The result value is dead because the bswap is dead. 13638 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 13639 13640 // Return N so it doesn't get rechecked! 13641 return SDValue(N, 0); 13642 } 13643 break; 13644 case PPCISD::VCMP: 13645 // If a VCMPo node already exists with exactly the same operands as this 13646 // node, use its result instead of this node (VCMPo computes both a CR6 and 13647 // a normal output). 13648 // 13649 if (!N->getOperand(0).hasOneUse() && 13650 !N->getOperand(1).hasOneUse() && 13651 !N->getOperand(2).hasOneUse()) { 13652 13653 // Scan all of the users of the LHS, looking for VCMPo's that match. 13654 SDNode *VCMPoNode = nullptr; 13655 13656 SDNode *LHSN = N->getOperand(0).getNode(); 13657 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 13658 UI != E; ++UI) 13659 if (UI->getOpcode() == PPCISD::VCMPo && 13660 UI->getOperand(1) == N->getOperand(1) && 13661 UI->getOperand(2) == N->getOperand(2) && 13662 UI->getOperand(0) == N->getOperand(0)) { 13663 VCMPoNode = *UI; 13664 break; 13665 } 13666 13667 // If there is no VCMPo node, or if the flag value has a single use, don't 13668 // transform this. 13669 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 13670 break; 13671 13672 // Look at the (necessarily single) use of the flag value. If it has a 13673 // chain, this transformation is more complex. Note that multiple things 13674 // could use the value result, which we should ignore. 13675 SDNode *FlagUser = nullptr; 13676 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 13677 FlagUser == nullptr; ++UI) { 13678 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 13679 SDNode *User = *UI; 13680 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 13681 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 13682 FlagUser = User; 13683 break; 13684 } 13685 } 13686 } 13687 13688 // If the user is a MFOCRF instruction, we know this is safe. 13689 // Otherwise we give up for right now. 13690 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 13691 return SDValue(VCMPoNode, 0); 13692 } 13693 break; 13694 case ISD::BRCOND: { 13695 SDValue Cond = N->getOperand(1); 13696 SDValue Target = N->getOperand(2); 13697 13698 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13699 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 13700 Intrinsic::loop_decrement) { 13701 13702 // We now need to make the intrinsic dead (it cannot be instruction 13703 // selected). 13704 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 13705 assert(Cond.getNode()->hasOneUse() && 13706 "Counter decrement has more than one use"); 13707 13708 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 13709 N->getOperand(0), Target); 13710 } 13711 } 13712 break; 13713 case ISD::BR_CC: { 13714 // If this is a branch on an altivec predicate comparison, lower this so 13715 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 13716 // lowering is done pre-legalize, because the legalizer lowers the predicate 13717 // compare down to code that is difficult to reassemble. 13718 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 13719 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 13720 13721 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 13722 // value. If so, pass-through the AND to get to the intrinsic. 13723 if (LHS.getOpcode() == ISD::AND && 13724 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 13725 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 13726 Intrinsic::loop_decrement && 13727 isa<ConstantSDNode>(LHS.getOperand(1)) && 13728 !isNullConstant(LHS.getOperand(1))) 13729 LHS = LHS.getOperand(0); 13730 13731 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 13732 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 13733 Intrinsic::loop_decrement && 13734 isa<ConstantSDNode>(RHS)) { 13735 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 13736 "Counter decrement comparison is not EQ or NE"); 13737 13738 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13739 bool isBDNZ = (CC == ISD::SETEQ && Val) || 13740 (CC == ISD::SETNE && !Val); 13741 13742 // We now need to make the intrinsic dead (it cannot be instruction 13743 // selected). 13744 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 13745 assert(LHS.getNode()->hasOneUse() && 13746 "Counter decrement has more than one use"); 13747 13748 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 13749 N->getOperand(0), N->getOperand(4)); 13750 } 13751 13752 int CompareOpc; 13753 bool isDot; 13754 13755 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 13756 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 13757 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 13758 assert(isDot && "Can't compare against a vector result!"); 13759 13760 // If this is a comparison against something other than 0/1, then we know 13761 // that the condition is never/always true. 13762 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 13763 if (Val != 0 && Val != 1) { 13764 if (CC == ISD::SETEQ) // Cond never true, remove branch. 13765 return N->getOperand(0); 13766 // Always !=, turn it into an unconditional branch. 13767 return DAG.getNode(ISD::BR, dl, MVT::Other, 13768 N->getOperand(0), N->getOperand(4)); 13769 } 13770 13771 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 13772 13773 // Create the PPCISD altivec 'dot' comparison node. 13774 SDValue Ops[] = { 13775 LHS.getOperand(2), // LHS of compare 13776 LHS.getOperand(3), // RHS of compare 13777 DAG.getConstant(CompareOpc, dl, MVT::i32) 13778 }; 13779 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 13780 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 13781 13782 // Unpack the result based on how the target uses it. 13783 PPC::Predicate CompOpc; 13784 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 13785 default: // Can't happen, don't crash on invalid number though. 13786 case 0: // Branch on the value of the EQ bit of CR6. 13787 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 13788 break; 13789 case 1: // Branch on the inverted value of the EQ bit of CR6. 13790 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 13791 break; 13792 case 2: // Branch on the value of the LT bit of CR6. 13793 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 13794 break; 13795 case 3: // Branch on the inverted value of the LT bit of CR6. 13796 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 13797 break; 13798 } 13799 13800 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 13801 DAG.getConstant(CompOpc, dl, MVT::i32), 13802 DAG.getRegister(PPC::CR6, MVT::i32), 13803 N->getOperand(4), CompNode.getValue(1)); 13804 } 13805 break; 13806 } 13807 case ISD::BUILD_VECTOR: 13808 return DAGCombineBuildVector(N, DCI); 13809 case ISD::ABS: 13810 return combineABS(N, DCI); 13811 case ISD::VSELECT: 13812 return combineVSelect(N, DCI); 13813 } 13814 13815 return SDValue(); 13816 } 13817 13818 SDValue 13819 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 13820 SelectionDAG &DAG, 13821 SmallVectorImpl<SDNode *> &Created) const { 13822 // fold (sdiv X, pow2) 13823 EVT VT = N->getValueType(0); 13824 if (VT == MVT::i64 && !Subtarget.isPPC64()) 13825 return SDValue(); 13826 if ((VT != MVT::i32 && VT != MVT::i64) || 13827 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 13828 return SDValue(); 13829 13830 SDLoc DL(N); 13831 SDValue N0 = N->getOperand(0); 13832 13833 bool IsNegPow2 = (-Divisor).isPowerOf2(); 13834 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 13835 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 13836 13837 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 13838 Created.push_back(Op.getNode()); 13839 13840 if (IsNegPow2) { 13841 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13842 Created.push_back(Op.getNode()); 13843 } 13844 13845 return Op; 13846 } 13847 13848 //===----------------------------------------------------------------------===// 13849 // Inline Assembly Support 13850 //===----------------------------------------------------------------------===// 13851 13852 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13853 KnownBits &Known, 13854 const APInt &DemandedElts, 13855 const SelectionDAG &DAG, 13856 unsigned Depth) const { 13857 Known.resetAll(); 13858 switch (Op.getOpcode()) { 13859 default: break; 13860 case PPCISD::LBRX: { 13861 // lhbrx is known to have the top bits cleared out. 13862 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13863 Known.Zero = 0xFFFF0000; 13864 break; 13865 } 13866 case ISD::INTRINSIC_WO_CHAIN: { 13867 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13868 default: break; 13869 case Intrinsic::ppc_altivec_vcmpbfp_p: 13870 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13871 case Intrinsic::ppc_altivec_vcmpequb_p: 13872 case Intrinsic::ppc_altivec_vcmpequh_p: 13873 case Intrinsic::ppc_altivec_vcmpequw_p: 13874 case Intrinsic::ppc_altivec_vcmpequd_p: 13875 case Intrinsic::ppc_altivec_vcmpgefp_p: 13876 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13877 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13878 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13879 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13880 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13881 case Intrinsic::ppc_altivec_vcmpgtub_p: 13882 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13883 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13884 case Intrinsic::ppc_altivec_vcmpgtud_p: 13885 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13886 break; 13887 } 13888 } 13889 } 13890 } 13891 13892 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13893 switch (Subtarget.getDarwinDirective()) { 13894 default: break; 13895 case PPC::DIR_970: 13896 case PPC::DIR_PWR4: 13897 case PPC::DIR_PWR5: 13898 case PPC::DIR_PWR5X: 13899 case PPC::DIR_PWR6: 13900 case PPC::DIR_PWR6X: 13901 case PPC::DIR_PWR7: 13902 case PPC::DIR_PWR8: 13903 case PPC::DIR_PWR9: { 13904 if (!ML) 13905 break; 13906 13907 if (!DisableInnermostLoopAlign32) { 13908 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 13909 // so that we can decrease cache misses and branch-prediction misses. 13910 // Actual alignment of the loop will depend on the hotness check and other 13911 // logic in alignBlocks. 13912 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 13913 return 5; 13914 } 13915 13916 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13917 13918 // For small loops (between 5 and 8 instructions), align to a 32-byte 13919 // boundary so that the entire loop fits in one instruction-cache line. 13920 uint64_t LoopSize = 0; 13921 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13922 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13923 LoopSize += TII->getInstSizeInBytes(*J); 13924 if (LoopSize > 32) 13925 break; 13926 } 13927 13928 if (LoopSize > 16 && LoopSize <= 32) 13929 return 5; 13930 13931 break; 13932 } 13933 } 13934 13935 return TargetLowering::getPrefLoopAlignment(ML); 13936 } 13937 13938 /// getConstraintType - Given a constraint, return the type of 13939 /// constraint it is for this target. 13940 PPCTargetLowering::ConstraintType 13941 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13942 if (Constraint.size() == 1) { 13943 switch (Constraint[0]) { 13944 default: break; 13945 case 'b': 13946 case 'r': 13947 case 'f': 13948 case 'd': 13949 case 'v': 13950 case 'y': 13951 return C_RegisterClass; 13952 case 'Z': 13953 // FIXME: While Z does indicate a memory constraint, it specifically 13954 // indicates an r+r address (used in conjunction with the 'y' modifier 13955 // in the replacement string). Currently, we're forcing the base 13956 // register to be r0 in the asm printer (which is interpreted as zero) 13957 // and forming the complete address in the second register. This is 13958 // suboptimal. 13959 return C_Memory; 13960 } 13961 } else if (Constraint == "wc") { // individual CR bits. 13962 return C_RegisterClass; 13963 } else if (Constraint == "wa" || Constraint == "wd" || 13964 Constraint == "wf" || Constraint == "ws" || 13965 Constraint == "wi") { 13966 return C_RegisterClass; // VSX registers. 13967 } 13968 return TargetLowering::getConstraintType(Constraint); 13969 } 13970 13971 /// Examine constraint type and operand type and determine a weight value. 13972 /// This object must already have been set up with the operand type 13973 /// and the current alternative constraint selected. 13974 TargetLowering::ConstraintWeight 13975 PPCTargetLowering::getSingleConstraintMatchWeight( 13976 AsmOperandInfo &info, const char *constraint) const { 13977 ConstraintWeight weight = CW_Invalid; 13978 Value *CallOperandVal = info.CallOperandVal; 13979 // If we don't have a value, we can't do a match, 13980 // but allow it at the lowest weight. 13981 if (!CallOperandVal) 13982 return CW_Default; 13983 Type *type = CallOperandVal->getType(); 13984 13985 // Look at the constraint type. 13986 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 13987 return CW_Register; // an individual CR bit. 13988 else if ((StringRef(constraint) == "wa" || 13989 StringRef(constraint) == "wd" || 13990 StringRef(constraint) == "wf") && 13991 type->isVectorTy()) 13992 return CW_Register; 13993 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 13994 return CW_Register; 13995 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 13996 return CW_Register; // just hold 64-bit integers data. 13997 13998 switch (*constraint) { 13999 default: 14000 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14001 break; 14002 case 'b': 14003 if (type->isIntegerTy()) 14004 weight = CW_Register; 14005 break; 14006 case 'f': 14007 if (type->isFloatTy()) 14008 weight = CW_Register; 14009 break; 14010 case 'd': 14011 if (type->isDoubleTy()) 14012 weight = CW_Register; 14013 break; 14014 case 'v': 14015 if (type->isVectorTy()) 14016 weight = CW_Register; 14017 break; 14018 case 'y': 14019 weight = CW_Register; 14020 break; 14021 case 'Z': 14022 weight = CW_Memory; 14023 break; 14024 } 14025 return weight; 14026 } 14027 14028 std::pair<unsigned, const TargetRegisterClass *> 14029 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14030 StringRef Constraint, 14031 MVT VT) const { 14032 if (Constraint.size() == 1) { 14033 // GCC RS6000 Constraint Letters 14034 switch (Constraint[0]) { 14035 case 'b': // R1-R31 14036 if (VT == MVT::i64 && Subtarget.isPPC64()) 14037 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14038 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14039 case 'r': // R0-R31 14040 if (VT == MVT::i64 && Subtarget.isPPC64()) 14041 return std::make_pair(0U, &PPC::G8RCRegClass); 14042 return std::make_pair(0U, &PPC::GPRCRegClass); 14043 // 'd' and 'f' constraints are both defined to be "the floating point 14044 // registers", where one is for 32-bit and the other for 64-bit. We don't 14045 // really care overly much here so just give them all the same reg classes. 14046 case 'd': 14047 case 'f': 14048 if (Subtarget.hasSPE()) { 14049 if (VT == MVT::f32 || VT == MVT::i32) 14050 return std::make_pair(0U, &PPC::SPE4RCRegClass); 14051 if (VT == MVT::f64 || VT == MVT::i64) 14052 return std::make_pair(0U, &PPC::SPERCRegClass); 14053 } else { 14054 if (VT == MVT::f32 || VT == MVT::i32) 14055 return std::make_pair(0U, &PPC::F4RCRegClass); 14056 if (VT == MVT::f64 || VT == MVT::i64) 14057 return std::make_pair(0U, &PPC::F8RCRegClass); 14058 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14059 return std::make_pair(0U, &PPC::QFRCRegClass); 14060 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14061 return std::make_pair(0U, &PPC::QSRCRegClass); 14062 } 14063 break; 14064 case 'v': 14065 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14066 return std::make_pair(0U, &PPC::QFRCRegClass); 14067 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14068 return std::make_pair(0U, &PPC::QSRCRegClass); 14069 if (Subtarget.hasAltivec()) 14070 return std::make_pair(0U, &PPC::VRRCRegClass); 14071 break; 14072 case 'y': // crrc 14073 return std::make_pair(0U, &PPC::CRRCRegClass); 14074 } 14075 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14076 // An individual CR bit. 14077 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14078 } else if ((Constraint == "wa" || Constraint == "wd" || 14079 Constraint == "wf" || Constraint == "wi") && 14080 Subtarget.hasVSX()) { 14081 return std::make_pair(0U, &PPC::VSRCRegClass); 14082 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 14083 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14084 return std::make_pair(0U, &PPC::VSSRCRegClass); 14085 else 14086 return std::make_pair(0U, &PPC::VSFRCRegClass); 14087 } 14088 14089 std::pair<unsigned, const TargetRegisterClass *> R = 14090 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14091 14092 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14093 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14094 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14095 // register. 14096 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14097 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14098 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14099 PPC::GPRCRegClass.contains(R.first)) 14100 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14101 PPC::sub_32, &PPC::G8RCRegClass), 14102 &PPC::G8RCRegClass); 14103 14104 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14105 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14106 R.first = PPC::CR0; 14107 R.second = &PPC::CRRCRegClass; 14108 } 14109 14110 return R; 14111 } 14112 14113 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14114 /// vector. If it is invalid, don't add anything to Ops. 14115 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14116 std::string &Constraint, 14117 std::vector<SDValue>&Ops, 14118 SelectionDAG &DAG) const { 14119 SDValue Result; 14120 14121 // Only support length 1 constraints. 14122 if (Constraint.length() > 1) return; 14123 14124 char Letter = Constraint[0]; 14125 switch (Letter) { 14126 default: break; 14127 case 'I': 14128 case 'J': 14129 case 'K': 14130 case 'L': 14131 case 'M': 14132 case 'N': 14133 case 'O': 14134 case 'P': { 14135 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14136 if (!CST) return; // Must be an immediate to match. 14137 SDLoc dl(Op); 14138 int64_t Value = CST->getSExtValue(); 14139 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14140 // numbers are printed as such. 14141 switch (Letter) { 14142 default: llvm_unreachable("Unknown constraint letter!"); 14143 case 'I': // "I" is a signed 16-bit constant. 14144 if (isInt<16>(Value)) 14145 Result = DAG.getTargetConstant(Value, dl, TCVT); 14146 break; 14147 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14148 if (isShiftedUInt<16, 16>(Value)) 14149 Result = DAG.getTargetConstant(Value, dl, TCVT); 14150 break; 14151 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14152 if (isShiftedInt<16, 16>(Value)) 14153 Result = DAG.getTargetConstant(Value, dl, TCVT); 14154 break; 14155 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14156 if (isUInt<16>(Value)) 14157 Result = DAG.getTargetConstant(Value, dl, TCVT); 14158 break; 14159 case 'M': // "M" is a constant that is greater than 31. 14160 if (Value > 31) 14161 Result = DAG.getTargetConstant(Value, dl, TCVT); 14162 break; 14163 case 'N': // "N" is a positive constant that is an exact power of two. 14164 if (Value > 0 && isPowerOf2_64(Value)) 14165 Result = DAG.getTargetConstant(Value, dl, TCVT); 14166 break; 14167 case 'O': // "O" is the constant zero. 14168 if (Value == 0) 14169 Result = DAG.getTargetConstant(Value, dl, TCVT); 14170 break; 14171 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14172 if (isInt<16>(-Value)) 14173 Result = DAG.getTargetConstant(Value, dl, TCVT); 14174 break; 14175 } 14176 break; 14177 } 14178 } 14179 14180 if (Result.getNode()) { 14181 Ops.push_back(Result); 14182 return; 14183 } 14184 14185 // Handle standard constraint letters. 14186 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14187 } 14188 14189 // isLegalAddressingMode - Return true if the addressing mode represented 14190 // by AM is legal for this target, for a load/store of the specified type. 14191 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14192 const AddrMode &AM, Type *Ty, 14193 unsigned AS, Instruction *I) const { 14194 // PPC does not allow r+i addressing modes for vectors! 14195 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14196 return false; 14197 14198 // PPC allows a sign-extended 16-bit immediate field. 14199 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14200 return false; 14201 14202 // No global is ever allowed as a base. 14203 if (AM.BaseGV) 14204 return false; 14205 14206 // PPC only support r+r, 14207 switch (AM.Scale) { 14208 case 0: // "r+i" or just "i", depending on HasBaseReg. 14209 break; 14210 case 1: 14211 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14212 return false; 14213 // Otherwise we have r+r or r+i. 14214 break; 14215 case 2: 14216 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14217 return false; 14218 // Allow 2*r as r+r. 14219 break; 14220 default: 14221 // No other scales are supported. 14222 return false; 14223 } 14224 14225 return true; 14226 } 14227 14228 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14229 SelectionDAG &DAG) const { 14230 MachineFunction &MF = DAG.getMachineFunction(); 14231 MachineFrameInfo &MFI = MF.getFrameInfo(); 14232 MFI.setReturnAddressIsTaken(true); 14233 14234 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14235 return SDValue(); 14236 14237 SDLoc dl(Op); 14238 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14239 14240 // Make sure the function does not optimize away the store of the RA to 14241 // the stack. 14242 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14243 FuncInfo->setLRStoreRequired(); 14244 bool isPPC64 = Subtarget.isPPC64(); 14245 auto PtrVT = getPointerTy(MF.getDataLayout()); 14246 14247 if (Depth > 0) { 14248 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14249 SDValue Offset = 14250 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14251 isPPC64 ? MVT::i64 : MVT::i32); 14252 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14253 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14254 MachinePointerInfo()); 14255 } 14256 14257 // Just load the return address off the stack. 14258 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14259 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14260 MachinePointerInfo()); 14261 } 14262 14263 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14264 SelectionDAG &DAG) const { 14265 SDLoc dl(Op); 14266 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14267 14268 MachineFunction &MF = DAG.getMachineFunction(); 14269 MachineFrameInfo &MFI = MF.getFrameInfo(); 14270 MFI.setFrameAddressIsTaken(true); 14271 14272 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14273 bool isPPC64 = PtrVT == MVT::i64; 14274 14275 // Naked functions never have a frame pointer, and so we use r1. For all 14276 // other functions, this decision must be delayed until during PEI. 14277 unsigned FrameReg; 14278 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14279 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14280 else 14281 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14282 14283 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14284 PtrVT); 14285 while (Depth--) 14286 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14287 FrameAddr, MachinePointerInfo()); 14288 return FrameAddr; 14289 } 14290 14291 // FIXME? Maybe this could be a TableGen attribute on some registers and 14292 // this table could be generated automatically from RegInfo. 14293 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 14294 SelectionDAG &DAG) const { 14295 bool isPPC64 = Subtarget.isPPC64(); 14296 bool isDarwinABI = Subtarget.isDarwinABI(); 14297 14298 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 14299 (!isPPC64 && VT != MVT::i32)) 14300 report_fatal_error("Invalid register global variable type"); 14301 14302 bool is64Bit = isPPC64 && VT == MVT::i64; 14303 unsigned Reg = StringSwitch<unsigned>(RegName) 14304 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14305 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 14306 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 14307 (is64Bit ? PPC::X13 : PPC::R13)) 14308 .Default(0); 14309 14310 if (Reg) 14311 return Reg; 14312 report_fatal_error("Invalid register name global variable"); 14313 } 14314 14315 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14316 // 32-bit SVR4 ABI access everything as got-indirect. 14317 if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 14318 return true; 14319 14320 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14321 // If it is small or large code model, module locals are accessed 14322 // indirectly by loading their address from .toc/.got. The difference 14323 // is that for large code model we have ADDISTocHa + LDtocL and for 14324 // small code model we simply have LDtoc. 14325 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14326 return true; 14327 14328 // JumpTable and BlockAddress are accessed as got-indirect. 14329 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14330 return true; 14331 14332 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 14333 const GlobalValue *GV = G->getGlobal(); 14334 unsigned char GVFlags = Subtarget.classifyGlobalReference(GV); 14335 // The NLP flag indicates that a global access has to use an 14336 // extra indirection. 14337 if (GVFlags & PPCII::MO_NLP_FLAG) 14338 return true; 14339 } 14340 14341 return false; 14342 } 14343 14344 bool 14345 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14346 // The PowerPC target isn't yet aware of offsets. 14347 return false; 14348 } 14349 14350 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14351 const CallInst &I, 14352 MachineFunction &MF, 14353 unsigned Intrinsic) const { 14354 switch (Intrinsic) { 14355 case Intrinsic::ppc_qpx_qvlfd: 14356 case Intrinsic::ppc_qpx_qvlfs: 14357 case Intrinsic::ppc_qpx_qvlfcd: 14358 case Intrinsic::ppc_qpx_qvlfcs: 14359 case Intrinsic::ppc_qpx_qvlfiwa: 14360 case Intrinsic::ppc_qpx_qvlfiwz: 14361 case Intrinsic::ppc_altivec_lvx: 14362 case Intrinsic::ppc_altivec_lvxl: 14363 case Intrinsic::ppc_altivec_lvebx: 14364 case Intrinsic::ppc_altivec_lvehx: 14365 case Intrinsic::ppc_altivec_lvewx: 14366 case Intrinsic::ppc_vsx_lxvd2x: 14367 case Intrinsic::ppc_vsx_lxvw4x: { 14368 EVT VT; 14369 switch (Intrinsic) { 14370 case Intrinsic::ppc_altivec_lvebx: 14371 VT = MVT::i8; 14372 break; 14373 case Intrinsic::ppc_altivec_lvehx: 14374 VT = MVT::i16; 14375 break; 14376 case Intrinsic::ppc_altivec_lvewx: 14377 VT = MVT::i32; 14378 break; 14379 case Intrinsic::ppc_vsx_lxvd2x: 14380 VT = MVT::v2f64; 14381 break; 14382 case Intrinsic::ppc_qpx_qvlfd: 14383 VT = MVT::v4f64; 14384 break; 14385 case Intrinsic::ppc_qpx_qvlfs: 14386 VT = MVT::v4f32; 14387 break; 14388 case Intrinsic::ppc_qpx_qvlfcd: 14389 VT = MVT::v2f64; 14390 break; 14391 case Intrinsic::ppc_qpx_qvlfcs: 14392 VT = MVT::v2f32; 14393 break; 14394 default: 14395 VT = MVT::v4i32; 14396 break; 14397 } 14398 14399 Info.opc = ISD::INTRINSIC_W_CHAIN; 14400 Info.memVT = VT; 14401 Info.ptrVal = I.getArgOperand(0); 14402 Info.offset = -VT.getStoreSize()+1; 14403 Info.size = 2*VT.getStoreSize()-1; 14404 Info.align = 1; 14405 Info.flags = MachineMemOperand::MOLoad; 14406 return true; 14407 } 14408 case Intrinsic::ppc_qpx_qvlfda: 14409 case Intrinsic::ppc_qpx_qvlfsa: 14410 case Intrinsic::ppc_qpx_qvlfcda: 14411 case Intrinsic::ppc_qpx_qvlfcsa: 14412 case Intrinsic::ppc_qpx_qvlfiwaa: 14413 case Intrinsic::ppc_qpx_qvlfiwza: { 14414 EVT VT; 14415 switch (Intrinsic) { 14416 case Intrinsic::ppc_qpx_qvlfda: 14417 VT = MVT::v4f64; 14418 break; 14419 case Intrinsic::ppc_qpx_qvlfsa: 14420 VT = MVT::v4f32; 14421 break; 14422 case Intrinsic::ppc_qpx_qvlfcda: 14423 VT = MVT::v2f64; 14424 break; 14425 case Intrinsic::ppc_qpx_qvlfcsa: 14426 VT = MVT::v2f32; 14427 break; 14428 default: 14429 VT = MVT::v4i32; 14430 break; 14431 } 14432 14433 Info.opc = ISD::INTRINSIC_W_CHAIN; 14434 Info.memVT = VT; 14435 Info.ptrVal = I.getArgOperand(0); 14436 Info.offset = 0; 14437 Info.size = VT.getStoreSize(); 14438 Info.align = 1; 14439 Info.flags = MachineMemOperand::MOLoad; 14440 return true; 14441 } 14442 case Intrinsic::ppc_qpx_qvstfd: 14443 case Intrinsic::ppc_qpx_qvstfs: 14444 case Intrinsic::ppc_qpx_qvstfcd: 14445 case Intrinsic::ppc_qpx_qvstfcs: 14446 case Intrinsic::ppc_qpx_qvstfiw: 14447 case Intrinsic::ppc_altivec_stvx: 14448 case Intrinsic::ppc_altivec_stvxl: 14449 case Intrinsic::ppc_altivec_stvebx: 14450 case Intrinsic::ppc_altivec_stvehx: 14451 case Intrinsic::ppc_altivec_stvewx: 14452 case Intrinsic::ppc_vsx_stxvd2x: 14453 case Intrinsic::ppc_vsx_stxvw4x: { 14454 EVT VT; 14455 switch (Intrinsic) { 14456 case Intrinsic::ppc_altivec_stvebx: 14457 VT = MVT::i8; 14458 break; 14459 case Intrinsic::ppc_altivec_stvehx: 14460 VT = MVT::i16; 14461 break; 14462 case Intrinsic::ppc_altivec_stvewx: 14463 VT = MVT::i32; 14464 break; 14465 case Intrinsic::ppc_vsx_stxvd2x: 14466 VT = MVT::v2f64; 14467 break; 14468 case Intrinsic::ppc_qpx_qvstfd: 14469 VT = MVT::v4f64; 14470 break; 14471 case Intrinsic::ppc_qpx_qvstfs: 14472 VT = MVT::v4f32; 14473 break; 14474 case Intrinsic::ppc_qpx_qvstfcd: 14475 VT = MVT::v2f64; 14476 break; 14477 case Intrinsic::ppc_qpx_qvstfcs: 14478 VT = MVT::v2f32; 14479 break; 14480 default: 14481 VT = MVT::v4i32; 14482 break; 14483 } 14484 14485 Info.opc = ISD::INTRINSIC_VOID; 14486 Info.memVT = VT; 14487 Info.ptrVal = I.getArgOperand(1); 14488 Info.offset = -VT.getStoreSize()+1; 14489 Info.size = 2*VT.getStoreSize()-1; 14490 Info.align = 1; 14491 Info.flags = MachineMemOperand::MOStore; 14492 return true; 14493 } 14494 case Intrinsic::ppc_qpx_qvstfda: 14495 case Intrinsic::ppc_qpx_qvstfsa: 14496 case Intrinsic::ppc_qpx_qvstfcda: 14497 case Intrinsic::ppc_qpx_qvstfcsa: 14498 case Intrinsic::ppc_qpx_qvstfiwa: { 14499 EVT VT; 14500 switch (Intrinsic) { 14501 case Intrinsic::ppc_qpx_qvstfda: 14502 VT = MVT::v4f64; 14503 break; 14504 case Intrinsic::ppc_qpx_qvstfsa: 14505 VT = MVT::v4f32; 14506 break; 14507 case Intrinsic::ppc_qpx_qvstfcda: 14508 VT = MVT::v2f64; 14509 break; 14510 case Intrinsic::ppc_qpx_qvstfcsa: 14511 VT = MVT::v2f32; 14512 break; 14513 default: 14514 VT = MVT::v4i32; 14515 break; 14516 } 14517 14518 Info.opc = ISD::INTRINSIC_VOID; 14519 Info.memVT = VT; 14520 Info.ptrVal = I.getArgOperand(1); 14521 Info.offset = 0; 14522 Info.size = VT.getStoreSize(); 14523 Info.align = 1; 14524 Info.flags = MachineMemOperand::MOStore; 14525 return true; 14526 } 14527 default: 14528 break; 14529 } 14530 14531 return false; 14532 } 14533 14534 /// getOptimalMemOpType - Returns the target specific optimal type for load 14535 /// and store operations as a result of memset, memcpy, and memmove 14536 /// lowering. If DstAlign is zero that means it's safe to destination 14537 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 14538 /// means there isn't a need to check it against alignment requirement, 14539 /// probably because the source does not need to be loaded. If 'IsMemset' is 14540 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 14541 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 14542 /// source is constant so it does not need to be loaded. 14543 /// It returns EVT::Other if the type should be determined using generic 14544 /// target-independent logic. 14545 EVT PPCTargetLowering::getOptimalMemOpType( 14546 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 14547 bool ZeroMemset, bool MemcpyStrSrc, 14548 const AttributeList &FuncAttributes) const { 14549 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 14550 // When expanding a memset, require at least two QPX instructions to cover 14551 // the cost of loading the value to be stored from the constant pool. 14552 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 14553 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 14554 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 14555 return MVT::v4f64; 14556 } 14557 14558 // We should use Altivec/VSX loads and stores when available. For unaligned 14559 // addresses, unaligned VSX loads are only fast starting with the P8. 14560 if (Subtarget.hasAltivec() && Size >= 16 && 14561 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 14562 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 14563 return MVT::v4i32; 14564 } 14565 14566 if (Subtarget.isPPC64()) { 14567 return MVT::i64; 14568 } 14569 14570 return MVT::i32; 14571 } 14572 14573 /// Returns true if it is beneficial to convert a load of a constant 14574 /// to just the constant itself. 14575 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 14576 Type *Ty) const { 14577 assert(Ty->isIntegerTy()); 14578 14579 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 14580 return !(BitSize == 0 || BitSize > 64); 14581 } 14582 14583 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 14584 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 14585 return false; 14586 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 14587 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 14588 return NumBits1 == 64 && NumBits2 == 32; 14589 } 14590 14591 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 14592 if (!VT1.isInteger() || !VT2.isInteger()) 14593 return false; 14594 unsigned NumBits1 = VT1.getSizeInBits(); 14595 unsigned NumBits2 = VT2.getSizeInBits(); 14596 return NumBits1 == 64 && NumBits2 == 32; 14597 } 14598 14599 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 14600 // Generally speaking, zexts are not free, but they are free when they can be 14601 // folded with other operations. 14602 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 14603 EVT MemVT = LD->getMemoryVT(); 14604 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 14605 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 14606 (LD->getExtensionType() == ISD::NON_EXTLOAD || 14607 LD->getExtensionType() == ISD::ZEXTLOAD)) 14608 return true; 14609 } 14610 14611 // FIXME: Add other cases... 14612 // - 32-bit shifts with a zext to i64 14613 // - zext after ctlz, bswap, etc. 14614 // - zext after and by a constant mask 14615 14616 return TargetLowering::isZExtFree(Val, VT2); 14617 } 14618 14619 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 14620 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 14621 "invalid fpext types"); 14622 // Extending to float128 is not free. 14623 if (DestVT == MVT::f128) 14624 return false; 14625 return true; 14626 } 14627 14628 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 14629 return isInt<16>(Imm) || isUInt<16>(Imm); 14630 } 14631 14632 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 14633 return isInt<16>(Imm) || isUInt<16>(Imm); 14634 } 14635 14636 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 14637 unsigned, 14638 unsigned, 14639 MachineMemOperand::Flags, 14640 bool *Fast) const { 14641 if (DisablePPCUnaligned) 14642 return false; 14643 14644 // PowerPC supports unaligned memory access for simple non-vector types. 14645 // Although accessing unaligned addresses is not as efficient as accessing 14646 // aligned addresses, it is generally more efficient than manual expansion, 14647 // and generally only traps for software emulation when crossing page 14648 // boundaries. 14649 14650 if (!VT.isSimple()) 14651 return false; 14652 14653 if (VT.getSimpleVT().isVector()) { 14654 if (Subtarget.hasVSX()) { 14655 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 14656 VT != MVT::v4f32 && VT != MVT::v4i32) 14657 return false; 14658 } else { 14659 return false; 14660 } 14661 } 14662 14663 if (VT == MVT::ppcf128) 14664 return false; 14665 14666 if (Fast) 14667 *Fast = true; 14668 14669 return true; 14670 } 14671 14672 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 14673 VT = VT.getScalarType(); 14674 14675 if (!VT.isSimple()) 14676 return false; 14677 14678 switch (VT.getSimpleVT().SimpleTy) { 14679 case MVT::f32: 14680 case MVT::f64: 14681 return true; 14682 case MVT::f128: 14683 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 14684 default: 14685 break; 14686 } 14687 14688 return false; 14689 } 14690 14691 const MCPhysReg * 14692 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 14693 // LR is a callee-save register, but we must treat it as clobbered by any call 14694 // site. Hence we include LR in the scratch registers, which are in turn added 14695 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 14696 // to CTR, which is used by any indirect call. 14697 static const MCPhysReg ScratchRegs[] = { 14698 PPC::X12, PPC::LR8, PPC::CTR8, 0 14699 }; 14700 14701 return ScratchRegs; 14702 } 14703 14704 unsigned PPCTargetLowering::getExceptionPointerRegister( 14705 const Constant *PersonalityFn) const { 14706 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 14707 } 14708 14709 unsigned PPCTargetLowering::getExceptionSelectorRegister( 14710 const Constant *PersonalityFn) const { 14711 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 14712 } 14713 14714 bool 14715 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 14716 EVT VT , unsigned DefinedValues) const { 14717 if (VT == MVT::v2i64) 14718 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 14719 14720 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 14721 return true; 14722 14723 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 14724 } 14725 14726 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 14727 if (DisableILPPref || Subtarget.enableMachineScheduler()) 14728 return TargetLowering::getSchedulingPreference(N); 14729 14730 return Sched::ILP; 14731 } 14732 14733 // Create a fast isel object. 14734 FastISel * 14735 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 14736 const TargetLibraryInfo *LibInfo) const { 14737 return PPC::createFastISel(FuncInfo, LibInfo); 14738 } 14739 14740 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14741 if (Subtarget.isDarwinABI()) return; 14742 if (!Subtarget.isPPC64()) return; 14743 14744 // Update IsSplitCSR in PPCFunctionInfo 14745 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 14746 PFI->setIsSplitCSR(true); 14747 } 14748 14749 void PPCTargetLowering::insertCopiesSplitCSR( 14750 MachineBasicBlock *Entry, 14751 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14752 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 14753 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14754 if (!IStart) 14755 return; 14756 14757 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 14758 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14759 MachineBasicBlock::iterator MBBI = Entry->begin(); 14760 for (const MCPhysReg *I = IStart; *I; ++I) { 14761 const TargetRegisterClass *RC = nullptr; 14762 if (PPC::G8RCRegClass.contains(*I)) 14763 RC = &PPC::G8RCRegClass; 14764 else if (PPC::F8RCRegClass.contains(*I)) 14765 RC = &PPC::F8RCRegClass; 14766 else if (PPC::CRRCRegClass.contains(*I)) 14767 RC = &PPC::CRRCRegClass; 14768 else if (PPC::VRRCRegClass.contains(*I)) 14769 RC = &PPC::VRRCRegClass; 14770 else 14771 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14772 14773 unsigned NewVR = MRI->createVirtualRegister(RC); 14774 // Create copy from CSR to a virtual register. 14775 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14776 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14777 // nounwind. If we want to generalize this later, we may need to emit 14778 // CFI pseudo-instructions. 14779 assert(Entry->getParent()->getFunction().hasFnAttribute( 14780 Attribute::NoUnwind) && 14781 "Function should be nounwind in insertCopiesSplitCSR!"); 14782 Entry->addLiveIn(*I); 14783 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14784 .addReg(*I); 14785 14786 // Insert the copy-back instructions right before the terminator. 14787 for (auto *Exit : Exits) 14788 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14789 TII->get(TargetOpcode::COPY), *I) 14790 .addReg(NewVR); 14791 } 14792 } 14793 14794 // Override to enable LOAD_STACK_GUARD lowering on Linux. 14795 bool PPCTargetLowering::useLoadStackGuardNode() const { 14796 if (!Subtarget.isTargetLinux()) 14797 return TargetLowering::useLoadStackGuardNode(); 14798 return true; 14799 } 14800 14801 // Override to disable global variable loading on Linux. 14802 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 14803 if (!Subtarget.isTargetLinux()) 14804 return TargetLowering::insertSSPDeclarations(M); 14805 } 14806 14807 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 14808 bool ForCodeSize) const { 14809 if (!VT.isSimple() || !Subtarget.hasVSX()) 14810 return false; 14811 14812 switch(VT.getSimpleVT().SimpleTy) { 14813 default: 14814 // For FP types that are currently not supported by PPC backend, return 14815 // false. Examples: f16, f80. 14816 return false; 14817 case MVT::f32: 14818 case MVT::f64: 14819 case MVT::ppcf128: 14820 return Imm.isPosZero(); 14821 } 14822 } 14823 14824 // For vector shift operation op, fold 14825 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 14826 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 14827 SelectionDAG &DAG) { 14828 SDValue N0 = N->getOperand(0); 14829 SDValue N1 = N->getOperand(1); 14830 EVT VT = N0.getValueType(); 14831 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 14832 unsigned Opcode = N->getOpcode(); 14833 unsigned TargetOpcode; 14834 14835 switch (Opcode) { 14836 default: 14837 llvm_unreachable("Unexpected shift operation"); 14838 case ISD::SHL: 14839 TargetOpcode = PPCISD::SHL; 14840 break; 14841 case ISD::SRL: 14842 TargetOpcode = PPCISD::SRL; 14843 break; 14844 case ISD::SRA: 14845 TargetOpcode = PPCISD::SRA; 14846 break; 14847 } 14848 14849 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 14850 N1->getOpcode() == ISD::AND) 14851 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 14852 if (Mask->getZExtValue() == OpSizeInBits - 1) 14853 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 14854 14855 return SDValue(); 14856 } 14857 14858 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 14859 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14860 return Value; 14861 14862 SDValue N0 = N->getOperand(0); 14863 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14864 if (!Subtarget.isISA3_0() || 14865 N0.getOpcode() != ISD::SIGN_EXTEND || 14866 N0.getOperand(0).getValueType() != MVT::i32 || 14867 CN1 == nullptr || N->getValueType(0) != MVT::i64) 14868 return SDValue(); 14869 14870 // We can't save an operation here if the value is already extended, and 14871 // the existing shift is easier to combine. 14872 SDValue ExtsSrc = N0.getOperand(0); 14873 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 14874 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 14875 return SDValue(); 14876 14877 SDLoc DL(N0); 14878 SDValue ShiftBy = SDValue(CN1, 0); 14879 // We want the shift amount to be i32 on the extswli, but the shift could 14880 // have an i64. 14881 if (ShiftBy.getValueType() == MVT::i64) 14882 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 14883 14884 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 14885 ShiftBy); 14886 } 14887 14888 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 14889 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14890 return Value; 14891 14892 return SDValue(); 14893 } 14894 14895 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 14896 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 14897 return Value; 14898 14899 return SDValue(); 14900 } 14901 14902 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 14903 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 14904 // When C is zero, the equation (addi Z, -C) can be simplified to Z 14905 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 14906 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 14907 const PPCSubtarget &Subtarget) { 14908 if (!Subtarget.isPPC64()) 14909 return SDValue(); 14910 14911 SDValue LHS = N->getOperand(0); 14912 SDValue RHS = N->getOperand(1); 14913 14914 auto isZextOfCompareWithConstant = [](SDValue Op) { 14915 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 14916 Op.getValueType() != MVT::i64) 14917 return false; 14918 14919 SDValue Cmp = Op.getOperand(0); 14920 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 14921 Cmp.getOperand(0).getValueType() != MVT::i64) 14922 return false; 14923 14924 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 14925 int64_t NegConstant = 0 - Constant->getSExtValue(); 14926 // Due to the limitations of the addi instruction, 14927 // -C is required to be [-32768, 32767]. 14928 return isInt<16>(NegConstant); 14929 } 14930 14931 return false; 14932 }; 14933 14934 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 14935 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 14936 14937 // If there is a pattern, canonicalize a zext operand to the RHS. 14938 if (LHSHasPattern && !RHSHasPattern) 14939 std::swap(LHS, RHS); 14940 else if (!LHSHasPattern && !RHSHasPattern) 14941 return SDValue(); 14942 14943 SDLoc DL(N); 14944 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 14945 SDValue Cmp = RHS.getOperand(0); 14946 SDValue Z = Cmp.getOperand(0); 14947 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 14948 14949 assert(Constant && "Constant Should not be a null pointer."); 14950 int64_t NegConstant = 0 - Constant->getSExtValue(); 14951 14952 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 14953 default: break; 14954 case ISD::SETNE: { 14955 // when C == 0 14956 // --> addze X, (addic Z, -1).carry 14957 // / 14958 // add X, (zext(setne Z, C))-- 14959 // \ when -32768 <= -C <= 32767 && C != 0 14960 // --> addze X, (addic (addi Z, -C), -1).carry 14961 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14962 DAG.getConstant(NegConstant, DL, MVT::i64)); 14963 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14964 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14965 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 14966 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14967 SDValue(Addc.getNode(), 1)); 14968 } 14969 case ISD::SETEQ: { 14970 // when C == 0 14971 // --> addze X, (subfic Z, 0).carry 14972 // / 14973 // add X, (zext(sete Z, C))-- 14974 // \ when -32768 <= -C <= 32767 && C != 0 14975 // --> addze X, (subfic (addi Z, -C), 0).carry 14976 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 14977 DAG.getConstant(NegConstant, DL, MVT::i64)); 14978 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 14979 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 14980 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 14981 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 14982 SDValue(Subc.getNode(), 1)); 14983 } 14984 } 14985 14986 return SDValue(); 14987 } 14988 14989 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 14990 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 14991 return Value; 14992 14993 return SDValue(); 14994 } 14995 14996 // Detect TRUNCATE operations on bitcasts of float128 values. 14997 // What we are looking for here is the situtation where we extract a subset 14998 // of bits from a 128 bit float. 14999 // This can be of two forms: 15000 // 1) BITCAST of f128 feeding TRUNCATE 15001 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15002 // The reason this is required is because we do not have a legal i128 type 15003 // and so we want to prevent having to store the f128 and then reload part 15004 // of it. 15005 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15006 DAGCombinerInfo &DCI) const { 15007 // If we are using CRBits then try that first. 15008 if (Subtarget.useCRBits()) { 15009 // Check if CRBits did anything and return that if it did. 15010 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15011 return CRTruncValue; 15012 } 15013 15014 SDLoc dl(N); 15015 SDValue Op0 = N->getOperand(0); 15016 15017 // Looking for a truncate of i128 to i64. 15018 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15019 return SDValue(); 15020 15021 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15022 15023 // SRL feeding TRUNCATE. 15024 if (Op0.getOpcode() == ISD::SRL) { 15025 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15026 // The right shift has to be by 64 bits. 15027 if (!ConstNode || ConstNode->getZExtValue() != 64) 15028 return SDValue(); 15029 15030 // Switch the element number to extract. 15031 EltToExtract = EltToExtract ? 0 : 1; 15032 // Update Op0 past the SRL. 15033 Op0 = Op0.getOperand(0); 15034 } 15035 15036 // BITCAST feeding a TRUNCATE possibly via SRL. 15037 if (Op0.getOpcode() == ISD::BITCAST && 15038 Op0.getValueType() == MVT::i128 && 15039 Op0.getOperand(0).getValueType() == MVT::f128) { 15040 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15041 return DCI.DAG.getNode( 15042 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15043 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15044 } 15045 return SDValue(); 15046 } 15047 15048 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15049 SelectionDAG &DAG = DCI.DAG; 15050 15051 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15052 if (!ConstOpOrElement) 15053 return SDValue(); 15054 15055 // An imul is usually smaller than the alternative sequence for legal type. 15056 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15057 isOperationLegal(ISD::MUL, N->getValueType(0))) 15058 return SDValue(); 15059 15060 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15061 switch (this->Subtarget.getDarwinDirective()) { 15062 default: 15063 // TODO: enhance the condition for subtarget before pwr8 15064 return false; 15065 case PPC::DIR_PWR8: 15066 // type mul add shl 15067 // scalar 4 1 1 15068 // vector 7 2 2 15069 return true; 15070 case PPC::DIR_PWR9: 15071 // type mul add shl 15072 // scalar 5 2 2 15073 // vector 7 2 2 15074 15075 // The cycle RATIO of related operations are showed as a table above. 15076 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15077 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15078 // are 4, it is always profitable; but for 3 instrs patterns 15079 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15080 // So we should only do it for vector type. 15081 return IsAddOne && IsNeg ? VT.isVector() : true; 15082 } 15083 }; 15084 15085 EVT VT = N->getValueType(0); 15086 SDLoc DL(N); 15087 15088 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15089 bool IsNeg = MulAmt.isNegative(); 15090 APInt MulAmtAbs = MulAmt.abs(); 15091 15092 if ((MulAmtAbs - 1).isPowerOf2()) { 15093 // (mul x, 2^N + 1) => (add (shl x, N), x) 15094 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15095 15096 if (!IsProfitable(IsNeg, true, VT)) 15097 return SDValue(); 15098 15099 SDValue Op0 = N->getOperand(0); 15100 SDValue Op1 = 15101 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15102 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15103 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15104 15105 if (!IsNeg) 15106 return Res; 15107 15108 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15109 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15110 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15111 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15112 15113 if (!IsProfitable(IsNeg, false, VT)) 15114 return SDValue(); 15115 15116 SDValue Op0 = N->getOperand(0); 15117 SDValue Op1 = 15118 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15119 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15120 15121 if (!IsNeg) 15122 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15123 else 15124 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15125 15126 } else { 15127 return SDValue(); 15128 } 15129 } 15130 15131 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15132 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15133 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 15134 return false; 15135 15136 // If not a tail call then no need to proceed. 15137 if (!CI->isTailCall()) 15138 return false; 15139 15140 // If tail calls are disabled for the caller then we are done. 15141 const Function *Caller = CI->getParent()->getParent(); 15142 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 15143 if (Attr.getValueAsString() == "true") 15144 return false; 15145 15146 // If sibling calls have been disabled and tail-calls aren't guaranteed 15147 // there is no reason to duplicate. 15148 auto &TM = getTargetMachine(); 15149 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15150 return false; 15151 15152 // Can't tail call a function called indirectly, or if it has variadic args. 15153 const Function *Callee = CI->getCalledFunction(); 15154 if (!Callee || Callee->isVarArg()) 15155 return false; 15156 15157 // Make sure the callee and caller calling conventions are eligible for tco. 15158 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15159 CI->getCallingConv())) 15160 return false; 15161 15162 // If the function is local then we have a good chance at tail-calling it 15163 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15164 } 15165 15166 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15167 if (!Subtarget.hasVSX()) 15168 return false; 15169 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15170 return true; 15171 return VT == MVT::f32 || VT == MVT::f64 || 15172 VT == MVT::v4f32 || VT == MVT::v2f64; 15173 } 15174 15175 bool PPCTargetLowering:: 15176 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15177 const Value *Mask = AndI.getOperand(1); 15178 // If the mask is suitable for andi. or andis. we should sink the and. 15179 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15180 // Can't handle constants wider than 64-bits. 15181 if (CI->getBitWidth() > 64) 15182 return false; 15183 int64_t ConstVal = CI->getZExtValue(); 15184 return isUInt<16>(ConstVal) || 15185 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15186 } 15187 15188 // For non-constant masks, we can always use the record-form and. 15189 return true; 15190 } 15191 15192 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15193 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15194 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15195 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15196 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15197 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15198 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15199 assert(Subtarget.hasP9Altivec() && 15200 "Only combine this when P9 altivec supported!"); 15201 EVT VT = N->getValueType(0); 15202 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15203 return SDValue(); 15204 15205 SelectionDAG &DAG = DCI.DAG; 15206 SDLoc dl(N); 15207 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15208 // Even for signed integers, if it's known to be positive (as signed 15209 // integer) due to zero-extended inputs. 15210 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15211 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15212 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15213 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15214 (SubOpcd1 == ISD::ZERO_EXTEND || 15215 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15216 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15217 N->getOperand(0)->getOperand(0), 15218 N->getOperand(0)->getOperand(1), 15219 DAG.getTargetConstant(0, dl, MVT::i32)); 15220 } 15221 15222 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15223 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15224 N->getOperand(0).hasOneUse()) { 15225 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15226 N->getOperand(0)->getOperand(0), 15227 N->getOperand(0)->getOperand(1), 15228 DAG.getTargetConstant(1, dl, MVT::i32)); 15229 } 15230 } 15231 15232 return SDValue(); 15233 } 15234 15235 // For type v4i32/v8ii16/v16i8, transform 15236 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15237 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15238 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15239 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15240 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15241 DAGCombinerInfo &DCI) const { 15242 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15243 assert(Subtarget.hasP9Altivec() && 15244 "Only combine this when P9 altivec supported!"); 15245 15246 SelectionDAG &DAG = DCI.DAG; 15247 SDLoc dl(N); 15248 SDValue Cond = N->getOperand(0); 15249 SDValue TrueOpnd = N->getOperand(1); 15250 SDValue FalseOpnd = N->getOperand(2); 15251 EVT VT = N->getOperand(1).getValueType(); 15252 15253 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15254 FalseOpnd.getOpcode() != ISD::SUB) 15255 return SDValue(); 15256 15257 // ABSD only available for type v4i32/v8i16/v16i8 15258 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15259 return SDValue(); 15260 15261 // At least to save one more dependent computation 15262 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15263 return SDValue(); 15264 15265 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15266 15267 // Can only handle unsigned comparison here 15268 switch (CC) { 15269 default: 15270 return SDValue(); 15271 case ISD::SETUGT: 15272 case ISD::SETUGE: 15273 break; 15274 case ISD::SETULT: 15275 case ISD::SETULE: 15276 std::swap(TrueOpnd, FalseOpnd); 15277 break; 15278 } 15279 15280 SDValue CmpOpnd1 = Cond.getOperand(0); 15281 SDValue CmpOpnd2 = Cond.getOperand(1); 15282 15283 // SETCC CmpOpnd1 CmpOpnd2 cond 15284 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15285 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15286 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15287 TrueOpnd.getOperand(1) == CmpOpnd2 && 15288 FalseOpnd.getOperand(0) == CmpOpnd2 && 15289 FalseOpnd.getOperand(1) == CmpOpnd1) { 15290 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15291 CmpOpnd1, CmpOpnd2, 15292 DAG.getTargetConstant(0, dl, MVT::i32)); 15293 } 15294 15295 return SDValue(); 15296 } 15297