1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/IntrinsicsPowerPC.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/MC/MCExpr.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
122 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
125 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
126 
127 STATISTIC(NumTailCalls, "Number of tail calls");
128 STATISTIC(NumSiblingCalls, "Number of sibling calls");
129 
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131 
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133 
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136 
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // Use _setjmp/_longjmp instead of setjmp/longjmp.
141   setUseUnderscoreSetJmp(true);
142   setUseUnderscoreLongJmp(true);
143 
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
155     } else {
156       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
157       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
158     }
159   }
160 
161   // Match BITREVERSE to customized fast code sequence in the td file.
162   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
163   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
164 
165   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
166   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
167 
168   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
169   for (MVT VT : MVT::integer_valuetypes()) {
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
172   }
173 
174   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
175 
176   // PowerPC has pre-inc load and store's.
177   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
178   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
179   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
180   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
181   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
182   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
183   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
184   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
185   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
186   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
187   if (!Subtarget.hasSPE()) {
188     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
189     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
190     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
191     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
192   }
193 
194   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
195   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
196   for (MVT VT : ScalarIntVTs) {
197     setOperationAction(ISD::ADDC, VT, Legal);
198     setOperationAction(ISD::ADDE, VT, Legal);
199     setOperationAction(ISD::SUBC, VT, Legal);
200     setOperationAction(ISD::SUBE, VT, Legal);
201   }
202 
203   if (Subtarget.useCRBits()) {
204     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
205 
206     if (isPPC64 || Subtarget.hasFPCVT()) {
207       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
208       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
209                          isPPC64 ? MVT::i64 : MVT::i32);
210       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
211       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
212                         isPPC64 ? MVT::i64 : MVT::i32);
213     } else {
214       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
215       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
216     }
217 
218     // PowerPC does not support direct load/store of condition registers.
219     setOperationAction(ISD::LOAD, MVT::i1, Custom);
220     setOperationAction(ISD::STORE, MVT::i1, Custom);
221 
222     // FIXME: Remove this once the ANDI glue bug is fixed:
223     if (ANDIGlueBug)
224       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
225 
226     for (MVT VT : MVT::integer_valuetypes()) {
227       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
228       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
229       setTruncStoreAction(VT, MVT::i1, Expand);
230     }
231 
232     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
233   }
234 
235   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
236   // PPC (the libcall is not available).
237   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
238   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
239 
240   // We do not currently implement these libm ops for PowerPC.
241   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
242   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
243   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
244   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
245   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
246   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
247 
248   // PowerPC has no SREM/UREM instructions unless we are on P9
249   // On P9 we may use a hardware instruction to compute the remainder.
250   // The instructions are not legalized directly because in the cases where the
251   // result of both the remainder and the division is required it is more
252   // efficient to compute the remainder from the result of the division rather
253   // than use the remainder instruction.
254   if (Subtarget.isISA3_0()) {
255     setOperationAction(ISD::SREM, MVT::i32, Custom);
256     setOperationAction(ISD::UREM, MVT::i32, Custom);
257     setOperationAction(ISD::SREM, MVT::i64, Custom);
258     setOperationAction(ISD::UREM, MVT::i64, Custom);
259   } else {
260     setOperationAction(ISD::SREM, MVT::i32, Expand);
261     setOperationAction(ISD::UREM, MVT::i32, Expand);
262     setOperationAction(ISD::SREM, MVT::i64, Expand);
263     setOperationAction(ISD::UREM, MVT::i64, Expand);
264   }
265 
266   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
267   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
268   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
269   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
270   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
271   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
272   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
273   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
274   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
275 
276   // We don't support sin/cos/sqrt/fmod/pow
277   setOperationAction(ISD::FSIN , MVT::f64, Expand);
278   setOperationAction(ISD::FCOS , MVT::f64, Expand);
279   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
280   setOperationAction(ISD::FREM , MVT::f64, Expand);
281   setOperationAction(ISD::FPOW , MVT::f64, Expand);
282   setOperationAction(ISD::FSIN , MVT::f32, Expand);
283   setOperationAction(ISD::FCOS , MVT::f32, Expand);
284   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
285   setOperationAction(ISD::FREM , MVT::f32, Expand);
286   setOperationAction(ISD::FPOW , MVT::f32, Expand);
287   if (Subtarget.hasSPE()) {
288     setOperationAction(ISD::FMA  , MVT::f64, Expand);
289     setOperationAction(ISD::FMA  , MVT::f32, Expand);
290   } else {
291     setOperationAction(ISD::FMA  , MVT::f64, Legal);
292     setOperationAction(ISD::FMA  , MVT::f32, Legal);
293   }
294 
295   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
296 
297   // If we're enabling GP optimizations, use hardware square root
298   if (!Subtarget.hasFSQRT() &&
299       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
300         Subtarget.hasFRE()))
301     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
302 
303   if (!Subtarget.hasFSQRT() &&
304       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
305         Subtarget.hasFRES()))
306     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
307 
308   if (Subtarget.hasFCPSGN()) {
309     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
310     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
311   } else {
312     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
313     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
314   }
315 
316   if (Subtarget.hasFPRND()) {
317     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
318     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
319     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
320     setOperationAction(ISD::FROUND, MVT::f64, Legal);
321 
322     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
323     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
324     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
325     setOperationAction(ISD::FROUND, MVT::f32, Legal);
326   }
327 
328   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
329   // to speed up scalar BSWAP64.
330   // CTPOP or CTTZ were introduced in P8/P9 respectively
331   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
332   if (Subtarget.hasP9Vector())
333     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
334   else
335     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
336   if (Subtarget.isISA3_0()) {
337     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
338     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
339   } else {
340     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
341     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
342   }
343 
344   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
345     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
346     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
347   } else {
348     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
349     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
350   }
351 
352   // PowerPC does not have ROTR
353   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
354   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
355 
356   if (!Subtarget.useCRBits()) {
357     // PowerPC does not have Select
358     setOperationAction(ISD::SELECT, MVT::i32, Expand);
359     setOperationAction(ISD::SELECT, MVT::i64, Expand);
360     setOperationAction(ISD::SELECT, MVT::f32, Expand);
361     setOperationAction(ISD::SELECT, MVT::f64, Expand);
362   }
363 
364   // PowerPC wants to turn select_cc of FP into fsel when possible.
365   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
366   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
367 
368   // PowerPC wants to optimize integer setcc a bit
369   if (!Subtarget.useCRBits())
370     setOperationAction(ISD::SETCC, MVT::i32, Custom);
371 
372   // PowerPC does not have BRCOND which requires SetCC
373   if (!Subtarget.useCRBits())
374     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
375 
376   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
377 
378   if (Subtarget.hasSPE()) {
379     // SPE has built-in conversions
380     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
381     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
382     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
383   } else {
384     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
385     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
386 
387     // PowerPC does not have [U|S]INT_TO_FP
388     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
389     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
390   }
391 
392   if (Subtarget.hasDirectMove() && isPPC64) {
393     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
394     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
395     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
396     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
397   } else {
398     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
399     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
400     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
401     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
402   }
403 
404   // We cannot sextinreg(i1).  Expand to shifts.
405   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
406 
407   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
408   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
409   // support continuation, user-level threading, and etc.. As a result, no
410   // other SjLj exception interfaces are implemented and please don't build
411   // your own exception handling based on them.
412   // LLVM/Clang supports zero-cost DWARF exception handling.
413   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
414   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
415 
416   // We want to legalize GlobalAddress and ConstantPool nodes into the
417   // appropriate instructions to materialize the address.
418   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
419   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
420   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
421   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
422   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
423   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
424   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
425   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
426   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
427   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
428 
429   // TRAP is legal.
430   setOperationAction(ISD::TRAP, MVT::Other, Legal);
431 
432   // TRAMPOLINE is custom lowered.
433   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
434   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
435 
436   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
437   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
438 
439   if (Subtarget.is64BitELFABI()) {
440     // VAARG always uses double-word chunks, so promote anything smaller.
441     setOperationAction(ISD::VAARG, MVT::i1, Promote);
442     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
443     setOperationAction(ISD::VAARG, MVT::i8, Promote);
444     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
445     setOperationAction(ISD::VAARG, MVT::i16, Promote);
446     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
447     setOperationAction(ISD::VAARG, MVT::i32, Promote);
448     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
449     setOperationAction(ISD::VAARG, MVT::Other, Expand);
450   } else if (Subtarget.is32BitELFABI()) {
451     // VAARG is custom lowered with the 32-bit SVR4 ABI.
452     setOperationAction(ISD::VAARG, MVT::Other, Custom);
453     setOperationAction(ISD::VAARG, MVT::i64, Custom);
454   } else
455     setOperationAction(ISD::VAARG, MVT::Other, Expand);
456 
457   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
458   if (Subtarget.is32BitELFABI())
459     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
460   else
461     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
462 
463   // Use the default implementation.
464   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
465   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
466   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
467   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
468   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
469   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
470   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
471   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
472   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
473 
474   // We want to custom lower some of our intrinsics.
475   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
476 
477   // To handle counter-based loop conditions.
478   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
479 
480   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
481   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
482   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
483   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485   // Comparisons that require checking two conditions.
486   if (Subtarget.hasSPE()) {
487     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
488     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
489     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
490     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
491   }
492   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
493   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
494   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
495   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
496   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
497   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
498   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
499   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
500   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
501   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
502   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
503   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
504 
505   if (Subtarget.has64BitSupport()) {
506     // They also have instructions for converting between i64 and fp.
507     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
508     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
509     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
510     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
511     // This is just the low 32 bits of a (signed) fp->i64 conversion.
512     // We cannot do this with Promote because i64 is not a legal type.
513     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
514 
515     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
516       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
517   } else {
518     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
519     if (Subtarget.hasSPE())
520       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
521     else
522       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
523   }
524 
525   // With the instructions enabled under FPCVT, we can do everything.
526   if (Subtarget.hasFPCVT()) {
527     if (Subtarget.has64BitSupport()) {
528       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
529       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
530       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
531       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
532     }
533 
534     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
535     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
536     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
537     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
538   }
539 
540   if (Subtarget.use64BitRegs()) {
541     // 64-bit PowerPC implementations can support i64 types directly
542     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
543     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
544     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
545     // 64-bit PowerPC wants to expand i128 shifts itself.
546     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
547     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
548     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
549   } else {
550     // 32-bit PowerPC wants to expand i64 shifts itself.
551     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
552     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
553     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
554   }
555 
556   if (Subtarget.hasVSX()) {
557     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
558     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
559     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
560     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
561   }
562 
563   if (Subtarget.hasAltivec()) {
564     // First set operation action for all vector types to expand. Then we
565     // will selectively turn on ones that can be effectively codegen'd.
566     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
567       // add/sub are legal for all supported vector VT's.
568       setOperationAction(ISD::ADD, VT, Legal);
569       setOperationAction(ISD::SUB, VT, Legal);
570 
571       // For v2i64, these are only valid with P8Vector. This is corrected after
572       // the loop.
573       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
574         setOperationAction(ISD::SMAX, VT, Legal);
575         setOperationAction(ISD::SMIN, VT, Legal);
576         setOperationAction(ISD::UMAX, VT, Legal);
577         setOperationAction(ISD::UMIN, VT, Legal);
578       }
579       else {
580         setOperationAction(ISD::SMAX, VT, Expand);
581         setOperationAction(ISD::SMIN, VT, Expand);
582         setOperationAction(ISD::UMAX, VT, Expand);
583         setOperationAction(ISD::UMIN, VT, Expand);
584       }
585 
586       if (Subtarget.hasVSX()) {
587         setOperationAction(ISD::FMAXNUM, VT, Legal);
588         setOperationAction(ISD::FMINNUM, VT, Legal);
589       }
590 
591       // Vector instructions introduced in P8
592       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
593         setOperationAction(ISD::CTPOP, VT, Legal);
594         setOperationAction(ISD::CTLZ, VT, Legal);
595       }
596       else {
597         setOperationAction(ISD::CTPOP, VT, Expand);
598         setOperationAction(ISD::CTLZ, VT, Expand);
599       }
600 
601       // Vector instructions introduced in P9
602       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
603         setOperationAction(ISD::CTTZ, VT, Legal);
604       else
605         setOperationAction(ISD::CTTZ, VT, Expand);
606 
607       // We promote all shuffles to v16i8.
608       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
609       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
610 
611       // We promote all non-typed operations to v4i32.
612       setOperationAction(ISD::AND   , VT, Promote);
613       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
614       setOperationAction(ISD::OR    , VT, Promote);
615       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
616       setOperationAction(ISD::XOR   , VT, Promote);
617       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
618       setOperationAction(ISD::LOAD  , VT, Promote);
619       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
620       setOperationAction(ISD::SELECT, VT, Promote);
621       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
622       setOperationAction(ISD::VSELECT, VT, Legal);
623       setOperationAction(ISD::SELECT_CC, VT, Promote);
624       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
625       setOperationAction(ISD::STORE, VT, Promote);
626       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
627 
628       // No other operations are legal.
629       setOperationAction(ISD::MUL , VT, Expand);
630       setOperationAction(ISD::SDIV, VT, Expand);
631       setOperationAction(ISD::SREM, VT, Expand);
632       setOperationAction(ISD::UDIV, VT, Expand);
633       setOperationAction(ISD::UREM, VT, Expand);
634       setOperationAction(ISD::FDIV, VT, Expand);
635       setOperationAction(ISD::FREM, VT, Expand);
636       setOperationAction(ISD::FNEG, VT, Expand);
637       setOperationAction(ISD::FSQRT, VT, Expand);
638       setOperationAction(ISD::FLOG, VT, Expand);
639       setOperationAction(ISD::FLOG10, VT, Expand);
640       setOperationAction(ISD::FLOG2, VT, Expand);
641       setOperationAction(ISD::FEXP, VT, Expand);
642       setOperationAction(ISD::FEXP2, VT, Expand);
643       setOperationAction(ISD::FSIN, VT, Expand);
644       setOperationAction(ISD::FCOS, VT, Expand);
645       setOperationAction(ISD::FABS, VT, Expand);
646       setOperationAction(ISD::FFLOOR, VT, Expand);
647       setOperationAction(ISD::FCEIL,  VT, Expand);
648       setOperationAction(ISD::FTRUNC, VT, Expand);
649       setOperationAction(ISD::FRINT,  VT, Expand);
650       setOperationAction(ISD::FNEARBYINT, VT, Expand);
651       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
652       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
653       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
654       setOperationAction(ISD::MULHU, VT, Expand);
655       setOperationAction(ISD::MULHS, VT, Expand);
656       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
657       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
658       setOperationAction(ISD::UDIVREM, VT, Expand);
659       setOperationAction(ISD::SDIVREM, VT, Expand);
660       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
661       setOperationAction(ISD::FPOW, VT, Expand);
662       setOperationAction(ISD::BSWAP, VT, Expand);
663       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
664       setOperationAction(ISD::ROTL, VT, Expand);
665       setOperationAction(ISD::ROTR, VT, Expand);
666 
667       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
668         setTruncStoreAction(VT, InnerVT, Expand);
669         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
670         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
671         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
672       }
673     }
674     if (!Subtarget.hasP8Vector()) {
675       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
676       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
677       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
678       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
679     }
680 
681     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
682       setOperationAction(ISD::ABS, VT, Custom);
683 
684     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
685     // with merges, splats, etc.
686     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
687 
688     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
689     // are cheap, so handle them before they get expanded to scalar.
690     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
691     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
692     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
693     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
694     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
695 
696     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
697     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
698     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
699     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
700     setOperationAction(ISD::SELECT, MVT::v4i32,
701                        Subtarget.useCRBits() ? Legal : Expand);
702     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
703     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
704     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
705     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
706     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
707     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
708     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
709     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
710     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
711 
712     // Without hasP8Altivec set, v2i64 SMAX isn't available.
713     // But ABS custom lowering requires SMAX support.
714     if (!Subtarget.hasP8Altivec())
715       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
716 
717     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
718     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
719     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
720     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
721 
722     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
723     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
724 
725     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
726       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
727       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
728     }
729 
730     if (Subtarget.hasP8Altivec())
731       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
732     else
733       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
734 
735     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
736     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
737 
738     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
739     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
740 
741     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
742     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
743     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
744     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
745 
746     // Altivec does not contain unordered floating-point compare instructions
747     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
748     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
749     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
750     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
751 
752     if (Subtarget.hasVSX()) {
753       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
754       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
755       if (Subtarget.hasP8Vector()) {
756         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
757         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
758       }
759       if (Subtarget.hasDirectMove() && isPPC64) {
760         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
761         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
762         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
763         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
764         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
765         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
766         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
767         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
768       }
769       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
770 
771       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
772       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
773       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
774       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
775       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
776 
777       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
778 
779       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
780       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
781 
782       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
783       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
784 
785       // Share the Altivec comparison restrictions.
786       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
787       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
788       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
789       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
790 
791       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
792       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
793 
794       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
795 
796       if (Subtarget.hasP8Vector())
797         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
798 
799       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
800 
801       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
802       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
803       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
804 
805       if (Subtarget.hasP8Altivec()) {
806         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
807         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
808         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
809 
810         // 128 bit shifts can be accomplished via 3 instructions for SHL and
811         // SRL, but not for SRA because of the instructions available:
812         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
813         // doing
814         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
815         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
816         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
817 
818         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
819       }
820       else {
821         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
822         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
823         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
824 
825         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
826 
827         // VSX v2i64 only supports non-arithmetic operations.
828         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
829         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
830       }
831 
832       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
833       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
834       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
835       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
836 
837       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
838 
839       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
840       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
841       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
842       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
843 
844       // Custom handling for partial vectors of integers converted to
845       // floating point. We already have optimal handling for v2i32 through
846       // the DAG combine, so those aren't necessary.
847       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
848       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
849       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
850       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
851       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
852       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
853       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
854       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
855 
856       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
857       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
858       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
859       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
860       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
861       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
862 
863       if (Subtarget.hasDirectMove())
864         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
865       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
866 
867       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
868     }
869 
870     if (Subtarget.hasP8Altivec()) {
871       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
872       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
873     }
874 
875     if (Subtarget.hasP9Vector()) {
876       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
877       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
878 
879       // 128 bit shifts can be accomplished via 3 instructions for SHL and
880       // SRL, but not for SRA because of the instructions available:
881       // VS{RL} and VS{RL}O.
882       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
883       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
884       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
885 
886       if (EnableQuadPrecision) {
887         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
888         setOperationAction(ISD::FADD, MVT::f128, Legal);
889         setOperationAction(ISD::FSUB, MVT::f128, Legal);
890         setOperationAction(ISD::FDIV, MVT::f128, Legal);
891         setOperationAction(ISD::FMUL, MVT::f128, Legal);
892         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
893         // No extending loads to f128 on PPC.
894         for (MVT FPT : MVT::fp_valuetypes())
895           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
896         setOperationAction(ISD::FMA, MVT::f128, Legal);
897         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
898         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
899         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
900         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
901         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
902         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
903 
904         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
905         setOperationAction(ISD::FRINT, MVT::f128, Legal);
906         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
907         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
908         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
909         setOperationAction(ISD::FROUND, MVT::f128, Legal);
910 
911         setOperationAction(ISD::SELECT, MVT::f128, Expand);
912         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
913         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
914         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
915         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
916         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
917         // No implementation for these ops for PowerPC.
918         setOperationAction(ISD::FSIN , MVT::f128, Expand);
919         setOperationAction(ISD::FCOS , MVT::f128, Expand);
920         setOperationAction(ISD::FPOW, MVT::f128, Expand);
921         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
922         setOperationAction(ISD::FREM, MVT::f128, Expand);
923       }
924       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
925       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
926       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
927       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
928       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
929     }
930 
931     if (Subtarget.hasP9Altivec()) {
932       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
933       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
934 
935       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
936       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
937       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
938       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
939       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
940       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
941       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
942     }
943   }
944 
945   if (Subtarget.hasQPX()) {
946     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
947     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
948     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
949     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
950 
951     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
952     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
953 
954     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
955     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
956 
957     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
958     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
959 
960     if (!Subtarget.useCRBits())
961       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
962     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
963 
964     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
965     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
966     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
967     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
968     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
969     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
970     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
971 
972     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
973     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
974 
975     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
976     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
977 
978     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
979     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
980     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
981     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
982     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
983     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
984     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
985     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
986     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
987     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
988 
989     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
990     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
991 
992     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
993     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
994 
995     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
996 
997     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
998     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
999     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1000     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1001 
1002     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1003     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1004 
1005     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1006     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1007 
1008     if (!Subtarget.useCRBits())
1009       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1010     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1011 
1012     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1013     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1014     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1015     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1016     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1017     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1018     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1019 
1020     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1021     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1022 
1023     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1024     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1025     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1026     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1027     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1028     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1029     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1030     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1031     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1032     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1033 
1034     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1035     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1036 
1037     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1038     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1039 
1040     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1041 
1042     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1043     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1044     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1045 
1046     if (!Subtarget.useCRBits())
1047       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1048     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1049 
1050     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1051     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1052 
1053     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1054     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1055     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1056     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1057     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1058     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1059     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1060 
1061     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1062     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1063 
1064     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1065 
1066     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1067     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1068     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1069     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1070 
1071     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1072     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1073     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1074     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1075 
1076     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1077     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1078 
1079     // These need to set FE_INEXACT, and so cannot be vectorized here.
1080     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1081     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1082 
1083     if (TM.Options.UnsafeFPMath) {
1084       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1085       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1086 
1087       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1088       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1089     } else {
1090       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1091       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1092 
1093       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1094       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1095     }
1096   }
1097 
1098   if (Subtarget.has64BitSupport())
1099     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1100 
1101   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1102 
1103   if (!isPPC64) {
1104     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1105     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1106   }
1107 
1108   setBooleanContents(ZeroOrOneBooleanContent);
1109 
1110   if (Subtarget.hasAltivec()) {
1111     // Altivec instructions set fields to all zeros or all ones.
1112     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1113   }
1114 
1115   if (!isPPC64) {
1116     // These libcalls are not available in 32-bit.
1117     setLibcallName(RTLIB::SHL_I128, nullptr);
1118     setLibcallName(RTLIB::SRL_I128, nullptr);
1119     setLibcallName(RTLIB::SRA_I128, nullptr);
1120   }
1121 
1122   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1123 
1124   // We have target-specific dag combine patterns for the following nodes:
1125   setTargetDAGCombine(ISD::ADD);
1126   setTargetDAGCombine(ISD::SHL);
1127   setTargetDAGCombine(ISD::SRA);
1128   setTargetDAGCombine(ISD::SRL);
1129   setTargetDAGCombine(ISD::MUL);
1130   setTargetDAGCombine(ISD::SINT_TO_FP);
1131   setTargetDAGCombine(ISD::BUILD_VECTOR);
1132   if (Subtarget.hasFPCVT())
1133     setTargetDAGCombine(ISD::UINT_TO_FP);
1134   setTargetDAGCombine(ISD::LOAD);
1135   setTargetDAGCombine(ISD::STORE);
1136   setTargetDAGCombine(ISD::BR_CC);
1137   if (Subtarget.useCRBits())
1138     setTargetDAGCombine(ISD::BRCOND);
1139   setTargetDAGCombine(ISD::BSWAP);
1140   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1141   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1142   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1143 
1144   setTargetDAGCombine(ISD::SIGN_EXTEND);
1145   setTargetDAGCombine(ISD::ZERO_EXTEND);
1146   setTargetDAGCombine(ISD::ANY_EXTEND);
1147 
1148   setTargetDAGCombine(ISD::TRUNCATE);
1149   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1150 
1151 
1152   if (Subtarget.useCRBits()) {
1153     setTargetDAGCombine(ISD::TRUNCATE);
1154     setTargetDAGCombine(ISD::SETCC);
1155     setTargetDAGCombine(ISD::SELECT_CC);
1156   }
1157 
1158   // Use reciprocal estimates.
1159   if (TM.Options.UnsafeFPMath) {
1160     setTargetDAGCombine(ISD::FDIV);
1161     setTargetDAGCombine(ISD::FSQRT);
1162   }
1163 
1164   if (Subtarget.hasP9Altivec()) {
1165     setTargetDAGCombine(ISD::ABS);
1166     setTargetDAGCombine(ISD::VSELECT);
1167   }
1168 
1169   // Darwin long double math library functions have $LDBL128 appended.
1170   if (Subtarget.isDarwin()) {
1171     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1172     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1173     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1174     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1175     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1176     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1177     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1178     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1179     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1180     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1181   }
1182 
1183   if (EnableQuadPrecision) {
1184     setLibcallName(RTLIB::LOG_F128, "logf128");
1185     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1186     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1187     setLibcallName(RTLIB::EXP_F128, "expf128");
1188     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1189     setLibcallName(RTLIB::SIN_F128, "sinf128");
1190     setLibcallName(RTLIB::COS_F128, "cosf128");
1191     setLibcallName(RTLIB::POW_F128, "powf128");
1192     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1193     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1194     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1195     setLibcallName(RTLIB::REM_F128, "fmodf128");
1196   }
1197 
1198   // With 32 condition bits, we don't need to sink (and duplicate) compares
1199   // aggressively in CodeGenPrep.
1200   if (Subtarget.useCRBits()) {
1201     setHasMultipleConditionRegisters();
1202     setJumpIsExpensive();
1203   }
1204 
1205   setMinFunctionAlignment(Align(4));
1206   if (Subtarget.isDarwin())
1207     setPrefFunctionAlignment(Align(16));
1208 
1209   switch (Subtarget.getCPUDirective()) {
1210   default: break;
1211   case PPC::DIR_970:
1212   case PPC::DIR_A2:
1213   case PPC::DIR_E500:
1214   case PPC::DIR_E500mc:
1215   case PPC::DIR_E5500:
1216   case PPC::DIR_PWR4:
1217   case PPC::DIR_PWR5:
1218   case PPC::DIR_PWR5X:
1219   case PPC::DIR_PWR6:
1220   case PPC::DIR_PWR6X:
1221   case PPC::DIR_PWR7:
1222   case PPC::DIR_PWR8:
1223   case PPC::DIR_PWR9:
1224   case PPC::DIR_PWR_FUTURE:
1225     setPrefLoopAlignment(Align(16));
1226     setPrefFunctionAlignment(Align(16));
1227     break;
1228   }
1229 
1230   if (Subtarget.enableMachineScheduler())
1231     setSchedulingPreference(Sched::Source);
1232   else
1233     setSchedulingPreference(Sched::Hybrid);
1234 
1235   computeRegisterProperties(STI.getRegisterInfo());
1236 
1237   // The Freescale cores do better with aggressive inlining of memcpy and
1238   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1239   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1240       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1241     MaxStoresPerMemset = 32;
1242     MaxStoresPerMemsetOptSize = 16;
1243     MaxStoresPerMemcpy = 32;
1244     MaxStoresPerMemcpyOptSize = 8;
1245     MaxStoresPerMemmove = 32;
1246     MaxStoresPerMemmoveOptSize = 8;
1247   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1248     // The A2 also benefits from (very) aggressive inlining of memcpy and
1249     // friends. The overhead of a the function call, even when warm, can be
1250     // over one hundred cycles.
1251     MaxStoresPerMemset = 128;
1252     MaxStoresPerMemcpy = 128;
1253     MaxStoresPerMemmove = 128;
1254     MaxLoadsPerMemcmp = 128;
1255   } else {
1256     MaxLoadsPerMemcmp = 8;
1257     MaxLoadsPerMemcmpOptSize = 4;
1258   }
1259 }
1260 
1261 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1262 /// the desired ByVal argument alignment.
1263 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1264                              unsigned MaxMaxAlign) {
1265   if (MaxAlign == MaxMaxAlign)
1266     return;
1267   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1268     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1269       MaxAlign = 32;
1270     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1271       MaxAlign = 16;
1272   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1273     unsigned EltAlign = 0;
1274     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1275     if (EltAlign > MaxAlign)
1276       MaxAlign = EltAlign;
1277   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1278     for (auto *EltTy : STy->elements()) {
1279       unsigned EltAlign = 0;
1280       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1281       if (EltAlign > MaxAlign)
1282         MaxAlign = EltAlign;
1283       if (MaxAlign == MaxMaxAlign)
1284         break;
1285     }
1286   }
1287 }
1288 
1289 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1290 /// function arguments in the caller parameter area.
1291 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1292                                                   const DataLayout &DL) const {
1293   // Darwin passes everything on 4 byte boundary.
1294   if (Subtarget.isDarwin())
1295     return 4;
1296 
1297   // 16byte and wider vectors are passed on 16byte boundary.
1298   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1299   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1300   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1301     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1302   return Align;
1303 }
1304 
1305 bool PPCTargetLowering::useSoftFloat() const {
1306   return Subtarget.useSoftFloat();
1307 }
1308 
1309 bool PPCTargetLowering::hasSPE() const {
1310   return Subtarget.hasSPE();
1311 }
1312 
1313 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1314   return VT.isScalarInteger();
1315 }
1316 
1317 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1318   switch ((PPCISD::NodeType)Opcode) {
1319   case PPCISD::FIRST_NUMBER:    break;
1320   case PPCISD::FSEL:            return "PPCISD::FSEL";
1321   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1322   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1323   case PPCISD::FCFID:           return "PPCISD::FCFID";
1324   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1325   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1326   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1327   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1328   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1329   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1330   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1331   case PPCISD::FP_TO_UINT_IN_VSR:
1332                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1333   case PPCISD::FP_TO_SINT_IN_VSR:
1334                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1335   case PPCISD::FRE:             return "PPCISD::FRE";
1336   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1337   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1338   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1339   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1340   case PPCISD::VPERM:           return "PPCISD::VPERM";
1341   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1342   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1343   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1344   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1345   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1346   case PPCISD::CMPB:            return "PPCISD::CMPB";
1347   case PPCISD::Hi:              return "PPCISD::Hi";
1348   case PPCISD::Lo:              return "PPCISD::Lo";
1349   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1350   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1351   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1352   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1353   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1354   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1355   case PPCISD::SRL:             return "PPCISD::SRL";
1356   case PPCISD::SRA:             return "PPCISD::SRA";
1357   case PPCISD::SHL:             return "PPCISD::SHL";
1358   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1359   case PPCISD::CALL:            return "PPCISD::CALL";
1360   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1361   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1362   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1363   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1364   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1365   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1366   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1367   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1368   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1369   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1370   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1371   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1372   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1373   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1374   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1375   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1376   case PPCISD::VCMP:            return "PPCISD::VCMP";
1377   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1378   case PPCISD::LBRX:            return "PPCISD::LBRX";
1379   case PPCISD::STBRX:           return "PPCISD::STBRX";
1380   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1381   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1382   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1383   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1384   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1385   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1386   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1387   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1388   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1389   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1390   case PPCISD::ST_VSR_SCAL_INT:
1391                                 return "PPCISD::ST_VSR_SCAL_INT";
1392   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1393   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1394   case PPCISD::BDZ:             return "PPCISD::BDZ";
1395   case PPCISD::MFFS:            return "PPCISD::MFFS";
1396   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1397   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1398   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1399   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1400   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1401   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1402   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1403   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1404   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1405   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1406   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1407   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1408   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1409   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1410   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1411   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1412   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1413   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1414   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1415   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1416   case PPCISD::SC:              return "PPCISD::SC";
1417   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1418   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1419   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1420   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1421   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1422   case PPCISD::VABSD:           return "PPCISD::VABSD";
1423   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1424   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1425   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1426   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1427   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1428   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1429   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1430   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1431   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1432   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1433   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1434   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1435   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1436   }
1437   return nullptr;
1438 }
1439 
1440 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1441                                           EVT VT) const {
1442   if (!VT.isVector())
1443     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1444 
1445   if (Subtarget.hasQPX())
1446     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1447 
1448   return VT.changeVectorElementTypeToInteger();
1449 }
1450 
1451 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1452   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1453   return true;
1454 }
1455 
1456 //===----------------------------------------------------------------------===//
1457 // Node matching predicates, for use by the tblgen matching code.
1458 //===----------------------------------------------------------------------===//
1459 
1460 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1461 static bool isFloatingPointZero(SDValue Op) {
1462   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1463     return CFP->getValueAPF().isZero();
1464   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1465     // Maybe this has already been legalized into the constant pool?
1466     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1467       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1468         return CFP->getValueAPF().isZero();
1469   }
1470   return false;
1471 }
1472 
1473 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1474 /// true if Op is undef or if it matches the specified value.
1475 static bool isConstantOrUndef(int Op, int Val) {
1476   return Op < 0 || Op == Val;
1477 }
1478 
1479 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1480 /// VPKUHUM instruction.
1481 /// The ShuffleKind distinguishes between big-endian operations with
1482 /// two different inputs (0), either-endian operations with two identical
1483 /// inputs (1), and little-endian operations with two different inputs (2).
1484 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1485 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1486                                SelectionDAG &DAG) {
1487   bool IsLE = DAG.getDataLayout().isLittleEndian();
1488   if (ShuffleKind == 0) {
1489     if (IsLE)
1490       return false;
1491     for (unsigned i = 0; i != 16; ++i)
1492       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1493         return false;
1494   } else if (ShuffleKind == 2) {
1495     if (!IsLE)
1496       return false;
1497     for (unsigned i = 0; i != 16; ++i)
1498       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1499         return false;
1500   } else if (ShuffleKind == 1) {
1501     unsigned j = IsLE ? 0 : 1;
1502     for (unsigned i = 0; i != 8; ++i)
1503       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1504           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1505         return false;
1506   }
1507   return true;
1508 }
1509 
1510 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1511 /// VPKUWUM instruction.
1512 /// The ShuffleKind distinguishes between big-endian operations with
1513 /// two different inputs (0), either-endian operations with two identical
1514 /// inputs (1), and little-endian operations with two different inputs (2).
1515 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1516 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1517                                SelectionDAG &DAG) {
1518   bool IsLE = DAG.getDataLayout().isLittleEndian();
1519   if (ShuffleKind == 0) {
1520     if (IsLE)
1521       return false;
1522     for (unsigned i = 0; i != 16; i += 2)
1523       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1524           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1525         return false;
1526   } else if (ShuffleKind == 2) {
1527     if (!IsLE)
1528       return false;
1529     for (unsigned i = 0; i != 16; i += 2)
1530       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1531           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1532         return false;
1533   } else if (ShuffleKind == 1) {
1534     unsigned j = IsLE ? 0 : 2;
1535     for (unsigned i = 0; i != 8; i += 2)
1536       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1537           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1538           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1539           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1540         return false;
1541   }
1542   return true;
1543 }
1544 
1545 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1546 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1547 /// current subtarget.
1548 ///
1549 /// The ShuffleKind distinguishes between big-endian operations with
1550 /// two different inputs (0), either-endian operations with two identical
1551 /// inputs (1), and little-endian operations with two different inputs (2).
1552 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1553 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1554                                SelectionDAG &DAG) {
1555   const PPCSubtarget& Subtarget =
1556       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1557   if (!Subtarget.hasP8Vector())
1558     return false;
1559 
1560   bool IsLE = DAG.getDataLayout().isLittleEndian();
1561   if (ShuffleKind == 0) {
1562     if (IsLE)
1563       return false;
1564     for (unsigned i = 0; i != 16; i += 4)
1565       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1566           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1567           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1568           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1569         return false;
1570   } else if (ShuffleKind == 2) {
1571     if (!IsLE)
1572       return false;
1573     for (unsigned i = 0; i != 16; i += 4)
1574       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1575           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1576           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1577           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1578         return false;
1579   } else if (ShuffleKind == 1) {
1580     unsigned j = IsLE ? 0 : 4;
1581     for (unsigned i = 0; i != 8; i += 4)
1582       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1583           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1584           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1585           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1586           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1587           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1588           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1589           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1590         return false;
1591   }
1592   return true;
1593 }
1594 
1595 /// isVMerge - Common function, used to match vmrg* shuffles.
1596 ///
1597 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1598                      unsigned LHSStart, unsigned RHSStart) {
1599   if (N->getValueType(0) != MVT::v16i8)
1600     return false;
1601   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1602          "Unsupported merge size!");
1603 
1604   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1605     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1606       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1607                              LHSStart+j+i*UnitSize) ||
1608           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1609                              RHSStart+j+i*UnitSize))
1610         return false;
1611     }
1612   return true;
1613 }
1614 
1615 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1616 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1617 /// The ShuffleKind distinguishes between big-endian merges with two
1618 /// different inputs (0), either-endian merges with two identical inputs (1),
1619 /// and little-endian merges with two different inputs (2).  For the latter,
1620 /// the input operands are swapped (see PPCInstrAltivec.td).
1621 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1622                              unsigned ShuffleKind, SelectionDAG &DAG) {
1623   if (DAG.getDataLayout().isLittleEndian()) {
1624     if (ShuffleKind == 1) // unary
1625       return isVMerge(N, UnitSize, 0, 0);
1626     else if (ShuffleKind == 2) // swapped
1627       return isVMerge(N, UnitSize, 0, 16);
1628     else
1629       return false;
1630   } else {
1631     if (ShuffleKind == 1) // unary
1632       return isVMerge(N, UnitSize, 8, 8);
1633     else if (ShuffleKind == 0) // normal
1634       return isVMerge(N, UnitSize, 8, 24);
1635     else
1636       return false;
1637   }
1638 }
1639 
1640 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1641 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1642 /// The ShuffleKind distinguishes between big-endian merges with two
1643 /// different inputs (0), either-endian merges with two identical inputs (1),
1644 /// and little-endian merges with two different inputs (2).  For the latter,
1645 /// the input operands are swapped (see PPCInstrAltivec.td).
1646 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1647                              unsigned ShuffleKind, SelectionDAG &DAG) {
1648   if (DAG.getDataLayout().isLittleEndian()) {
1649     if (ShuffleKind == 1) // unary
1650       return isVMerge(N, UnitSize, 8, 8);
1651     else if (ShuffleKind == 2) // swapped
1652       return isVMerge(N, UnitSize, 8, 24);
1653     else
1654       return false;
1655   } else {
1656     if (ShuffleKind == 1) // unary
1657       return isVMerge(N, UnitSize, 0, 0);
1658     else if (ShuffleKind == 0) // normal
1659       return isVMerge(N, UnitSize, 0, 16);
1660     else
1661       return false;
1662   }
1663 }
1664 
1665 /**
1666  * Common function used to match vmrgew and vmrgow shuffles
1667  *
1668  * The indexOffset determines whether to look for even or odd words in
1669  * the shuffle mask. This is based on the of the endianness of the target
1670  * machine.
1671  *   - Little Endian:
1672  *     - Use offset of 0 to check for odd elements
1673  *     - Use offset of 4 to check for even elements
1674  *   - Big Endian:
1675  *     - Use offset of 0 to check for even elements
1676  *     - Use offset of 4 to check for odd elements
1677  * A detailed description of the vector element ordering for little endian and
1678  * big endian can be found at
1679  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1680  * Targeting your applications - what little endian and big endian IBM XL C/C++
1681  * compiler differences mean to you
1682  *
1683  * The mask to the shuffle vector instruction specifies the indices of the
1684  * elements from the two input vectors to place in the result. The elements are
1685  * numbered in array-access order, starting with the first vector. These vectors
1686  * are always of type v16i8, thus each vector will contain 16 elements of size
1687  * 8. More info on the shuffle vector can be found in the
1688  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1689  * Language Reference.
1690  *
1691  * The RHSStartValue indicates whether the same input vectors are used (unary)
1692  * or two different input vectors are used, based on the following:
1693  *   - If the instruction uses the same vector for both inputs, the range of the
1694  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1695  *     be 0.
1696  *   - If the instruction has two different vectors then the range of the
1697  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1698  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1699  *     to 31 specify elements in the second vector).
1700  *
1701  * \param[in] N The shuffle vector SD Node to analyze
1702  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1703  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1704  * vector to the shuffle_vector instruction
1705  * \return true iff this shuffle vector represents an even or odd word merge
1706  */
1707 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1708                      unsigned RHSStartValue) {
1709   if (N->getValueType(0) != MVT::v16i8)
1710     return false;
1711 
1712   for (unsigned i = 0; i < 2; ++i)
1713     for (unsigned j = 0; j < 4; ++j)
1714       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1715                              i*RHSStartValue+j+IndexOffset) ||
1716           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1717                              i*RHSStartValue+j+IndexOffset+8))
1718         return false;
1719   return true;
1720 }
1721 
1722 /**
1723  * Determine if the specified shuffle mask is suitable for the vmrgew or
1724  * vmrgow instructions.
1725  *
1726  * \param[in] N The shuffle vector SD Node to analyze
1727  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1728  * \param[in] ShuffleKind Identify the type of merge:
1729  *   - 0 = big-endian merge with two different inputs;
1730  *   - 1 = either-endian merge with two identical inputs;
1731  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1732  *     little-endian merges).
1733  * \param[in] DAG The current SelectionDAG
1734  * \return true iff this shuffle mask
1735  */
1736 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1737                               unsigned ShuffleKind, SelectionDAG &DAG) {
1738   if (DAG.getDataLayout().isLittleEndian()) {
1739     unsigned indexOffset = CheckEven ? 4 : 0;
1740     if (ShuffleKind == 1) // Unary
1741       return isVMerge(N, indexOffset, 0);
1742     else if (ShuffleKind == 2) // swapped
1743       return isVMerge(N, indexOffset, 16);
1744     else
1745       return false;
1746   }
1747   else {
1748     unsigned indexOffset = CheckEven ? 0 : 4;
1749     if (ShuffleKind == 1) // Unary
1750       return isVMerge(N, indexOffset, 0);
1751     else if (ShuffleKind == 0) // Normal
1752       return isVMerge(N, indexOffset, 16);
1753     else
1754       return false;
1755   }
1756   return false;
1757 }
1758 
1759 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1760 /// amount, otherwise return -1.
1761 /// The ShuffleKind distinguishes between big-endian operations with two
1762 /// different inputs (0), either-endian operations with two identical inputs
1763 /// (1), and little-endian operations with two different inputs (2).  For the
1764 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1765 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1766                              SelectionDAG &DAG) {
1767   if (N->getValueType(0) != MVT::v16i8)
1768     return -1;
1769 
1770   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1771 
1772   // Find the first non-undef value in the shuffle mask.
1773   unsigned i;
1774   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1775     /*search*/;
1776 
1777   if (i == 16) return -1;  // all undef.
1778 
1779   // Otherwise, check to see if the rest of the elements are consecutively
1780   // numbered from this value.
1781   unsigned ShiftAmt = SVOp->getMaskElt(i);
1782   if (ShiftAmt < i) return -1;
1783 
1784   ShiftAmt -= i;
1785   bool isLE = DAG.getDataLayout().isLittleEndian();
1786 
1787   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1788     // Check the rest of the elements to see if they are consecutive.
1789     for (++i; i != 16; ++i)
1790       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1791         return -1;
1792   } else if (ShuffleKind == 1) {
1793     // Check the rest of the elements to see if they are consecutive.
1794     for (++i; i != 16; ++i)
1795       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1796         return -1;
1797   } else
1798     return -1;
1799 
1800   if (isLE)
1801     ShiftAmt = 16 - ShiftAmt;
1802 
1803   return ShiftAmt;
1804 }
1805 
1806 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1807 /// specifies a splat of a single element that is suitable for input to
1808 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1809 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1810   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1811          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1812 
1813   // The consecutive indices need to specify an element, not part of two
1814   // different elements.  So abandon ship early if this isn't the case.
1815   if (N->getMaskElt(0) % EltSize != 0)
1816     return false;
1817 
1818   // This is a splat operation if each element of the permute is the same, and
1819   // if the value doesn't reference the second vector.
1820   unsigned ElementBase = N->getMaskElt(0);
1821 
1822   // FIXME: Handle UNDEF elements too!
1823   if (ElementBase >= 16)
1824     return false;
1825 
1826   // Check that the indices are consecutive, in the case of a multi-byte element
1827   // splatted with a v16i8 mask.
1828   for (unsigned i = 1; i != EltSize; ++i)
1829     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1830       return false;
1831 
1832   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1833     if (N->getMaskElt(i) < 0) continue;
1834     for (unsigned j = 0; j != EltSize; ++j)
1835       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1836         return false;
1837   }
1838   return true;
1839 }
1840 
1841 /// Check that the mask is shuffling N byte elements. Within each N byte
1842 /// element of the mask, the indices could be either in increasing or
1843 /// decreasing order as long as they are consecutive.
1844 /// \param[in] N the shuffle vector SD Node to analyze
1845 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1846 /// Word/DoubleWord/QuadWord).
1847 /// \param[in] StepLen the delta indices number among the N byte element, if
1848 /// the mask is in increasing/decreasing order then it is 1/-1.
1849 /// \return true iff the mask is shuffling N byte elements.
1850 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1851                                    int StepLen) {
1852   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1853          "Unexpected element width.");
1854   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1855 
1856   unsigned NumOfElem = 16 / Width;
1857   unsigned MaskVal[16]; //  Width is never greater than 16
1858   for (unsigned i = 0; i < NumOfElem; ++i) {
1859     MaskVal[0] = N->getMaskElt(i * Width);
1860     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1861       return false;
1862     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1863       return false;
1864     }
1865 
1866     for (unsigned int j = 1; j < Width; ++j) {
1867       MaskVal[j] = N->getMaskElt(i * Width + j);
1868       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1869         return false;
1870       }
1871     }
1872   }
1873 
1874   return true;
1875 }
1876 
1877 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1878                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1879   if (!isNByteElemShuffleMask(N, 4, 1))
1880     return false;
1881 
1882   // Now we look at mask elements 0,4,8,12
1883   unsigned M0 = N->getMaskElt(0) / 4;
1884   unsigned M1 = N->getMaskElt(4) / 4;
1885   unsigned M2 = N->getMaskElt(8) / 4;
1886   unsigned M3 = N->getMaskElt(12) / 4;
1887   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1888   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1889 
1890   // Below, let H and L be arbitrary elements of the shuffle mask
1891   // where H is in the range [4,7] and L is in the range [0,3].
1892   // H, 1, 2, 3 or L, 5, 6, 7
1893   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1894       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1895     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1896     InsertAtByte = IsLE ? 12 : 0;
1897     Swap = M0 < 4;
1898     return true;
1899   }
1900   // 0, H, 2, 3 or 4, L, 6, 7
1901   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1902       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1903     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1904     InsertAtByte = IsLE ? 8 : 4;
1905     Swap = M1 < 4;
1906     return true;
1907   }
1908   // 0, 1, H, 3 or 4, 5, L, 7
1909   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1910       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1911     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1912     InsertAtByte = IsLE ? 4 : 8;
1913     Swap = M2 < 4;
1914     return true;
1915   }
1916   // 0, 1, 2, H or 4, 5, 6, L
1917   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1918       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1919     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1920     InsertAtByte = IsLE ? 0 : 12;
1921     Swap = M3 < 4;
1922     return true;
1923   }
1924 
1925   // If both vector operands for the shuffle are the same vector, the mask will
1926   // contain only elements from the first one and the second one will be undef.
1927   if (N->getOperand(1).isUndef()) {
1928     ShiftElts = 0;
1929     Swap = true;
1930     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1931     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1932       InsertAtByte = IsLE ? 12 : 0;
1933       return true;
1934     }
1935     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1936       InsertAtByte = IsLE ? 8 : 4;
1937       return true;
1938     }
1939     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1940       InsertAtByte = IsLE ? 4 : 8;
1941       return true;
1942     }
1943     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1944       InsertAtByte = IsLE ? 0 : 12;
1945       return true;
1946     }
1947   }
1948 
1949   return false;
1950 }
1951 
1952 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1953                                bool &Swap, bool IsLE) {
1954   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1955   // Ensure each byte index of the word is consecutive.
1956   if (!isNByteElemShuffleMask(N, 4, 1))
1957     return false;
1958 
1959   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1960   unsigned M0 = N->getMaskElt(0) / 4;
1961   unsigned M1 = N->getMaskElt(4) / 4;
1962   unsigned M2 = N->getMaskElt(8) / 4;
1963   unsigned M3 = N->getMaskElt(12) / 4;
1964 
1965   // If both vector operands for the shuffle are the same vector, the mask will
1966   // contain only elements from the first one and the second one will be undef.
1967   if (N->getOperand(1).isUndef()) {
1968     assert(M0 < 4 && "Indexing into an undef vector?");
1969     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1970       return false;
1971 
1972     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1973     Swap = false;
1974     return true;
1975   }
1976 
1977   // Ensure each word index of the ShuffleVector Mask is consecutive.
1978   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1979     return false;
1980 
1981   if (IsLE) {
1982     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1983       // Input vectors don't need to be swapped if the leading element
1984       // of the result is one of the 3 left elements of the second vector
1985       // (or if there is no shift to be done at all).
1986       Swap = false;
1987       ShiftElts = (8 - M0) % 8;
1988     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1989       // Input vectors need to be swapped if the leading element
1990       // of the result is one of the 3 left elements of the first vector
1991       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1992       Swap = true;
1993       ShiftElts = (4 - M0) % 4;
1994     }
1995 
1996     return true;
1997   } else {                                          // BE
1998     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1999       // Input vectors don't need to be swapped if the leading element
2000       // of the result is one of the 4 elements of the first vector.
2001       Swap = false;
2002       ShiftElts = M0;
2003     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2004       // Input vectors need to be swapped if the leading element
2005       // of the result is one of the 4 elements of the right vector.
2006       Swap = true;
2007       ShiftElts = M0 - 4;
2008     }
2009 
2010     return true;
2011   }
2012 }
2013 
2014 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2015   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2016 
2017   if (!isNByteElemShuffleMask(N, Width, -1))
2018     return false;
2019 
2020   for (int i = 0; i < 16; i += Width)
2021     if (N->getMaskElt(i) != i + Width - 1)
2022       return false;
2023 
2024   return true;
2025 }
2026 
2027 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2028   return isXXBRShuffleMaskHelper(N, 2);
2029 }
2030 
2031 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2032   return isXXBRShuffleMaskHelper(N, 4);
2033 }
2034 
2035 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2036   return isXXBRShuffleMaskHelper(N, 8);
2037 }
2038 
2039 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2040   return isXXBRShuffleMaskHelper(N, 16);
2041 }
2042 
2043 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2044 /// if the inputs to the instruction should be swapped and set \p DM to the
2045 /// value for the immediate.
2046 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2047 /// AND element 0 of the result comes from the first input (LE) or second input
2048 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2049 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2050 /// mask.
2051 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2052                                bool &Swap, bool IsLE) {
2053   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2054 
2055   // Ensure each byte index of the double word is consecutive.
2056   if (!isNByteElemShuffleMask(N, 8, 1))
2057     return false;
2058 
2059   unsigned M0 = N->getMaskElt(0) / 8;
2060   unsigned M1 = N->getMaskElt(8) / 8;
2061   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2062 
2063   // If both vector operands for the shuffle are the same vector, the mask will
2064   // contain only elements from the first one and the second one will be undef.
2065   if (N->getOperand(1).isUndef()) {
2066     if ((M0 | M1) < 2) {
2067       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2068       Swap = false;
2069       return true;
2070     } else
2071       return false;
2072   }
2073 
2074   if (IsLE) {
2075     if (M0 > 1 && M1 < 2) {
2076       Swap = false;
2077     } else if (M0 < 2 && M1 > 1) {
2078       M0 = (M0 + 2) % 4;
2079       M1 = (M1 + 2) % 4;
2080       Swap = true;
2081     } else
2082       return false;
2083 
2084     // Note: if control flow comes here that means Swap is already set above
2085     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2086     return true;
2087   } else { // BE
2088     if (M0 < 2 && M1 > 1) {
2089       Swap = false;
2090     } else if (M0 > 1 && M1 < 2) {
2091       M0 = (M0 + 2) % 4;
2092       M1 = (M1 + 2) % 4;
2093       Swap = true;
2094     } else
2095       return false;
2096 
2097     // Note: if control flow comes here that means Swap is already set above
2098     DM = (M0 << 1) + (M1 & 1);
2099     return true;
2100   }
2101 }
2102 
2103 
2104 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2105 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2106 /// elements are counted from the left of the vector register).
2107 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2108                                          SelectionDAG &DAG) {
2109   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2110   assert(isSplatShuffleMask(SVOp, EltSize));
2111   if (DAG.getDataLayout().isLittleEndian())
2112     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2113   else
2114     return SVOp->getMaskElt(0) / EltSize;
2115 }
2116 
2117 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2118 /// by using a vspltis[bhw] instruction of the specified element size, return
2119 /// the constant being splatted.  The ByteSize field indicates the number of
2120 /// bytes of each element [124] -> [bhw].
2121 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2122   SDValue OpVal(nullptr, 0);
2123 
2124   // If ByteSize of the splat is bigger than the element size of the
2125   // build_vector, then we have a case where we are checking for a splat where
2126   // multiple elements of the buildvector are folded together into a single
2127   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2128   unsigned EltSize = 16/N->getNumOperands();
2129   if (EltSize < ByteSize) {
2130     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2131     SDValue UniquedVals[4];
2132     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2133 
2134     // See if all of the elements in the buildvector agree across.
2135     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2136       if (N->getOperand(i).isUndef()) continue;
2137       // If the element isn't a constant, bail fully out.
2138       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2139 
2140       if (!UniquedVals[i&(Multiple-1)].getNode())
2141         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2142       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2143         return SDValue();  // no match.
2144     }
2145 
2146     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2147     // either constant or undef values that are identical for each chunk.  See
2148     // if these chunks can form into a larger vspltis*.
2149 
2150     // Check to see if all of the leading entries are either 0 or -1.  If
2151     // neither, then this won't fit into the immediate field.
2152     bool LeadingZero = true;
2153     bool LeadingOnes = true;
2154     for (unsigned i = 0; i != Multiple-1; ++i) {
2155       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2156 
2157       LeadingZero &= isNullConstant(UniquedVals[i]);
2158       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2159     }
2160     // Finally, check the least significant entry.
2161     if (LeadingZero) {
2162       if (!UniquedVals[Multiple-1].getNode())
2163         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2164       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2165       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2166         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2167     }
2168     if (LeadingOnes) {
2169       if (!UniquedVals[Multiple-1].getNode())
2170         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2171       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2172       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2173         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2174     }
2175 
2176     return SDValue();
2177   }
2178 
2179   // Check to see if this buildvec has a single non-undef value in its elements.
2180   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2181     if (N->getOperand(i).isUndef()) continue;
2182     if (!OpVal.getNode())
2183       OpVal = N->getOperand(i);
2184     else if (OpVal != N->getOperand(i))
2185       return SDValue();
2186   }
2187 
2188   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2189 
2190   unsigned ValSizeInBytes = EltSize;
2191   uint64_t Value = 0;
2192   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2193     Value = CN->getZExtValue();
2194   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2195     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2196     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2197   }
2198 
2199   // If the splat value is larger than the element value, then we can never do
2200   // this splat.  The only case that we could fit the replicated bits into our
2201   // immediate field for would be zero, and we prefer to use vxor for it.
2202   if (ValSizeInBytes < ByteSize) return SDValue();
2203 
2204   // If the element value is larger than the splat value, check if it consists
2205   // of a repeated bit pattern of size ByteSize.
2206   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2207     return SDValue();
2208 
2209   // Properly sign extend the value.
2210   int MaskVal = SignExtend32(Value, ByteSize * 8);
2211 
2212   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2213   if (MaskVal == 0) return SDValue();
2214 
2215   // Finally, if this value fits in a 5 bit sext field, return it
2216   if (SignExtend32<5>(MaskVal) == MaskVal)
2217     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2218   return SDValue();
2219 }
2220 
2221 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2222 /// amount, otherwise return -1.
2223 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2224   EVT VT = N->getValueType(0);
2225   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2226     return -1;
2227 
2228   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2229 
2230   // Find the first non-undef value in the shuffle mask.
2231   unsigned i;
2232   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2233     /*search*/;
2234 
2235   if (i == 4) return -1;  // all undef.
2236 
2237   // Otherwise, check to see if the rest of the elements are consecutively
2238   // numbered from this value.
2239   unsigned ShiftAmt = SVOp->getMaskElt(i);
2240   if (ShiftAmt < i) return -1;
2241   ShiftAmt -= i;
2242 
2243   // Check the rest of the elements to see if they are consecutive.
2244   for (++i; i != 4; ++i)
2245     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2246       return -1;
2247 
2248   return ShiftAmt;
2249 }
2250 
2251 //===----------------------------------------------------------------------===//
2252 //  Addressing Mode Selection
2253 //===----------------------------------------------------------------------===//
2254 
2255 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2256 /// or 64-bit immediate, and if the value can be accurately represented as a
2257 /// sign extension from a 16-bit value.  If so, this returns true and the
2258 /// immediate.
2259 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2260   if (!isa<ConstantSDNode>(N))
2261     return false;
2262 
2263   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2264   if (N->getValueType(0) == MVT::i32)
2265     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2266   else
2267     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2268 }
2269 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2270   return isIntS16Immediate(Op.getNode(), Imm);
2271 }
2272 
2273 
2274 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2275 /// be represented as an indexed [r+r] operation.
2276 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2277                                                SDValue &Index,
2278                                                SelectionDAG &DAG) const {
2279   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2280       UI != E; ++UI) {
2281     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2282       if (Memop->getMemoryVT() == MVT::f64) {
2283           Base = N.getOperand(0);
2284           Index = N.getOperand(1);
2285           return true;
2286       }
2287     }
2288   }
2289   return false;
2290 }
2291 
2292 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2293 /// can be represented as an indexed [r+r] operation.  Returns false if it
2294 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2295 /// non-zero and N can be represented by a base register plus a signed 16-bit
2296 /// displacement, make a more precise judgement by checking (displacement % \p
2297 /// EncodingAlignment).
2298 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2299                                             SDValue &Index, SelectionDAG &DAG,
2300                                             unsigned EncodingAlignment) const {
2301   int16_t imm = 0;
2302   if (N.getOpcode() == ISD::ADD) {
2303     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2304     // SPE load/store can only handle 8-bit offsets.
2305     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2306         return true;
2307     if (isIntS16Immediate(N.getOperand(1), imm) &&
2308         (!EncodingAlignment || !(imm % EncodingAlignment)))
2309       return false; // r+i
2310     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2311       return false;    // r+i
2312 
2313     Base = N.getOperand(0);
2314     Index = N.getOperand(1);
2315     return true;
2316   } else if (N.getOpcode() == ISD::OR) {
2317     if (isIntS16Immediate(N.getOperand(1), imm) &&
2318         (!EncodingAlignment || !(imm % EncodingAlignment)))
2319       return false; // r+i can fold it if we can.
2320 
2321     // If this is an or of disjoint bitfields, we can codegen this as an add
2322     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2323     // disjoint.
2324     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2325 
2326     if (LHSKnown.Zero.getBoolValue()) {
2327       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2328       // If all of the bits are known zero on the LHS or RHS, the add won't
2329       // carry.
2330       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2331         Base = N.getOperand(0);
2332         Index = N.getOperand(1);
2333         return true;
2334       }
2335     }
2336   }
2337 
2338   return false;
2339 }
2340 
2341 // If we happen to be doing an i64 load or store into a stack slot that has
2342 // less than a 4-byte alignment, then the frame-index elimination may need to
2343 // use an indexed load or store instruction (because the offset may not be a
2344 // multiple of 4). The extra register needed to hold the offset comes from the
2345 // register scavenger, and it is possible that the scavenger will need to use
2346 // an emergency spill slot. As a result, we need to make sure that a spill slot
2347 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2348 // stack slot.
2349 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2350   // FIXME: This does not handle the LWA case.
2351   if (VT != MVT::i64)
2352     return;
2353 
2354   // NOTE: We'll exclude negative FIs here, which come from argument
2355   // lowering, because there are no known test cases triggering this problem
2356   // using packed structures (or similar). We can remove this exclusion if
2357   // we find such a test case. The reason why this is so test-case driven is
2358   // because this entire 'fixup' is only to prevent crashes (from the
2359   // register scavenger) on not-really-valid inputs. For example, if we have:
2360   //   %a = alloca i1
2361   //   %b = bitcast i1* %a to i64*
2362   //   store i64* a, i64 b
2363   // then the store should really be marked as 'align 1', but is not. If it
2364   // were marked as 'align 1' then the indexed form would have been
2365   // instruction-selected initially, and the problem this 'fixup' is preventing
2366   // won't happen regardless.
2367   if (FrameIdx < 0)
2368     return;
2369 
2370   MachineFunction &MF = DAG.getMachineFunction();
2371   MachineFrameInfo &MFI = MF.getFrameInfo();
2372 
2373   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2374   if (Align >= 4)
2375     return;
2376 
2377   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2378   FuncInfo->setHasNonRISpills();
2379 }
2380 
2381 /// Returns true if the address N can be represented by a base register plus
2382 /// a signed 16-bit displacement [r+imm], and if it is not better
2383 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2384 /// displacements that are multiples of that value.
2385 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2386                                             SDValue &Base,
2387                                             SelectionDAG &DAG,
2388                                             unsigned EncodingAlignment) const {
2389   // FIXME dl should come from parent load or store, not from address
2390   SDLoc dl(N);
2391   // If this can be more profitably realized as r+r, fail.
2392   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2393     return false;
2394 
2395   if (N.getOpcode() == ISD::ADD) {
2396     int16_t imm = 0;
2397     if (isIntS16Immediate(N.getOperand(1), imm) &&
2398         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2399       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2400       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2401         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2402         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2403       } else {
2404         Base = N.getOperand(0);
2405       }
2406       return true; // [r+i]
2407     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2408       // Match LOAD (ADD (X, Lo(G))).
2409       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2410              && "Cannot handle constant offsets yet!");
2411       Disp = N.getOperand(1).getOperand(0);  // The global address.
2412       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2413              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2414              Disp.getOpcode() == ISD::TargetConstantPool ||
2415              Disp.getOpcode() == ISD::TargetJumpTable);
2416       Base = N.getOperand(0);
2417       return true;  // [&g+r]
2418     }
2419   } else if (N.getOpcode() == ISD::OR) {
2420     int16_t imm = 0;
2421     if (isIntS16Immediate(N.getOperand(1), imm) &&
2422         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2423       // If this is an or of disjoint bitfields, we can codegen this as an add
2424       // (for better address arithmetic) if the LHS and RHS of the OR are
2425       // provably disjoint.
2426       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2427 
2428       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2429         // If all of the bits are known zero on the LHS or RHS, the add won't
2430         // carry.
2431         if (FrameIndexSDNode *FI =
2432               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2433           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2434           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2435         } else {
2436           Base = N.getOperand(0);
2437         }
2438         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2439         return true;
2440       }
2441     }
2442   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2443     // Loading from a constant address.
2444 
2445     // If this address fits entirely in a 16-bit sext immediate field, codegen
2446     // this as "d, 0"
2447     int16_t Imm;
2448     if (isIntS16Immediate(CN, Imm) &&
2449         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2450       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2451       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2452                              CN->getValueType(0));
2453       return true;
2454     }
2455 
2456     // Handle 32-bit sext immediates with LIS + addr mode.
2457     if ((CN->getValueType(0) == MVT::i32 ||
2458          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2459         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2460       int Addr = (int)CN->getZExtValue();
2461 
2462       // Otherwise, break this down into an LIS + disp.
2463       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2464 
2465       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2466                                    MVT::i32);
2467       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2468       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2469       return true;
2470     }
2471   }
2472 
2473   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2474   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2475     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2476     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2477   } else
2478     Base = N;
2479   return true;      // [r+0]
2480 }
2481 
2482 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2483 /// represented as an indexed [r+r] operation.
2484 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2485                                                 SDValue &Index,
2486                                                 SelectionDAG &DAG) const {
2487   // Check to see if we can easily represent this as an [r+r] address.  This
2488   // will fail if it thinks that the address is more profitably represented as
2489   // reg+imm, e.g. where imm = 0.
2490   if (SelectAddressRegReg(N, Base, Index, DAG))
2491     return true;
2492 
2493   // If the address is the result of an add, we will utilize the fact that the
2494   // address calculation includes an implicit add.  However, we can reduce
2495   // register pressure if we do not materialize a constant just for use as the
2496   // index register.  We only get rid of the add if it is not an add of a
2497   // value and a 16-bit signed constant and both have a single use.
2498   int16_t imm = 0;
2499   if (N.getOpcode() == ISD::ADD &&
2500       (!isIntS16Immediate(N.getOperand(1), imm) ||
2501        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2502     Base = N.getOperand(0);
2503     Index = N.getOperand(1);
2504     return true;
2505   }
2506 
2507   // Otherwise, do it the hard way, using R0 as the base register.
2508   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2509                          N.getValueType());
2510   Index = N;
2511   return true;
2512 }
2513 
2514 /// Returns true if we should use a direct load into vector instruction
2515 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2516 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2517 
2518   // If there are any other uses other than scalar to vector, then we should
2519   // keep it as a scalar load -> direct move pattern to prevent multiple
2520   // loads.
2521   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2522   if (!LD)
2523     return false;
2524 
2525   EVT MemVT = LD->getMemoryVT();
2526   if (!MemVT.isSimple())
2527     return false;
2528   switch(MemVT.getSimpleVT().SimpleTy) {
2529   case MVT::i64:
2530     break;
2531   case MVT::i32:
2532     if (!ST.hasP8Vector())
2533       return false;
2534     break;
2535   case MVT::i16:
2536   case MVT::i8:
2537     if (!ST.hasP9Vector())
2538       return false;
2539     break;
2540   default:
2541     return false;
2542   }
2543 
2544   SDValue LoadedVal(N, 0);
2545   if (!LoadedVal.hasOneUse())
2546     return false;
2547 
2548   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2549        UI != UE; ++UI)
2550     if (UI.getUse().get().getResNo() == 0 &&
2551         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2552       return false;
2553 
2554   return true;
2555 }
2556 
2557 /// getPreIndexedAddressParts - returns true by value, base pointer and
2558 /// offset pointer and addressing mode by reference if the node's address
2559 /// can be legally represented as pre-indexed load / store address.
2560 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2561                                                   SDValue &Offset,
2562                                                   ISD::MemIndexedMode &AM,
2563                                                   SelectionDAG &DAG) const {
2564   if (DisablePPCPreinc) return false;
2565 
2566   bool isLoad = true;
2567   SDValue Ptr;
2568   EVT VT;
2569   unsigned Alignment;
2570   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2571     Ptr = LD->getBasePtr();
2572     VT = LD->getMemoryVT();
2573     Alignment = LD->getAlignment();
2574   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2575     Ptr = ST->getBasePtr();
2576     VT  = ST->getMemoryVT();
2577     Alignment = ST->getAlignment();
2578     isLoad = false;
2579   } else
2580     return false;
2581 
2582   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2583   // instructions because we can fold these into a more efficient instruction
2584   // instead, (such as LXSD).
2585   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2586     return false;
2587   }
2588 
2589   // PowerPC doesn't have preinc load/store instructions for vectors (except
2590   // for QPX, which does have preinc r+r forms).
2591   if (VT.isVector()) {
2592     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2593       return false;
2594     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2595       AM = ISD::PRE_INC;
2596       return true;
2597     }
2598   }
2599 
2600   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2601     // Common code will reject creating a pre-inc form if the base pointer
2602     // is a frame index, or if N is a store and the base pointer is either
2603     // the same as or a predecessor of the value being stored.  Check for
2604     // those situations here, and try with swapped Base/Offset instead.
2605     bool Swap = false;
2606 
2607     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2608       Swap = true;
2609     else if (!isLoad) {
2610       SDValue Val = cast<StoreSDNode>(N)->getValue();
2611       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2612         Swap = true;
2613     }
2614 
2615     if (Swap)
2616       std::swap(Base, Offset);
2617 
2618     AM = ISD::PRE_INC;
2619     return true;
2620   }
2621 
2622   // LDU/STU can only handle immediates that are a multiple of 4.
2623   if (VT != MVT::i64) {
2624     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2625       return false;
2626   } else {
2627     // LDU/STU need an address with at least 4-byte alignment.
2628     if (Alignment < 4)
2629       return false;
2630 
2631     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2632       return false;
2633   }
2634 
2635   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2636     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2637     // sext i32 to i64 when addr mode is r+i.
2638     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2639         LD->getExtensionType() == ISD::SEXTLOAD &&
2640         isa<ConstantSDNode>(Offset))
2641       return false;
2642   }
2643 
2644   AM = ISD::PRE_INC;
2645   return true;
2646 }
2647 
2648 //===----------------------------------------------------------------------===//
2649 //  LowerOperation implementation
2650 //===----------------------------------------------------------------------===//
2651 
2652 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2653 /// and LoOpFlags to the target MO flags.
2654 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2655                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2656                                const GlobalValue *GV = nullptr) {
2657   HiOpFlags = PPCII::MO_HA;
2658   LoOpFlags = PPCII::MO_LO;
2659 
2660   // Don't use the pic base if not in PIC relocation model.
2661   if (IsPIC) {
2662     HiOpFlags |= PPCII::MO_PIC_FLAG;
2663     LoOpFlags |= PPCII::MO_PIC_FLAG;
2664   }
2665 
2666   // If this is a reference to a global value that requires a non-lazy-ptr, make
2667   // sure that instruction lowering adds it.
2668   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2669     HiOpFlags |= PPCII::MO_NLP_FLAG;
2670     LoOpFlags |= PPCII::MO_NLP_FLAG;
2671 
2672     if (GV->hasHiddenVisibility()) {
2673       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2674       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2675     }
2676   }
2677 }
2678 
2679 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2680                              SelectionDAG &DAG) {
2681   SDLoc DL(HiPart);
2682   EVT PtrVT = HiPart.getValueType();
2683   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2684 
2685   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2686   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2687 
2688   // With PIC, the first instruction is actually "GR+hi(&G)".
2689   if (isPIC)
2690     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2691                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2692 
2693   // Generate non-pic code that has direct accesses to the constant pool.
2694   // The address of the global is just (hi(&g)+lo(&g)).
2695   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2696 }
2697 
2698 static void setUsesTOCBasePtr(MachineFunction &MF) {
2699   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2700   FuncInfo->setUsesTOCBasePtr();
2701 }
2702 
2703 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2704   setUsesTOCBasePtr(DAG.getMachineFunction());
2705 }
2706 
2707 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2708                                        SDValue GA) const {
2709   const bool Is64Bit = Subtarget.isPPC64();
2710   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2711   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2712                         : Subtarget.isAIXABI()
2713                               ? DAG.getRegister(PPC::R2, VT)
2714                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2715   SDValue Ops[] = { GA, Reg };
2716   return DAG.getMemIntrinsicNode(
2717       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2718       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2719       MachineMemOperand::MOLoad);
2720 }
2721 
2722 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2723                                              SelectionDAG &DAG) const {
2724   EVT PtrVT = Op.getValueType();
2725   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2726   const Constant *C = CP->getConstVal();
2727 
2728   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2729   // The actual address of the GlobalValue is stored in the TOC.
2730   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2731     setUsesTOCBasePtr(DAG);
2732     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2733     return getTOCEntry(DAG, SDLoc(CP), GA);
2734   }
2735 
2736   unsigned MOHiFlag, MOLoFlag;
2737   bool IsPIC = isPositionIndependent();
2738   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2739 
2740   if (IsPIC && Subtarget.isSVR4ABI()) {
2741     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2742                                            PPCII::MO_PIC_FLAG);
2743     return getTOCEntry(DAG, SDLoc(CP), GA);
2744   }
2745 
2746   SDValue CPIHi =
2747     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2748   SDValue CPILo =
2749     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2750   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2751 }
2752 
2753 // For 64-bit PowerPC, prefer the more compact relative encodings.
2754 // This trades 32 bits per jump table entry for one or two instructions
2755 // on the jump site.
2756 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2757   if (isJumpTableRelative())
2758     return MachineJumpTableInfo::EK_LabelDifference32;
2759 
2760   return TargetLowering::getJumpTableEncoding();
2761 }
2762 
2763 bool PPCTargetLowering::isJumpTableRelative() const {
2764   if (UseAbsoluteJumpTables)
2765     return false;
2766   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2767     return true;
2768   return TargetLowering::isJumpTableRelative();
2769 }
2770 
2771 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2772                                                     SelectionDAG &DAG) const {
2773   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2774     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2775 
2776   switch (getTargetMachine().getCodeModel()) {
2777   case CodeModel::Small:
2778   case CodeModel::Medium:
2779     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2780   default:
2781     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2782                        getPointerTy(DAG.getDataLayout()));
2783   }
2784 }
2785 
2786 const MCExpr *
2787 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2788                                                 unsigned JTI,
2789                                                 MCContext &Ctx) const {
2790   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2791     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2792 
2793   switch (getTargetMachine().getCodeModel()) {
2794   case CodeModel::Small:
2795   case CodeModel::Medium:
2796     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2797   default:
2798     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2799   }
2800 }
2801 
2802 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2803   EVT PtrVT = Op.getValueType();
2804   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2805 
2806   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2807   // The actual address of the GlobalValue is stored in the TOC.
2808   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2809     setUsesTOCBasePtr(DAG);
2810     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2811     return getTOCEntry(DAG, SDLoc(JT), GA);
2812   }
2813 
2814   unsigned MOHiFlag, MOLoFlag;
2815   bool IsPIC = isPositionIndependent();
2816   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2817 
2818   if (IsPIC && Subtarget.isSVR4ABI()) {
2819     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2820                                         PPCII::MO_PIC_FLAG);
2821     return getTOCEntry(DAG, SDLoc(GA), GA);
2822   }
2823 
2824   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2825   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2826   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2827 }
2828 
2829 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2830                                              SelectionDAG &DAG) const {
2831   EVT PtrVT = Op.getValueType();
2832   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2833   const BlockAddress *BA = BASDN->getBlockAddress();
2834 
2835   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2836   // The actual BlockAddress is stored in the TOC.
2837   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2838     setUsesTOCBasePtr(DAG);
2839     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2840     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2841   }
2842 
2843   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2844   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2845     return getTOCEntry(
2846         DAG, SDLoc(BASDN),
2847         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2848 
2849   unsigned MOHiFlag, MOLoFlag;
2850   bool IsPIC = isPositionIndependent();
2851   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2852   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2853   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2854   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2855 }
2856 
2857 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2858                                               SelectionDAG &DAG) const {
2859   // FIXME: TLS addresses currently use medium model code sequences,
2860   // which is the most useful form.  Eventually support for small and
2861   // large models could be added if users need it, at the cost of
2862   // additional complexity.
2863   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2864   if (DAG.getTarget().useEmulatedTLS())
2865     return LowerToTLSEmulatedModel(GA, DAG);
2866 
2867   SDLoc dl(GA);
2868   const GlobalValue *GV = GA->getGlobal();
2869   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2870   bool is64bit = Subtarget.isPPC64();
2871   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2872   PICLevel::Level picLevel = M->getPICLevel();
2873 
2874   const TargetMachine &TM = getTargetMachine();
2875   TLSModel::Model Model = TM.getTLSModel(GV);
2876 
2877   if (Model == TLSModel::LocalExec) {
2878     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2879                                                PPCII::MO_TPREL_HA);
2880     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2881                                                PPCII::MO_TPREL_LO);
2882     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2883                              : DAG.getRegister(PPC::R2, MVT::i32);
2884 
2885     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2886     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2887   }
2888 
2889   if (Model == TLSModel::InitialExec) {
2890     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2891     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2892                                                 PPCII::MO_TLS);
2893     SDValue GOTPtr;
2894     if (is64bit) {
2895       setUsesTOCBasePtr(DAG);
2896       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2897       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2898                            PtrVT, GOTReg, TGA);
2899     } else {
2900       if (!TM.isPositionIndependent())
2901         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2902       else if (picLevel == PICLevel::SmallPIC)
2903         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2904       else
2905         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2906     }
2907     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2908                                    PtrVT, TGA, GOTPtr);
2909     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2910   }
2911 
2912   if (Model == TLSModel::GeneralDynamic) {
2913     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2914     SDValue GOTPtr;
2915     if (is64bit) {
2916       setUsesTOCBasePtr(DAG);
2917       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2918       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2919                                    GOTReg, TGA);
2920     } else {
2921       if (picLevel == PICLevel::SmallPIC)
2922         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2923       else
2924         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2925     }
2926     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2927                        GOTPtr, TGA, TGA);
2928   }
2929 
2930   if (Model == TLSModel::LocalDynamic) {
2931     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2932     SDValue GOTPtr;
2933     if (is64bit) {
2934       setUsesTOCBasePtr(DAG);
2935       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2936       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2937                            GOTReg, TGA);
2938     } else {
2939       if (picLevel == PICLevel::SmallPIC)
2940         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2941       else
2942         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2943     }
2944     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2945                                   PtrVT, GOTPtr, TGA, TGA);
2946     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2947                                       PtrVT, TLSAddr, TGA);
2948     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2949   }
2950 
2951   llvm_unreachable("Unknown TLS model!");
2952 }
2953 
2954 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2955                                               SelectionDAG &DAG) const {
2956   EVT PtrVT = Op.getValueType();
2957   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2958   SDLoc DL(GSDN);
2959   const GlobalValue *GV = GSDN->getGlobal();
2960 
2961   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
2962   // The actual address of the GlobalValue is stored in the TOC.
2963   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2964     setUsesTOCBasePtr(DAG);
2965     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2966     return getTOCEntry(DAG, DL, GA);
2967   }
2968 
2969   unsigned MOHiFlag, MOLoFlag;
2970   bool IsPIC = isPositionIndependent();
2971   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2972 
2973   if (IsPIC && Subtarget.isSVR4ABI()) {
2974     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2975                                             GSDN->getOffset(),
2976                                             PPCII::MO_PIC_FLAG);
2977     return getTOCEntry(DAG, DL, GA);
2978   }
2979 
2980   SDValue GAHi =
2981     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2982   SDValue GALo =
2983     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2984 
2985   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2986 
2987   // If the global reference is actually to a non-lazy-pointer, we have to do an
2988   // extra load to get the address of the global.
2989   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2990     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2991   return Ptr;
2992 }
2993 
2994 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2995   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2996   SDLoc dl(Op);
2997 
2998   if (Op.getValueType() == MVT::v2i64) {
2999     // When the operands themselves are v2i64 values, we need to do something
3000     // special because VSX has no underlying comparison operations for these.
3001     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3002       // Equality can be handled by casting to the legal type for Altivec
3003       // comparisons, everything else needs to be expanded.
3004       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3005         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3006                  DAG.getSetCC(dl, MVT::v4i32,
3007                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3008                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3009                    CC));
3010       }
3011 
3012       return SDValue();
3013     }
3014 
3015     // We handle most of these in the usual way.
3016     return Op;
3017   }
3018 
3019   // If we're comparing for equality to zero, expose the fact that this is
3020   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3021   // fold the new nodes.
3022   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3023     return V;
3024 
3025   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3026     // Leave comparisons against 0 and -1 alone for now, since they're usually
3027     // optimized.  FIXME: revisit this when we can custom lower all setcc
3028     // optimizations.
3029     if (C->isAllOnesValue() || C->isNullValue())
3030       return SDValue();
3031   }
3032 
3033   // If we have an integer seteq/setne, turn it into a compare against zero
3034   // by xor'ing the rhs with the lhs, which is faster than setting a
3035   // condition register, reading it back out, and masking the correct bit.  The
3036   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3037   // the result to other bit-twiddling opportunities.
3038   EVT LHSVT = Op.getOperand(0).getValueType();
3039   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3040     EVT VT = Op.getValueType();
3041     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3042                                 Op.getOperand(1));
3043     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3044   }
3045   return SDValue();
3046 }
3047 
3048 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3049   SDNode *Node = Op.getNode();
3050   EVT VT = Node->getValueType(0);
3051   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3052   SDValue InChain = Node->getOperand(0);
3053   SDValue VAListPtr = Node->getOperand(1);
3054   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3055   SDLoc dl(Node);
3056 
3057   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3058 
3059   // gpr_index
3060   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3061                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3062   InChain = GprIndex.getValue(1);
3063 
3064   if (VT == MVT::i64) {
3065     // Check if GprIndex is even
3066     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3067                                  DAG.getConstant(1, dl, MVT::i32));
3068     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3069                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3070     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3071                                           DAG.getConstant(1, dl, MVT::i32));
3072     // Align GprIndex to be even if it isn't
3073     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3074                            GprIndex);
3075   }
3076 
3077   // fpr index is 1 byte after gpr
3078   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3079                                DAG.getConstant(1, dl, MVT::i32));
3080 
3081   // fpr
3082   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3083                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3084   InChain = FprIndex.getValue(1);
3085 
3086   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3087                                        DAG.getConstant(8, dl, MVT::i32));
3088 
3089   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3090                                         DAG.getConstant(4, dl, MVT::i32));
3091 
3092   // areas
3093   SDValue OverflowArea =
3094       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3095   InChain = OverflowArea.getValue(1);
3096 
3097   SDValue RegSaveArea =
3098       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3099   InChain = RegSaveArea.getValue(1);
3100 
3101   // select overflow_area if index > 8
3102   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3103                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3104 
3105   // adjustment constant gpr_index * 4/8
3106   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3107                                     VT.isInteger() ? GprIndex : FprIndex,
3108                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3109                                                     MVT::i32));
3110 
3111   // OurReg = RegSaveArea + RegConstant
3112   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3113                                RegConstant);
3114 
3115   // Floating types are 32 bytes into RegSaveArea
3116   if (VT.isFloatingPoint())
3117     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3118                          DAG.getConstant(32, dl, MVT::i32));
3119 
3120   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3121   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3122                                    VT.isInteger() ? GprIndex : FprIndex,
3123                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3124                                                    MVT::i32));
3125 
3126   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3127                               VT.isInteger() ? VAListPtr : FprPtr,
3128                               MachinePointerInfo(SV), MVT::i8);
3129 
3130   // determine if we should load from reg_save_area or overflow_area
3131   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3132 
3133   // increase overflow_area by 4/8 if gpr/fpr > 8
3134   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3135                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3136                                           dl, MVT::i32));
3137 
3138   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3139                              OverflowAreaPlusN);
3140 
3141   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3142                               MachinePointerInfo(), MVT::i32);
3143 
3144   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3145 }
3146 
3147 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3148   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3149 
3150   // We have to copy the entire va_list struct:
3151   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3152   return DAG.getMemcpy(Op.getOperand(0), Op,
3153                        Op.getOperand(1), Op.getOperand(2),
3154                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3155                        false, MachinePointerInfo(), MachinePointerInfo());
3156 }
3157 
3158 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3159                                                   SelectionDAG &DAG) const {
3160   if (Subtarget.isAIXABI())
3161     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3162 
3163   return Op.getOperand(0);
3164 }
3165 
3166 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3167                                                 SelectionDAG &DAG) const {
3168   if (Subtarget.isAIXABI())
3169     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3170 
3171   SDValue Chain = Op.getOperand(0);
3172   SDValue Trmp = Op.getOperand(1); // trampoline
3173   SDValue FPtr = Op.getOperand(2); // nested function
3174   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3175   SDLoc dl(Op);
3176 
3177   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3178   bool isPPC64 = (PtrVT == MVT::i64);
3179   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3180 
3181   TargetLowering::ArgListTy Args;
3182   TargetLowering::ArgListEntry Entry;
3183 
3184   Entry.Ty = IntPtrTy;
3185   Entry.Node = Trmp; Args.push_back(Entry);
3186 
3187   // TrampSize == (isPPC64 ? 48 : 40);
3188   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3189                                isPPC64 ? MVT::i64 : MVT::i32);
3190   Args.push_back(Entry);
3191 
3192   Entry.Node = FPtr; Args.push_back(Entry);
3193   Entry.Node = Nest; Args.push_back(Entry);
3194 
3195   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3196   TargetLowering::CallLoweringInfo CLI(DAG);
3197   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3198       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3199       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3200 
3201   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3202   return CallResult.second;
3203 }
3204 
3205 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3206   MachineFunction &MF = DAG.getMachineFunction();
3207   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3208   EVT PtrVT = getPointerTy(MF.getDataLayout());
3209 
3210   SDLoc dl(Op);
3211 
3212   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3213     // vastart just stores the address of the VarArgsFrameIndex slot into the
3214     // memory location argument.
3215     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3216     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3217     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3218                         MachinePointerInfo(SV));
3219   }
3220 
3221   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3222   // We suppose the given va_list is already allocated.
3223   //
3224   // typedef struct {
3225   //  char gpr;     /* index into the array of 8 GPRs
3226   //                 * stored in the register save area
3227   //                 * gpr=0 corresponds to r3,
3228   //                 * gpr=1 to r4, etc.
3229   //                 */
3230   //  char fpr;     /* index into the array of 8 FPRs
3231   //                 * stored in the register save area
3232   //                 * fpr=0 corresponds to f1,
3233   //                 * fpr=1 to f2, etc.
3234   //                 */
3235   //  char *overflow_arg_area;
3236   //                /* location on stack that holds
3237   //                 * the next overflow argument
3238   //                 */
3239   //  char *reg_save_area;
3240   //               /* where r3:r10 and f1:f8 (if saved)
3241   //                * are stored
3242   //                */
3243   // } va_list[1];
3244 
3245   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3246   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3247   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3248                                             PtrVT);
3249   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3250                                  PtrVT);
3251 
3252   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3253   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3254 
3255   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3256   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3257 
3258   uint64_t FPROffset = 1;
3259   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3260 
3261   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3262 
3263   // Store first byte : number of int regs
3264   SDValue firstStore =
3265       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3266                         MachinePointerInfo(SV), MVT::i8);
3267   uint64_t nextOffset = FPROffset;
3268   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3269                                   ConstFPROffset);
3270 
3271   // Store second byte : number of float regs
3272   SDValue secondStore =
3273       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3274                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3275   nextOffset += StackOffset;
3276   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3277 
3278   // Store second word : arguments given on stack
3279   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3280                                     MachinePointerInfo(SV, nextOffset));
3281   nextOffset += FrameOffset;
3282   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3283 
3284   // Store third word : arguments given in registers
3285   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3286                       MachinePointerInfo(SV, nextOffset));
3287 }
3288 
3289 /// FPR - The set of FP registers that should be allocated for arguments
3290 /// on Darwin and AIX.
3291 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3292                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3293                                 PPC::F11, PPC::F12, PPC::F13};
3294 
3295 /// QFPR - The set of QPX registers that should be allocated for arguments.
3296 static const MCPhysReg QFPR[] = {
3297     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3298     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3299 
3300 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3301 /// the stack.
3302 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3303                                        unsigned PtrByteSize) {
3304   unsigned ArgSize = ArgVT.getStoreSize();
3305   if (Flags.isByVal())
3306     ArgSize = Flags.getByValSize();
3307 
3308   // Round up to multiples of the pointer size, except for array members,
3309   // which are always packed.
3310   if (!Flags.isInConsecutiveRegs())
3311     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3312 
3313   return ArgSize;
3314 }
3315 
3316 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3317 /// on the stack.
3318 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3319                                             ISD::ArgFlagsTy Flags,
3320                                             unsigned PtrByteSize) {
3321   unsigned Align = PtrByteSize;
3322 
3323   // Altivec parameters are padded to a 16 byte boundary.
3324   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3325       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3326       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3327       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3328     Align = 16;
3329   // QPX vector types stored in double-precision are padded to a 32 byte
3330   // boundary.
3331   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3332     Align = 32;
3333 
3334   // ByVal parameters are aligned as requested.
3335   if (Flags.isByVal()) {
3336     unsigned BVAlign = Flags.getByValAlign();
3337     if (BVAlign > PtrByteSize) {
3338       if (BVAlign % PtrByteSize != 0)
3339           llvm_unreachable(
3340             "ByVal alignment is not a multiple of the pointer size");
3341 
3342       Align = BVAlign;
3343     }
3344   }
3345 
3346   // Array members are always packed to their original alignment.
3347   if (Flags.isInConsecutiveRegs()) {
3348     // If the array member was split into multiple registers, the first
3349     // needs to be aligned to the size of the full type.  (Except for
3350     // ppcf128, which is only aligned as its f64 components.)
3351     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3352       Align = OrigVT.getStoreSize();
3353     else
3354       Align = ArgVT.getStoreSize();
3355   }
3356 
3357   return Align;
3358 }
3359 
3360 /// CalculateStackSlotUsed - Return whether this argument will use its
3361 /// stack slot (instead of being passed in registers).  ArgOffset,
3362 /// AvailableFPRs, and AvailableVRs must hold the current argument
3363 /// position, and will be updated to account for this argument.
3364 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3365                                    ISD::ArgFlagsTy Flags,
3366                                    unsigned PtrByteSize,
3367                                    unsigned LinkageSize,
3368                                    unsigned ParamAreaSize,
3369                                    unsigned &ArgOffset,
3370                                    unsigned &AvailableFPRs,
3371                                    unsigned &AvailableVRs, bool HasQPX) {
3372   bool UseMemory = false;
3373 
3374   // Respect alignment of argument on the stack.
3375   unsigned Align =
3376     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3377   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3378   // If there's no space left in the argument save area, we must
3379   // use memory (this check also catches zero-sized arguments).
3380   if (ArgOffset >= LinkageSize + ParamAreaSize)
3381     UseMemory = true;
3382 
3383   // Allocate argument on the stack.
3384   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3385   if (Flags.isInConsecutiveRegsLast())
3386     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3387   // If we overran the argument save area, we must use memory
3388   // (this check catches arguments passed partially in memory)
3389   if (ArgOffset > LinkageSize + ParamAreaSize)
3390     UseMemory = true;
3391 
3392   // However, if the argument is actually passed in an FPR or a VR,
3393   // we don't use memory after all.
3394   if (!Flags.isByVal()) {
3395     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3396         // QPX registers overlap with the scalar FP registers.
3397         (HasQPX && (ArgVT == MVT::v4f32 ||
3398                     ArgVT == MVT::v4f64 ||
3399                     ArgVT == MVT::v4i1)))
3400       if (AvailableFPRs > 0) {
3401         --AvailableFPRs;
3402         return false;
3403       }
3404     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3405         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3406         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3407         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3408       if (AvailableVRs > 0) {
3409         --AvailableVRs;
3410         return false;
3411       }
3412   }
3413 
3414   return UseMemory;
3415 }
3416 
3417 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3418 /// ensure minimum alignment required for target.
3419 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3420                                      unsigned NumBytes) {
3421   unsigned TargetAlign = Lowering->getStackAlignment();
3422   unsigned AlignMask = TargetAlign - 1;
3423   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3424   return NumBytes;
3425 }
3426 
3427 SDValue PPCTargetLowering::LowerFormalArguments(
3428     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3429     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3430     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3431   if (Subtarget.isAIXABI())
3432     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3433                                     InVals);
3434   if (Subtarget.is64BitELFABI())
3435     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3436                                        InVals);
3437   if (Subtarget.is32BitELFABI())
3438     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3439                                        InVals);
3440 
3441   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3442                                      InVals);
3443 }
3444 
3445 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3446     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3447     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3448     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3449 
3450   // 32-bit SVR4 ABI Stack Frame Layout:
3451   //              +-----------------------------------+
3452   //        +-->  |            Back chain             |
3453   //        |     +-----------------------------------+
3454   //        |     | Floating-point register save area |
3455   //        |     +-----------------------------------+
3456   //        |     |    General register save area     |
3457   //        |     +-----------------------------------+
3458   //        |     |          CR save word             |
3459   //        |     +-----------------------------------+
3460   //        |     |         VRSAVE save word          |
3461   //        |     +-----------------------------------+
3462   //        |     |         Alignment padding         |
3463   //        |     +-----------------------------------+
3464   //        |     |     Vector register save area     |
3465   //        |     +-----------------------------------+
3466   //        |     |       Local variable space        |
3467   //        |     +-----------------------------------+
3468   //        |     |        Parameter list area        |
3469   //        |     +-----------------------------------+
3470   //        |     |           LR save word            |
3471   //        |     +-----------------------------------+
3472   // SP-->  +---  |            Back chain             |
3473   //              +-----------------------------------+
3474   //
3475   // Specifications:
3476   //   System V Application Binary Interface PowerPC Processor Supplement
3477   //   AltiVec Technology Programming Interface Manual
3478 
3479   MachineFunction &MF = DAG.getMachineFunction();
3480   MachineFrameInfo &MFI = MF.getFrameInfo();
3481   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3482 
3483   EVT PtrVT = getPointerTy(MF.getDataLayout());
3484   // Potential tail calls could cause overwriting of argument stack slots.
3485   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3486                        (CallConv == CallingConv::Fast));
3487   unsigned PtrByteSize = 4;
3488 
3489   // Assign locations to all of the incoming arguments.
3490   SmallVector<CCValAssign, 16> ArgLocs;
3491   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3492                  *DAG.getContext());
3493 
3494   // Reserve space for the linkage area on the stack.
3495   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3496   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3497   if (useSoftFloat())
3498     CCInfo.PreAnalyzeFormalArguments(Ins);
3499 
3500   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3501   CCInfo.clearWasPPCF128();
3502 
3503   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3504     CCValAssign &VA = ArgLocs[i];
3505 
3506     // Arguments stored in registers.
3507     if (VA.isRegLoc()) {
3508       const TargetRegisterClass *RC;
3509       EVT ValVT = VA.getValVT();
3510 
3511       switch (ValVT.getSimpleVT().SimpleTy) {
3512         default:
3513           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3514         case MVT::i1:
3515         case MVT::i32:
3516           RC = &PPC::GPRCRegClass;
3517           break;
3518         case MVT::f32:
3519           if (Subtarget.hasP8Vector())
3520             RC = &PPC::VSSRCRegClass;
3521           else if (Subtarget.hasSPE())
3522             RC = &PPC::GPRCRegClass;
3523           else
3524             RC = &PPC::F4RCRegClass;
3525           break;
3526         case MVT::f64:
3527           if (Subtarget.hasVSX())
3528             RC = &PPC::VSFRCRegClass;
3529           else if (Subtarget.hasSPE())
3530             // SPE passes doubles in GPR pairs.
3531             RC = &PPC::GPRCRegClass;
3532           else
3533             RC = &PPC::F8RCRegClass;
3534           break;
3535         case MVT::v16i8:
3536         case MVT::v8i16:
3537         case MVT::v4i32:
3538           RC = &PPC::VRRCRegClass;
3539           break;
3540         case MVT::v4f32:
3541           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3542           break;
3543         case MVT::v2f64:
3544         case MVT::v2i64:
3545           RC = &PPC::VRRCRegClass;
3546           break;
3547         case MVT::v4f64:
3548           RC = &PPC::QFRCRegClass;
3549           break;
3550         case MVT::v4i1:
3551           RC = &PPC::QBRCRegClass;
3552           break;
3553       }
3554 
3555       SDValue ArgValue;
3556       // Transform the arguments stored in physical registers into
3557       // virtual ones.
3558       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3559         assert(i + 1 < e && "No second half of double precision argument");
3560         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3561         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3562         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3563         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3564         if (!Subtarget.isLittleEndian())
3565           std::swap (ArgValueLo, ArgValueHi);
3566         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3567                                ArgValueHi);
3568       } else {
3569         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3570         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3571                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3572         if (ValVT == MVT::i1)
3573           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3574       }
3575 
3576       InVals.push_back(ArgValue);
3577     } else {
3578       // Argument stored in memory.
3579       assert(VA.isMemLoc());
3580 
3581       // Get the extended size of the argument type in stack
3582       unsigned ArgSize = VA.getLocVT().getStoreSize();
3583       // Get the actual size of the argument type
3584       unsigned ObjSize = VA.getValVT().getStoreSize();
3585       unsigned ArgOffset = VA.getLocMemOffset();
3586       // Stack objects in PPC32 are right justified.
3587       ArgOffset += ArgSize - ObjSize;
3588       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3589 
3590       // Create load nodes to retrieve arguments from the stack.
3591       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3592       InVals.push_back(
3593           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3594     }
3595   }
3596 
3597   // Assign locations to all of the incoming aggregate by value arguments.
3598   // Aggregates passed by value are stored in the local variable space of the
3599   // caller's stack frame, right above the parameter list area.
3600   SmallVector<CCValAssign, 16> ByValArgLocs;
3601   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3602                       ByValArgLocs, *DAG.getContext());
3603 
3604   // Reserve stack space for the allocations in CCInfo.
3605   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3606 
3607   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3608 
3609   // Area that is at least reserved in the caller of this function.
3610   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3611   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3612 
3613   // Set the size that is at least reserved in caller of this function.  Tail
3614   // call optimized function's reserved stack space needs to be aligned so that
3615   // taking the difference between two stack areas will result in an aligned
3616   // stack.
3617   MinReservedArea =
3618       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3619   FuncInfo->setMinReservedArea(MinReservedArea);
3620 
3621   SmallVector<SDValue, 8> MemOps;
3622 
3623   // If the function takes variable number of arguments, make a frame index for
3624   // the start of the first vararg value... for expansion of llvm.va_start.
3625   if (isVarArg) {
3626     static const MCPhysReg GPArgRegs[] = {
3627       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3628       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3629     };
3630     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3631 
3632     static const MCPhysReg FPArgRegs[] = {
3633       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3634       PPC::F8
3635     };
3636     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3637 
3638     if (useSoftFloat() || hasSPE())
3639        NumFPArgRegs = 0;
3640 
3641     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3642     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3643 
3644     // Make room for NumGPArgRegs and NumFPArgRegs.
3645     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3646                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3647 
3648     FuncInfo->setVarArgsStackOffset(
3649       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3650                             CCInfo.getNextStackOffset(), true));
3651 
3652     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3653     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3654 
3655     // The fixed integer arguments of a variadic function are stored to the
3656     // VarArgsFrameIndex on the stack so that they may be loaded by
3657     // dereferencing the result of va_next.
3658     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3659       // Get an existing live-in vreg, or add a new one.
3660       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3661       if (!VReg)
3662         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3663 
3664       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3665       SDValue Store =
3666           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3667       MemOps.push_back(Store);
3668       // Increment the address by four for the next argument to store
3669       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3670       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3671     }
3672 
3673     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3674     // is set.
3675     // The double arguments are stored to the VarArgsFrameIndex
3676     // on the stack.
3677     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3678       // Get an existing live-in vreg, or add a new one.
3679       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3680       if (!VReg)
3681         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3682 
3683       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3684       SDValue Store =
3685           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3686       MemOps.push_back(Store);
3687       // Increment the address by eight for the next argument to store
3688       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3689                                          PtrVT);
3690       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3691     }
3692   }
3693 
3694   if (!MemOps.empty())
3695     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3696 
3697   return Chain;
3698 }
3699 
3700 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3701 // value to MVT::i64 and then truncate to the correct register size.
3702 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3703                                              EVT ObjectVT, SelectionDAG &DAG,
3704                                              SDValue ArgVal,
3705                                              const SDLoc &dl) const {
3706   if (Flags.isSExt())
3707     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3708                          DAG.getValueType(ObjectVT));
3709   else if (Flags.isZExt())
3710     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3711                          DAG.getValueType(ObjectVT));
3712 
3713   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3714 }
3715 
3716 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3717     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3718     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3719     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3720   // TODO: add description of PPC stack frame format, or at least some docs.
3721   //
3722   bool isELFv2ABI = Subtarget.isELFv2ABI();
3723   bool isLittleEndian = Subtarget.isLittleEndian();
3724   MachineFunction &MF = DAG.getMachineFunction();
3725   MachineFrameInfo &MFI = MF.getFrameInfo();
3726   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3727 
3728   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3729          "fastcc not supported on varargs functions");
3730 
3731   EVT PtrVT = getPointerTy(MF.getDataLayout());
3732   // Potential tail calls could cause overwriting of argument stack slots.
3733   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3734                        (CallConv == CallingConv::Fast));
3735   unsigned PtrByteSize = 8;
3736   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3737 
3738   static const MCPhysReg GPR[] = {
3739     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3740     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3741   };
3742   static const MCPhysReg VR[] = {
3743     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3744     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3745   };
3746 
3747   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3748   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3749   const unsigned Num_VR_Regs  = array_lengthof(VR);
3750   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3751 
3752   // Do a first pass over the arguments to determine whether the ABI
3753   // guarantees that our caller has allocated the parameter save area
3754   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3755   // in the ELFv2 ABI, it is true if this is a vararg function or if
3756   // any parameter is located in a stack slot.
3757 
3758   bool HasParameterArea = !isELFv2ABI || isVarArg;
3759   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3760   unsigned NumBytes = LinkageSize;
3761   unsigned AvailableFPRs = Num_FPR_Regs;
3762   unsigned AvailableVRs = Num_VR_Regs;
3763   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3764     if (Ins[i].Flags.isNest())
3765       continue;
3766 
3767     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3768                                PtrByteSize, LinkageSize, ParamAreaSize,
3769                                NumBytes, AvailableFPRs, AvailableVRs,
3770                                Subtarget.hasQPX()))
3771       HasParameterArea = true;
3772   }
3773 
3774   // Add DAG nodes to load the arguments or copy them out of registers.  On
3775   // entry to a function on PPC, the arguments start after the linkage area,
3776   // although the first ones are often in registers.
3777 
3778   unsigned ArgOffset = LinkageSize;
3779   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3780   unsigned &QFPR_idx = FPR_idx;
3781   SmallVector<SDValue, 8> MemOps;
3782   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3783   unsigned CurArgIdx = 0;
3784   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3785     SDValue ArgVal;
3786     bool needsLoad = false;
3787     EVT ObjectVT = Ins[ArgNo].VT;
3788     EVT OrigVT = Ins[ArgNo].ArgVT;
3789     unsigned ObjSize = ObjectVT.getStoreSize();
3790     unsigned ArgSize = ObjSize;
3791     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3792     if (Ins[ArgNo].isOrigArg()) {
3793       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3794       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3795     }
3796     // We re-align the argument offset for each argument, except when using the
3797     // fast calling convention, when we need to make sure we do that only when
3798     // we'll actually use a stack slot.
3799     unsigned CurArgOffset, Align;
3800     auto ComputeArgOffset = [&]() {
3801       /* Respect alignment of argument on the stack.  */
3802       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3803       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3804       CurArgOffset = ArgOffset;
3805     };
3806 
3807     if (CallConv != CallingConv::Fast) {
3808       ComputeArgOffset();
3809 
3810       /* Compute GPR index associated with argument offset.  */
3811       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3812       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3813     }
3814 
3815     // FIXME the codegen can be much improved in some cases.
3816     // We do not have to keep everything in memory.
3817     if (Flags.isByVal()) {
3818       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3819 
3820       if (CallConv == CallingConv::Fast)
3821         ComputeArgOffset();
3822 
3823       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3824       ObjSize = Flags.getByValSize();
3825       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3826       // Empty aggregate parameters do not take up registers.  Examples:
3827       //   struct { } a;
3828       //   union  { } b;
3829       //   int c[0];
3830       // etc.  However, we have to provide a place-holder in InVals, so
3831       // pretend we have an 8-byte item at the current address for that
3832       // purpose.
3833       if (!ObjSize) {
3834         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3835         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3836         InVals.push_back(FIN);
3837         continue;
3838       }
3839 
3840       // Create a stack object covering all stack doublewords occupied
3841       // by the argument.  If the argument is (fully or partially) on
3842       // the stack, or if the argument is fully in registers but the
3843       // caller has allocated the parameter save anyway, we can refer
3844       // directly to the caller's stack frame.  Otherwise, create a
3845       // local copy in our own frame.
3846       int FI;
3847       if (HasParameterArea ||
3848           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3849         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3850       else
3851         FI = MFI.CreateStackObject(ArgSize, Align, false);
3852       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3853 
3854       // Handle aggregates smaller than 8 bytes.
3855       if (ObjSize < PtrByteSize) {
3856         // The value of the object is its address, which differs from the
3857         // address of the enclosing doubleword on big-endian systems.
3858         SDValue Arg = FIN;
3859         if (!isLittleEndian) {
3860           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3861           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3862         }
3863         InVals.push_back(Arg);
3864 
3865         if (GPR_idx != Num_GPR_Regs) {
3866           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3867           FuncInfo->addLiveInAttr(VReg, Flags);
3868           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3869           SDValue Store;
3870 
3871           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3872             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3873                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3874             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3875                                       MachinePointerInfo(&*FuncArg), ObjType);
3876           } else {
3877             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3878             // store the whole register as-is to the parameter save area
3879             // slot.
3880             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3881                                  MachinePointerInfo(&*FuncArg));
3882           }
3883 
3884           MemOps.push_back(Store);
3885         }
3886         // Whether we copied from a register or not, advance the offset
3887         // into the parameter save area by a full doubleword.
3888         ArgOffset += PtrByteSize;
3889         continue;
3890       }
3891 
3892       // The value of the object is its address, which is the address of
3893       // its first stack doubleword.
3894       InVals.push_back(FIN);
3895 
3896       // Store whatever pieces of the object are in registers to memory.
3897       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3898         if (GPR_idx == Num_GPR_Regs)
3899           break;
3900 
3901         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3902         FuncInfo->addLiveInAttr(VReg, Flags);
3903         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3904         SDValue Addr = FIN;
3905         if (j) {
3906           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3907           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3908         }
3909         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3910                                      MachinePointerInfo(&*FuncArg, j));
3911         MemOps.push_back(Store);
3912         ++GPR_idx;
3913       }
3914       ArgOffset += ArgSize;
3915       continue;
3916     }
3917 
3918     switch (ObjectVT.getSimpleVT().SimpleTy) {
3919     default: llvm_unreachable("Unhandled argument type!");
3920     case MVT::i1:
3921     case MVT::i32:
3922     case MVT::i64:
3923       if (Flags.isNest()) {
3924         // The 'nest' parameter, if any, is passed in R11.
3925         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3926         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3927 
3928         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3929           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3930 
3931         break;
3932       }
3933 
3934       // These can be scalar arguments or elements of an integer array type
3935       // passed directly.  Clang may use those instead of "byval" aggregate
3936       // types to avoid forcing arguments to memory unnecessarily.
3937       if (GPR_idx != Num_GPR_Regs) {
3938         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3939         FuncInfo->addLiveInAttr(VReg, Flags);
3940         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3941 
3942         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3943           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3944           // value to MVT::i64 and then truncate to the correct register size.
3945           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3946       } else {
3947         if (CallConv == CallingConv::Fast)
3948           ComputeArgOffset();
3949 
3950         needsLoad = true;
3951         ArgSize = PtrByteSize;
3952       }
3953       if (CallConv != CallingConv::Fast || needsLoad)
3954         ArgOffset += 8;
3955       break;
3956 
3957     case MVT::f32:
3958     case MVT::f64:
3959       // These can be scalar arguments or elements of a float array type
3960       // passed directly.  The latter are used to implement ELFv2 homogenous
3961       // float aggregates.
3962       if (FPR_idx != Num_FPR_Regs) {
3963         unsigned VReg;
3964 
3965         if (ObjectVT == MVT::f32)
3966           VReg = MF.addLiveIn(FPR[FPR_idx],
3967                               Subtarget.hasP8Vector()
3968                                   ? &PPC::VSSRCRegClass
3969                                   : &PPC::F4RCRegClass);
3970         else
3971           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3972                                                 ? &PPC::VSFRCRegClass
3973                                                 : &PPC::F8RCRegClass);
3974 
3975         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3976         ++FPR_idx;
3977       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3978         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3979         // once we support fp <-> gpr moves.
3980 
3981         // This can only ever happen in the presence of f32 array types,
3982         // since otherwise we never run out of FPRs before running out
3983         // of GPRs.
3984         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3985         FuncInfo->addLiveInAttr(VReg, Flags);
3986         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3987 
3988         if (ObjectVT == MVT::f32) {
3989           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3990             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3991                                  DAG.getConstant(32, dl, MVT::i32));
3992           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3993         }
3994 
3995         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3996       } else {
3997         if (CallConv == CallingConv::Fast)
3998           ComputeArgOffset();
3999 
4000         needsLoad = true;
4001       }
4002 
4003       // When passing an array of floats, the array occupies consecutive
4004       // space in the argument area; only round up to the next doubleword
4005       // at the end of the array.  Otherwise, each float takes 8 bytes.
4006       if (CallConv != CallingConv::Fast || needsLoad) {
4007         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4008         ArgOffset += ArgSize;
4009         if (Flags.isInConsecutiveRegsLast())
4010           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4011       }
4012       break;
4013     case MVT::v4f32:
4014     case MVT::v4i32:
4015     case MVT::v8i16:
4016     case MVT::v16i8:
4017     case MVT::v2f64:
4018     case MVT::v2i64:
4019     case MVT::v1i128:
4020     case MVT::f128:
4021       if (!Subtarget.hasQPX()) {
4022         // These can be scalar arguments or elements of a vector array type
4023         // passed directly.  The latter are used to implement ELFv2 homogenous
4024         // vector aggregates.
4025         if (VR_idx != Num_VR_Regs) {
4026           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4027           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4028           ++VR_idx;
4029         } else {
4030           if (CallConv == CallingConv::Fast)
4031             ComputeArgOffset();
4032           needsLoad = true;
4033         }
4034         if (CallConv != CallingConv::Fast || needsLoad)
4035           ArgOffset += 16;
4036         break;
4037       } // not QPX
4038 
4039       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4040              "Invalid QPX parameter type");
4041       LLVM_FALLTHROUGH;
4042 
4043     case MVT::v4f64:
4044     case MVT::v4i1:
4045       // QPX vectors are treated like their scalar floating-point subregisters
4046       // (except that they're larger).
4047       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4048       if (QFPR_idx != Num_QFPR_Regs) {
4049         const TargetRegisterClass *RC;
4050         switch (ObjectVT.getSimpleVT().SimpleTy) {
4051         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4052         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4053         default:         RC = &PPC::QBRCRegClass; break;
4054         }
4055 
4056         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4057         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4058         ++QFPR_idx;
4059       } else {
4060         if (CallConv == CallingConv::Fast)
4061           ComputeArgOffset();
4062         needsLoad = true;
4063       }
4064       if (CallConv != CallingConv::Fast || needsLoad)
4065         ArgOffset += Sz;
4066       break;
4067     }
4068 
4069     // We need to load the argument to a virtual register if we determined
4070     // above that we ran out of physical registers of the appropriate type.
4071     if (needsLoad) {
4072       if (ObjSize < ArgSize && !isLittleEndian)
4073         CurArgOffset += ArgSize - ObjSize;
4074       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4075       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4076       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4077     }
4078 
4079     InVals.push_back(ArgVal);
4080   }
4081 
4082   // Area that is at least reserved in the caller of this function.
4083   unsigned MinReservedArea;
4084   if (HasParameterArea)
4085     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4086   else
4087     MinReservedArea = LinkageSize;
4088 
4089   // Set the size that is at least reserved in caller of this function.  Tail
4090   // call optimized functions' reserved stack space needs to be aligned so that
4091   // taking the difference between two stack areas will result in an aligned
4092   // stack.
4093   MinReservedArea =
4094       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4095   FuncInfo->setMinReservedArea(MinReservedArea);
4096 
4097   // If the function takes variable number of arguments, make a frame index for
4098   // the start of the first vararg value... for expansion of llvm.va_start.
4099   if (isVarArg) {
4100     int Depth = ArgOffset;
4101 
4102     FuncInfo->setVarArgsFrameIndex(
4103       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4104     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4105 
4106     // If this function is vararg, store any remaining integer argument regs
4107     // to their spots on the stack so that they may be loaded by dereferencing
4108     // the result of va_next.
4109     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4110          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4111       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4112       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4113       SDValue Store =
4114           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4115       MemOps.push_back(Store);
4116       // Increment the address by four for the next argument to store
4117       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4118       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4119     }
4120   }
4121 
4122   if (!MemOps.empty())
4123     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4124 
4125   return Chain;
4126 }
4127 
4128 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4129     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4130     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4131     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4132   // TODO: add description of PPC stack frame format, or at least some docs.
4133   //
4134   MachineFunction &MF = DAG.getMachineFunction();
4135   MachineFrameInfo &MFI = MF.getFrameInfo();
4136   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4137 
4138   EVT PtrVT = getPointerTy(MF.getDataLayout());
4139   bool isPPC64 = PtrVT == MVT::i64;
4140   // Potential tail calls could cause overwriting of argument stack slots.
4141   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4142                        (CallConv == CallingConv::Fast));
4143   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4144   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4145   unsigned ArgOffset = LinkageSize;
4146   // Area that is at least reserved in caller of this function.
4147   unsigned MinReservedArea = ArgOffset;
4148 
4149   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4150     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4151     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4152   };
4153   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4154     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4155     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4156   };
4157   static const MCPhysReg VR[] = {
4158     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4159     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4160   };
4161 
4162   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4163   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4164   const unsigned Num_VR_Regs  = array_lengthof( VR);
4165 
4166   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4167 
4168   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4169 
4170   // In 32-bit non-varargs functions, the stack space for vectors is after the
4171   // stack space for non-vectors.  We do not use this space unless we have
4172   // too many vectors to fit in registers, something that only occurs in
4173   // constructed examples:), but we have to walk the arglist to figure
4174   // that out...for the pathological case, compute VecArgOffset as the
4175   // start of the vector parameter area.  Computing VecArgOffset is the
4176   // entire point of the following loop.
4177   unsigned VecArgOffset = ArgOffset;
4178   if (!isVarArg && !isPPC64) {
4179     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4180          ++ArgNo) {
4181       EVT ObjectVT = Ins[ArgNo].VT;
4182       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4183 
4184       if (Flags.isByVal()) {
4185         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4186         unsigned ObjSize = Flags.getByValSize();
4187         unsigned ArgSize =
4188                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4189         VecArgOffset += ArgSize;
4190         continue;
4191       }
4192 
4193       switch(ObjectVT.getSimpleVT().SimpleTy) {
4194       default: llvm_unreachable("Unhandled argument type!");
4195       case MVT::i1:
4196       case MVT::i32:
4197       case MVT::f32:
4198         VecArgOffset += 4;
4199         break;
4200       case MVT::i64:  // PPC64
4201       case MVT::f64:
4202         // FIXME: We are guaranteed to be !isPPC64 at this point.
4203         // Does MVT::i64 apply?
4204         VecArgOffset += 8;
4205         break;
4206       case MVT::v4f32:
4207       case MVT::v4i32:
4208       case MVT::v8i16:
4209       case MVT::v16i8:
4210         // Nothing to do, we're only looking at Nonvector args here.
4211         break;
4212       }
4213     }
4214   }
4215   // We've found where the vector parameter area in memory is.  Skip the
4216   // first 12 parameters; these don't use that memory.
4217   VecArgOffset = ((VecArgOffset+15)/16)*16;
4218   VecArgOffset += 12*16;
4219 
4220   // Add DAG nodes to load the arguments or copy them out of registers.  On
4221   // entry to a function on PPC, the arguments start after the linkage area,
4222   // although the first ones are often in registers.
4223 
4224   SmallVector<SDValue, 8> MemOps;
4225   unsigned nAltivecParamsAtEnd = 0;
4226   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4227   unsigned CurArgIdx = 0;
4228   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4229     SDValue ArgVal;
4230     bool needsLoad = false;
4231     EVT ObjectVT = Ins[ArgNo].VT;
4232     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4233     unsigned ArgSize = ObjSize;
4234     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4235     if (Ins[ArgNo].isOrigArg()) {
4236       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4237       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4238     }
4239     unsigned CurArgOffset = ArgOffset;
4240 
4241     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4242     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4243         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4244       if (isVarArg || isPPC64) {
4245         MinReservedArea = ((MinReservedArea+15)/16)*16;
4246         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4247                                                   Flags,
4248                                                   PtrByteSize);
4249       } else  nAltivecParamsAtEnd++;
4250     } else
4251       // Calculate min reserved area.
4252       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4253                                                 Flags,
4254                                                 PtrByteSize);
4255 
4256     // FIXME the codegen can be much improved in some cases.
4257     // We do not have to keep everything in memory.
4258     if (Flags.isByVal()) {
4259       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4260 
4261       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4262       ObjSize = Flags.getByValSize();
4263       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4264       // Objects of size 1 and 2 are right justified, everything else is
4265       // left justified.  This means the memory address is adjusted forwards.
4266       if (ObjSize==1 || ObjSize==2) {
4267         CurArgOffset = CurArgOffset + (4 - ObjSize);
4268       }
4269       // The value of the object is its address.
4270       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4271       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4272       InVals.push_back(FIN);
4273       if (ObjSize==1 || ObjSize==2) {
4274         if (GPR_idx != Num_GPR_Regs) {
4275           unsigned VReg;
4276           if (isPPC64)
4277             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4278           else
4279             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4280           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4281           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4282           SDValue Store =
4283               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4284                                 MachinePointerInfo(&*FuncArg), ObjType);
4285           MemOps.push_back(Store);
4286           ++GPR_idx;
4287         }
4288 
4289         ArgOffset += PtrByteSize;
4290 
4291         continue;
4292       }
4293       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4294         // Store whatever pieces of the object are in registers
4295         // to memory.  ArgOffset will be the address of the beginning
4296         // of the object.
4297         if (GPR_idx != Num_GPR_Regs) {
4298           unsigned VReg;
4299           if (isPPC64)
4300             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4301           else
4302             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4303           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4304           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4305           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4306           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4307                                        MachinePointerInfo(&*FuncArg, j));
4308           MemOps.push_back(Store);
4309           ++GPR_idx;
4310           ArgOffset += PtrByteSize;
4311         } else {
4312           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4313           break;
4314         }
4315       }
4316       continue;
4317     }
4318 
4319     switch (ObjectVT.getSimpleVT().SimpleTy) {
4320     default: llvm_unreachable("Unhandled argument type!");
4321     case MVT::i1:
4322     case MVT::i32:
4323       if (!isPPC64) {
4324         if (GPR_idx != Num_GPR_Regs) {
4325           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4326           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4327 
4328           if (ObjectVT == MVT::i1)
4329             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4330 
4331           ++GPR_idx;
4332         } else {
4333           needsLoad = true;
4334           ArgSize = PtrByteSize;
4335         }
4336         // All int arguments reserve stack space in the Darwin ABI.
4337         ArgOffset += PtrByteSize;
4338         break;
4339       }
4340       LLVM_FALLTHROUGH;
4341     case MVT::i64:  // PPC64
4342       if (GPR_idx != Num_GPR_Regs) {
4343         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4344         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4345 
4346         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4347           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4348           // value to MVT::i64 and then truncate to the correct register size.
4349           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4350 
4351         ++GPR_idx;
4352       } else {
4353         needsLoad = true;
4354         ArgSize = PtrByteSize;
4355       }
4356       // All int arguments reserve stack space in the Darwin ABI.
4357       ArgOffset += 8;
4358       break;
4359 
4360     case MVT::f32:
4361     case MVT::f64:
4362       // Every 4 bytes of argument space consumes one of the GPRs available for
4363       // argument passing.
4364       if (GPR_idx != Num_GPR_Regs) {
4365         ++GPR_idx;
4366         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4367           ++GPR_idx;
4368       }
4369       if (FPR_idx != Num_FPR_Regs) {
4370         unsigned VReg;
4371 
4372         if (ObjectVT == MVT::f32)
4373           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4374         else
4375           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4376 
4377         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4378         ++FPR_idx;
4379       } else {
4380         needsLoad = true;
4381       }
4382 
4383       // All FP arguments reserve stack space in the Darwin ABI.
4384       ArgOffset += isPPC64 ? 8 : ObjSize;
4385       break;
4386     case MVT::v4f32:
4387     case MVT::v4i32:
4388     case MVT::v8i16:
4389     case MVT::v16i8:
4390       // Note that vector arguments in registers don't reserve stack space,
4391       // except in varargs functions.
4392       if (VR_idx != Num_VR_Regs) {
4393         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4394         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4395         if (isVarArg) {
4396           while ((ArgOffset % 16) != 0) {
4397             ArgOffset += PtrByteSize;
4398             if (GPR_idx != Num_GPR_Regs)
4399               GPR_idx++;
4400           }
4401           ArgOffset += 16;
4402           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4403         }
4404         ++VR_idx;
4405       } else {
4406         if (!isVarArg && !isPPC64) {
4407           // Vectors go after all the nonvectors.
4408           CurArgOffset = VecArgOffset;
4409           VecArgOffset += 16;
4410         } else {
4411           // Vectors are aligned.
4412           ArgOffset = ((ArgOffset+15)/16)*16;
4413           CurArgOffset = ArgOffset;
4414           ArgOffset += 16;
4415         }
4416         needsLoad = true;
4417       }
4418       break;
4419     }
4420 
4421     // We need to load the argument to a virtual register if we determined above
4422     // that we ran out of physical registers of the appropriate type.
4423     if (needsLoad) {
4424       int FI = MFI.CreateFixedObject(ObjSize,
4425                                      CurArgOffset + (ArgSize - ObjSize),
4426                                      isImmutable);
4427       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4428       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4429     }
4430 
4431     InVals.push_back(ArgVal);
4432   }
4433 
4434   // Allow for Altivec parameters at the end, if needed.
4435   if (nAltivecParamsAtEnd) {
4436     MinReservedArea = ((MinReservedArea+15)/16)*16;
4437     MinReservedArea += 16*nAltivecParamsAtEnd;
4438   }
4439 
4440   // Area that is at least reserved in the caller of this function.
4441   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4442 
4443   // Set the size that is at least reserved in caller of this function.  Tail
4444   // call optimized functions' reserved stack space needs to be aligned so that
4445   // taking the difference between two stack areas will result in an aligned
4446   // stack.
4447   MinReservedArea =
4448       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4449   FuncInfo->setMinReservedArea(MinReservedArea);
4450 
4451   // If the function takes variable number of arguments, make a frame index for
4452   // the start of the first vararg value... for expansion of llvm.va_start.
4453   if (isVarArg) {
4454     int Depth = ArgOffset;
4455 
4456     FuncInfo->setVarArgsFrameIndex(
4457       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4458                             Depth, true));
4459     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4460 
4461     // If this function is vararg, store any remaining integer argument regs
4462     // to their spots on the stack so that they may be loaded by dereferencing
4463     // the result of va_next.
4464     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4465       unsigned VReg;
4466 
4467       if (isPPC64)
4468         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4469       else
4470         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4471 
4472       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4473       SDValue Store =
4474           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4475       MemOps.push_back(Store);
4476       // Increment the address by four for the next argument to store
4477       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4478       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4479     }
4480   }
4481 
4482   if (!MemOps.empty())
4483     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4484 
4485   return Chain;
4486 }
4487 
4488 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4489 /// adjusted to accommodate the arguments for the tailcall.
4490 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4491                                    unsigned ParamSize) {
4492 
4493   if (!isTailCall) return 0;
4494 
4495   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4496   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4497   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4498   // Remember only if the new adjustment is bigger.
4499   if (SPDiff < FI->getTailCallSPDelta())
4500     FI->setTailCallSPDelta(SPDiff);
4501 
4502   return SPDiff;
4503 }
4504 
4505 static bool isFunctionGlobalAddress(SDValue Callee);
4506 
4507 static bool
4508 callsShareTOCBase(const Function *Caller, SDValue Callee,
4509                     const TargetMachine &TM) {
4510    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4511    // don't have enough information to determine if the caller and calle share
4512    // the same  TOC base, so we have to pessimistically assume they don't for
4513    // correctness.
4514    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4515    if (!G)
4516      return false;
4517 
4518    const GlobalValue *GV = G->getGlobal();
4519   // The medium and large code models are expected to provide a sufficiently
4520   // large TOC to provide all data addressing needs of a module with a
4521   // single TOC. Since each module will be addressed with a single TOC then we
4522   // only need to check that caller and callee don't cross dso boundaries.
4523   if (CodeModel::Medium == TM.getCodeModel() ||
4524       CodeModel::Large == TM.getCodeModel())
4525     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4526 
4527   // Otherwise we need to ensure callee and caller are in the same section,
4528   // since the linker may allocate multiple TOCs, and we don't know which
4529   // sections will belong to the same TOC base.
4530 
4531   if (!GV->isStrongDefinitionForLinker())
4532     return false;
4533 
4534   // Any explicitly-specified sections and section prefixes must also match.
4535   // Also, if we're using -ffunction-sections, then each function is always in
4536   // a different section (the same is true for COMDAT functions).
4537   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4538       GV->getSection() != Caller->getSection())
4539     return false;
4540   if (const auto *F = dyn_cast<Function>(GV)) {
4541     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4542       return false;
4543   }
4544 
4545   // If the callee might be interposed, then we can't assume the ultimate call
4546   // target will be in the same section. Even in cases where we can assume that
4547   // interposition won't happen, in any case where the linker might insert a
4548   // stub to allow for interposition, we must generate code as though
4549   // interposition might occur. To understand why this matters, consider a
4550   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4551   // in the same section, but a is in a different module (i.e. has a different
4552   // TOC base pointer). If the linker allows for interposition between b and c,
4553   // then it will generate a stub for the call edge between b and c which will
4554   // save the TOC pointer into the designated stack slot allocated by b. If we
4555   // return true here, and therefore allow a tail call between b and c, that
4556   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4557   // pointer into the stack slot allocated by a (where the a -> b stub saved
4558   // a's TOC base pointer). If we're not considering a tail call, but rather,
4559   // whether a nop is needed after the call instruction in b, because the linker
4560   // will insert a stub, it might complain about a missing nop if we omit it
4561   // (although many don't complain in this case).
4562   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4563     return false;
4564 
4565   return true;
4566 }
4567 
4568 static bool
4569 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4570                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4571   assert(Subtarget.is64BitELFABI());
4572 
4573   const unsigned PtrByteSize = 8;
4574   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4575 
4576   static const MCPhysReg GPR[] = {
4577     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4578     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4579   };
4580   static const MCPhysReg VR[] = {
4581     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4582     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4583   };
4584 
4585   const unsigned NumGPRs = array_lengthof(GPR);
4586   const unsigned NumFPRs = 13;
4587   const unsigned NumVRs = array_lengthof(VR);
4588   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4589 
4590   unsigned NumBytes = LinkageSize;
4591   unsigned AvailableFPRs = NumFPRs;
4592   unsigned AvailableVRs = NumVRs;
4593 
4594   for (const ISD::OutputArg& Param : Outs) {
4595     if (Param.Flags.isNest()) continue;
4596 
4597     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4598                                PtrByteSize, LinkageSize, ParamAreaSize,
4599                                NumBytes, AvailableFPRs, AvailableVRs,
4600                                Subtarget.hasQPX()))
4601       return true;
4602   }
4603   return false;
4604 }
4605 
4606 static bool
4607 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4608   if (CS.arg_size() != CallerFn->arg_size())
4609     return false;
4610 
4611   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4612   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4613   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4614 
4615   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4616     const Value* CalleeArg = *CalleeArgIter;
4617     const Value* CallerArg = &(*CallerArgIter);
4618     if (CalleeArg == CallerArg)
4619       continue;
4620 
4621     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4622     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4623     //      }
4624     // 1st argument of callee is undef and has the same type as caller.
4625     if (CalleeArg->getType() == CallerArg->getType() &&
4626         isa<UndefValue>(CalleeArg))
4627       continue;
4628 
4629     return false;
4630   }
4631 
4632   return true;
4633 }
4634 
4635 // Returns true if TCO is possible between the callers and callees
4636 // calling conventions.
4637 static bool
4638 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4639                                     CallingConv::ID CalleeCC) {
4640   // Tail calls are possible with fastcc and ccc.
4641   auto isTailCallableCC  = [] (CallingConv::ID CC){
4642       return  CC == CallingConv::C || CC == CallingConv::Fast;
4643   };
4644   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4645     return false;
4646 
4647   // We can safely tail call both fastcc and ccc callees from a c calling
4648   // convention caller. If the caller is fastcc, we may have less stack space
4649   // than a non-fastcc caller with the same signature so disable tail-calls in
4650   // that case.
4651   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4652 }
4653 
4654 bool
4655 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4656                                     SDValue Callee,
4657                                     CallingConv::ID CalleeCC,
4658                                     ImmutableCallSite CS,
4659                                     bool isVarArg,
4660                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4661                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4662                                     SelectionDAG& DAG) const {
4663   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4664 
4665   if (DisableSCO && !TailCallOpt) return false;
4666 
4667   // Variadic argument functions are not supported.
4668   if (isVarArg) return false;
4669 
4670   auto &Caller = DAG.getMachineFunction().getFunction();
4671   // Check that the calling conventions are compatible for tco.
4672   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4673     return false;
4674 
4675   // Caller contains any byval parameter is not supported.
4676   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4677     return false;
4678 
4679   // Callee contains any byval parameter is not supported, too.
4680   // Note: This is a quick work around, because in some cases, e.g.
4681   // caller's stack size > callee's stack size, we are still able to apply
4682   // sibling call optimization. For example, gcc is able to do SCO for caller1
4683   // in the following example, but not for caller2.
4684   //   struct test {
4685   //     long int a;
4686   //     char ary[56];
4687   //   } gTest;
4688   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4689   //     b->a = v.a;
4690   //     return 0;
4691   //   }
4692   //   void caller1(struct test a, struct test c, struct test *b) {
4693   //     callee(gTest, b); }
4694   //   void caller2(struct test *b) { callee(gTest, b); }
4695   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4696     return false;
4697 
4698   // If callee and caller use different calling conventions, we cannot pass
4699   // parameters on stack since offsets for the parameter area may be different.
4700   if (Caller.getCallingConv() != CalleeCC &&
4701       needStackSlotPassParameters(Subtarget, Outs))
4702     return false;
4703 
4704   // No TCO/SCO on indirect call because Caller have to restore its TOC
4705   if (!isFunctionGlobalAddress(Callee) &&
4706       !isa<ExternalSymbolSDNode>(Callee))
4707     return false;
4708 
4709   // If the caller and callee potentially have different TOC bases then we
4710   // cannot tail call since we need to restore the TOC pointer after the call.
4711   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4712   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4713     return false;
4714 
4715   // TCO allows altering callee ABI, so we don't have to check further.
4716   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4717     return true;
4718 
4719   if (DisableSCO) return false;
4720 
4721   // If callee use the same argument list that caller is using, then we can
4722   // apply SCO on this case. If it is not, then we need to check if callee needs
4723   // stack for passing arguments.
4724   if (!hasSameArgumentList(&Caller, CS) &&
4725       needStackSlotPassParameters(Subtarget, Outs)) {
4726     return false;
4727   }
4728 
4729   return true;
4730 }
4731 
4732 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4733 /// for tail call optimization. Targets which want to do tail call
4734 /// optimization should implement this function.
4735 bool
4736 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4737                                                      CallingConv::ID CalleeCC,
4738                                                      bool isVarArg,
4739                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4740                                                      SelectionDAG& DAG) const {
4741   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4742     return false;
4743 
4744   // Variable argument functions are not supported.
4745   if (isVarArg)
4746     return false;
4747 
4748   MachineFunction &MF = DAG.getMachineFunction();
4749   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4750   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4751     // Functions containing by val parameters are not supported.
4752     for (unsigned i = 0; i != Ins.size(); i++) {
4753        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4754        if (Flags.isByVal()) return false;
4755     }
4756 
4757     // Non-PIC/GOT tail calls are supported.
4758     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4759       return true;
4760 
4761     // At the moment we can only do local tail calls (in same module, hidden
4762     // or protected) if we are generating PIC.
4763     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4764       return G->getGlobal()->hasHiddenVisibility()
4765           || G->getGlobal()->hasProtectedVisibility();
4766   }
4767 
4768   return false;
4769 }
4770 
4771 /// isCallCompatibleAddress - Return the immediate to use if the specified
4772 /// 32-bit value is representable in the immediate field of a BxA instruction.
4773 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4774   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4775   if (!C) return nullptr;
4776 
4777   int Addr = C->getZExtValue();
4778   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4779       SignExtend32<26>(Addr) != Addr)
4780     return nullptr;  // Top 6 bits have to be sext of immediate.
4781 
4782   return DAG
4783       .getConstant(
4784           (int)C->getZExtValue() >> 2, SDLoc(Op),
4785           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4786       .getNode();
4787 }
4788 
4789 namespace {
4790 
4791 struct TailCallArgumentInfo {
4792   SDValue Arg;
4793   SDValue FrameIdxOp;
4794   int FrameIdx = 0;
4795 
4796   TailCallArgumentInfo() = default;
4797 };
4798 
4799 } // end anonymous namespace
4800 
4801 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4802 static void StoreTailCallArgumentsToStackSlot(
4803     SelectionDAG &DAG, SDValue Chain,
4804     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4805     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4806   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4807     SDValue Arg = TailCallArgs[i].Arg;
4808     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4809     int FI = TailCallArgs[i].FrameIdx;
4810     // Store relative to framepointer.
4811     MemOpChains.push_back(DAG.getStore(
4812         Chain, dl, Arg, FIN,
4813         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4814   }
4815 }
4816 
4817 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4818 /// the appropriate stack slot for the tail call optimized function call.
4819 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4820                                              SDValue OldRetAddr, SDValue OldFP,
4821                                              int SPDiff, const SDLoc &dl) {
4822   if (SPDiff) {
4823     // Calculate the new stack slot for the return address.
4824     MachineFunction &MF = DAG.getMachineFunction();
4825     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4826     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4827     bool isPPC64 = Subtarget.isPPC64();
4828     int SlotSize = isPPC64 ? 8 : 4;
4829     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4830     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4831                                                          NewRetAddrLoc, true);
4832     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4833     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4834     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4835                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4836 
4837     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4838     // slot as the FP is never overwritten.
4839     if (Subtarget.isDarwinABI()) {
4840       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4841       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4842                                                          true);
4843       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4844       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4845                            MachinePointerInfo::getFixedStack(
4846                                DAG.getMachineFunction(), NewFPIdx));
4847     }
4848   }
4849   return Chain;
4850 }
4851 
4852 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4853 /// the position of the argument.
4854 static void
4855 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4856                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4857                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4858   int Offset = ArgOffset + SPDiff;
4859   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4860   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4861   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4862   SDValue FIN = DAG.getFrameIndex(FI, VT);
4863   TailCallArgumentInfo Info;
4864   Info.Arg = Arg;
4865   Info.FrameIdxOp = FIN;
4866   Info.FrameIdx = FI;
4867   TailCallArguments.push_back(Info);
4868 }
4869 
4870 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4871 /// stack slot. Returns the chain as result and the loaded frame pointers in
4872 /// LROpOut/FPOpout. Used when tail calling.
4873 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4874     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4875     SDValue &FPOpOut, const SDLoc &dl) const {
4876   if (SPDiff) {
4877     // Load the LR and FP stack slot for later adjusting.
4878     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4879     LROpOut = getReturnAddrFrameIndex(DAG);
4880     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4881     Chain = SDValue(LROpOut.getNode(), 1);
4882 
4883     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4884     // slot as the FP is never overwritten.
4885     if (Subtarget.isDarwinABI()) {
4886       FPOpOut = getFramePointerFrameIndex(DAG);
4887       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4888       Chain = SDValue(FPOpOut.getNode(), 1);
4889     }
4890   }
4891   return Chain;
4892 }
4893 
4894 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4895 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4896 /// specified by the specific parameter attribute. The copy will be passed as
4897 /// a byval function parameter.
4898 /// Sometimes what we are copying is the end of a larger object, the part that
4899 /// does not fit in registers.
4900 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4901                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4902                                          SelectionDAG &DAG, const SDLoc &dl) {
4903   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4904   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4905                        false, false, false, MachinePointerInfo(),
4906                        MachinePointerInfo());
4907 }
4908 
4909 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4910 /// tail calls.
4911 static void LowerMemOpCallTo(
4912     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4913     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4914     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4915     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4916   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4917   if (!isTailCall) {
4918     if (isVector) {
4919       SDValue StackPtr;
4920       if (isPPC64)
4921         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4922       else
4923         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4924       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4925                            DAG.getConstant(ArgOffset, dl, PtrVT));
4926     }
4927     MemOpChains.push_back(
4928         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4929     // Calculate and remember argument location.
4930   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4931                                   TailCallArguments);
4932 }
4933 
4934 static void
4935 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4936                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4937                 SDValue FPOp,
4938                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4939   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4940   // might overwrite each other in case of tail call optimization.
4941   SmallVector<SDValue, 8> MemOpChains2;
4942   // Do not flag preceding copytoreg stuff together with the following stuff.
4943   InFlag = SDValue();
4944   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4945                                     MemOpChains2, dl);
4946   if (!MemOpChains2.empty())
4947     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4948 
4949   // Store the return address to the appropriate stack slot.
4950   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4951 
4952   // Emit callseq_end just before tailcall node.
4953   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4954                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4955   InFlag = Chain.getValue(1);
4956 }
4957 
4958 // Is this global address that of a function that can be called by name? (as
4959 // opposed to something that must hold a descriptor for an indirect call).
4960 static bool isFunctionGlobalAddress(SDValue Callee) {
4961   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4962     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4963         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4964       return false;
4965 
4966     return G->getGlobal()->getValueType()->isFunctionTy();
4967   }
4968 
4969   return false;
4970 }
4971 
4972 SDValue PPCTargetLowering::LowerCallResult(
4973     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4974     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4975     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4976   SmallVector<CCValAssign, 16> RVLocs;
4977   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4978                     *DAG.getContext());
4979 
4980   CCRetInfo.AnalyzeCallResult(
4981       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
4982                ? RetCC_PPC_Cold
4983                : RetCC_PPC);
4984 
4985   // Copy all of the result registers out of their specified physreg.
4986   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4987     CCValAssign &VA = RVLocs[i];
4988     assert(VA.isRegLoc() && "Can only return in registers!");
4989 
4990     SDValue Val;
4991 
4992     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
4993       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4994                                       InFlag);
4995       Chain = Lo.getValue(1);
4996       InFlag = Lo.getValue(2);
4997       VA = RVLocs[++i]; // skip ahead to next loc
4998       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
4999                                       InFlag);
5000       Chain = Hi.getValue(1);
5001       InFlag = Hi.getValue(2);
5002       if (!Subtarget.isLittleEndian())
5003         std::swap (Lo, Hi);
5004       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5005     } else {
5006       Val = DAG.getCopyFromReg(Chain, dl,
5007                                VA.getLocReg(), VA.getLocVT(), InFlag);
5008       Chain = Val.getValue(1);
5009       InFlag = Val.getValue(2);
5010     }
5011 
5012     switch (VA.getLocInfo()) {
5013     default: llvm_unreachable("Unknown loc info!");
5014     case CCValAssign::Full: break;
5015     case CCValAssign::AExt:
5016       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5017       break;
5018     case CCValAssign::ZExt:
5019       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5020                         DAG.getValueType(VA.getValVT()));
5021       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5022       break;
5023     case CCValAssign::SExt:
5024       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5025                         DAG.getValueType(VA.getValVT()));
5026       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5027       break;
5028     }
5029 
5030     InVals.push_back(Val);
5031   }
5032 
5033   return Chain;
5034 }
5035 
5036 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5037                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5038   // PatchPoint calls are not indirect.
5039   if (isPatchPoint)
5040     return false;
5041 
5042   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5043     return false;
5044 
5045   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5046   // becuase the immediate function pointer points to a descriptor instead of
5047   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5048   // pointer immediate points to the global entry point, while the BLA would
5049   // need to jump to the local entry point (see rL211174).
5050   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5051       isBLACompatibleAddress(Callee, DAG))
5052     return false;
5053 
5054   return true;
5055 }
5056 
5057 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint,
5058                               bool isTailCall, const Function &Caller,
5059                               const SDValue &Callee,
5060                               const PPCSubtarget &Subtarget,
5061                               const TargetMachine &TM) {
5062   if (isTailCall)
5063     return PPCISD::TC_RETURN;
5064 
5065   // This is a call through a function pointer.
5066   if (isIndirectCall) {
5067     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5068     // indirect calls. The save of the caller's TOC pointer to the stack will be
5069     // inserted into the DAG as part of call lowering. The restore of the TOC
5070     // pointer is modeled by using a pseudo instruction for the call opcode that
5071     // represents the 2 instruction sequence of an indirect branch and link,
5072     // immediately followed by a load of the TOC pointer from the the stack save
5073     // slot into gpr2.
5074     if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5075       return PPCISD::BCTRL_LOAD_TOC;
5076 
5077     // An indirect call that does not need a TOC restore.
5078     return PPCISD::BCTRL;
5079   }
5080 
5081   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5082   // immediately following the call instruction if the caller and callee may
5083   // have different TOC bases. At link time if the linker determines the calls
5084   // may not share a TOC base, the call is redirected to a trampoline inserted
5085   // by the linker. The trampoline will (among other things) save the callers
5086   // TOC pointer at an ABI designated offset in the linkage area and the linker
5087   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5088   // into gpr2.
5089   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5090     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5091                                                   : PPCISD::CALL_NOP;
5092 
5093   return PPCISD::CALL;
5094 }
5095 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5096                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5097   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5098     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5099       return SDValue(Dest, 0);
5100 
5101   // Returns true if the callee is local, and false otherwise.
5102   auto isLocalCallee = [&]() {
5103     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5104     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5105 
5106     return DAG.getTarget().shouldAssumeDSOLocal(*Mod,
5107                                                 G ? G->getGlobal() : nullptr);
5108   };
5109 
5110   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5111   // a static relocation model causes some versions of GNU LD (2.17.50, at
5112   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5113   // built with secure-PLT.
5114   bool UsePlt =
5115       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5116       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5117 
5118   if (isFunctionGlobalAddress(Callee)) {
5119     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5120     if (!Subtarget.isAIXABI())
5121       return DAG.getTargetGlobalAddress(G->getGlobal(), dl,
5122                                         Callee.getValueType(), 0,
5123                                         UsePlt ? PPCII::MO_PLT : 0);
5124 
5125     // On AIX, direct function calls reference the symbol for the function's
5126     // entry point, which is named by prepending a "." before the function's
5127     // C-linkage name.
5128     auto &Context = DAG.getMachineFunction().getMMI().getContext();
5129 
5130     const GlobalObject *GO = cast<GlobalObject>(G->getGlobal());
5131     MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5132         Context.getOrCreateSymbol(Twine(".") + Twine(GO->getName())));
5133 
5134     if (GO && GO->isDeclaration() && !S->hasContainingCsect()) {
5135       // On AIX, an undefined symbol needs to be associated with a
5136       // MCSectionXCOFF to get the correct storage mapping class.
5137       // In this case, XCOFF::XMC_PR.
5138       const XCOFF::StorageClass SC =
5139           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5140       MCSectionXCOFF *Sec =
5141           Context.getXCOFFSection(S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5142                                   SC, SectionKind::getMetadata());
5143       S->setContainingCsect(Sec);
5144     }
5145 
5146     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5147     return DAG.getMCSymbol(S, PtrVT);
5148   }
5149 
5150   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
5151     return DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
5152                                        UsePlt ? PPCII::MO_PLT : 0);
5153 
5154   // No transformation needed.
5155   assert(Callee.getNode() && "What no callee?");
5156   return Callee;
5157 }
5158 
5159 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5160   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5161          "Expected a CALLSEQ_STARTSDNode.");
5162 
5163   // The last operand is the chain, except when the node has glue. If the node
5164   // has glue, then the last operand is the glue, and the chain is the second
5165   // last operand.
5166   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5167   if (LastValue.getValueType() != MVT::Glue)
5168     return LastValue;
5169 
5170   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5171 }
5172 
5173 // Creates the node that moves a functions address into the count register
5174 // to prepare for an indirect call instruction.
5175 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5176                                 SDValue &Glue, SDValue &Chain,
5177                                 const SDLoc &dl) {
5178   SDValue MTCTROps[] = {Chain, Callee, Glue};
5179   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5180   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5181                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5182   // The glue is the second value produced.
5183   Glue = Chain.getValue(1);
5184 }
5185 
5186 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5187                                           SDValue &Glue, SDValue &Chain,
5188                                           SDValue CallSeqStart,
5189                                           ImmutableCallSite CS, const SDLoc &dl,
5190                                           bool hasNest,
5191                                           const PPCSubtarget &Subtarget) {
5192   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5193   // entry point, but to the function descriptor (the function entry point
5194   // address is part of the function descriptor though).
5195   // The function descriptor is a three doubleword structure with the
5196   // following fields: function entry point, TOC base address and
5197   // environment pointer.
5198   // Thus for a call through a function pointer, the following actions need
5199   // to be performed:
5200   //   1. Save the TOC of the caller in the TOC save area of its stack
5201   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5202   //   2. Load the address of the function entry point from the function
5203   //      descriptor.
5204   //   3. Load the TOC of the callee from the function descriptor into r2.
5205   //   4. Load the environment pointer from the function descriptor into
5206   //      r11.
5207   //   5. Branch to the function entry point address.
5208   //   6. On return of the callee, the TOC of the caller needs to be
5209   //      restored (this is done in FinishCall()).
5210   //
5211   // The loads are scheduled at the beginning of the call sequence, and the
5212   // register copies are flagged together to ensure that no other
5213   // operations can be scheduled in between. E.g. without flagging the
5214   // copies together, a TOC access in the caller could be scheduled between
5215   // the assignment of the callee TOC and the branch to the callee, which leads
5216   // to incorrect code.
5217 
5218   // Start by loading the function address from the descriptor.
5219   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5220   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5221                       ? (MachineMemOperand::MODereferenceable |
5222                          MachineMemOperand::MOInvariant)
5223                       : MachineMemOperand::MONone;
5224 
5225   MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5226 
5227   // Registers used in building the DAG.
5228   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5229   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5230 
5231   // Offsets of descriptor members.
5232   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5233   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5234 
5235   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5236   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5237 
5238   // One load for the functions entry point address.
5239   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5240                                     Alignment, MMOFlags);
5241 
5242   // One for loading the TOC anchor for the module that contains the called
5243   // function.
5244   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5245   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5246   SDValue TOCPtr =
5247       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5248                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5249 
5250   // One for loading the environment pointer.
5251   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5252   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5253   SDValue LoadEnvPtr =
5254       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5255                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5256 
5257 
5258   // Then copy the newly loaded TOC anchor to the TOC pointer.
5259   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5260   Chain = TOCVal.getValue(0);
5261   Glue = TOCVal.getValue(1);
5262 
5263   // If the function call has an explicit 'nest' parameter, it takes the
5264   // place of the environment pointer.
5265   assert((!hasNest || !Subtarget.isAIXABI()) &&
5266          "Nest parameter is not supported on AIX.");
5267   if (!hasNest) {
5268     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5269     Chain = EnvVal.getValue(0);
5270     Glue = EnvVal.getValue(1);
5271   }
5272 
5273   // The rest of the indirect call sequence is the same as the non-descriptor
5274   // DAG.
5275   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5276 }
5277 
5278 static void
5279 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv,
5280                   const SDLoc &dl, bool isTailCall, bool isVarArg,
5281                   bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5282                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5283                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5284                   const PPCSubtarget &Subtarget, bool isIndirect) {
5285   const bool IsPPC64 = Subtarget.isPPC64();
5286   // MVT for a general purpose register.
5287   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5288 
5289   // First operand is always the chain.
5290   Ops.push_back(Chain);
5291 
5292   // If it's a direct call pass the callee as the second operand.
5293   if (!isIndirect)
5294     Ops.push_back(Callee);
5295   else {
5296     assert(!isPatchPoint && "Patch point call are not indirect.");
5297 
5298     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5299     // on the stack (this would have been done in `LowerCall_64SVR4` or
5300     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5301     // represents both the indirect branch and a load that restores the TOC
5302     // pointer from the linkage area. The operand for the TOC restore is an add
5303     // of the TOC save offset to the stack pointer. This must be the second
5304     // operand: after the chain input but before any other variadic arguments.
5305     if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
5306       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5307 
5308       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5309       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5310       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5311       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5312       Ops.push_back(AddTOC);
5313     }
5314 
5315     // Add the register used for the environment pointer.
5316     if (Subtarget.usesFunctionDescriptors() && !hasNest)
5317       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5318                                     RegVT));
5319 
5320 
5321     // Add CTR register as callee so a bctr can be emitted later.
5322     if (isTailCall)
5323       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5324   }
5325 
5326   // If this is a tail call add stack pointer delta.
5327   if (isTailCall)
5328     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5329 
5330   // Add argument registers to the end of the list so that they are known live
5331   // into the call.
5332   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5333     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5334                                   RegsToPass[i].second.getValueType()));
5335 
5336   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5337   // no way to mark dependencies as implicit here.
5338   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5339   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint)
5340     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5341 
5342   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5343   if (isVarArg && Subtarget.is32BitELFABI())
5344     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5345 
5346   // Add a register mask operand representing the call-preserved registers.
5347   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5348   const uint32_t *Mask =
5349       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5350   assert(Mask && "Missing call preserved mask for calling convention");
5351   Ops.push_back(DAG.getRegisterMask(Mask));
5352 
5353   // If the glue is valid, it is the last operand.
5354   if (Glue.getNode())
5355     Ops.push_back(Glue);
5356 }
5357 
5358 SDValue PPCTargetLowering::FinishCall(
5359     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5360     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5361     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5362     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5363     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5364     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5365 
5366   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI())
5367     setUsesTOCBasePtr(DAG);
5368 
5369   const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint);
5370   unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall,
5371                                    DAG.getMachineFunction().getFunction(),
5372                                    Callee, Subtarget, DAG.getTarget());
5373 
5374   if (!isIndirect)
5375     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5376   else if (Subtarget.usesFunctionDescriptors())
5377     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS,
5378                                   dl, hasNest, Subtarget);
5379   else
5380     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5381 
5382   // Build the operand list for the call instruction.
5383   SmallVector<SDValue, 8> Ops;
5384   buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5385                     hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff,
5386                     Subtarget, isIndirect);
5387 
5388   // Emit tail call.
5389   if (isTailCall) {
5390     assert(((Callee.getOpcode() == ISD::Register &&
5391              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5392             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5393             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5394             isa<ConstantSDNode>(Callee)) &&
5395            "Expecting a global address, external symbol, absolute value or "
5396            "register");
5397     assert(CallOpc == PPCISD::TC_RETURN &&
5398            "Unexpected call opcode for a tail call.");
5399     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5400     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5401   }
5402 
5403   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5404   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5405   Glue = Chain.getValue(1);
5406 
5407   // When performing tail call optimization the callee pops its arguments off
5408   // the stack. Account for this here so these bytes can be pushed back on in
5409   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5410   int BytesCalleePops = (CallConv == CallingConv::Fast &&
5411                          getTargetMachine().Options.GuaranteedTailCallOpt)
5412                             ? NumBytes
5413                             : 0;
5414 
5415   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5416                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5417                              Glue, dl);
5418   Glue = Chain.getValue(1);
5419 
5420   return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals);
5421 }
5422 
5423 SDValue
5424 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5425                              SmallVectorImpl<SDValue> &InVals) const {
5426   SelectionDAG &DAG                     = CLI.DAG;
5427   SDLoc &dl                             = CLI.DL;
5428   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5429   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5430   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5431   SDValue Chain                         = CLI.Chain;
5432   SDValue Callee                        = CLI.Callee;
5433   bool &isTailCall                      = CLI.IsTailCall;
5434   CallingConv::ID CallConv              = CLI.CallConv;
5435   bool isVarArg                         = CLI.IsVarArg;
5436   bool isPatchPoint                     = CLI.IsPatchPoint;
5437   ImmutableCallSite CS                  = CLI.CS;
5438 
5439   if (isTailCall) {
5440     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5441       isTailCall = false;
5442     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5443       isTailCall =
5444         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5445                                                  isVarArg, Outs, Ins, DAG);
5446     else
5447       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5448                                                      Ins, DAG);
5449     if (isTailCall) {
5450       ++NumTailCalls;
5451       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5452         ++NumSiblingCalls;
5453 
5454       assert(isa<GlobalAddressSDNode>(Callee) &&
5455              "Callee should be an llvm::Function object.");
5456       LLVM_DEBUG(
5457           const GlobalValue *GV =
5458               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5459           const unsigned Width =
5460               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5461           dbgs() << "TCO caller: "
5462                  << left_justify(DAG.getMachineFunction().getName(), Width)
5463                  << ", callee linkage: " << GV->getVisibility() << ", "
5464                  << GV->getLinkage() << "\n");
5465     }
5466   }
5467 
5468   if (!isTailCall && CS && CS.isMustTailCall())
5469     report_fatal_error("failed to perform tail call elimination on a call "
5470                        "site marked musttail");
5471 
5472   // When long calls (i.e. indirect calls) are always used, calls are always
5473   // made via function pointer. If we have a function name, first translate it
5474   // into a pointer.
5475   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5476       !isTailCall)
5477     Callee = LowerGlobalAddress(Callee, DAG);
5478 
5479   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5480     return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5481                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5482                             dl, DAG, InVals, CS);
5483 
5484   if (Subtarget.isSVR4ABI())
5485     return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5486                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5487                             dl, DAG, InVals, CS);
5488 
5489   if (Subtarget.isAIXABI())
5490     return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5491                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5492                          dl, DAG, InVals, CS);
5493 
5494   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5495                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5496                           dl, DAG, InVals, CS);
5497 }
5498 
5499 SDValue PPCTargetLowering::LowerCall_32SVR4(
5500     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5501     bool isTailCall, bool isPatchPoint,
5502     const SmallVectorImpl<ISD::OutputArg> &Outs,
5503     const SmallVectorImpl<SDValue> &OutVals,
5504     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5505     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5506     ImmutableCallSite CS) const {
5507   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5508   // of the 32-bit SVR4 ABI stack frame layout.
5509 
5510   assert((CallConv == CallingConv::C ||
5511           CallConv == CallingConv::Cold ||
5512           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5513 
5514   unsigned PtrByteSize = 4;
5515 
5516   MachineFunction &MF = DAG.getMachineFunction();
5517 
5518   // Mark this function as potentially containing a function that contains a
5519   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5520   // and restoring the callers stack pointer in this functions epilog. This is
5521   // done because by tail calling the called function might overwrite the value
5522   // in this function's (MF) stack pointer stack slot 0(SP).
5523   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5524       CallConv == CallingConv::Fast)
5525     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5526 
5527   // Count how many bytes are to be pushed on the stack, including the linkage
5528   // area, parameter list area and the part of the local variable space which
5529   // contains copies of aggregates which are passed by value.
5530 
5531   // Assign locations to all of the outgoing arguments.
5532   SmallVector<CCValAssign, 16> ArgLocs;
5533   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5534 
5535   // Reserve space for the linkage area on the stack.
5536   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5537                        PtrByteSize);
5538   if (useSoftFloat())
5539     CCInfo.PreAnalyzeCallOperands(Outs);
5540 
5541   if (isVarArg) {
5542     // Handle fixed and variable vector arguments differently.
5543     // Fixed vector arguments go into registers as long as registers are
5544     // available. Variable vector arguments always go into memory.
5545     unsigned NumArgs = Outs.size();
5546 
5547     for (unsigned i = 0; i != NumArgs; ++i) {
5548       MVT ArgVT = Outs[i].VT;
5549       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5550       bool Result;
5551 
5552       if (Outs[i].IsFixed) {
5553         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5554                                CCInfo);
5555       } else {
5556         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5557                                       ArgFlags, CCInfo);
5558       }
5559 
5560       if (Result) {
5561 #ifndef NDEBUG
5562         errs() << "Call operand #" << i << " has unhandled type "
5563              << EVT(ArgVT).getEVTString() << "\n";
5564 #endif
5565         llvm_unreachable(nullptr);
5566       }
5567     }
5568   } else {
5569     // All arguments are treated the same.
5570     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5571   }
5572   CCInfo.clearWasPPCF128();
5573 
5574   // Assign locations to all of the outgoing aggregate by value arguments.
5575   SmallVector<CCValAssign, 16> ByValArgLocs;
5576   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5577 
5578   // Reserve stack space for the allocations in CCInfo.
5579   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5580 
5581   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5582 
5583   // Size of the linkage area, parameter list area and the part of the local
5584   // space variable where copies of aggregates which are passed by value are
5585   // stored.
5586   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5587 
5588   // Calculate by how many bytes the stack has to be adjusted in case of tail
5589   // call optimization.
5590   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5591 
5592   // Adjust the stack pointer for the new arguments...
5593   // These operations are automatically eliminated by the prolog/epilog pass
5594   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5595   SDValue CallSeqStart = Chain;
5596 
5597   // Load the return address and frame pointer so it can be moved somewhere else
5598   // later.
5599   SDValue LROp, FPOp;
5600   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5601 
5602   // Set up a copy of the stack pointer for use loading and storing any
5603   // arguments that may not fit in the registers available for argument
5604   // passing.
5605   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5606 
5607   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5608   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5609   SmallVector<SDValue, 8> MemOpChains;
5610 
5611   bool seenFloatArg = false;
5612   // Walk the register/memloc assignments, inserting copies/loads.
5613   // i - Tracks the index into the list of registers allocated for the call
5614   // RealArgIdx - Tracks the index into the list of actual function arguments
5615   // j - Tracks the index into the list of byval arguments
5616   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5617        i != e;
5618        ++i, ++RealArgIdx) {
5619     CCValAssign &VA = ArgLocs[i];
5620     SDValue Arg = OutVals[RealArgIdx];
5621     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5622 
5623     if (Flags.isByVal()) {
5624       // Argument is an aggregate which is passed by value, thus we need to
5625       // create a copy of it in the local variable space of the current stack
5626       // frame (which is the stack frame of the caller) and pass the address of
5627       // this copy to the callee.
5628       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5629       CCValAssign &ByValVA = ByValArgLocs[j++];
5630       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5631 
5632       // Memory reserved in the local variable space of the callers stack frame.
5633       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5634 
5635       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5636       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5637                            StackPtr, PtrOff);
5638 
5639       // Create a copy of the argument in the local area of the current
5640       // stack frame.
5641       SDValue MemcpyCall =
5642         CreateCopyOfByValArgument(Arg, PtrOff,
5643                                   CallSeqStart.getNode()->getOperand(0),
5644                                   Flags, DAG, dl);
5645 
5646       // This must go outside the CALLSEQ_START..END.
5647       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5648                                                      SDLoc(MemcpyCall));
5649       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5650                              NewCallSeqStart.getNode());
5651       Chain = CallSeqStart = NewCallSeqStart;
5652 
5653       // Pass the address of the aggregate copy on the stack either in a
5654       // physical register or in the parameter list area of the current stack
5655       // frame to the callee.
5656       Arg = PtrOff;
5657     }
5658 
5659     // When useCRBits() is true, there can be i1 arguments.
5660     // It is because getRegisterType(MVT::i1) => MVT::i1,
5661     // and for other integer types getRegisterType() => MVT::i32.
5662     // Extend i1 and ensure callee will get i32.
5663     if (Arg.getValueType() == MVT::i1)
5664       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5665                         dl, MVT::i32, Arg);
5666 
5667     if (VA.isRegLoc()) {
5668       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5669       // Put argument in a physical register.
5670       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5671         bool IsLE = Subtarget.isLittleEndian();
5672         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5673                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5674         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5675         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5676                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5677         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5678                              SVal.getValue(0)));
5679       } else
5680         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5681     } else {
5682       // Put argument in the parameter list area of the current stack frame.
5683       assert(VA.isMemLoc());
5684       unsigned LocMemOffset = VA.getLocMemOffset();
5685 
5686       if (!isTailCall) {
5687         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5688         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5689                              StackPtr, PtrOff);
5690 
5691         MemOpChains.push_back(
5692             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5693       } else {
5694         // Calculate and remember argument location.
5695         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5696                                  TailCallArguments);
5697       }
5698     }
5699   }
5700 
5701   if (!MemOpChains.empty())
5702     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5703 
5704   // Build a sequence of copy-to-reg nodes chained together with token chain
5705   // and flag operands which copy the outgoing args into the appropriate regs.
5706   SDValue InFlag;
5707   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5708     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5709                              RegsToPass[i].second, InFlag);
5710     InFlag = Chain.getValue(1);
5711   }
5712 
5713   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5714   // registers.
5715   if (isVarArg) {
5716     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5717     SDValue Ops[] = { Chain, InFlag };
5718 
5719     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5720                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5721 
5722     InFlag = Chain.getValue(1);
5723   }
5724 
5725   if (isTailCall)
5726     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5727                     TailCallArguments);
5728 
5729   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5730                     /* unused except on PPC64 ELFv1 */ false, DAG,
5731                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5732                     NumBytes, Ins, InVals, CS);
5733 }
5734 
5735 // Copy an argument into memory, being careful to do this outside the
5736 // call sequence for the call to which the argument belongs.
5737 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5738     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5739     SelectionDAG &DAG, const SDLoc &dl) const {
5740   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5741                         CallSeqStart.getNode()->getOperand(0),
5742                         Flags, DAG, dl);
5743   // The MEMCPY must go outside the CALLSEQ_START..END.
5744   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5745   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5746                                                  SDLoc(MemcpyCall));
5747   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5748                          NewCallSeqStart.getNode());
5749   return NewCallSeqStart;
5750 }
5751 
5752 SDValue PPCTargetLowering::LowerCall_64SVR4(
5753     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5754     bool isTailCall, bool isPatchPoint,
5755     const SmallVectorImpl<ISD::OutputArg> &Outs,
5756     const SmallVectorImpl<SDValue> &OutVals,
5757     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5758     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5759     ImmutableCallSite CS) const {
5760   bool isELFv2ABI = Subtarget.isELFv2ABI();
5761   bool isLittleEndian = Subtarget.isLittleEndian();
5762   unsigned NumOps = Outs.size();
5763   bool hasNest = false;
5764   bool IsSibCall = false;
5765 
5766   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5767   unsigned PtrByteSize = 8;
5768 
5769   MachineFunction &MF = DAG.getMachineFunction();
5770 
5771   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5772     IsSibCall = true;
5773 
5774   // Mark this function as potentially containing a function that contains a
5775   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5776   // and restoring the callers stack pointer in this functions epilog. This is
5777   // done because by tail calling the called function might overwrite the value
5778   // in this function's (MF) stack pointer stack slot 0(SP).
5779   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5780       CallConv == CallingConv::Fast)
5781     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5782 
5783   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5784          "fastcc not supported on varargs functions");
5785 
5786   // Count how many bytes are to be pushed on the stack, including the linkage
5787   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5788   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5789   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5790   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5791   unsigned NumBytes = LinkageSize;
5792   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5793   unsigned &QFPR_idx = FPR_idx;
5794 
5795   static const MCPhysReg GPR[] = {
5796     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5797     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5798   };
5799   static const MCPhysReg VR[] = {
5800     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5801     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5802   };
5803 
5804   const unsigned NumGPRs = array_lengthof(GPR);
5805   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5806   const unsigned NumVRs  = array_lengthof(VR);
5807   const unsigned NumQFPRs = NumFPRs;
5808 
5809   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5810   // can be passed to the callee in registers.
5811   // For the fast calling convention, there is another check below.
5812   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5813   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5814   if (!HasParameterArea) {
5815     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5816     unsigned AvailableFPRs = NumFPRs;
5817     unsigned AvailableVRs = NumVRs;
5818     unsigned NumBytesTmp = NumBytes;
5819     for (unsigned i = 0; i != NumOps; ++i) {
5820       if (Outs[i].Flags.isNest()) continue;
5821       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5822                                 PtrByteSize, LinkageSize, ParamAreaSize,
5823                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5824                                 Subtarget.hasQPX()))
5825         HasParameterArea = true;
5826     }
5827   }
5828 
5829   // When using the fast calling convention, we don't provide backing for
5830   // arguments that will be in registers.
5831   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5832 
5833   // Avoid allocating parameter area for fastcc functions if all the arguments
5834   // can be passed in the registers.
5835   if (CallConv == CallingConv::Fast)
5836     HasParameterArea = false;
5837 
5838   // Add up all the space actually used.
5839   for (unsigned i = 0; i != NumOps; ++i) {
5840     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5841     EVT ArgVT = Outs[i].VT;
5842     EVT OrigVT = Outs[i].ArgVT;
5843 
5844     if (Flags.isNest())
5845       continue;
5846 
5847     if (CallConv == CallingConv::Fast) {
5848       if (Flags.isByVal()) {
5849         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5850         if (NumGPRsUsed > NumGPRs)
5851           HasParameterArea = true;
5852       } else {
5853         switch (ArgVT.getSimpleVT().SimpleTy) {
5854         default: llvm_unreachable("Unexpected ValueType for argument!");
5855         case MVT::i1:
5856         case MVT::i32:
5857         case MVT::i64:
5858           if (++NumGPRsUsed <= NumGPRs)
5859             continue;
5860           break;
5861         case MVT::v4i32:
5862         case MVT::v8i16:
5863         case MVT::v16i8:
5864         case MVT::v2f64:
5865         case MVT::v2i64:
5866         case MVT::v1i128:
5867         case MVT::f128:
5868           if (++NumVRsUsed <= NumVRs)
5869             continue;
5870           break;
5871         case MVT::v4f32:
5872           // When using QPX, this is handled like a FP register, otherwise, it
5873           // is an Altivec register.
5874           if (Subtarget.hasQPX()) {
5875             if (++NumFPRsUsed <= NumFPRs)
5876               continue;
5877           } else {
5878             if (++NumVRsUsed <= NumVRs)
5879               continue;
5880           }
5881           break;
5882         case MVT::f32:
5883         case MVT::f64:
5884         case MVT::v4f64: // QPX
5885         case MVT::v4i1:  // QPX
5886           if (++NumFPRsUsed <= NumFPRs)
5887             continue;
5888           break;
5889         }
5890         HasParameterArea = true;
5891       }
5892     }
5893 
5894     /* Respect alignment of argument on the stack.  */
5895     unsigned Align =
5896       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5897     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5898 
5899     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5900     if (Flags.isInConsecutiveRegsLast())
5901       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5902   }
5903 
5904   unsigned NumBytesActuallyUsed = NumBytes;
5905 
5906   // In the old ELFv1 ABI,
5907   // the prolog code of the callee may store up to 8 GPR argument registers to
5908   // the stack, allowing va_start to index over them in memory if its varargs.
5909   // Because we cannot tell if this is needed on the caller side, we have to
5910   // conservatively assume that it is needed.  As such, make sure we have at
5911   // least enough stack space for the caller to store the 8 GPRs.
5912   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5913   // really requires memory operands, e.g. a vararg function.
5914   if (HasParameterArea)
5915     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5916   else
5917     NumBytes = LinkageSize;
5918 
5919   // Tail call needs the stack to be aligned.
5920   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5921       CallConv == CallingConv::Fast)
5922     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5923 
5924   int SPDiff = 0;
5925 
5926   // Calculate by how many bytes the stack has to be adjusted in case of tail
5927   // call optimization.
5928   if (!IsSibCall)
5929     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5930 
5931   // To protect arguments on the stack from being clobbered in a tail call,
5932   // force all the loads to happen before doing any other lowering.
5933   if (isTailCall)
5934     Chain = DAG.getStackArgumentTokenFactor(Chain);
5935 
5936   // Adjust the stack pointer for the new arguments...
5937   // These operations are automatically eliminated by the prolog/epilog pass
5938   if (!IsSibCall)
5939     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5940   SDValue CallSeqStart = Chain;
5941 
5942   // Load the return address and frame pointer so it can be move somewhere else
5943   // later.
5944   SDValue LROp, FPOp;
5945   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5946 
5947   // Set up a copy of the stack pointer for use loading and storing any
5948   // arguments that may not fit in the registers available for argument
5949   // passing.
5950   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5951 
5952   // Figure out which arguments are going to go in registers, and which in
5953   // memory.  Also, if this is a vararg function, floating point operations
5954   // must be stored to our stack, and loaded into integer regs as well, if
5955   // any integer regs are available for argument passing.
5956   unsigned ArgOffset = LinkageSize;
5957 
5958   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5959   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5960 
5961   SmallVector<SDValue, 8> MemOpChains;
5962   for (unsigned i = 0; i != NumOps; ++i) {
5963     SDValue Arg = OutVals[i];
5964     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5965     EVT ArgVT = Outs[i].VT;
5966     EVT OrigVT = Outs[i].ArgVT;
5967 
5968     // PtrOff will be used to store the current argument to the stack if a
5969     // register cannot be found for it.
5970     SDValue PtrOff;
5971 
5972     // We re-align the argument offset for each argument, except when using the
5973     // fast calling convention, when we need to make sure we do that only when
5974     // we'll actually use a stack slot.
5975     auto ComputePtrOff = [&]() {
5976       /* Respect alignment of argument on the stack.  */
5977       unsigned Align =
5978         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5979       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5980 
5981       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5982 
5983       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5984     };
5985 
5986     if (CallConv != CallingConv::Fast) {
5987       ComputePtrOff();
5988 
5989       /* Compute GPR index associated with argument offset.  */
5990       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5991       GPR_idx = std::min(GPR_idx, NumGPRs);
5992     }
5993 
5994     // Promote integers to 64-bit values.
5995     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5996       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5997       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5998       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5999     }
6000 
6001     // FIXME memcpy is used way more than necessary.  Correctness first.
6002     // Note: "by value" is code for passing a structure by value, not
6003     // basic types.
6004     if (Flags.isByVal()) {
6005       // Note: Size includes alignment padding, so
6006       //   struct x { short a; char b; }
6007       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6008       // These are the proper values we need for right-justifying the
6009       // aggregate in a parameter register.
6010       unsigned Size = Flags.getByValSize();
6011 
6012       // An empty aggregate parameter takes up no storage and no
6013       // registers.
6014       if (Size == 0)
6015         continue;
6016 
6017       if (CallConv == CallingConv::Fast)
6018         ComputePtrOff();
6019 
6020       // All aggregates smaller than 8 bytes must be passed right-justified.
6021       if (Size==1 || Size==2 || Size==4) {
6022         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6023         if (GPR_idx != NumGPRs) {
6024           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6025                                         MachinePointerInfo(), VT);
6026           MemOpChains.push_back(Load.getValue(1));
6027           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6028 
6029           ArgOffset += PtrByteSize;
6030           continue;
6031         }
6032       }
6033 
6034       if (GPR_idx == NumGPRs && Size < 8) {
6035         SDValue AddPtr = PtrOff;
6036         if (!isLittleEndian) {
6037           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6038                                           PtrOff.getValueType());
6039           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6040         }
6041         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6042                                                           CallSeqStart,
6043                                                           Flags, DAG, dl);
6044         ArgOffset += PtrByteSize;
6045         continue;
6046       }
6047       // Copy entire object into memory.  There are cases where gcc-generated
6048       // code assumes it is there, even if it could be put entirely into
6049       // registers.  (This is not what the doc says.)
6050 
6051       // FIXME: The above statement is likely due to a misunderstanding of the
6052       // documents.  All arguments must be copied into the parameter area BY
6053       // THE CALLEE in the event that the callee takes the address of any
6054       // formal argument.  That has not yet been implemented.  However, it is
6055       // reasonable to use the stack area as a staging area for the register
6056       // load.
6057 
6058       // Skip this for small aggregates, as we will use the same slot for a
6059       // right-justified copy, below.
6060       if (Size >= 8)
6061         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6062                                                           CallSeqStart,
6063                                                           Flags, DAG, dl);
6064 
6065       // When a register is available, pass a small aggregate right-justified.
6066       if (Size < 8 && GPR_idx != NumGPRs) {
6067         // The easiest way to get this right-justified in a register
6068         // is to copy the structure into the rightmost portion of a
6069         // local variable slot, then load the whole slot into the
6070         // register.
6071         // FIXME: The memcpy seems to produce pretty awful code for
6072         // small aggregates, particularly for packed ones.
6073         // FIXME: It would be preferable to use the slot in the
6074         // parameter save area instead of a new local variable.
6075         SDValue AddPtr = PtrOff;
6076         if (!isLittleEndian) {
6077           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6078           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6079         }
6080         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6081                                                           CallSeqStart,
6082                                                           Flags, DAG, dl);
6083 
6084         // Load the slot into the register.
6085         SDValue Load =
6086             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6087         MemOpChains.push_back(Load.getValue(1));
6088         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6089 
6090         // Done with this argument.
6091         ArgOffset += PtrByteSize;
6092         continue;
6093       }
6094 
6095       // For aggregates larger than PtrByteSize, copy the pieces of the
6096       // object that fit into registers from the parameter save area.
6097       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6098         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6099         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6100         if (GPR_idx != NumGPRs) {
6101           SDValue Load =
6102               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6103           MemOpChains.push_back(Load.getValue(1));
6104           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6105           ArgOffset += PtrByteSize;
6106         } else {
6107           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6108           break;
6109         }
6110       }
6111       continue;
6112     }
6113 
6114     switch (Arg.getSimpleValueType().SimpleTy) {
6115     default: llvm_unreachable("Unexpected ValueType for argument!");
6116     case MVT::i1:
6117     case MVT::i32:
6118     case MVT::i64:
6119       if (Flags.isNest()) {
6120         // The 'nest' parameter, if any, is passed in R11.
6121         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6122         hasNest = true;
6123         break;
6124       }
6125 
6126       // These can be scalar arguments or elements of an integer array type
6127       // passed directly.  Clang may use those instead of "byval" aggregate
6128       // types to avoid forcing arguments to memory unnecessarily.
6129       if (GPR_idx != NumGPRs) {
6130         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6131       } else {
6132         if (CallConv == CallingConv::Fast)
6133           ComputePtrOff();
6134 
6135         assert(HasParameterArea &&
6136                "Parameter area must exist to pass an argument in memory.");
6137         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6138                          true, isTailCall, false, MemOpChains,
6139                          TailCallArguments, dl);
6140         if (CallConv == CallingConv::Fast)
6141           ArgOffset += PtrByteSize;
6142       }
6143       if (CallConv != CallingConv::Fast)
6144         ArgOffset += PtrByteSize;
6145       break;
6146     case MVT::f32:
6147     case MVT::f64: {
6148       // These can be scalar arguments or elements of a float array type
6149       // passed directly.  The latter are used to implement ELFv2 homogenous
6150       // float aggregates.
6151 
6152       // Named arguments go into FPRs first, and once they overflow, the
6153       // remaining arguments go into GPRs and then the parameter save area.
6154       // Unnamed arguments for vararg functions always go to GPRs and
6155       // then the parameter save area.  For now, put all arguments to vararg
6156       // routines always in both locations (FPR *and* GPR or stack slot).
6157       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6158       bool NeededLoad = false;
6159 
6160       // First load the argument into the next available FPR.
6161       if (FPR_idx != NumFPRs)
6162         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6163 
6164       // Next, load the argument into GPR or stack slot if needed.
6165       if (!NeedGPROrStack)
6166         ;
6167       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6168         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6169         // once we support fp <-> gpr moves.
6170 
6171         // In the non-vararg case, this can only ever happen in the
6172         // presence of f32 array types, since otherwise we never run
6173         // out of FPRs before running out of GPRs.
6174         SDValue ArgVal;
6175 
6176         // Double values are always passed in a single GPR.
6177         if (Arg.getValueType() != MVT::f32) {
6178           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6179 
6180         // Non-array float values are extended and passed in a GPR.
6181         } else if (!Flags.isInConsecutiveRegs()) {
6182           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6183           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6184 
6185         // If we have an array of floats, we collect every odd element
6186         // together with its predecessor into one GPR.
6187         } else if (ArgOffset % PtrByteSize != 0) {
6188           SDValue Lo, Hi;
6189           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6190           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6191           if (!isLittleEndian)
6192             std::swap(Lo, Hi);
6193           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6194 
6195         // The final element, if even, goes into the first half of a GPR.
6196         } else if (Flags.isInConsecutiveRegsLast()) {
6197           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6198           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6199           if (!isLittleEndian)
6200             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6201                                  DAG.getConstant(32, dl, MVT::i32));
6202 
6203         // Non-final even elements are skipped; they will be handled
6204         // together the with subsequent argument on the next go-around.
6205         } else
6206           ArgVal = SDValue();
6207 
6208         if (ArgVal.getNode())
6209           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6210       } else {
6211         if (CallConv == CallingConv::Fast)
6212           ComputePtrOff();
6213 
6214         // Single-precision floating-point values are mapped to the
6215         // second (rightmost) word of the stack doubleword.
6216         if (Arg.getValueType() == MVT::f32 &&
6217             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6218           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6219           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6220         }
6221 
6222         assert(HasParameterArea &&
6223                "Parameter area must exist to pass an argument in memory.");
6224         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6225                          true, isTailCall, false, MemOpChains,
6226                          TailCallArguments, dl);
6227 
6228         NeededLoad = true;
6229       }
6230       // When passing an array of floats, the array occupies consecutive
6231       // space in the argument area; only round up to the next doubleword
6232       // at the end of the array.  Otherwise, each float takes 8 bytes.
6233       if (CallConv != CallingConv::Fast || NeededLoad) {
6234         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6235                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6236         if (Flags.isInConsecutiveRegsLast())
6237           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6238       }
6239       break;
6240     }
6241     case MVT::v4f32:
6242     case MVT::v4i32:
6243     case MVT::v8i16:
6244     case MVT::v16i8:
6245     case MVT::v2f64:
6246     case MVT::v2i64:
6247     case MVT::v1i128:
6248     case MVT::f128:
6249       if (!Subtarget.hasQPX()) {
6250       // These can be scalar arguments or elements of a vector array type
6251       // passed directly.  The latter are used to implement ELFv2 homogenous
6252       // vector aggregates.
6253 
6254       // For a varargs call, named arguments go into VRs or on the stack as
6255       // usual; unnamed arguments always go to the stack or the corresponding
6256       // GPRs when within range.  For now, we always put the value in both
6257       // locations (or even all three).
6258       if (isVarArg) {
6259         assert(HasParameterArea &&
6260                "Parameter area must exist if we have a varargs call.");
6261         // We could elide this store in the case where the object fits
6262         // entirely in R registers.  Maybe later.
6263         SDValue Store =
6264             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6265         MemOpChains.push_back(Store);
6266         if (VR_idx != NumVRs) {
6267           SDValue Load =
6268               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6269           MemOpChains.push_back(Load.getValue(1));
6270           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6271         }
6272         ArgOffset += 16;
6273         for (unsigned i=0; i<16; i+=PtrByteSize) {
6274           if (GPR_idx == NumGPRs)
6275             break;
6276           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6277                                    DAG.getConstant(i, dl, PtrVT));
6278           SDValue Load =
6279               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6280           MemOpChains.push_back(Load.getValue(1));
6281           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6282         }
6283         break;
6284       }
6285 
6286       // Non-varargs Altivec params go into VRs or on the stack.
6287       if (VR_idx != NumVRs) {
6288         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6289       } else {
6290         if (CallConv == CallingConv::Fast)
6291           ComputePtrOff();
6292 
6293         assert(HasParameterArea &&
6294                "Parameter area must exist to pass an argument in memory.");
6295         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6296                          true, isTailCall, true, MemOpChains,
6297                          TailCallArguments, dl);
6298         if (CallConv == CallingConv::Fast)
6299           ArgOffset += 16;
6300       }
6301 
6302       if (CallConv != CallingConv::Fast)
6303         ArgOffset += 16;
6304       break;
6305       } // not QPX
6306 
6307       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6308              "Invalid QPX parameter type");
6309 
6310       LLVM_FALLTHROUGH;
6311     case MVT::v4f64:
6312     case MVT::v4i1: {
6313       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6314       if (isVarArg) {
6315         assert(HasParameterArea &&
6316                "Parameter area must exist if we have a varargs call.");
6317         // We could elide this store in the case where the object fits
6318         // entirely in R registers.  Maybe later.
6319         SDValue Store =
6320             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6321         MemOpChains.push_back(Store);
6322         if (QFPR_idx != NumQFPRs) {
6323           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6324                                      PtrOff, MachinePointerInfo());
6325           MemOpChains.push_back(Load.getValue(1));
6326           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6327         }
6328         ArgOffset += (IsF32 ? 16 : 32);
6329         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6330           if (GPR_idx == NumGPRs)
6331             break;
6332           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6333                                    DAG.getConstant(i, dl, PtrVT));
6334           SDValue Load =
6335               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6336           MemOpChains.push_back(Load.getValue(1));
6337           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6338         }
6339         break;
6340       }
6341 
6342       // Non-varargs QPX params go into registers or on the stack.
6343       if (QFPR_idx != NumQFPRs) {
6344         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6345       } else {
6346         if (CallConv == CallingConv::Fast)
6347           ComputePtrOff();
6348 
6349         assert(HasParameterArea &&
6350                "Parameter area must exist to pass an argument in memory.");
6351         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6352                          true, isTailCall, true, MemOpChains,
6353                          TailCallArguments, dl);
6354         if (CallConv == CallingConv::Fast)
6355           ArgOffset += (IsF32 ? 16 : 32);
6356       }
6357 
6358       if (CallConv != CallingConv::Fast)
6359         ArgOffset += (IsF32 ? 16 : 32);
6360       break;
6361       }
6362     }
6363   }
6364 
6365   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6366          "mismatch in size of parameter area");
6367   (void)NumBytesActuallyUsed;
6368 
6369   if (!MemOpChains.empty())
6370     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6371 
6372   // Check if this is an indirect call (MTCTR/BCTRL).
6373   // See prepareDescriptorIndirectCall and buildCallOperands for more
6374   // information about calls through function pointers in the 64-bit SVR4 ABI.
6375   if (!isTailCall && !isPatchPoint &&
6376       !isFunctionGlobalAddress(Callee) &&
6377       !isa<ExternalSymbolSDNode>(Callee)) {
6378     // Load r2 into a virtual register and store it to the TOC save area.
6379     setUsesTOCBasePtr(DAG);
6380     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6381     // TOC save area offset.
6382     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6383     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6384     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6385     Chain = DAG.getStore(
6386         Val.getValue(1), dl, Val, AddPtr,
6387         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6388     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6389     // This does not mean the MTCTR instruction must use R12; it's easier
6390     // to model this as an extra parameter, so do that.
6391     if (isELFv2ABI && !isPatchPoint)
6392       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6393   }
6394 
6395   // Build a sequence of copy-to-reg nodes chained together with token chain
6396   // and flag operands which copy the outgoing args into the appropriate regs.
6397   SDValue InFlag;
6398   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6399     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6400                              RegsToPass[i].second, InFlag);
6401     InFlag = Chain.getValue(1);
6402   }
6403 
6404   if (isTailCall && !IsSibCall)
6405     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6406                     TailCallArguments);
6407 
6408   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6409                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6410                     SPDiff, NumBytes, Ins, InVals, CS);
6411 }
6412 
6413 SDValue PPCTargetLowering::LowerCall_Darwin(
6414     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6415     bool isTailCall, bool isPatchPoint,
6416     const SmallVectorImpl<ISD::OutputArg> &Outs,
6417     const SmallVectorImpl<SDValue> &OutVals,
6418     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6419     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6420     ImmutableCallSite CS) const {
6421   unsigned NumOps = Outs.size();
6422 
6423   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6424   bool isPPC64 = PtrVT == MVT::i64;
6425   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6426 
6427   MachineFunction &MF = DAG.getMachineFunction();
6428 
6429   // Mark this function as potentially containing a function that contains a
6430   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6431   // and restoring the callers stack pointer in this functions epilog. This is
6432   // done because by tail calling the called function might overwrite the value
6433   // in this function's (MF) stack pointer stack slot 0(SP).
6434   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6435       CallConv == CallingConv::Fast)
6436     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6437 
6438   // Count how many bytes are to be pushed on the stack, including the linkage
6439   // area, and parameter passing area.  We start with 24/48 bytes, which is
6440   // prereserved space for [SP][CR][LR][3 x unused].
6441   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6442   unsigned NumBytes = LinkageSize;
6443 
6444   // Add up all the space actually used.
6445   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6446   // they all go in registers, but we must reserve stack space for them for
6447   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6448   // assigned stack space in order, with padding so Altivec parameters are
6449   // 16-byte aligned.
6450   unsigned nAltivecParamsAtEnd = 0;
6451   for (unsigned i = 0; i != NumOps; ++i) {
6452     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6453     EVT ArgVT = Outs[i].VT;
6454     // Varargs Altivec parameters are padded to a 16 byte boundary.
6455     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6456         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6457         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6458       if (!isVarArg && !isPPC64) {
6459         // Non-varargs Altivec parameters go after all the non-Altivec
6460         // parameters; handle those later so we know how much padding we need.
6461         nAltivecParamsAtEnd++;
6462         continue;
6463       }
6464       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6465       NumBytes = ((NumBytes+15)/16)*16;
6466     }
6467     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6468   }
6469 
6470   // Allow for Altivec parameters at the end, if needed.
6471   if (nAltivecParamsAtEnd) {
6472     NumBytes = ((NumBytes+15)/16)*16;
6473     NumBytes += 16*nAltivecParamsAtEnd;
6474   }
6475 
6476   // The prolog code of the callee may store up to 8 GPR argument registers to
6477   // the stack, allowing va_start to index over them in memory if its varargs.
6478   // Because we cannot tell if this is needed on the caller side, we have to
6479   // conservatively assume that it is needed.  As such, make sure we have at
6480   // least enough stack space for the caller to store the 8 GPRs.
6481   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6482 
6483   // Tail call needs the stack to be aligned.
6484   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6485       CallConv == CallingConv::Fast)
6486     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6487 
6488   // Calculate by how many bytes the stack has to be adjusted in case of tail
6489   // call optimization.
6490   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6491 
6492   // To protect arguments on the stack from being clobbered in a tail call,
6493   // force all the loads to happen before doing any other lowering.
6494   if (isTailCall)
6495     Chain = DAG.getStackArgumentTokenFactor(Chain);
6496 
6497   // Adjust the stack pointer for the new arguments...
6498   // These operations are automatically eliminated by the prolog/epilog pass
6499   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6500   SDValue CallSeqStart = Chain;
6501 
6502   // Load the return address and frame pointer so it can be move somewhere else
6503   // later.
6504   SDValue LROp, FPOp;
6505   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6506 
6507   // Set up a copy of the stack pointer for use loading and storing any
6508   // arguments that may not fit in the registers available for argument
6509   // passing.
6510   SDValue StackPtr;
6511   if (isPPC64)
6512     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6513   else
6514     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6515 
6516   // Figure out which arguments are going to go in registers, and which in
6517   // memory.  Also, if this is a vararg function, floating point operations
6518   // must be stored to our stack, and loaded into integer regs as well, if
6519   // any integer regs are available for argument passing.
6520   unsigned ArgOffset = LinkageSize;
6521   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6522 
6523   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6524     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6525     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6526   };
6527   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6528     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6529     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6530   };
6531   static const MCPhysReg VR[] = {
6532     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6533     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6534   };
6535   const unsigned NumGPRs = array_lengthof(GPR_32);
6536   const unsigned NumFPRs = 13;
6537   const unsigned NumVRs  = array_lengthof(VR);
6538 
6539   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6540 
6541   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6542   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6543 
6544   SmallVector<SDValue, 8> MemOpChains;
6545   for (unsigned i = 0; i != NumOps; ++i) {
6546     SDValue Arg = OutVals[i];
6547     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6548 
6549     // PtrOff will be used to store the current argument to the stack if a
6550     // register cannot be found for it.
6551     SDValue PtrOff;
6552 
6553     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6554 
6555     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6556 
6557     // On PPC64, promote integers to 64-bit values.
6558     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6559       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6560       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6561       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6562     }
6563 
6564     // FIXME memcpy is used way more than necessary.  Correctness first.
6565     // Note: "by value" is code for passing a structure by value, not
6566     // basic types.
6567     if (Flags.isByVal()) {
6568       unsigned Size = Flags.getByValSize();
6569       // Very small objects are passed right-justified.  Everything else is
6570       // passed left-justified.
6571       if (Size==1 || Size==2) {
6572         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6573         if (GPR_idx != NumGPRs) {
6574           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6575                                         MachinePointerInfo(), VT);
6576           MemOpChains.push_back(Load.getValue(1));
6577           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6578 
6579           ArgOffset += PtrByteSize;
6580         } else {
6581           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6582                                           PtrOff.getValueType());
6583           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6584           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6585                                                             CallSeqStart,
6586                                                             Flags, DAG, dl);
6587           ArgOffset += PtrByteSize;
6588         }
6589         continue;
6590       }
6591       // Copy entire object into memory.  There are cases where gcc-generated
6592       // code assumes it is there, even if it could be put entirely into
6593       // registers.  (This is not what the doc says.)
6594       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6595                                                         CallSeqStart,
6596                                                         Flags, DAG, dl);
6597 
6598       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6599       // copy the pieces of the object that fit into registers from the
6600       // parameter save area.
6601       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6602         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6603         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6604         if (GPR_idx != NumGPRs) {
6605           SDValue Load =
6606               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6607           MemOpChains.push_back(Load.getValue(1));
6608           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6609           ArgOffset += PtrByteSize;
6610         } else {
6611           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6612           break;
6613         }
6614       }
6615       continue;
6616     }
6617 
6618     switch (Arg.getSimpleValueType().SimpleTy) {
6619     default: llvm_unreachable("Unexpected ValueType for argument!");
6620     case MVT::i1:
6621     case MVT::i32:
6622     case MVT::i64:
6623       if (GPR_idx != NumGPRs) {
6624         if (Arg.getValueType() == MVT::i1)
6625           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6626 
6627         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6628       } else {
6629         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6630                          isPPC64, isTailCall, false, MemOpChains,
6631                          TailCallArguments, dl);
6632       }
6633       ArgOffset += PtrByteSize;
6634       break;
6635     case MVT::f32:
6636     case MVT::f64:
6637       if (FPR_idx != NumFPRs) {
6638         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6639 
6640         if (isVarArg) {
6641           SDValue Store =
6642               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6643           MemOpChains.push_back(Store);
6644 
6645           // Float varargs are always shadowed in available integer registers
6646           if (GPR_idx != NumGPRs) {
6647             SDValue Load =
6648                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6649             MemOpChains.push_back(Load.getValue(1));
6650             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6651           }
6652           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6653             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6654             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6655             SDValue Load =
6656                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6657             MemOpChains.push_back(Load.getValue(1));
6658             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6659           }
6660         } else {
6661           // If we have any FPRs remaining, we may also have GPRs remaining.
6662           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6663           // GPRs.
6664           if (GPR_idx != NumGPRs)
6665             ++GPR_idx;
6666           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6667               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6668             ++GPR_idx;
6669         }
6670       } else
6671         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6672                          isPPC64, isTailCall, false, MemOpChains,
6673                          TailCallArguments, dl);
6674       if (isPPC64)
6675         ArgOffset += 8;
6676       else
6677         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6678       break;
6679     case MVT::v4f32:
6680     case MVT::v4i32:
6681     case MVT::v8i16:
6682     case MVT::v16i8:
6683       if (isVarArg) {
6684         // These go aligned on the stack, or in the corresponding R registers
6685         // when within range.  The Darwin PPC ABI doc claims they also go in
6686         // V registers; in fact gcc does this only for arguments that are
6687         // prototyped, not for those that match the ...  We do it for all
6688         // arguments, seems to work.
6689         while (ArgOffset % 16 !=0) {
6690           ArgOffset += PtrByteSize;
6691           if (GPR_idx != NumGPRs)
6692             GPR_idx++;
6693         }
6694         // We could elide this store in the case where the object fits
6695         // entirely in R registers.  Maybe later.
6696         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6697                              DAG.getConstant(ArgOffset, dl, PtrVT));
6698         SDValue Store =
6699             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6700         MemOpChains.push_back(Store);
6701         if (VR_idx != NumVRs) {
6702           SDValue Load =
6703               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6704           MemOpChains.push_back(Load.getValue(1));
6705           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6706         }
6707         ArgOffset += 16;
6708         for (unsigned i=0; i<16; i+=PtrByteSize) {
6709           if (GPR_idx == NumGPRs)
6710             break;
6711           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6712                                    DAG.getConstant(i, dl, PtrVT));
6713           SDValue Load =
6714               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6715           MemOpChains.push_back(Load.getValue(1));
6716           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6717         }
6718         break;
6719       }
6720 
6721       // Non-varargs Altivec params generally go in registers, but have
6722       // stack space allocated at the end.
6723       if (VR_idx != NumVRs) {
6724         // Doesn't have GPR space allocated.
6725         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6726       } else if (nAltivecParamsAtEnd==0) {
6727         // We are emitting Altivec params in order.
6728         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6729                          isPPC64, isTailCall, true, MemOpChains,
6730                          TailCallArguments, dl);
6731         ArgOffset += 16;
6732       }
6733       break;
6734     }
6735   }
6736   // If all Altivec parameters fit in registers, as they usually do,
6737   // they get stack space following the non-Altivec parameters.  We
6738   // don't track this here because nobody below needs it.
6739   // If there are more Altivec parameters than fit in registers emit
6740   // the stores here.
6741   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6742     unsigned j = 0;
6743     // Offset is aligned; skip 1st 12 params which go in V registers.
6744     ArgOffset = ((ArgOffset+15)/16)*16;
6745     ArgOffset += 12*16;
6746     for (unsigned i = 0; i != NumOps; ++i) {
6747       SDValue Arg = OutVals[i];
6748       EVT ArgType = Outs[i].VT;
6749       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6750           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6751         if (++j > NumVRs) {
6752           SDValue PtrOff;
6753           // We are emitting Altivec params in order.
6754           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6755                            isPPC64, isTailCall, true, MemOpChains,
6756                            TailCallArguments, dl);
6757           ArgOffset += 16;
6758         }
6759       }
6760     }
6761   }
6762 
6763   if (!MemOpChains.empty())
6764     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6765 
6766   // On Darwin, R12 must contain the address of an indirect callee.  This does
6767   // not mean the MTCTR instruction must use R12; it's easier to model this as
6768   // an extra parameter, so do that.
6769   if (!isTailCall &&
6770       !isFunctionGlobalAddress(Callee) &&
6771       !isa<ExternalSymbolSDNode>(Callee) &&
6772       !isBLACompatibleAddress(Callee, DAG))
6773     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6774                                                    PPC::R12), Callee));
6775 
6776   // Build a sequence of copy-to-reg nodes chained together with token chain
6777   // and flag operands which copy the outgoing args into the appropriate regs.
6778   SDValue InFlag;
6779   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6780     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6781                              RegsToPass[i].second, InFlag);
6782     InFlag = Chain.getValue(1);
6783   }
6784 
6785   if (isTailCall)
6786     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6787                     TailCallArguments);
6788 
6789   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6790                     /* unused except on PPC64 ELFv1 */ false, DAG,
6791                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6792                     NumBytes, Ins, InVals, CS);
6793 }
6794 
6795 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6796                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6797                    CCState &State) {
6798 
6799   if (ValVT == MVT::f128)
6800     report_fatal_error("f128 is unimplemented on AIX.");
6801 
6802   if (ArgFlags.isByVal())
6803     report_fatal_error("Passing structure by value is unimplemented.");
6804 
6805   if (ArgFlags.isSRet())
6806     report_fatal_error("Struct return arguments are unimplemented.");
6807 
6808   if (ArgFlags.isNest())
6809     report_fatal_error("Nest arguments are unimplemented.");
6810 
6811   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6812       State.getMachineFunction().getSubtarget());
6813   const bool IsPPC64 = Subtarget.isPPC64();
6814   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6815 
6816   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6817                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6818                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6819   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6820                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6821                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6822 
6823   // Arguments always reserve parameter save area.
6824   switch (ValVT.SimpleTy) {
6825   default:
6826     report_fatal_error("Unhandled value type for argument.");
6827   case MVT::i64:
6828     // i64 arguments should have been split to i32 for PPC32.
6829     assert(IsPPC64 && "PPC32 should have split i64 values.");
6830     LLVM_FALLTHROUGH;
6831   case MVT::i1:
6832   case MVT::i32:
6833     State.AllocateStack(PtrByteSize, PtrByteSize);
6834     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6835       MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6836       // Promote integers if needed.
6837       if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6838         LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6839                                     : CCValAssign::LocInfo::ZExt;
6840       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6841     }
6842     else
6843       report_fatal_error("Handling of placing parameters on the stack is "
6844                          "unimplemented!");
6845     return false;
6846 
6847   case MVT::f32:
6848   case MVT::f64: {
6849     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6850     const unsigned StoreSize = LocVT.getStoreSize();
6851     // Floats are always 4-byte aligned in the PSA on AIX.
6852     // This includes f64 in 64-bit mode for ABI compatibility.
6853     State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6854     if (unsigned Reg = State.AllocateReg(FPR))
6855       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::f64, LocInfo));
6856     else
6857       report_fatal_error("Handling of placing parameters on the stack is "
6858                          "unimplemented!");
6859 
6860     // f32 reserves 1 GPR in both PPC32 and PPC64.
6861     // f64 reserves 2 GPRs in PPC32 and 1 GPR in PPC64.
6862     for (unsigned i = 0; i < StoreSize; i += PtrByteSize)
6863       State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32);
6864     return false;
6865   }
6866   }
6867 }
6868 
6869 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6870                                                     bool IsPPC64) {
6871   assert((IsPPC64 || SVT != MVT::i64) &&
6872          "i64 should have been split for 32-bit codegen.");
6873 
6874   switch (SVT) {
6875   default:
6876     report_fatal_error("Unexpected value type for formal argument");
6877   case MVT::i1:
6878   case MVT::i32:
6879   case MVT::i64:
6880     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6881   case MVT::f32:
6882     return &PPC::F4RCRegClass;
6883   case MVT::f64:
6884     return &PPC::F8RCRegClass;
6885   }
6886 }
6887 
6888 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6889                                         SelectionDAG &DAG, SDValue ArgValue,
6890                                         MVT LocVT, const SDLoc &dl) {
6891   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6892   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6893 
6894   if (Flags.isSExt())
6895     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6896                            DAG.getValueType(ValVT));
6897   else if (Flags.isZExt())
6898     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6899                            DAG.getValueType(ValVT));
6900 
6901   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6902 }
6903 
6904 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6905     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6906     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6907     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6908 
6909   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6910           CallConv == CallingConv::Fast) &&
6911          "Unexpected calling convention!");
6912 
6913   if (isVarArg)
6914     report_fatal_error("This call type is unimplemented on AIX.");
6915 
6916   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6917     report_fatal_error("Tail call support is unimplemented on AIX.");
6918 
6919   if (useSoftFloat())
6920     report_fatal_error("Soft float support is unimplemented on AIX.");
6921 
6922   const PPCSubtarget &Subtarget =
6923       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6924   if (Subtarget.hasQPX())
6925     report_fatal_error("QPX support is not supported on AIX.");
6926 
6927   const bool IsPPC64 = Subtarget.isPPC64();
6928   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6929 
6930   // Assign locations to all of the incoming arguments.
6931   SmallVector<CCValAssign, 16> ArgLocs;
6932   MachineFunction &MF = DAG.getMachineFunction();
6933   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6934 
6935   // Reserve space for the linkage area on the stack.
6936   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6937   // On AIX a minimum of 8 words is saved to the parameter save area.
6938   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
6939   CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize);
6940   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6941 
6942   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
6943     CCValAssign &VA = ArgLocs[i];
6944     SDValue ArgValue;
6945     ISD::ArgFlagsTy Flags = Ins[i].Flags;
6946     if (VA.isRegLoc()) {
6947       EVT ValVT = VA.getValVT();
6948       MVT LocVT = VA.getLocVT();
6949       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
6950       unsigned VReg =
6951           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
6952       ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
6953       if (ValVT.isScalarInteger() &&
6954           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
6955         ArgValue =
6956             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
6957       }
6958       InVals.push_back(ArgValue);
6959     } else {
6960       report_fatal_error("Handling of formal arguments on the stack is "
6961                          "unimplemented!");
6962     }
6963   }
6964 
6965   // Area that is at least reserved in the caller of this function.
6966   unsigned MinReservedArea = CCInfo.getNextStackOffset();
6967 
6968   // Set the size that is at least reserved in caller of this function. Tail
6969   // call optimized function's reserved stack space needs to be aligned so
6970   // that taking the difference between two stack areas will result in an
6971   // aligned stack.
6972   MinReservedArea =
6973       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
6974   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6975   FuncInfo->setMinReservedArea(MinReservedArea);
6976 
6977   return Chain;
6978 }
6979 
6980 SDValue PPCTargetLowering::LowerCall_AIX(
6981     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6982     bool isTailCall, bool isPatchPoint,
6983     const SmallVectorImpl<ISD::OutputArg> &Outs,
6984     const SmallVectorImpl<SDValue> &OutVals,
6985     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6986     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6987     ImmutableCallSite CS) const {
6988 
6989   assert((CallConv == CallingConv::C ||
6990           CallConv == CallingConv::Cold ||
6991           CallConv == CallingConv::Fast) && "Unexpected calling convention!");
6992 
6993   if (isVarArg || isPatchPoint)
6994     report_fatal_error("This call type is unimplemented on AIX.");
6995 
6996   const PPCSubtarget& Subtarget =
6997       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
6998   if (Subtarget.hasQPX())
6999     report_fatal_error("QPX is not supported on AIX.");
7000   if (Subtarget.hasAltivec())
7001     report_fatal_error("Altivec support is unimplemented on AIX.");
7002 
7003   MachineFunction &MF = DAG.getMachineFunction();
7004   SmallVector<CCValAssign, 16> ArgLocs;
7005   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7006 
7007   // Reserve space for the linkage save area (LSA) on the stack.
7008   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7009   //   [SP][CR][LR][2 x reserved][TOC].
7010   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7011   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7012   const unsigned PtrByteSize = Subtarget.isPPC64() ? 8 : 4;
7013   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7014   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7015 
7016   // The prolog code of the callee may store up to 8 GPR argument registers to
7017   // the stack, allowing va_start to index over them in memory if the callee
7018   // is variadic.
7019   // Because we cannot tell if this is needed on the caller side, we have to
7020   // conservatively assume that it is needed.  As such, make sure we have at
7021   // least enough stack space for the caller to store the 8 GPRs.
7022   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7023   const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize;
7024 
7025   // Adjust the stack pointer for the new arguments...
7026   // These operations are automatically eliminated by the prolog/epilog pass.
7027   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7028   SDValue CallSeqStart = Chain;
7029 
7030   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7031 
7032   for (CCValAssign &VA : ArgLocs) {
7033     SDValue Arg = OutVals[VA.getValNo()];
7034 
7035     switch (VA.getLocInfo()) {
7036     default: report_fatal_error("Unexpected argument extension type.");
7037     case CCValAssign::Full: break;
7038     case CCValAssign::ZExt:
7039       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7040       break;
7041     case CCValAssign::SExt:
7042       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7043       break;
7044     }
7045 
7046     if (VA.isRegLoc())
7047       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7048 
7049     if (VA.isMemLoc())
7050       report_fatal_error("Handling of placing parameters on the stack is "
7051                          "unimplemented!");
7052   }
7053 
7054   // For indirect calls, we need to save the TOC base to the stack for
7055   // restoration after the call.
7056   if (!isTailCall && !isPatchPoint &&
7057       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) {
7058     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7059     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7060     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7061     const unsigned TOCSaveOffset =
7062         Subtarget.getFrameLowering()->getTOCSaveOffset();
7063 
7064     setUsesTOCBasePtr(DAG);
7065     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7066     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7067     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7068     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7069     Chain = DAG.getStore(
7070         Val.getValue(1), dl, Val, AddPtr,
7071         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7072   }
7073 
7074   // Build a sequence of copy-to-reg nodes chained together with token chain
7075   // and flag operands which copy the outgoing args into the appropriate regs.
7076   SDValue InFlag;
7077   for (auto Reg : RegsToPass) {
7078     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7079     InFlag = Chain.getValue(1);
7080   }
7081 
7082   const int SPDiff = 0;
7083   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
7084                     /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass,
7085                     InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins,
7086                     InVals, CS);
7087 }
7088 
7089 bool
7090 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7091                                   MachineFunction &MF, bool isVarArg,
7092                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7093                                   LLVMContext &Context) const {
7094   SmallVector<CCValAssign, 16> RVLocs;
7095   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7096   return CCInfo.CheckReturn(
7097       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7098                 ? RetCC_PPC_Cold
7099                 : RetCC_PPC);
7100 }
7101 
7102 SDValue
7103 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7104                                bool isVarArg,
7105                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7106                                const SmallVectorImpl<SDValue> &OutVals,
7107                                const SDLoc &dl, SelectionDAG &DAG) const {
7108   SmallVector<CCValAssign, 16> RVLocs;
7109   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7110                  *DAG.getContext());
7111   CCInfo.AnalyzeReturn(Outs,
7112                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7113                            ? RetCC_PPC_Cold
7114                            : RetCC_PPC);
7115 
7116   SDValue Flag;
7117   SmallVector<SDValue, 4> RetOps(1, Chain);
7118 
7119   // Copy the result values into the output registers.
7120   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7121     CCValAssign &VA = RVLocs[i];
7122     assert(VA.isRegLoc() && "Can only return in registers!");
7123 
7124     SDValue Arg = OutVals[RealResIdx];
7125 
7126     switch (VA.getLocInfo()) {
7127     default: llvm_unreachable("Unknown loc info!");
7128     case CCValAssign::Full: break;
7129     case CCValAssign::AExt:
7130       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7131       break;
7132     case CCValAssign::ZExt:
7133       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7134       break;
7135     case CCValAssign::SExt:
7136       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7137       break;
7138     }
7139     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7140       bool isLittleEndian = Subtarget.isLittleEndian();
7141       // Legalize ret f64 -> ret 2 x i32.
7142       SDValue SVal =
7143           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7144                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7145       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7146       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7147       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7148                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7149       Flag = Chain.getValue(1);
7150       VA = RVLocs[++i]; // skip ahead to next loc
7151       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7152     } else
7153       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7154     Flag = Chain.getValue(1);
7155     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7156   }
7157 
7158   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7159   const MCPhysReg *I =
7160     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7161   if (I) {
7162     for (; *I; ++I) {
7163 
7164       if (PPC::G8RCRegClass.contains(*I))
7165         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7166       else if (PPC::F8RCRegClass.contains(*I))
7167         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7168       else if (PPC::CRRCRegClass.contains(*I))
7169         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7170       else if (PPC::VRRCRegClass.contains(*I))
7171         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7172       else
7173         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7174     }
7175   }
7176 
7177   RetOps[0] = Chain;  // Update chain.
7178 
7179   // Add the flag if we have it.
7180   if (Flag.getNode())
7181     RetOps.push_back(Flag);
7182 
7183   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7184 }
7185 
7186 SDValue
7187 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7188                                                 SelectionDAG &DAG) const {
7189   SDLoc dl(Op);
7190 
7191   // Get the correct type for integers.
7192   EVT IntVT = Op.getValueType();
7193 
7194   // Get the inputs.
7195   SDValue Chain = Op.getOperand(0);
7196   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7197   // Build a DYNAREAOFFSET node.
7198   SDValue Ops[2] = {Chain, FPSIdx};
7199   SDVTList VTs = DAG.getVTList(IntVT);
7200   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7201 }
7202 
7203 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7204                                              SelectionDAG &DAG) const {
7205   // When we pop the dynamic allocation we need to restore the SP link.
7206   SDLoc dl(Op);
7207 
7208   // Get the correct type for pointers.
7209   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7210 
7211   // Construct the stack pointer operand.
7212   bool isPPC64 = Subtarget.isPPC64();
7213   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7214   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7215 
7216   // Get the operands for the STACKRESTORE.
7217   SDValue Chain = Op.getOperand(0);
7218   SDValue SaveSP = Op.getOperand(1);
7219 
7220   // Load the old link SP.
7221   SDValue LoadLinkSP =
7222       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7223 
7224   // Restore the stack pointer.
7225   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7226 
7227   // Store the old link SP.
7228   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7229 }
7230 
7231 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7232   MachineFunction &MF = DAG.getMachineFunction();
7233   bool isPPC64 = Subtarget.isPPC64();
7234   EVT PtrVT = getPointerTy(MF.getDataLayout());
7235 
7236   // Get current frame pointer save index.  The users of this index will be
7237   // primarily DYNALLOC instructions.
7238   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7239   int RASI = FI->getReturnAddrSaveIndex();
7240 
7241   // If the frame pointer save index hasn't been defined yet.
7242   if (!RASI) {
7243     // Find out what the fix offset of the frame pointer save area.
7244     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7245     // Allocate the frame index for frame pointer save area.
7246     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7247     // Save the result.
7248     FI->setReturnAddrSaveIndex(RASI);
7249   }
7250   return DAG.getFrameIndex(RASI, PtrVT);
7251 }
7252 
7253 SDValue
7254 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7255   MachineFunction &MF = DAG.getMachineFunction();
7256   bool isPPC64 = Subtarget.isPPC64();
7257   EVT PtrVT = getPointerTy(MF.getDataLayout());
7258 
7259   // Get current frame pointer save index.  The users of this index will be
7260   // primarily DYNALLOC instructions.
7261   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7262   int FPSI = FI->getFramePointerSaveIndex();
7263 
7264   // If the frame pointer save index hasn't been defined yet.
7265   if (!FPSI) {
7266     // Find out what the fix offset of the frame pointer save area.
7267     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7268     // Allocate the frame index for frame pointer save area.
7269     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7270     // Save the result.
7271     FI->setFramePointerSaveIndex(FPSI);
7272   }
7273   return DAG.getFrameIndex(FPSI, PtrVT);
7274 }
7275 
7276 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7277                                                    SelectionDAG &DAG) const {
7278   // Get the inputs.
7279   SDValue Chain = Op.getOperand(0);
7280   SDValue Size  = Op.getOperand(1);
7281   SDLoc dl(Op);
7282 
7283   // Get the correct type for pointers.
7284   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7285   // Negate the size.
7286   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7287                                 DAG.getConstant(0, dl, PtrVT), Size);
7288   // Construct a node for the frame pointer save index.
7289   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7290   // Build a DYNALLOC node.
7291   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7292   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7293   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7294 }
7295 
7296 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7297                                                      SelectionDAG &DAG) const {
7298   MachineFunction &MF = DAG.getMachineFunction();
7299 
7300   bool isPPC64 = Subtarget.isPPC64();
7301   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7302 
7303   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7304   return DAG.getFrameIndex(FI, PtrVT);
7305 }
7306 
7307 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7308                                                SelectionDAG &DAG) const {
7309   SDLoc DL(Op);
7310   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7311                      DAG.getVTList(MVT::i32, MVT::Other),
7312                      Op.getOperand(0), Op.getOperand(1));
7313 }
7314 
7315 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7316                                                 SelectionDAG &DAG) const {
7317   SDLoc DL(Op);
7318   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7319                      Op.getOperand(0), Op.getOperand(1));
7320 }
7321 
7322 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7323   if (Op.getValueType().isVector())
7324     return LowerVectorLoad(Op, DAG);
7325 
7326   assert(Op.getValueType() == MVT::i1 &&
7327          "Custom lowering only for i1 loads");
7328 
7329   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7330 
7331   SDLoc dl(Op);
7332   LoadSDNode *LD = cast<LoadSDNode>(Op);
7333 
7334   SDValue Chain = LD->getChain();
7335   SDValue BasePtr = LD->getBasePtr();
7336   MachineMemOperand *MMO = LD->getMemOperand();
7337 
7338   SDValue NewLD =
7339       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7340                      BasePtr, MVT::i8, MMO);
7341   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7342 
7343   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7344   return DAG.getMergeValues(Ops, dl);
7345 }
7346 
7347 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7348   if (Op.getOperand(1).getValueType().isVector())
7349     return LowerVectorStore(Op, DAG);
7350 
7351   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7352          "Custom lowering only for i1 stores");
7353 
7354   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7355 
7356   SDLoc dl(Op);
7357   StoreSDNode *ST = cast<StoreSDNode>(Op);
7358 
7359   SDValue Chain = ST->getChain();
7360   SDValue BasePtr = ST->getBasePtr();
7361   SDValue Value = ST->getValue();
7362   MachineMemOperand *MMO = ST->getMemOperand();
7363 
7364   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7365                       Value);
7366   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7367 }
7368 
7369 // FIXME: Remove this once the ANDI glue bug is fixed:
7370 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7371   assert(Op.getValueType() == MVT::i1 &&
7372          "Custom lowering only for i1 results");
7373 
7374   SDLoc DL(Op);
7375   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
7376                      Op.getOperand(0));
7377 }
7378 
7379 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7380                                                SelectionDAG &DAG) const {
7381 
7382   // Implements a vector truncate that fits in a vector register as a shuffle.
7383   // We want to legalize vector truncates down to where the source fits in
7384   // a vector register (and target is therefore smaller than vector register
7385   // size).  At that point legalization will try to custom lower the sub-legal
7386   // result and get here - where we can contain the truncate as a single target
7387   // operation.
7388 
7389   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7390   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7391   //
7392   // We will implement it for big-endian ordering as this (where x denotes
7393   // undefined):
7394   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7395   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7396   //
7397   // The same operation in little-endian ordering will be:
7398   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7399   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7400 
7401   assert(Op.getValueType().isVector() && "Vector type expected.");
7402 
7403   SDLoc DL(Op);
7404   SDValue N1 = Op.getOperand(0);
7405   unsigned SrcSize = N1.getValueType().getSizeInBits();
7406   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7407   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7408 
7409   EVT TrgVT = Op.getValueType();
7410   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7411   EVT EltVT = TrgVT.getVectorElementType();
7412   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7413   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7414 
7415   // First list the elements we want to keep.
7416   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7417   SmallVector<int, 16> ShuffV;
7418   if (Subtarget.isLittleEndian())
7419     for (unsigned i = 0; i < TrgNumElts; ++i)
7420       ShuffV.push_back(i * SizeMult);
7421   else
7422     for (unsigned i = 1; i <= TrgNumElts; ++i)
7423       ShuffV.push_back(i * SizeMult - 1);
7424 
7425   // Populate the remaining elements with undefs.
7426   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7427     // ShuffV.push_back(i + WideNumElts);
7428     ShuffV.push_back(WideNumElts + 1);
7429 
7430   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7431   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7432 }
7433 
7434 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7435 /// possible.
7436 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7437   // Not FP? Not a fsel.
7438   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7439       !Op.getOperand(2).getValueType().isFloatingPoint())
7440     return Op;
7441 
7442   bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath;
7443   bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath;
7444   // We might be able to do better than this under some circumstances, but in
7445   // general, fsel-based lowering of select is a finite-math-only optimization.
7446   // For more information, see section F.3 of the 2.06 ISA specification.
7447   // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the
7448   // presence of infinities.
7449   if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs))
7450     return Op;
7451   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7452 
7453   EVT ResVT = Op.getValueType();
7454   EVT CmpVT = Op.getOperand(0).getValueType();
7455   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7456   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7457   SDLoc dl(Op);
7458 
7459   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7460     switch (CC) {
7461     default:
7462       // Not a min/max but with finite math, we may still be able to use fsel.
7463       if (HasNoInfs && HasNoNaNs)
7464         break;
7465       return Op;
7466     case ISD::SETOGT:
7467     case ISD::SETGT:
7468       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7469     case ISD::SETOLT:
7470     case ISD::SETLT:
7471       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7472     }
7473   }
7474 
7475   // TODO: Propagate flags from the select rather than global settings.
7476   SDNodeFlags Flags;
7477   Flags.setNoInfs(true);
7478   Flags.setNoNaNs(true);
7479 
7480   // If the RHS of the comparison is a 0.0, we don't need to do the
7481   // subtraction at all.
7482   SDValue Sel1;
7483   if (isFloatingPointZero(RHS))
7484     switch (CC) {
7485     default: break;       // SETUO etc aren't handled by fsel.
7486     case ISD::SETNE:
7487       std::swap(TV, FV);
7488       LLVM_FALLTHROUGH;
7489     case ISD::SETEQ:
7490       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7491         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7492       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7493       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7494         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7495       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7496                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7497     case ISD::SETULT:
7498     case ISD::SETLT:
7499       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7500       LLVM_FALLTHROUGH;
7501     case ISD::SETOGE:
7502     case ISD::SETGE:
7503       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7504         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7505       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7506     case ISD::SETUGT:
7507     case ISD::SETGT:
7508       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7509       LLVM_FALLTHROUGH;
7510     case ISD::SETOLE:
7511     case ISD::SETLE:
7512       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7513         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7514       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7515                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7516     }
7517 
7518   SDValue Cmp;
7519   switch (CC) {
7520   default: break;       // SETUO etc aren't handled by fsel.
7521   case ISD::SETNE:
7522     std::swap(TV, FV);
7523     LLVM_FALLTHROUGH;
7524   case ISD::SETEQ:
7525     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7526     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7527       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7528     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7529     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7530       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7531     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7532                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7533   case ISD::SETULT:
7534   case ISD::SETLT:
7535     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7536     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7537       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7538     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7539   case ISD::SETOGE:
7540   case ISD::SETGE:
7541     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7542     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7543       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7544     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7545   case ISD::SETUGT:
7546   case ISD::SETGT:
7547     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7548     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7549       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7550     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7551   case ISD::SETOLE:
7552   case ISD::SETLE:
7553     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7554     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7555       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7556     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7557   }
7558   return Op;
7559 }
7560 
7561 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7562                                                SelectionDAG &DAG,
7563                                                const SDLoc &dl) const {
7564   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7565   SDValue Src = Op.getOperand(0);
7566   if (Src.getValueType() == MVT::f32)
7567     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7568 
7569   SDValue Tmp;
7570   switch (Op.getSimpleValueType().SimpleTy) {
7571   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7572   case MVT::i32:
7573     Tmp = DAG.getNode(
7574         Op.getOpcode() == ISD::FP_TO_SINT
7575             ? PPCISD::FCTIWZ
7576             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7577         dl, MVT::f64, Src);
7578     break;
7579   case MVT::i64:
7580     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7581            "i64 FP_TO_UINT is supported only with FPCVT");
7582     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7583                                                         PPCISD::FCTIDUZ,
7584                       dl, MVT::f64, Src);
7585     break;
7586   }
7587 
7588   // Convert the FP value to an int value through memory.
7589   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7590     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7591   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7592   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7593   MachinePointerInfo MPI =
7594       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7595 
7596   // Emit a store to the stack slot.
7597   SDValue Chain;
7598   if (i32Stack) {
7599     MachineFunction &MF = DAG.getMachineFunction();
7600     MachineMemOperand *MMO =
7601       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7602     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7603     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7604               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7605   } else
7606     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7607 
7608   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7609   // add in a bias on big endian.
7610   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7611     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7612                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7613     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7614   }
7615 
7616   RLI.Chain = Chain;
7617   RLI.Ptr = FIPtr;
7618   RLI.MPI = MPI;
7619 }
7620 
7621 /// Custom lowers floating point to integer conversions to use
7622 /// the direct move instructions available in ISA 2.07 to avoid the
7623 /// need for load/store combinations.
7624 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7625                                                     SelectionDAG &DAG,
7626                                                     const SDLoc &dl) const {
7627   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7628   SDValue Src = Op.getOperand(0);
7629 
7630   if (Src.getValueType() == MVT::f32)
7631     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7632 
7633   SDValue Tmp;
7634   switch (Op.getSimpleValueType().SimpleTy) {
7635   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7636   case MVT::i32:
7637     Tmp = DAG.getNode(
7638         Op.getOpcode() == ISD::FP_TO_SINT
7639             ? PPCISD::FCTIWZ
7640             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7641         dl, MVT::f64, Src);
7642     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7643     break;
7644   case MVT::i64:
7645     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7646            "i64 FP_TO_UINT is supported only with FPCVT");
7647     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7648                                                         PPCISD::FCTIDUZ,
7649                       dl, MVT::f64, Src);
7650     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7651     break;
7652   }
7653   return Tmp;
7654 }
7655 
7656 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7657                                           const SDLoc &dl) const {
7658 
7659   // FP to INT conversions are legal for f128.
7660   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7661     return Op;
7662 
7663   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7664   // PPC (the libcall is not available).
7665   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7666     if (Op.getValueType() == MVT::i32) {
7667       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7668         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7669                                  MVT::f64, Op.getOperand(0),
7670                                  DAG.getIntPtrConstant(0, dl));
7671         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7672                                  MVT::f64, Op.getOperand(0),
7673                                  DAG.getIntPtrConstant(1, dl));
7674 
7675         // Add the two halves of the long double in round-to-zero mode.
7676         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7677 
7678         // Now use a smaller FP_TO_SINT.
7679         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7680       }
7681       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7682         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7683         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7684         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7685         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7686         // FIXME: generated code sucks.
7687         // TODO: Are there fast-math-flags to propagate to this FSUB?
7688         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7689                                    Op.getOperand(0), Tmp);
7690         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7691         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7692                            DAG.getConstant(0x80000000, dl, MVT::i32));
7693         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7694                                     Op.getOperand(0));
7695         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7696                                ISD::SETGE);
7697       }
7698     }
7699 
7700     return SDValue();
7701   }
7702 
7703   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7704     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7705 
7706   ReuseLoadInfo RLI;
7707   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7708 
7709   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7710                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7711 }
7712 
7713 // We're trying to insert a regular store, S, and then a load, L. If the
7714 // incoming value, O, is a load, we might just be able to have our load use the
7715 // address used by O. However, we don't know if anything else will store to
7716 // that address before we can load from it. To prevent this situation, we need
7717 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7718 // the same chain operand as O, we create a token factor from the chain results
7719 // of O and L, and we replace all uses of O's chain result with that token
7720 // factor (see spliceIntoChain below for this last part).
7721 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7722                                             ReuseLoadInfo &RLI,
7723                                             SelectionDAG &DAG,
7724                                             ISD::LoadExtType ET) const {
7725   SDLoc dl(Op);
7726   if (ET == ISD::NON_EXTLOAD &&
7727       (Op.getOpcode() == ISD::FP_TO_UINT ||
7728        Op.getOpcode() == ISD::FP_TO_SINT) &&
7729       isOperationLegalOrCustom(Op.getOpcode(),
7730                                Op.getOperand(0).getValueType())) {
7731 
7732     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7733     return true;
7734   }
7735 
7736   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7737   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7738       LD->isNonTemporal())
7739     return false;
7740   if (LD->getMemoryVT() != MemVT)
7741     return false;
7742 
7743   RLI.Ptr = LD->getBasePtr();
7744   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7745     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7746            "Non-pre-inc AM on PPC?");
7747     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7748                           LD->getOffset());
7749   }
7750 
7751   RLI.Chain = LD->getChain();
7752   RLI.MPI = LD->getPointerInfo();
7753   RLI.IsDereferenceable = LD->isDereferenceable();
7754   RLI.IsInvariant = LD->isInvariant();
7755   RLI.Alignment = LD->getAlignment();
7756   RLI.AAInfo = LD->getAAInfo();
7757   RLI.Ranges = LD->getRanges();
7758 
7759   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7760   return true;
7761 }
7762 
7763 // Given the head of the old chain, ResChain, insert a token factor containing
7764 // it and NewResChain, and make users of ResChain now be users of that token
7765 // factor.
7766 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7767 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7768                                         SDValue NewResChain,
7769                                         SelectionDAG &DAG) const {
7770   if (!ResChain)
7771     return;
7772 
7773   SDLoc dl(NewResChain);
7774 
7775   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7776                            NewResChain, DAG.getUNDEF(MVT::Other));
7777   assert(TF.getNode() != NewResChain.getNode() &&
7778          "A new TF really is required here");
7779 
7780   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7781   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7782 }
7783 
7784 /// Analyze profitability of direct move
7785 /// prefer float load to int load plus direct move
7786 /// when there is no integer use of int load
7787 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7788   SDNode *Origin = Op.getOperand(0).getNode();
7789   if (Origin->getOpcode() != ISD::LOAD)
7790     return true;
7791 
7792   // If there is no LXSIBZX/LXSIHZX, like Power8,
7793   // prefer direct move if the memory size is 1 or 2 bytes.
7794   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7795   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7796     return true;
7797 
7798   for (SDNode::use_iterator UI = Origin->use_begin(),
7799                             UE = Origin->use_end();
7800        UI != UE; ++UI) {
7801 
7802     // Only look at the users of the loaded value.
7803     if (UI.getUse().get().getResNo() != 0)
7804       continue;
7805 
7806     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7807         UI->getOpcode() != ISD::UINT_TO_FP)
7808       return true;
7809   }
7810 
7811   return false;
7812 }
7813 
7814 /// Custom lowers integer to floating point conversions to use
7815 /// the direct move instructions available in ISA 2.07 to avoid the
7816 /// need for load/store combinations.
7817 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7818                                                     SelectionDAG &DAG,
7819                                                     const SDLoc &dl) const {
7820   assert((Op.getValueType() == MVT::f32 ||
7821           Op.getValueType() == MVT::f64) &&
7822          "Invalid floating point type as target of conversion");
7823   assert(Subtarget.hasFPCVT() &&
7824          "Int to FP conversions with direct moves require FPCVT");
7825   SDValue FP;
7826   SDValue Src = Op.getOperand(0);
7827   bool SinglePrec = Op.getValueType() == MVT::f32;
7828   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7829   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7830   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7831                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7832 
7833   if (WordInt) {
7834     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7835                      dl, MVT::f64, Src);
7836     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7837   }
7838   else {
7839     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7840     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7841   }
7842 
7843   return FP;
7844 }
7845 
7846 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7847 
7848   EVT VecVT = Vec.getValueType();
7849   assert(VecVT.isVector() && "Expected a vector type.");
7850   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7851 
7852   EVT EltVT = VecVT.getVectorElementType();
7853   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7854   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7855 
7856   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7857   SmallVector<SDValue, 16> Ops(NumConcat);
7858   Ops[0] = Vec;
7859   SDValue UndefVec = DAG.getUNDEF(VecVT);
7860   for (unsigned i = 1; i < NumConcat; ++i)
7861     Ops[i] = UndefVec;
7862 
7863   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7864 }
7865 
7866 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7867                                                 const SDLoc &dl) const {
7868 
7869   unsigned Opc = Op.getOpcode();
7870   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7871          "Unexpected conversion type");
7872   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7873          "Supports conversions to v2f64/v4f32 only.");
7874 
7875   bool SignedConv = Opc == ISD::SINT_TO_FP;
7876   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7877 
7878   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7879   EVT WideVT = Wide.getValueType();
7880   unsigned WideNumElts = WideVT.getVectorNumElements();
7881   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7882 
7883   SmallVector<int, 16> ShuffV;
7884   for (unsigned i = 0; i < WideNumElts; ++i)
7885     ShuffV.push_back(i + WideNumElts);
7886 
7887   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7888   int SaveElts = FourEltRes ? 4 : 2;
7889   if (Subtarget.isLittleEndian())
7890     for (int i = 0; i < SaveElts; i++)
7891       ShuffV[i * Stride] = i;
7892   else
7893     for (int i = 1; i <= SaveElts; i++)
7894       ShuffV[i * Stride - 1] = i - 1;
7895 
7896   SDValue ShuffleSrc2 =
7897       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7898   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7899   unsigned ExtendOp =
7900       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7901 
7902   SDValue Extend;
7903   if (!Subtarget.hasP9Altivec() && SignedConv) {
7904     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7905     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7906                          DAG.getValueType(Op.getOperand(0).getValueType()));
7907   } else
7908     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7909 
7910   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7911 }
7912 
7913 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7914                                           SelectionDAG &DAG) const {
7915   SDLoc dl(Op);
7916 
7917   EVT InVT = Op.getOperand(0).getValueType();
7918   EVT OutVT = Op.getValueType();
7919   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7920       isOperationCustom(Op.getOpcode(), InVT))
7921     return LowerINT_TO_FPVector(Op, DAG, dl);
7922 
7923   // Conversions to f128 are legal.
7924   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7925     return Op;
7926 
7927   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7928     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7929       return SDValue();
7930 
7931     SDValue Value = Op.getOperand(0);
7932     // The values are now known to be -1 (false) or 1 (true). To convert this
7933     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7934     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7935     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7936 
7937     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7938 
7939     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7940 
7941     if (Op.getValueType() != MVT::v4f64)
7942       Value = DAG.getNode(ISD::FP_ROUND, dl,
7943                           Op.getValueType(), Value,
7944                           DAG.getIntPtrConstant(1, dl));
7945     return Value;
7946   }
7947 
7948   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7949   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7950     return SDValue();
7951 
7952   if (Op.getOperand(0).getValueType() == MVT::i1)
7953     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7954                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7955                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7956 
7957   // If we have direct moves, we can do all the conversion, skip the store/load
7958   // however, without FPCVT we can't do most conversions.
7959   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7960       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7961     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7962 
7963   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7964          "UINT_TO_FP is supported only with FPCVT");
7965 
7966   // If we have FCFIDS, then use it when converting to single-precision.
7967   // Otherwise, convert to double-precision and then round.
7968   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7969                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7970                                                             : PPCISD::FCFIDS)
7971                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7972                                                             : PPCISD::FCFID);
7973   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7974                   ? MVT::f32
7975                   : MVT::f64;
7976 
7977   if (Op.getOperand(0).getValueType() == MVT::i64) {
7978     SDValue SINT = Op.getOperand(0);
7979     // When converting to single-precision, we actually need to convert
7980     // to double-precision first and then round to single-precision.
7981     // To avoid double-rounding effects during that operation, we have
7982     // to prepare the input operand.  Bits that might be truncated when
7983     // converting to double-precision are replaced by a bit that won't
7984     // be lost at this stage, but is below the single-precision rounding
7985     // position.
7986     //
7987     // However, if -enable-unsafe-fp-math is in effect, accept double
7988     // rounding to avoid the extra overhead.
7989     if (Op.getValueType() == MVT::f32 &&
7990         !Subtarget.hasFPCVT() &&
7991         !DAG.getTarget().Options.UnsafeFPMath) {
7992 
7993       // Twiddle input to make sure the low 11 bits are zero.  (If this
7994       // is the case, we are guaranteed the value will fit into the 53 bit
7995       // mantissa of an IEEE double-precision value without rounding.)
7996       // If any of those low 11 bits were not zero originally, make sure
7997       // bit 12 (value 2048) is set instead, so that the final rounding
7998       // to single-precision gets the correct result.
7999       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8000                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8001       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8002                           Round, DAG.getConstant(2047, dl, MVT::i64));
8003       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8004       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8005                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8006 
8007       // However, we cannot use that value unconditionally: if the magnitude
8008       // of the input value is small, the bit-twiddling we did above might
8009       // end up visibly changing the output.  Fortunately, in that case, we
8010       // don't need to twiddle bits since the original input will convert
8011       // exactly to double-precision floating-point already.  Therefore,
8012       // construct a conditional to use the original value if the top 11
8013       // bits are all sign-bit copies, and use the rounded value computed
8014       // above otherwise.
8015       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8016                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8017       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8018                          Cond, DAG.getConstant(1, dl, MVT::i64));
8019       Cond = DAG.getSetCC(dl, MVT::i32,
8020                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8021 
8022       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8023     }
8024 
8025     ReuseLoadInfo RLI;
8026     SDValue Bits;
8027 
8028     MachineFunction &MF = DAG.getMachineFunction();
8029     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8030       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8031                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8032       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8033     } else if (Subtarget.hasLFIWAX() &&
8034                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8035       MachineMemOperand *MMO =
8036         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8037                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8038       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8039       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8040                                      DAG.getVTList(MVT::f64, MVT::Other),
8041                                      Ops, MVT::i32, MMO);
8042       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8043     } else if (Subtarget.hasFPCVT() &&
8044                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8045       MachineMemOperand *MMO =
8046         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8047                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8048       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8049       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8050                                      DAG.getVTList(MVT::f64, MVT::Other),
8051                                      Ops, MVT::i32, MMO);
8052       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8053     } else if (((Subtarget.hasLFIWAX() &&
8054                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8055                 (Subtarget.hasFPCVT() &&
8056                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8057                SINT.getOperand(0).getValueType() == MVT::i32) {
8058       MachineFrameInfo &MFI = MF.getFrameInfo();
8059       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8060 
8061       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8062       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8063 
8064       SDValue Store =
8065           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8066                        MachinePointerInfo::getFixedStack(
8067                            DAG.getMachineFunction(), FrameIdx));
8068 
8069       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8070              "Expected an i32 store");
8071 
8072       RLI.Ptr = FIdx;
8073       RLI.Chain = Store;
8074       RLI.MPI =
8075           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8076       RLI.Alignment = 4;
8077 
8078       MachineMemOperand *MMO =
8079         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8080                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8081       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8082       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8083                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8084                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8085                                      Ops, MVT::i32, MMO);
8086     } else
8087       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8088 
8089     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8090 
8091     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8092       FP = DAG.getNode(ISD::FP_ROUND, dl,
8093                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8094     return FP;
8095   }
8096 
8097   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8098          "Unhandled INT_TO_FP type in custom expander!");
8099   // Since we only generate this in 64-bit mode, we can take advantage of
8100   // 64-bit registers.  In particular, sign extend the input value into the
8101   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8102   // then lfd it and fcfid it.
8103   MachineFunction &MF = DAG.getMachineFunction();
8104   MachineFrameInfo &MFI = MF.getFrameInfo();
8105   EVT PtrVT = getPointerTy(MF.getDataLayout());
8106 
8107   SDValue Ld;
8108   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8109     ReuseLoadInfo RLI;
8110     bool ReusingLoad;
8111     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8112                                             DAG))) {
8113       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8114       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8115 
8116       SDValue Store =
8117           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8118                        MachinePointerInfo::getFixedStack(
8119                            DAG.getMachineFunction(), FrameIdx));
8120 
8121       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8122              "Expected an i32 store");
8123 
8124       RLI.Ptr = FIdx;
8125       RLI.Chain = Store;
8126       RLI.MPI =
8127           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8128       RLI.Alignment = 4;
8129     }
8130 
8131     MachineMemOperand *MMO =
8132       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8133                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8134     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8135     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8136                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8137                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8138                                  Ops, MVT::i32, MMO);
8139     if (ReusingLoad)
8140       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8141   } else {
8142     assert(Subtarget.isPPC64() &&
8143            "i32->FP without LFIWAX supported only on PPC64");
8144 
8145     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8146     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8147 
8148     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8149                                 Op.getOperand(0));
8150 
8151     // STD the extended value into the stack slot.
8152     SDValue Store = DAG.getStore(
8153         DAG.getEntryNode(), dl, Ext64, FIdx,
8154         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8155 
8156     // Load the value as a double.
8157     Ld = DAG.getLoad(
8158         MVT::f64, dl, Store, FIdx,
8159         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8160   }
8161 
8162   // FCFID it and return it.
8163   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8164   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8165     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8166                      DAG.getIntPtrConstant(0, dl));
8167   return FP;
8168 }
8169 
8170 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8171                                             SelectionDAG &DAG) const {
8172   SDLoc dl(Op);
8173   /*
8174    The rounding mode is in bits 30:31 of FPSR, and has the following
8175    settings:
8176      00 Round to nearest
8177      01 Round to 0
8178      10 Round to +inf
8179      11 Round to -inf
8180 
8181   FLT_ROUNDS, on the other hand, expects the following:
8182     -1 Undefined
8183      0 Round to 0
8184      1 Round to nearest
8185      2 Round to +inf
8186      3 Round to -inf
8187 
8188   To perform the conversion, we do:
8189     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8190   */
8191 
8192   MachineFunction &MF = DAG.getMachineFunction();
8193   EVT VT = Op.getValueType();
8194   EVT PtrVT = getPointerTy(MF.getDataLayout());
8195 
8196   // Save FP Control Word to register
8197   EVT NodeTys[] = {
8198     MVT::f64,    // return register
8199     MVT::Glue    // unused in this context
8200   };
8201   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
8202 
8203   // Save FP register to stack slot
8204   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8205   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8206   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
8207                                MachinePointerInfo());
8208 
8209   // Load FP Control Word from low 32 bits of stack slot.
8210   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8211   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8212   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
8213 
8214   // Transform as necessary
8215   SDValue CWD1 =
8216     DAG.getNode(ISD::AND, dl, MVT::i32,
8217                 CWD, DAG.getConstant(3, dl, MVT::i32));
8218   SDValue CWD2 =
8219     DAG.getNode(ISD::SRL, dl, MVT::i32,
8220                 DAG.getNode(ISD::AND, dl, MVT::i32,
8221                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8222                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8223                             DAG.getConstant(3, dl, MVT::i32)),
8224                 DAG.getConstant(1, dl, MVT::i32));
8225 
8226   SDValue RetVal =
8227     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8228 
8229   return DAG.getNode((VT.getSizeInBits() < 16 ?
8230                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
8231 }
8232 
8233 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8234   EVT VT = Op.getValueType();
8235   unsigned BitWidth = VT.getSizeInBits();
8236   SDLoc dl(Op);
8237   assert(Op.getNumOperands() == 3 &&
8238          VT == Op.getOperand(1).getValueType() &&
8239          "Unexpected SHL!");
8240 
8241   // Expand into a bunch of logical ops.  Note that these ops
8242   // depend on the PPC behavior for oversized shift amounts.
8243   SDValue Lo = Op.getOperand(0);
8244   SDValue Hi = Op.getOperand(1);
8245   SDValue Amt = Op.getOperand(2);
8246   EVT AmtVT = Amt.getValueType();
8247 
8248   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8249                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8250   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8251   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8252   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8253   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8254                              DAG.getConstant(-BitWidth, dl, AmtVT));
8255   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8256   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8257   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8258   SDValue OutOps[] = { OutLo, OutHi };
8259   return DAG.getMergeValues(OutOps, dl);
8260 }
8261 
8262 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8263   EVT VT = Op.getValueType();
8264   SDLoc dl(Op);
8265   unsigned BitWidth = VT.getSizeInBits();
8266   assert(Op.getNumOperands() == 3 &&
8267          VT == Op.getOperand(1).getValueType() &&
8268          "Unexpected SRL!");
8269 
8270   // Expand into a bunch of logical ops.  Note that these ops
8271   // depend on the PPC behavior for oversized shift amounts.
8272   SDValue Lo = Op.getOperand(0);
8273   SDValue Hi = Op.getOperand(1);
8274   SDValue Amt = Op.getOperand(2);
8275   EVT AmtVT = Amt.getValueType();
8276 
8277   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8278                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8279   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8280   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8281   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8282   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8283                              DAG.getConstant(-BitWidth, dl, AmtVT));
8284   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8285   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8286   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8287   SDValue OutOps[] = { OutLo, OutHi };
8288   return DAG.getMergeValues(OutOps, dl);
8289 }
8290 
8291 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8292   SDLoc dl(Op);
8293   EVT VT = Op.getValueType();
8294   unsigned BitWidth = VT.getSizeInBits();
8295   assert(Op.getNumOperands() == 3 &&
8296          VT == Op.getOperand(1).getValueType() &&
8297          "Unexpected SRA!");
8298 
8299   // Expand into a bunch of logical ops, followed by a select_cc.
8300   SDValue Lo = Op.getOperand(0);
8301   SDValue Hi = Op.getOperand(1);
8302   SDValue Amt = Op.getOperand(2);
8303   EVT AmtVT = Amt.getValueType();
8304 
8305   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8306                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8307   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8308   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8309   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8310   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8311                              DAG.getConstant(-BitWidth, dl, AmtVT));
8312   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8313   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8314   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8315                                   Tmp4, Tmp6, ISD::SETLE);
8316   SDValue OutOps[] = { OutLo, OutHi };
8317   return DAG.getMergeValues(OutOps, dl);
8318 }
8319 
8320 //===----------------------------------------------------------------------===//
8321 // Vector related lowering.
8322 //
8323 
8324 /// BuildSplatI - Build a canonical splati of Val with an element size of
8325 /// SplatSize.  Cast the result to VT.
8326 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8327                            SelectionDAG &DAG, const SDLoc &dl) {
8328   static const MVT VTys[] = { // canonical VT to use for each size.
8329     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8330   };
8331 
8332   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8333 
8334   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8335   if (Val == -1)
8336     SplatSize = 1;
8337 
8338   EVT CanonicalVT = VTys[SplatSize-1];
8339 
8340   // Build a canonical splat for this value.
8341   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8342 }
8343 
8344 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8345 /// specified intrinsic ID.
8346 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8347                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8348   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8349   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8350                      DAG.getConstant(IID, dl, MVT::i32), Op);
8351 }
8352 
8353 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8354 /// specified intrinsic ID.
8355 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8356                                 SelectionDAG &DAG, const SDLoc &dl,
8357                                 EVT DestVT = MVT::Other) {
8358   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8359   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8360                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8361 }
8362 
8363 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8364 /// specified intrinsic ID.
8365 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8366                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8367                                 EVT DestVT = MVT::Other) {
8368   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8369   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8370                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8371 }
8372 
8373 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8374 /// amount.  The result has the specified value type.
8375 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8376                            SelectionDAG &DAG, const SDLoc &dl) {
8377   // Force LHS/RHS to be the right type.
8378   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8379   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8380 
8381   int Ops[16];
8382   for (unsigned i = 0; i != 16; ++i)
8383     Ops[i] = i + Amt;
8384   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8385   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8386 }
8387 
8388 /// Do we have an efficient pattern in a .td file for this node?
8389 ///
8390 /// \param V - pointer to the BuildVectorSDNode being matched
8391 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8392 ///
8393 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8394 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8395 /// the opposite is true (expansion is beneficial) are:
8396 /// - The node builds a vector out of integers that are not 32 or 64-bits
8397 /// - The node builds a vector out of constants
8398 /// - The node is a "load-and-splat"
8399 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8400 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8401                                             bool HasDirectMove,
8402                                             bool HasP8Vector) {
8403   EVT VecVT = V->getValueType(0);
8404   bool RightType = VecVT == MVT::v2f64 ||
8405     (HasP8Vector && VecVT == MVT::v4f32) ||
8406     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8407   if (!RightType)
8408     return false;
8409 
8410   bool IsSplat = true;
8411   bool IsLoad = false;
8412   SDValue Op0 = V->getOperand(0);
8413 
8414   // This function is called in a block that confirms the node is not a constant
8415   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8416   // different constants.
8417   if (V->isConstant())
8418     return false;
8419   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8420     if (V->getOperand(i).isUndef())
8421       return false;
8422     // We want to expand nodes that represent load-and-splat even if the
8423     // loaded value is a floating point truncation or conversion to int.
8424     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8425         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8426          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8427         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8428          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8429         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8430          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8431       IsLoad = true;
8432     // If the operands are different or the input is not a load and has more
8433     // uses than just this BV node, then it isn't a splat.
8434     if (V->getOperand(i) != Op0 ||
8435         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8436       IsSplat = false;
8437   }
8438   return !(IsSplat && IsLoad);
8439 }
8440 
8441 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8442 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8443 
8444   SDLoc dl(Op);
8445   SDValue Op0 = Op->getOperand(0);
8446 
8447   if (!EnableQuadPrecision ||
8448       (Op.getValueType() != MVT::f128 ) ||
8449       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8450       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8451       (Op0.getOperand(1).getValueType() != MVT::i64))
8452     return SDValue();
8453 
8454   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8455                      Op0.getOperand(1));
8456 }
8457 
8458 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8459   const SDValue *InputLoad = &Op;
8460   if (InputLoad->getOpcode() == ISD::BITCAST)
8461     InputLoad = &InputLoad->getOperand(0);
8462   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8463     InputLoad = &InputLoad->getOperand(0);
8464   if (InputLoad->getOpcode() != ISD::LOAD)
8465     return nullptr;
8466   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8467   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8468 }
8469 
8470 // If this is a case we can't handle, return null and let the default
8471 // expansion code take care of it.  If we CAN select this case, and if it
8472 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8473 // this case more efficiently than a constant pool load, lower it to the
8474 // sequence of ops that should be used.
8475 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8476                                              SelectionDAG &DAG) const {
8477   SDLoc dl(Op);
8478   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8479   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8480 
8481   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8482     // We first build an i32 vector, load it into a QPX register,
8483     // then convert it to a floating-point vector and compare it
8484     // to a zero vector to get the boolean result.
8485     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8486     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8487     MachinePointerInfo PtrInfo =
8488         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8489     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8490     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8491 
8492     assert(BVN->getNumOperands() == 4 &&
8493       "BUILD_VECTOR for v4i1 does not have 4 operands");
8494 
8495     bool IsConst = true;
8496     for (unsigned i = 0; i < 4; ++i) {
8497       if (BVN->getOperand(i).isUndef()) continue;
8498       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8499         IsConst = false;
8500         break;
8501       }
8502     }
8503 
8504     if (IsConst) {
8505       Constant *One =
8506         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8507       Constant *NegOne =
8508         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8509 
8510       Constant *CV[4];
8511       for (unsigned i = 0; i < 4; ++i) {
8512         if (BVN->getOperand(i).isUndef())
8513           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8514         else if (isNullConstant(BVN->getOperand(i)))
8515           CV[i] = NegOne;
8516         else
8517           CV[i] = One;
8518       }
8519 
8520       Constant *CP = ConstantVector::get(CV);
8521       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8522                                           16 /* alignment */);
8523 
8524       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8525       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8526       return DAG.getMemIntrinsicNode(
8527           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8528           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8529     }
8530 
8531     SmallVector<SDValue, 4> Stores;
8532     for (unsigned i = 0; i < 4; ++i) {
8533       if (BVN->getOperand(i).isUndef()) continue;
8534 
8535       unsigned Offset = 4*i;
8536       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8537       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8538 
8539       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8540       if (StoreSize > 4) {
8541         Stores.push_back(
8542             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8543                               PtrInfo.getWithOffset(Offset), MVT::i32));
8544       } else {
8545         SDValue StoreValue = BVN->getOperand(i);
8546         if (StoreSize < 4)
8547           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8548 
8549         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8550                                       PtrInfo.getWithOffset(Offset)));
8551       }
8552     }
8553 
8554     SDValue StoreChain;
8555     if (!Stores.empty())
8556       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8557     else
8558       StoreChain = DAG.getEntryNode();
8559 
8560     // Now load from v4i32 into the QPX register; this will extend it to
8561     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8562     // is typed as v4f64 because the QPX register integer states are not
8563     // explicitly represented.
8564 
8565     SDValue Ops[] = {StoreChain,
8566                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8567                      FIdx};
8568     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8569 
8570     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8571       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8572     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8573       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8574       LoadedVect);
8575 
8576     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8577 
8578     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8579   }
8580 
8581   // All other QPX vectors are handled by generic code.
8582   if (Subtarget.hasQPX())
8583     return SDValue();
8584 
8585   // Check if this is a splat of a constant value.
8586   APInt APSplatBits, APSplatUndef;
8587   unsigned SplatBitSize;
8588   bool HasAnyUndefs;
8589   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8590                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8591       SplatBitSize > 32) {
8592 
8593     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8594     // Handle load-and-splat patterns as we have instructions that will do this
8595     // in one go.
8596     if (InputLoad && DAG.isSplatValue(Op, true)) {
8597       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8598 
8599       // We have handling for 4 and 8 byte elements.
8600       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8601 
8602       // Checking for a single use of this load, we have to check for vector
8603       // width (128 bits) / ElementSize uses (since each operand of the
8604       // BUILD_VECTOR is a separate use of the value.
8605       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8606           ((Subtarget.hasVSX() && ElementSize == 64) ||
8607            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8608         SDValue Ops[] = {
8609           LD->getChain(),    // Chain
8610           LD->getBasePtr(),  // Ptr
8611           DAG.getValueType(Op.getValueType()) // VT
8612         };
8613         return
8614           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8615                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8616                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8617       }
8618     }
8619 
8620     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8621     // lowered to VSX instructions under certain conditions.
8622     // Without VSX, there is no pattern more efficient than expanding the node.
8623     if (Subtarget.hasVSX() &&
8624         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8625                                         Subtarget.hasP8Vector()))
8626       return Op;
8627     return SDValue();
8628   }
8629 
8630   unsigned SplatBits = APSplatBits.getZExtValue();
8631   unsigned SplatUndef = APSplatUndef.getZExtValue();
8632   unsigned SplatSize = SplatBitSize / 8;
8633 
8634   // First, handle single instruction cases.
8635 
8636   // All zeros?
8637   if (SplatBits == 0) {
8638     // Canonicalize all zero vectors to be v4i32.
8639     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8640       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8641       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8642     }
8643     return Op;
8644   }
8645 
8646   // We have XXSPLTIB for constant splats one byte wide
8647   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
8648   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
8649   if (Subtarget.hasP9Vector() && SplatSize == 1)
8650     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
8651 
8652   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8653   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8654                     (32-SplatBitSize));
8655   if (SextVal >= -16 && SextVal <= 15)
8656     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8657 
8658   // Two instruction sequences.
8659 
8660   // If this value is in the range [-32,30] and is even, use:
8661   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8662   // If this value is in the range [17,31] and is odd, use:
8663   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8664   // If this value is in the range [-31,-17] and is odd, use:
8665   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8666   // Note the last two are three-instruction sequences.
8667   if (SextVal >= -32 && SextVal <= 31) {
8668     // To avoid having these optimizations undone by constant folding,
8669     // we convert to a pseudo that will be expanded later into one of
8670     // the above forms.
8671     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8672     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8673               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8674     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8675     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8676     if (VT == Op.getValueType())
8677       return RetVal;
8678     else
8679       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8680   }
8681 
8682   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8683   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8684   // for fneg/fabs.
8685   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8686     // Make -1 and vspltisw -1:
8687     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8688 
8689     // Make the VSLW intrinsic, computing 0x8000_0000.
8690     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8691                                    OnesV, DAG, dl);
8692 
8693     // xor by OnesV to invert it.
8694     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8695     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8696   }
8697 
8698   // Check to see if this is a wide variety of vsplti*, binop self cases.
8699   static const signed char SplatCsts[] = {
8700     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8701     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8702   };
8703 
8704   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8705     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8706     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8707     int i = SplatCsts[idx];
8708 
8709     // Figure out what shift amount will be used by altivec if shifted by i in
8710     // this splat size.
8711     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8712 
8713     // vsplti + shl self.
8714     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8715       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8716       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8717         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8718         Intrinsic::ppc_altivec_vslw
8719       };
8720       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8721       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8722     }
8723 
8724     // vsplti + srl self.
8725     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8726       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8727       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8728         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8729         Intrinsic::ppc_altivec_vsrw
8730       };
8731       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8732       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8733     }
8734 
8735     // vsplti + sra self.
8736     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8737       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8738       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8739         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8740         Intrinsic::ppc_altivec_vsraw
8741       };
8742       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8743       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8744     }
8745 
8746     // vsplti + rol self.
8747     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8748                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8749       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8750       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8751         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8752         Intrinsic::ppc_altivec_vrlw
8753       };
8754       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8755       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8756     }
8757 
8758     // t = vsplti c, result = vsldoi t, t, 1
8759     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8760       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8761       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8762       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8763     }
8764     // t = vsplti c, result = vsldoi t, t, 2
8765     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8766       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8767       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8768       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8769     }
8770     // t = vsplti c, result = vsldoi t, t, 3
8771     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8772       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8773       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8774       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8775     }
8776   }
8777 
8778   return SDValue();
8779 }
8780 
8781 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8782 /// the specified operations to build the shuffle.
8783 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8784                                       SDValue RHS, SelectionDAG &DAG,
8785                                       const SDLoc &dl) {
8786   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8787   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8788   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8789 
8790   enum {
8791     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8792     OP_VMRGHW,
8793     OP_VMRGLW,
8794     OP_VSPLTISW0,
8795     OP_VSPLTISW1,
8796     OP_VSPLTISW2,
8797     OP_VSPLTISW3,
8798     OP_VSLDOI4,
8799     OP_VSLDOI8,
8800     OP_VSLDOI12
8801   };
8802 
8803   if (OpNum == OP_COPY) {
8804     if (LHSID == (1*9+2)*9+3) return LHS;
8805     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8806     return RHS;
8807   }
8808 
8809   SDValue OpLHS, OpRHS;
8810   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8811   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8812 
8813   int ShufIdxs[16];
8814   switch (OpNum) {
8815   default: llvm_unreachable("Unknown i32 permute!");
8816   case OP_VMRGHW:
8817     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8818     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8819     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8820     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8821     break;
8822   case OP_VMRGLW:
8823     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8824     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8825     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8826     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8827     break;
8828   case OP_VSPLTISW0:
8829     for (unsigned i = 0; i != 16; ++i)
8830       ShufIdxs[i] = (i&3)+0;
8831     break;
8832   case OP_VSPLTISW1:
8833     for (unsigned i = 0; i != 16; ++i)
8834       ShufIdxs[i] = (i&3)+4;
8835     break;
8836   case OP_VSPLTISW2:
8837     for (unsigned i = 0; i != 16; ++i)
8838       ShufIdxs[i] = (i&3)+8;
8839     break;
8840   case OP_VSPLTISW3:
8841     for (unsigned i = 0; i != 16; ++i)
8842       ShufIdxs[i] = (i&3)+12;
8843     break;
8844   case OP_VSLDOI4:
8845     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8846   case OP_VSLDOI8:
8847     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8848   case OP_VSLDOI12:
8849     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8850   }
8851   EVT VT = OpLHS.getValueType();
8852   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8853   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8854   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8855   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8856 }
8857 
8858 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8859 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8860 /// SDValue.
8861 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8862                                            SelectionDAG &DAG) const {
8863   const unsigned BytesInVector = 16;
8864   bool IsLE = Subtarget.isLittleEndian();
8865   SDLoc dl(N);
8866   SDValue V1 = N->getOperand(0);
8867   SDValue V2 = N->getOperand(1);
8868   unsigned ShiftElts = 0, InsertAtByte = 0;
8869   bool Swap = false;
8870 
8871   // Shifts required to get the byte we want at element 7.
8872   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8873                                    0, 15, 14, 13, 12, 11, 10, 9};
8874   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8875                                 1, 2,  3,  4,  5,  6,  7,  8};
8876 
8877   ArrayRef<int> Mask = N->getMask();
8878   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8879 
8880   // For each mask element, find out if we're just inserting something
8881   // from V2 into V1 or vice versa.
8882   // Possible permutations inserting an element from V2 into V1:
8883   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8884   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8885   //   ...
8886   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8887   // Inserting from V1 into V2 will be similar, except mask range will be
8888   // [16,31].
8889 
8890   bool FoundCandidate = false;
8891   // If both vector operands for the shuffle are the same vector, the mask
8892   // will contain only elements from the first one and the second one will be
8893   // undef.
8894   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8895   // Go through the mask of half-words to find an element that's being moved
8896   // from one vector to the other.
8897   for (unsigned i = 0; i < BytesInVector; ++i) {
8898     unsigned CurrentElement = Mask[i];
8899     // If 2nd operand is undefined, we should only look for element 7 in the
8900     // Mask.
8901     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8902       continue;
8903 
8904     bool OtherElementsInOrder = true;
8905     // Examine the other elements in the Mask to see if they're in original
8906     // order.
8907     for (unsigned j = 0; j < BytesInVector; ++j) {
8908       if (j == i)
8909         continue;
8910       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8911       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8912       // in which we always assume we're always picking from the 1st operand.
8913       int MaskOffset =
8914           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8915       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8916         OtherElementsInOrder = false;
8917         break;
8918       }
8919     }
8920     // If other elements are in original order, we record the number of shifts
8921     // we need to get the element we want into element 7. Also record which byte
8922     // in the vector we should insert into.
8923     if (OtherElementsInOrder) {
8924       // If 2nd operand is undefined, we assume no shifts and no swapping.
8925       if (V2.isUndef()) {
8926         ShiftElts = 0;
8927         Swap = false;
8928       } else {
8929         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8930         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8931                          : BigEndianShifts[CurrentElement & 0xF];
8932         Swap = CurrentElement < BytesInVector;
8933       }
8934       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8935       FoundCandidate = true;
8936       break;
8937     }
8938   }
8939 
8940   if (!FoundCandidate)
8941     return SDValue();
8942 
8943   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8944   // optionally with VECSHL if shift is required.
8945   if (Swap)
8946     std::swap(V1, V2);
8947   if (V2.isUndef())
8948     V2 = V1;
8949   if (ShiftElts) {
8950     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8951                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8952     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8953                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8954   }
8955   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8956                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8957 }
8958 
8959 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8960 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8961 /// SDValue.
8962 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8963                                            SelectionDAG &DAG) const {
8964   const unsigned NumHalfWords = 8;
8965   const unsigned BytesInVector = NumHalfWords * 2;
8966   // Check that the shuffle is on half-words.
8967   if (!isNByteElemShuffleMask(N, 2, 1))
8968     return SDValue();
8969 
8970   bool IsLE = Subtarget.isLittleEndian();
8971   SDLoc dl(N);
8972   SDValue V1 = N->getOperand(0);
8973   SDValue V2 = N->getOperand(1);
8974   unsigned ShiftElts = 0, InsertAtByte = 0;
8975   bool Swap = false;
8976 
8977   // Shifts required to get the half-word we want at element 3.
8978   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8979   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8980 
8981   uint32_t Mask = 0;
8982   uint32_t OriginalOrderLow = 0x1234567;
8983   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8984   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8985   // 32-bit space, only need 4-bit nibbles per element.
8986   for (unsigned i = 0; i < NumHalfWords; ++i) {
8987     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8988     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8989   }
8990 
8991   // For each mask element, find out if we're just inserting something
8992   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8993   // from V2 into V1:
8994   //   X, 1, 2, 3, 4, 5, 6, 7
8995   //   0, X, 2, 3, 4, 5, 6, 7
8996   //   0, 1, X, 3, 4, 5, 6, 7
8997   //   0, 1, 2, X, 4, 5, 6, 7
8998   //   0, 1, 2, 3, X, 5, 6, 7
8999   //   0, 1, 2, 3, 4, X, 6, 7
9000   //   0, 1, 2, 3, 4, 5, X, 7
9001   //   0, 1, 2, 3, 4, 5, 6, X
9002   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9003 
9004   bool FoundCandidate = false;
9005   // Go through the mask of half-words to find an element that's being moved
9006   // from one vector to the other.
9007   for (unsigned i = 0; i < NumHalfWords; ++i) {
9008     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9009     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9010     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9011     uint32_t TargetOrder = 0x0;
9012 
9013     // If both vector operands for the shuffle are the same vector, the mask
9014     // will contain only elements from the first one and the second one will be
9015     // undef.
9016     if (V2.isUndef()) {
9017       ShiftElts = 0;
9018       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9019       TargetOrder = OriginalOrderLow;
9020       Swap = false;
9021       // Skip if not the correct element or mask of other elements don't equal
9022       // to our expected order.
9023       if (MaskOneElt == VINSERTHSrcElem &&
9024           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9025         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9026         FoundCandidate = true;
9027         break;
9028       }
9029     } else { // If both operands are defined.
9030       // Target order is [8,15] if the current mask is between [0,7].
9031       TargetOrder =
9032           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9033       // Skip if mask of other elements don't equal our expected order.
9034       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9035         // We only need the last 3 bits for the number of shifts.
9036         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9037                          : BigEndianShifts[MaskOneElt & 0x7];
9038         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9039         Swap = MaskOneElt < NumHalfWords;
9040         FoundCandidate = true;
9041         break;
9042       }
9043     }
9044   }
9045 
9046   if (!FoundCandidate)
9047     return SDValue();
9048 
9049   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9050   // optionally with VECSHL if shift is required.
9051   if (Swap)
9052     std::swap(V1, V2);
9053   if (V2.isUndef())
9054     V2 = V1;
9055   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9056   if (ShiftElts) {
9057     // Double ShiftElts because we're left shifting on v16i8 type.
9058     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9059                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9060     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9061     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9062                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9063     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9064   }
9065   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9066   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9067                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9068   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9069 }
9070 
9071 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9072 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9073 /// return the code it can be lowered into.  Worst case, it can always be
9074 /// lowered into a vperm.
9075 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9076                                                SelectionDAG &DAG) const {
9077   SDLoc dl(Op);
9078   SDValue V1 = Op.getOperand(0);
9079   SDValue V2 = Op.getOperand(1);
9080   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9081   EVT VT = Op.getValueType();
9082   bool isLittleEndian = Subtarget.isLittleEndian();
9083 
9084   unsigned ShiftElts, InsertAtByte;
9085   bool Swap = false;
9086 
9087   // If this is a load-and-splat, we can do that with a single instruction
9088   // in some cases. However if the load has multiple uses, we don't want to
9089   // combine it because that will just produce multiple loads.
9090   const SDValue *InputLoad = getNormalLoadInput(V1);
9091   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9092       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9093       InputLoad->hasOneUse()) {
9094     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9095     int SplatIdx =
9096       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9097 
9098     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9099     // For 4-byte load-and-splat, we need Power9.
9100     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9101       uint64_t Offset = 0;
9102       if (IsFourByte)
9103         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9104       else
9105         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9106       SDValue BasePtr = LD->getBasePtr();
9107       if (Offset != 0)
9108         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9109                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9110       SDValue Ops[] = {
9111         LD->getChain(),    // Chain
9112         BasePtr,           // BasePtr
9113         DAG.getValueType(Op.getValueType()) // VT
9114       };
9115       SDVTList VTL =
9116         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9117       SDValue LdSplt =
9118         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9119                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9120       if (LdSplt.getValueType() != SVOp->getValueType(0))
9121         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9122       return LdSplt;
9123     }
9124   }
9125   if (Subtarget.hasP9Vector() &&
9126       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9127                            isLittleEndian)) {
9128     if (Swap)
9129       std::swap(V1, V2);
9130     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9131     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9132     if (ShiftElts) {
9133       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9134                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9135       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9136                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9137       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9138     }
9139     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9140                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9141     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9142   }
9143 
9144   if (Subtarget.hasP9Altivec()) {
9145     SDValue NewISDNode;
9146     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9147       return NewISDNode;
9148 
9149     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9150       return NewISDNode;
9151   }
9152 
9153   if (Subtarget.hasVSX() &&
9154       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9155     if (Swap)
9156       std::swap(V1, V2);
9157     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9158     SDValue Conv2 =
9159         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9160 
9161     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9162                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9163     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9164   }
9165 
9166   if (Subtarget.hasVSX() &&
9167     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9168     if (Swap)
9169       std::swap(V1, V2);
9170     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9171     SDValue Conv2 =
9172         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9173 
9174     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9175                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9176     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9177   }
9178 
9179   if (Subtarget.hasP9Vector()) {
9180      if (PPC::isXXBRHShuffleMask(SVOp)) {
9181       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9182       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
9183       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9184     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9185       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9186       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
9187       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9188     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9189       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9190       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
9191       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9192     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9193       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9194       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
9195       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9196     }
9197   }
9198 
9199   if (Subtarget.hasVSX()) {
9200     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9201       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9202 
9203       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9204       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9205                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9206       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9207     }
9208 
9209     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9210     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9211       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9212       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9213       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9214     }
9215   }
9216 
9217   if (Subtarget.hasQPX()) {
9218     if (VT.getVectorNumElements() != 4)
9219       return SDValue();
9220 
9221     if (V2.isUndef()) V2 = V1;
9222 
9223     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9224     if (AlignIdx != -1) {
9225       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9226                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9227     } else if (SVOp->isSplat()) {
9228       int SplatIdx = SVOp->getSplatIndex();
9229       if (SplatIdx >= 4) {
9230         std::swap(V1, V2);
9231         SplatIdx -= 4;
9232       }
9233 
9234       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9235                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9236     }
9237 
9238     // Lower this into a qvgpci/qvfperm pair.
9239 
9240     // Compute the qvgpci literal
9241     unsigned idx = 0;
9242     for (unsigned i = 0; i < 4; ++i) {
9243       int m = SVOp->getMaskElt(i);
9244       unsigned mm = m >= 0 ? (unsigned) m : i;
9245       idx |= mm << (3-i)*3;
9246     }
9247 
9248     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9249                              DAG.getConstant(idx, dl, MVT::i32));
9250     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9251   }
9252 
9253   // Cases that are handled by instructions that take permute immediates
9254   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9255   // selected by the instruction selector.
9256   if (V2.isUndef()) {
9257     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9258         PPC::isSplatShuffleMask(SVOp, 2) ||
9259         PPC::isSplatShuffleMask(SVOp, 4) ||
9260         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9261         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9262         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9263         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9264         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9265         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9266         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9267         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9268         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9269         (Subtarget.hasP8Altivec() && (
9270          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9271          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9272          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9273       return Op;
9274     }
9275   }
9276 
9277   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9278   // and produce a fixed permutation.  If any of these match, do not lower to
9279   // VPERM.
9280   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9281   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9282       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9283       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9284       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9285       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9286       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9287       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9288       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9289       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9290       (Subtarget.hasP8Altivec() && (
9291        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9292        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9293        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9294     return Op;
9295 
9296   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9297   // perfect shuffle table to emit an optimal matching sequence.
9298   ArrayRef<int> PermMask = SVOp->getMask();
9299 
9300   unsigned PFIndexes[4];
9301   bool isFourElementShuffle = true;
9302   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9303     unsigned EltNo = 8;   // Start out undef.
9304     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9305       if (PermMask[i*4+j] < 0)
9306         continue;   // Undef, ignore it.
9307 
9308       unsigned ByteSource = PermMask[i*4+j];
9309       if ((ByteSource & 3) != j) {
9310         isFourElementShuffle = false;
9311         break;
9312       }
9313 
9314       if (EltNo == 8) {
9315         EltNo = ByteSource/4;
9316       } else if (EltNo != ByteSource/4) {
9317         isFourElementShuffle = false;
9318         break;
9319       }
9320     }
9321     PFIndexes[i] = EltNo;
9322   }
9323 
9324   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9325   // perfect shuffle vector to determine if it is cost effective to do this as
9326   // discrete instructions, or whether we should use a vperm.
9327   // For now, we skip this for little endian until such time as we have a
9328   // little-endian perfect shuffle table.
9329   if (isFourElementShuffle && !isLittleEndian) {
9330     // Compute the index in the perfect shuffle table.
9331     unsigned PFTableIndex =
9332       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9333 
9334     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9335     unsigned Cost  = (PFEntry >> 30);
9336 
9337     // Determining when to avoid vperm is tricky.  Many things affect the cost
9338     // of vperm, particularly how many times the perm mask needs to be computed.
9339     // For example, if the perm mask can be hoisted out of a loop or is already
9340     // used (perhaps because there are multiple permutes with the same shuffle
9341     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9342     // the loop requires an extra register.
9343     //
9344     // As a compromise, we only emit discrete instructions if the shuffle can be
9345     // generated in 3 or fewer operations.  When we have loop information
9346     // available, if this block is within a loop, we should avoid using vperm
9347     // for 3-operation perms and use a constant pool load instead.
9348     if (Cost < 3)
9349       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9350   }
9351 
9352   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9353   // vector that will get spilled to the constant pool.
9354   if (V2.isUndef()) V2 = V1;
9355 
9356   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9357   // that it is in input element units, not in bytes.  Convert now.
9358 
9359   // For little endian, the order of the input vectors is reversed, and
9360   // the permutation mask is complemented with respect to 31.  This is
9361   // necessary to produce proper semantics with the big-endian-biased vperm
9362   // instruction.
9363   EVT EltVT = V1.getValueType().getVectorElementType();
9364   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9365 
9366   SmallVector<SDValue, 16> ResultMask;
9367   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9368     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9369 
9370     for (unsigned j = 0; j != BytesPerElement; ++j)
9371       if (isLittleEndian)
9372         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9373                                              dl, MVT::i32));
9374       else
9375         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9376                                              MVT::i32));
9377   }
9378 
9379   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9380   if (isLittleEndian)
9381     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9382                        V2, V1, VPermMask);
9383   else
9384     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9385                        V1, V2, VPermMask);
9386 }
9387 
9388 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9389 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9390 /// information about the intrinsic.
9391 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9392                                  bool &isDot, const PPCSubtarget &Subtarget) {
9393   unsigned IntrinsicID =
9394       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9395   CompareOpc = -1;
9396   isDot = false;
9397   switch (IntrinsicID) {
9398   default:
9399     return false;
9400   // Comparison predicates.
9401   case Intrinsic::ppc_altivec_vcmpbfp_p:
9402     CompareOpc = 966;
9403     isDot = true;
9404     break;
9405   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9406     CompareOpc = 198;
9407     isDot = true;
9408     break;
9409   case Intrinsic::ppc_altivec_vcmpequb_p:
9410     CompareOpc = 6;
9411     isDot = true;
9412     break;
9413   case Intrinsic::ppc_altivec_vcmpequh_p:
9414     CompareOpc = 70;
9415     isDot = true;
9416     break;
9417   case Intrinsic::ppc_altivec_vcmpequw_p:
9418     CompareOpc = 134;
9419     isDot = true;
9420     break;
9421   case Intrinsic::ppc_altivec_vcmpequd_p:
9422     if (Subtarget.hasP8Altivec()) {
9423       CompareOpc = 199;
9424       isDot = true;
9425     } else
9426       return false;
9427     break;
9428   case Intrinsic::ppc_altivec_vcmpneb_p:
9429   case Intrinsic::ppc_altivec_vcmpneh_p:
9430   case Intrinsic::ppc_altivec_vcmpnew_p:
9431   case Intrinsic::ppc_altivec_vcmpnezb_p:
9432   case Intrinsic::ppc_altivec_vcmpnezh_p:
9433   case Intrinsic::ppc_altivec_vcmpnezw_p:
9434     if (Subtarget.hasP9Altivec()) {
9435       switch (IntrinsicID) {
9436       default:
9437         llvm_unreachable("Unknown comparison intrinsic.");
9438       case Intrinsic::ppc_altivec_vcmpneb_p:
9439         CompareOpc = 7;
9440         break;
9441       case Intrinsic::ppc_altivec_vcmpneh_p:
9442         CompareOpc = 71;
9443         break;
9444       case Intrinsic::ppc_altivec_vcmpnew_p:
9445         CompareOpc = 135;
9446         break;
9447       case Intrinsic::ppc_altivec_vcmpnezb_p:
9448         CompareOpc = 263;
9449         break;
9450       case Intrinsic::ppc_altivec_vcmpnezh_p:
9451         CompareOpc = 327;
9452         break;
9453       case Intrinsic::ppc_altivec_vcmpnezw_p:
9454         CompareOpc = 391;
9455         break;
9456       }
9457       isDot = true;
9458     } else
9459       return false;
9460     break;
9461   case Intrinsic::ppc_altivec_vcmpgefp_p:
9462     CompareOpc = 454;
9463     isDot = true;
9464     break;
9465   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9466     CompareOpc = 710;
9467     isDot = true;
9468     break;
9469   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9470     CompareOpc = 774;
9471     isDot = true;
9472     break;
9473   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9474     CompareOpc = 838;
9475     isDot = true;
9476     break;
9477   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9478     CompareOpc = 902;
9479     isDot = true;
9480     break;
9481   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9482     if (Subtarget.hasP8Altivec()) {
9483       CompareOpc = 967;
9484       isDot = true;
9485     } else
9486       return false;
9487     break;
9488   case Intrinsic::ppc_altivec_vcmpgtub_p:
9489     CompareOpc = 518;
9490     isDot = true;
9491     break;
9492   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9493     CompareOpc = 582;
9494     isDot = true;
9495     break;
9496   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9497     CompareOpc = 646;
9498     isDot = true;
9499     break;
9500   case Intrinsic::ppc_altivec_vcmpgtud_p:
9501     if (Subtarget.hasP8Altivec()) {
9502       CompareOpc = 711;
9503       isDot = true;
9504     } else
9505       return false;
9506     break;
9507 
9508   // VSX predicate comparisons use the same infrastructure
9509   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9510   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9511   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9512   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9513   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9514   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9515     if (Subtarget.hasVSX()) {
9516       switch (IntrinsicID) {
9517       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9518         CompareOpc = 99;
9519         break;
9520       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9521         CompareOpc = 115;
9522         break;
9523       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9524         CompareOpc = 107;
9525         break;
9526       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9527         CompareOpc = 67;
9528         break;
9529       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9530         CompareOpc = 83;
9531         break;
9532       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9533         CompareOpc = 75;
9534         break;
9535       }
9536       isDot = true;
9537     } else
9538       return false;
9539     break;
9540 
9541   // Normal Comparisons.
9542   case Intrinsic::ppc_altivec_vcmpbfp:
9543     CompareOpc = 966;
9544     break;
9545   case Intrinsic::ppc_altivec_vcmpeqfp:
9546     CompareOpc = 198;
9547     break;
9548   case Intrinsic::ppc_altivec_vcmpequb:
9549     CompareOpc = 6;
9550     break;
9551   case Intrinsic::ppc_altivec_vcmpequh:
9552     CompareOpc = 70;
9553     break;
9554   case Intrinsic::ppc_altivec_vcmpequw:
9555     CompareOpc = 134;
9556     break;
9557   case Intrinsic::ppc_altivec_vcmpequd:
9558     if (Subtarget.hasP8Altivec())
9559       CompareOpc = 199;
9560     else
9561       return false;
9562     break;
9563   case Intrinsic::ppc_altivec_vcmpneb:
9564   case Intrinsic::ppc_altivec_vcmpneh:
9565   case Intrinsic::ppc_altivec_vcmpnew:
9566   case Intrinsic::ppc_altivec_vcmpnezb:
9567   case Intrinsic::ppc_altivec_vcmpnezh:
9568   case Intrinsic::ppc_altivec_vcmpnezw:
9569     if (Subtarget.hasP9Altivec())
9570       switch (IntrinsicID) {
9571       default:
9572         llvm_unreachable("Unknown comparison intrinsic.");
9573       case Intrinsic::ppc_altivec_vcmpneb:
9574         CompareOpc = 7;
9575         break;
9576       case Intrinsic::ppc_altivec_vcmpneh:
9577         CompareOpc = 71;
9578         break;
9579       case Intrinsic::ppc_altivec_vcmpnew:
9580         CompareOpc = 135;
9581         break;
9582       case Intrinsic::ppc_altivec_vcmpnezb:
9583         CompareOpc = 263;
9584         break;
9585       case Intrinsic::ppc_altivec_vcmpnezh:
9586         CompareOpc = 327;
9587         break;
9588       case Intrinsic::ppc_altivec_vcmpnezw:
9589         CompareOpc = 391;
9590         break;
9591       }
9592     else
9593       return false;
9594     break;
9595   case Intrinsic::ppc_altivec_vcmpgefp:
9596     CompareOpc = 454;
9597     break;
9598   case Intrinsic::ppc_altivec_vcmpgtfp:
9599     CompareOpc = 710;
9600     break;
9601   case Intrinsic::ppc_altivec_vcmpgtsb:
9602     CompareOpc = 774;
9603     break;
9604   case Intrinsic::ppc_altivec_vcmpgtsh:
9605     CompareOpc = 838;
9606     break;
9607   case Intrinsic::ppc_altivec_vcmpgtsw:
9608     CompareOpc = 902;
9609     break;
9610   case Intrinsic::ppc_altivec_vcmpgtsd:
9611     if (Subtarget.hasP8Altivec())
9612       CompareOpc = 967;
9613     else
9614       return false;
9615     break;
9616   case Intrinsic::ppc_altivec_vcmpgtub:
9617     CompareOpc = 518;
9618     break;
9619   case Intrinsic::ppc_altivec_vcmpgtuh:
9620     CompareOpc = 582;
9621     break;
9622   case Intrinsic::ppc_altivec_vcmpgtuw:
9623     CompareOpc = 646;
9624     break;
9625   case Intrinsic::ppc_altivec_vcmpgtud:
9626     if (Subtarget.hasP8Altivec())
9627       CompareOpc = 711;
9628     else
9629       return false;
9630     break;
9631   }
9632   return true;
9633 }
9634 
9635 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9636 /// lower, do it, otherwise return null.
9637 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9638                                                    SelectionDAG &DAG) const {
9639   unsigned IntrinsicID =
9640     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9641 
9642   SDLoc dl(Op);
9643 
9644   if (IntrinsicID == Intrinsic::thread_pointer) {
9645     // Reads the thread pointer register, used for __builtin_thread_pointer.
9646     if (Subtarget.isPPC64())
9647       return DAG.getRegister(PPC::X13, MVT::i64);
9648     return DAG.getRegister(PPC::R2, MVT::i32);
9649   }
9650 
9651   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9652   // opcode number of the comparison.
9653   int CompareOpc;
9654   bool isDot;
9655   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9656     return SDValue();    // Don't custom lower most intrinsics.
9657 
9658   // If this is a non-dot comparison, make the VCMP node and we are done.
9659   if (!isDot) {
9660     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9661                               Op.getOperand(1), Op.getOperand(2),
9662                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9663     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9664   }
9665 
9666   // Create the PPCISD altivec 'dot' comparison node.
9667   SDValue Ops[] = {
9668     Op.getOperand(2),  // LHS
9669     Op.getOperand(3),  // RHS
9670     DAG.getConstant(CompareOpc, dl, MVT::i32)
9671   };
9672   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9673   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9674 
9675   // Now that we have the comparison, emit a copy from the CR to a GPR.
9676   // This is flagged to the above dot comparison.
9677   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9678                                 DAG.getRegister(PPC::CR6, MVT::i32),
9679                                 CompNode.getValue(1));
9680 
9681   // Unpack the result based on how the target uses it.
9682   unsigned BitNo;   // Bit # of CR6.
9683   bool InvertBit;   // Invert result?
9684   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9685   default:  // Can't happen, don't crash on invalid number though.
9686   case 0:   // Return the value of the EQ bit of CR6.
9687     BitNo = 0; InvertBit = false;
9688     break;
9689   case 1:   // Return the inverted value of the EQ bit of CR6.
9690     BitNo = 0; InvertBit = true;
9691     break;
9692   case 2:   // Return the value of the LT bit of CR6.
9693     BitNo = 2; InvertBit = false;
9694     break;
9695   case 3:   // Return the inverted value of the LT bit of CR6.
9696     BitNo = 2; InvertBit = true;
9697     break;
9698   }
9699 
9700   // Shift the bit into the low position.
9701   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9702                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9703   // Isolate the bit.
9704   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9705                       DAG.getConstant(1, dl, MVT::i32));
9706 
9707   // If we are supposed to, toggle the bit.
9708   if (InvertBit)
9709     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9710                         DAG.getConstant(1, dl, MVT::i32));
9711   return Flags;
9712 }
9713 
9714 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9715                                                SelectionDAG &DAG) const {
9716   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9717   // the beginning of the argument list.
9718   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9719   SDLoc DL(Op);
9720   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9721   case Intrinsic::ppc_cfence: {
9722     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9723     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9724     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9725                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9726                                                   Op.getOperand(ArgStart + 1)),
9727                                       Op.getOperand(0)),
9728                    0);
9729   }
9730   default:
9731     break;
9732   }
9733   return SDValue();
9734 }
9735 
9736 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9737   // Check for a DIV with the same operands as this REM.
9738   for (auto UI : Op.getOperand(1)->uses()) {
9739     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9740         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9741       if (UI->getOperand(0) == Op.getOperand(0) &&
9742           UI->getOperand(1) == Op.getOperand(1))
9743         return SDValue();
9744   }
9745   return Op;
9746 }
9747 
9748 // Lower scalar BSWAP64 to xxbrd.
9749 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9750   SDLoc dl(Op);
9751   // MTVSRDD
9752   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9753                    Op.getOperand(0));
9754   // XXBRD
9755   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9756   // MFVSRD
9757   int VectorIndex = 0;
9758   if (Subtarget.isLittleEndian())
9759     VectorIndex = 1;
9760   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9761                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9762   return Op;
9763 }
9764 
9765 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9766 // compared to a value that is atomically loaded (atomic loads zero-extend).
9767 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9768                                                 SelectionDAG &DAG) const {
9769   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9770          "Expecting an atomic compare-and-swap here.");
9771   SDLoc dl(Op);
9772   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9773   EVT MemVT = AtomicNode->getMemoryVT();
9774   if (MemVT.getSizeInBits() >= 32)
9775     return Op;
9776 
9777   SDValue CmpOp = Op.getOperand(2);
9778   // If this is already correctly zero-extended, leave it alone.
9779   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9780   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9781     return Op;
9782 
9783   // Clear the high bits of the compare operand.
9784   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9785   SDValue NewCmpOp =
9786     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9787                 DAG.getConstant(MaskVal, dl, MVT::i32));
9788 
9789   // Replace the existing compare operand with the properly zero-extended one.
9790   SmallVector<SDValue, 4> Ops;
9791   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9792     Ops.push_back(AtomicNode->getOperand(i));
9793   Ops[2] = NewCmpOp;
9794   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9795   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9796   auto NodeTy =
9797     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9798   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9799 }
9800 
9801 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9802                                                  SelectionDAG &DAG) const {
9803   SDLoc dl(Op);
9804   // Create a stack slot that is 16-byte aligned.
9805   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9806   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9807   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9808   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9809 
9810   // Store the input value into Value#0 of the stack slot.
9811   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9812                                MachinePointerInfo());
9813   // Load it out.
9814   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9815 }
9816 
9817 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9818                                                   SelectionDAG &DAG) const {
9819   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9820          "Should only be called for ISD::INSERT_VECTOR_ELT");
9821 
9822   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9823   // We have legal lowering for constant indices but not for variable ones.
9824   if (!C)
9825     return SDValue();
9826 
9827   EVT VT = Op.getValueType();
9828   SDLoc dl(Op);
9829   SDValue V1 = Op.getOperand(0);
9830   SDValue V2 = Op.getOperand(1);
9831   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9832   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9833     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9834     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9835     unsigned InsertAtElement = C->getZExtValue();
9836     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9837     if (Subtarget.isLittleEndian()) {
9838       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9839     }
9840     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9841                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9842   }
9843   return Op;
9844 }
9845 
9846 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9847                                                    SelectionDAG &DAG) const {
9848   SDLoc dl(Op);
9849   SDNode *N = Op.getNode();
9850 
9851   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9852          "Unknown extract_vector_elt type");
9853 
9854   SDValue Value = N->getOperand(0);
9855 
9856   // The first part of this is like the store lowering except that we don't
9857   // need to track the chain.
9858 
9859   // The values are now known to be -1 (false) or 1 (true). To convert this
9860   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9861   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9862   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9863 
9864   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9865   // understand how to form the extending load.
9866   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9867 
9868   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9869 
9870   // Now convert to an integer and store.
9871   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9872     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9873     Value);
9874 
9875   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9876   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9877   MachinePointerInfo PtrInfo =
9878       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9879   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9880   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9881 
9882   SDValue StoreChain = DAG.getEntryNode();
9883   SDValue Ops[] = {StoreChain,
9884                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9885                    Value, FIdx};
9886   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9887 
9888   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9889     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9890 
9891   // Extract the value requested.
9892   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9893   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9894   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9895 
9896   SDValue IntVal =
9897       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9898 
9899   if (!Subtarget.useCRBits())
9900     return IntVal;
9901 
9902   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9903 }
9904 
9905 /// Lowering for QPX v4i1 loads
9906 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9907                                            SelectionDAG &DAG) const {
9908   SDLoc dl(Op);
9909   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9910   SDValue LoadChain = LN->getChain();
9911   SDValue BasePtr = LN->getBasePtr();
9912 
9913   if (Op.getValueType() == MVT::v4f64 ||
9914       Op.getValueType() == MVT::v4f32) {
9915     EVT MemVT = LN->getMemoryVT();
9916     unsigned Alignment = LN->getAlignment();
9917 
9918     // If this load is properly aligned, then it is legal.
9919     if (Alignment >= MemVT.getStoreSize())
9920       return Op;
9921 
9922     EVT ScalarVT = Op.getValueType().getScalarType(),
9923         ScalarMemVT = MemVT.getScalarType();
9924     unsigned Stride = ScalarMemVT.getStoreSize();
9925 
9926     SDValue Vals[4], LoadChains[4];
9927     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9928       SDValue Load;
9929       if (ScalarVT != ScalarMemVT)
9930         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9931                               BasePtr,
9932                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9933                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9934                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9935       else
9936         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9937                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9938                            MinAlign(Alignment, Idx * Stride),
9939                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9940 
9941       if (Idx == 0 && LN->isIndexed()) {
9942         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9943                "Unknown addressing mode on vector load");
9944         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9945                                   LN->getAddressingMode());
9946       }
9947 
9948       Vals[Idx] = Load;
9949       LoadChains[Idx] = Load.getValue(1);
9950 
9951       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9952                             DAG.getConstant(Stride, dl,
9953                                             BasePtr.getValueType()));
9954     }
9955 
9956     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9957     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9958 
9959     if (LN->isIndexed()) {
9960       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9961       return DAG.getMergeValues(RetOps, dl);
9962     }
9963 
9964     SDValue RetOps[] = { Value, TF };
9965     return DAG.getMergeValues(RetOps, dl);
9966   }
9967 
9968   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9969   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9970 
9971   // To lower v4i1 from a byte array, we load the byte elements of the
9972   // vector and then reuse the BUILD_VECTOR logic.
9973 
9974   SDValue VectElmts[4], VectElmtChains[4];
9975   for (unsigned i = 0; i < 4; ++i) {
9976     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9977     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9978 
9979     VectElmts[i] = DAG.getExtLoad(
9980         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9981         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9982         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9983     VectElmtChains[i] = VectElmts[i].getValue(1);
9984   }
9985 
9986   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9987   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9988 
9989   SDValue RVals[] = { Value, LoadChain };
9990   return DAG.getMergeValues(RVals, dl);
9991 }
9992 
9993 /// Lowering for QPX v4i1 stores
9994 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9995                                             SelectionDAG &DAG) const {
9996   SDLoc dl(Op);
9997   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9998   SDValue StoreChain = SN->getChain();
9999   SDValue BasePtr = SN->getBasePtr();
10000   SDValue Value = SN->getValue();
10001 
10002   if (Value.getValueType() == MVT::v4f64 ||
10003       Value.getValueType() == MVT::v4f32) {
10004     EVT MemVT = SN->getMemoryVT();
10005     unsigned Alignment = SN->getAlignment();
10006 
10007     // If this store is properly aligned, then it is legal.
10008     if (Alignment >= MemVT.getStoreSize())
10009       return Op;
10010 
10011     EVT ScalarVT = Value.getValueType().getScalarType(),
10012         ScalarMemVT = MemVT.getScalarType();
10013     unsigned Stride = ScalarMemVT.getStoreSize();
10014 
10015     SDValue Stores[4];
10016     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10017       SDValue Ex = DAG.getNode(
10018           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10019           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
10020       SDValue Store;
10021       if (ScalarVT != ScalarMemVT)
10022         Store =
10023             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10024                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10025                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10026                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10027       else
10028         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10029                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10030                              MinAlign(Alignment, Idx * Stride),
10031                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10032 
10033       if (Idx == 0 && SN->isIndexed()) {
10034         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10035                "Unknown addressing mode on vector store");
10036         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10037                                     SN->getAddressingMode());
10038       }
10039 
10040       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10041                             DAG.getConstant(Stride, dl,
10042                                             BasePtr.getValueType()));
10043       Stores[Idx] = Store;
10044     }
10045 
10046     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10047 
10048     if (SN->isIndexed()) {
10049       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10050       return DAG.getMergeValues(RetOps, dl);
10051     }
10052 
10053     return TF;
10054   }
10055 
10056   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10057   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10058 
10059   // The values are now known to be -1 (false) or 1 (true). To convert this
10060   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10061   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10062   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10063 
10064   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10065   // understand how to form the extending load.
10066   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10067 
10068   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10069 
10070   // Now convert to an integer and store.
10071   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10072     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10073     Value);
10074 
10075   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10076   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10077   MachinePointerInfo PtrInfo =
10078       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10079   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10080   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10081 
10082   SDValue Ops[] = {StoreChain,
10083                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10084                    Value, FIdx};
10085   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10086 
10087   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10088     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10089 
10090   // Move data into the byte array.
10091   SDValue Loads[4], LoadChains[4];
10092   for (unsigned i = 0; i < 4; ++i) {
10093     unsigned Offset = 4*i;
10094     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10095     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10096 
10097     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10098                            PtrInfo.getWithOffset(Offset));
10099     LoadChains[i] = Loads[i].getValue(1);
10100   }
10101 
10102   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10103 
10104   SDValue Stores[4];
10105   for (unsigned i = 0; i < 4; ++i) {
10106     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10107     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10108 
10109     Stores[i] = DAG.getTruncStore(
10110         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10111         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10112         SN->getAAInfo());
10113   }
10114 
10115   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10116 
10117   return StoreChain;
10118 }
10119 
10120 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10121   SDLoc dl(Op);
10122   if (Op.getValueType() == MVT::v4i32) {
10123     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10124 
10125     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10126     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10127 
10128     SDValue RHSSwap =   // = vrlw RHS, 16
10129       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10130 
10131     // Shrinkify inputs to v8i16.
10132     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10133     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10134     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10135 
10136     // Low parts multiplied together, generating 32-bit results (we ignore the
10137     // top parts).
10138     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10139                                         LHS, RHS, DAG, dl, MVT::v4i32);
10140 
10141     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10142                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10143     // Shift the high parts up 16 bits.
10144     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10145                               Neg16, DAG, dl);
10146     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10147   } else if (Op.getValueType() == MVT::v8i16) {
10148     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10149 
10150     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
10151 
10152     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
10153                             LHS, RHS, Zero, DAG, dl);
10154   } else if (Op.getValueType() == MVT::v16i8) {
10155     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10156     bool isLittleEndian = Subtarget.isLittleEndian();
10157 
10158     // Multiply the even 8-bit parts, producing 16-bit sums.
10159     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10160                                            LHS, RHS, DAG, dl, MVT::v8i16);
10161     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10162 
10163     // Multiply the odd 8-bit parts, producing 16-bit sums.
10164     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10165                                           LHS, RHS, DAG, dl, MVT::v8i16);
10166     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10167 
10168     // Merge the results together.  Because vmuleub and vmuloub are
10169     // instructions with a big-endian bias, we must reverse the
10170     // element numbering and reverse the meaning of "odd" and "even"
10171     // when generating little endian code.
10172     int Ops[16];
10173     for (unsigned i = 0; i != 8; ++i) {
10174       if (isLittleEndian) {
10175         Ops[i*2  ] = 2*i;
10176         Ops[i*2+1] = 2*i+16;
10177       } else {
10178         Ops[i*2  ] = 2*i+1;
10179         Ops[i*2+1] = 2*i+1+16;
10180       }
10181     }
10182     if (isLittleEndian)
10183       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10184     else
10185       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10186   } else {
10187     llvm_unreachable("Unknown mul to lower!");
10188   }
10189 }
10190 
10191 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10192 
10193   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10194 
10195   EVT VT = Op.getValueType();
10196   assert(VT.isVector() &&
10197          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10198   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10199           VT == MVT::v16i8) &&
10200          "Unexpected vector element type!");
10201   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10202          "Current subtarget doesn't support smax v2i64!");
10203 
10204   // For vector abs, it can be lowered to:
10205   // abs x
10206   // ==>
10207   // y = -x
10208   // smax(x, y)
10209 
10210   SDLoc dl(Op);
10211   SDValue X = Op.getOperand(0);
10212   SDValue Zero = DAG.getConstant(0, dl, VT);
10213   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10214 
10215   // SMAX patch https://reviews.llvm.org/D47332
10216   // hasn't landed yet, so use intrinsic first here.
10217   // TODO: Should use SMAX directly once SMAX patch landed
10218   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10219   if (VT == MVT::v2i64)
10220     BifID = Intrinsic::ppc_altivec_vmaxsd;
10221   else if (VT == MVT::v8i16)
10222     BifID = Intrinsic::ppc_altivec_vmaxsh;
10223   else if (VT == MVT::v16i8)
10224     BifID = Intrinsic::ppc_altivec_vmaxsb;
10225 
10226   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10227 }
10228 
10229 // Custom lowering for fpext vf32 to v2f64
10230 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10231 
10232   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10233          "Should only be called for ISD::FP_EXTEND");
10234 
10235   // We only want to custom lower an extend from v2f32 to v2f64.
10236   if (Op.getValueType() != MVT::v2f64 ||
10237       Op.getOperand(0).getValueType() != MVT::v2f32)
10238     return SDValue();
10239 
10240   SDLoc dl(Op);
10241   SDValue Op0 = Op.getOperand(0);
10242 
10243   switch (Op0.getOpcode()) {
10244   default:
10245     return SDValue();
10246   case ISD::EXTRACT_SUBVECTOR: {
10247     assert(Op0.getNumOperands() == 2 &&
10248            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10249            "Node should have 2 operands with second one being a constant!");
10250 
10251     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10252       return SDValue();
10253 
10254     // Custom lower is only done for high or low doubleword.
10255     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10256     if (Idx % 2 != 0)
10257       return SDValue();
10258 
10259     // Since input is v4f32, at this point Idx is either 0 or 2.
10260     // Shift to get the doubleword position we want.
10261     int DWord = Idx >> 1;
10262 
10263     // High and low word positions are different on little endian.
10264     if (Subtarget.isLittleEndian())
10265       DWord ^= 0x1;
10266 
10267     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10268                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10269   }
10270   case ISD::FADD:
10271   case ISD::FMUL:
10272   case ISD::FSUB: {
10273     SDValue NewLoad[2];
10274     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10275       // Ensure both input are loads.
10276       SDValue LdOp = Op0.getOperand(i);
10277       if (LdOp.getOpcode() != ISD::LOAD)
10278         return SDValue();
10279       // Generate new load node.
10280       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10281       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10282       NewLoad[i] = DAG.getMemIntrinsicNode(
10283           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10284           LD->getMemoryVT(), LD->getMemOperand());
10285     }
10286     SDValue NewOp =
10287         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10288                     NewLoad[1], Op0.getNode()->getFlags());
10289     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10290                        DAG.getConstant(0, dl, MVT::i32));
10291   }
10292   case ISD::LOAD: {
10293     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10294     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10295     SDValue NewLd = DAG.getMemIntrinsicNode(
10296         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10297         LD->getMemoryVT(), LD->getMemOperand());
10298     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10299                        DAG.getConstant(0, dl, MVT::i32));
10300   }
10301   }
10302   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10303 }
10304 
10305 /// LowerOperation - Provide custom lowering hooks for some operations.
10306 ///
10307 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10308   switch (Op.getOpcode()) {
10309   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10310   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10311   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10312   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10313   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10314   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10315   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10316   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10317   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10318 
10319   // Variable argument lowering.
10320   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10321   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10322   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10323 
10324   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10325   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10326   case ISD::GET_DYNAMIC_AREA_OFFSET:
10327     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10328 
10329   // Exception handling lowering.
10330   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10331   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10332   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10333 
10334   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10335   case ISD::STORE:              return LowerSTORE(Op, DAG);
10336   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10337   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10338   case ISD::FP_TO_UINT:
10339   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10340   case ISD::UINT_TO_FP:
10341   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10342   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10343 
10344   // Lower 64-bit shifts.
10345   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10346   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10347   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10348 
10349   // Vector-related lowering.
10350   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10351   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10352   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10353   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10354   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10355   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10356   case ISD::MUL:                return LowerMUL(Op, DAG);
10357   case ISD::ABS:                return LowerABS(Op, DAG);
10358   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10359 
10360   // For counter-based loop handling.
10361   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10362 
10363   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10364 
10365   // Frame & Return address.
10366   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10367   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10368 
10369   case ISD::INTRINSIC_VOID:
10370     return LowerINTRINSIC_VOID(Op, DAG);
10371   case ISD::SREM:
10372   case ISD::UREM:
10373     return LowerREM(Op, DAG);
10374   case ISD::BSWAP:
10375     return LowerBSWAP(Op, DAG);
10376   case ISD::ATOMIC_CMP_SWAP:
10377     return LowerATOMIC_CMP_SWAP(Op, DAG);
10378   }
10379 }
10380 
10381 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10382                                            SmallVectorImpl<SDValue>&Results,
10383                                            SelectionDAG &DAG) const {
10384   SDLoc dl(N);
10385   switch (N->getOpcode()) {
10386   default:
10387     llvm_unreachable("Do not know how to custom type legalize this operation!");
10388   case ISD::READCYCLECOUNTER: {
10389     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10390     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10391 
10392     Results.push_back(RTB);
10393     Results.push_back(RTB.getValue(1));
10394     Results.push_back(RTB.getValue(2));
10395     break;
10396   }
10397   case ISD::INTRINSIC_W_CHAIN: {
10398     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10399         Intrinsic::loop_decrement)
10400       break;
10401 
10402     assert(N->getValueType(0) == MVT::i1 &&
10403            "Unexpected result type for CTR decrement intrinsic");
10404     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10405                                  N->getValueType(0));
10406     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10407     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10408                                  N->getOperand(1));
10409 
10410     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10411     Results.push_back(NewInt.getValue(1));
10412     break;
10413   }
10414   case ISD::VAARG: {
10415     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10416       return;
10417 
10418     EVT VT = N->getValueType(0);
10419 
10420     if (VT == MVT::i64) {
10421       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10422 
10423       Results.push_back(NewNode);
10424       Results.push_back(NewNode.getValue(1));
10425     }
10426     return;
10427   }
10428   case ISD::FP_TO_SINT:
10429   case ISD::FP_TO_UINT:
10430     // LowerFP_TO_INT() can only handle f32 and f64.
10431     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10432       return;
10433     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10434     return;
10435   case ISD::TRUNCATE: {
10436     EVT TrgVT = N->getValueType(0);
10437     EVT OpVT = N->getOperand(0).getValueType();
10438     if (TrgVT.isVector() &&
10439         isOperationCustom(N->getOpcode(), TrgVT) &&
10440         OpVT.getSizeInBits() <= 128 &&
10441         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10442       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10443     return;
10444   }
10445   case ISD::BITCAST:
10446     // Don't handle bitcast here.
10447     return;
10448   }
10449 }
10450 
10451 //===----------------------------------------------------------------------===//
10452 //  Other Lowering Code
10453 //===----------------------------------------------------------------------===//
10454 
10455 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10456   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10457   Function *Func = Intrinsic::getDeclaration(M, Id);
10458   return Builder.CreateCall(Func, {});
10459 }
10460 
10461 // The mappings for emitLeading/TrailingFence is taken from
10462 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10463 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10464                                                  Instruction *Inst,
10465                                                  AtomicOrdering Ord) const {
10466   if (Ord == AtomicOrdering::SequentiallyConsistent)
10467     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10468   if (isReleaseOrStronger(Ord))
10469     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10470   return nullptr;
10471 }
10472 
10473 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10474                                                   Instruction *Inst,
10475                                                   AtomicOrdering Ord) const {
10476   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10477     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10478     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10479     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10480     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10481       return Builder.CreateCall(
10482           Intrinsic::getDeclaration(
10483               Builder.GetInsertBlock()->getParent()->getParent(),
10484               Intrinsic::ppc_cfence, {Inst->getType()}),
10485           {Inst});
10486     // FIXME: Can use isync for rmw operation.
10487     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10488   }
10489   return nullptr;
10490 }
10491 
10492 MachineBasicBlock *
10493 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10494                                     unsigned AtomicSize,
10495                                     unsigned BinOpcode,
10496                                     unsigned CmpOpcode,
10497                                     unsigned CmpPred) const {
10498   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10499   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10500 
10501   auto LoadMnemonic = PPC::LDARX;
10502   auto StoreMnemonic = PPC::STDCX;
10503   switch (AtomicSize) {
10504   default:
10505     llvm_unreachable("Unexpected size of atomic entity");
10506   case 1:
10507     LoadMnemonic = PPC::LBARX;
10508     StoreMnemonic = PPC::STBCX;
10509     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10510     break;
10511   case 2:
10512     LoadMnemonic = PPC::LHARX;
10513     StoreMnemonic = PPC::STHCX;
10514     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10515     break;
10516   case 4:
10517     LoadMnemonic = PPC::LWARX;
10518     StoreMnemonic = PPC::STWCX;
10519     break;
10520   case 8:
10521     LoadMnemonic = PPC::LDARX;
10522     StoreMnemonic = PPC::STDCX;
10523     break;
10524   }
10525 
10526   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10527   MachineFunction *F = BB->getParent();
10528   MachineFunction::iterator It = ++BB->getIterator();
10529 
10530   Register dest = MI.getOperand(0).getReg();
10531   Register ptrA = MI.getOperand(1).getReg();
10532   Register ptrB = MI.getOperand(2).getReg();
10533   Register incr = MI.getOperand(3).getReg();
10534   DebugLoc dl = MI.getDebugLoc();
10535 
10536   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10537   MachineBasicBlock *loop2MBB =
10538     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10539   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10540   F->insert(It, loopMBB);
10541   if (CmpOpcode)
10542     F->insert(It, loop2MBB);
10543   F->insert(It, exitMBB);
10544   exitMBB->splice(exitMBB->begin(), BB,
10545                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10546   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10547 
10548   MachineRegisterInfo &RegInfo = F->getRegInfo();
10549   Register TmpReg = (!BinOpcode) ? incr :
10550     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10551                                            : &PPC::GPRCRegClass);
10552 
10553   //  thisMBB:
10554   //   ...
10555   //   fallthrough --> loopMBB
10556   BB->addSuccessor(loopMBB);
10557 
10558   //  loopMBB:
10559   //   l[wd]arx dest, ptr
10560   //   add r0, dest, incr
10561   //   st[wd]cx. r0, ptr
10562   //   bne- loopMBB
10563   //   fallthrough --> exitMBB
10564 
10565   // For max/min...
10566   //  loopMBB:
10567   //   l[wd]arx dest, ptr
10568   //   cmpl?[wd] incr, dest
10569   //   bgt exitMBB
10570   //  loop2MBB:
10571   //   st[wd]cx. dest, ptr
10572   //   bne- loopMBB
10573   //   fallthrough --> exitMBB
10574 
10575   BB = loopMBB;
10576   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10577     .addReg(ptrA).addReg(ptrB);
10578   if (BinOpcode)
10579     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10580   if (CmpOpcode) {
10581     // Signed comparisons of byte or halfword values must be sign-extended.
10582     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10583       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10584       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10585               ExtReg).addReg(dest);
10586       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10587         .addReg(incr).addReg(ExtReg);
10588     } else
10589       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10590         .addReg(incr).addReg(dest);
10591 
10592     BuildMI(BB, dl, TII->get(PPC::BCC))
10593       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10594     BB->addSuccessor(loop2MBB);
10595     BB->addSuccessor(exitMBB);
10596     BB = loop2MBB;
10597   }
10598   BuildMI(BB, dl, TII->get(StoreMnemonic))
10599     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10600   BuildMI(BB, dl, TII->get(PPC::BCC))
10601     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10602   BB->addSuccessor(loopMBB);
10603   BB->addSuccessor(exitMBB);
10604 
10605   //  exitMBB:
10606   //   ...
10607   BB = exitMBB;
10608   return BB;
10609 }
10610 
10611 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10612     MachineInstr &MI, MachineBasicBlock *BB,
10613     bool is8bit, // operation
10614     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10615   // If we support part-word atomic mnemonics, just use them
10616   if (Subtarget.hasPartwordAtomics())
10617     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10618                             CmpPred);
10619 
10620   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10621   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10622   // In 64 bit mode we have to use 64 bits for addresses, even though the
10623   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10624   // registers without caring whether they're 32 or 64, but here we're
10625   // doing actual arithmetic on the addresses.
10626   bool is64bit = Subtarget.isPPC64();
10627   bool isLittleEndian = Subtarget.isLittleEndian();
10628   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10629 
10630   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10631   MachineFunction *F = BB->getParent();
10632   MachineFunction::iterator It = ++BB->getIterator();
10633 
10634   Register dest = MI.getOperand(0).getReg();
10635   Register ptrA = MI.getOperand(1).getReg();
10636   Register ptrB = MI.getOperand(2).getReg();
10637   Register incr = MI.getOperand(3).getReg();
10638   DebugLoc dl = MI.getDebugLoc();
10639 
10640   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10641   MachineBasicBlock *loop2MBB =
10642       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10643   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10644   F->insert(It, loopMBB);
10645   if (CmpOpcode)
10646     F->insert(It, loop2MBB);
10647   F->insert(It, exitMBB);
10648   exitMBB->splice(exitMBB->begin(), BB,
10649                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10650   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10651 
10652   MachineRegisterInfo &RegInfo = F->getRegInfo();
10653   const TargetRegisterClass *RC =
10654       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10655   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10656 
10657   Register PtrReg = RegInfo.createVirtualRegister(RC);
10658   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10659   Register ShiftReg =
10660       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10661   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10662   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10663   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10664   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10665   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10666   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10667   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10668   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10669   Register Ptr1Reg;
10670   Register TmpReg =
10671       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10672 
10673   //  thisMBB:
10674   //   ...
10675   //   fallthrough --> loopMBB
10676   BB->addSuccessor(loopMBB);
10677 
10678   // The 4-byte load must be aligned, while a char or short may be
10679   // anywhere in the word.  Hence all this nasty bookkeeping code.
10680   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10681   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10682   //   xori shift, shift1, 24 [16]
10683   //   rlwinm ptr, ptr1, 0, 0, 29
10684   //   slw incr2, incr, shift
10685   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10686   //   slw mask, mask2, shift
10687   //  loopMBB:
10688   //   lwarx tmpDest, ptr
10689   //   add tmp, tmpDest, incr2
10690   //   andc tmp2, tmpDest, mask
10691   //   and tmp3, tmp, mask
10692   //   or tmp4, tmp3, tmp2
10693   //   stwcx. tmp4, ptr
10694   //   bne- loopMBB
10695   //   fallthrough --> exitMBB
10696   //   srw dest, tmpDest, shift
10697   if (ptrA != ZeroReg) {
10698     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10699     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10700         .addReg(ptrA)
10701         .addReg(ptrB);
10702   } else {
10703     Ptr1Reg = ptrB;
10704   }
10705   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10706   // mode.
10707   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10708       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10709       .addImm(3)
10710       .addImm(27)
10711       .addImm(is8bit ? 28 : 27);
10712   if (!isLittleEndian)
10713     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10714         .addReg(Shift1Reg)
10715         .addImm(is8bit ? 24 : 16);
10716   if (is64bit)
10717     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10718         .addReg(Ptr1Reg)
10719         .addImm(0)
10720         .addImm(61);
10721   else
10722     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10723         .addReg(Ptr1Reg)
10724         .addImm(0)
10725         .addImm(0)
10726         .addImm(29);
10727   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10728   if (is8bit)
10729     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10730   else {
10731     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10732     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10733         .addReg(Mask3Reg)
10734         .addImm(65535);
10735   }
10736   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10737       .addReg(Mask2Reg)
10738       .addReg(ShiftReg);
10739 
10740   BB = loopMBB;
10741   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10742       .addReg(ZeroReg)
10743       .addReg(PtrReg);
10744   if (BinOpcode)
10745     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10746         .addReg(Incr2Reg)
10747         .addReg(TmpDestReg);
10748   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10749       .addReg(TmpDestReg)
10750       .addReg(MaskReg);
10751   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10752   if (CmpOpcode) {
10753     // For unsigned comparisons, we can directly compare the shifted values.
10754     // For signed comparisons we shift and sign extend.
10755     Register SReg = RegInfo.createVirtualRegister(GPRC);
10756     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10757         .addReg(TmpDestReg)
10758         .addReg(MaskReg);
10759     unsigned ValueReg = SReg;
10760     unsigned CmpReg = Incr2Reg;
10761     if (CmpOpcode == PPC::CMPW) {
10762       ValueReg = RegInfo.createVirtualRegister(GPRC);
10763       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10764           .addReg(SReg)
10765           .addReg(ShiftReg);
10766       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10767       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10768           .addReg(ValueReg);
10769       ValueReg = ValueSReg;
10770       CmpReg = incr;
10771     }
10772     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10773         .addReg(CmpReg)
10774         .addReg(ValueReg);
10775     BuildMI(BB, dl, TII->get(PPC::BCC))
10776         .addImm(CmpPred)
10777         .addReg(PPC::CR0)
10778         .addMBB(exitMBB);
10779     BB->addSuccessor(loop2MBB);
10780     BB->addSuccessor(exitMBB);
10781     BB = loop2MBB;
10782   }
10783   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10784   BuildMI(BB, dl, TII->get(PPC::STWCX))
10785       .addReg(Tmp4Reg)
10786       .addReg(ZeroReg)
10787       .addReg(PtrReg);
10788   BuildMI(BB, dl, TII->get(PPC::BCC))
10789       .addImm(PPC::PRED_NE)
10790       .addReg(PPC::CR0)
10791       .addMBB(loopMBB);
10792   BB->addSuccessor(loopMBB);
10793   BB->addSuccessor(exitMBB);
10794 
10795   //  exitMBB:
10796   //   ...
10797   BB = exitMBB;
10798   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10799       .addReg(TmpDestReg)
10800       .addReg(ShiftReg);
10801   return BB;
10802 }
10803 
10804 llvm::MachineBasicBlock *
10805 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10806                                     MachineBasicBlock *MBB) const {
10807   DebugLoc DL = MI.getDebugLoc();
10808   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10809   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10810 
10811   MachineFunction *MF = MBB->getParent();
10812   MachineRegisterInfo &MRI = MF->getRegInfo();
10813 
10814   const BasicBlock *BB = MBB->getBasicBlock();
10815   MachineFunction::iterator I = ++MBB->getIterator();
10816 
10817   Register DstReg = MI.getOperand(0).getReg();
10818   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10819   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10820   Register mainDstReg = MRI.createVirtualRegister(RC);
10821   Register restoreDstReg = MRI.createVirtualRegister(RC);
10822 
10823   MVT PVT = getPointerTy(MF->getDataLayout());
10824   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10825          "Invalid Pointer Size!");
10826   // For v = setjmp(buf), we generate
10827   //
10828   // thisMBB:
10829   //  SjLjSetup mainMBB
10830   //  bl mainMBB
10831   //  v_restore = 1
10832   //  b sinkMBB
10833   //
10834   // mainMBB:
10835   //  buf[LabelOffset] = LR
10836   //  v_main = 0
10837   //
10838   // sinkMBB:
10839   //  v = phi(main, restore)
10840   //
10841 
10842   MachineBasicBlock *thisMBB = MBB;
10843   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10844   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10845   MF->insert(I, mainMBB);
10846   MF->insert(I, sinkMBB);
10847 
10848   MachineInstrBuilder MIB;
10849 
10850   // Transfer the remainder of BB and its successor edges to sinkMBB.
10851   sinkMBB->splice(sinkMBB->begin(), MBB,
10852                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10853   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10854 
10855   // Note that the structure of the jmp_buf used here is not compatible
10856   // with that used by libc, and is not designed to be. Specifically, it
10857   // stores only those 'reserved' registers that LLVM does not otherwise
10858   // understand how to spill. Also, by convention, by the time this
10859   // intrinsic is called, Clang has already stored the frame address in the
10860   // first slot of the buffer and stack address in the third. Following the
10861   // X86 target code, we'll store the jump address in the second slot. We also
10862   // need to save the TOC pointer (R2) to handle jumps between shared
10863   // libraries, and that will be stored in the fourth slot. The thread
10864   // identifier (R13) is not affected.
10865 
10866   // thisMBB:
10867   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10868   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10869   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10870 
10871   // Prepare IP either in reg.
10872   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10873   Register LabelReg = MRI.createVirtualRegister(PtrRC);
10874   Register BufReg = MI.getOperand(1).getReg();
10875 
10876   if (Subtarget.is64BitELFABI()) {
10877     setUsesTOCBasePtr(*MBB->getParent());
10878     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10879               .addReg(PPC::X2)
10880               .addImm(TOCOffset)
10881               .addReg(BufReg)
10882               .cloneMemRefs(MI);
10883   }
10884 
10885   // Naked functions never have a base pointer, and so we use r1. For all
10886   // other functions, this decision must be delayed until during PEI.
10887   unsigned BaseReg;
10888   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10889     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10890   else
10891     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10892 
10893   MIB = BuildMI(*thisMBB, MI, DL,
10894                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10895             .addReg(BaseReg)
10896             .addImm(BPOffset)
10897             .addReg(BufReg)
10898             .cloneMemRefs(MI);
10899 
10900   // Setup
10901   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10902   MIB.addRegMask(TRI->getNoPreservedMask());
10903 
10904   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10905 
10906   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10907           .addMBB(mainMBB);
10908   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10909 
10910   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10911   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10912 
10913   // mainMBB:
10914   //  mainDstReg = 0
10915   MIB =
10916       BuildMI(mainMBB, DL,
10917               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10918 
10919   // Store IP
10920   if (Subtarget.isPPC64()) {
10921     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10922             .addReg(LabelReg)
10923             .addImm(LabelOffset)
10924             .addReg(BufReg);
10925   } else {
10926     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10927             .addReg(LabelReg)
10928             .addImm(LabelOffset)
10929             .addReg(BufReg);
10930   }
10931   MIB.cloneMemRefs(MI);
10932 
10933   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10934   mainMBB->addSuccessor(sinkMBB);
10935 
10936   // sinkMBB:
10937   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10938           TII->get(PPC::PHI), DstReg)
10939     .addReg(mainDstReg).addMBB(mainMBB)
10940     .addReg(restoreDstReg).addMBB(thisMBB);
10941 
10942   MI.eraseFromParent();
10943   return sinkMBB;
10944 }
10945 
10946 MachineBasicBlock *
10947 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10948                                      MachineBasicBlock *MBB) const {
10949   DebugLoc DL = MI.getDebugLoc();
10950   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10951 
10952   MachineFunction *MF = MBB->getParent();
10953   MachineRegisterInfo &MRI = MF->getRegInfo();
10954 
10955   MVT PVT = getPointerTy(MF->getDataLayout());
10956   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10957          "Invalid Pointer Size!");
10958 
10959   const TargetRegisterClass *RC =
10960     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10961   Register Tmp = MRI.createVirtualRegister(RC);
10962   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10963   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10964   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10965   unsigned BP =
10966       (PVT == MVT::i64)
10967           ? PPC::X30
10968           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10969                                                               : PPC::R30);
10970 
10971   MachineInstrBuilder MIB;
10972 
10973   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10974   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10975   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10976   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10977 
10978   Register BufReg = MI.getOperand(0).getReg();
10979 
10980   // Reload FP (the jumped-to function may not have had a
10981   // frame pointer, and if so, then its r31 will be restored
10982   // as necessary).
10983   if (PVT == MVT::i64) {
10984     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10985             .addImm(0)
10986             .addReg(BufReg);
10987   } else {
10988     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10989             .addImm(0)
10990             .addReg(BufReg);
10991   }
10992   MIB.cloneMemRefs(MI);
10993 
10994   // Reload IP
10995   if (PVT == MVT::i64) {
10996     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10997             .addImm(LabelOffset)
10998             .addReg(BufReg);
10999   } else {
11000     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11001             .addImm(LabelOffset)
11002             .addReg(BufReg);
11003   }
11004   MIB.cloneMemRefs(MI);
11005 
11006   // Reload SP
11007   if (PVT == MVT::i64) {
11008     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11009             .addImm(SPOffset)
11010             .addReg(BufReg);
11011   } else {
11012     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11013             .addImm(SPOffset)
11014             .addReg(BufReg);
11015   }
11016   MIB.cloneMemRefs(MI);
11017 
11018   // Reload BP
11019   if (PVT == MVT::i64) {
11020     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11021             .addImm(BPOffset)
11022             .addReg(BufReg);
11023   } else {
11024     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11025             .addImm(BPOffset)
11026             .addReg(BufReg);
11027   }
11028   MIB.cloneMemRefs(MI);
11029 
11030   // Reload TOC
11031   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11032     setUsesTOCBasePtr(*MBB->getParent());
11033     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11034               .addImm(TOCOffset)
11035               .addReg(BufReg)
11036               .cloneMemRefs(MI);
11037   }
11038 
11039   // Jump
11040   BuildMI(*MBB, MI, DL,
11041           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11042   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11043 
11044   MI.eraseFromParent();
11045   return MBB;
11046 }
11047 
11048 MachineBasicBlock *
11049 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11050                                                MachineBasicBlock *BB) const {
11051   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11052       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11053     if (Subtarget.is64BitELFABI() &&
11054         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11055       // Call lowering should have added an r2 operand to indicate a dependence
11056       // on the TOC base pointer value. It can't however, because there is no
11057       // way to mark the dependence as implicit there, and so the stackmap code
11058       // will confuse it with a regular operand. Instead, add the dependence
11059       // here.
11060       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11061     }
11062 
11063     return emitPatchPoint(MI, BB);
11064   }
11065 
11066   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11067       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11068     return emitEHSjLjSetJmp(MI, BB);
11069   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11070              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11071     return emitEHSjLjLongJmp(MI, BB);
11072   }
11073 
11074   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11075 
11076   // To "insert" these instructions we actually have to insert their
11077   // control-flow patterns.
11078   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11079   MachineFunction::iterator It = ++BB->getIterator();
11080 
11081   MachineFunction *F = BB->getParent();
11082 
11083   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11084       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11085       MI.getOpcode() == PPC::SELECT_I8) {
11086     SmallVector<MachineOperand, 2> Cond;
11087     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11088         MI.getOpcode() == PPC::SELECT_CC_I8)
11089       Cond.push_back(MI.getOperand(4));
11090     else
11091       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11092     Cond.push_back(MI.getOperand(1));
11093 
11094     DebugLoc dl = MI.getDebugLoc();
11095     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11096                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11097   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11098              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11099              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11100              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11101              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11102              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11103              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11104              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11105              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11106              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11107              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11108              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11109              MI.getOpcode() == PPC::SELECT_F4 ||
11110              MI.getOpcode() == PPC::SELECT_F8 ||
11111              MI.getOpcode() == PPC::SELECT_F16 ||
11112              MI.getOpcode() == PPC::SELECT_QFRC ||
11113              MI.getOpcode() == PPC::SELECT_QSRC ||
11114              MI.getOpcode() == PPC::SELECT_QBRC ||
11115              MI.getOpcode() == PPC::SELECT_SPE ||
11116              MI.getOpcode() == PPC::SELECT_SPE4 ||
11117              MI.getOpcode() == PPC::SELECT_VRRC ||
11118              MI.getOpcode() == PPC::SELECT_VSFRC ||
11119              MI.getOpcode() == PPC::SELECT_VSSRC ||
11120              MI.getOpcode() == PPC::SELECT_VSRC) {
11121     // The incoming instruction knows the destination vreg to set, the
11122     // condition code register to branch on, the true/false values to
11123     // select between, and a branch opcode to use.
11124 
11125     //  thisMBB:
11126     //  ...
11127     //   TrueVal = ...
11128     //   cmpTY ccX, r1, r2
11129     //   bCC copy1MBB
11130     //   fallthrough --> copy0MBB
11131     MachineBasicBlock *thisMBB = BB;
11132     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11133     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11134     DebugLoc dl = MI.getDebugLoc();
11135     F->insert(It, copy0MBB);
11136     F->insert(It, sinkMBB);
11137 
11138     // Transfer the remainder of BB and its successor edges to sinkMBB.
11139     sinkMBB->splice(sinkMBB->begin(), BB,
11140                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11141     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11142 
11143     // Next, add the true and fallthrough blocks as its successors.
11144     BB->addSuccessor(copy0MBB);
11145     BB->addSuccessor(sinkMBB);
11146 
11147     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11148         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11149         MI.getOpcode() == PPC::SELECT_F16 ||
11150         MI.getOpcode() == PPC::SELECT_SPE4 ||
11151         MI.getOpcode() == PPC::SELECT_SPE ||
11152         MI.getOpcode() == PPC::SELECT_QFRC ||
11153         MI.getOpcode() == PPC::SELECT_QSRC ||
11154         MI.getOpcode() == PPC::SELECT_QBRC ||
11155         MI.getOpcode() == PPC::SELECT_VRRC ||
11156         MI.getOpcode() == PPC::SELECT_VSFRC ||
11157         MI.getOpcode() == PPC::SELECT_VSSRC ||
11158         MI.getOpcode() == PPC::SELECT_VSRC) {
11159       BuildMI(BB, dl, TII->get(PPC::BC))
11160           .addReg(MI.getOperand(1).getReg())
11161           .addMBB(sinkMBB);
11162     } else {
11163       unsigned SelectPred = MI.getOperand(4).getImm();
11164       BuildMI(BB, dl, TII->get(PPC::BCC))
11165           .addImm(SelectPred)
11166           .addReg(MI.getOperand(1).getReg())
11167           .addMBB(sinkMBB);
11168     }
11169 
11170     //  copy0MBB:
11171     //   %FalseValue = ...
11172     //   # fallthrough to sinkMBB
11173     BB = copy0MBB;
11174 
11175     // Update machine-CFG edges
11176     BB->addSuccessor(sinkMBB);
11177 
11178     //  sinkMBB:
11179     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11180     //  ...
11181     BB = sinkMBB;
11182     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11183         .addReg(MI.getOperand(3).getReg())
11184         .addMBB(copy0MBB)
11185         .addReg(MI.getOperand(2).getReg())
11186         .addMBB(thisMBB);
11187   } else if (MI.getOpcode() == PPC::ReadTB) {
11188     // To read the 64-bit time-base register on a 32-bit target, we read the
11189     // two halves. Should the counter have wrapped while it was being read, we
11190     // need to try again.
11191     // ...
11192     // readLoop:
11193     // mfspr Rx,TBU # load from TBU
11194     // mfspr Ry,TB  # load from TB
11195     // mfspr Rz,TBU # load from TBU
11196     // cmpw crX,Rx,Rz # check if 'old'='new'
11197     // bne readLoop   # branch if they're not equal
11198     // ...
11199 
11200     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11201     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11202     DebugLoc dl = MI.getDebugLoc();
11203     F->insert(It, readMBB);
11204     F->insert(It, sinkMBB);
11205 
11206     // Transfer the remainder of BB and its successor edges to sinkMBB.
11207     sinkMBB->splice(sinkMBB->begin(), BB,
11208                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11209     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11210 
11211     BB->addSuccessor(readMBB);
11212     BB = readMBB;
11213 
11214     MachineRegisterInfo &RegInfo = F->getRegInfo();
11215     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11216     Register LoReg = MI.getOperand(0).getReg();
11217     Register HiReg = MI.getOperand(1).getReg();
11218 
11219     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11220     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11221     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11222 
11223     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11224 
11225     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11226         .addReg(HiReg)
11227         .addReg(ReadAgainReg);
11228     BuildMI(BB, dl, TII->get(PPC::BCC))
11229         .addImm(PPC::PRED_NE)
11230         .addReg(CmpReg)
11231         .addMBB(readMBB);
11232 
11233     BB->addSuccessor(readMBB);
11234     BB->addSuccessor(sinkMBB);
11235   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11236     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11237   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11238     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11239   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11240     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11241   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11242     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11243 
11244   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11245     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11246   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11247     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11248   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11249     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11250   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11251     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11252 
11253   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11254     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11255   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11256     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11257   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11258     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11259   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11260     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11261 
11262   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11263     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11264   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11265     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11266   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11267     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11268   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11269     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11270 
11271   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11272     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11273   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11274     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11275   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11276     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11277   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11278     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11279 
11280   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11281     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11282   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11283     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11284   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11285     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11286   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11287     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11288 
11289   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11290     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11291   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11292     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11293   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11294     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11295   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11296     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11297 
11298   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11299     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11300   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11301     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11302   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11303     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11304   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11305     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11306 
11307   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11308     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11309   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11310     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11311   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11312     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11313   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11314     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11315 
11316   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11317     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11318   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11319     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11320   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11321     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11322   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11323     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11324 
11325   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11326     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11327   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11328     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11329   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11330     BB = EmitAtomicBinary(MI, BB, 4, 0);
11331   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11332     BB = EmitAtomicBinary(MI, BB, 8, 0);
11333   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11334            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11335            (Subtarget.hasPartwordAtomics() &&
11336             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11337            (Subtarget.hasPartwordAtomics() &&
11338             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11339     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11340 
11341     auto LoadMnemonic = PPC::LDARX;
11342     auto StoreMnemonic = PPC::STDCX;
11343     switch (MI.getOpcode()) {
11344     default:
11345       llvm_unreachable("Compare and swap of unknown size");
11346     case PPC::ATOMIC_CMP_SWAP_I8:
11347       LoadMnemonic = PPC::LBARX;
11348       StoreMnemonic = PPC::STBCX;
11349       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11350       break;
11351     case PPC::ATOMIC_CMP_SWAP_I16:
11352       LoadMnemonic = PPC::LHARX;
11353       StoreMnemonic = PPC::STHCX;
11354       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11355       break;
11356     case PPC::ATOMIC_CMP_SWAP_I32:
11357       LoadMnemonic = PPC::LWARX;
11358       StoreMnemonic = PPC::STWCX;
11359       break;
11360     case PPC::ATOMIC_CMP_SWAP_I64:
11361       LoadMnemonic = PPC::LDARX;
11362       StoreMnemonic = PPC::STDCX;
11363       break;
11364     }
11365     Register dest = MI.getOperand(0).getReg();
11366     Register ptrA = MI.getOperand(1).getReg();
11367     Register ptrB = MI.getOperand(2).getReg();
11368     Register oldval = MI.getOperand(3).getReg();
11369     Register newval = MI.getOperand(4).getReg();
11370     DebugLoc dl = MI.getDebugLoc();
11371 
11372     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11373     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11374     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11375     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11376     F->insert(It, loop1MBB);
11377     F->insert(It, loop2MBB);
11378     F->insert(It, midMBB);
11379     F->insert(It, exitMBB);
11380     exitMBB->splice(exitMBB->begin(), BB,
11381                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11382     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11383 
11384     //  thisMBB:
11385     //   ...
11386     //   fallthrough --> loopMBB
11387     BB->addSuccessor(loop1MBB);
11388 
11389     // loop1MBB:
11390     //   l[bhwd]arx dest, ptr
11391     //   cmp[wd] dest, oldval
11392     //   bne- midMBB
11393     // loop2MBB:
11394     //   st[bhwd]cx. newval, ptr
11395     //   bne- loopMBB
11396     //   b exitBB
11397     // midMBB:
11398     //   st[bhwd]cx. dest, ptr
11399     // exitBB:
11400     BB = loop1MBB;
11401     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11402     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11403         .addReg(oldval)
11404         .addReg(dest);
11405     BuildMI(BB, dl, TII->get(PPC::BCC))
11406         .addImm(PPC::PRED_NE)
11407         .addReg(PPC::CR0)
11408         .addMBB(midMBB);
11409     BB->addSuccessor(loop2MBB);
11410     BB->addSuccessor(midMBB);
11411 
11412     BB = loop2MBB;
11413     BuildMI(BB, dl, TII->get(StoreMnemonic))
11414         .addReg(newval)
11415         .addReg(ptrA)
11416         .addReg(ptrB);
11417     BuildMI(BB, dl, TII->get(PPC::BCC))
11418         .addImm(PPC::PRED_NE)
11419         .addReg(PPC::CR0)
11420         .addMBB(loop1MBB);
11421     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11422     BB->addSuccessor(loop1MBB);
11423     BB->addSuccessor(exitMBB);
11424 
11425     BB = midMBB;
11426     BuildMI(BB, dl, TII->get(StoreMnemonic))
11427         .addReg(dest)
11428         .addReg(ptrA)
11429         .addReg(ptrB);
11430     BB->addSuccessor(exitMBB);
11431 
11432     //  exitMBB:
11433     //   ...
11434     BB = exitMBB;
11435   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11436              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11437     // We must use 64-bit registers for addresses when targeting 64-bit,
11438     // since we're actually doing arithmetic on them.  Other registers
11439     // can be 32-bit.
11440     bool is64bit = Subtarget.isPPC64();
11441     bool isLittleEndian = Subtarget.isLittleEndian();
11442     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11443 
11444     Register dest = MI.getOperand(0).getReg();
11445     Register ptrA = MI.getOperand(1).getReg();
11446     Register ptrB = MI.getOperand(2).getReg();
11447     Register oldval = MI.getOperand(3).getReg();
11448     Register newval = MI.getOperand(4).getReg();
11449     DebugLoc dl = MI.getDebugLoc();
11450 
11451     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11452     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11453     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11454     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11455     F->insert(It, loop1MBB);
11456     F->insert(It, loop2MBB);
11457     F->insert(It, midMBB);
11458     F->insert(It, exitMBB);
11459     exitMBB->splice(exitMBB->begin(), BB,
11460                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11461     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11462 
11463     MachineRegisterInfo &RegInfo = F->getRegInfo();
11464     const TargetRegisterClass *RC =
11465         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11466     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11467 
11468     Register PtrReg = RegInfo.createVirtualRegister(RC);
11469     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11470     Register ShiftReg =
11471         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11472     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11473     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11474     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11475     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11476     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11477     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11478     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11479     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11480     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11481     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11482     Register Ptr1Reg;
11483     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11484     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11485     //  thisMBB:
11486     //   ...
11487     //   fallthrough --> loopMBB
11488     BB->addSuccessor(loop1MBB);
11489 
11490     // The 4-byte load must be aligned, while a char or short may be
11491     // anywhere in the word.  Hence all this nasty bookkeeping code.
11492     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11493     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11494     //   xori shift, shift1, 24 [16]
11495     //   rlwinm ptr, ptr1, 0, 0, 29
11496     //   slw newval2, newval, shift
11497     //   slw oldval2, oldval,shift
11498     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11499     //   slw mask, mask2, shift
11500     //   and newval3, newval2, mask
11501     //   and oldval3, oldval2, mask
11502     // loop1MBB:
11503     //   lwarx tmpDest, ptr
11504     //   and tmp, tmpDest, mask
11505     //   cmpw tmp, oldval3
11506     //   bne- midMBB
11507     // loop2MBB:
11508     //   andc tmp2, tmpDest, mask
11509     //   or tmp4, tmp2, newval3
11510     //   stwcx. tmp4, ptr
11511     //   bne- loop1MBB
11512     //   b exitBB
11513     // midMBB:
11514     //   stwcx. tmpDest, ptr
11515     // exitBB:
11516     //   srw dest, tmpDest, shift
11517     if (ptrA != ZeroReg) {
11518       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11519       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11520           .addReg(ptrA)
11521           .addReg(ptrB);
11522     } else {
11523       Ptr1Reg = ptrB;
11524     }
11525 
11526     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11527     // mode.
11528     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11529         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11530         .addImm(3)
11531         .addImm(27)
11532         .addImm(is8bit ? 28 : 27);
11533     if (!isLittleEndian)
11534       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11535           .addReg(Shift1Reg)
11536           .addImm(is8bit ? 24 : 16);
11537     if (is64bit)
11538       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11539           .addReg(Ptr1Reg)
11540           .addImm(0)
11541           .addImm(61);
11542     else
11543       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11544           .addReg(Ptr1Reg)
11545           .addImm(0)
11546           .addImm(0)
11547           .addImm(29);
11548     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11549         .addReg(newval)
11550         .addReg(ShiftReg);
11551     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11552         .addReg(oldval)
11553         .addReg(ShiftReg);
11554     if (is8bit)
11555       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11556     else {
11557       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11558       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11559           .addReg(Mask3Reg)
11560           .addImm(65535);
11561     }
11562     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11563         .addReg(Mask2Reg)
11564         .addReg(ShiftReg);
11565     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11566         .addReg(NewVal2Reg)
11567         .addReg(MaskReg);
11568     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11569         .addReg(OldVal2Reg)
11570         .addReg(MaskReg);
11571 
11572     BB = loop1MBB;
11573     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11574         .addReg(ZeroReg)
11575         .addReg(PtrReg);
11576     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11577         .addReg(TmpDestReg)
11578         .addReg(MaskReg);
11579     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11580         .addReg(TmpReg)
11581         .addReg(OldVal3Reg);
11582     BuildMI(BB, dl, TII->get(PPC::BCC))
11583         .addImm(PPC::PRED_NE)
11584         .addReg(PPC::CR0)
11585         .addMBB(midMBB);
11586     BB->addSuccessor(loop2MBB);
11587     BB->addSuccessor(midMBB);
11588 
11589     BB = loop2MBB;
11590     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11591         .addReg(TmpDestReg)
11592         .addReg(MaskReg);
11593     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11594         .addReg(Tmp2Reg)
11595         .addReg(NewVal3Reg);
11596     BuildMI(BB, dl, TII->get(PPC::STWCX))
11597         .addReg(Tmp4Reg)
11598         .addReg(ZeroReg)
11599         .addReg(PtrReg);
11600     BuildMI(BB, dl, TII->get(PPC::BCC))
11601         .addImm(PPC::PRED_NE)
11602         .addReg(PPC::CR0)
11603         .addMBB(loop1MBB);
11604     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11605     BB->addSuccessor(loop1MBB);
11606     BB->addSuccessor(exitMBB);
11607 
11608     BB = midMBB;
11609     BuildMI(BB, dl, TII->get(PPC::STWCX))
11610         .addReg(TmpDestReg)
11611         .addReg(ZeroReg)
11612         .addReg(PtrReg);
11613     BB->addSuccessor(exitMBB);
11614 
11615     //  exitMBB:
11616     //   ...
11617     BB = exitMBB;
11618     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11619         .addReg(TmpReg)
11620         .addReg(ShiftReg);
11621   } else if (MI.getOpcode() == PPC::FADDrtz) {
11622     // This pseudo performs an FADD with rounding mode temporarily forced
11623     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11624     // is not modeled at the SelectionDAG level.
11625     Register Dest = MI.getOperand(0).getReg();
11626     Register Src1 = MI.getOperand(1).getReg();
11627     Register Src2 = MI.getOperand(2).getReg();
11628     DebugLoc dl = MI.getDebugLoc();
11629 
11630     MachineRegisterInfo &RegInfo = F->getRegInfo();
11631     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11632 
11633     // Save FPSCR value.
11634     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11635 
11636     // Set rounding mode to round-to-zero.
11637     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11638     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11639 
11640     // Perform addition.
11641     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11642 
11643     // Restore FPSCR value.
11644     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11645   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
11646              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
11647              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
11648              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
11649     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
11650                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
11651                           ? PPC::ANDI8o
11652                           : PPC::ANDIo;
11653     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
11654                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
11655 
11656     MachineRegisterInfo &RegInfo = F->getRegInfo();
11657     Register Dest = RegInfo.createVirtualRegister(
11658         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11659 
11660     DebugLoc dl = MI.getDebugLoc();
11661     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
11662         .addReg(MI.getOperand(1).getReg())
11663         .addImm(1);
11664     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
11665             MI.getOperand(0).getReg())
11666         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
11667   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11668     DebugLoc Dl = MI.getDebugLoc();
11669     MachineRegisterInfo &RegInfo = F->getRegInfo();
11670     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11671     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11672     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11673             MI.getOperand(0).getReg())
11674         .addReg(CRReg);
11675   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11676     DebugLoc Dl = MI.getDebugLoc();
11677     unsigned Imm = MI.getOperand(1).getImm();
11678     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11679     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11680             MI.getOperand(0).getReg())
11681         .addReg(PPC::CR0EQ);
11682   } else if (MI.getOpcode() == PPC::SETRNDi) {
11683     DebugLoc dl = MI.getDebugLoc();
11684     Register OldFPSCRReg = MI.getOperand(0).getReg();
11685 
11686     // Save FPSCR value.
11687     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11688 
11689     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11690     // the following settings:
11691     //   00 Round to nearest
11692     //   01 Round to 0
11693     //   10 Round to +inf
11694     //   11 Round to -inf
11695 
11696     // When the operand is immediate, using the two least significant bits of
11697     // the immediate to set the bits 62:63 of FPSCR.
11698     unsigned Mode = MI.getOperand(1).getImm();
11699     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11700       .addImm(31);
11701 
11702     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11703       .addImm(30);
11704   } else if (MI.getOpcode() == PPC::SETRND) {
11705     DebugLoc dl = MI.getDebugLoc();
11706 
11707     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11708     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11709     // If the target doesn't have DirectMove, we should use stack to do the
11710     // conversion, because the target doesn't have the instructions like mtvsrd
11711     // or mfvsrd to do this conversion directly.
11712     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11713       if (Subtarget.hasDirectMove()) {
11714         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11715           .addReg(SrcReg);
11716       } else {
11717         // Use stack to do the register copy.
11718         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11719         MachineRegisterInfo &RegInfo = F->getRegInfo();
11720         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11721         if (RC == &PPC::F8RCRegClass) {
11722           // Copy register from F8RCRegClass to G8RCRegclass.
11723           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11724                  "Unsupported RegClass.");
11725 
11726           StoreOp = PPC::STFD;
11727           LoadOp = PPC::LD;
11728         } else {
11729           // Copy register from G8RCRegClass to F8RCRegclass.
11730           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11731                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11732                  "Unsupported RegClass.");
11733         }
11734 
11735         MachineFrameInfo &MFI = F->getFrameInfo();
11736         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11737 
11738         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11739           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11740           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11741           MFI.getObjectAlignment(FrameIdx));
11742 
11743         // Store the SrcReg into the stack.
11744         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11745           .addReg(SrcReg)
11746           .addImm(0)
11747           .addFrameIndex(FrameIdx)
11748           .addMemOperand(MMOStore);
11749 
11750         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11751           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11752           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11753           MFI.getObjectAlignment(FrameIdx));
11754 
11755         // Load from the stack where SrcReg is stored, and save to DestReg,
11756         // so we have done the RegClass conversion from RegClass::SrcReg to
11757         // RegClass::DestReg.
11758         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11759           .addImm(0)
11760           .addFrameIndex(FrameIdx)
11761           .addMemOperand(MMOLoad);
11762       }
11763     };
11764 
11765     Register OldFPSCRReg = MI.getOperand(0).getReg();
11766 
11767     // Save FPSCR value.
11768     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11769 
11770     // When the operand is gprc register, use two least significant bits of the
11771     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11772     //
11773     // copy OldFPSCRTmpReg, OldFPSCRReg
11774     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11775     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11776     // copy NewFPSCRReg, NewFPSCRTmpReg
11777     // mtfsf 255, NewFPSCRReg
11778     MachineOperand SrcOp = MI.getOperand(1);
11779     MachineRegisterInfo &RegInfo = F->getRegInfo();
11780     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11781 
11782     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11783 
11784     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11785     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11786 
11787     // The first operand of INSERT_SUBREG should be a register which has
11788     // subregisters, we only care about its RegClass, so we should use an
11789     // IMPLICIT_DEF register.
11790     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11791     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11792       .addReg(ImDefReg)
11793       .add(SrcOp)
11794       .addImm(1);
11795 
11796     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11797     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11798       .addReg(OldFPSCRTmpReg)
11799       .addReg(ExtSrcReg)
11800       .addImm(0)
11801       .addImm(62);
11802 
11803     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11804     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11805 
11806     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11807     // bits of FPSCR.
11808     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11809       .addImm(255)
11810       .addReg(NewFPSCRReg)
11811       .addImm(0)
11812       .addImm(0);
11813   } else {
11814     llvm_unreachable("Unexpected instr type to insert");
11815   }
11816 
11817   MI.eraseFromParent(); // The pseudo instruction is gone now.
11818   return BB;
11819 }
11820 
11821 //===----------------------------------------------------------------------===//
11822 // Target Optimization Hooks
11823 //===----------------------------------------------------------------------===//
11824 
11825 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11826   // For the estimates, convergence is quadratic, so we essentially double the
11827   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11828   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11829   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11830   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11831   if (VT.getScalarType() == MVT::f64)
11832     RefinementSteps++;
11833   return RefinementSteps;
11834 }
11835 
11836 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11837                                            int Enabled, int &RefinementSteps,
11838                                            bool &UseOneConstNR,
11839                                            bool Reciprocal) const {
11840   EVT VT = Operand.getValueType();
11841   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11842       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11843       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11844       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11845       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11846       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11847     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11848       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11849 
11850     // The Newton-Raphson computation with a single constant does not provide
11851     // enough accuracy on some CPUs.
11852     UseOneConstNR = !Subtarget.needsTwoConstNR();
11853     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11854   }
11855   return SDValue();
11856 }
11857 
11858 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11859                                             int Enabled,
11860                                             int &RefinementSteps) const {
11861   EVT VT = Operand.getValueType();
11862   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11863       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11864       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11865       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11866       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11867       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11868     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11869       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11870     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11871   }
11872   return SDValue();
11873 }
11874 
11875 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11876   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11877   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11878   // enabled for division), this functionality is redundant with the default
11879   // combiner logic (once the division -> reciprocal/multiply transformation
11880   // has taken place). As a result, this matters more for older cores than for
11881   // newer ones.
11882 
11883   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11884   // reciprocal if there are two or more FDIVs (for embedded cores with only
11885   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11886   switch (Subtarget.getCPUDirective()) {
11887   default:
11888     return 3;
11889   case PPC::DIR_440:
11890   case PPC::DIR_A2:
11891   case PPC::DIR_E500:
11892   case PPC::DIR_E500mc:
11893   case PPC::DIR_E5500:
11894     return 2;
11895   }
11896 }
11897 
11898 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11899 // collapsed, and so we need to look through chains of them.
11900 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11901                                      int64_t& Offset, SelectionDAG &DAG) {
11902   if (DAG.isBaseWithConstantOffset(Loc)) {
11903     Base = Loc.getOperand(0);
11904     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11905 
11906     // The base might itself be a base plus an offset, and if so, accumulate
11907     // that as well.
11908     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11909   }
11910 }
11911 
11912 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11913                             unsigned Bytes, int Dist,
11914                             SelectionDAG &DAG) {
11915   if (VT.getSizeInBits() / 8 != Bytes)
11916     return false;
11917 
11918   SDValue BaseLoc = Base->getBasePtr();
11919   if (Loc.getOpcode() == ISD::FrameIndex) {
11920     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11921       return false;
11922     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11923     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11924     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11925     int FS  = MFI.getObjectSize(FI);
11926     int BFS = MFI.getObjectSize(BFI);
11927     if (FS != BFS || FS != (int)Bytes) return false;
11928     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11929   }
11930 
11931   SDValue Base1 = Loc, Base2 = BaseLoc;
11932   int64_t Offset1 = 0, Offset2 = 0;
11933   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11934   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11935   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11936     return true;
11937 
11938   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11939   const GlobalValue *GV1 = nullptr;
11940   const GlobalValue *GV2 = nullptr;
11941   Offset1 = 0;
11942   Offset2 = 0;
11943   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11944   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11945   if (isGA1 && isGA2 && GV1 == GV2)
11946     return Offset1 == (Offset2 + Dist*Bytes);
11947   return false;
11948 }
11949 
11950 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11951 // not enforce equality of the chain operands.
11952 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11953                             unsigned Bytes, int Dist,
11954                             SelectionDAG &DAG) {
11955   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11956     EVT VT = LS->getMemoryVT();
11957     SDValue Loc = LS->getBasePtr();
11958     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11959   }
11960 
11961   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11962     EVT VT;
11963     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11964     default: return false;
11965     case Intrinsic::ppc_qpx_qvlfd:
11966     case Intrinsic::ppc_qpx_qvlfda:
11967       VT = MVT::v4f64;
11968       break;
11969     case Intrinsic::ppc_qpx_qvlfs:
11970     case Intrinsic::ppc_qpx_qvlfsa:
11971       VT = MVT::v4f32;
11972       break;
11973     case Intrinsic::ppc_qpx_qvlfcd:
11974     case Intrinsic::ppc_qpx_qvlfcda:
11975       VT = MVT::v2f64;
11976       break;
11977     case Intrinsic::ppc_qpx_qvlfcs:
11978     case Intrinsic::ppc_qpx_qvlfcsa:
11979       VT = MVT::v2f32;
11980       break;
11981     case Intrinsic::ppc_qpx_qvlfiwa:
11982     case Intrinsic::ppc_qpx_qvlfiwz:
11983     case Intrinsic::ppc_altivec_lvx:
11984     case Intrinsic::ppc_altivec_lvxl:
11985     case Intrinsic::ppc_vsx_lxvw4x:
11986     case Intrinsic::ppc_vsx_lxvw4x_be:
11987       VT = MVT::v4i32;
11988       break;
11989     case Intrinsic::ppc_vsx_lxvd2x:
11990     case Intrinsic::ppc_vsx_lxvd2x_be:
11991       VT = MVT::v2f64;
11992       break;
11993     case Intrinsic::ppc_altivec_lvebx:
11994       VT = MVT::i8;
11995       break;
11996     case Intrinsic::ppc_altivec_lvehx:
11997       VT = MVT::i16;
11998       break;
11999     case Intrinsic::ppc_altivec_lvewx:
12000       VT = MVT::i32;
12001       break;
12002     }
12003 
12004     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12005   }
12006 
12007   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12008     EVT VT;
12009     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12010     default: return false;
12011     case Intrinsic::ppc_qpx_qvstfd:
12012     case Intrinsic::ppc_qpx_qvstfda:
12013       VT = MVT::v4f64;
12014       break;
12015     case Intrinsic::ppc_qpx_qvstfs:
12016     case Intrinsic::ppc_qpx_qvstfsa:
12017       VT = MVT::v4f32;
12018       break;
12019     case Intrinsic::ppc_qpx_qvstfcd:
12020     case Intrinsic::ppc_qpx_qvstfcda:
12021       VT = MVT::v2f64;
12022       break;
12023     case Intrinsic::ppc_qpx_qvstfcs:
12024     case Intrinsic::ppc_qpx_qvstfcsa:
12025       VT = MVT::v2f32;
12026       break;
12027     case Intrinsic::ppc_qpx_qvstfiw:
12028     case Intrinsic::ppc_qpx_qvstfiwa:
12029     case Intrinsic::ppc_altivec_stvx:
12030     case Intrinsic::ppc_altivec_stvxl:
12031     case Intrinsic::ppc_vsx_stxvw4x:
12032       VT = MVT::v4i32;
12033       break;
12034     case Intrinsic::ppc_vsx_stxvd2x:
12035       VT = MVT::v2f64;
12036       break;
12037     case Intrinsic::ppc_vsx_stxvw4x_be:
12038       VT = MVT::v4i32;
12039       break;
12040     case Intrinsic::ppc_vsx_stxvd2x_be:
12041       VT = MVT::v2f64;
12042       break;
12043     case Intrinsic::ppc_altivec_stvebx:
12044       VT = MVT::i8;
12045       break;
12046     case Intrinsic::ppc_altivec_stvehx:
12047       VT = MVT::i16;
12048       break;
12049     case Intrinsic::ppc_altivec_stvewx:
12050       VT = MVT::i32;
12051       break;
12052     }
12053 
12054     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12055   }
12056 
12057   return false;
12058 }
12059 
12060 // Return true is there is a nearyby consecutive load to the one provided
12061 // (regardless of alignment). We search up and down the chain, looking though
12062 // token factors and other loads (but nothing else). As a result, a true result
12063 // indicates that it is safe to create a new consecutive load adjacent to the
12064 // load provided.
12065 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12066   SDValue Chain = LD->getChain();
12067   EVT VT = LD->getMemoryVT();
12068 
12069   SmallSet<SDNode *, 16> LoadRoots;
12070   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12071   SmallSet<SDNode *, 16> Visited;
12072 
12073   // First, search up the chain, branching to follow all token-factor operands.
12074   // If we find a consecutive load, then we're done, otherwise, record all
12075   // nodes just above the top-level loads and token factors.
12076   while (!Queue.empty()) {
12077     SDNode *ChainNext = Queue.pop_back_val();
12078     if (!Visited.insert(ChainNext).second)
12079       continue;
12080 
12081     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12082       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12083         return true;
12084 
12085       if (!Visited.count(ChainLD->getChain().getNode()))
12086         Queue.push_back(ChainLD->getChain().getNode());
12087     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12088       for (const SDUse &O : ChainNext->ops())
12089         if (!Visited.count(O.getNode()))
12090           Queue.push_back(O.getNode());
12091     } else
12092       LoadRoots.insert(ChainNext);
12093   }
12094 
12095   // Second, search down the chain, starting from the top-level nodes recorded
12096   // in the first phase. These top-level nodes are the nodes just above all
12097   // loads and token factors. Starting with their uses, recursively look though
12098   // all loads (just the chain uses) and token factors to find a consecutive
12099   // load.
12100   Visited.clear();
12101   Queue.clear();
12102 
12103   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12104        IE = LoadRoots.end(); I != IE; ++I) {
12105     Queue.push_back(*I);
12106 
12107     while (!Queue.empty()) {
12108       SDNode *LoadRoot = Queue.pop_back_val();
12109       if (!Visited.insert(LoadRoot).second)
12110         continue;
12111 
12112       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12113         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12114           return true;
12115 
12116       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12117            UE = LoadRoot->use_end(); UI != UE; ++UI)
12118         if (((isa<MemSDNode>(*UI) &&
12119             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12120             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12121           Queue.push_back(*UI);
12122     }
12123   }
12124 
12125   return false;
12126 }
12127 
12128 /// This function is called when we have proved that a SETCC node can be replaced
12129 /// by subtraction (and other supporting instructions) so that the result of
12130 /// comparison is kept in a GPR instead of CR. This function is purely for
12131 /// codegen purposes and has some flags to guide the codegen process.
12132 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12133                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12134   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12135 
12136   // Zero extend the operands to the largest legal integer. Originally, they
12137   // must be of a strictly smaller size.
12138   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12139                          DAG.getConstant(Size, DL, MVT::i32));
12140   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12141                          DAG.getConstant(Size, DL, MVT::i32));
12142 
12143   // Swap if needed. Depends on the condition code.
12144   if (Swap)
12145     std::swap(Op0, Op1);
12146 
12147   // Subtract extended integers.
12148   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12149 
12150   // Move the sign bit to the least significant position and zero out the rest.
12151   // Now the least significant bit carries the result of original comparison.
12152   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12153                              DAG.getConstant(Size - 1, DL, MVT::i32));
12154   auto Final = Shifted;
12155 
12156   // Complement the result if needed. Based on the condition code.
12157   if (Complement)
12158     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12159                         DAG.getConstant(1, DL, MVT::i64));
12160 
12161   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12162 }
12163 
12164 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12165                                                   DAGCombinerInfo &DCI) const {
12166   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12167 
12168   SelectionDAG &DAG = DCI.DAG;
12169   SDLoc DL(N);
12170 
12171   // Size of integers being compared has a critical role in the following
12172   // analysis, so we prefer to do this when all types are legal.
12173   if (!DCI.isAfterLegalizeDAG())
12174     return SDValue();
12175 
12176   // If all users of SETCC extend its value to a legal integer type
12177   // then we replace SETCC with a subtraction
12178   for (SDNode::use_iterator UI = N->use_begin(),
12179        UE = N->use_end(); UI != UE; ++UI) {
12180     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12181       return SDValue();
12182   }
12183 
12184   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12185   auto OpSize = N->getOperand(0).getValueSizeInBits();
12186 
12187   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12188 
12189   if (OpSize < Size) {
12190     switch (CC) {
12191     default: break;
12192     case ISD::SETULT:
12193       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12194     case ISD::SETULE:
12195       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12196     case ISD::SETUGT:
12197       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12198     case ISD::SETUGE:
12199       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12200     }
12201   }
12202 
12203   return SDValue();
12204 }
12205 
12206 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12207                                                   DAGCombinerInfo &DCI) const {
12208   SelectionDAG &DAG = DCI.DAG;
12209   SDLoc dl(N);
12210 
12211   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12212   // If we're tracking CR bits, we need to be careful that we don't have:
12213   //   trunc(binary-ops(zext(x), zext(y)))
12214   // or
12215   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12216   // such that we're unnecessarily moving things into GPRs when it would be
12217   // better to keep them in CR bits.
12218 
12219   // Note that trunc here can be an actual i1 trunc, or can be the effective
12220   // truncation that comes from a setcc or select_cc.
12221   if (N->getOpcode() == ISD::TRUNCATE &&
12222       N->getValueType(0) != MVT::i1)
12223     return SDValue();
12224 
12225   if (N->getOperand(0).getValueType() != MVT::i32 &&
12226       N->getOperand(0).getValueType() != MVT::i64)
12227     return SDValue();
12228 
12229   if (N->getOpcode() == ISD::SETCC ||
12230       N->getOpcode() == ISD::SELECT_CC) {
12231     // If we're looking at a comparison, then we need to make sure that the
12232     // high bits (all except for the first) don't matter the result.
12233     ISD::CondCode CC =
12234       cast<CondCodeSDNode>(N->getOperand(
12235         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12236     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12237 
12238     if (ISD::isSignedIntSetCC(CC)) {
12239       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12240           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12241         return SDValue();
12242     } else if (ISD::isUnsignedIntSetCC(CC)) {
12243       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12244                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12245           !DAG.MaskedValueIsZero(N->getOperand(1),
12246                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12247         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12248                                              : SDValue());
12249     } else {
12250       // This is neither a signed nor an unsigned comparison, just make sure
12251       // that the high bits are equal.
12252       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12253       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12254 
12255       // We don't really care about what is known about the first bit (if
12256       // anything), so clear it in all masks prior to comparing them.
12257       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12258       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12259 
12260       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12261         return SDValue();
12262     }
12263   }
12264 
12265   // We now know that the higher-order bits are irrelevant, we just need to
12266   // make sure that all of the intermediate operations are bit operations, and
12267   // all inputs are extensions.
12268   if (N->getOperand(0).getOpcode() != ISD::AND &&
12269       N->getOperand(0).getOpcode() != ISD::OR  &&
12270       N->getOperand(0).getOpcode() != ISD::XOR &&
12271       N->getOperand(0).getOpcode() != ISD::SELECT &&
12272       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12273       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12274       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12275       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12276       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12277     return SDValue();
12278 
12279   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12280       N->getOperand(1).getOpcode() != ISD::AND &&
12281       N->getOperand(1).getOpcode() != ISD::OR  &&
12282       N->getOperand(1).getOpcode() != ISD::XOR &&
12283       N->getOperand(1).getOpcode() != ISD::SELECT &&
12284       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12285       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12286       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12287       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12288       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12289     return SDValue();
12290 
12291   SmallVector<SDValue, 4> Inputs;
12292   SmallVector<SDValue, 8> BinOps, PromOps;
12293   SmallPtrSet<SDNode *, 16> Visited;
12294 
12295   for (unsigned i = 0; i < 2; ++i) {
12296     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12297           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12298           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12299           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12300         isa<ConstantSDNode>(N->getOperand(i)))
12301       Inputs.push_back(N->getOperand(i));
12302     else
12303       BinOps.push_back(N->getOperand(i));
12304 
12305     if (N->getOpcode() == ISD::TRUNCATE)
12306       break;
12307   }
12308 
12309   // Visit all inputs, collect all binary operations (and, or, xor and
12310   // select) that are all fed by extensions.
12311   while (!BinOps.empty()) {
12312     SDValue BinOp = BinOps.back();
12313     BinOps.pop_back();
12314 
12315     if (!Visited.insert(BinOp.getNode()).second)
12316       continue;
12317 
12318     PromOps.push_back(BinOp);
12319 
12320     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12321       // The condition of the select is not promoted.
12322       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12323         continue;
12324       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12325         continue;
12326 
12327       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12328             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12329             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12330            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12331           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12332         Inputs.push_back(BinOp.getOperand(i));
12333       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12334                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12335                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12336                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12337                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12338                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12339                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12340                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12341                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12342         BinOps.push_back(BinOp.getOperand(i));
12343       } else {
12344         // We have an input that is not an extension or another binary
12345         // operation; we'll abort this transformation.
12346         return SDValue();
12347       }
12348     }
12349   }
12350 
12351   // Make sure that this is a self-contained cluster of operations (which
12352   // is not quite the same thing as saying that everything has only one
12353   // use).
12354   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12355     if (isa<ConstantSDNode>(Inputs[i]))
12356       continue;
12357 
12358     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12359                               UE = Inputs[i].getNode()->use_end();
12360          UI != UE; ++UI) {
12361       SDNode *User = *UI;
12362       if (User != N && !Visited.count(User))
12363         return SDValue();
12364 
12365       // Make sure that we're not going to promote the non-output-value
12366       // operand(s) or SELECT or SELECT_CC.
12367       // FIXME: Although we could sometimes handle this, and it does occur in
12368       // practice that one of the condition inputs to the select is also one of
12369       // the outputs, we currently can't deal with this.
12370       if (User->getOpcode() == ISD::SELECT) {
12371         if (User->getOperand(0) == Inputs[i])
12372           return SDValue();
12373       } else if (User->getOpcode() == ISD::SELECT_CC) {
12374         if (User->getOperand(0) == Inputs[i] ||
12375             User->getOperand(1) == Inputs[i])
12376           return SDValue();
12377       }
12378     }
12379   }
12380 
12381   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12382     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12383                               UE = PromOps[i].getNode()->use_end();
12384          UI != UE; ++UI) {
12385       SDNode *User = *UI;
12386       if (User != N && !Visited.count(User))
12387         return SDValue();
12388 
12389       // Make sure that we're not going to promote the non-output-value
12390       // operand(s) or SELECT or SELECT_CC.
12391       // FIXME: Although we could sometimes handle this, and it does occur in
12392       // practice that one of the condition inputs to the select is also one of
12393       // the outputs, we currently can't deal with this.
12394       if (User->getOpcode() == ISD::SELECT) {
12395         if (User->getOperand(0) == PromOps[i])
12396           return SDValue();
12397       } else if (User->getOpcode() == ISD::SELECT_CC) {
12398         if (User->getOperand(0) == PromOps[i] ||
12399             User->getOperand(1) == PromOps[i])
12400           return SDValue();
12401       }
12402     }
12403   }
12404 
12405   // Replace all inputs with the extension operand.
12406   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12407     // Constants may have users outside the cluster of to-be-promoted nodes,
12408     // and so we need to replace those as we do the promotions.
12409     if (isa<ConstantSDNode>(Inputs[i]))
12410       continue;
12411     else
12412       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12413   }
12414 
12415   std::list<HandleSDNode> PromOpHandles;
12416   for (auto &PromOp : PromOps)
12417     PromOpHandles.emplace_back(PromOp);
12418 
12419   // Replace all operations (these are all the same, but have a different
12420   // (i1) return type). DAG.getNode will validate that the types of
12421   // a binary operator match, so go through the list in reverse so that
12422   // we've likely promoted both operands first. Any intermediate truncations or
12423   // extensions disappear.
12424   while (!PromOpHandles.empty()) {
12425     SDValue PromOp = PromOpHandles.back().getValue();
12426     PromOpHandles.pop_back();
12427 
12428     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12429         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12430         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12431         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12432       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12433           PromOp.getOperand(0).getValueType() != MVT::i1) {
12434         // The operand is not yet ready (see comment below).
12435         PromOpHandles.emplace_front(PromOp);
12436         continue;
12437       }
12438 
12439       SDValue RepValue = PromOp.getOperand(0);
12440       if (isa<ConstantSDNode>(RepValue))
12441         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12442 
12443       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12444       continue;
12445     }
12446 
12447     unsigned C;
12448     switch (PromOp.getOpcode()) {
12449     default:             C = 0; break;
12450     case ISD::SELECT:    C = 1; break;
12451     case ISD::SELECT_CC: C = 2; break;
12452     }
12453 
12454     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12455          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12456         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12457          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12458       // The to-be-promoted operands of this node have not yet been
12459       // promoted (this should be rare because we're going through the
12460       // list backward, but if one of the operands has several users in
12461       // this cluster of to-be-promoted nodes, it is possible).
12462       PromOpHandles.emplace_front(PromOp);
12463       continue;
12464     }
12465 
12466     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12467                                 PromOp.getNode()->op_end());
12468 
12469     // If there are any constant inputs, make sure they're replaced now.
12470     for (unsigned i = 0; i < 2; ++i)
12471       if (isa<ConstantSDNode>(Ops[C+i]))
12472         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12473 
12474     DAG.ReplaceAllUsesOfValueWith(PromOp,
12475       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12476   }
12477 
12478   // Now we're left with the initial truncation itself.
12479   if (N->getOpcode() == ISD::TRUNCATE)
12480     return N->getOperand(0);
12481 
12482   // Otherwise, this is a comparison. The operands to be compared have just
12483   // changed type (to i1), but everything else is the same.
12484   return SDValue(N, 0);
12485 }
12486 
12487 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12488                                                   DAGCombinerInfo &DCI) const {
12489   SelectionDAG &DAG = DCI.DAG;
12490   SDLoc dl(N);
12491 
12492   // If we're tracking CR bits, we need to be careful that we don't have:
12493   //   zext(binary-ops(trunc(x), trunc(y)))
12494   // or
12495   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12496   // such that we're unnecessarily moving things into CR bits that can more
12497   // efficiently stay in GPRs. Note that if we're not certain that the high
12498   // bits are set as required by the final extension, we still may need to do
12499   // some masking to get the proper behavior.
12500 
12501   // This same functionality is important on PPC64 when dealing with
12502   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12503   // the return values of functions. Because it is so similar, it is handled
12504   // here as well.
12505 
12506   if (N->getValueType(0) != MVT::i32 &&
12507       N->getValueType(0) != MVT::i64)
12508     return SDValue();
12509 
12510   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12511         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12512     return SDValue();
12513 
12514   if (N->getOperand(0).getOpcode() != ISD::AND &&
12515       N->getOperand(0).getOpcode() != ISD::OR  &&
12516       N->getOperand(0).getOpcode() != ISD::XOR &&
12517       N->getOperand(0).getOpcode() != ISD::SELECT &&
12518       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12519     return SDValue();
12520 
12521   SmallVector<SDValue, 4> Inputs;
12522   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12523   SmallPtrSet<SDNode *, 16> Visited;
12524 
12525   // Visit all inputs, collect all binary operations (and, or, xor and
12526   // select) that are all fed by truncations.
12527   while (!BinOps.empty()) {
12528     SDValue BinOp = BinOps.back();
12529     BinOps.pop_back();
12530 
12531     if (!Visited.insert(BinOp.getNode()).second)
12532       continue;
12533 
12534     PromOps.push_back(BinOp);
12535 
12536     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12537       // The condition of the select is not promoted.
12538       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12539         continue;
12540       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12541         continue;
12542 
12543       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12544           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12545         Inputs.push_back(BinOp.getOperand(i));
12546       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12547                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12548                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12549                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12550                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12551         BinOps.push_back(BinOp.getOperand(i));
12552       } else {
12553         // We have an input that is not a truncation or another binary
12554         // operation; we'll abort this transformation.
12555         return SDValue();
12556       }
12557     }
12558   }
12559 
12560   // The operands of a select that must be truncated when the select is
12561   // promoted because the operand is actually part of the to-be-promoted set.
12562   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12563 
12564   // Make sure that this is a self-contained cluster of operations (which
12565   // is not quite the same thing as saying that everything has only one
12566   // use).
12567   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12568     if (isa<ConstantSDNode>(Inputs[i]))
12569       continue;
12570 
12571     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12572                               UE = Inputs[i].getNode()->use_end();
12573          UI != UE; ++UI) {
12574       SDNode *User = *UI;
12575       if (User != N && !Visited.count(User))
12576         return SDValue();
12577 
12578       // If we're going to promote the non-output-value operand(s) or SELECT or
12579       // SELECT_CC, record them for truncation.
12580       if (User->getOpcode() == ISD::SELECT) {
12581         if (User->getOperand(0) == Inputs[i])
12582           SelectTruncOp[0].insert(std::make_pair(User,
12583                                     User->getOperand(0).getValueType()));
12584       } else if (User->getOpcode() == ISD::SELECT_CC) {
12585         if (User->getOperand(0) == Inputs[i])
12586           SelectTruncOp[0].insert(std::make_pair(User,
12587                                     User->getOperand(0).getValueType()));
12588         if (User->getOperand(1) == Inputs[i])
12589           SelectTruncOp[1].insert(std::make_pair(User,
12590                                     User->getOperand(1).getValueType()));
12591       }
12592     }
12593   }
12594 
12595   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12596     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12597                               UE = PromOps[i].getNode()->use_end();
12598          UI != UE; ++UI) {
12599       SDNode *User = *UI;
12600       if (User != N && !Visited.count(User))
12601         return SDValue();
12602 
12603       // If we're going to promote the non-output-value operand(s) or SELECT or
12604       // SELECT_CC, record them for truncation.
12605       if (User->getOpcode() == ISD::SELECT) {
12606         if (User->getOperand(0) == PromOps[i])
12607           SelectTruncOp[0].insert(std::make_pair(User,
12608                                     User->getOperand(0).getValueType()));
12609       } else if (User->getOpcode() == ISD::SELECT_CC) {
12610         if (User->getOperand(0) == PromOps[i])
12611           SelectTruncOp[0].insert(std::make_pair(User,
12612                                     User->getOperand(0).getValueType()));
12613         if (User->getOperand(1) == PromOps[i])
12614           SelectTruncOp[1].insert(std::make_pair(User,
12615                                     User->getOperand(1).getValueType()));
12616       }
12617     }
12618   }
12619 
12620   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12621   bool ReallyNeedsExt = false;
12622   if (N->getOpcode() != ISD::ANY_EXTEND) {
12623     // If all of the inputs are not already sign/zero extended, then
12624     // we'll still need to do that at the end.
12625     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12626       if (isa<ConstantSDNode>(Inputs[i]))
12627         continue;
12628 
12629       unsigned OpBits =
12630         Inputs[i].getOperand(0).getValueSizeInBits();
12631       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12632 
12633       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12634            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12635                                   APInt::getHighBitsSet(OpBits,
12636                                                         OpBits-PromBits))) ||
12637           (N->getOpcode() == ISD::SIGN_EXTEND &&
12638            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12639              (OpBits-(PromBits-1)))) {
12640         ReallyNeedsExt = true;
12641         break;
12642       }
12643     }
12644   }
12645 
12646   // Replace all inputs, either with the truncation operand, or a
12647   // truncation or extension to the final output type.
12648   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12649     // Constant inputs need to be replaced with the to-be-promoted nodes that
12650     // use them because they might have users outside of the cluster of
12651     // promoted nodes.
12652     if (isa<ConstantSDNode>(Inputs[i]))
12653       continue;
12654 
12655     SDValue InSrc = Inputs[i].getOperand(0);
12656     if (Inputs[i].getValueType() == N->getValueType(0))
12657       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12658     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12659       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12660         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12661     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12662       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12663         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12664     else
12665       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12666         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12667   }
12668 
12669   std::list<HandleSDNode> PromOpHandles;
12670   for (auto &PromOp : PromOps)
12671     PromOpHandles.emplace_back(PromOp);
12672 
12673   // Replace all operations (these are all the same, but have a different
12674   // (promoted) return type). DAG.getNode will validate that the types of
12675   // a binary operator match, so go through the list in reverse so that
12676   // we've likely promoted both operands first.
12677   while (!PromOpHandles.empty()) {
12678     SDValue PromOp = PromOpHandles.back().getValue();
12679     PromOpHandles.pop_back();
12680 
12681     unsigned C;
12682     switch (PromOp.getOpcode()) {
12683     default:             C = 0; break;
12684     case ISD::SELECT:    C = 1; break;
12685     case ISD::SELECT_CC: C = 2; break;
12686     }
12687 
12688     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12689          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12690         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12691          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12692       // The to-be-promoted operands of this node have not yet been
12693       // promoted (this should be rare because we're going through the
12694       // list backward, but if one of the operands has several users in
12695       // this cluster of to-be-promoted nodes, it is possible).
12696       PromOpHandles.emplace_front(PromOp);
12697       continue;
12698     }
12699 
12700     // For SELECT and SELECT_CC nodes, we do a similar check for any
12701     // to-be-promoted comparison inputs.
12702     if (PromOp.getOpcode() == ISD::SELECT ||
12703         PromOp.getOpcode() == ISD::SELECT_CC) {
12704       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12705            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12706           (SelectTruncOp[1].count(PromOp.getNode()) &&
12707            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12708         PromOpHandles.emplace_front(PromOp);
12709         continue;
12710       }
12711     }
12712 
12713     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12714                                 PromOp.getNode()->op_end());
12715 
12716     // If this node has constant inputs, then they'll need to be promoted here.
12717     for (unsigned i = 0; i < 2; ++i) {
12718       if (!isa<ConstantSDNode>(Ops[C+i]))
12719         continue;
12720       if (Ops[C+i].getValueType() == N->getValueType(0))
12721         continue;
12722 
12723       if (N->getOpcode() == ISD::SIGN_EXTEND)
12724         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12725       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12726         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12727       else
12728         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12729     }
12730 
12731     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12732     // truncate them again to the original value type.
12733     if (PromOp.getOpcode() == ISD::SELECT ||
12734         PromOp.getOpcode() == ISD::SELECT_CC) {
12735       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12736       if (SI0 != SelectTruncOp[0].end())
12737         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12738       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12739       if (SI1 != SelectTruncOp[1].end())
12740         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12741     }
12742 
12743     DAG.ReplaceAllUsesOfValueWith(PromOp,
12744       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12745   }
12746 
12747   // Now we're left with the initial extension itself.
12748   if (!ReallyNeedsExt)
12749     return N->getOperand(0);
12750 
12751   // To zero extend, just mask off everything except for the first bit (in the
12752   // i1 case).
12753   if (N->getOpcode() == ISD::ZERO_EXTEND)
12754     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12755                        DAG.getConstant(APInt::getLowBitsSet(
12756                                          N->getValueSizeInBits(0), PromBits),
12757                                        dl, N->getValueType(0)));
12758 
12759   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12760          "Invalid extension type");
12761   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12762   SDValue ShiftCst =
12763       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12764   return DAG.getNode(
12765       ISD::SRA, dl, N->getValueType(0),
12766       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12767       ShiftCst);
12768 }
12769 
12770 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12771                                         DAGCombinerInfo &DCI) const {
12772   assert(N->getOpcode() == ISD::SETCC &&
12773          "Should be called with a SETCC node");
12774 
12775   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12776   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12777     SDValue LHS = N->getOperand(0);
12778     SDValue RHS = N->getOperand(1);
12779 
12780     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12781     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12782         LHS.hasOneUse())
12783       std::swap(LHS, RHS);
12784 
12785     // x == 0-y --> x+y == 0
12786     // x != 0-y --> x+y != 0
12787     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12788         RHS.hasOneUse()) {
12789       SDLoc DL(N);
12790       SelectionDAG &DAG = DCI.DAG;
12791       EVT VT = N->getValueType(0);
12792       EVT OpVT = LHS.getValueType();
12793       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12794       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12795     }
12796   }
12797 
12798   return DAGCombineTruncBoolExt(N, DCI);
12799 }
12800 
12801 // Is this an extending load from an f32 to an f64?
12802 static bool isFPExtLoad(SDValue Op) {
12803   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12804     return LD->getExtensionType() == ISD::EXTLOAD &&
12805       Op.getValueType() == MVT::f64;
12806   return false;
12807 }
12808 
12809 /// Reduces the number of fp-to-int conversion when building a vector.
12810 ///
12811 /// If this vector is built out of floating to integer conversions,
12812 /// transform it to a vector built out of floating point values followed by a
12813 /// single floating to integer conversion of the vector.
12814 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12815 /// becomes (fptosi (build_vector ($A, $B, ...)))
12816 SDValue PPCTargetLowering::
12817 combineElementTruncationToVectorTruncation(SDNode *N,
12818                                            DAGCombinerInfo &DCI) const {
12819   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12820          "Should be called with a BUILD_VECTOR node");
12821 
12822   SelectionDAG &DAG = DCI.DAG;
12823   SDLoc dl(N);
12824 
12825   SDValue FirstInput = N->getOperand(0);
12826   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12827          "The input operand must be an fp-to-int conversion.");
12828 
12829   // This combine happens after legalization so the fp_to_[su]i nodes are
12830   // already converted to PPCSISD nodes.
12831   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12832   if (FirstConversion == PPCISD::FCTIDZ ||
12833       FirstConversion == PPCISD::FCTIDUZ ||
12834       FirstConversion == PPCISD::FCTIWZ ||
12835       FirstConversion == PPCISD::FCTIWUZ) {
12836     bool IsSplat = true;
12837     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12838       FirstConversion == PPCISD::FCTIWUZ;
12839     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12840     SmallVector<SDValue, 4> Ops;
12841     EVT TargetVT = N->getValueType(0);
12842     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12843       SDValue NextOp = N->getOperand(i);
12844       if (NextOp.getOpcode() != PPCISD::MFVSR)
12845         return SDValue();
12846       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12847       if (NextConversion != FirstConversion)
12848         return SDValue();
12849       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12850       // This is not valid if the input was originally double precision. It is
12851       // also not profitable to do unless this is an extending load in which
12852       // case doing this combine will allow us to combine consecutive loads.
12853       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12854         return SDValue();
12855       if (N->getOperand(i) != FirstInput)
12856         IsSplat = false;
12857     }
12858 
12859     // If this is a splat, we leave it as-is since there will be only a single
12860     // fp-to-int conversion followed by a splat of the integer. This is better
12861     // for 32-bit and smaller ints and neutral for 64-bit ints.
12862     if (IsSplat)
12863       return SDValue();
12864 
12865     // Now that we know we have the right type of node, get its operands
12866     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12867       SDValue In = N->getOperand(i).getOperand(0);
12868       if (Is32Bit) {
12869         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12870         // here, we know that all inputs are extending loads so this is safe).
12871         if (In.isUndef())
12872           Ops.push_back(DAG.getUNDEF(SrcVT));
12873         else {
12874           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12875                                       MVT::f32, In.getOperand(0),
12876                                       DAG.getIntPtrConstant(1, dl));
12877           Ops.push_back(Trunc);
12878         }
12879       } else
12880         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12881     }
12882 
12883     unsigned Opcode;
12884     if (FirstConversion == PPCISD::FCTIDZ ||
12885         FirstConversion == PPCISD::FCTIWZ)
12886       Opcode = ISD::FP_TO_SINT;
12887     else
12888       Opcode = ISD::FP_TO_UINT;
12889 
12890     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12891     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12892     return DAG.getNode(Opcode, dl, TargetVT, BV);
12893   }
12894   return SDValue();
12895 }
12896 
12897 /// Reduce the number of loads when building a vector.
12898 ///
12899 /// Building a vector out of multiple loads can be converted to a load
12900 /// of the vector type if the loads are consecutive. If the loads are
12901 /// consecutive but in descending order, a shuffle is added at the end
12902 /// to reorder the vector.
12903 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12904   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12905          "Should be called with a BUILD_VECTOR node");
12906 
12907   SDLoc dl(N);
12908 
12909   // Return early for non byte-sized type, as they can't be consecutive.
12910   if (!N->getValueType(0).getVectorElementType().isByteSized())
12911     return SDValue();
12912 
12913   bool InputsAreConsecutiveLoads = true;
12914   bool InputsAreReverseConsecutive = true;
12915   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
12916   SDValue FirstInput = N->getOperand(0);
12917   bool IsRoundOfExtLoad = false;
12918 
12919   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12920       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12921     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12922     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12923   }
12924   // Not a build vector of (possibly fp_rounded) loads.
12925   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12926       N->getNumOperands() == 1)
12927     return SDValue();
12928 
12929   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12930     // If any inputs are fp_round(extload), they all must be.
12931     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12932       return SDValue();
12933 
12934     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12935       N->getOperand(i);
12936     if (NextInput.getOpcode() != ISD::LOAD)
12937       return SDValue();
12938 
12939     SDValue PreviousInput =
12940       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12941     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12942     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12943 
12944     // If any inputs are fp_round(extload), they all must be.
12945     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12946       return SDValue();
12947 
12948     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12949       InputsAreConsecutiveLoads = false;
12950     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12951       InputsAreReverseConsecutive = false;
12952 
12953     // Exit early if the loads are neither consecutive nor reverse consecutive.
12954     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12955       return SDValue();
12956   }
12957 
12958   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12959          "The loads cannot be both consecutive and reverse consecutive.");
12960 
12961   SDValue FirstLoadOp =
12962     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12963   SDValue LastLoadOp =
12964     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12965                        N->getOperand(N->getNumOperands()-1);
12966 
12967   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12968   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12969   if (InputsAreConsecutiveLoads) {
12970     assert(LD1 && "Input needs to be a LoadSDNode.");
12971     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12972                        LD1->getBasePtr(), LD1->getPointerInfo(),
12973                        LD1->getAlignment());
12974   }
12975   if (InputsAreReverseConsecutive) {
12976     assert(LDL && "Input needs to be a LoadSDNode.");
12977     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12978                                LDL->getBasePtr(), LDL->getPointerInfo(),
12979                                LDL->getAlignment());
12980     SmallVector<int, 16> Ops;
12981     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12982       Ops.push_back(i);
12983 
12984     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12985                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12986   }
12987   return SDValue();
12988 }
12989 
12990 // This function adds the required vector_shuffle needed to get
12991 // the elements of the vector extract in the correct position
12992 // as specified by the CorrectElems encoding.
12993 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12994                                       SDValue Input, uint64_t Elems,
12995                                       uint64_t CorrectElems) {
12996   SDLoc dl(N);
12997 
12998   unsigned NumElems = Input.getValueType().getVectorNumElements();
12999   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13000 
13001   // Knowing the element indices being extracted from the original
13002   // vector and the order in which they're being inserted, just put
13003   // them at element indices required for the instruction.
13004   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13005     if (DAG.getDataLayout().isLittleEndian())
13006       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13007     else
13008       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13009     CorrectElems = CorrectElems >> 8;
13010     Elems = Elems >> 8;
13011   }
13012 
13013   SDValue Shuffle =
13014       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13015                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13016 
13017   EVT Ty = N->getValueType(0);
13018   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
13019   return BV;
13020 }
13021 
13022 // Look for build vector patterns where input operands come from sign
13023 // extended vector_extract elements of specific indices. If the correct indices
13024 // aren't used, add a vector shuffle to fix up the indices and create a new
13025 // PPCISD:SExtVElems node which selects the vector sign extend instructions
13026 // during instruction selection.
13027 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13028   // This array encodes the indices that the vector sign extend instructions
13029   // extract from when extending from one type to another for both BE and LE.
13030   // The right nibble of each byte corresponds to the LE incides.
13031   // and the left nibble of each byte corresponds to the BE incides.
13032   // For example: 0x3074B8FC  byte->word
13033   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13034   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13035   // For example: 0x000070F8  byte->double word
13036   // For LE: the allowed indices are: 0x0,0x8
13037   // For BE: the allowed indices are: 0x7,0xF
13038   uint64_t TargetElems[] = {
13039       0x3074B8FC, // b->w
13040       0x000070F8, // b->d
13041       0x10325476, // h->w
13042       0x00003074, // h->d
13043       0x00001032, // w->d
13044   };
13045 
13046   uint64_t Elems = 0;
13047   int Index;
13048   SDValue Input;
13049 
13050   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13051     if (!Op)
13052       return false;
13053     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13054         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13055       return false;
13056 
13057     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13058     // of the right width.
13059     SDValue Extract = Op.getOperand(0);
13060     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13061       Extract = Extract.getOperand(0);
13062     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13063       return false;
13064 
13065     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13066     if (!ExtOp)
13067       return false;
13068 
13069     Index = ExtOp->getZExtValue();
13070     if (Input && Input != Extract.getOperand(0))
13071       return false;
13072 
13073     if (!Input)
13074       Input = Extract.getOperand(0);
13075 
13076     Elems = Elems << 8;
13077     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13078     Elems |= Index;
13079 
13080     return true;
13081   };
13082 
13083   // If the build vector operands aren't sign extended vector extracts,
13084   // of the same input vector, then return.
13085   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13086     if (!isSExtOfVecExtract(N->getOperand(i))) {
13087       return SDValue();
13088     }
13089   }
13090 
13091   // If the vector extract indicies are not correct, add the appropriate
13092   // vector_shuffle.
13093   int TgtElemArrayIdx;
13094   int InputSize = Input.getValueType().getScalarSizeInBits();
13095   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13096   if (InputSize + OutputSize == 40)
13097     TgtElemArrayIdx = 0;
13098   else if (InputSize + OutputSize == 72)
13099     TgtElemArrayIdx = 1;
13100   else if (InputSize + OutputSize == 48)
13101     TgtElemArrayIdx = 2;
13102   else if (InputSize + OutputSize == 80)
13103     TgtElemArrayIdx = 3;
13104   else if (InputSize + OutputSize == 96)
13105     TgtElemArrayIdx = 4;
13106   else
13107     return SDValue();
13108 
13109   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13110   CorrectElems = DAG.getDataLayout().isLittleEndian()
13111                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13112                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13113   if (Elems != CorrectElems) {
13114     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13115   }
13116 
13117   // Regular lowering will catch cases where a shuffle is not needed.
13118   return SDValue();
13119 }
13120 
13121 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13122                                                  DAGCombinerInfo &DCI) const {
13123   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13124          "Should be called with a BUILD_VECTOR node");
13125 
13126   SelectionDAG &DAG = DCI.DAG;
13127   SDLoc dl(N);
13128 
13129   if (!Subtarget.hasVSX())
13130     return SDValue();
13131 
13132   // The target independent DAG combiner will leave a build_vector of
13133   // float-to-int conversions intact. We can generate MUCH better code for
13134   // a float-to-int conversion of a vector of floats.
13135   SDValue FirstInput = N->getOperand(0);
13136   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13137     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13138     if (Reduced)
13139       return Reduced;
13140   }
13141 
13142   // If we're building a vector out of consecutive loads, just load that
13143   // vector type.
13144   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13145   if (Reduced)
13146     return Reduced;
13147 
13148   // If we're building a vector out of extended elements from another vector
13149   // we have P9 vector integer extend instructions. The code assumes legal
13150   // input types (i.e. it can't handle things like v4i16) so do not run before
13151   // legalization.
13152   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13153     Reduced = combineBVOfVecSExt(N, DAG);
13154     if (Reduced)
13155       return Reduced;
13156   }
13157 
13158 
13159   if (N->getValueType(0) != MVT::v2f64)
13160     return SDValue();
13161 
13162   // Looking for:
13163   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13164   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13165       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13166     return SDValue();
13167   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13168       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13169     return SDValue();
13170   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13171     return SDValue();
13172 
13173   SDValue Ext1 = FirstInput.getOperand(0);
13174   SDValue Ext2 = N->getOperand(1).getOperand(0);
13175   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13176      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13177     return SDValue();
13178 
13179   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13180   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13181   if (!Ext1Op || !Ext2Op)
13182     return SDValue();
13183   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13184       Ext1.getOperand(0) != Ext2.getOperand(0))
13185     return SDValue();
13186 
13187   int FirstElem = Ext1Op->getZExtValue();
13188   int SecondElem = Ext2Op->getZExtValue();
13189   int SubvecIdx;
13190   if (FirstElem == 0 && SecondElem == 1)
13191     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13192   else if (FirstElem == 2 && SecondElem == 3)
13193     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13194   else
13195     return SDValue();
13196 
13197   SDValue SrcVec = Ext1.getOperand(0);
13198   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13199     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13200   return DAG.getNode(NodeType, dl, MVT::v2f64,
13201                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13202 }
13203 
13204 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13205                                               DAGCombinerInfo &DCI) const {
13206   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13207           N->getOpcode() == ISD::UINT_TO_FP) &&
13208          "Need an int -> FP conversion node here");
13209 
13210   if (useSoftFloat() || !Subtarget.has64BitSupport())
13211     return SDValue();
13212 
13213   SelectionDAG &DAG = DCI.DAG;
13214   SDLoc dl(N);
13215   SDValue Op(N, 0);
13216 
13217   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13218   // from the hardware.
13219   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13220     return SDValue();
13221   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13222       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13223     return SDValue();
13224 
13225   SDValue FirstOperand(Op.getOperand(0));
13226   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13227     (FirstOperand.getValueType() == MVT::i8 ||
13228      FirstOperand.getValueType() == MVT::i16);
13229   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13230     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13231     bool DstDouble = Op.getValueType() == MVT::f64;
13232     unsigned ConvOp = Signed ?
13233       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13234       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13235     SDValue WidthConst =
13236       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13237                             dl, false);
13238     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13239     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13240     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13241                                          DAG.getVTList(MVT::f64, MVT::Other),
13242                                          Ops, MVT::i8, LDN->getMemOperand());
13243 
13244     // For signed conversion, we need to sign-extend the value in the VSR
13245     if (Signed) {
13246       SDValue ExtOps[] = { Ld, WidthConst };
13247       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13248       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13249     } else
13250       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13251   }
13252 
13253 
13254   // For i32 intermediate values, unfortunately, the conversion functions
13255   // leave the upper 32 bits of the value are undefined. Within the set of
13256   // scalar instructions, we have no method for zero- or sign-extending the
13257   // value. Thus, we cannot handle i32 intermediate values here.
13258   if (Op.getOperand(0).getValueType() == MVT::i32)
13259     return SDValue();
13260 
13261   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13262          "UINT_TO_FP is supported only with FPCVT");
13263 
13264   // If we have FCFIDS, then use it when converting to single-precision.
13265   // Otherwise, convert to double-precision and then round.
13266   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13267                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13268                                                             : PPCISD::FCFIDS)
13269                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13270                                                             : PPCISD::FCFID);
13271   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13272                   ? MVT::f32
13273                   : MVT::f64;
13274 
13275   // If we're converting from a float, to an int, and back to a float again,
13276   // then we don't need the store/load pair at all.
13277   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13278        Subtarget.hasFPCVT()) ||
13279       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13280     SDValue Src = Op.getOperand(0).getOperand(0);
13281     if (Src.getValueType() == MVT::f32) {
13282       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13283       DCI.AddToWorklist(Src.getNode());
13284     } else if (Src.getValueType() != MVT::f64) {
13285       // Make sure that we don't pick up a ppc_fp128 source value.
13286       return SDValue();
13287     }
13288 
13289     unsigned FCTOp =
13290       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13291                                                         PPCISD::FCTIDUZ;
13292 
13293     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13294     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13295 
13296     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13297       FP = DAG.getNode(ISD::FP_ROUND, dl,
13298                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13299       DCI.AddToWorklist(FP.getNode());
13300     }
13301 
13302     return FP;
13303   }
13304 
13305   return SDValue();
13306 }
13307 
13308 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13309 // builtins) into loads with swaps.
13310 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13311                                               DAGCombinerInfo &DCI) const {
13312   SelectionDAG &DAG = DCI.DAG;
13313   SDLoc dl(N);
13314   SDValue Chain;
13315   SDValue Base;
13316   MachineMemOperand *MMO;
13317 
13318   switch (N->getOpcode()) {
13319   default:
13320     llvm_unreachable("Unexpected opcode for little endian VSX load");
13321   case ISD::LOAD: {
13322     LoadSDNode *LD = cast<LoadSDNode>(N);
13323     Chain = LD->getChain();
13324     Base = LD->getBasePtr();
13325     MMO = LD->getMemOperand();
13326     // If the MMO suggests this isn't a load of a full vector, leave
13327     // things alone.  For a built-in, we have to make the change for
13328     // correctness, so if there is a size problem that will be a bug.
13329     if (MMO->getSize() < 16)
13330       return SDValue();
13331     break;
13332   }
13333   case ISD::INTRINSIC_W_CHAIN: {
13334     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13335     Chain = Intrin->getChain();
13336     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13337     // us what we want. Get operand 2 instead.
13338     Base = Intrin->getOperand(2);
13339     MMO = Intrin->getMemOperand();
13340     break;
13341   }
13342   }
13343 
13344   MVT VecTy = N->getValueType(0).getSimpleVT();
13345 
13346   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13347   // aligned and the type is a vector with elements up to 4 bytes
13348   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13349       && VecTy.getScalarSizeInBits() <= 32 ) {
13350     return SDValue();
13351   }
13352 
13353   SDValue LoadOps[] = { Chain, Base };
13354   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13355                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13356                                          LoadOps, MVT::v2f64, MMO);
13357 
13358   DCI.AddToWorklist(Load.getNode());
13359   Chain = Load.getValue(1);
13360   SDValue Swap = DAG.getNode(
13361       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13362   DCI.AddToWorklist(Swap.getNode());
13363 
13364   // Add a bitcast if the resulting load type doesn't match v2f64.
13365   if (VecTy != MVT::v2f64) {
13366     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13367     DCI.AddToWorklist(N.getNode());
13368     // Package {bitcast value, swap's chain} to match Load's shape.
13369     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13370                        N, Swap.getValue(1));
13371   }
13372 
13373   return Swap;
13374 }
13375 
13376 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13377 // builtins) into stores with swaps.
13378 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13379                                                DAGCombinerInfo &DCI) const {
13380   SelectionDAG &DAG = DCI.DAG;
13381   SDLoc dl(N);
13382   SDValue Chain;
13383   SDValue Base;
13384   unsigned SrcOpnd;
13385   MachineMemOperand *MMO;
13386 
13387   switch (N->getOpcode()) {
13388   default:
13389     llvm_unreachable("Unexpected opcode for little endian VSX store");
13390   case ISD::STORE: {
13391     StoreSDNode *ST = cast<StoreSDNode>(N);
13392     Chain = ST->getChain();
13393     Base = ST->getBasePtr();
13394     MMO = ST->getMemOperand();
13395     SrcOpnd = 1;
13396     // If the MMO suggests this isn't a store of a full vector, leave
13397     // things alone.  For a built-in, we have to make the change for
13398     // correctness, so if there is a size problem that will be a bug.
13399     if (MMO->getSize() < 16)
13400       return SDValue();
13401     break;
13402   }
13403   case ISD::INTRINSIC_VOID: {
13404     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13405     Chain = Intrin->getChain();
13406     // Intrin->getBasePtr() oddly does not get what we want.
13407     Base = Intrin->getOperand(3);
13408     MMO = Intrin->getMemOperand();
13409     SrcOpnd = 2;
13410     break;
13411   }
13412   }
13413 
13414   SDValue Src = N->getOperand(SrcOpnd);
13415   MVT VecTy = Src.getValueType().getSimpleVT();
13416 
13417   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13418   // aligned and the type is a vector with elements up to 4 bytes
13419   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13420       && VecTy.getScalarSizeInBits() <= 32 ) {
13421     return SDValue();
13422   }
13423 
13424   // All stores are done as v2f64 and possible bit cast.
13425   if (VecTy != MVT::v2f64) {
13426     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13427     DCI.AddToWorklist(Src.getNode());
13428   }
13429 
13430   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13431                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13432   DCI.AddToWorklist(Swap.getNode());
13433   Chain = Swap.getValue(1);
13434   SDValue StoreOps[] = { Chain, Swap, Base };
13435   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13436                                           DAG.getVTList(MVT::Other),
13437                                           StoreOps, VecTy, MMO);
13438   DCI.AddToWorklist(Store.getNode());
13439   return Store;
13440 }
13441 
13442 // Handle DAG combine for STORE (FP_TO_INT F).
13443 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13444                                                DAGCombinerInfo &DCI) const {
13445 
13446   SelectionDAG &DAG = DCI.DAG;
13447   SDLoc dl(N);
13448   unsigned Opcode = N->getOperand(1).getOpcode();
13449 
13450   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13451          && "Not a FP_TO_INT Instruction!");
13452 
13453   SDValue Val = N->getOperand(1).getOperand(0);
13454   EVT Op1VT = N->getOperand(1).getValueType();
13455   EVT ResVT = Val.getValueType();
13456 
13457   // Floating point types smaller than 32 bits are not legal on Power.
13458   if (ResVT.getScalarSizeInBits() < 32)
13459     return SDValue();
13460 
13461   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13462   bool ValidTypeForStoreFltAsInt =
13463         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13464          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13465 
13466   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13467       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13468     return SDValue();
13469 
13470   // Extend f32 values to f64
13471   if (ResVT.getScalarSizeInBits() == 32) {
13472     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13473     DCI.AddToWorklist(Val.getNode());
13474   }
13475 
13476   // Set signed or unsigned conversion opcode.
13477   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13478                           PPCISD::FP_TO_SINT_IN_VSR :
13479                           PPCISD::FP_TO_UINT_IN_VSR;
13480 
13481   Val = DAG.getNode(ConvOpcode,
13482                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13483   DCI.AddToWorklist(Val.getNode());
13484 
13485   // Set number of bytes being converted.
13486   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13487   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13488                     DAG.getIntPtrConstant(ByteSize, dl, false),
13489                     DAG.getValueType(Op1VT) };
13490 
13491   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13492           DAG.getVTList(MVT::Other), Ops,
13493           cast<StoreSDNode>(N)->getMemoryVT(),
13494           cast<StoreSDNode>(N)->getMemOperand());
13495 
13496   DCI.AddToWorklist(Val.getNode());
13497   return Val;
13498 }
13499 
13500 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13501                                                 LSBaseSDNode *LSBase,
13502                                                 DAGCombinerInfo &DCI) const {
13503   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13504         "Not a reverse memop pattern!");
13505 
13506   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13507     auto Mask = SVN->getMask();
13508     int i = 0;
13509     auto I = Mask.rbegin();
13510     auto E = Mask.rend();
13511 
13512     for (; I != E; ++I) {
13513       if (*I != i)
13514         return false;
13515       i++;
13516     }
13517     return true;
13518   };
13519 
13520   SelectionDAG &DAG = DCI.DAG;
13521   EVT VT = SVN->getValueType(0);
13522 
13523   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13524     return SDValue();
13525 
13526   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13527   // See comment in PPCVSXSwapRemoval.cpp.
13528   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13529   if (!Subtarget.hasP9Vector())
13530     return SDValue();
13531 
13532   if(!IsElementReverse(SVN))
13533     return SDValue();
13534 
13535   if (LSBase->getOpcode() == ISD::LOAD) {
13536     SDLoc dl(SVN);
13537     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13538     return DAG.getMemIntrinsicNode(
13539         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13540         LSBase->getMemoryVT(), LSBase->getMemOperand());
13541   }
13542 
13543   if (LSBase->getOpcode() == ISD::STORE) {
13544     SDLoc dl(LSBase);
13545     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13546                           LSBase->getBasePtr()};
13547     return DAG.getMemIntrinsicNode(
13548         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13549         LSBase->getMemoryVT(), LSBase->getMemOperand());
13550   }
13551 
13552   llvm_unreachable("Expected a load or store node here");
13553 }
13554 
13555 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13556                                              DAGCombinerInfo &DCI) const {
13557   SelectionDAG &DAG = DCI.DAG;
13558   SDLoc dl(N);
13559   switch (N->getOpcode()) {
13560   default: break;
13561   case ISD::ADD:
13562     return combineADD(N, DCI);
13563   case ISD::SHL:
13564     return combineSHL(N, DCI);
13565   case ISD::SRA:
13566     return combineSRA(N, DCI);
13567   case ISD::SRL:
13568     return combineSRL(N, DCI);
13569   case ISD::MUL:
13570     return combineMUL(N, DCI);
13571   case PPCISD::SHL:
13572     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13573         return N->getOperand(0);
13574     break;
13575   case PPCISD::SRL:
13576     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13577         return N->getOperand(0);
13578     break;
13579   case PPCISD::SRA:
13580     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13581       if (C->isNullValue() ||   //  0 >>s V -> 0.
13582           C->isAllOnesValue())    // -1 >>s V -> -1.
13583         return N->getOperand(0);
13584     }
13585     break;
13586   case ISD::SIGN_EXTEND:
13587   case ISD::ZERO_EXTEND:
13588   case ISD::ANY_EXTEND:
13589     return DAGCombineExtBoolTrunc(N, DCI);
13590   case ISD::TRUNCATE:
13591     return combineTRUNCATE(N, DCI);
13592   case ISD::SETCC:
13593     if (SDValue CSCC = combineSetCC(N, DCI))
13594       return CSCC;
13595     LLVM_FALLTHROUGH;
13596   case ISD::SELECT_CC:
13597     return DAGCombineTruncBoolExt(N, DCI);
13598   case ISD::SINT_TO_FP:
13599   case ISD::UINT_TO_FP:
13600     return combineFPToIntToFP(N, DCI);
13601   case ISD::VECTOR_SHUFFLE:
13602     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13603       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13604       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13605     }
13606     break;
13607   case ISD::STORE: {
13608 
13609     EVT Op1VT = N->getOperand(1).getValueType();
13610     unsigned Opcode = N->getOperand(1).getOpcode();
13611 
13612     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13613       SDValue Val= combineStoreFPToInt(N, DCI);
13614       if (Val)
13615         return Val;
13616     }
13617 
13618     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13619       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13620       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13621       if (Val)
13622         return Val;
13623     }
13624 
13625     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13626     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13627         N->getOperand(1).getNode()->hasOneUse() &&
13628         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13629          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13630 
13631       // STBRX can only handle simple types and it makes no sense to store less
13632       // two bytes in byte-reversed order.
13633       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13634       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13635         break;
13636 
13637       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13638       // Do an any-extend to 32-bits if this is a half-word input.
13639       if (BSwapOp.getValueType() == MVT::i16)
13640         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13641 
13642       // If the type of BSWAP operand is wider than stored memory width
13643       // it need to be shifted to the right side before STBRX.
13644       if (Op1VT.bitsGT(mVT)) {
13645         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13646         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13647                               DAG.getConstant(Shift, dl, MVT::i32));
13648         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13649         if (Op1VT == MVT::i64)
13650           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13651       }
13652 
13653       SDValue Ops[] = {
13654         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13655       };
13656       return
13657         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13658                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13659                                 cast<StoreSDNode>(N)->getMemOperand());
13660     }
13661 
13662     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13663     // So it can increase the chance of CSE constant construction.
13664     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13665         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13666       // Need to sign-extended to 64-bits to handle negative values.
13667       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13668       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13669                                     MemVT.getSizeInBits());
13670       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13671 
13672       // DAG.getTruncStore() can't be used here because it doesn't accept
13673       // the general (base + offset) addressing mode.
13674       // So we use UpdateNodeOperands and setTruncatingStore instead.
13675       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13676                              N->getOperand(3));
13677       cast<StoreSDNode>(N)->setTruncatingStore(true);
13678       return SDValue(N, 0);
13679     }
13680 
13681     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13682     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13683     if (Op1VT.isSimple()) {
13684       MVT StoreVT = Op1VT.getSimpleVT();
13685       if (Subtarget.needsSwapsForVSXMemOps() &&
13686           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13687            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13688         return expandVSXStoreForLE(N, DCI);
13689     }
13690     break;
13691   }
13692   case ISD::LOAD: {
13693     LoadSDNode *LD = cast<LoadSDNode>(N);
13694     EVT VT = LD->getValueType(0);
13695 
13696     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13697     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13698     if (VT.isSimple()) {
13699       MVT LoadVT = VT.getSimpleVT();
13700       if (Subtarget.needsSwapsForVSXMemOps() &&
13701           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13702            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13703         return expandVSXLoadForLE(N, DCI);
13704     }
13705 
13706     // We sometimes end up with a 64-bit integer load, from which we extract
13707     // two single-precision floating-point numbers. This happens with
13708     // std::complex<float>, and other similar structures, because of the way we
13709     // canonicalize structure copies. However, if we lack direct moves,
13710     // then the final bitcasts from the extracted integer values to the
13711     // floating-point numbers turn into store/load pairs. Even with direct moves,
13712     // just loading the two floating-point numbers is likely better.
13713     auto ReplaceTwoFloatLoad = [&]() {
13714       if (VT != MVT::i64)
13715         return false;
13716 
13717       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13718           LD->isVolatile())
13719         return false;
13720 
13721       //  We're looking for a sequence like this:
13722       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13723       //      t16: i64 = srl t13, Constant:i32<32>
13724       //    t17: i32 = truncate t16
13725       //  t18: f32 = bitcast t17
13726       //    t19: i32 = truncate t13
13727       //  t20: f32 = bitcast t19
13728 
13729       if (!LD->hasNUsesOfValue(2, 0))
13730         return false;
13731 
13732       auto UI = LD->use_begin();
13733       while (UI.getUse().getResNo() != 0) ++UI;
13734       SDNode *Trunc = *UI++;
13735       while (UI.getUse().getResNo() != 0) ++UI;
13736       SDNode *RightShift = *UI;
13737       if (Trunc->getOpcode() != ISD::TRUNCATE)
13738         std::swap(Trunc, RightShift);
13739 
13740       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13741           Trunc->getValueType(0) != MVT::i32 ||
13742           !Trunc->hasOneUse())
13743         return false;
13744       if (RightShift->getOpcode() != ISD::SRL ||
13745           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13746           RightShift->getConstantOperandVal(1) != 32 ||
13747           !RightShift->hasOneUse())
13748         return false;
13749 
13750       SDNode *Trunc2 = *RightShift->use_begin();
13751       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13752           Trunc2->getValueType(0) != MVT::i32 ||
13753           !Trunc2->hasOneUse())
13754         return false;
13755 
13756       SDNode *Bitcast = *Trunc->use_begin();
13757       SDNode *Bitcast2 = *Trunc2->use_begin();
13758 
13759       if (Bitcast->getOpcode() != ISD::BITCAST ||
13760           Bitcast->getValueType(0) != MVT::f32)
13761         return false;
13762       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13763           Bitcast2->getValueType(0) != MVT::f32)
13764         return false;
13765 
13766       if (Subtarget.isLittleEndian())
13767         std::swap(Bitcast, Bitcast2);
13768 
13769       // Bitcast has the second float (in memory-layout order) and Bitcast2
13770       // has the first one.
13771 
13772       SDValue BasePtr = LD->getBasePtr();
13773       if (LD->isIndexed()) {
13774         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13775                "Non-pre-inc AM on PPC?");
13776         BasePtr =
13777           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13778                       LD->getOffset());
13779       }
13780 
13781       auto MMOFlags =
13782           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13783       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13784                                       LD->getPointerInfo(), LD->getAlignment(),
13785                                       MMOFlags, LD->getAAInfo());
13786       SDValue AddPtr =
13787         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13788                     BasePtr, DAG.getIntPtrConstant(4, dl));
13789       SDValue FloatLoad2 = DAG.getLoad(
13790           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13791           LD->getPointerInfo().getWithOffset(4),
13792           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13793 
13794       if (LD->isIndexed()) {
13795         // Note that DAGCombine should re-form any pre-increment load(s) from
13796         // what is produced here if that makes sense.
13797         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13798       }
13799 
13800       DCI.CombineTo(Bitcast2, FloatLoad);
13801       DCI.CombineTo(Bitcast, FloatLoad2);
13802 
13803       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13804                                     SDValue(FloatLoad2.getNode(), 1));
13805       return true;
13806     };
13807 
13808     if (ReplaceTwoFloatLoad())
13809       return SDValue(N, 0);
13810 
13811     EVT MemVT = LD->getMemoryVT();
13812     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13813     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13814     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13815     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13816     if (LD->isUnindexed() && VT.isVector() &&
13817         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13818           // P8 and later hardware should just use LOAD.
13819           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13820                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13821          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13822           LD->getAlignment() >= ScalarABIAlignment)) &&
13823         LD->getAlignment() < ABIAlignment) {
13824       // This is a type-legal unaligned Altivec or QPX load.
13825       SDValue Chain = LD->getChain();
13826       SDValue Ptr = LD->getBasePtr();
13827       bool isLittleEndian = Subtarget.isLittleEndian();
13828 
13829       // This implements the loading of unaligned vectors as described in
13830       // the venerable Apple Velocity Engine overview. Specifically:
13831       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13832       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13833       //
13834       // The general idea is to expand a sequence of one or more unaligned
13835       // loads into an alignment-based permutation-control instruction (lvsl
13836       // or lvsr), a series of regular vector loads (which always truncate
13837       // their input address to an aligned address), and a series of
13838       // permutations.  The results of these permutations are the requested
13839       // loaded values.  The trick is that the last "extra" load is not taken
13840       // from the address you might suspect (sizeof(vector) bytes after the
13841       // last requested load), but rather sizeof(vector) - 1 bytes after the
13842       // last requested vector. The point of this is to avoid a page fault if
13843       // the base address happened to be aligned. This works because if the
13844       // base address is aligned, then adding less than a full vector length
13845       // will cause the last vector in the sequence to be (re)loaded.
13846       // Otherwise, the next vector will be fetched as you might suspect was
13847       // necessary.
13848 
13849       // We might be able to reuse the permutation generation from
13850       // a different base address offset from this one by an aligned amount.
13851       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13852       // optimization later.
13853       Intrinsic::ID Intr, IntrLD, IntrPerm;
13854       MVT PermCntlTy, PermTy, LDTy;
13855       if (Subtarget.hasAltivec()) {
13856         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13857                                  Intrinsic::ppc_altivec_lvsl;
13858         IntrLD = Intrinsic::ppc_altivec_lvx;
13859         IntrPerm = Intrinsic::ppc_altivec_vperm;
13860         PermCntlTy = MVT::v16i8;
13861         PermTy = MVT::v4i32;
13862         LDTy = MVT::v4i32;
13863       } else {
13864         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13865                                        Intrinsic::ppc_qpx_qvlpcls;
13866         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13867                                        Intrinsic::ppc_qpx_qvlfs;
13868         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13869         PermCntlTy = MVT::v4f64;
13870         PermTy = MVT::v4f64;
13871         LDTy = MemVT.getSimpleVT();
13872       }
13873 
13874       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13875 
13876       // Create the new MMO for the new base load. It is like the original MMO,
13877       // but represents an area in memory almost twice the vector size centered
13878       // on the original address. If the address is unaligned, we might start
13879       // reading up to (sizeof(vector)-1) bytes below the address of the
13880       // original unaligned load.
13881       MachineFunction &MF = DAG.getMachineFunction();
13882       MachineMemOperand *BaseMMO =
13883         MF.getMachineMemOperand(LD->getMemOperand(),
13884                                 -(long)MemVT.getStoreSize()+1,
13885                                 2*MemVT.getStoreSize()-1);
13886 
13887       // Create the new base load.
13888       SDValue LDXIntID =
13889           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13890       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13891       SDValue BaseLoad =
13892         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13893                                 DAG.getVTList(PermTy, MVT::Other),
13894                                 BaseLoadOps, LDTy, BaseMMO);
13895 
13896       // Note that the value of IncOffset (which is provided to the next
13897       // load's pointer info offset value, and thus used to calculate the
13898       // alignment), and the value of IncValue (which is actually used to
13899       // increment the pointer value) are different! This is because we
13900       // require the next load to appear to be aligned, even though it
13901       // is actually offset from the base pointer by a lesser amount.
13902       int IncOffset = VT.getSizeInBits() / 8;
13903       int IncValue = IncOffset;
13904 
13905       // Walk (both up and down) the chain looking for another load at the real
13906       // (aligned) offset (the alignment of the other load does not matter in
13907       // this case). If found, then do not use the offset reduction trick, as
13908       // that will prevent the loads from being later combined (as they would
13909       // otherwise be duplicates).
13910       if (!findConsecutiveLoad(LD, DAG))
13911         --IncValue;
13912 
13913       SDValue Increment =
13914           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
13915       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13916 
13917       MachineMemOperand *ExtraMMO =
13918         MF.getMachineMemOperand(LD->getMemOperand(),
13919                                 1, 2*MemVT.getStoreSize()-1);
13920       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13921       SDValue ExtraLoad =
13922         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13923                                 DAG.getVTList(PermTy, MVT::Other),
13924                                 ExtraLoadOps, LDTy, ExtraMMO);
13925 
13926       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13927         BaseLoad.getValue(1), ExtraLoad.getValue(1));
13928 
13929       // Because vperm has a big-endian bias, we must reverse the order
13930       // of the input vectors and complement the permute control vector
13931       // when generating little endian code.  We have already handled the
13932       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13933       // and ExtraLoad here.
13934       SDValue Perm;
13935       if (isLittleEndian)
13936         Perm = BuildIntrinsicOp(IntrPerm,
13937                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
13938       else
13939         Perm = BuildIntrinsicOp(IntrPerm,
13940                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13941 
13942       if (VT != PermTy)
13943         Perm = Subtarget.hasAltivec() ?
13944                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13945                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13946                                DAG.getTargetConstant(1, dl, MVT::i64));
13947                                // second argument is 1 because this rounding
13948                                // is always exact.
13949 
13950       // The output of the permutation is our loaded result, the TokenFactor is
13951       // our new chain.
13952       DCI.CombineTo(N, Perm, TF);
13953       return SDValue(N, 0);
13954     }
13955     }
13956     break;
13957     case ISD::INTRINSIC_WO_CHAIN: {
13958       bool isLittleEndian = Subtarget.isLittleEndian();
13959       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13960       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13961                                            : Intrinsic::ppc_altivec_lvsl);
13962       if ((IID == Intr ||
13963            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13964            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13965         N->getOperand(1)->getOpcode() == ISD::ADD) {
13966         SDValue Add = N->getOperand(1);
13967 
13968         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13969                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13970 
13971         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13972                                   APInt::getAllOnesValue(Bits /* alignment */)
13973                                       .zext(Add.getScalarValueSizeInBits()))) {
13974           SDNode *BasePtr = Add->getOperand(0).getNode();
13975           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13976                                     UE = BasePtr->use_end();
13977                UI != UE; ++UI) {
13978             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13979                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13980               // We've found another LVSL/LVSR, and this address is an aligned
13981               // multiple of that one. The results will be the same, so use the
13982               // one we've just found instead.
13983 
13984               return SDValue(*UI, 0);
13985             }
13986           }
13987         }
13988 
13989         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13990           SDNode *BasePtr = Add->getOperand(0).getNode();
13991           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13992                UE = BasePtr->use_end(); UI != UE; ++UI) {
13993             if (UI->getOpcode() == ISD::ADD &&
13994                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13995                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13996                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13997                 (1ULL << Bits) == 0) {
13998               SDNode *OtherAdd = *UI;
13999               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14000                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14001                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14002                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14003                   return SDValue(*VI, 0);
14004                 }
14005               }
14006             }
14007           }
14008         }
14009       }
14010 
14011       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14012       // Expose the vabsduw/h/b opportunity for down stream
14013       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14014           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14015            IID == Intrinsic::ppc_altivec_vmaxsh ||
14016            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14017         SDValue V1 = N->getOperand(1);
14018         SDValue V2 = N->getOperand(2);
14019         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14020              V1.getSimpleValueType() == MVT::v8i16 ||
14021              V1.getSimpleValueType() == MVT::v16i8) &&
14022             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14023           // (0-a, a)
14024           if (V1.getOpcode() == ISD::SUB &&
14025               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14026               V1.getOperand(1) == V2) {
14027             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14028           }
14029           // (a, 0-a)
14030           if (V2.getOpcode() == ISD::SUB &&
14031               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14032               V2.getOperand(1) == V1) {
14033             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14034           }
14035           // (x-y, y-x)
14036           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14037               V1.getOperand(0) == V2.getOperand(1) &&
14038               V1.getOperand(1) == V2.getOperand(0)) {
14039             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14040           }
14041         }
14042       }
14043     }
14044 
14045     break;
14046   case ISD::INTRINSIC_W_CHAIN:
14047     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14048     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14049     if (Subtarget.needsSwapsForVSXMemOps()) {
14050       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14051       default:
14052         break;
14053       case Intrinsic::ppc_vsx_lxvw4x:
14054       case Intrinsic::ppc_vsx_lxvd2x:
14055         return expandVSXLoadForLE(N, DCI);
14056       }
14057     }
14058     break;
14059   case ISD::INTRINSIC_VOID:
14060     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14061     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14062     if (Subtarget.needsSwapsForVSXMemOps()) {
14063       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14064       default:
14065         break;
14066       case Intrinsic::ppc_vsx_stxvw4x:
14067       case Intrinsic::ppc_vsx_stxvd2x:
14068         return expandVSXStoreForLE(N, DCI);
14069       }
14070     }
14071     break;
14072   case ISD::BSWAP:
14073     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14074     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14075         N->getOperand(0).hasOneUse() &&
14076         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14077          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14078           N->getValueType(0) == MVT::i64))) {
14079       SDValue Load = N->getOperand(0);
14080       LoadSDNode *LD = cast<LoadSDNode>(Load);
14081       // Create the byte-swapping load.
14082       SDValue Ops[] = {
14083         LD->getChain(),    // Chain
14084         LD->getBasePtr(),  // Ptr
14085         DAG.getValueType(N->getValueType(0)) // VT
14086       };
14087       SDValue BSLoad =
14088         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14089                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14090                                               MVT::i64 : MVT::i32, MVT::Other),
14091                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14092 
14093       // If this is an i16 load, insert the truncate.
14094       SDValue ResVal = BSLoad;
14095       if (N->getValueType(0) == MVT::i16)
14096         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14097 
14098       // First, combine the bswap away.  This makes the value produced by the
14099       // load dead.
14100       DCI.CombineTo(N, ResVal);
14101 
14102       // Next, combine the load away, we give it a bogus result value but a real
14103       // chain result.  The result value is dead because the bswap is dead.
14104       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14105 
14106       // Return N so it doesn't get rechecked!
14107       return SDValue(N, 0);
14108     }
14109     break;
14110   case PPCISD::VCMP:
14111     // If a VCMPo node already exists with exactly the same operands as this
14112     // node, use its result instead of this node (VCMPo computes both a CR6 and
14113     // a normal output).
14114     //
14115     if (!N->getOperand(0).hasOneUse() &&
14116         !N->getOperand(1).hasOneUse() &&
14117         !N->getOperand(2).hasOneUse()) {
14118 
14119       // Scan all of the users of the LHS, looking for VCMPo's that match.
14120       SDNode *VCMPoNode = nullptr;
14121 
14122       SDNode *LHSN = N->getOperand(0).getNode();
14123       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14124            UI != E; ++UI)
14125         if (UI->getOpcode() == PPCISD::VCMPo &&
14126             UI->getOperand(1) == N->getOperand(1) &&
14127             UI->getOperand(2) == N->getOperand(2) &&
14128             UI->getOperand(0) == N->getOperand(0)) {
14129           VCMPoNode = *UI;
14130           break;
14131         }
14132 
14133       // If there is no VCMPo node, or if the flag value has a single use, don't
14134       // transform this.
14135       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14136         break;
14137 
14138       // Look at the (necessarily single) use of the flag value.  If it has a
14139       // chain, this transformation is more complex.  Note that multiple things
14140       // could use the value result, which we should ignore.
14141       SDNode *FlagUser = nullptr;
14142       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14143            FlagUser == nullptr; ++UI) {
14144         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14145         SDNode *User = *UI;
14146         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14147           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14148             FlagUser = User;
14149             break;
14150           }
14151         }
14152       }
14153 
14154       // If the user is a MFOCRF instruction, we know this is safe.
14155       // Otherwise we give up for right now.
14156       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14157         return SDValue(VCMPoNode, 0);
14158     }
14159     break;
14160   case ISD::BRCOND: {
14161     SDValue Cond = N->getOperand(1);
14162     SDValue Target = N->getOperand(2);
14163 
14164     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14165         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14166           Intrinsic::loop_decrement) {
14167 
14168       // We now need to make the intrinsic dead (it cannot be instruction
14169       // selected).
14170       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14171       assert(Cond.getNode()->hasOneUse() &&
14172              "Counter decrement has more than one use");
14173 
14174       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14175                          N->getOperand(0), Target);
14176     }
14177   }
14178   break;
14179   case ISD::BR_CC: {
14180     // If this is a branch on an altivec predicate comparison, lower this so
14181     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14182     // lowering is done pre-legalize, because the legalizer lowers the predicate
14183     // compare down to code that is difficult to reassemble.
14184     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14185     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14186 
14187     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14188     // value. If so, pass-through the AND to get to the intrinsic.
14189     if (LHS.getOpcode() == ISD::AND &&
14190         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14191         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14192           Intrinsic::loop_decrement &&
14193         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14194         !isNullConstant(LHS.getOperand(1)))
14195       LHS = LHS.getOperand(0);
14196 
14197     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14198         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14199           Intrinsic::loop_decrement &&
14200         isa<ConstantSDNode>(RHS)) {
14201       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14202              "Counter decrement comparison is not EQ or NE");
14203 
14204       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14205       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14206                     (CC == ISD::SETNE && !Val);
14207 
14208       // We now need to make the intrinsic dead (it cannot be instruction
14209       // selected).
14210       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14211       assert(LHS.getNode()->hasOneUse() &&
14212              "Counter decrement has more than one use");
14213 
14214       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14215                          N->getOperand(0), N->getOperand(4));
14216     }
14217 
14218     int CompareOpc;
14219     bool isDot;
14220 
14221     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14222         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14223         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14224       assert(isDot && "Can't compare against a vector result!");
14225 
14226       // If this is a comparison against something other than 0/1, then we know
14227       // that the condition is never/always true.
14228       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14229       if (Val != 0 && Val != 1) {
14230         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14231           return N->getOperand(0);
14232         // Always !=, turn it into an unconditional branch.
14233         return DAG.getNode(ISD::BR, dl, MVT::Other,
14234                            N->getOperand(0), N->getOperand(4));
14235       }
14236 
14237       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14238 
14239       // Create the PPCISD altivec 'dot' comparison node.
14240       SDValue Ops[] = {
14241         LHS.getOperand(2),  // LHS of compare
14242         LHS.getOperand(3),  // RHS of compare
14243         DAG.getConstant(CompareOpc, dl, MVT::i32)
14244       };
14245       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14246       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14247 
14248       // Unpack the result based on how the target uses it.
14249       PPC::Predicate CompOpc;
14250       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14251       default:  // Can't happen, don't crash on invalid number though.
14252       case 0:   // Branch on the value of the EQ bit of CR6.
14253         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14254         break;
14255       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14256         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14257         break;
14258       case 2:   // Branch on the value of the LT bit of CR6.
14259         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14260         break;
14261       case 3:   // Branch on the inverted value of the LT bit of CR6.
14262         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14263         break;
14264       }
14265 
14266       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14267                          DAG.getConstant(CompOpc, dl, MVT::i32),
14268                          DAG.getRegister(PPC::CR6, MVT::i32),
14269                          N->getOperand(4), CompNode.getValue(1));
14270     }
14271     break;
14272   }
14273   case ISD::BUILD_VECTOR:
14274     return DAGCombineBuildVector(N, DCI);
14275   case ISD::ABS:
14276     return combineABS(N, DCI);
14277   case ISD::VSELECT:
14278     return combineVSelect(N, DCI);
14279   }
14280 
14281   return SDValue();
14282 }
14283 
14284 SDValue
14285 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14286                                  SelectionDAG &DAG,
14287                                  SmallVectorImpl<SDNode *> &Created) const {
14288   // fold (sdiv X, pow2)
14289   EVT VT = N->getValueType(0);
14290   if (VT == MVT::i64 && !Subtarget.isPPC64())
14291     return SDValue();
14292   if ((VT != MVT::i32 && VT != MVT::i64) ||
14293       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14294     return SDValue();
14295 
14296   SDLoc DL(N);
14297   SDValue N0 = N->getOperand(0);
14298 
14299   bool IsNegPow2 = (-Divisor).isPowerOf2();
14300   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14301   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14302 
14303   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14304   Created.push_back(Op.getNode());
14305 
14306   if (IsNegPow2) {
14307     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14308     Created.push_back(Op.getNode());
14309   }
14310 
14311   return Op;
14312 }
14313 
14314 //===----------------------------------------------------------------------===//
14315 // Inline Assembly Support
14316 //===----------------------------------------------------------------------===//
14317 
14318 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14319                                                       KnownBits &Known,
14320                                                       const APInt &DemandedElts,
14321                                                       const SelectionDAG &DAG,
14322                                                       unsigned Depth) const {
14323   Known.resetAll();
14324   switch (Op.getOpcode()) {
14325   default: break;
14326   case PPCISD::LBRX: {
14327     // lhbrx is known to have the top bits cleared out.
14328     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14329       Known.Zero = 0xFFFF0000;
14330     break;
14331   }
14332   case ISD::INTRINSIC_WO_CHAIN: {
14333     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14334     default: break;
14335     case Intrinsic::ppc_altivec_vcmpbfp_p:
14336     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14337     case Intrinsic::ppc_altivec_vcmpequb_p:
14338     case Intrinsic::ppc_altivec_vcmpequh_p:
14339     case Intrinsic::ppc_altivec_vcmpequw_p:
14340     case Intrinsic::ppc_altivec_vcmpequd_p:
14341     case Intrinsic::ppc_altivec_vcmpgefp_p:
14342     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14343     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14344     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14345     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14346     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14347     case Intrinsic::ppc_altivec_vcmpgtub_p:
14348     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14349     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14350     case Intrinsic::ppc_altivec_vcmpgtud_p:
14351       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14352       break;
14353     }
14354   }
14355   }
14356 }
14357 
14358 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14359   switch (Subtarget.getCPUDirective()) {
14360   default: break;
14361   case PPC::DIR_970:
14362   case PPC::DIR_PWR4:
14363   case PPC::DIR_PWR5:
14364   case PPC::DIR_PWR5X:
14365   case PPC::DIR_PWR6:
14366   case PPC::DIR_PWR6X:
14367   case PPC::DIR_PWR7:
14368   case PPC::DIR_PWR8:
14369   case PPC::DIR_PWR9:
14370   case PPC::DIR_PWR_FUTURE: {
14371     if (!ML)
14372       break;
14373 
14374     if (!DisableInnermostLoopAlign32) {
14375       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14376       // so that we can decrease cache misses and branch-prediction misses.
14377       // Actual alignment of the loop will depend on the hotness check and other
14378       // logic in alignBlocks.
14379       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14380         return Align(32);
14381     }
14382 
14383     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14384 
14385     // For small loops (between 5 and 8 instructions), align to a 32-byte
14386     // boundary so that the entire loop fits in one instruction-cache line.
14387     uint64_t LoopSize = 0;
14388     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14389       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14390         LoopSize += TII->getInstSizeInBytes(*J);
14391         if (LoopSize > 32)
14392           break;
14393       }
14394 
14395     if (LoopSize > 16 && LoopSize <= 32)
14396       return Align(32);
14397 
14398     break;
14399   }
14400   }
14401 
14402   return TargetLowering::getPrefLoopAlignment(ML);
14403 }
14404 
14405 /// getConstraintType - Given a constraint, return the type of
14406 /// constraint it is for this target.
14407 PPCTargetLowering::ConstraintType
14408 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14409   if (Constraint.size() == 1) {
14410     switch (Constraint[0]) {
14411     default: break;
14412     case 'b':
14413     case 'r':
14414     case 'f':
14415     case 'd':
14416     case 'v':
14417     case 'y':
14418       return C_RegisterClass;
14419     case 'Z':
14420       // FIXME: While Z does indicate a memory constraint, it specifically
14421       // indicates an r+r address (used in conjunction with the 'y' modifier
14422       // in the replacement string). Currently, we're forcing the base
14423       // register to be r0 in the asm printer (which is interpreted as zero)
14424       // and forming the complete address in the second register. This is
14425       // suboptimal.
14426       return C_Memory;
14427     }
14428   } else if (Constraint == "wc") { // individual CR bits.
14429     return C_RegisterClass;
14430   } else if (Constraint == "wa" || Constraint == "wd" ||
14431              Constraint == "wf" || Constraint == "ws" ||
14432              Constraint == "wi" || Constraint == "ww") {
14433     return C_RegisterClass; // VSX registers.
14434   }
14435   return TargetLowering::getConstraintType(Constraint);
14436 }
14437 
14438 /// Examine constraint type and operand type and determine a weight value.
14439 /// This object must already have been set up with the operand type
14440 /// and the current alternative constraint selected.
14441 TargetLowering::ConstraintWeight
14442 PPCTargetLowering::getSingleConstraintMatchWeight(
14443     AsmOperandInfo &info, const char *constraint) const {
14444   ConstraintWeight weight = CW_Invalid;
14445   Value *CallOperandVal = info.CallOperandVal;
14446     // If we don't have a value, we can't do a match,
14447     // but allow it at the lowest weight.
14448   if (!CallOperandVal)
14449     return CW_Default;
14450   Type *type = CallOperandVal->getType();
14451 
14452   // Look at the constraint type.
14453   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14454     return CW_Register; // an individual CR bit.
14455   else if ((StringRef(constraint) == "wa" ||
14456             StringRef(constraint) == "wd" ||
14457             StringRef(constraint) == "wf") &&
14458            type->isVectorTy())
14459     return CW_Register;
14460   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14461     return CW_Register; // just hold 64-bit integers data.
14462   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14463     return CW_Register;
14464   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14465     return CW_Register;
14466 
14467   switch (*constraint) {
14468   default:
14469     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14470     break;
14471   case 'b':
14472     if (type->isIntegerTy())
14473       weight = CW_Register;
14474     break;
14475   case 'f':
14476     if (type->isFloatTy())
14477       weight = CW_Register;
14478     break;
14479   case 'd':
14480     if (type->isDoubleTy())
14481       weight = CW_Register;
14482     break;
14483   case 'v':
14484     if (type->isVectorTy())
14485       weight = CW_Register;
14486     break;
14487   case 'y':
14488     weight = CW_Register;
14489     break;
14490   case 'Z':
14491     weight = CW_Memory;
14492     break;
14493   }
14494   return weight;
14495 }
14496 
14497 std::pair<unsigned, const TargetRegisterClass *>
14498 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14499                                                 StringRef Constraint,
14500                                                 MVT VT) const {
14501   if (Constraint.size() == 1) {
14502     // GCC RS6000 Constraint Letters
14503     switch (Constraint[0]) {
14504     case 'b':   // R1-R31
14505       if (VT == MVT::i64 && Subtarget.isPPC64())
14506         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14507       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14508     case 'r':   // R0-R31
14509       if (VT == MVT::i64 && Subtarget.isPPC64())
14510         return std::make_pair(0U, &PPC::G8RCRegClass);
14511       return std::make_pair(0U, &PPC::GPRCRegClass);
14512     // 'd' and 'f' constraints are both defined to be "the floating point
14513     // registers", where one is for 32-bit and the other for 64-bit. We don't
14514     // really care overly much here so just give them all the same reg classes.
14515     case 'd':
14516     case 'f':
14517       if (Subtarget.hasSPE()) {
14518         if (VT == MVT::f32 || VT == MVT::i32)
14519           return std::make_pair(0U, &PPC::GPRCRegClass);
14520         if (VT == MVT::f64 || VT == MVT::i64)
14521           return std::make_pair(0U, &PPC::SPERCRegClass);
14522       } else {
14523         if (VT == MVT::f32 || VT == MVT::i32)
14524           return std::make_pair(0U, &PPC::F4RCRegClass);
14525         if (VT == MVT::f64 || VT == MVT::i64)
14526           return std::make_pair(0U, &PPC::F8RCRegClass);
14527         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14528           return std::make_pair(0U, &PPC::QFRCRegClass);
14529         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14530           return std::make_pair(0U, &PPC::QSRCRegClass);
14531       }
14532       break;
14533     case 'v':
14534       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14535         return std::make_pair(0U, &PPC::QFRCRegClass);
14536       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14537         return std::make_pair(0U, &PPC::QSRCRegClass);
14538       if (Subtarget.hasAltivec())
14539         return std::make_pair(0U, &PPC::VRRCRegClass);
14540       break;
14541     case 'y':   // crrc
14542       return std::make_pair(0U, &PPC::CRRCRegClass);
14543     }
14544   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14545     // An individual CR bit.
14546     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14547   } else if ((Constraint == "wa" || Constraint == "wd" ||
14548              Constraint == "wf" || Constraint == "wi") &&
14549              Subtarget.hasVSX()) {
14550     return std::make_pair(0U, &PPC::VSRCRegClass);
14551   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14552     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14553       return std::make_pair(0U, &PPC::VSSRCRegClass);
14554     else
14555       return std::make_pair(0U, &PPC::VSFRCRegClass);
14556   }
14557 
14558   // If we name a VSX register, we can't defer to the base class because it
14559   // will not recognize the correct register (their names will be VSL{0-31}
14560   // and V{0-31} so they won't match). So we match them here.
14561   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
14562     int VSNum = atoi(Constraint.data() + 3);
14563     assert(VSNum >= 0 && VSNum <= 63 &&
14564            "Attempted to access a vsr out of range");
14565     if (VSNum < 32)
14566       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
14567     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
14568   }
14569   std::pair<unsigned, const TargetRegisterClass *> R =
14570       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14571 
14572   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14573   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14574   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14575   // register.
14576   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14577   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14578   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14579       PPC::GPRCRegClass.contains(R.first))
14580     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14581                             PPC::sub_32, &PPC::G8RCRegClass),
14582                           &PPC::G8RCRegClass);
14583 
14584   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14585   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14586     R.first = PPC::CR0;
14587     R.second = &PPC::CRRCRegClass;
14588   }
14589 
14590   return R;
14591 }
14592 
14593 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14594 /// vector.  If it is invalid, don't add anything to Ops.
14595 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14596                                                      std::string &Constraint,
14597                                                      std::vector<SDValue>&Ops,
14598                                                      SelectionDAG &DAG) const {
14599   SDValue Result;
14600 
14601   // Only support length 1 constraints.
14602   if (Constraint.length() > 1) return;
14603 
14604   char Letter = Constraint[0];
14605   switch (Letter) {
14606   default: break;
14607   case 'I':
14608   case 'J':
14609   case 'K':
14610   case 'L':
14611   case 'M':
14612   case 'N':
14613   case 'O':
14614   case 'P': {
14615     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14616     if (!CST) return; // Must be an immediate to match.
14617     SDLoc dl(Op);
14618     int64_t Value = CST->getSExtValue();
14619     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14620                          // numbers are printed as such.
14621     switch (Letter) {
14622     default: llvm_unreachable("Unknown constraint letter!");
14623     case 'I':  // "I" is a signed 16-bit constant.
14624       if (isInt<16>(Value))
14625         Result = DAG.getTargetConstant(Value, dl, TCVT);
14626       break;
14627     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14628       if (isShiftedUInt<16, 16>(Value))
14629         Result = DAG.getTargetConstant(Value, dl, TCVT);
14630       break;
14631     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14632       if (isShiftedInt<16, 16>(Value))
14633         Result = DAG.getTargetConstant(Value, dl, TCVT);
14634       break;
14635     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14636       if (isUInt<16>(Value))
14637         Result = DAG.getTargetConstant(Value, dl, TCVT);
14638       break;
14639     case 'M':  // "M" is a constant that is greater than 31.
14640       if (Value > 31)
14641         Result = DAG.getTargetConstant(Value, dl, TCVT);
14642       break;
14643     case 'N':  // "N" is a positive constant that is an exact power of two.
14644       if (Value > 0 && isPowerOf2_64(Value))
14645         Result = DAG.getTargetConstant(Value, dl, TCVT);
14646       break;
14647     case 'O':  // "O" is the constant zero.
14648       if (Value == 0)
14649         Result = DAG.getTargetConstant(Value, dl, TCVT);
14650       break;
14651     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14652       if (isInt<16>(-Value))
14653         Result = DAG.getTargetConstant(Value, dl, TCVT);
14654       break;
14655     }
14656     break;
14657   }
14658   }
14659 
14660   if (Result.getNode()) {
14661     Ops.push_back(Result);
14662     return;
14663   }
14664 
14665   // Handle standard constraint letters.
14666   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14667 }
14668 
14669 // isLegalAddressingMode - Return true if the addressing mode represented
14670 // by AM is legal for this target, for a load/store of the specified type.
14671 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14672                                               const AddrMode &AM, Type *Ty,
14673                                               unsigned AS, Instruction *I) const {
14674   // PPC does not allow r+i addressing modes for vectors!
14675   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14676     return false;
14677 
14678   // PPC allows a sign-extended 16-bit immediate field.
14679   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14680     return false;
14681 
14682   // No global is ever allowed as a base.
14683   if (AM.BaseGV)
14684     return false;
14685 
14686   // PPC only support r+r,
14687   switch (AM.Scale) {
14688   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14689     break;
14690   case 1:
14691     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14692       return false;
14693     // Otherwise we have r+r or r+i.
14694     break;
14695   case 2:
14696     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14697       return false;
14698     // Allow 2*r as r+r.
14699     break;
14700   default:
14701     // No other scales are supported.
14702     return false;
14703   }
14704 
14705   return true;
14706 }
14707 
14708 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14709                                            SelectionDAG &DAG) const {
14710   MachineFunction &MF = DAG.getMachineFunction();
14711   MachineFrameInfo &MFI = MF.getFrameInfo();
14712   MFI.setReturnAddressIsTaken(true);
14713 
14714   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14715     return SDValue();
14716 
14717   SDLoc dl(Op);
14718   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14719 
14720   // Make sure the function does not optimize away the store of the RA to
14721   // the stack.
14722   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14723   FuncInfo->setLRStoreRequired();
14724   bool isPPC64 = Subtarget.isPPC64();
14725   auto PtrVT = getPointerTy(MF.getDataLayout());
14726 
14727   if (Depth > 0) {
14728     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14729     SDValue Offset =
14730         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14731                         isPPC64 ? MVT::i64 : MVT::i32);
14732     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14733                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14734                        MachinePointerInfo());
14735   }
14736 
14737   // Just load the return address off the stack.
14738   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14739   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14740                      MachinePointerInfo());
14741 }
14742 
14743 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14744                                           SelectionDAG &DAG) const {
14745   SDLoc dl(Op);
14746   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14747 
14748   MachineFunction &MF = DAG.getMachineFunction();
14749   MachineFrameInfo &MFI = MF.getFrameInfo();
14750   MFI.setFrameAddressIsTaken(true);
14751 
14752   EVT PtrVT = getPointerTy(MF.getDataLayout());
14753   bool isPPC64 = PtrVT == MVT::i64;
14754 
14755   // Naked functions never have a frame pointer, and so we use r1. For all
14756   // other functions, this decision must be delayed until during PEI.
14757   unsigned FrameReg;
14758   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14759     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14760   else
14761     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14762 
14763   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14764                                          PtrVT);
14765   while (Depth--)
14766     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14767                             FrameAddr, MachinePointerInfo());
14768   return FrameAddr;
14769 }
14770 
14771 // FIXME? Maybe this could be a TableGen attribute on some registers and
14772 // this table could be generated automatically from RegInfo.
14773 Register PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
14774                                               const MachineFunction &MF) const {
14775   bool isPPC64 = Subtarget.isPPC64();
14776   bool IsDarwinABI = Subtarget.isDarwinABI();
14777 
14778   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
14779       (!isPPC64 && VT != MVT::i32))
14780     report_fatal_error("Invalid register global variable type");
14781 
14782   bool is64Bit = isPPC64 && VT == MVT::i64;
14783   Register Reg = StringSwitch<Register>(RegName)
14784                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14785                    .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2)
14786                    .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() :
14787                                   (is64Bit ? PPC::X13 : PPC::R13))
14788                    .Default(Register());
14789 
14790   if (Reg)
14791     return Reg;
14792   report_fatal_error("Invalid register name global variable");
14793 }
14794 
14795 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14796   // 32-bit SVR4 ABI access everything as got-indirect.
14797   if (Subtarget.is32BitELFABI())
14798     return true;
14799 
14800   // AIX accesses everything indirectly through the TOC, which is similar to
14801   // the GOT.
14802   if (Subtarget.isAIXABI())
14803     return true;
14804 
14805   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14806   // If it is small or large code model, module locals are accessed
14807   // indirectly by loading their address from .toc/.got.
14808   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14809     return true;
14810 
14811   // JumpTable and BlockAddress are accessed as got-indirect.
14812   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14813     return true;
14814 
14815   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
14816     return Subtarget.isGVIndirectSymbol(G->getGlobal());
14817 
14818   return false;
14819 }
14820 
14821 bool
14822 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14823   // The PowerPC target isn't yet aware of offsets.
14824   return false;
14825 }
14826 
14827 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14828                                            const CallInst &I,
14829                                            MachineFunction &MF,
14830                                            unsigned Intrinsic) const {
14831   switch (Intrinsic) {
14832   case Intrinsic::ppc_qpx_qvlfd:
14833   case Intrinsic::ppc_qpx_qvlfs:
14834   case Intrinsic::ppc_qpx_qvlfcd:
14835   case Intrinsic::ppc_qpx_qvlfcs:
14836   case Intrinsic::ppc_qpx_qvlfiwa:
14837   case Intrinsic::ppc_qpx_qvlfiwz:
14838   case Intrinsic::ppc_altivec_lvx:
14839   case Intrinsic::ppc_altivec_lvxl:
14840   case Intrinsic::ppc_altivec_lvebx:
14841   case Intrinsic::ppc_altivec_lvehx:
14842   case Intrinsic::ppc_altivec_lvewx:
14843   case Intrinsic::ppc_vsx_lxvd2x:
14844   case Intrinsic::ppc_vsx_lxvw4x: {
14845     EVT VT;
14846     switch (Intrinsic) {
14847     case Intrinsic::ppc_altivec_lvebx:
14848       VT = MVT::i8;
14849       break;
14850     case Intrinsic::ppc_altivec_lvehx:
14851       VT = MVT::i16;
14852       break;
14853     case Intrinsic::ppc_altivec_lvewx:
14854       VT = MVT::i32;
14855       break;
14856     case Intrinsic::ppc_vsx_lxvd2x:
14857       VT = MVT::v2f64;
14858       break;
14859     case Intrinsic::ppc_qpx_qvlfd:
14860       VT = MVT::v4f64;
14861       break;
14862     case Intrinsic::ppc_qpx_qvlfs:
14863       VT = MVT::v4f32;
14864       break;
14865     case Intrinsic::ppc_qpx_qvlfcd:
14866       VT = MVT::v2f64;
14867       break;
14868     case Intrinsic::ppc_qpx_qvlfcs:
14869       VT = MVT::v2f32;
14870       break;
14871     default:
14872       VT = MVT::v4i32;
14873       break;
14874     }
14875 
14876     Info.opc = ISD::INTRINSIC_W_CHAIN;
14877     Info.memVT = VT;
14878     Info.ptrVal = I.getArgOperand(0);
14879     Info.offset = -VT.getStoreSize()+1;
14880     Info.size = 2*VT.getStoreSize()-1;
14881     Info.align = Align::None();
14882     Info.flags = MachineMemOperand::MOLoad;
14883     return true;
14884   }
14885   case Intrinsic::ppc_qpx_qvlfda:
14886   case Intrinsic::ppc_qpx_qvlfsa:
14887   case Intrinsic::ppc_qpx_qvlfcda:
14888   case Intrinsic::ppc_qpx_qvlfcsa:
14889   case Intrinsic::ppc_qpx_qvlfiwaa:
14890   case Intrinsic::ppc_qpx_qvlfiwza: {
14891     EVT VT;
14892     switch (Intrinsic) {
14893     case Intrinsic::ppc_qpx_qvlfda:
14894       VT = MVT::v4f64;
14895       break;
14896     case Intrinsic::ppc_qpx_qvlfsa:
14897       VT = MVT::v4f32;
14898       break;
14899     case Intrinsic::ppc_qpx_qvlfcda:
14900       VT = MVT::v2f64;
14901       break;
14902     case Intrinsic::ppc_qpx_qvlfcsa:
14903       VT = MVT::v2f32;
14904       break;
14905     default:
14906       VT = MVT::v4i32;
14907       break;
14908     }
14909 
14910     Info.opc = ISD::INTRINSIC_W_CHAIN;
14911     Info.memVT = VT;
14912     Info.ptrVal = I.getArgOperand(0);
14913     Info.offset = 0;
14914     Info.size = VT.getStoreSize();
14915     Info.align = Align::None();
14916     Info.flags = MachineMemOperand::MOLoad;
14917     return true;
14918   }
14919   case Intrinsic::ppc_qpx_qvstfd:
14920   case Intrinsic::ppc_qpx_qvstfs:
14921   case Intrinsic::ppc_qpx_qvstfcd:
14922   case Intrinsic::ppc_qpx_qvstfcs:
14923   case Intrinsic::ppc_qpx_qvstfiw:
14924   case Intrinsic::ppc_altivec_stvx:
14925   case Intrinsic::ppc_altivec_stvxl:
14926   case Intrinsic::ppc_altivec_stvebx:
14927   case Intrinsic::ppc_altivec_stvehx:
14928   case Intrinsic::ppc_altivec_stvewx:
14929   case Intrinsic::ppc_vsx_stxvd2x:
14930   case Intrinsic::ppc_vsx_stxvw4x: {
14931     EVT VT;
14932     switch (Intrinsic) {
14933     case Intrinsic::ppc_altivec_stvebx:
14934       VT = MVT::i8;
14935       break;
14936     case Intrinsic::ppc_altivec_stvehx:
14937       VT = MVT::i16;
14938       break;
14939     case Intrinsic::ppc_altivec_stvewx:
14940       VT = MVT::i32;
14941       break;
14942     case Intrinsic::ppc_vsx_stxvd2x:
14943       VT = MVT::v2f64;
14944       break;
14945     case Intrinsic::ppc_qpx_qvstfd:
14946       VT = MVT::v4f64;
14947       break;
14948     case Intrinsic::ppc_qpx_qvstfs:
14949       VT = MVT::v4f32;
14950       break;
14951     case Intrinsic::ppc_qpx_qvstfcd:
14952       VT = MVT::v2f64;
14953       break;
14954     case Intrinsic::ppc_qpx_qvstfcs:
14955       VT = MVT::v2f32;
14956       break;
14957     default:
14958       VT = MVT::v4i32;
14959       break;
14960     }
14961 
14962     Info.opc = ISD::INTRINSIC_VOID;
14963     Info.memVT = VT;
14964     Info.ptrVal = I.getArgOperand(1);
14965     Info.offset = -VT.getStoreSize()+1;
14966     Info.size = 2*VT.getStoreSize()-1;
14967     Info.align = Align::None();
14968     Info.flags = MachineMemOperand::MOStore;
14969     return true;
14970   }
14971   case Intrinsic::ppc_qpx_qvstfda:
14972   case Intrinsic::ppc_qpx_qvstfsa:
14973   case Intrinsic::ppc_qpx_qvstfcda:
14974   case Intrinsic::ppc_qpx_qvstfcsa:
14975   case Intrinsic::ppc_qpx_qvstfiwa: {
14976     EVT VT;
14977     switch (Intrinsic) {
14978     case Intrinsic::ppc_qpx_qvstfda:
14979       VT = MVT::v4f64;
14980       break;
14981     case Intrinsic::ppc_qpx_qvstfsa:
14982       VT = MVT::v4f32;
14983       break;
14984     case Intrinsic::ppc_qpx_qvstfcda:
14985       VT = MVT::v2f64;
14986       break;
14987     case Intrinsic::ppc_qpx_qvstfcsa:
14988       VT = MVT::v2f32;
14989       break;
14990     default:
14991       VT = MVT::v4i32;
14992       break;
14993     }
14994 
14995     Info.opc = ISD::INTRINSIC_VOID;
14996     Info.memVT = VT;
14997     Info.ptrVal = I.getArgOperand(1);
14998     Info.offset = 0;
14999     Info.size = VT.getStoreSize();
15000     Info.align = Align::None();
15001     Info.flags = MachineMemOperand::MOStore;
15002     return true;
15003   }
15004   default:
15005     break;
15006   }
15007 
15008   return false;
15009 }
15010 
15011 /// getOptimalMemOpType - Returns the target specific optimal type for load
15012 /// and store operations as a result of memset, memcpy, and memmove
15013 /// lowering. If DstAlign is zero that means it's safe to destination
15014 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
15015 /// means there isn't a need to check it against alignment requirement,
15016 /// probably because the source does not need to be loaded. If 'IsMemset' is
15017 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
15018 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
15019 /// source is constant so it does not need to be loaded.
15020 /// It returns EVT::Other if the type should be determined using generic
15021 /// target-independent logic.
15022 EVT PPCTargetLowering::getOptimalMemOpType(
15023     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
15024     bool ZeroMemset, bool MemcpyStrSrc,
15025     const AttributeList &FuncAttributes) const {
15026   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15027     // When expanding a memset, require at least two QPX instructions to cover
15028     // the cost of loading the value to be stored from the constant pool.
15029     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
15030        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
15031         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15032       return MVT::v4f64;
15033     }
15034 
15035     // We should use Altivec/VSX loads and stores when available. For unaligned
15036     // addresses, unaligned VSX loads are only fast starting with the P8.
15037     if (Subtarget.hasAltivec() && Size >= 16 &&
15038         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
15039          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15040       return MVT::v4i32;
15041   }
15042 
15043   if (Subtarget.isPPC64()) {
15044     return MVT::i64;
15045   }
15046 
15047   return MVT::i32;
15048 }
15049 
15050 /// Returns true if it is beneficial to convert a load of a constant
15051 /// to just the constant itself.
15052 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15053                                                           Type *Ty) const {
15054   assert(Ty->isIntegerTy());
15055 
15056   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15057   return !(BitSize == 0 || BitSize > 64);
15058 }
15059 
15060 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15061   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15062     return false;
15063   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15064   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15065   return NumBits1 == 64 && NumBits2 == 32;
15066 }
15067 
15068 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15069   if (!VT1.isInteger() || !VT2.isInteger())
15070     return false;
15071   unsigned NumBits1 = VT1.getSizeInBits();
15072   unsigned NumBits2 = VT2.getSizeInBits();
15073   return NumBits1 == 64 && NumBits2 == 32;
15074 }
15075 
15076 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15077   // Generally speaking, zexts are not free, but they are free when they can be
15078   // folded with other operations.
15079   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15080     EVT MemVT = LD->getMemoryVT();
15081     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15082          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15083         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15084          LD->getExtensionType() == ISD::ZEXTLOAD))
15085       return true;
15086   }
15087 
15088   // FIXME: Add other cases...
15089   //  - 32-bit shifts with a zext to i64
15090   //  - zext after ctlz, bswap, etc.
15091   //  - zext after and by a constant mask
15092 
15093   return TargetLowering::isZExtFree(Val, VT2);
15094 }
15095 
15096 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15097   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15098          "invalid fpext types");
15099   // Extending to float128 is not free.
15100   if (DestVT == MVT::f128)
15101     return false;
15102   return true;
15103 }
15104 
15105 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15106   return isInt<16>(Imm) || isUInt<16>(Imm);
15107 }
15108 
15109 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15110   return isInt<16>(Imm) || isUInt<16>(Imm);
15111 }
15112 
15113 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15114                                                        unsigned,
15115                                                        unsigned,
15116                                                        MachineMemOperand::Flags,
15117                                                        bool *Fast) const {
15118   if (DisablePPCUnaligned)
15119     return false;
15120 
15121   // PowerPC supports unaligned memory access for simple non-vector types.
15122   // Although accessing unaligned addresses is not as efficient as accessing
15123   // aligned addresses, it is generally more efficient than manual expansion,
15124   // and generally only traps for software emulation when crossing page
15125   // boundaries.
15126 
15127   if (!VT.isSimple())
15128     return false;
15129 
15130   if (VT.getSimpleVT().isVector()) {
15131     if (Subtarget.hasVSX()) {
15132       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15133           VT != MVT::v4f32 && VT != MVT::v4i32)
15134         return false;
15135     } else {
15136       return false;
15137     }
15138   }
15139 
15140   if (VT == MVT::ppcf128)
15141     return false;
15142 
15143   if (Fast)
15144     *Fast = true;
15145 
15146   return true;
15147 }
15148 
15149 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15150                                                    EVT VT) const {
15151   VT = VT.getScalarType();
15152 
15153   if (!VT.isSimple())
15154     return false;
15155 
15156   switch (VT.getSimpleVT().SimpleTy) {
15157   case MVT::f32:
15158   case MVT::f64:
15159     return true;
15160   case MVT::f128:
15161     return (EnableQuadPrecision && Subtarget.hasP9Vector());
15162   default:
15163     break;
15164   }
15165 
15166   return false;
15167 }
15168 
15169 const MCPhysReg *
15170 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15171   // LR is a callee-save register, but we must treat it as clobbered by any call
15172   // site. Hence we include LR in the scratch registers, which are in turn added
15173   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15174   // to CTR, which is used by any indirect call.
15175   static const MCPhysReg ScratchRegs[] = {
15176     PPC::X12, PPC::LR8, PPC::CTR8, 0
15177   };
15178 
15179   return ScratchRegs;
15180 }
15181 
15182 unsigned PPCTargetLowering::getExceptionPointerRegister(
15183     const Constant *PersonalityFn) const {
15184   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15185 }
15186 
15187 unsigned PPCTargetLowering::getExceptionSelectorRegister(
15188     const Constant *PersonalityFn) const {
15189   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15190 }
15191 
15192 bool
15193 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15194                      EVT VT , unsigned DefinedValues) const {
15195   if (VT == MVT::v2i64)
15196     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15197 
15198   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15199     return true;
15200 
15201   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15202 }
15203 
15204 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15205   if (DisableILPPref || Subtarget.enableMachineScheduler())
15206     return TargetLowering::getSchedulingPreference(N);
15207 
15208   return Sched::ILP;
15209 }
15210 
15211 // Create a fast isel object.
15212 FastISel *
15213 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15214                                   const TargetLibraryInfo *LibInfo) const {
15215   return PPC::createFastISel(FuncInfo, LibInfo);
15216 }
15217 
15218 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15219   if (Subtarget.isDarwinABI()) return;
15220   if (!Subtarget.isPPC64()) return;
15221 
15222   // Update IsSplitCSR in PPCFunctionInfo
15223   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15224   PFI->setIsSplitCSR(true);
15225 }
15226 
15227 void PPCTargetLowering::insertCopiesSplitCSR(
15228   MachineBasicBlock *Entry,
15229   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15230   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15231   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15232   if (!IStart)
15233     return;
15234 
15235   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15236   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15237   MachineBasicBlock::iterator MBBI = Entry->begin();
15238   for (const MCPhysReg *I = IStart; *I; ++I) {
15239     const TargetRegisterClass *RC = nullptr;
15240     if (PPC::G8RCRegClass.contains(*I))
15241       RC = &PPC::G8RCRegClass;
15242     else if (PPC::F8RCRegClass.contains(*I))
15243       RC = &PPC::F8RCRegClass;
15244     else if (PPC::CRRCRegClass.contains(*I))
15245       RC = &PPC::CRRCRegClass;
15246     else if (PPC::VRRCRegClass.contains(*I))
15247       RC = &PPC::VRRCRegClass;
15248     else
15249       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15250 
15251     Register NewVR = MRI->createVirtualRegister(RC);
15252     // Create copy from CSR to a virtual register.
15253     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15254     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15255     // nounwind. If we want to generalize this later, we may need to emit
15256     // CFI pseudo-instructions.
15257     assert(Entry->getParent()->getFunction().hasFnAttribute(
15258              Attribute::NoUnwind) &&
15259            "Function should be nounwind in insertCopiesSplitCSR!");
15260     Entry->addLiveIn(*I);
15261     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15262       .addReg(*I);
15263 
15264     // Insert the copy-back instructions right before the terminator.
15265     for (auto *Exit : Exits)
15266       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15267               TII->get(TargetOpcode::COPY), *I)
15268         .addReg(NewVR);
15269   }
15270 }
15271 
15272 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15273 bool PPCTargetLowering::useLoadStackGuardNode() const {
15274   if (!Subtarget.isTargetLinux())
15275     return TargetLowering::useLoadStackGuardNode();
15276   return true;
15277 }
15278 
15279 // Override to disable global variable loading on Linux.
15280 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15281   if (!Subtarget.isTargetLinux())
15282     return TargetLowering::insertSSPDeclarations(M);
15283 }
15284 
15285 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15286                                      bool ForCodeSize) const {
15287   if (!VT.isSimple() || !Subtarget.hasVSX())
15288     return false;
15289 
15290   switch(VT.getSimpleVT().SimpleTy) {
15291   default:
15292     // For FP types that are currently not supported by PPC backend, return
15293     // false. Examples: f16, f80.
15294     return false;
15295   case MVT::f32:
15296   case MVT::f64:
15297   case MVT::ppcf128:
15298     return Imm.isPosZero();
15299   }
15300 }
15301 
15302 // For vector shift operation op, fold
15303 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15304 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15305                                   SelectionDAG &DAG) {
15306   SDValue N0 = N->getOperand(0);
15307   SDValue N1 = N->getOperand(1);
15308   EVT VT = N0.getValueType();
15309   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15310   unsigned Opcode = N->getOpcode();
15311   unsigned TargetOpcode;
15312 
15313   switch (Opcode) {
15314   default:
15315     llvm_unreachable("Unexpected shift operation");
15316   case ISD::SHL:
15317     TargetOpcode = PPCISD::SHL;
15318     break;
15319   case ISD::SRL:
15320     TargetOpcode = PPCISD::SRL;
15321     break;
15322   case ISD::SRA:
15323     TargetOpcode = PPCISD::SRA;
15324     break;
15325   }
15326 
15327   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15328       N1->getOpcode() == ISD::AND)
15329     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15330       if (Mask->getZExtValue() == OpSizeInBits - 1)
15331         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15332 
15333   return SDValue();
15334 }
15335 
15336 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15337   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15338     return Value;
15339 
15340   SDValue N0 = N->getOperand(0);
15341   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15342   if (!Subtarget.isISA3_0() ||
15343       N0.getOpcode() != ISD::SIGN_EXTEND ||
15344       N0.getOperand(0).getValueType() != MVT::i32 ||
15345       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15346     return SDValue();
15347 
15348   // We can't save an operation here if the value is already extended, and
15349   // the existing shift is easier to combine.
15350   SDValue ExtsSrc = N0.getOperand(0);
15351   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15352       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15353     return SDValue();
15354 
15355   SDLoc DL(N0);
15356   SDValue ShiftBy = SDValue(CN1, 0);
15357   // We want the shift amount to be i32 on the extswli, but the shift could
15358   // have an i64.
15359   if (ShiftBy.getValueType() == MVT::i64)
15360     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15361 
15362   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15363                          ShiftBy);
15364 }
15365 
15366 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15367   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15368     return Value;
15369 
15370   return SDValue();
15371 }
15372 
15373 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15374   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15375     return Value;
15376 
15377   return SDValue();
15378 }
15379 
15380 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15381 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15382 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15383 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15384 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15385                                  const PPCSubtarget &Subtarget) {
15386   if (!Subtarget.isPPC64())
15387     return SDValue();
15388 
15389   SDValue LHS = N->getOperand(0);
15390   SDValue RHS = N->getOperand(1);
15391 
15392   auto isZextOfCompareWithConstant = [](SDValue Op) {
15393     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15394         Op.getValueType() != MVT::i64)
15395       return false;
15396 
15397     SDValue Cmp = Op.getOperand(0);
15398     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15399         Cmp.getOperand(0).getValueType() != MVT::i64)
15400       return false;
15401 
15402     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15403       int64_t NegConstant = 0 - Constant->getSExtValue();
15404       // Due to the limitations of the addi instruction,
15405       // -C is required to be [-32768, 32767].
15406       return isInt<16>(NegConstant);
15407     }
15408 
15409     return false;
15410   };
15411 
15412   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15413   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15414 
15415   // If there is a pattern, canonicalize a zext operand to the RHS.
15416   if (LHSHasPattern && !RHSHasPattern)
15417     std::swap(LHS, RHS);
15418   else if (!LHSHasPattern && !RHSHasPattern)
15419     return SDValue();
15420 
15421   SDLoc DL(N);
15422   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15423   SDValue Cmp = RHS.getOperand(0);
15424   SDValue Z = Cmp.getOperand(0);
15425   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15426 
15427   assert(Constant && "Constant Should not be a null pointer.");
15428   int64_t NegConstant = 0 - Constant->getSExtValue();
15429 
15430   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15431   default: break;
15432   case ISD::SETNE: {
15433     //                                 when C == 0
15434     //                             --> addze X, (addic Z, -1).carry
15435     //                            /
15436     // add X, (zext(setne Z, C))--
15437     //                            \    when -32768 <= -C <= 32767 && C != 0
15438     //                             --> addze X, (addic (addi Z, -C), -1).carry
15439     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15440                               DAG.getConstant(NegConstant, DL, MVT::i64));
15441     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15442     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15443                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15444     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15445                        SDValue(Addc.getNode(), 1));
15446     }
15447   case ISD::SETEQ: {
15448     //                                 when C == 0
15449     //                             --> addze X, (subfic Z, 0).carry
15450     //                            /
15451     // add X, (zext(sete  Z, C))--
15452     //                            \    when -32768 <= -C <= 32767 && C != 0
15453     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15454     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15455                               DAG.getConstant(NegConstant, DL, MVT::i64));
15456     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15457     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15458                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15459     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15460                        SDValue(Subc.getNode(), 1));
15461     }
15462   }
15463 
15464   return SDValue();
15465 }
15466 
15467 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15468   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15469     return Value;
15470 
15471   return SDValue();
15472 }
15473 
15474 // Detect TRUNCATE operations on bitcasts of float128 values.
15475 // What we are looking for here is the situtation where we extract a subset
15476 // of bits from a 128 bit float.
15477 // This can be of two forms:
15478 // 1) BITCAST of f128 feeding TRUNCATE
15479 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15480 // The reason this is required is because we do not have a legal i128 type
15481 // and so we want to prevent having to store the f128 and then reload part
15482 // of it.
15483 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15484                                            DAGCombinerInfo &DCI) const {
15485   // If we are using CRBits then try that first.
15486   if (Subtarget.useCRBits()) {
15487     // Check if CRBits did anything and return that if it did.
15488     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15489       return CRTruncValue;
15490   }
15491 
15492   SDLoc dl(N);
15493   SDValue Op0 = N->getOperand(0);
15494 
15495   // Looking for a truncate of i128 to i64.
15496   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15497     return SDValue();
15498 
15499   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15500 
15501   // SRL feeding TRUNCATE.
15502   if (Op0.getOpcode() == ISD::SRL) {
15503     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15504     // The right shift has to be by 64 bits.
15505     if (!ConstNode || ConstNode->getZExtValue() != 64)
15506       return SDValue();
15507 
15508     // Switch the element number to extract.
15509     EltToExtract = EltToExtract ? 0 : 1;
15510     // Update Op0 past the SRL.
15511     Op0 = Op0.getOperand(0);
15512   }
15513 
15514   // BITCAST feeding a TRUNCATE possibly via SRL.
15515   if (Op0.getOpcode() == ISD::BITCAST &&
15516       Op0.getValueType() == MVT::i128 &&
15517       Op0.getOperand(0).getValueType() == MVT::f128) {
15518     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15519     return DCI.DAG.getNode(
15520         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15521         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15522   }
15523   return SDValue();
15524 }
15525 
15526 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15527   SelectionDAG &DAG = DCI.DAG;
15528 
15529   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15530   if (!ConstOpOrElement)
15531     return SDValue();
15532 
15533   // An imul is usually smaller than the alternative sequence for legal type.
15534   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15535       isOperationLegal(ISD::MUL, N->getValueType(0)))
15536     return SDValue();
15537 
15538   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15539     switch (this->Subtarget.getCPUDirective()) {
15540     default:
15541       // TODO: enhance the condition for subtarget before pwr8
15542       return false;
15543     case PPC::DIR_PWR8:
15544       //  type        mul     add    shl
15545       // scalar        4       1      1
15546       // vector        7       2      2
15547       return true;
15548     case PPC::DIR_PWR9:
15549     case PPC::DIR_PWR_FUTURE:
15550       //  type        mul     add    shl
15551       // scalar        5       2      2
15552       // vector        7       2      2
15553 
15554       // The cycle RATIO of related operations are showed as a table above.
15555       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15556       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15557       // are 4, it is always profitable; but for 3 instrs patterns
15558       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15559       // So we should only do it for vector type.
15560       return IsAddOne && IsNeg ? VT.isVector() : true;
15561     }
15562   };
15563 
15564   EVT VT = N->getValueType(0);
15565   SDLoc DL(N);
15566 
15567   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15568   bool IsNeg = MulAmt.isNegative();
15569   APInt MulAmtAbs = MulAmt.abs();
15570 
15571   if ((MulAmtAbs - 1).isPowerOf2()) {
15572     // (mul x, 2^N + 1) => (add (shl x, N), x)
15573     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15574 
15575     if (!IsProfitable(IsNeg, true, VT))
15576       return SDValue();
15577 
15578     SDValue Op0 = N->getOperand(0);
15579     SDValue Op1 =
15580         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15581                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15582     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15583 
15584     if (!IsNeg)
15585       return Res;
15586 
15587     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15588   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15589     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15590     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15591 
15592     if (!IsProfitable(IsNeg, false, VT))
15593       return SDValue();
15594 
15595     SDValue Op0 = N->getOperand(0);
15596     SDValue Op1 =
15597         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15598                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15599 
15600     if (!IsNeg)
15601       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15602     else
15603       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15604 
15605   } else {
15606     return SDValue();
15607   }
15608 }
15609 
15610 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15611   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15612   if (!Subtarget.is64BitELFABI())
15613     return false;
15614 
15615   // If not a tail call then no need to proceed.
15616   if (!CI->isTailCall())
15617     return false;
15618 
15619   // If tail calls are disabled for the caller then we are done.
15620   const Function *Caller = CI->getParent()->getParent();
15621   auto Attr = Caller->getFnAttribute("disable-tail-calls");
15622   if (Attr.getValueAsString() == "true")
15623     return false;
15624 
15625   // If sibling calls have been disabled and tail-calls aren't guaranteed
15626   // there is no reason to duplicate.
15627   auto &TM = getTargetMachine();
15628   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15629     return false;
15630 
15631   // Can't tail call a function called indirectly, or if it has variadic args.
15632   const Function *Callee = CI->getCalledFunction();
15633   if (!Callee || Callee->isVarArg())
15634     return false;
15635 
15636   // Make sure the callee and caller calling conventions are eligible for tco.
15637   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15638                                            CI->getCallingConv()))
15639       return false;
15640 
15641   // If the function is local then we have a good chance at tail-calling it
15642   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15643 }
15644 
15645 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15646   if (!Subtarget.hasVSX())
15647     return false;
15648   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15649     return true;
15650   return VT == MVT::f32 || VT == MVT::f64 ||
15651     VT == MVT::v4f32 || VT == MVT::v2f64;
15652 }
15653 
15654 bool PPCTargetLowering::
15655 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15656   const Value *Mask = AndI.getOperand(1);
15657   // If the mask is suitable for andi. or andis. we should sink the and.
15658   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15659     // Can't handle constants wider than 64-bits.
15660     if (CI->getBitWidth() > 64)
15661       return false;
15662     int64_t ConstVal = CI->getZExtValue();
15663     return isUInt<16>(ConstVal) ||
15664       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15665   }
15666 
15667   // For non-constant masks, we can always use the record-form and.
15668   return true;
15669 }
15670 
15671 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15672 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15673 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15674 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15675 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15676 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15677   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15678   assert(Subtarget.hasP9Altivec() &&
15679          "Only combine this when P9 altivec supported!");
15680   EVT VT = N->getValueType(0);
15681   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15682     return SDValue();
15683 
15684   SelectionDAG &DAG = DCI.DAG;
15685   SDLoc dl(N);
15686   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15687     // Even for signed integers, if it's known to be positive (as signed
15688     // integer) due to zero-extended inputs.
15689     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15690     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15691     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15692          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15693         (SubOpcd1 == ISD::ZERO_EXTEND ||
15694          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15695       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15696                          N->getOperand(0)->getOperand(0),
15697                          N->getOperand(0)->getOperand(1),
15698                          DAG.getTargetConstant(0, dl, MVT::i32));
15699     }
15700 
15701     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15702     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15703         N->getOperand(0).hasOneUse()) {
15704       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15705                          N->getOperand(0)->getOperand(0),
15706                          N->getOperand(0)->getOperand(1),
15707                          DAG.getTargetConstant(1, dl, MVT::i32));
15708     }
15709   }
15710 
15711   return SDValue();
15712 }
15713 
15714 // For type v4i32/v8ii16/v16i8, transform
15715 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15716 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15717 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15718 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15719 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15720                                           DAGCombinerInfo &DCI) const {
15721   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15722   assert(Subtarget.hasP9Altivec() &&
15723          "Only combine this when P9 altivec supported!");
15724 
15725   SelectionDAG &DAG = DCI.DAG;
15726   SDLoc dl(N);
15727   SDValue Cond = N->getOperand(0);
15728   SDValue TrueOpnd = N->getOperand(1);
15729   SDValue FalseOpnd = N->getOperand(2);
15730   EVT VT = N->getOperand(1).getValueType();
15731 
15732   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15733       FalseOpnd.getOpcode() != ISD::SUB)
15734     return SDValue();
15735 
15736   // ABSD only available for type v4i32/v8i16/v16i8
15737   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15738     return SDValue();
15739 
15740   // At least to save one more dependent computation
15741   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15742     return SDValue();
15743 
15744   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15745 
15746   // Can only handle unsigned comparison here
15747   switch (CC) {
15748   default:
15749     return SDValue();
15750   case ISD::SETUGT:
15751   case ISD::SETUGE:
15752     break;
15753   case ISD::SETULT:
15754   case ISD::SETULE:
15755     std::swap(TrueOpnd, FalseOpnd);
15756     break;
15757   }
15758 
15759   SDValue CmpOpnd1 = Cond.getOperand(0);
15760   SDValue CmpOpnd2 = Cond.getOperand(1);
15761 
15762   // SETCC CmpOpnd1 CmpOpnd2 cond
15763   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15764   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15765   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15766       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15767       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15768       FalseOpnd.getOperand(1) == CmpOpnd1) {
15769     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15770                        CmpOpnd1, CmpOpnd2,
15771                        DAG.getTargetConstant(0, dl, MVT::i32));
15772   }
15773 
15774   return SDValue();
15775 }
15776