1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
139 
140 // FIXME: Remove this once the bug has been fixed!
141 extern cl::opt<bool> ANDIGlueBug;
142 
143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
144                                      const PPCSubtarget &STI)
145     : TargetLowering(TM), Subtarget(STI) {
146   // Initialize map that relates the PPC addressing modes to the computed flags
147   // of a load/store instruction. The map is used to determine the optimal
148   // addressing mode when selecting load and stores.
149   initializeAddrModeMap();
150   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
151   // arguments are at least 4/8 bytes aligned.
152   bool isPPC64 = Subtarget.isPPC64();
153   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
154 
155   // Set up the register classes.
156   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
157   if (!useSoftFloat()) {
158     if (hasSPE()) {
159       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
160       // EFPU2 APU only supports f32
161       if (!Subtarget.hasEFPU2())
162         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
163     } else {
164       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
165       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
166     }
167   }
168 
169   // Match BITREVERSE to customized fast code sequence in the td file.
170   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
171   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
172 
173   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
174   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
175 
176   // Custom lower inline assembly to check for special registers.
177   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
178   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
179 
180   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
181   for (MVT VT : MVT::integer_valuetypes()) {
182     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
183     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
184   }
185 
186   if (Subtarget.isISA3_0()) {
187     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
188     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
189     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
190     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
191   } else {
192     // No extending loads from f16 or HW conversions back and forth.
193     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
195     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
197     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
198     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
199     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
200     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
201   }
202 
203   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
204 
205   // PowerPC has pre-inc load and store's.
206   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
207   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
208   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
209   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
210   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
211   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
212   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
213   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
214   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
215   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
216   if (!Subtarget.hasSPE()) {
217     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
218     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
219     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
220     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
221   }
222 
223   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
224   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
225   for (MVT VT : ScalarIntVTs) {
226     setOperationAction(ISD::ADDC, VT, Legal);
227     setOperationAction(ISD::ADDE, VT, Legal);
228     setOperationAction(ISD::SUBC, VT, Legal);
229     setOperationAction(ISD::SUBE, VT, Legal);
230   }
231 
232   if (Subtarget.useCRBits()) {
233     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
234 
235     if (isPPC64 || Subtarget.hasFPCVT()) {
236       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
240       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
241                         isPPC64 ? MVT::i64 : MVT::i32);
242 
243       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
244       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
245                          isPPC64 ? MVT::i64 : MVT::i32);
246       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
247       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
248                         isPPC64 ? MVT::i64 : MVT::i32);
249 
250       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
254       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
255                         isPPC64 ? MVT::i64 : MVT::i32);
256 
257       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
258       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
259                         isPPC64 ? MVT::i64 : MVT::i32);
260       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
261       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
262                         isPPC64 ? MVT::i64 : MVT::i32);
263     } else {
264       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
265       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
266       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
267       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
268     }
269 
270     // PowerPC does not support direct load/store of condition registers.
271     setOperationAction(ISD::LOAD, MVT::i1, Custom);
272     setOperationAction(ISD::STORE, MVT::i1, Custom);
273 
274     // FIXME: Remove this once the ANDI glue bug is fixed:
275     if (ANDIGlueBug)
276       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
277 
278     for (MVT VT : MVT::integer_valuetypes()) {
279       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
280       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
281       setTruncStoreAction(VT, MVT::i1, Expand);
282     }
283 
284     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
285   }
286 
287   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
288   // PPC (the libcall is not available).
289   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
290   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
291   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
292   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
293 
294   // We do not currently implement these libm ops for PowerPC.
295   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
296   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
297   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
298   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
299   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
300   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
301 
302   // PowerPC has no SREM/UREM instructions unless we are on P9
303   // On P9 we may use a hardware instruction to compute the remainder.
304   // When the result of both the remainder and the division is required it is
305   // more efficient to compute the remainder from the result of the division
306   // rather than use the remainder instruction. The instructions are legalized
307   // directly because the DivRemPairsPass performs the transformation at the IR
308   // level.
309   if (Subtarget.isISA3_0()) {
310     setOperationAction(ISD::SREM, MVT::i32, Legal);
311     setOperationAction(ISD::UREM, MVT::i32, Legal);
312     setOperationAction(ISD::SREM, MVT::i64, Legal);
313     setOperationAction(ISD::UREM, MVT::i64, Legal);
314   } else {
315     setOperationAction(ISD::SREM, MVT::i32, Expand);
316     setOperationAction(ISD::UREM, MVT::i32, Expand);
317     setOperationAction(ISD::SREM, MVT::i64, Expand);
318     setOperationAction(ISD::UREM, MVT::i64, Expand);
319   }
320 
321   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
322   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
323   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
324   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
325   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
326   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
327   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
328   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
329   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
330 
331   // Handle constrained floating-point operations of scalar.
332   // TODO: Handle SPE specific operation.
333   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
334   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
335   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
336   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
337   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
338 
339   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
340   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
341   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
342   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
343 
344   if (!Subtarget.hasSPE()) {
345     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
346     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
347   }
348 
349   if (Subtarget.hasVSX()) {
350     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasFSQRT()) {
355     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
357   }
358 
359   if (Subtarget.hasFPRND()) {
360     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
361     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
364 
365     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
366     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
367     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
368     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
369   }
370 
371   // We don't support sin/cos/sqrt/fmod/pow
372   setOperationAction(ISD::FSIN , MVT::f64, Expand);
373   setOperationAction(ISD::FCOS , MVT::f64, Expand);
374   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
375   setOperationAction(ISD::FREM , MVT::f64, Expand);
376   setOperationAction(ISD::FPOW , MVT::f64, Expand);
377   setOperationAction(ISD::FSIN , MVT::f32, Expand);
378   setOperationAction(ISD::FCOS , MVT::f32, Expand);
379   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
380   setOperationAction(ISD::FREM , MVT::f32, Expand);
381   setOperationAction(ISD::FPOW , MVT::f32, Expand);
382   if (Subtarget.hasSPE()) {
383     setOperationAction(ISD::FMA  , MVT::f64, Expand);
384     setOperationAction(ISD::FMA  , MVT::f32, Expand);
385   } else {
386     setOperationAction(ISD::FMA  , MVT::f64, Legal);
387     setOperationAction(ISD::FMA  , MVT::f32, Legal);
388   }
389 
390   if (Subtarget.hasSPE())
391     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
392 
393   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
394 
395   // If we're enabling GP optimizations, use hardware square root
396   if (!Subtarget.hasFSQRT() &&
397       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
398         Subtarget.hasFRE()))
399     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
400 
401   if (!Subtarget.hasFSQRT() &&
402       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
403         Subtarget.hasFRES()))
404     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
405 
406   if (Subtarget.hasFCPSGN()) {
407     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
408     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
409   } else {
410     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
411     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
412   }
413 
414   if (Subtarget.hasFPRND()) {
415     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
416     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
417     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
418     setOperationAction(ISD::FROUND, MVT::f64, Legal);
419 
420     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
421     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
422     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
423     setOperationAction(ISD::FROUND, MVT::f32, Legal);
424   }
425 
426   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
427   // to speed up scalar BSWAP64.
428   // CTPOP or CTTZ were introduced in P8/P9 respectively
429   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
430   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
431     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
432   else
433     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
434   if (Subtarget.isISA3_0()) {
435     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
436     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
437   } else {
438     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
439     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
440   }
441 
442   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
443     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
444     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
445   } else {
446     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
447     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
448   }
449 
450   // PowerPC does not have ROTR
451   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
452   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
453 
454   if (!Subtarget.useCRBits()) {
455     // PowerPC does not have Select
456     setOperationAction(ISD::SELECT, MVT::i32, Expand);
457     setOperationAction(ISD::SELECT, MVT::i64, Expand);
458     setOperationAction(ISD::SELECT, MVT::f32, Expand);
459     setOperationAction(ISD::SELECT, MVT::f64, Expand);
460   }
461 
462   // PowerPC wants to turn select_cc of FP into fsel when possible.
463   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
464   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
465 
466   // PowerPC wants to optimize integer setcc a bit
467   if (!Subtarget.useCRBits())
468     setOperationAction(ISD::SETCC, MVT::i32, Custom);
469 
470   if (Subtarget.hasFPU()) {
471     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
472     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
473     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
474 
475     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
476     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
477     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
478   }
479 
480   // PowerPC does not have BRCOND which requires SetCC
481   if (!Subtarget.useCRBits())
482     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
483 
484   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
485 
486   if (Subtarget.hasSPE()) {
487     // SPE has built-in conversions
488     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
489     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
490     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
491     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
492     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
493     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
494 
495     // SPE supports signaling compare of f32/f64.
496     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
497     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
498   } else {
499     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
500     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
501     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
502 
503     // PowerPC does not have [U|S]INT_TO_FP
504     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
505     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
506     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
507     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
508   }
509 
510   if (Subtarget.hasDirectMove() && isPPC64) {
511     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
512     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
513     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
514     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
515     if (TM.Options.UnsafeFPMath) {
516       setOperationAction(ISD::LRINT, MVT::f64, Legal);
517       setOperationAction(ISD::LRINT, MVT::f32, Legal);
518       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
519       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
520       setOperationAction(ISD::LROUND, MVT::f64, Legal);
521       setOperationAction(ISD::LROUND, MVT::f32, Legal);
522       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
523       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
524     }
525   } else {
526     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
527     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
528     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
529     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
530   }
531 
532   // We cannot sextinreg(i1).  Expand to shifts.
533   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
534 
535   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
536   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
537   // support continuation, user-level threading, and etc.. As a result, no
538   // other SjLj exception interfaces are implemented and please don't build
539   // your own exception handling based on them.
540   // LLVM/Clang supports zero-cost DWARF exception handling.
541   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
542   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
543 
544   // We want to legalize GlobalAddress and ConstantPool nodes into the
545   // appropriate instructions to materialize the address.
546   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
547   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
548   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
549   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
550   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
551   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
552   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
553   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
554   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
555   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
556 
557   // TRAP is legal.
558   setOperationAction(ISD::TRAP, MVT::Other, Legal);
559 
560   // TRAMPOLINE is custom lowered.
561   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
562   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
563 
564   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
565   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
566 
567   if (Subtarget.is64BitELFABI()) {
568     // VAARG always uses double-word chunks, so promote anything smaller.
569     setOperationAction(ISD::VAARG, MVT::i1, Promote);
570     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
571     setOperationAction(ISD::VAARG, MVT::i8, Promote);
572     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
573     setOperationAction(ISD::VAARG, MVT::i16, Promote);
574     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
575     setOperationAction(ISD::VAARG, MVT::i32, Promote);
576     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
577     setOperationAction(ISD::VAARG, MVT::Other, Expand);
578   } else if (Subtarget.is32BitELFABI()) {
579     // VAARG is custom lowered with the 32-bit SVR4 ABI.
580     setOperationAction(ISD::VAARG, MVT::Other, Custom);
581     setOperationAction(ISD::VAARG, MVT::i64, Custom);
582   } else
583     setOperationAction(ISD::VAARG, MVT::Other, Expand);
584 
585   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
586   if (Subtarget.is32BitELFABI())
587     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
588   else
589     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
590 
591   // Use the default implementation.
592   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
593   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
594   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
595   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
596   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
597   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
598   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
599   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
600   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
601 
602   // We want to custom lower some of our intrinsics.
603   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
604   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
605   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
606 
607   // To handle counter-based loop conditions.
608   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
609 
610   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
611   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
612   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
613   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
614 
615   // Comparisons that require checking two conditions.
616   if (Subtarget.hasSPE()) {
617     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
618     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
619     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
620     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
621   }
622   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
623   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
624   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
625   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
626   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
627   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
628   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
629   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
630   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
631   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
632   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
633   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
634 
635   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
636   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
637 
638   if (Subtarget.has64BitSupport()) {
639     // They also have instructions for converting between i64 and fp.
640     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
641     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
642     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
643     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
644     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
645     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
646     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
647     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
648     // This is just the low 32 bits of a (signed) fp->i64 conversion.
649     // We cannot do this with Promote because i64 is not a legal type.
650     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
651     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
652 
653     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
654       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
655       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
656     }
657   } else {
658     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
659     if (Subtarget.hasSPE()) {
660       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
661       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
662     } else {
663       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
664       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
665     }
666   }
667 
668   // With the instructions enabled under FPCVT, we can do everything.
669   if (Subtarget.hasFPCVT()) {
670     if (Subtarget.has64BitSupport()) {
671       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
672       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
673       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
674       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
675       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
676       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
677       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
678       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
679     }
680 
681     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
682     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
683     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
684     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
685     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
686     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
687     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
688     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
689   }
690 
691   if (Subtarget.use64BitRegs()) {
692     // 64-bit PowerPC implementations can support i64 types directly
693     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
694     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
695     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
696     // 64-bit PowerPC wants to expand i128 shifts itself.
697     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
698     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
699     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
700   } else {
701     // 32-bit PowerPC wants to expand i64 shifts itself.
702     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
703     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
704     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
705   }
706 
707   // PowerPC has better expansions for funnel shifts than the generic
708   // TargetLowering::expandFunnelShift.
709   if (Subtarget.has64BitSupport()) {
710     setOperationAction(ISD::FSHL, MVT::i64, Custom);
711     setOperationAction(ISD::FSHR, MVT::i64, Custom);
712   }
713   setOperationAction(ISD::FSHL, MVT::i32, Custom);
714   setOperationAction(ISD::FSHR, MVT::i32, Custom);
715 
716   if (Subtarget.hasVSX()) {
717     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
718     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
719     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
720     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
721   }
722 
723   if (Subtarget.hasAltivec()) {
724     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
725       setOperationAction(ISD::SADDSAT, VT, Legal);
726       setOperationAction(ISD::SSUBSAT, VT, Legal);
727       setOperationAction(ISD::UADDSAT, VT, Legal);
728       setOperationAction(ISD::USUBSAT, VT, Legal);
729     }
730     // First set operation action for all vector types to expand. Then we
731     // will selectively turn on ones that can be effectively codegen'd.
732     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
733       // add/sub are legal for all supported vector VT's.
734       setOperationAction(ISD::ADD, VT, Legal);
735       setOperationAction(ISD::SUB, VT, Legal);
736 
737       // For v2i64, these are only valid with P8Vector. This is corrected after
738       // the loop.
739       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
740         setOperationAction(ISD::SMAX, VT, Legal);
741         setOperationAction(ISD::SMIN, VT, Legal);
742         setOperationAction(ISD::UMAX, VT, Legal);
743         setOperationAction(ISD::UMIN, VT, Legal);
744       }
745       else {
746         setOperationAction(ISD::SMAX, VT, Expand);
747         setOperationAction(ISD::SMIN, VT, Expand);
748         setOperationAction(ISD::UMAX, VT, Expand);
749         setOperationAction(ISD::UMIN, VT, Expand);
750       }
751 
752       if (Subtarget.hasVSX()) {
753         setOperationAction(ISD::FMAXNUM, VT, Legal);
754         setOperationAction(ISD::FMINNUM, VT, Legal);
755       }
756 
757       // Vector instructions introduced in P8
758       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
759         setOperationAction(ISD::CTPOP, VT, Legal);
760         setOperationAction(ISD::CTLZ, VT, Legal);
761       }
762       else {
763         setOperationAction(ISD::CTPOP, VT, Expand);
764         setOperationAction(ISD::CTLZ, VT, Expand);
765       }
766 
767       // Vector instructions introduced in P9
768       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
769         setOperationAction(ISD::CTTZ, VT, Legal);
770       else
771         setOperationAction(ISD::CTTZ, VT, Expand);
772 
773       // We promote all shuffles to v16i8.
774       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
775       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
776 
777       // We promote all non-typed operations to v4i32.
778       setOperationAction(ISD::AND   , VT, Promote);
779       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
780       setOperationAction(ISD::OR    , VT, Promote);
781       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
782       setOperationAction(ISD::XOR   , VT, Promote);
783       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
784       setOperationAction(ISD::LOAD  , VT, Promote);
785       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
786       setOperationAction(ISD::SELECT, VT, Promote);
787       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
788       setOperationAction(ISD::VSELECT, VT, Legal);
789       setOperationAction(ISD::SELECT_CC, VT, Promote);
790       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
791       setOperationAction(ISD::STORE, VT, Promote);
792       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
793 
794       // No other operations are legal.
795       setOperationAction(ISD::MUL , VT, Expand);
796       setOperationAction(ISD::SDIV, VT, Expand);
797       setOperationAction(ISD::SREM, VT, Expand);
798       setOperationAction(ISD::UDIV, VT, Expand);
799       setOperationAction(ISD::UREM, VT, Expand);
800       setOperationAction(ISD::FDIV, VT, Expand);
801       setOperationAction(ISD::FREM, VT, Expand);
802       setOperationAction(ISD::FNEG, VT, Expand);
803       setOperationAction(ISD::FSQRT, VT, Expand);
804       setOperationAction(ISD::FLOG, VT, Expand);
805       setOperationAction(ISD::FLOG10, VT, Expand);
806       setOperationAction(ISD::FLOG2, VT, Expand);
807       setOperationAction(ISD::FEXP, VT, Expand);
808       setOperationAction(ISD::FEXP2, VT, Expand);
809       setOperationAction(ISD::FSIN, VT, Expand);
810       setOperationAction(ISD::FCOS, VT, Expand);
811       setOperationAction(ISD::FABS, VT, Expand);
812       setOperationAction(ISD::FFLOOR, VT, Expand);
813       setOperationAction(ISD::FCEIL,  VT, Expand);
814       setOperationAction(ISD::FTRUNC, VT, Expand);
815       setOperationAction(ISD::FRINT,  VT, Expand);
816       setOperationAction(ISD::FNEARBYINT, VT, Expand);
817       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
818       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
819       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
820       setOperationAction(ISD::MULHU, VT, Expand);
821       setOperationAction(ISD::MULHS, VT, Expand);
822       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
823       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
824       setOperationAction(ISD::UDIVREM, VT, Expand);
825       setOperationAction(ISD::SDIVREM, VT, Expand);
826       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
827       setOperationAction(ISD::FPOW, VT, Expand);
828       setOperationAction(ISD::BSWAP, VT, Expand);
829       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
830       setOperationAction(ISD::ROTL, VT, Expand);
831       setOperationAction(ISD::ROTR, VT, Expand);
832 
833       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
834         setTruncStoreAction(VT, InnerVT, Expand);
835         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
836         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
837         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
838       }
839     }
840     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
841     if (!Subtarget.hasP8Vector()) {
842       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
843       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
844       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
845       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
846     }
847 
848     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
849     // with merges, splats, etc.
850     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
851 
852     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
853     // are cheap, so handle them before they get expanded to scalar.
854     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
855     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
856     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
857     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
858     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
859 
860     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
861     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
862     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
863     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
864     setOperationAction(ISD::SELECT, MVT::v4i32,
865                        Subtarget.useCRBits() ? Legal : Expand);
866     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
867     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
868     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
869     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
870     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
871     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
872     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
873     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
874     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
875     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
876     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
877     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
878     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
879 
880     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
881     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
882     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
883     if (Subtarget.hasAltivec())
884       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
885         setOperationAction(ISD::ROTL, VT, Legal);
886     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
887     if (Subtarget.hasP8Altivec())
888       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
889 
890     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
891     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
892     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
893     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
894 
895     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
896     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
897 
898     if (Subtarget.hasVSX()) {
899       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
900       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
901       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
902     }
903 
904     if (Subtarget.hasP8Altivec())
905       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
906     else
907       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
908 
909     if (Subtarget.isISA3_1()) {
910       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
911       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
912       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
913       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
914       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
915       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
916       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
917       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
918       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
919       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
920       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
921       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
922       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
923       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
924       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
925       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
926       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
927       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
928     }
929 
930     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
931     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
932 
933     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
934     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
935 
936     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
937     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
938     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
939     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
940 
941     // Altivec does not contain unordered floating-point compare instructions
942     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
943     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
944     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
945     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
946 
947     if (Subtarget.hasVSX()) {
948       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
949       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
950       if (Subtarget.hasP8Vector()) {
951         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
952         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
953       }
954       if (Subtarget.hasDirectMove() && isPPC64) {
955         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
956         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
957         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
958         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
959         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
960         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
961         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
962         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
963       }
964       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
965 
966       // The nearbyint variants are not allowed to raise the inexact exception
967       // so we can only code-gen them with unsafe math.
968       if (TM.Options.UnsafeFPMath) {
969         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
970         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
971       }
972 
973       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
974       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
975       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
976       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
977       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
978       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
979       setOperationAction(ISD::FROUND, MVT::f64, Legal);
980       setOperationAction(ISD::FRINT, MVT::f64, Legal);
981 
982       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
983       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
984       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
985       setOperationAction(ISD::FROUND, MVT::f32, Legal);
986       setOperationAction(ISD::FRINT, MVT::f32, Legal);
987 
988       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
989       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
990 
991       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
992       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
993 
994       // Share the Altivec comparison restrictions.
995       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
996       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
997       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
998       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
999 
1000       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1001       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1002 
1003       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
1004 
1005       if (Subtarget.hasP8Vector())
1006         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1007 
1008       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1009 
1010       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1011       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1012       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1013 
1014       if (Subtarget.hasP8Altivec()) {
1015         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1016         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1017         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1018 
1019         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1020         // SRL, but not for SRA because of the instructions available:
1021         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1022         // doing
1023         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1024         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1025         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1026 
1027         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1028       }
1029       else {
1030         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1031         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1032         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1033 
1034         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1035 
1036         // VSX v2i64 only supports non-arithmetic operations.
1037         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1038         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1039       }
1040 
1041       if (Subtarget.isISA3_1())
1042         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1043       else
1044         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1045 
1046       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1047       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1048       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1049       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1050 
1051       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1052 
1053       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1054       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1055       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1056       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1057       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1058       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1059       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1060       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1061 
1062       // Custom handling for partial vectors of integers converted to
1063       // floating point. We already have optimal handling for v2i32 through
1064       // the DAG combine, so those aren't necessary.
1065       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1066       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1067       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1068       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1069       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1070       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1071       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1072       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1073       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1074       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1075       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1076       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1077       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1078       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1079       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1080       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1081 
1082       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1083       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1084       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1085       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1086       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1087       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1088 
1089       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1090       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1091 
1092       // Handle constrained floating-point operations of vector.
1093       // The predictor is `hasVSX` because altivec instruction has
1094       // no exception but VSX vector instruction has.
1095       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1096       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1097       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1098       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1099       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1100       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1101       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1102       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1103       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1104       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1105       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1106       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1107       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1108 
1109       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1110       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1111       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1112       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1113       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1114       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1115       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1116       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1117       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1118       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1119       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1120       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1121       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1122 
1123       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1124       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1125 
1126       for (MVT FPT : MVT::fp_valuetypes())
1127         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1128 
1129       // Expand the SELECT to SELECT_CC
1130       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1131 
1132       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1133       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1134 
1135       // No implementation for these ops for PowerPC.
1136       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1137       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1138       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1139       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1140       setOperationAction(ISD::FREM, MVT::f128, Expand);
1141     }
1142 
1143     if (Subtarget.hasP8Altivec()) {
1144       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1145       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1146     }
1147 
1148     if (Subtarget.hasP9Vector()) {
1149       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1150       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1151 
1152       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1153       // SRL, but not for SRA because of the instructions available:
1154       // VS{RL} and VS{RL}O.
1155       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1156       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1157       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1158 
1159       setOperationAction(ISD::FADD, MVT::f128, Legal);
1160       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1161       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1162       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1163       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1164 
1165       setOperationAction(ISD::FMA, MVT::f128, Legal);
1166       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1167       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1168       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1169       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1170       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1171       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1172 
1173       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1174       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1175       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1176       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1177       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1178       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1179 
1180       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1181       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1182       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1183 
1184       // Handle constrained floating-point operations of fp128
1185       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1186       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1187       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1188       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1189       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1190       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1191       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1192       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1193       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1194       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1195       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1196       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1197       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1198       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1199       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1200       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1201       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1202       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1203       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1204       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1205     } else if (Subtarget.hasVSX()) {
1206       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1207       setOperationAction(ISD::STORE, MVT::f128, Promote);
1208 
1209       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1210       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1211 
1212       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1213       // fp_to_uint and int_to_fp.
1214       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1215       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1216 
1217       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1218       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1219       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1220       setOperationAction(ISD::FABS, MVT::f128, Expand);
1221       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1222       setOperationAction(ISD::FMA, MVT::f128, Expand);
1223       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1224 
1225       // Expand the fp_extend if the target type is fp128.
1226       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1227       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1228 
1229       // Expand the fp_round if the source type is fp128.
1230       for (MVT VT : {MVT::f32, MVT::f64}) {
1231         setOperationAction(ISD::FP_ROUND, VT, Custom);
1232         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1233       }
1234 
1235       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1236       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1237       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1238       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1239 
1240       // Lower following f128 select_cc pattern:
1241       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1242       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1243 
1244       // We need to handle f128 SELECT_CC with integer result type.
1245       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1246       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1247     }
1248 
1249     if (Subtarget.hasP9Altivec()) {
1250       if (Subtarget.isISA3_1()) {
1251         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1252         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1253         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1254         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1255         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Legal);
1256       } else {
1257         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1258         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1259       }
1260       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1261       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1262       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1263       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1264       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1265       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1266       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1267     }
1268   }
1269 
1270   if (Subtarget.pairedVectorMemops()) {
1271     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1272     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1273     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1274   }
1275   if (Subtarget.hasMMA()) {
1276     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1277     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1278     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1279     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1280   }
1281 
1282   if (Subtarget.has64BitSupport())
1283     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1284 
1285   if (Subtarget.isISA3_1())
1286     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1287 
1288   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1289 
1290   if (!isPPC64) {
1291     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1292     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1293   }
1294 
1295   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) {
1296     setMaxAtomicSizeInBitsSupported(128);
1297     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1298     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1299     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1300   }
1301 
1302   setBooleanContents(ZeroOrOneBooleanContent);
1303 
1304   if (Subtarget.hasAltivec()) {
1305     // Altivec instructions set fields to all zeros or all ones.
1306     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1307   }
1308 
1309   if (!isPPC64) {
1310     // These libcalls are not available in 32-bit.
1311     setLibcallName(RTLIB::SHL_I128, nullptr);
1312     setLibcallName(RTLIB::SRL_I128, nullptr);
1313     setLibcallName(RTLIB::SRA_I128, nullptr);
1314     setLibcallName(RTLIB::MULO_I64, nullptr);
1315   }
1316 
1317   if (!isPPC64)
1318     setMaxAtomicSizeInBitsSupported(32);
1319 
1320   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1321 
1322   // We have target-specific dag combine patterns for the following nodes:
1323   setTargetDAGCombine(ISD::ADD);
1324   setTargetDAGCombine(ISD::SHL);
1325   setTargetDAGCombine(ISD::SRA);
1326   setTargetDAGCombine(ISD::SRL);
1327   setTargetDAGCombine(ISD::MUL);
1328   setTargetDAGCombine(ISD::FMA);
1329   setTargetDAGCombine(ISD::SINT_TO_FP);
1330   setTargetDAGCombine(ISD::BUILD_VECTOR);
1331   if (Subtarget.hasFPCVT())
1332     setTargetDAGCombine(ISD::UINT_TO_FP);
1333   setTargetDAGCombine(ISD::LOAD);
1334   setTargetDAGCombine(ISD::STORE);
1335   setTargetDAGCombine(ISD::BR_CC);
1336   if (Subtarget.useCRBits())
1337     setTargetDAGCombine(ISD::BRCOND);
1338   setTargetDAGCombine(ISD::BSWAP);
1339   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1340   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1341   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1342 
1343   setTargetDAGCombine(ISD::SIGN_EXTEND);
1344   setTargetDAGCombine(ISD::ZERO_EXTEND);
1345   setTargetDAGCombine(ISD::ANY_EXTEND);
1346 
1347   setTargetDAGCombine(ISD::TRUNCATE);
1348   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1349 
1350 
1351   if (Subtarget.useCRBits()) {
1352     setTargetDAGCombine(ISD::TRUNCATE);
1353     setTargetDAGCombine(ISD::SETCC);
1354     setTargetDAGCombine(ISD::SELECT_CC);
1355   }
1356 
1357   if (Subtarget.hasP9Altivec()) {
1358     setTargetDAGCombine(ISD::ABS);
1359     setTargetDAGCombine(ISD::VSELECT);
1360   }
1361 
1362   setLibcallName(RTLIB::LOG_F128, "logf128");
1363   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1364   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1365   setLibcallName(RTLIB::EXP_F128, "expf128");
1366   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1367   setLibcallName(RTLIB::SIN_F128, "sinf128");
1368   setLibcallName(RTLIB::COS_F128, "cosf128");
1369   setLibcallName(RTLIB::POW_F128, "powf128");
1370   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1371   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1372   setLibcallName(RTLIB::REM_F128, "fmodf128");
1373   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1374   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1375   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1376   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1377   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1378   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1379   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1380   setLibcallName(RTLIB::RINT_F128, "rintf128");
1381   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1382   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1383   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1384   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1385 
1386   // With 32 condition bits, we don't need to sink (and duplicate) compares
1387   // aggressively in CodeGenPrep.
1388   if (Subtarget.useCRBits()) {
1389     setHasMultipleConditionRegisters();
1390     setJumpIsExpensive();
1391   }
1392 
1393   setMinFunctionAlignment(Align(4));
1394 
1395   switch (Subtarget.getCPUDirective()) {
1396   default: break;
1397   case PPC::DIR_970:
1398   case PPC::DIR_A2:
1399   case PPC::DIR_E500:
1400   case PPC::DIR_E500mc:
1401   case PPC::DIR_E5500:
1402   case PPC::DIR_PWR4:
1403   case PPC::DIR_PWR5:
1404   case PPC::DIR_PWR5X:
1405   case PPC::DIR_PWR6:
1406   case PPC::DIR_PWR6X:
1407   case PPC::DIR_PWR7:
1408   case PPC::DIR_PWR8:
1409   case PPC::DIR_PWR9:
1410   case PPC::DIR_PWR10:
1411   case PPC::DIR_PWR_FUTURE:
1412     setPrefLoopAlignment(Align(16));
1413     setPrefFunctionAlignment(Align(16));
1414     break;
1415   }
1416 
1417   if (Subtarget.enableMachineScheduler())
1418     setSchedulingPreference(Sched::Source);
1419   else
1420     setSchedulingPreference(Sched::Hybrid);
1421 
1422   computeRegisterProperties(STI.getRegisterInfo());
1423 
1424   // The Freescale cores do better with aggressive inlining of memcpy and
1425   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1426   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1427       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1428     MaxStoresPerMemset = 32;
1429     MaxStoresPerMemsetOptSize = 16;
1430     MaxStoresPerMemcpy = 32;
1431     MaxStoresPerMemcpyOptSize = 8;
1432     MaxStoresPerMemmove = 32;
1433     MaxStoresPerMemmoveOptSize = 8;
1434   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1435     // The A2 also benefits from (very) aggressive inlining of memcpy and
1436     // friends. The overhead of a the function call, even when warm, can be
1437     // over one hundred cycles.
1438     MaxStoresPerMemset = 128;
1439     MaxStoresPerMemcpy = 128;
1440     MaxStoresPerMemmove = 128;
1441     MaxLoadsPerMemcmp = 128;
1442   } else {
1443     MaxLoadsPerMemcmp = 8;
1444     MaxLoadsPerMemcmpOptSize = 4;
1445   }
1446 
1447   IsStrictFPEnabled = true;
1448 
1449   // Let the subtarget (CPU) decide if a predictable select is more expensive
1450   // than the corresponding branch. This information is used in CGP to decide
1451   // when to convert selects into branches.
1452   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1453 }
1454 
1455 // *********************************** NOTE ************************************
1456 // For selecting load and store instructions, the addressing modes are defined
1457 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1458 // patterns to match the load the store instructions.
1459 //
1460 // The TD definitions for the addressing modes correspond to their respective
1461 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1462 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1463 // address mode flags of a particular node. Afterwards, the computed address
1464 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1465 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1466 // accordingly, based on the preferred addressing mode.
1467 //
1468 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1469 // MemOpFlags contains all the possible flags that can be used to compute the
1470 // optimal addressing mode for load and store instructions.
1471 // AddrMode contains all the possible load and store addressing modes available
1472 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1473 //
1474 // When adding new load and store instructions, it is possible that new address
1475 // flags may need to be added into MemOpFlags, and a new addressing mode will
1476 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1477 // of the minimal and main distinguishing address flags for the new load/store
1478 // instructions) will need to be added into initializeAddrModeMap() below.
1479 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1480 // need to be updated to account for selecting the optimal addressing mode.
1481 // *****************************************************************************
1482 /// Initialize the map that relates the different addressing modes of the load
1483 /// and store instructions to a set of flags. This ensures the load/store
1484 /// instruction is correctly matched during instruction selection.
1485 void PPCTargetLowering::initializeAddrModeMap() {
1486   AddrModesMap[PPC::AM_DForm] = {
1487       // LWZ, STW
1488       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1489       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1490       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1491       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1492       // LBZ, LHZ, STB, STH
1493       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1494       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1495       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1496       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1497       // LHA
1498       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1499       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1500       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1501       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1502       // LFS, LFD, STFS, STFD
1503       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1504       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1505       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1506       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1507   };
1508   AddrModesMap[PPC::AM_DSForm] = {
1509       // LWA
1510       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1511       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1512       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1513       // LD, STD
1514       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1515       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1516       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1517       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1518       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1519       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1520       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1521   };
1522   AddrModesMap[PPC::AM_DQForm] = {
1523       // LXV, STXV
1524       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1525       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1526       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1527   };
1528   AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1529                                        PPC::MOF_SubtargetP10};
1530   // TODO: Add mapping for quadword load/store.
1531 }
1532 
1533 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1534 /// the desired ByVal argument alignment.
1535 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1536   if (MaxAlign == MaxMaxAlign)
1537     return;
1538   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1539     if (MaxMaxAlign >= 32 &&
1540         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1541       MaxAlign = Align(32);
1542     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1543              MaxAlign < 16)
1544       MaxAlign = Align(16);
1545   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1546     Align EltAlign;
1547     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1548     if (EltAlign > MaxAlign)
1549       MaxAlign = EltAlign;
1550   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1551     for (auto *EltTy : STy->elements()) {
1552       Align EltAlign;
1553       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1554       if (EltAlign > MaxAlign)
1555         MaxAlign = EltAlign;
1556       if (MaxAlign == MaxMaxAlign)
1557         break;
1558     }
1559   }
1560 }
1561 
1562 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1563 /// function arguments in the caller parameter area.
1564 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1565                                                   const DataLayout &DL) const {
1566   // 16byte and wider vectors are passed on 16byte boundary.
1567   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1568   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1569   if (Subtarget.hasAltivec())
1570     getMaxByValAlign(Ty, Alignment, Align(16));
1571   return Alignment.value();
1572 }
1573 
1574 bool PPCTargetLowering::useSoftFloat() const {
1575   return Subtarget.useSoftFloat();
1576 }
1577 
1578 bool PPCTargetLowering::hasSPE() const {
1579   return Subtarget.hasSPE();
1580 }
1581 
1582 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1583   return VT.isScalarInteger();
1584 }
1585 
1586 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1587   switch ((PPCISD::NodeType)Opcode) {
1588   case PPCISD::FIRST_NUMBER:    break;
1589   case PPCISD::FSEL:            return "PPCISD::FSEL";
1590   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1591   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1592   case PPCISD::FCFID:           return "PPCISD::FCFID";
1593   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1594   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1595   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1596   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1597   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1598   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1599   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1600   case PPCISD::FP_TO_UINT_IN_VSR:
1601                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1602   case PPCISD::FP_TO_SINT_IN_VSR:
1603                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1604   case PPCISD::FRE:             return "PPCISD::FRE";
1605   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1606   case PPCISD::FTSQRT:
1607     return "PPCISD::FTSQRT";
1608   case PPCISD::FSQRT:
1609     return "PPCISD::FSQRT";
1610   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1611   case PPCISD::VPERM:           return "PPCISD::VPERM";
1612   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1613   case PPCISD::XXSPLTI_SP_TO_DP:
1614     return "PPCISD::XXSPLTI_SP_TO_DP";
1615   case PPCISD::XXSPLTI32DX:
1616     return "PPCISD::XXSPLTI32DX";
1617   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1618   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1619   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1620   case PPCISD::CMPB:            return "PPCISD::CMPB";
1621   case PPCISD::Hi:              return "PPCISD::Hi";
1622   case PPCISD::Lo:              return "PPCISD::Lo";
1623   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1624   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1625   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1626   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1627   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1628   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1629   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1630   case PPCISD::SRL:             return "PPCISD::SRL";
1631   case PPCISD::SRA:             return "PPCISD::SRA";
1632   case PPCISD::SHL:             return "PPCISD::SHL";
1633   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1634   case PPCISD::CALL:            return "PPCISD::CALL";
1635   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1636   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1637   case PPCISD::CALL_RM:
1638     return "PPCISD::CALL_RM";
1639   case PPCISD::CALL_NOP_RM:
1640     return "PPCISD::CALL_NOP_RM";
1641   case PPCISD::CALL_NOTOC_RM:
1642     return "PPCISD::CALL_NOTOC_RM";
1643   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1644   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1645   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1646   case PPCISD::BCTRL_RM:
1647     return "PPCISD::BCTRL_RM";
1648   case PPCISD::BCTRL_LOAD_TOC_RM:
1649     return "PPCISD::BCTRL_LOAD_TOC_RM";
1650   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1651   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1652   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1653   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1654   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1655   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1656   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1657   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1658   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1659   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1660   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1661     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1662   case PPCISD::ANDI_rec_1_EQ_BIT:
1663     return "PPCISD::ANDI_rec_1_EQ_BIT";
1664   case PPCISD::ANDI_rec_1_GT_BIT:
1665     return "PPCISD::ANDI_rec_1_GT_BIT";
1666   case PPCISD::VCMP:            return "PPCISD::VCMP";
1667   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1668   case PPCISD::LBRX:            return "PPCISD::LBRX";
1669   case PPCISD::STBRX:           return "PPCISD::STBRX";
1670   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1671   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1672   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1673   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1674   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1675   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1676   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1677   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1678   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1679   case PPCISD::ST_VSR_SCAL_INT:
1680                                 return "PPCISD::ST_VSR_SCAL_INT";
1681   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1682   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1683   case PPCISD::BDZ:             return "PPCISD::BDZ";
1684   case PPCISD::MFFS:            return "PPCISD::MFFS";
1685   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1686   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1687   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1688   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1689   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1690   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1691   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1692   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1693   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1694   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1695   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1696   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1697   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1698   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1699   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1700   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1701   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1702   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1703   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1704   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1705   case PPCISD::PADDI_DTPREL:
1706     return "PPCISD::PADDI_DTPREL";
1707   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1708   case PPCISD::SC:              return "PPCISD::SC";
1709   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1710   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1711   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1712   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1713   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1714   case PPCISD::VABSD:           return "PPCISD::VABSD";
1715   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1716   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1717   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1718   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1719   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1720   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1721   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1722   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1723     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1724   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1725     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1726   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1727   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1728   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1729   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1730   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1731   case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1732   case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1733   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1734   case PPCISD::STRICT_FADDRTZ:
1735     return "PPCISD::STRICT_FADDRTZ";
1736   case PPCISD::STRICT_FCTIDZ:
1737     return "PPCISD::STRICT_FCTIDZ";
1738   case PPCISD::STRICT_FCTIWZ:
1739     return "PPCISD::STRICT_FCTIWZ";
1740   case PPCISD::STRICT_FCTIDUZ:
1741     return "PPCISD::STRICT_FCTIDUZ";
1742   case PPCISD::STRICT_FCTIWUZ:
1743     return "PPCISD::STRICT_FCTIWUZ";
1744   case PPCISD::STRICT_FCFID:
1745     return "PPCISD::STRICT_FCFID";
1746   case PPCISD::STRICT_FCFIDU:
1747     return "PPCISD::STRICT_FCFIDU";
1748   case PPCISD::STRICT_FCFIDS:
1749     return "PPCISD::STRICT_FCFIDS";
1750   case PPCISD::STRICT_FCFIDUS:
1751     return "PPCISD::STRICT_FCFIDUS";
1752   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1753   }
1754   return nullptr;
1755 }
1756 
1757 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1758                                           EVT VT) const {
1759   if (!VT.isVector())
1760     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1761 
1762   return VT.changeVectorElementTypeToInteger();
1763 }
1764 
1765 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1766   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1767   return true;
1768 }
1769 
1770 //===----------------------------------------------------------------------===//
1771 // Node matching predicates, for use by the tblgen matching code.
1772 //===----------------------------------------------------------------------===//
1773 
1774 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1775 static bool isFloatingPointZero(SDValue Op) {
1776   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1777     return CFP->getValueAPF().isZero();
1778   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1779     // Maybe this has already been legalized into the constant pool?
1780     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1781       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1782         return CFP->getValueAPF().isZero();
1783   }
1784   return false;
1785 }
1786 
1787 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1788 /// true if Op is undef or if it matches the specified value.
1789 static bool isConstantOrUndef(int Op, int Val) {
1790   return Op < 0 || Op == Val;
1791 }
1792 
1793 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1794 /// VPKUHUM instruction.
1795 /// The ShuffleKind distinguishes between big-endian operations with
1796 /// two different inputs (0), either-endian operations with two identical
1797 /// inputs (1), and little-endian operations with two different inputs (2).
1798 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1799 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1800                                SelectionDAG &DAG) {
1801   bool IsLE = DAG.getDataLayout().isLittleEndian();
1802   if (ShuffleKind == 0) {
1803     if (IsLE)
1804       return false;
1805     for (unsigned i = 0; i != 16; ++i)
1806       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1807         return false;
1808   } else if (ShuffleKind == 2) {
1809     if (!IsLE)
1810       return false;
1811     for (unsigned i = 0; i != 16; ++i)
1812       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1813         return false;
1814   } else if (ShuffleKind == 1) {
1815     unsigned j = IsLE ? 0 : 1;
1816     for (unsigned i = 0; i != 8; ++i)
1817       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1818           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1819         return false;
1820   }
1821   return true;
1822 }
1823 
1824 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1825 /// VPKUWUM instruction.
1826 /// The ShuffleKind distinguishes between big-endian operations with
1827 /// two different inputs (0), either-endian operations with two identical
1828 /// inputs (1), and little-endian operations with two different inputs (2).
1829 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1830 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1831                                SelectionDAG &DAG) {
1832   bool IsLE = DAG.getDataLayout().isLittleEndian();
1833   if (ShuffleKind == 0) {
1834     if (IsLE)
1835       return false;
1836     for (unsigned i = 0; i != 16; i += 2)
1837       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1838           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1839         return false;
1840   } else if (ShuffleKind == 2) {
1841     if (!IsLE)
1842       return false;
1843     for (unsigned i = 0; i != 16; i += 2)
1844       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1845           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1846         return false;
1847   } else if (ShuffleKind == 1) {
1848     unsigned j = IsLE ? 0 : 2;
1849     for (unsigned i = 0; i != 8; i += 2)
1850       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1851           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1852           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1853           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1854         return false;
1855   }
1856   return true;
1857 }
1858 
1859 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1860 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1861 /// current subtarget.
1862 ///
1863 /// The ShuffleKind distinguishes between big-endian operations with
1864 /// two different inputs (0), either-endian operations with two identical
1865 /// inputs (1), and little-endian operations with two different inputs (2).
1866 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1867 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1868                                SelectionDAG &DAG) {
1869   const PPCSubtarget& Subtarget =
1870       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1871   if (!Subtarget.hasP8Vector())
1872     return false;
1873 
1874   bool IsLE = DAG.getDataLayout().isLittleEndian();
1875   if (ShuffleKind == 0) {
1876     if (IsLE)
1877       return false;
1878     for (unsigned i = 0; i != 16; i += 4)
1879       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1880           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1881           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1882           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1883         return false;
1884   } else if (ShuffleKind == 2) {
1885     if (!IsLE)
1886       return false;
1887     for (unsigned i = 0; i != 16; i += 4)
1888       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1889           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1890           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1891           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1892         return false;
1893   } else if (ShuffleKind == 1) {
1894     unsigned j = IsLE ? 0 : 4;
1895     for (unsigned i = 0; i != 8; i += 4)
1896       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1897           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1898           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1899           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1900           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1901           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1902           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1903           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1904         return false;
1905   }
1906   return true;
1907 }
1908 
1909 /// isVMerge - Common function, used to match vmrg* shuffles.
1910 ///
1911 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1912                      unsigned LHSStart, unsigned RHSStart) {
1913   if (N->getValueType(0) != MVT::v16i8)
1914     return false;
1915   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1916          "Unsupported merge size!");
1917 
1918   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1919     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1920       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1921                              LHSStart+j+i*UnitSize) ||
1922           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1923                              RHSStart+j+i*UnitSize))
1924         return false;
1925     }
1926   return true;
1927 }
1928 
1929 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1930 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1931 /// The ShuffleKind distinguishes between big-endian merges with two
1932 /// different inputs (0), either-endian merges with two identical inputs (1),
1933 /// and little-endian merges with two different inputs (2).  For the latter,
1934 /// the input operands are swapped (see PPCInstrAltivec.td).
1935 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1936                              unsigned ShuffleKind, SelectionDAG &DAG) {
1937   if (DAG.getDataLayout().isLittleEndian()) {
1938     if (ShuffleKind == 1) // unary
1939       return isVMerge(N, UnitSize, 0, 0);
1940     else if (ShuffleKind == 2) // swapped
1941       return isVMerge(N, UnitSize, 0, 16);
1942     else
1943       return false;
1944   } else {
1945     if (ShuffleKind == 1) // unary
1946       return isVMerge(N, UnitSize, 8, 8);
1947     else if (ShuffleKind == 0) // normal
1948       return isVMerge(N, UnitSize, 8, 24);
1949     else
1950       return false;
1951   }
1952 }
1953 
1954 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1955 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1956 /// The ShuffleKind distinguishes between big-endian merges with two
1957 /// different inputs (0), either-endian merges with two identical inputs (1),
1958 /// and little-endian merges with two different inputs (2).  For the latter,
1959 /// the input operands are swapped (see PPCInstrAltivec.td).
1960 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1961                              unsigned ShuffleKind, SelectionDAG &DAG) {
1962   if (DAG.getDataLayout().isLittleEndian()) {
1963     if (ShuffleKind == 1) // unary
1964       return isVMerge(N, UnitSize, 8, 8);
1965     else if (ShuffleKind == 2) // swapped
1966       return isVMerge(N, UnitSize, 8, 24);
1967     else
1968       return false;
1969   } else {
1970     if (ShuffleKind == 1) // unary
1971       return isVMerge(N, UnitSize, 0, 0);
1972     else if (ShuffleKind == 0) // normal
1973       return isVMerge(N, UnitSize, 0, 16);
1974     else
1975       return false;
1976   }
1977 }
1978 
1979 /**
1980  * Common function used to match vmrgew and vmrgow shuffles
1981  *
1982  * The indexOffset determines whether to look for even or odd words in
1983  * the shuffle mask. This is based on the of the endianness of the target
1984  * machine.
1985  *   - Little Endian:
1986  *     - Use offset of 0 to check for odd elements
1987  *     - Use offset of 4 to check for even elements
1988  *   - Big Endian:
1989  *     - Use offset of 0 to check for even elements
1990  *     - Use offset of 4 to check for odd elements
1991  * A detailed description of the vector element ordering for little endian and
1992  * big endian can be found at
1993  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1994  * Targeting your applications - what little endian and big endian IBM XL C/C++
1995  * compiler differences mean to you
1996  *
1997  * The mask to the shuffle vector instruction specifies the indices of the
1998  * elements from the two input vectors to place in the result. The elements are
1999  * numbered in array-access order, starting with the first vector. These vectors
2000  * are always of type v16i8, thus each vector will contain 16 elements of size
2001  * 8. More info on the shuffle vector can be found in the
2002  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2003  * Language Reference.
2004  *
2005  * The RHSStartValue indicates whether the same input vectors are used (unary)
2006  * or two different input vectors are used, based on the following:
2007  *   - If the instruction uses the same vector for both inputs, the range of the
2008  *     indices will be 0 to 15. In this case, the RHSStart value passed should
2009  *     be 0.
2010  *   - If the instruction has two different vectors then the range of the
2011  *     indices will be 0 to 31. In this case, the RHSStart value passed should
2012  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2013  *     to 31 specify elements in the second vector).
2014  *
2015  * \param[in] N The shuffle vector SD Node to analyze
2016  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2017  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2018  * vector to the shuffle_vector instruction
2019  * \return true iff this shuffle vector represents an even or odd word merge
2020  */
2021 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2022                      unsigned RHSStartValue) {
2023   if (N->getValueType(0) != MVT::v16i8)
2024     return false;
2025 
2026   for (unsigned i = 0; i < 2; ++i)
2027     for (unsigned j = 0; j < 4; ++j)
2028       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2029                              i*RHSStartValue+j+IndexOffset) ||
2030           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2031                              i*RHSStartValue+j+IndexOffset+8))
2032         return false;
2033   return true;
2034 }
2035 
2036 /**
2037  * Determine if the specified shuffle mask is suitable for the vmrgew or
2038  * vmrgow instructions.
2039  *
2040  * \param[in] N The shuffle vector SD Node to analyze
2041  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2042  * \param[in] ShuffleKind Identify the type of merge:
2043  *   - 0 = big-endian merge with two different inputs;
2044  *   - 1 = either-endian merge with two identical inputs;
2045  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2046  *     little-endian merges).
2047  * \param[in] DAG The current SelectionDAG
2048  * \return true iff this shuffle mask
2049  */
2050 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2051                               unsigned ShuffleKind, SelectionDAG &DAG) {
2052   if (DAG.getDataLayout().isLittleEndian()) {
2053     unsigned indexOffset = CheckEven ? 4 : 0;
2054     if (ShuffleKind == 1) // Unary
2055       return isVMerge(N, indexOffset, 0);
2056     else if (ShuffleKind == 2) // swapped
2057       return isVMerge(N, indexOffset, 16);
2058     else
2059       return false;
2060   }
2061   else {
2062     unsigned indexOffset = CheckEven ? 0 : 4;
2063     if (ShuffleKind == 1) // Unary
2064       return isVMerge(N, indexOffset, 0);
2065     else if (ShuffleKind == 0) // Normal
2066       return isVMerge(N, indexOffset, 16);
2067     else
2068       return false;
2069   }
2070   return false;
2071 }
2072 
2073 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2074 /// amount, otherwise return -1.
2075 /// The ShuffleKind distinguishes between big-endian operations with two
2076 /// different inputs (0), either-endian operations with two identical inputs
2077 /// (1), and little-endian operations with two different inputs (2).  For the
2078 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2079 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2080                              SelectionDAG &DAG) {
2081   if (N->getValueType(0) != MVT::v16i8)
2082     return -1;
2083 
2084   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2085 
2086   // Find the first non-undef value in the shuffle mask.
2087   unsigned i;
2088   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2089     /*search*/;
2090 
2091   if (i == 16) return -1;  // all undef.
2092 
2093   // Otherwise, check to see if the rest of the elements are consecutively
2094   // numbered from this value.
2095   unsigned ShiftAmt = SVOp->getMaskElt(i);
2096   if (ShiftAmt < i) return -1;
2097 
2098   ShiftAmt -= i;
2099   bool isLE = DAG.getDataLayout().isLittleEndian();
2100 
2101   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2102     // Check the rest of the elements to see if they are consecutive.
2103     for (++i; i != 16; ++i)
2104       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2105         return -1;
2106   } else if (ShuffleKind == 1) {
2107     // Check the rest of the elements to see if they are consecutive.
2108     for (++i; i != 16; ++i)
2109       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2110         return -1;
2111   } else
2112     return -1;
2113 
2114   if (isLE)
2115     ShiftAmt = 16 - ShiftAmt;
2116 
2117   return ShiftAmt;
2118 }
2119 
2120 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2121 /// specifies a splat of a single element that is suitable for input to
2122 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2123 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2124   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2125          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2126 
2127   // The consecutive indices need to specify an element, not part of two
2128   // different elements.  So abandon ship early if this isn't the case.
2129   if (N->getMaskElt(0) % EltSize != 0)
2130     return false;
2131 
2132   // This is a splat operation if each element of the permute is the same, and
2133   // if the value doesn't reference the second vector.
2134   unsigned ElementBase = N->getMaskElt(0);
2135 
2136   // FIXME: Handle UNDEF elements too!
2137   if (ElementBase >= 16)
2138     return false;
2139 
2140   // Check that the indices are consecutive, in the case of a multi-byte element
2141   // splatted with a v16i8 mask.
2142   for (unsigned i = 1; i != EltSize; ++i)
2143     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2144       return false;
2145 
2146   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2147     if (N->getMaskElt(i) < 0) continue;
2148     for (unsigned j = 0; j != EltSize; ++j)
2149       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2150         return false;
2151   }
2152   return true;
2153 }
2154 
2155 /// Check that the mask is shuffling N byte elements. Within each N byte
2156 /// element of the mask, the indices could be either in increasing or
2157 /// decreasing order as long as they are consecutive.
2158 /// \param[in] N the shuffle vector SD Node to analyze
2159 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2160 /// Word/DoubleWord/QuadWord).
2161 /// \param[in] StepLen the delta indices number among the N byte element, if
2162 /// the mask is in increasing/decreasing order then it is 1/-1.
2163 /// \return true iff the mask is shuffling N byte elements.
2164 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2165                                    int StepLen) {
2166   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2167          "Unexpected element width.");
2168   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2169 
2170   unsigned NumOfElem = 16 / Width;
2171   unsigned MaskVal[16]; //  Width is never greater than 16
2172   for (unsigned i = 0; i < NumOfElem; ++i) {
2173     MaskVal[0] = N->getMaskElt(i * Width);
2174     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2175       return false;
2176     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2177       return false;
2178     }
2179 
2180     for (unsigned int j = 1; j < Width; ++j) {
2181       MaskVal[j] = N->getMaskElt(i * Width + j);
2182       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2183         return false;
2184       }
2185     }
2186   }
2187 
2188   return true;
2189 }
2190 
2191 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2192                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2193   if (!isNByteElemShuffleMask(N, 4, 1))
2194     return false;
2195 
2196   // Now we look at mask elements 0,4,8,12
2197   unsigned M0 = N->getMaskElt(0) / 4;
2198   unsigned M1 = N->getMaskElt(4) / 4;
2199   unsigned M2 = N->getMaskElt(8) / 4;
2200   unsigned M3 = N->getMaskElt(12) / 4;
2201   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2202   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2203 
2204   // Below, let H and L be arbitrary elements of the shuffle mask
2205   // where H is in the range [4,7] and L is in the range [0,3].
2206   // H, 1, 2, 3 or L, 5, 6, 7
2207   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2208       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2209     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2210     InsertAtByte = IsLE ? 12 : 0;
2211     Swap = M0 < 4;
2212     return true;
2213   }
2214   // 0, H, 2, 3 or 4, L, 6, 7
2215   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2216       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2217     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2218     InsertAtByte = IsLE ? 8 : 4;
2219     Swap = M1 < 4;
2220     return true;
2221   }
2222   // 0, 1, H, 3 or 4, 5, L, 7
2223   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2224       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2225     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2226     InsertAtByte = IsLE ? 4 : 8;
2227     Swap = M2 < 4;
2228     return true;
2229   }
2230   // 0, 1, 2, H or 4, 5, 6, L
2231   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2232       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2233     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2234     InsertAtByte = IsLE ? 0 : 12;
2235     Swap = M3 < 4;
2236     return true;
2237   }
2238 
2239   // If both vector operands for the shuffle are the same vector, the mask will
2240   // contain only elements from the first one and the second one will be undef.
2241   if (N->getOperand(1).isUndef()) {
2242     ShiftElts = 0;
2243     Swap = true;
2244     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2245     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2246       InsertAtByte = IsLE ? 12 : 0;
2247       return true;
2248     }
2249     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2250       InsertAtByte = IsLE ? 8 : 4;
2251       return true;
2252     }
2253     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2254       InsertAtByte = IsLE ? 4 : 8;
2255       return true;
2256     }
2257     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2258       InsertAtByte = IsLE ? 0 : 12;
2259       return true;
2260     }
2261   }
2262 
2263   return false;
2264 }
2265 
2266 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2267                                bool &Swap, bool IsLE) {
2268   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2269   // Ensure each byte index of the word is consecutive.
2270   if (!isNByteElemShuffleMask(N, 4, 1))
2271     return false;
2272 
2273   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2274   unsigned M0 = N->getMaskElt(0) / 4;
2275   unsigned M1 = N->getMaskElt(4) / 4;
2276   unsigned M2 = N->getMaskElt(8) / 4;
2277   unsigned M3 = N->getMaskElt(12) / 4;
2278 
2279   // If both vector operands for the shuffle are the same vector, the mask will
2280   // contain only elements from the first one and the second one will be undef.
2281   if (N->getOperand(1).isUndef()) {
2282     assert(M0 < 4 && "Indexing into an undef vector?");
2283     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2284       return false;
2285 
2286     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2287     Swap = false;
2288     return true;
2289   }
2290 
2291   // Ensure each word index of the ShuffleVector Mask is consecutive.
2292   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2293     return false;
2294 
2295   if (IsLE) {
2296     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2297       // Input vectors don't need to be swapped if the leading element
2298       // of the result is one of the 3 left elements of the second vector
2299       // (or if there is no shift to be done at all).
2300       Swap = false;
2301       ShiftElts = (8 - M0) % 8;
2302     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2303       // Input vectors need to be swapped if the leading element
2304       // of the result is one of the 3 left elements of the first vector
2305       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2306       Swap = true;
2307       ShiftElts = (4 - M0) % 4;
2308     }
2309 
2310     return true;
2311   } else {                                          // BE
2312     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2313       // Input vectors don't need to be swapped if the leading element
2314       // of the result is one of the 4 elements of the first vector.
2315       Swap = false;
2316       ShiftElts = M0;
2317     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2318       // Input vectors need to be swapped if the leading element
2319       // of the result is one of the 4 elements of the right vector.
2320       Swap = true;
2321       ShiftElts = M0 - 4;
2322     }
2323 
2324     return true;
2325   }
2326 }
2327 
2328 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2329   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2330 
2331   if (!isNByteElemShuffleMask(N, Width, -1))
2332     return false;
2333 
2334   for (int i = 0; i < 16; i += Width)
2335     if (N->getMaskElt(i) != i + Width - 1)
2336       return false;
2337 
2338   return true;
2339 }
2340 
2341 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2342   return isXXBRShuffleMaskHelper(N, 2);
2343 }
2344 
2345 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2346   return isXXBRShuffleMaskHelper(N, 4);
2347 }
2348 
2349 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2350   return isXXBRShuffleMaskHelper(N, 8);
2351 }
2352 
2353 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2354   return isXXBRShuffleMaskHelper(N, 16);
2355 }
2356 
2357 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2358 /// if the inputs to the instruction should be swapped and set \p DM to the
2359 /// value for the immediate.
2360 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2361 /// AND element 0 of the result comes from the first input (LE) or second input
2362 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2363 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2364 /// mask.
2365 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2366                                bool &Swap, bool IsLE) {
2367   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2368 
2369   // Ensure each byte index of the double word is consecutive.
2370   if (!isNByteElemShuffleMask(N, 8, 1))
2371     return false;
2372 
2373   unsigned M0 = N->getMaskElt(0) / 8;
2374   unsigned M1 = N->getMaskElt(8) / 8;
2375   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2376 
2377   // If both vector operands for the shuffle are the same vector, the mask will
2378   // contain only elements from the first one and the second one will be undef.
2379   if (N->getOperand(1).isUndef()) {
2380     if ((M0 | M1) < 2) {
2381       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2382       Swap = false;
2383       return true;
2384     } else
2385       return false;
2386   }
2387 
2388   if (IsLE) {
2389     if (M0 > 1 && M1 < 2) {
2390       Swap = false;
2391     } else if (M0 < 2 && M1 > 1) {
2392       M0 = (M0 + 2) % 4;
2393       M1 = (M1 + 2) % 4;
2394       Swap = true;
2395     } else
2396       return false;
2397 
2398     // Note: if control flow comes here that means Swap is already set above
2399     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2400     return true;
2401   } else { // BE
2402     if (M0 < 2 && M1 > 1) {
2403       Swap = false;
2404     } else if (M0 > 1 && M1 < 2) {
2405       M0 = (M0 + 2) % 4;
2406       M1 = (M1 + 2) % 4;
2407       Swap = true;
2408     } else
2409       return false;
2410 
2411     // Note: if control flow comes here that means Swap is already set above
2412     DM = (M0 << 1) + (M1 & 1);
2413     return true;
2414   }
2415 }
2416 
2417 
2418 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2419 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2420 /// elements are counted from the left of the vector register).
2421 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2422                                          SelectionDAG &DAG) {
2423   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2424   assert(isSplatShuffleMask(SVOp, EltSize));
2425   if (DAG.getDataLayout().isLittleEndian())
2426     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2427   else
2428     return SVOp->getMaskElt(0) / EltSize;
2429 }
2430 
2431 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2432 /// by using a vspltis[bhw] instruction of the specified element size, return
2433 /// the constant being splatted.  The ByteSize field indicates the number of
2434 /// bytes of each element [124] -> [bhw].
2435 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2436   SDValue OpVal(nullptr, 0);
2437 
2438   // If ByteSize of the splat is bigger than the element size of the
2439   // build_vector, then we have a case where we are checking for a splat where
2440   // multiple elements of the buildvector are folded together into a single
2441   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2442   unsigned EltSize = 16/N->getNumOperands();
2443   if (EltSize < ByteSize) {
2444     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2445     SDValue UniquedVals[4];
2446     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2447 
2448     // See if all of the elements in the buildvector agree across.
2449     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2450       if (N->getOperand(i).isUndef()) continue;
2451       // If the element isn't a constant, bail fully out.
2452       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2453 
2454       if (!UniquedVals[i&(Multiple-1)].getNode())
2455         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2456       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2457         return SDValue();  // no match.
2458     }
2459 
2460     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2461     // either constant or undef values that are identical for each chunk.  See
2462     // if these chunks can form into a larger vspltis*.
2463 
2464     // Check to see if all of the leading entries are either 0 or -1.  If
2465     // neither, then this won't fit into the immediate field.
2466     bool LeadingZero = true;
2467     bool LeadingOnes = true;
2468     for (unsigned i = 0; i != Multiple-1; ++i) {
2469       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2470 
2471       LeadingZero &= isNullConstant(UniquedVals[i]);
2472       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2473     }
2474     // Finally, check the least significant entry.
2475     if (LeadingZero) {
2476       if (!UniquedVals[Multiple-1].getNode())
2477         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2478       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2479       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2480         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2481     }
2482     if (LeadingOnes) {
2483       if (!UniquedVals[Multiple-1].getNode())
2484         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2485       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2486       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2487         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2488     }
2489 
2490     return SDValue();
2491   }
2492 
2493   // Check to see if this buildvec has a single non-undef value in its elements.
2494   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2495     if (N->getOperand(i).isUndef()) continue;
2496     if (!OpVal.getNode())
2497       OpVal = N->getOperand(i);
2498     else if (OpVal != N->getOperand(i))
2499       return SDValue();
2500   }
2501 
2502   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2503 
2504   unsigned ValSizeInBytes = EltSize;
2505   uint64_t Value = 0;
2506   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2507     Value = CN->getZExtValue();
2508   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2509     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2510     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2511   }
2512 
2513   // If the splat value is larger than the element value, then we can never do
2514   // this splat.  The only case that we could fit the replicated bits into our
2515   // immediate field for would be zero, and we prefer to use vxor for it.
2516   if (ValSizeInBytes < ByteSize) return SDValue();
2517 
2518   // If the element value is larger than the splat value, check if it consists
2519   // of a repeated bit pattern of size ByteSize.
2520   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2521     return SDValue();
2522 
2523   // Properly sign extend the value.
2524   int MaskVal = SignExtend32(Value, ByteSize * 8);
2525 
2526   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2527   if (MaskVal == 0) return SDValue();
2528 
2529   // Finally, if this value fits in a 5 bit sext field, return it
2530   if (SignExtend32<5>(MaskVal) == MaskVal)
2531     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2532   return SDValue();
2533 }
2534 
2535 //===----------------------------------------------------------------------===//
2536 //  Addressing Mode Selection
2537 //===----------------------------------------------------------------------===//
2538 
2539 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2540 /// or 64-bit immediate, and if the value can be accurately represented as a
2541 /// sign extension from a 16-bit value.  If so, this returns true and the
2542 /// immediate.
2543 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2544   if (!isa<ConstantSDNode>(N))
2545     return false;
2546 
2547   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2548   if (N->getValueType(0) == MVT::i32)
2549     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2550   else
2551     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2552 }
2553 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2554   return isIntS16Immediate(Op.getNode(), Imm);
2555 }
2556 
2557 /// Used when computing address flags for selecting loads and stores.
2558 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2559 /// An OR of two provably disjoint values is equivalent to an ADD.
2560 /// Most PPC load/store instructions compute the effective address as a sum,
2561 /// so doing this conversion is useful.
2562 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2563   if (N.getOpcode() != ISD::OR)
2564     return false;
2565   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2566   if (!LHSKnown.Zero.getBoolValue())
2567     return false;
2568   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2569   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2570 }
2571 
2572 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2573 /// be represented as an indexed [r+r] operation.
2574 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2575                                                SDValue &Index,
2576                                                SelectionDAG &DAG) const {
2577   for (SDNode *U : N->uses()) {
2578     if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2579       if (Memop->getMemoryVT() == MVT::f64) {
2580           Base = N.getOperand(0);
2581           Index = N.getOperand(1);
2582           return true;
2583       }
2584     }
2585   }
2586   return false;
2587 }
2588 
2589 /// isIntS34Immediate - This method tests if value of node given can be
2590 /// accurately represented as a sign extension from a 34-bit value.  If so,
2591 /// this returns true and the immediate.
2592 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2593   if (!isa<ConstantSDNode>(N))
2594     return false;
2595 
2596   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2597   return isInt<34>(Imm);
2598 }
2599 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2600   return isIntS34Immediate(Op.getNode(), Imm);
2601 }
2602 
2603 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2604 /// can be represented as an indexed [r+r] operation.  Returns false if it
2605 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2606 /// non-zero and N can be represented by a base register plus a signed 16-bit
2607 /// displacement, make a more precise judgement by checking (displacement % \p
2608 /// EncodingAlignment).
2609 bool PPCTargetLowering::SelectAddressRegReg(
2610     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2611     MaybeAlign EncodingAlignment) const {
2612   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2613   // a [pc+imm].
2614   if (SelectAddressPCRel(N, Base))
2615     return false;
2616 
2617   int16_t Imm = 0;
2618   if (N.getOpcode() == ISD::ADD) {
2619     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2620     // SPE load/store can only handle 8-bit offsets.
2621     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2622         return true;
2623     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2624         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2625       return false; // r+i
2626     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2627       return false;    // r+i
2628 
2629     Base = N.getOperand(0);
2630     Index = N.getOperand(1);
2631     return true;
2632   } else if (N.getOpcode() == ISD::OR) {
2633     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2634         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2635       return false; // r+i can fold it if we can.
2636 
2637     // If this is an or of disjoint bitfields, we can codegen this as an add
2638     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2639     // disjoint.
2640     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2641 
2642     if (LHSKnown.Zero.getBoolValue()) {
2643       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2644       // If all of the bits are known zero on the LHS or RHS, the add won't
2645       // carry.
2646       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2647         Base = N.getOperand(0);
2648         Index = N.getOperand(1);
2649         return true;
2650       }
2651     }
2652   }
2653 
2654   return false;
2655 }
2656 
2657 // If we happen to be doing an i64 load or store into a stack slot that has
2658 // less than a 4-byte alignment, then the frame-index elimination may need to
2659 // use an indexed load or store instruction (because the offset may not be a
2660 // multiple of 4). The extra register needed to hold the offset comes from the
2661 // register scavenger, and it is possible that the scavenger will need to use
2662 // an emergency spill slot. As a result, we need to make sure that a spill slot
2663 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2664 // stack slot.
2665 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2666   // FIXME: This does not handle the LWA case.
2667   if (VT != MVT::i64)
2668     return;
2669 
2670   // NOTE: We'll exclude negative FIs here, which come from argument
2671   // lowering, because there are no known test cases triggering this problem
2672   // using packed structures (or similar). We can remove this exclusion if
2673   // we find such a test case. The reason why this is so test-case driven is
2674   // because this entire 'fixup' is only to prevent crashes (from the
2675   // register scavenger) on not-really-valid inputs. For example, if we have:
2676   //   %a = alloca i1
2677   //   %b = bitcast i1* %a to i64*
2678   //   store i64* a, i64 b
2679   // then the store should really be marked as 'align 1', but is not. If it
2680   // were marked as 'align 1' then the indexed form would have been
2681   // instruction-selected initially, and the problem this 'fixup' is preventing
2682   // won't happen regardless.
2683   if (FrameIdx < 0)
2684     return;
2685 
2686   MachineFunction &MF = DAG.getMachineFunction();
2687   MachineFrameInfo &MFI = MF.getFrameInfo();
2688 
2689   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2690     return;
2691 
2692   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2693   FuncInfo->setHasNonRISpills();
2694 }
2695 
2696 /// Returns true if the address N can be represented by a base register plus
2697 /// a signed 16-bit displacement [r+imm], and if it is not better
2698 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2699 /// displacements that are multiples of that value.
2700 bool PPCTargetLowering::SelectAddressRegImm(
2701     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2702     MaybeAlign EncodingAlignment) const {
2703   // FIXME dl should come from parent load or store, not from address
2704   SDLoc dl(N);
2705 
2706   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2707   // a [pc+imm].
2708   if (SelectAddressPCRel(N, Base))
2709     return false;
2710 
2711   // If this can be more profitably realized as r+r, fail.
2712   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2713     return false;
2714 
2715   if (N.getOpcode() == ISD::ADD) {
2716     int16_t imm = 0;
2717     if (isIntS16Immediate(N.getOperand(1), imm) &&
2718         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2719       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2720       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2721         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2722         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2723       } else {
2724         Base = N.getOperand(0);
2725       }
2726       return true; // [r+i]
2727     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2728       // Match LOAD (ADD (X, Lo(G))).
2729       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2730              && "Cannot handle constant offsets yet!");
2731       Disp = N.getOperand(1).getOperand(0);  // The global address.
2732       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2733              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2734              Disp.getOpcode() == ISD::TargetConstantPool ||
2735              Disp.getOpcode() == ISD::TargetJumpTable);
2736       Base = N.getOperand(0);
2737       return true;  // [&g+r]
2738     }
2739   } else if (N.getOpcode() == ISD::OR) {
2740     int16_t imm = 0;
2741     if (isIntS16Immediate(N.getOperand(1), imm) &&
2742         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2743       // If this is an or of disjoint bitfields, we can codegen this as an add
2744       // (for better address arithmetic) if the LHS and RHS of the OR are
2745       // provably disjoint.
2746       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2747 
2748       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2749         // If all of the bits are known zero on the LHS or RHS, the add won't
2750         // carry.
2751         if (FrameIndexSDNode *FI =
2752               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2753           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2754           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2755         } else {
2756           Base = N.getOperand(0);
2757         }
2758         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2759         return true;
2760       }
2761     }
2762   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2763     // Loading from a constant address.
2764 
2765     // If this address fits entirely in a 16-bit sext immediate field, codegen
2766     // this as "d, 0"
2767     int16_t Imm;
2768     if (isIntS16Immediate(CN, Imm) &&
2769         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2770       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2771       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2772                              CN->getValueType(0));
2773       return true;
2774     }
2775 
2776     // Handle 32-bit sext immediates with LIS + addr mode.
2777     if ((CN->getValueType(0) == MVT::i32 ||
2778          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2779         (!EncodingAlignment ||
2780          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2781       int Addr = (int)CN->getZExtValue();
2782 
2783       // Otherwise, break this down into an LIS + disp.
2784       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2785 
2786       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2787                                    MVT::i32);
2788       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2789       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2790       return true;
2791     }
2792   }
2793 
2794   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2795   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2796     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2797     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2798   } else
2799     Base = N;
2800   return true;      // [r+0]
2801 }
2802 
2803 /// Similar to the 16-bit case but for instructions that take a 34-bit
2804 /// displacement field (prefixed loads/stores).
2805 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2806                                               SDValue &Base,
2807                                               SelectionDAG &DAG) const {
2808   // Only on 64-bit targets.
2809   if (N.getValueType() != MVT::i64)
2810     return false;
2811 
2812   SDLoc dl(N);
2813   int64_t Imm = 0;
2814 
2815   if (N.getOpcode() == ISD::ADD) {
2816     if (!isIntS34Immediate(N.getOperand(1), Imm))
2817       return false;
2818     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2819     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2820       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2821     else
2822       Base = N.getOperand(0);
2823     return true;
2824   }
2825 
2826   if (N.getOpcode() == ISD::OR) {
2827     if (!isIntS34Immediate(N.getOperand(1), Imm))
2828       return false;
2829     // If this is an or of disjoint bitfields, we can codegen this as an add
2830     // (for better address arithmetic) if the LHS and RHS of the OR are
2831     // provably disjoint.
2832     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2833     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2834       return false;
2835     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2836       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2837     else
2838       Base = N.getOperand(0);
2839     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2840     return true;
2841   }
2842 
2843   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2844     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2845     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2846     return true;
2847   }
2848 
2849   return false;
2850 }
2851 
2852 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2853 /// represented as an indexed [r+r] operation.
2854 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2855                                                 SDValue &Index,
2856                                                 SelectionDAG &DAG) const {
2857   // Check to see if we can easily represent this as an [r+r] address.  This
2858   // will fail if it thinks that the address is more profitably represented as
2859   // reg+imm, e.g. where imm = 0.
2860   if (SelectAddressRegReg(N, Base, Index, DAG))
2861     return true;
2862 
2863   // If the address is the result of an add, we will utilize the fact that the
2864   // address calculation includes an implicit add.  However, we can reduce
2865   // register pressure if we do not materialize a constant just for use as the
2866   // index register.  We only get rid of the add if it is not an add of a
2867   // value and a 16-bit signed constant and both have a single use.
2868   int16_t imm = 0;
2869   if (N.getOpcode() == ISD::ADD &&
2870       (!isIntS16Immediate(N.getOperand(1), imm) ||
2871        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2872     Base = N.getOperand(0);
2873     Index = N.getOperand(1);
2874     return true;
2875   }
2876 
2877   // Otherwise, do it the hard way, using R0 as the base register.
2878   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2879                          N.getValueType());
2880   Index = N;
2881   return true;
2882 }
2883 
2884 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2885   Ty *PCRelCand = dyn_cast<Ty>(N);
2886   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2887 }
2888 
2889 /// Returns true if this address is a PC Relative address.
2890 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2891 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2892 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2893   // This is a materialize PC Relative node. Always select this as PC Relative.
2894   Base = N;
2895   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2896     return true;
2897   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2898       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2899       isValidPCRelNode<JumpTableSDNode>(N) ||
2900       isValidPCRelNode<BlockAddressSDNode>(N))
2901     return true;
2902   return false;
2903 }
2904 
2905 /// Returns true if we should use a direct load into vector instruction
2906 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2907 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2908 
2909   // If there are any other uses other than scalar to vector, then we should
2910   // keep it as a scalar load -> direct move pattern to prevent multiple
2911   // loads.
2912   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2913   if (!LD)
2914     return false;
2915 
2916   EVT MemVT = LD->getMemoryVT();
2917   if (!MemVT.isSimple())
2918     return false;
2919   switch(MemVT.getSimpleVT().SimpleTy) {
2920   case MVT::i64:
2921     break;
2922   case MVT::i32:
2923     if (!ST.hasP8Vector())
2924       return false;
2925     break;
2926   case MVT::i16:
2927   case MVT::i8:
2928     if (!ST.hasP9Vector())
2929       return false;
2930     break;
2931   default:
2932     return false;
2933   }
2934 
2935   SDValue LoadedVal(N, 0);
2936   if (!LoadedVal.hasOneUse())
2937     return false;
2938 
2939   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2940        UI != UE; ++UI)
2941     if (UI.getUse().get().getResNo() == 0 &&
2942         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2943         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2944       return false;
2945 
2946   return true;
2947 }
2948 
2949 /// getPreIndexedAddressParts - returns true by value, base pointer and
2950 /// offset pointer and addressing mode by reference if the node's address
2951 /// can be legally represented as pre-indexed load / store address.
2952 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2953                                                   SDValue &Offset,
2954                                                   ISD::MemIndexedMode &AM,
2955                                                   SelectionDAG &DAG) const {
2956   if (DisablePPCPreinc) return false;
2957 
2958   bool isLoad = true;
2959   SDValue Ptr;
2960   EVT VT;
2961   unsigned Alignment;
2962   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2963     Ptr = LD->getBasePtr();
2964     VT = LD->getMemoryVT();
2965     Alignment = LD->getAlignment();
2966   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2967     Ptr = ST->getBasePtr();
2968     VT  = ST->getMemoryVT();
2969     Alignment = ST->getAlignment();
2970     isLoad = false;
2971   } else
2972     return false;
2973 
2974   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2975   // instructions because we can fold these into a more efficient instruction
2976   // instead, (such as LXSD).
2977   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2978     return false;
2979   }
2980 
2981   // PowerPC doesn't have preinc load/store instructions for vectors
2982   if (VT.isVector())
2983     return false;
2984 
2985   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2986     // Common code will reject creating a pre-inc form if the base pointer
2987     // is a frame index, or if N is a store and the base pointer is either
2988     // the same as or a predecessor of the value being stored.  Check for
2989     // those situations here, and try with swapped Base/Offset instead.
2990     bool Swap = false;
2991 
2992     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2993       Swap = true;
2994     else if (!isLoad) {
2995       SDValue Val = cast<StoreSDNode>(N)->getValue();
2996       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2997         Swap = true;
2998     }
2999 
3000     if (Swap)
3001       std::swap(Base, Offset);
3002 
3003     AM = ISD::PRE_INC;
3004     return true;
3005   }
3006 
3007   // LDU/STU can only handle immediates that are a multiple of 4.
3008   if (VT != MVT::i64) {
3009     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
3010       return false;
3011   } else {
3012     // LDU/STU need an address with at least 4-byte alignment.
3013     if (Alignment < 4)
3014       return false;
3015 
3016     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3017       return false;
3018   }
3019 
3020   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3021     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3022     // sext i32 to i64 when addr mode is r+i.
3023     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3024         LD->getExtensionType() == ISD::SEXTLOAD &&
3025         isa<ConstantSDNode>(Offset))
3026       return false;
3027   }
3028 
3029   AM = ISD::PRE_INC;
3030   return true;
3031 }
3032 
3033 //===----------------------------------------------------------------------===//
3034 //  LowerOperation implementation
3035 //===----------------------------------------------------------------------===//
3036 
3037 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3038 /// and LoOpFlags to the target MO flags.
3039 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3040                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3041                                const GlobalValue *GV = nullptr) {
3042   HiOpFlags = PPCII::MO_HA;
3043   LoOpFlags = PPCII::MO_LO;
3044 
3045   // Don't use the pic base if not in PIC relocation model.
3046   if (IsPIC) {
3047     HiOpFlags |= PPCII::MO_PIC_FLAG;
3048     LoOpFlags |= PPCII::MO_PIC_FLAG;
3049   }
3050 }
3051 
3052 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3053                              SelectionDAG &DAG) {
3054   SDLoc DL(HiPart);
3055   EVT PtrVT = HiPart.getValueType();
3056   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3057 
3058   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3059   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3060 
3061   // With PIC, the first instruction is actually "GR+hi(&G)".
3062   if (isPIC)
3063     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3064                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3065 
3066   // Generate non-pic code that has direct accesses to the constant pool.
3067   // The address of the global is just (hi(&g)+lo(&g)).
3068   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3069 }
3070 
3071 static void setUsesTOCBasePtr(MachineFunction &MF) {
3072   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3073   FuncInfo->setUsesTOCBasePtr();
3074 }
3075 
3076 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3077   setUsesTOCBasePtr(DAG.getMachineFunction());
3078 }
3079 
3080 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3081                                        SDValue GA) const {
3082   const bool Is64Bit = Subtarget.isPPC64();
3083   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3084   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3085                         : Subtarget.isAIXABI()
3086                               ? DAG.getRegister(PPC::R2, VT)
3087                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3088   SDValue Ops[] = { GA, Reg };
3089   return DAG.getMemIntrinsicNode(
3090       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3091       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3092       MachineMemOperand::MOLoad);
3093 }
3094 
3095 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3096                                              SelectionDAG &DAG) const {
3097   EVT PtrVT = Op.getValueType();
3098   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3099   const Constant *C = CP->getConstVal();
3100 
3101   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3102   // The actual address of the GlobalValue is stored in the TOC.
3103   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3104     if (Subtarget.isUsingPCRelativeCalls()) {
3105       SDLoc DL(CP);
3106       EVT Ty = getPointerTy(DAG.getDataLayout());
3107       SDValue ConstPool = DAG.getTargetConstantPool(
3108           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3109       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3110     }
3111     setUsesTOCBasePtr(DAG);
3112     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3113     return getTOCEntry(DAG, SDLoc(CP), GA);
3114   }
3115 
3116   unsigned MOHiFlag, MOLoFlag;
3117   bool IsPIC = isPositionIndependent();
3118   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3119 
3120   if (IsPIC && Subtarget.isSVR4ABI()) {
3121     SDValue GA =
3122         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3123     return getTOCEntry(DAG, SDLoc(CP), GA);
3124   }
3125 
3126   SDValue CPIHi =
3127       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3128   SDValue CPILo =
3129       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3130   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3131 }
3132 
3133 // For 64-bit PowerPC, prefer the more compact relative encodings.
3134 // This trades 32 bits per jump table entry for one or two instructions
3135 // on the jump site.
3136 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3137   if (isJumpTableRelative())
3138     return MachineJumpTableInfo::EK_LabelDifference32;
3139 
3140   return TargetLowering::getJumpTableEncoding();
3141 }
3142 
3143 bool PPCTargetLowering::isJumpTableRelative() const {
3144   if (UseAbsoluteJumpTables)
3145     return false;
3146   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3147     return true;
3148   return TargetLowering::isJumpTableRelative();
3149 }
3150 
3151 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3152                                                     SelectionDAG &DAG) const {
3153   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3154     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3155 
3156   switch (getTargetMachine().getCodeModel()) {
3157   case CodeModel::Small:
3158   case CodeModel::Medium:
3159     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3160   default:
3161     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3162                        getPointerTy(DAG.getDataLayout()));
3163   }
3164 }
3165 
3166 const MCExpr *
3167 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3168                                                 unsigned JTI,
3169                                                 MCContext &Ctx) const {
3170   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3171     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3172 
3173   switch (getTargetMachine().getCodeModel()) {
3174   case CodeModel::Small:
3175   case CodeModel::Medium:
3176     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3177   default:
3178     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3179   }
3180 }
3181 
3182 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3183   EVT PtrVT = Op.getValueType();
3184   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3185 
3186   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3187   if (Subtarget.isUsingPCRelativeCalls()) {
3188     SDLoc DL(JT);
3189     EVT Ty = getPointerTy(DAG.getDataLayout());
3190     SDValue GA =
3191         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3192     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3193     return MatAddr;
3194   }
3195 
3196   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3197   // The actual address of the GlobalValue is stored in the TOC.
3198   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3199     setUsesTOCBasePtr(DAG);
3200     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3201     return getTOCEntry(DAG, SDLoc(JT), GA);
3202   }
3203 
3204   unsigned MOHiFlag, MOLoFlag;
3205   bool IsPIC = isPositionIndependent();
3206   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3207 
3208   if (IsPIC && Subtarget.isSVR4ABI()) {
3209     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3210                                         PPCII::MO_PIC_FLAG);
3211     return getTOCEntry(DAG, SDLoc(GA), GA);
3212   }
3213 
3214   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3215   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3216   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3217 }
3218 
3219 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3220                                              SelectionDAG &DAG) const {
3221   EVT PtrVT = Op.getValueType();
3222   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3223   const BlockAddress *BA = BASDN->getBlockAddress();
3224 
3225   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3226   if (Subtarget.isUsingPCRelativeCalls()) {
3227     SDLoc DL(BASDN);
3228     EVT Ty = getPointerTy(DAG.getDataLayout());
3229     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3230                                            PPCII::MO_PCREL_FLAG);
3231     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3232     return MatAddr;
3233   }
3234 
3235   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3236   // The actual BlockAddress is stored in the TOC.
3237   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3238     setUsesTOCBasePtr(DAG);
3239     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3240     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3241   }
3242 
3243   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3244   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3245     return getTOCEntry(
3246         DAG, SDLoc(BASDN),
3247         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3248 
3249   unsigned MOHiFlag, MOLoFlag;
3250   bool IsPIC = isPositionIndependent();
3251   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3252   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3253   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3254   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3255 }
3256 
3257 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3258                                               SelectionDAG &DAG) const {
3259   if (Subtarget.isAIXABI())
3260     return LowerGlobalTLSAddressAIX(Op, DAG);
3261 
3262   return LowerGlobalTLSAddressLinux(Op, DAG);
3263 }
3264 
3265 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3266                                                     SelectionDAG &DAG) const {
3267   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3268 
3269   if (DAG.getTarget().useEmulatedTLS())
3270     report_fatal_error("Emulated TLS is not yet supported on AIX");
3271 
3272   SDLoc dl(GA);
3273   const GlobalValue *GV = GA->getGlobal();
3274   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3275 
3276   // The general-dynamic model is the only access model supported for now, so
3277   // all the GlobalTLSAddress nodes are lowered with this model.
3278   // We need to generate two TOC entries, one for the variable offset, one for
3279   // the region handle. The global address for the TOC entry of the region
3280   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3281   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3282   SDValue VariableOffsetTGA =
3283       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3284   SDValue RegionHandleTGA =
3285       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3286   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3287   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3288   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3289                      RegionHandle);
3290 }
3291 
3292 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3293                                                       SelectionDAG &DAG) const {
3294   // FIXME: TLS addresses currently use medium model code sequences,
3295   // which is the most useful form.  Eventually support for small and
3296   // large models could be added if users need it, at the cost of
3297   // additional complexity.
3298   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3299   if (DAG.getTarget().useEmulatedTLS())
3300     return LowerToTLSEmulatedModel(GA, DAG);
3301 
3302   SDLoc dl(GA);
3303   const GlobalValue *GV = GA->getGlobal();
3304   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3305   bool is64bit = Subtarget.isPPC64();
3306   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3307   PICLevel::Level picLevel = M->getPICLevel();
3308 
3309   const TargetMachine &TM = getTargetMachine();
3310   TLSModel::Model Model = TM.getTLSModel(GV);
3311 
3312   if (Model == TLSModel::LocalExec) {
3313     if (Subtarget.isUsingPCRelativeCalls()) {
3314       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3315       SDValue TGA = DAG.getTargetGlobalAddress(
3316           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3317       SDValue MatAddr =
3318           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3319       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3320     }
3321 
3322     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3323                                                PPCII::MO_TPREL_HA);
3324     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3325                                                PPCII::MO_TPREL_LO);
3326     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3327                              : DAG.getRegister(PPC::R2, MVT::i32);
3328 
3329     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3330     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3331   }
3332 
3333   if (Model == TLSModel::InitialExec) {
3334     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3335     SDValue TGA = DAG.getTargetGlobalAddress(
3336         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3337     SDValue TGATLS = DAG.getTargetGlobalAddress(
3338         GV, dl, PtrVT, 0,
3339         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3340     SDValue TPOffset;
3341     if (IsPCRel) {
3342       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3343       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3344                              MachinePointerInfo());
3345     } else {
3346       SDValue GOTPtr;
3347       if (is64bit) {
3348         setUsesTOCBasePtr(DAG);
3349         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3350         GOTPtr =
3351             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3352       } else {
3353         if (!TM.isPositionIndependent())
3354           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3355         else if (picLevel == PICLevel::SmallPIC)
3356           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3357         else
3358           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3359       }
3360       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3361     }
3362     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3363   }
3364 
3365   if (Model == TLSModel::GeneralDynamic) {
3366     if (Subtarget.isUsingPCRelativeCalls()) {
3367       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3368                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3369       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3370     }
3371 
3372     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3373     SDValue GOTPtr;
3374     if (is64bit) {
3375       setUsesTOCBasePtr(DAG);
3376       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3377       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3378                                    GOTReg, TGA);
3379     } else {
3380       if (picLevel == PICLevel::SmallPIC)
3381         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3382       else
3383         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3384     }
3385     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3386                        GOTPtr, TGA, TGA);
3387   }
3388 
3389   if (Model == TLSModel::LocalDynamic) {
3390     if (Subtarget.isUsingPCRelativeCalls()) {
3391       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3392                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3393       SDValue MatPCRel =
3394           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3395       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3396     }
3397 
3398     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3399     SDValue GOTPtr;
3400     if (is64bit) {
3401       setUsesTOCBasePtr(DAG);
3402       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3403       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3404                            GOTReg, TGA);
3405     } else {
3406       if (picLevel == PICLevel::SmallPIC)
3407         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3408       else
3409         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3410     }
3411     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3412                                   PtrVT, GOTPtr, TGA, TGA);
3413     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3414                                       PtrVT, TLSAddr, TGA);
3415     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3416   }
3417 
3418   llvm_unreachable("Unknown TLS model!");
3419 }
3420 
3421 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3422                                               SelectionDAG &DAG) const {
3423   EVT PtrVT = Op.getValueType();
3424   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3425   SDLoc DL(GSDN);
3426   const GlobalValue *GV = GSDN->getGlobal();
3427 
3428   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3429   // The actual address of the GlobalValue is stored in the TOC.
3430   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3431     if (Subtarget.isUsingPCRelativeCalls()) {
3432       EVT Ty = getPointerTy(DAG.getDataLayout());
3433       if (isAccessedAsGotIndirect(Op)) {
3434         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3435                                                 PPCII::MO_PCREL_FLAG |
3436                                                     PPCII::MO_GOT_FLAG);
3437         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3438         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3439                                    MachinePointerInfo());
3440         return Load;
3441       } else {
3442         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3443                                                 PPCII::MO_PCREL_FLAG);
3444         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3445       }
3446     }
3447     setUsesTOCBasePtr(DAG);
3448     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3449     return getTOCEntry(DAG, DL, GA);
3450   }
3451 
3452   unsigned MOHiFlag, MOLoFlag;
3453   bool IsPIC = isPositionIndependent();
3454   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3455 
3456   if (IsPIC && Subtarget.isSVR4ABI()) {
3457     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3458                                             GSDN->getOffset(),
3459                                             PPCII::MO_PIC_FLAG);
3460     return getTOCEntry(DAG, DL, GA);
3461   }
3462 
3463   SDValue GAHi =
3464     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3465   SDValue GALo =
3466     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3467 
3468   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3469 }
3470 
3471 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3472   bool IsStrict = Op->isStrictFPOpcode();
3473   ISD::CondCode CC =
3474       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3475   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3476   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3477   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3478   EVT LHSVT = LHS.getValueType();
3479   SDLoc dl(Op);
3480 
3481   // Soften the setcc with libcall if it is fp128.
3482   if (LHSVT == MVT::f128) {
3483     assert(!Subtarget.hasP9Vector() &&
3484            "SETCC for f128 is already legal under Power9!");
3485     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3486                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3487     if (RHS.getNode())
3488       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3489                         DAG.getCondCode(CC));
3490     if (IsStrict)
3491       return DAG.getMergeValues({LHS, Chain}, dl);
3492     return LHS;
3493   }
3494 
3495   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3496 
3497   if (Op.getValueType() == MVT::v2i64) {
3498     // When the operands themselves are v2i64 values, we need to do something
3499     // special because VSX has no underlying comparison operations for these.
3500     if (LHS.getValueType() == MVT::v2i64) {
3501       // Equality can be handled by casting to the legal type for Altivec
3502       // comparisons, everything else needs to be expanded.
3503       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3504         return DAG.getNode(
3505             ISD::BITCAST, dl, MVT::v2i64,
3506             DAG.getSetCC(dl, MVT::v4i32,
3507                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3508                          DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC));
3509       }
3510 
3511       return SDValue();
3512     }
3513 
3514     // We handle most of these in the usual way.
3515     return Op;
3516   }
3517 
3518   // If we're comparing for equality to zero, expose the fact that this is
3519   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3520   // fold the new nodes.
3521   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3522     return V;
3523 
3524   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3525     // Leave comparisons against 0 and -1 alone for now, since they're usually
3526     // optimized.  FIXME: revisit this when we can custom lower all setcc
3527     // optimizations.
3528     if (C->isAllOnes() || C->isZero())
3529       return SDValue();
3530   }
3531 
3532   // If we have an integer seteq/setne, turn it into a compare against zero
3533   // by xor'ing the rhs with the lhs, which is faster than setting a
3534   // condition register, reading it back out, and masking the correct bit.  The
3535   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3536   // the result to other bit-twiddling opportunities.
3537   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3538     EVT VT = Op.getValueType();
3539     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3540     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3541   }
3542   return SDValue();
3543 }
3544 
3545 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3546   SDNode *Node = Op.getNode();
3547   EVT VT = Node->getValueType(0);
3548   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3549   SDValue InChain = Node->getOperand(0);
3550   SDValue VAListPtr = Node->getOperand(1);
3551   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3552   SDLoc dl(Node);
3553 
3554   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3555 
3556   // gpr_index
3557   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3558                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3559   InChain = GprIndex.getValue(1);
3560 
3561   if (VT == MVT::i64) {
3562     // Check if GprIndex is even
3563     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3564                                  DAG.getConstant(1, dl, MVT::i32));
3565     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3566                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3567     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3568                                           DAG.getConstant(1, dl, MVT::i32));
3569     // Align GprIndex to be even if it isn't
3570     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3571                            GprIndex);
3572   }
3573 
3574   // fpr index is 1 byte after gpr
3575   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3576                                DAG.getConstant(1, dl, MVT::i32));
3577 
3578   // fpr
3579   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3580                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3581   InChain = FprIndex.getValue(1);
3582 
3583   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3584                                        DAG.getConstant(8, dl, MVT::i32));
3585 
3586   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3587                                         DAG.getConstant(4, dl, MVT::i32));
3588 
3589   // areas
3590   SDValue OverflowArea =
3591       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3592   InChain = OverflowArea.getValue(1);
3593 
3594   SDValue RegSaveArea =
3595       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3596   InChain = RegSaveArea.getValue(1);
3597 
3598   // select overflow_area if index > 8
3599   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3600                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3601 
3602   // adjustment constant gpr_index * 4/8
3603   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3604                                     VT.isInteger() ? GprIndex : FprIndex,
3605                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3606                                                     MVT::i32));
3607 
3608   // OurReg = RegSaveArea + RegConstant
3609   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3610                                RegConstant);
3611 
3612   // Floating types are 32 bytes into RegSaveArea
3613   if (VT.isFloatingPoint())
3614     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3615                          DAG.getConstant(32, dl, MVT::i32));
3616 
3617   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3618   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3619                                    VT.isInteger() ? GprIndex : FprIndex,
3620                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3621                                                    MVT::i32));
3622 
3623   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3624                               VT.isInteger() ? VAListPtr : FprPtr,
3625                               MachinePointerInfo(SV), MVT::i8);
3626 
3627   // determine if we should load from reg_save_area or overflow_area
3628   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3629 
3630   // increase overflow_area by 4/8 if gpr/fpr > 8
3631   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3632                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3633                                           dl, MVT::i32));
3634 
3635   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3636                              OverflowAreaPlusN);
3637 
3638   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3639                               MachinePointerInfo(), MVT::i32);
3640 
3641   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3642 }
3643 
3644 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3645   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3646 
3647   // We have to copy the entire va_list struct:
3648   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3649   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3650                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3651                        false, true, false, MachinePointerInfo(),
3652                        MachinePointerInfo());
3653 }
3654 
3655 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3656                                                   SelectionDAG &DAG) const {
3657   if (Subtarget.isAIXABI())
3658     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3659 
3660   return Op.getOperand(0);
3661 }
3662 
3663 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3664   MachineFunction &MF = DAG.getMachineFunction();
3665   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3666 
3667   assert((Op.getOpcode() == ISD::INLINEASM ||
3668           Op.getOpcode() == ISD::INLINEASM_BR) &&
3669          "Expecting Inline ASM node.");
3670 
3671   // If an LR store is already known to be required then there is not point in
3672   // checking this ASM as well.
3673   if (MFI.isLRStoreRequired())
3674     return Op;
3675 
3676   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3677   // type MVT::Glue. We want to ignore this last operand if that is the case.
3678   unsigned NumOps = Op.getNumOperands();
3679   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3680     --NumOps;
3681 
3682   // Check all operands that may contain the LR.
3683   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3684     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3685     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3686     ++i; // Skip the ID value.
3687 
3688     switch (InlineAsm::getKind(Flags)) {
3689     default:
3690       llvm_unreachable("Bad flags!");
3691     case InlineAsm::Kind_RegUse:
3692     case InlineAsm::Kind_Imm:
3693     case InlineAsm::Kind_Mem:
3694       i += NumVals;
3695       break;
3696     case InlineAsm::Kind_Clobber:
3697     case InlineAsm::Kind_RegDef:
3698     case InlineAsm::Kind_RegDefEarlyClobber: {
3699       for (; NumVals; --NumVals, ++i) {
3700         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3701         if (Reg != PPC::LR && Reg != PPC::LR8)
3702           continue;
3703         MFI.setLRStoreRequired();
3704         return Op;
3705       }
3706       break;
3707     }
3708     }
3709   }
3710 
3711   return Op;
3712 }
3713 
3714 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3715                                                 SelectionDAG &DAG) const {
3716   if (Subtarget.isAIXABI())
3717     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3718 
3719   SDValue Chain = Op.getOperand(0);
3720   SDValue Trmp = Op.getOperand(1); // trampoline
3721   SDValue FPtr = Op.getOperand(2); // nested function
3722   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3723   SDLoc dl(Op);
3724 
3725   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3726   bool isPPC64 = (PtrVT == MVT::i64);
3727   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3728 
3729   TargetLowering::ArgListTy Args;
3730   TargetLowering::ArgListEntry Entry;
3731 
3732   Entry.Ty = IntPtrTy;
3733   Entry.Node = Trmp; Args.push_back(Entry);
3734 
3735   // TrampSize == (isPPC64 ? 48 : 40);
3736   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3737                                isPPC64 ? MVT::i64 : MVT::i32);
3738   Args.push_back(Entry);
3739 
3740   Entry.Node = FPtr; Args.push_back(Entry);
3741   Entry.Node = Nest; Args.push_back(Entry);
3742 
3743   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3744   TargetLowering::CallLoweringInfo CLI(DAG);
3745   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3746       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3747       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3748 
3749   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3750   return CallResult.second;
3751 }
3752 
3753 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3754   MachineFunction &MF = DAG.getMachineFunction();
3755   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3756   EVT PtrVT = getPointerTy(MF.getDataLayout());
3757 
3758   SDLoc dl(Op);
3759 
3760   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3761     // vastart just stores the address of the VarArgsFrameIndex slot into the
3762     // memory location argument.
3763     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3764     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3765     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3766                         MachinePointerInfo(SV));
3767   }
3768 
3769   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3770   // We suppose the given va_list is already allocated.
3771   //
3772   // typedef struct {
3773   //  char gpr;     /* index into the array of 8 GPRs
3774   //                 * stored in the register save area
3775   //                 * gpr=0 corresponds to r3,
3776   //                 * gpr=1 to r4, etc.
3777   //                 */
3778   //  char fpr;     /* index into the array of 8 FPRs
3779   //                 * stored in the register save area
3780   //                 * fpr=0 corresponds to f1,
3781   //                 * fpr=1 to f2, etc.
3782   //                 */
3783   //  char *overflow_arg_area;
3784   //                /* location on stack that holds
3785   //                 * the next overflow argument
3786   //                 */
3787   //  char *reg_save_area;
3788   //               /* where r3:r10 and f1:f8 (if saved)
3789   //                * are stored
3790   //                */
3791   // } va_list[1];
3792 
3793   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3794   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3795   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3796                                             PtrVT);
3797   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3798                                  PtrVT);
3799 
3800   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3801   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3802 
3803   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3804   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3805 
3806   uint64_t FPROffset = 1;
3807   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3808 
3809   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3810 
3811   // Store first byte : number of int regs
3812   SDValue firstStore =
3813       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3814                         MachinePointerInfo(SV), MVT::i8);
3815   uint64_t nextOffset = FPROffset;
3816   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3817                                   ConstFPROffset);
3818 
3819   // Store second byte : number of float regs
3820   SDValue secondStore =
3821       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3822                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3823   nextOffset += StackOffset;
3824   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3825 
3826   // Store second word : arguments given on stack
3827   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3828                                     MachinePointerInfo(SV, nextOffset));
3829   nextOffset += FrameOffset;
3830   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3831 
3832   // Store third word : arguments given in registers
3833   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3834                       MachinePointerInfo(SV, nextOffset));
3835 }
3836 
3837 /// FPR - The set of FP registers that should be allocated for arguments
3838 /// on Darwin and AIX.
3839 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3840                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3841                                 PPC::F11, PPC::F12, PPC::F13};
3842 
3843 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3844 /// the stack.
3845 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3846                                        unsigned PtrByteSize) {
3847   unsigned ArgSize = ArgVT.getStoreSize();
3848   if (Flags.isByVal())
3849     ArgSize = Flags.getByValSize();
3850 
3851   // Round up to multiples of the pointer size, except for array members,
3852   // which are always packed.
3853   if (!Flags.isInConsecutiveRegs())
3854     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3855 
3856   return ArgSize;
3857 }
3858 
3859 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3860 /// on the stack.
3861 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3862                                          ISD::ArgFlagsTy Flags,
3863                                          unsigned PtrByteSize) {
3864   Align Alignment(PtrByteSize);
3865 
3866   // Altivec parameters are padded to a 16 byte boundary.
3867   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3868       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3869       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3870       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3871     Alignment = Align(16);
3872 
3873   // ByVal parameters are aligned as requested.
3874   if (Flags.isByVal()) {
3875     auto BVAlign = Flags.getNonZeroByValAlign();
3876     if (BVAlign > PtrByteSize) {
3877       if (BVAlign.value() % PtrByteSize != 0)
3878         llvm_unreachable(
3879             "ByVal alignment is not a multiple of the pointer size");
3880 
3881       Alignment = BVAlign;
3882     }
3883   }
3884 
3885   // Array members are always packed to their original alignment.
3886   if (Flags.isInConsecutiveRegs()) {
3887     // If the array member was split into multiple registers, the first
3888     // needs to be aligned to the size of the full type.  (Except for
3889     // ppcf128, which is only aligned as its f64 components.)
3890     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3891       Alignment = Align(OrigVT.getStoreSize());
3892     else
3893       Alignment = Align(ArgVT.getStoreSize());
3894   }
3895 
3896   return Alignment;
3897 }
3898 
3899 /// CalculateStackSlotUsed - Return whether this argument will use its
3900 /// stack slot (instead of being passed in registers).  ArgOffset,
3901 /// AvailableFPRs, and AvailableVRs must hold the current argument
3902 /// position, and will be updated to account for this argument.
3903 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3904                                    unsigned PtrByteSize, unsigned LinkageSize,
3905                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3906                                    unsigned &AvailableFPRs,
3907                                    unsigned &AvailableVRs) {
3908   bool UseMemory = false;
3909 
3910   // Respect alignment of argument on the stack.
3911   Align Alignment =
3912       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3913   ArgOffset = alignTo(ArgOffset, Alignment);
3914   // If there's no space left in the argument save area, we must
3915   // use memory (this check also catches zero-sized arguments).
3916   if (ArgOffset >= LinkageSize + ParamAreaSize)
3917     UseMemory = true;
3918 
3919   // Allocate argument on the stack.
3920   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3921   if (Flags.isInConsecutiveRegsLast())
3922     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3923   // If we overran the argument save area, we must use memory
3924   // (this check catches arguments passed partially in memory)
3925   if (ArgOffset > LinkageSize + ParamAreaSize)
3926     UseMemory = true;
3927 
3928   // However, if the argument is actually passed in an FPR or a VR,
3929   // we don't use memory after all.
3930   if (!Flags.isByVal()) {
3931     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3932       if (AvailableFPRs > 0) {
3933         --AvailableFPRs;
3934         return false;
3935       }
3936     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3937         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3938         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3939         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3940       if (AvailableVRs > 0) {
3941         --AvailableVRs;
3942         return false;
3943       }
3944   }
3945 
3946   return UseMemory;
3947 }
3948 
3949 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3950 /// ensure minimum alignment required for target.
3951 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3952                                      unsigned NumBytes) {
3953   return alignTo(NumBytes, Lowering->getStackAlign());
3954 }
3955 
3956 SDValue PPCTargetLowering::LowerFormalArguments(
3957     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3958     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3959     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3960   if (Subtarget.isAIXABI())
3961     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3962                                     InVals);
3963   if (Subtarget.is64BitELFABI())
3964     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3965                                        InVals);
3966   assert(Subtarget.is32BitELFABI());
3967   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3968                                      InVals);
3969 }
3970 
3971 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3972     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3973     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3974     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3975 
3976   // 32-bit SVR4 ABI Stack Frame Layout:
3977   //              +-----------------------------------+
3978   //        +-->  |            Back chain             |
3979   //        |     +-----------------------------------+
3980   //        |     | Floating-point register save area |
3981   //        |     +-----------------------------------+
3982   //        |     |    General register save area     |
3983   //        |     +-----------------------------------+
3984   //        |     |          CR save word             |
3985   //        |     +-----------------------------------+
3986   //        |     |         VRSAVE save word          |
3987   //        |     +-----------------------------------+
3988   //        |     |         Alignment padding         |
3989   //        |     +-----------------------------------+
3990   //        |     |     Vector register save area     |
3991   //        |     +-----------------------------------+
3992   //        |     |       Local variable space        |
3993   //        |     +-----------------------------------+
3994   //        |     |        Parameter list area        |
3995   //        |     +-----------------------------------+
3996   //        |     |           LR save word            |
3997   //        |     +-----------------------------------+
3998   // SP-->  +---  |            Back chain             |
3999   //              +-----------------------------------+
4000   //
4001   // Specifications:
4002   //   System V Application Binary Interface PowerPC Processor Supplement
4003   //   AltiVec Technology Programming Interface Manual
4004 
4005   MachineFunction &MF = DAG.getMachineFunction();
4006   MachineFrameInfo &MFI = MF.getFrameInfo();
4007   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4008 
4009   EVT PtrVT = getPointerTy(MF.getDataLayout());
4010   // Potential tail calls could cause overwriting of argument stack slots.
4011   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4012                        (CallConv == CallingConv::Fast));
4013   const Align PtrAlign(4);
4014 
4015   // Assign locations to all of the incoming arguments.
4016   SmallVector<CCValAssign, 16> ArgLocs;
4017   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4018                  *DAG.getContext());
4019 
4020   // Reserve space for the linkage area on the stack.
4021   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4022   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4023   if (useSoftFloat())
4024     CCInfo.PreAnalyzeFormalArguments(Ins);
4025 
4026   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4027   CCInfo.clearWasPPCF128();
4028 
4029   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4030     CCValAssign &VA = ArgLocs[i];
4031 
4032     // Arguments stored in registers.
4033     if (VA.isRegLoc()) {
4034       const TargetRegisterClass *RC;
4035       EVT ValVT = VA.getValVT();
4036 
4037       switch (ValVT.getSimpleVT().SimpleTy) {
4038         default:
4039           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4040         case MVT::i1:
4041         case MVT::i32:
4042           RC = &PPC::GPRCRegClass;
4043           break;
4044         case MVT::f32:
4045           if (Subtarget.hasP8Vector())
4046             RC = &PPC::VSSRCRegClass;
4047           else if (Subtarget.hasSPE())
4048             RC = &PPC::GPRCRegClass;
4049           else
4050             RC = &PPC::F4RCRegClass;
4051           break;
4052         case MVT::f64:
4053           if (Subtarget.hasVSX())
4054             RC = &PPC::VSFRCRegClass;
4055           else if (Subtarget.hasSPE())
4056             // SPE passes doubles in GPR pairs.
4057             RC = &PPC::GPRCRegClass;
4058           else
4059             RC = &PPC::F8RCRegClass;
4060           break;
4061         case MVT::v16i8:
4062         case MVT::v8i16:
4063         case MVT::v4i32:
4064           RC = &PPC::VRRCRegClass;
4065           break;
4066         case MVT::v4f32:
4067           RC = &PPC::VRRCRegClass;
4068           break;
4069         case MVT::v2f64:
4070         case MVT::v2i64:
4071           RC = &PPC::VRRCRegClass;
4072           break;
4073       }
4074 
4075       SDValue ArgValue;
4076       // Transform the arguments stored in physical registers into
4077       // virtual ones.
4078       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4079         assert(i + 1 < e && "No second half of double precision argument");
4080         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4081         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4082         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4083         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4084         if (!Subtarget.isLittleEndian())
4085           std::swap (ArgValueLo, ArgValueHi);
4086         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4087                                ArgValueHi);
4088       } else {
4089         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4090         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4091                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4092         if (ValVT == MVT::i1)
4093           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4094       }
4095 
4096       InVals.push_back(ArgValue);
4097     } else {
4098       // Argument stored in memory.
4099       assert(VA.isMemLoc());
4100 
4101       // Get the extended size of the argument type in stack
4102       unsigned ArgSize = VA.getLocVT().getStoreSize();
4103       // Get the actual size of the argument type
4104       unsigned ObjSize = VA.getValVT().getStoreSize();
4105       unsigned ArgOffset = VA.getLocMemOffset();
4106       // Stack objects in PPC32 are right justified.
4107       ArgOffset += ArgSize - ObjSize;
4108       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4109 
4110       // Create load nodes to retrieve arguments from the stack.
4111       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4112       InVals.push_back(
4113           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4114     }
4115   }
4116 
4117   // Assign locations to all of the incoming aggregate by value arguments.
4118   // Aggregates passed by value are stored in the local variable space of the
4119   // caller's stack frame, right above the parameter list area.
4120   SmallVector<CCValAssign, 16> ByValArgLocs;
4121   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4122                       ByValArgLocs, *DAG.getContext());
4123 
4124   // Reserve stack space for the allocations in CCInfo.
4125   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4126 
4127   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4128 
4129   // Area that is at least reserved in the caller of this function.
4130   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4131   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4132 
4133   // Set the size that is at least reserved in caller of this function.  Tail
4134   // call optimized function's reserved stack space needs to be aligned so that
4135   // taking the difference between two stack areas will result in an aligned
4136   // stack.
4137   MinReservedArea =
4138       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4139   FuncInfo->setMinReservedArea(MinReservedArea);
4140 
4141   SmallVector<SDValue, 8> MemOps;
4142 
4143   // If the function takes variable number of arguments, make a frame index for
4144   // the start of the first vararg value... for expansion of llvm.va_start.
4145   if (isVarArg) {
4146     static const MCPhysReg GPArgRegs[] = {
4147       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4148       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4149     };
4150     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4151 
4152     static const MCPhysReg FPArgRegs[] = {
4153       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4154       PPC::F8
4155     };
4156     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4157 
4158     if (useSoftFloat() || hasSPE())
4159        NumFPArgRegs = 0;
4160 
4161     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4162     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4163 
4164     // Make room for NumGPArgRegs and NumFPArgRegs.
4165     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4166                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4167 
4168     FuncInfo->setVarArgsStackOffset(
4169       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4170                             CCInfo.getNextStackOffset(), true));
4171 
4172     FuncInfo->setVarArgsFrameIndex(
4173         MFI.CreateStackObject(Depth, Align(8), false));
4174     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4175 
4176     // The fixed integer arguments of a variadic function are stored to the
4177     // VarArgsFrameIndex on the stack so that they may be loaded by
4178     // dereferencing the result of va_next.
4179     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4180       // Get an existing live-in vreg, or add a new one.
4181       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4182       if (!VReg)
4183         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4184 
4185       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4186       SDValue Store =
4187           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4188       MemOps.push_back(Store);
4189       // Increment the address by four for the next argument to store
4190       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4191       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4192     }
4193 
4194     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4195     // is set.
4196     // The double arguments are stored to the VarArgsFrameIndex
4197     // on the stack.
4198     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4199       // Get an existing live-in vreg, or add a new one.
4200       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4201       if (!VReg)
4202         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4203 
4204       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4205       SDValue Store =
4206           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4207       MemOps.push_back(Store);
4208       // Increment the address by eight for the next argument to store
4209       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4210                                          PtrVT);
4211       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4212     }
4213   }
4214 
4215   if (!MemOps.empty())
4216     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4217 
4218   return Chain;
4219 }
4220 
4221 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4222 // value to MVT::i64 and then truncate to the correct register size.
4223 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4224                                              EVT ObjectVT, SelectionDAG &DAG,
4225                                              SDValue ArgVal,
4226                                              const SDLoc &dl) const {
4227   if (Flags.isSExt())
4228     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4229                          DAG.getValueType(ObjectVT));
4230   else if (Flags.isZExt())
4231     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4232                          DAG.getValueType(ObjectVT));
4233 
4234   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4235 }
4236 
4237 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4238     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4239     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4240     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4241   // TODO: add description of PPC stack frame format, or at least some docs.
4242   //
4243   bool isELFv2ABI = Subtarget.isELFv2ABI();
4244   bool isLittleEndian = Subtarget.isLittleEndian();
4245   MachineFunction &MF = DAG.getMachineFunction();
4246   MachineFrameInfo &MFI = MF.getFrameInfo();
4247   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4248 
4249   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4250          "fastcc not supported on varargs functions");
4251 
4252   EVT PtrVT = getPointerTy(MF.getDataLayout());
4253   // Potential tail calls could cause overwriting of argument stack slots.
4254   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4255                        (CallConv == CallingConv::Fast));
4256   unsigned PtrByteSize = 8;
4257   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4258 
4259   static const MCPhysReg GPR[] = {
4260     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4261     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4262   };
4263   static const MCPhysReg VR[] = {
4264     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4265     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4266   };
4267 
4268   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4269   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4270   const unsigned Num_VR_Regs  = array_lengthof(VR);
4271 
4272   // Do a first pass over the arguments to determine whether the ABI
4273   // guarantees that our caller has allocated the parameter save area
4274   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4275   // in the ELFv2 ABI, it is true if this is a vararg function or if
4276   // any parameter is located in a stack slot.
4277 
4278   bool HasParameterArea = !isELFv2ABI || isVarArg;
4279   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4280   unsigned NumBytes = LinkageSize;
4281   unsigned AvailableFPRs = Num_FPR_Regs;
4282   unsigned AvailableVRs = Num_VR_Regs;
4283   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4284     if (Ins[i].Flags.isNest())
4285       continue;
4286 
4287     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4288                                PtrByteSize, LinkageSize, ParamAreaSize,
4289                                NumBytes, AvailableFPRs, AvailableVRs))
4290       HasParameterArea = true;
4291   }
4292 
4293   // Add DAG nodes to load the arguments or copy them out of registers.  On
4294   // entry to a function on PPC, the arguments start after the linkage area,
4295   // although the first ones are often in registers.
4296 
4297   unsigned ArgOffset = LinkageSize;
4298   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4299   SmallVector<SDValue, 8> MemOps;
4300   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4301   unsigned CurArgIdx = 0;
4302   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4303     SDValue ArgVal;
4304     bool needsLoad = false;
4305     EVT ObjectVT = Ins[ArgNo].VT;
4306     EVT OrigVT = Ins[ArgNo].ArgVT;
4307     unsigned ObjSize = ObjectVT.getStoreSize();
4308     unsigned ArgSize = ObjSize;
4309     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4310     if (Ins[ArgNo].isOrigArg()) {
4311       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4312       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4313     }
4314     // We re-align the argument offset for each argument, except when using the
4315     // fast calling convention, when we need to make sure we do that only when
4316     // we'll actually use a stack slot.
4317     unsigned CurArgOffset;
4318     Align Alignment;
4319     auto ComputeArgOffset = [&]() {
4320       /* Respect alignment of argument on the stack.  */
4321       Alignment =
4322           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4323       ArgOffset = alignTo(ArgOffset, Alignment);
4324       CurArgOffset = ArgOffset;
4325     };
4326 
4327     if (CallConv != CallingConv::Fast) {
4328       ComputeArgOffset();
4329 
4330       /* Compute GPR index associated with argument offset.  */
4331       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4332       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4333     }
4334 
4335     // FIXME the codegen can be much improved in some cases.
4336     // We do not have to keep everything in memory.
4337     if (Flags.isByVal()) {
4338       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4339 
4340       if (CallConv == CallingConv::Fast)
4341         ComputeArgOffset();
4342 
4343       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4344       ObjSize = Flags.getByValSize();
4345       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4346       // Empty aggregate parameters do not take up registers.  Examples:
4347       //   struct { } a;
4348       //   union  { } b;
4349       //   int c[0];
4350       // etc.  However, we have to provide a place-holder in InVals, so
4351       // pretend we have an 8-byte item at the current address for that
4352       // purpose.
4353       if (!ObjSize) {
4354         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4355         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4356         InVals.push_back(FIN);
4357         continue;
4358       }
4359 
4360       // Create a stack object covering all stack doublewords occupied
4361       // by the argument.  If the argument is (fully or partially) on
4362       // the stack, or if the argument is fully in registers but the
4363       // caller has allocated the parameter save anyway, we can refer
4364       // directly to the caller's stack frame.  Otherwise, create a
4365       // local copy in our own frame.
4366       int FI;
4367       if (HasParameterArea ||
4368           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4369         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4370       else
4371         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4372       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4373 
4374       // Handle aggregates smaller than 8 bytes.
4375       if (ObjSize < PtrByteSize) {
4376         // The value of the object is its address, which differs from the
4377         // address of the enclosing doubleword on big-endian systems.
4378         SDValue Arg = FIN;
4379         if (!isLittleEndian) {
4380           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4381           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4382         }
4383         InVals.push_back(Arg);
4384 
4385         if (GPR_idx != Num_GPR_Regs) {
4386           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4387           FuncInfo->addLiveInAttr(VReg, Flags);
4388           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4389           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4390           SDValue Store =
4391               DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4392                                 MachinePointerInfo(&*FuncArg), ObjType);
4393           MemOps.push_back(Store);
4394         }
4395         // Whether we copied from a register or not, advance the offset
4396         // into the parameter save area by a full doubleword.
4397         ArgOffset += PtrByteSize;
4398         continue;
4399       }
4400 
4401       // The value of the object is its address, which is the address of
4402       // its first stack doubleword.
4403       InVals.push_back(FIN);
4404 
4405       // Store whatever pieces of the object are in registers to memory.
4406       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4407         if (GPR_idx == Num_GPR_Regs)
4408           break;
4409 
4410         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4411         FuncInfo->addLiveInAttr(VReg, Flags);
4412         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4413         SDValue Addr = FIN;
4414         if (j) {
4415           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4416           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4417         }
4418         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4419                                      MachinePointerInfo(&*FuncArg, j));
4420         MemOps.push_back(Store);
4421         ++GPR_idx;
4422       }
4423       ArgOffset += ArgSize;
4424       continue;
4425     }
4426 
4427     switch (ObjectVT.getSimpleVT().SimpleTy) {
4428     default: llvm_unreachable("Unhandled argument type!");
4429     case MVT::i1:
4430     case MVT::i32:
4431     case MVT::i64:
4432       if (Flags.isNest()) {
4433         // The 'nest' parameter, if any, is passed in R11.
4434         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4435         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4436 
4437         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4438           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4439 
4440         break;
4441       }
4442 
4443       // These can be scalar arguments or elements of an integer array type
4444       // passed directly.  Clang may use those instead of "byval" aggregate
4445       // types to avoid forcing arguments to memory unnecessarily.
4446       if (GPR_idx != Num_GPR_Regs) {
4447         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4448         FuncInfo->addLiveInAttr(VReg, Flags);
4449         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4450 
4451         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4452           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4453           // value to MVT::i64 and then truncate to the correct register size.
4454           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4455       } else {
4456         if (CallConv == CallingConv::Fast)
4457           ComputeArgOffset();
4458 
4459         needsLoad = true;
4460         ArgSize = PtrByteSize;
4461       }
4462       if (CallConv != CallingConv::Fast || needsLoad)
4463         ArgOffset += 8;
4464       break;
4465 
4466     case MVT::f32:
4467     case MVT::f64:
4468       // These can be scalar arguments or elements of a float array type
4469       // passed directly.  The latter are used to implement ELFv2 homogenous
4470       // float aggregates.
4471       if (FPR_idx != Num_FPR_Regs) {
4472         unsigned VReg;
4473 
4474         if (ObjectVT == MVT::f32)
4475           VReg = MF.addLiveIn(FPR[FPR_idx],
4476                               Subtarget.hasP8Vector()
4477                                   ? &PPC::VSSRCRegClass
4478                                   : &PPC::F4RCRegClass);
4479         else
4480           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4481                                                 ? &PPC::VSFRCRegClass
4482                                                 : &PPC::F8RCRegClass);
4483 
4484         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4485         ++FPR_idx;
4486       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4487         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4488         // once we support fp <-> gpr moves.
4489 
4490         // This can only ever happen in the presence of f32 array types,
4491         // since otherwise we never run out of FPRs before running out
4492         // of GPRs.
4493         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4494         FuncInfo->addLiveInAttr(VReg, Flags);
4495         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4496 
4497         if (ObjectVT == MVT::f32) {
4498           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4499             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4500                                  DAG.getConstant(32, dl, MVT::i32));
4501           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4502         }
4503 
4504         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4505       } else {
4506         if (CallConv == CallingConv::Fast)
4507           ComputeArgOffset();
4508 
4509         needsLoad = true;
4510       }
4511 
4512       // When passing an array of floats, the array occupies consecutive
4513       // space in the argument area; only round up to the next doubleword
4514       // at the end of the array.  Otherwise, each float takes 8 bytes.
4515       if (CallConv != CallingConv::Fast || needsLoad) {
4516         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4517         ArgOffset += ArgSize;
4518         if (Flags.isInConsecutiveRegsLast())
4519           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4520       }
4521       break;
4522     case MVT::v4f32:
4523     case MVT::v4i32:
4524     case MVT::v8i16:
4525     case MVT::v16i8:
4526     case MVT::v2f64:
4527     case MVT::v2i64:
4528     case MVT::v1i128:
4529     case MVT::f128:
4530       // These can be scalar arguments or elements of a vector array type
4531       // passed directly.  The latter are used to implement ELFv2 homogenous
4532       // vector aggregates.
4533       if (VR_idx != Num_VR_Regs) {
4534         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4535         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4536         ++VR_idx;
4537       } else {
4538         if (CallConv == CallingConv::Fast)
4539           ComputeArgOffset();
4540         needsLoad = true;
4541       }
4542       if (CallConv != CallingConv::Fast || needsLoad)
4543         ArgOffset += 16;
4544       break;
4545     }
4546 
4547     // We need to load the argument to a virtual register if we determined
4548     // above that we ran out of physical registers of the appropriate type.
4549     if (needsLoad) {
4550       if (ObjSize < ArgSize && !isLittleEndian)
4551         CurArgOffset += ArgSize - ObjSize;
4552       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4553       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4554       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4555     }
4556 
4557     InVals.push_back(ArgVal);
4558   }
4559 
4560   // Area that is at least reserved in the caller of this function.
4561   unsigned MinReservedArea;
4562   if (HasParameterArea)
4563     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4564   else
4565     MinReservedArea = LinkageSize;
4566 
4567   // Set the size that is at least reserved in caller of this function.  Tail
4568   // call optimized functions' reserved stack space needs to be aligned so that
4569   // taking the difference between two stack areas will result in an aligned
4570   // stack.
4571   MinReservedArea =
4572       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4573   FuncInfo->setMinReservedArea(MinReservedArea);
4574 
4575   // If the function takes variable number of arguments, make a frame index for
4576   // the start of the first vararg value... for expansion of llvm.va_start.
4577   // On ELFv2ABI spec, it writes:
4578   // C programs that are intended to be *portable* across different compilers
4579   // and architectures must use the header file <stdarg.h> to deal with variable
4580   // argument lists.
4581   if (isVarArg && MFI.hasVAStart()) {
4582     int Depth = ArgOffset;
4583 
4584     FuncInfo->setVarArgsFrameIndex(
4585       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4586     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4587 
4588     // If this function is vararg, store any remaining integer argument regs
4589     // to their spots on the stack so that they may be loaded by dereferencing
4590     // the result of va_next.
4591     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4592          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4593       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4594       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4595       SDValue Store =
4596           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4597       MemOps.push_back(Store);
4598       // Increment the address by four for the next argument to store
4599       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4600       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4601     }
4602   }
4603 
4604   if (!MemOps.empty())
4605     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4606 
4607   return Chain;
4608 }
4609 
4610 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4611 /// adjusted to accommodate the arguments for the tailcall.
4612 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4613                                    unsigned ParamSize) {
4614 
4615   if (!isTailCall) return 0;
4616 
4617   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4618   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4619   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4620   // Remember only if the new adjustment is bigger.
4621   if (SPDiff < FI->getTailCallSPDelta())
4622     FI->setTailCallSPDelta(SPDiff);
4623 
4624   return SPDiff;
4625 }
4626 
4627 static bool isFunctionGlobalAddress(SDValue Callee);
4628 
4629 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4630                               const TargetMachine &TM) {
4631   // It does not make sense to call callsShareTOCBase() with a caller that
4632   // is PC Relative since PC Relative callers do not have a TOC.
4633 #ifndef NDEBUG
4634   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4635   assert(!STICaller->isUsingPCRelativeCalls() &&
4636          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4637 #endif
4638 
4639   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4640   // don't have enough information to determine if the caller and callee share
4641   // the same  TOC base, so we have to pessimistically assume they don't for
4642   // correctness.
4643   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4644   if (!G)
4645     return false;
4646 
4647   const GlobalValue *GV = G->getGlobal();
4648 
4649   // If the callee is preemptable, then the static linker will use a plt-stub
4650   // which saves the toc to the stack, and needs a nop after the call
4651   // instruction to convert to a toc-restore.
4652   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4653     return false;
4654 
4655   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4656   // We may need a TOC restore in the situation where the caller requires a
4657   // valid TOC but the callee is PC Relative and does not.
4658   const Function *F = dyn_cast<Function>(GV);
4659   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4660 
4661   // If we have an Alias we can try to get the function from there.
4662   if (Alias) {
4663     const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4664     F = dyn_cast<Function>(GlobalObj);
4665   }
4666 
4667   // If we still have no valid function pointer we do not have enough
4668   // information to determine if the callee uses PC Relative calls so we must
4669   // assume that it does.
4670   if (!F)
4671     return false;
4672 
4673   // If the callee uses PC Relative we cannot guarantee that the callee won't
4674   // clobber the TOC of the caller and so we must assume that the two
4675   // functions do not share a TOC base.
4676   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4677   if (STICallee->isUsingPCRelativeCalls())
4678     return false;
4679 
4680   // If the GV is not a strong definition then we need to assume it can be
4681   // replaced by another function at link time. The function that replaces
4682   // it may not share the same TOC as the caller since the callee may be
4683   // replaced by a PC Relative version of the same function.
4684   if (!GV->isStrongDefinitionForLinker())
4685     return false;
4686 
4687   // The medium and large code models are expected to provide a sufficiently
4688   // large TOC to provide all data addressing needs of a module with a
4689   // single TOC.
4690   if (CodeModel::Medium == TM.getCodeModel() ||
4691       CodeModel::Large == TM.getCodeModel())
4692     return true;
4693 
4694   // Any explicitly-specified sections and section prefixes must also match.
4695   // Also, if we're using -ffunction-sections, then each function is always in
4696   // a different section (the same is true for COMDAT functions).
4697   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4698       GV->getSection() != Caller->getSection())
4699     return false;
4700   if (const auto *F = dyn_cast<Function>(GV)) {
4701     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4702       return false;
4703   }
4704 
4705   return true;
4706 }
4707 
4708 static bool
4709 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4710                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4711   assert(Subtarget.is64BitELFABI());
4712 
4713   const unsigned PtrByteSize = 8;
4714   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4715 
4716   static const MCPhysReg GPR[] = {
4717     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4718     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4719   };
4720   static const MCPhysReg VR[] = {
4721     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4722     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4723   };
4724 
4725   const unsigned NumGPRs = array_lengthof(GPR);
4726   const unsigned NumFPRs = 13;
4727   const unsigned NumVRs = array_lengthof(VR);
4728   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4729 
4730   unsigned NumBytes = LinkageSize;
4731   unsigned AvailableFPRs = NumFPRs;
4732   unsigned AvailableVRs = NumVRs;
4733 
4734   for (const ISD::OutputArg& Param : Outs) {
4735     if (Param.Flags.isNest()) continue;
4736 
4737     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4738                                LinkageSize, ParamAreaSize, NumBytes,
4739                                AvailableFPRs, AvailableVRs))
4740       return true;
4741   }
4742   return false;
4743 }
4744 
4745 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4746   if (CB.arg_size() != CallerFn->arg_size())
4747     return false;
4748 
4749   auto CalleeArgIter = CB.arg_begin();
4750   auto CalleeArgEnd = CB.arg_end();
4751   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4752 
4753   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4754     const Value* CalleeArg = *CalleeArgIter;
4755     const Value* CallerArg = &(*CallerArgIter);
4756     if (CalleeArg == CallerArg)
4757       continue;
4758 
4759     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4760     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4761     //      }
4762     // 1st argument of callee is undef and has the same type as caller.
4763     if (CalleeArg->getType() == CallerArg->getType() &&
4764         isa<UndefValue>(CalleeArg))
4765       continue;
4766 
4767     return false;
4768   }
4769 
4770   return true;
4771 }
4772 
4773 // Returns true if TCO is possible between the callers and callees
4774 // calling conventions.
4775 static bool
4776 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4777                                     CallingConv::ID CalleeCC) {
4778   // Tail calls are possible with fastcc and ccc.
4779   auto isTailCallableCC  = [] (CallingConv::ID CC){
4780       return  CC == CallingConv::C || CC == CallingConv::Fast;
4781   };
4782   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4783     return false;
4784 
4785   // We can safely tail call both fastcc and ccc callees from a c calling
4786   // convention caller. If the caller is fastcc, we may have less stack space
4787   // than a non-fastcc caller with the same signature so disable tail-calls in
4788   // that case.
4789   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4790 }
4791 
4792 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4793     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4794     const SmallVectorImpl<ISD::OutputArg> &Outs,
4795     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4796   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4797 
4798   if (DisableSCO && !TailCallOpt) return false;
4799 
4800   // Variadic argument functions are not supported.
4801   if (isVarArg) return false;
4802 
4803   auto &Caller = DAG.getMachineFunction().getFunction();
4804   // Check that the calling conventions are compatible for tco.
4805   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4806     return false;
4807 
4808   // Caller contains any byval parameter is not supported.
4809   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4810     return false;
4811 
4812   // Callee contains any byval parameter is not supported, too.
4813   // Note: This is a quick work around, because in some cases, e.g.
4814   // caller's stack size > callee's stack size, we are still able to apply
4815   // sibling call optimization. For example, gcc is able to do SCO for caller1
4816   // in the following example, but not for caller2.
4817   //   struct test {
4818   //     long int a;
4819   //     char ary[56];
4820   //   } gTest;
4821   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4822   //     b->a = v.a;
4823   //     return 0;
4824   //   }
4825   //   void caller1(struct test a, struct test c, struct test *b) {
4826   //     callee(gTest, b); }
4827   //   void caller2(struct test *b) { callee(gTest, b); }
4828   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4829     return false;
4830 
4831   // If callee and caller use different calling conventions, we cannot pass
4832   // parameters on stack since offsets for the parameter area may be different.
4833   if (Caller.getCallingConv() != CalleeCC &&
4834       needStackSlotPassParameters(Subtarget, Outs))
4835     return false;
4836 
4837   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4838   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4839   // callee potentially have different TOC bases then we cannot tail call since
4840   // we need to restore the TOC pointer after the call.
4841   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4842   // We cannot guarantee this for indirect calls or calls to external functions.
4843   // When PC-Relative addressing is used, the concept of the TOC is no longer
4844   // applicable so this check is not required.
4845   // Check first for indirect calls.
4846   if (!Subtarget.isUsingPCRelativeCalls() &&
4847       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4848     return false;
4849 
4850   // Check if we share the TOC base.
4851   if (!Subtarget.isUsingPCRelativeCalls() &&
4852       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4853     return false;
4854 
4855   // TCO allows altering callee ABI, so we don't have to check further.
4856   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4857     return true;
4858 
4859   if (DisableSCO) return false;
4860 
4861   // If callee use the same argument list that caller is using, then we can
4862   // apply SCO on this case. If it is not, then we need to check if callee needs
4863   // stack for passing arguments.
4864   // PC Relative tail calls may not have a CallBase.
4865   // If there is no CallBase we cannot verify if we have the same argument
4866   // list so assume that we don't have the same argument list.
4867   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4868       needStackSlotPassParameters(Subtarget, Outs))
4869     return false;
4870   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4871     return false;
4872 
4873   return true;
4874 }
4875 
4876 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4877 /// for tail call optimization. Targets which want to do tail call
4878 /// optimization should implement this function.
4879 bool
4880 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4881                                                      CallingConv::ID CalleeCC,
4882                                                      bool isVarArg,
4883                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4884                                                      SelectionDAG& DAG) const {
4885   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4886     return false;
4887 
4888   // Variable argument functions are not supported.
4889   if (isVarArg)
4890     return false;
4891 
4892   MachineFunction &MF = DAG.getMachineFunction();
4893   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4894   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4895     // Functions containing by val parameters are not supported.
4896     for (unsigned i = 0; i != Ins.size(); i++) {
4897        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4898        if (Flags.isByVal()) return false;
4899     }
4900 
4901     // Non-PIC/GOT tail calls are supported.
4902     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4903       return true;
4904 
4905     // At the moment we can only do local tail calls (in same module, hidden
4906     // or protected) if we are generating PIC.
4907     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4908       return G->getGlobal()->hasHiddenVisibility()
4909           || G->getGlobal()->hasProtectedVisibility();
4910   }
4911 
4912   return false;
4913 }
4914 
4915 /// isCallCompatibleAddress - Return the immediate to use if the specified
4916 /// 32-bit value is representable in the immediate field of a BxA instruction.
4917 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4918   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4919   if (!C) return nullptr;
4920 
4921   int Addr = C->getZExtValue();
4922   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4923       SignExtend32<26>(Addr) != Addr)
4924     return nullptr;  // Top 6 bits have to be sext of immediate.
4925 
4926   return DAG
4927       .getConstant(
4928           (int)C->getZExtValue() >> 2, SDLoc(Op),
4929           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4930       .getNode();
4931 }
4932 
4933 namespace {
4934 
4935 struct TailCallArgumentInfo {
4936   SDValue Arg;
4937   SDValue FrameIdxOp;
4938   int FrameIdx = 0;
4939 
4940   TailCallArgumentInfo() = default;
4941 };
4942 
4943 } // end anonymous namespace
4944 
4945 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4946 static void StoreTailCallArgumentsToStackSlot(
4947     SelectionDAG &DAG, SDValue Chain,
4948     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4949     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4950   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4951     SDValue Arg = TailCallArgs[i].Arg;
4952     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4953     int FI = TailCallArgs[i].FrameIdx;
4954     // Store relative to framepointer.
4955     MemOpChains.push_back(DAG.getStore(
4956         Chain, dl, Arg, FIN,
4957         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4958   }
4959 }
4960 
4961 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4962 /// the appropriate stack slot for the tail call optimized function call.
4963 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4964                                              SDValue OldRetAddr, SDValue OldFP,
4965                                              int SPDiff, const SDLoc &dl) {
4966   if (SPDiff) {
4967     // Calculate the new stack slot for the return address.
4968     MachineFunction &MF = DAG.getMachineFunction();
4969     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4970     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4971     bool isPPC64 = Subtarget.isPPC64();
4972     int SlotSize = isPPC64 ? 8 : 4;
4973     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4974     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4975                                                          NewRetAddrLoc, true);
4976     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4977     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4978     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4979                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4980   }
4981   return Chain;
4982 }
4983 
4984 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4985 /// the position of the argument.
4986 static void
4987 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4988                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4989                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4990   int Offset = ArgOffset + SPDiff;
4991   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4992   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4993   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4994   SDValue FIN = DAG.getFrameIndex(FI, VT);
4995   TailCallArgumentInfo Info;
4996   Info.Arg = Arg;
4997   Info.FrameIdxOp = FIN;
4998   Info.FrameIdx = FI;
4999   TailCallArguments.push_back(Info);
5000 }
5001 
5002 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5003 /// stack slot. Returns the chain as result and the loaded frame pointers in
5004 /// LROpOut/FPOpout. Used when tail calling.
5005 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5006     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5007     SDValue &FPOpOut, const SDLoc &dl) const {
5008   if (SPDiff) {
5009     // Load the LR and FP stack slot for later adjusting.
5010     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5011     LROpOut = getReturnAddrFrameIndex(DAG);
5012     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5013     Chain = SDValue(LROpOut.getNode(), 1);
5014   }
5015   return Chain;
5016 }
5017 
5018 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5019 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5020 /// specified by the specific parameter attribute. The copy will be passed as
5021 /// a byval function parameter.
5022 /// Sometimes what we are copying is the end of a larger object, the part that
5023 /// does not fit in registers.
5024 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5025                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5026                                          SelectionDAG &DAG, const SDLoc &dl) {
5027   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5028   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5029                        Flags.getNonZeroByValAlign(), false, false, false,
5030                        MachinePointerInfo(), MachinePointerInfo());
5031 }
5032 
5033 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5034 /// tail calls.
5035 static void LowerMemOpCallTo(
5036     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5037     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5038     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5039     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5040   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5041   if (!isTailCall) {
5042     if (isVector) {
5043       SDValue StackPtr;
5044       if (isPPC64)
5045         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5046       else
5047         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5048       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5049                            DAG.getConstant(ArgOffset, dl, PtrVT));
5050     }
5051     MemOpChains.push_back(
5052         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5053     // Calculate and remember argument location.
5054   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5055                                   TailCallArguments);
5056 }
5057 
5058 static void
5059 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5060                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5061                 SDValue FPOp,
5062                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5063   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5064   // might overwrite each other in case of tail call optimization.
5065   SmallVector<SDValue, 8> MemOpChains2;
5066   // Do not flag preceding copytoreg stuff together with the following stuff.
5067   InFlag = SDValue();
5068   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5069                                     MemOpChains2, dl);
5070   if (!MemOpChains2.empty())
5071     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5072 
5073   // Store the return address to the appropriate stack slot.
5074   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5075 
5076   // Emit callseq_end just before tailcall node.
5077   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5078                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5079   InFlag = Chain.getValue(1);
5080 }
5081 
5082 // Is this global address that of a function that can be called by name? (as
5083 // opposed to something that must hold a descriptor for an indirect call).
5084 static bool isFunctionGlobalAddress(SDValue Callee) {
5085   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5086     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5087         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5088       return false;
5089 
5090     return G->getGlobal()->getValueType()->isFunctionTy();
5091   }
5092 
5093   return false;
5094 }
5095 
5096 SDValue PPCTargetLowering::LowerCallResult(
5097     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5098     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5099     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5100   SmallVector<CCValAssign, 16> RVLocs;
5101   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5102                     *DAG.getContext());
5103 
5104   CCRetInfo.AnalyzeCallResult(
5105       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5106                ? RetCC_PPC_Cold
5107                : RetCC_PPC);
5108 
5109   // Copy all of the result registers out of their specified physreg.
5110   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5111     CCValAssign &VA = RVLocs[i];
5112     assert(VA.isRegLoc() && "Can only return in registers!");
5113 
5114     SDValue Val;
5115 
5116     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5117       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5118                                       InFlag);
5119       Chain = Lo.getValue(1);
5120       InFlag = Lo.getValue(2);
5121       VA = RVLocs[++i]; // skip ahead to next loc
5122       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5123                                       InFlag);
5124       Chain = Hi.getValue(1);
5125       InFlag = Hi.getValue(2);
5126       if (!Subtarget.isLittleEndian())
5127         std::swap (Lo, Hi);
5128       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5129     } else {
5130       Val = DAG.getCopyFromReg(Chain, dl,
5131                                VA.getLocReg(), VA.getLocVT(), InFlag);
5132       Chain = Val.getValue(1);
5133       InFlag = Val.getValue(2);
5134     }
5135 
5136     switch (VA.getLocInfo()) {
5137     default: llvm_unreachable("Unknown loc info!");
5138     case CCValAssign::Full: break;
5139     case CCValAssign::AExt:
5140       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5141       break;
5142     case CCValAssign::ZExt:
5143       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5144                         DAG.getValueType(VA.getValVT()));
5145       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5146       break;
5147     case CCValAssign::SExt:
5148       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5149                         DAG.getValueType(VA.getValVT()));
5150       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5151       break;
5152     }
5153 
5154     InVals.push_back(Val);
5155   }
5156 
5157   return Chain;
5158 }
5159 
5160 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5161                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5162   // PatchPoint calls are not indirect.
5163   if (isPatchPoint)
5164     return false;
5165 
5166   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5167     return false;
5168 
5169   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5170   // becuase the immediate function pointer points to a descriptor instead of
5171   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5172   // pointer immediate points to the global entry point, while the BLA would
5173   // need to jump to the local entry point (see rL211174).
5174   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5175       isBLACompatibleAddress(Callee, DAG))
5176     return false;
5177 
5178   return true;
5179 }
5180 
5181 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5182 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5183   return Subtarget.isAIXABI() ||
5184          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5185 }
5186 
5187 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5188                               const Function &Caller, const SDValue &Callee,
5189                               const PPCSubtarget &Subtarget,
5190                               const TargetMachine &TM,
5191                               bool IsStrictFPCall = false) {
5192   if (CFlags.IsTailCall)
5193     return PPCISD::TC_RETURN;
5194 
5195   unsigned RetOpc = 0;
5196   // This is a call through a function pointer.
5197   if (CFlags.IsIndirect) {
5198     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5199     // indirect calls. The save of the caller's TOC pointer to the stack will be
5200     // inserted into the DAG as part of call lowering. The restore of the TOC
5201     // pointer is modeled by using a pseudo instruction for the call opcode that
5202     // represents the 2 instruction sequence of an indirect branch and link,
5203     // immediately followed by a load of the TOC pointer from the the stack save
5204     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5205     // as it is not saved or used.
5206     RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5207                                                  : PPCISD::BCTRL;
5208   } else if (Subtarget.isUsingPCRelativeCalls()) {
5209     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5210     RetOpc = PPCISD::CALL_NOTOC;
5211   } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5212     // The ABIs that maintain a TOC pointer accross calls need to have a nop
5213     // immediately following the call instruction if the caller and callee may
5214     // have different TOC bases. At link time if the linker determines the calls
5215     // may not share a TOC base, the call is redirected to a trampoline inserted
5216     // by the linker. The trampoline will (among other things) save the callers
5217     // TOC pointer at an ABI designated offset in the linkage area and the
5218     // linker will rewrite the nop to be a load of the TOC pointer from the
5219     // linkage area into gpr2.
5220     RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5221                                                     : PPCISD::CALL_NOP;
5222   else
5223     RetOpc = PPCISD::CALL;
5224   if (IsStrictFPCall) {
5225     switch (RetOpc) {
5226     default:
5227       llvm_unreachable("Unknown call opcode");
5228     case PPCISD::BCTRL_LOAD_TOC:
5229       RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5230       break;
5231     case PPCISD::BCTRL:
5232       RetOpc = PPCISD::BCTRL_RM;
5233       break;
5234     case PPCISD::CALL_NOTOC:
5235       RetOpc = PPCISD::CALL_NOTOC_RM;
5236       break;
5237     case PPCISD::CALL:
5238       RetOpc = PPCISD::CALL_RM;
5239       break;
5240     case PPCISD::CALL_NOP:
5241       RetOpc = PPCISD::CALL_NOP_RM;
5242       break;
5243     }
5244   }
5245   return RetOpc;
5246 }
5247 
5248 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5249                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5250   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5251     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5252       return SDValue(Dest, 0);
5253 
5254   // Returns true if the callee is local, and false otherwise.
5255   auto isLocalCallee = [&]() {
5256     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5257     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5258     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5259 
5260     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5261            !isa_and_nonnull<GlobalIFunc>(GV);
5262   };
5263 
5264   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5265   // a static relocation model causes some versions of GNU LD (2.17.50, at
5266   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5267   // built with secure-PLT.
5268   bool UsePlt =
5269       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5270       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5271 
5272   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5273     const TargetMachine &TM = Subtarget.getTargetMachine();
5274     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5275     MCSymbolXCOFF *S =
5276         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5277 
5278     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5279     return DAG.getMCSymbol(S, PtrVT);
5280   };
5281 
5282   if (isFunctionGlobalAddress(Callee)) {
5283     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5284 
5285     if (Subtarget.isAIXABI()) {
5286       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5287       return getAIXFuncEntryPointSymbolSDNode(GV);
5288     }
5289     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5290                                       UsePlt ? PPCII::MO_PLT : 0);
5291   }
5292 
5293   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5294     const char *SymName = S->getSymbol();
5295     if (Subtarget.isAIXABI()) {
5296       // If there exists a user-declared function whose name is the same as the
5297       // ExternalSymbol's, then we pick up the user-declared version.
5298       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5299       if (const Function *F =
5300               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5301         return getAIXFuncEntryPointSymbolSDNode(F);
5302 
5303       // On AIX, direct function calls reference the symbol for the function's
5304       // entry point, which is named by prepending a "." before the function's
5305       // C-linkage name. A Qualname is returned here because an external
5306       // function entry point is a csect with XTY_ER property.
5307       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5308         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5309         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5310             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5311             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5312         return Sec->getQualNameSymbol();
5313       };
5314 
5315       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5316     }
5317     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5318                                        UsePlt ? PPCII::MO_PLT : 0);
5319   }
5320 
5321   // No transformation needed.
5322   assert(Callee.getNode() && "What no callee?");
5323   return Callee;
5324 }
5325 
5326 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5327   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5328          "Expected a CALLSEQ_STARTSDNode.");
5329 
5330   // The last operand is the chain, except when the node has glue. If the node
5331   // has glue, then the last operand is the glue, and the chain is the second
5332   // last operand.
5333   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5334   if (LastValue.getValueType() != MVT::Glue)
5335     return LastValue;
5336 
5337   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5338 }
5339 
5340 // Creates the node that moves a functions address into the count register
5341 // to prepare for an indirect call instruction.
5342 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5343                                 SDValue &Glue, SDValue &Chain,
5344                                 const SDLoc &dl) {
5345   SDValue MTCTROps[] = {Chain, Callee, Glue};
5346   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5347   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5348                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5349   // The glue is the second value produced.
5350   Glue = Chain.getValue(1);
5351 }
5352 
5353 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5354                                           SDValue &Glue, SDValue &Chain,
5355                                           SDValue CallSeqStart,
5356                                           const CallBase *CB, const SDLoc &dl,
5357                                           bool hasNest,
5358                                           const PPCSubtarget &Subtarget) {
5359   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5360   // entry point, but to the function descriptor (the function entry point
5361   // address is part of the function descriptor though).
5362   // The function descriptor is a three doubleword structure with the
5363   // following fields: function entry point, TOC base address and
5364   // environment pointer.
5365   // Thus for a call through a function pointer, the following actions need
5366   // to be performed:
5367   //   1. Save the TOC of the caller in the TOC save area of its stack
5368   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5369   //   2. Load the address of the function entry point from the function
5370   //      descriptor.
5371   //   3. Load the TOC of the callee from the function descriptor into r2.
5372   //   4. Load the environment pointer from the function descriptor into
5373   //      r11.
5374   //   5. Branch to the function entry point address.
5375   //   6. On return of the callee, the TOC of the caller needs to be
5376   //      restored (this is done in FinishCall()).
5377   //
5378   // The loads are scheduled at the beginning of the call sequence, and the
5379   // register copies are flagged together to ensure that no other
5380   // operations can be scheduled in between. E.g. without flagging the
5381   // copies together, a TOC access in the caller could be scheduled between
5382   // the assignment of the callee TOC and the branch to the callee, which leads
5383   // to incorrect code.
5384 
5385   // Start by loading the function address from the descriptor.
5386   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5387   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5388                       ? (MachineMemOperand::MODereferenceable |
5389                          MachineMemOperand::MOInvariant)
5390                       : MachineMemOperand::MONone;
5391 
5392   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5393 
5394   // Registers used in building the DAG.
5395   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5396   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5397 
5398   // Offsets of descriptor members.
5399   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5400   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5401 
5402   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5403   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5404 
5405   // One load for the functions entry point address.
5406   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5407                                     Alignment, MMOFlags);
5408 
5409   // One for loading the TOC anchor for the module that contains the called
5410   // function.
5411   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5412   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5413   SDValue TOCPtr =
5414       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5415                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5416 
5417   // One for loading the environment pointer.
5418   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5419   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5420   SDValue LoadEnvPtr =
5421       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5422                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5423 
5424 
5425   // Then copy the newly loaded TOC anchor to the TOC pointer.
5426   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5427   Chain = TOCVal.getValue(0);
5428   Glue = TOCVal.getValue(1);
5429 
5430   // If the function call has an explicit 'nest' parameter, it takes the
5431   // place of the environment pointer.
5432   assert((!hasNest || !Subtarget.isAIXABI()) &&
5433          "Nest parameter is not supported on AIX.");
5434   if (!hasNest) {
5435     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5436     Chain = EnvVal.getValue(0);
5437     Glue = EnvVal.getValue(1);
5438   }
5439 
5440   // The rest of the indirect call sequence is the same as the non-descriptor
5441   // DAG.
5442   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5443 }
5444 
5445 static void
5446 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5447                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5448                   SelectionDAG &DAG,
5449                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5450                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5451                   const PPCSubtarget &Subtarget) {
5452   const bool IsPPC64 = Subtarget.isPPC64();
5453   // MVT for a general purpose register.
5454   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5455 
5456   // First operand is always the chain.
5457   Ops.push_back(Chain);
5458 
5459   // If it's a direct call pass the callee as the second operand.
5460   if (!CFlags.IsIndirect)
5461     Ops.push_back(Callee);
5462   else {
5463     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5464 
5465     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5466     // on the stack (this would have been done in `LowerCall_64SVR4` or
5467     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5468     // represents both the indirect branch and a load that restores the TOC
5469     // pointer from the linkage area. The operand for the TOC restore is an add
5470     // of the TOC save offset to the stack pointer. This must be the second
5471     // operand: after the chain input but before any other variadic arguments.
5472     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5473     // saved or used.
5474     if (isTOCSaveRestoreRequired(Subtarget)) {
5475       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5476 
5477       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5478       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5479       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5480       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5481       Ops.push_back(AddTOC);
5482     }
5483 
5484     // Add the register used for the environment pointer.
5485     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5486       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5487                                     RegVT));
5488 
5489 
5490     // Add CTR register as callee so a bctr can be emitted later.
5491     if (CFlags.IsTailCall)
5492       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5493   }
5494 
5495   // If this is a tail call add stack pointer delta.
5496   if (CFlags.IsTailCall)
5497     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5498 
5499   // Add argument registers to the end of the list so that they are known live
5500   // into the call.
5501   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5502     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5503                                   RegsToPass[i].second.getValueType()));
5504 
5505   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5506   // no way to mark dependencies as implicit here.
5507   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5508   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5509        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5510     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5511 
5512   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5513   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5514     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5515 
5516   // Add a register mask operand representing the call-preserved registers.
5517   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5518   const uint32_t *Mask =
5519       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5520   assert(Mask && "Missing call preserved mask for calling convention");
5521   Ops.push_back(DAG.getRegisterMask(Mask));
5522 
5523   // If the glue is valid, it is the last operand.
5524   if (Glue.getNode())
5525     Ops.push_back(Glue);
5526 }
5527 
5528 SDValue PPCTargetLowering::FinishCall(
5529     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5530     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5531     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5532     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5533     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5534 
5535   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5536       Subtarget.isAIXABI())
5537     setUsesTOCBasePtr(DAG);
5538 
5539   unsigned CallOpc =
5540       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5541                     Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5542 
5543   if (!CFlags.IsIndirect)
5544     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5545   else if (Subtarget.usesFunctionDescriptors())
5546     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5547                                   dl, CFlags.HasNest, Subtarget);
5548   else
5549     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5550 
5551   // Build the operand list for the call instruction.
5552   SmallVector<SDValue, 8> Ops;
5553   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5554                     SPDiff, Subtarget);
5555 
5556   // Emit tail call.
5557   if (CFlags.IsTailCall) {
5558     // Indirect tail call when using PC Relative calls do not have the same
5559     // constraints.
5560     assert(((Callee.getOpcode() == ISD::Register &&
5561              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5562             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5563             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5564             isa<ConstantSDNode>(Callee) ||
5565             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5566            "Expecting a global address, external symbol, absolute value, "
5567            "register or an indirect tail call when PC Relative calls are "
5568            "used.");
5569     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5570     assert(CallOpc == PPCISD::TC_RETURN &&
5571            "Unexpected call opcode for a tail call.");
5572     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5573     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5574   }
5575 
5576   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5577   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5578   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5579   Glue = Chain.getValue(1);
5580 
5581   // When performing tail call optimization the callee pops its arguments off
5582   // the stack. Account for this here so these bytes can be pushed back on in
5583   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5584   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5585                          getTargetMachine().Options.GuaranteedTailCallOpt)
5586                             ? NumBytes
5587                             : 0;
5588 
5589   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5590                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5591                              Glue, dl);
5592   Glue = Chain.getValue(1);
5593 
5594   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5595                          DAG, InVals);
5596 }
5597 
5598 SDValue
5599 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5600                              SmallVectorImpl<SDValue> &InVals) const {
5601   SelectionDAG &DAG                     = CLI.DAG;
5602   SDLoc &dl                             = CLI.DL;
5603   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5604   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5605   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5606   SDValue Chain                         = CLI.Chain;
5607   SDValue Callee                        = CLI.Callee;
5608   bool &isTailCall                      = CLI.IsTailCall;
5609   CallingConv::ID CallConv              = CLI.CallConv;
5610   bool isVarArg                         = CLI.IsVarArg;
5611   bool isPatchPoint                     = CLI.IsPatchPoint;
5612   const CallBase *CB                    = CLI.CB;
5613 
5614   if (isTailCall) {
5615     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5616       isTailCall = false;
5617     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5618       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5619           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5620     else
5621       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5622                                                      Ins, DAG);
5623     if (isTailCall) {
5624       ++NumTailCalls;
5625       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5626         ++NumSiblingCalls;
5627 
5628       // PC Relative calls no longer guarantee that the callee is a Global
5629       // Address Node. The callee could be an indirect tail call in which
5630       // case the SDValue for the callee could be a load (to load the address
5631       // of a function pointer) or it may be a register copy (to move the
5632       // address of the callee from a function parameter into a virtual
5633       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5634       assert((Subtarget.isUsingPCRelativeCalls() ||
5635               isa<GlobalAddressSDNode>(Callee)) &&
5636              "Callee should be an llvm::Function object.");
5637 
5638       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5639                         << "\nTCO callee: ");
5640       LLVM_DEBUG(Callee.dump());
5641     }
5642   }
5643 
5644   if (!isTailCall && CB && CB->isMustTailCall())
5645     report_fatal_error("failed to perform tail call elimination on a call "
5646                        "site marked musttail");
5647 
5648   // When long calls (i.e. indirect calls) are always used, calls are always
5649   // made via function pointer. If we have a function name, first translate it
5650   // into a pointer.
5651   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5652       !isTailCall)
5653     Callee = LowerGlobalAddress(Callee, DAG);
5654 
5655   CallFlags CFlags(
5656       CallConv, isTailCall, isVarArg, isPatchPoint,
5657       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5658       // hasNest
5659       Subtarget.is64BitELFABI() &&
5660           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5661       CLI.NoMerge);
5662 
5663   if (Subtarget.isAIXABI())
5664     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5665                          InVals, CB);
5666 
5667   assert(Subtarget.isSVR4ABI());
5668   if (Subtarget.isPPC64())
5669     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5670                             InVals, CB);
5671   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5672                           InVals, CB);
5673 }
5674 
5675 SDValue PPCTargetLowering::LowerCall_32SVR4(
5676     SDValue Chain, SDValue Callee, CallFlags CFlags,
5677     const SmallVectorImpl<ISD::OutputArg> &Outs,
5678     const SmallVectorImpl<SDValue> &OutVals,
5679     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5680     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5681     const CallBase *CB) const {
5682   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5683   // of the 32-bit SVR4 ABI stack frame layout.
5684 
5685   const CallingConv::ID CallConv = CFlags.CallConv;
5686   const bool IsVarArg = CFlags.IsVarArg;
5687   const bool IsTailCall = CFlags.IsTailCall;
5688 
5689   assert((CallConv == CallingConv::C ||
5690           CallConv == CallingConv::Cold ||
5691           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5692 
5693   const Align PtrAlign(4);
5694 
5695   MachineFunction &MF = DAG.getMachineFunction();
5696 
5697   // Mark this function as potentially containing a function that contains a
5698   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5699   // and restoring the callers stack pointer in this functions epilog. This is
5700   // done because by tail calling the called function might overwrite the value
5701   // in this function's (MF) stack pointer stack slot 0(SP).
5702   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5703       CallConv == CallingConv::Fast)
5704     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5705 
5706   // Count how many bytes are to be pushed on the stack, including the linkage
5707   // area, parameter list area and the part of the local variable space which
5708   // contains copies of aggregates which are passed by value.
5709 
5710   // Assign locations to all of the outgoing arguments.
5711   SmallVector<CCValAssign, 16> ArgLocs;
5712   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5713 
5714   // Reserve space for the linkage area on the stack.
5715   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5716                        PtrAlign);
5717   if (useSoftFloat())
5718     CCInfo.PreAnalyzeCallOperands(Outs);
5719 
5720   if (IsVarArg) {
5721     // Handle fixed and variable vector arguments differently.
5722     // Fixed vector arguments go into registers as long as registers are
5723     // available. Variable vector arguments always go into memory.
5724     unsigned NumArgs = Outs.size();
5725 
5726     for (unsigned i = 0; i != NumArgs; ++i) {
5727       MVT ArgVT = Outs[i].VT;
5728       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5729       bool Result;
5730 
5731       if (Outs[i].IsFixed) {
5732         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5733                                CCInfo);
5734       } else {
5735         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5736                                       ArgFlags, CCInfo);
5737       }
5738 
5739       if (Result) {
5740 #ifndef NDEBUG
5741         errs() << "Call operand #" << i << " has unhandled type "
5742              << EVT(ArgVT).getEVTString() << "\n";
5743 #endif
5744         llvm_unreachable(nullptr);
5745       }
5746     }
5747   } else {
5748     // All arguments are treated the same.
5749     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5750   }
5751   CCInfo.clearWasPPCF128();
5752 
5753   // Assign locations to all of the outgoing aggregate by value arguments.
5754   SmallVector<CCValAssign, 16> ByValArgLocs;
5755   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5756 
5757   // Reserve stack space for the allocations in CCInfo.
5758   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5759 
5760   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5761 
5762   // Size of the linkage area, parameter list area and the part of the local
5763   // space variable where copies of aggregates which are passed by value are
5764   // stored.
5765   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5766 
5767   // Calculate by how many bytes the stack has to be adjusted in case of tail
5768   // call optimization.
5769   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5770 
5771   // Adjust the stack pointer for the new arguments...
5772   // These operations are automatically eliminated by the prolog/epilog pass
5773   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5774   SDValue CallSeqStart = Chain;
5775 
5776   // Load the return address and frame pointer so it can be moved somewhere else
5777   // later.
5778   SDValue LROp, FPOp;
5779   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5780 
5781   // Set up a copy of the stack pointer for use loading and storing any
5782   // arguments that may not fit in the registers available for argument
5783   // passing.
5784   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5785 
5786   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5787   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5788   SmallVector<SDValue, 8> MemOpChains;
5789 
5790   bool seenFloatArg = false;
5791   // Walk the register/memloc assignments, inserting copies/loads.
5792   // i - Tracks the index into the list of registers allocated for the call
5793   // RealArgIdx - Tracks the index into the list of actual function arguments
5794   // j - Tracks the index into the list of byval arguments
5795   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5796        i != e;
5797        ++i, ++RealArgIdx) {
5798     CCValAssign &VA = ArgLocs[i];
5799     SDValue Arg = OutVals[RealArgIdx];
5800     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5801 
5802     if (Flags.isByVal()) {
5803       // Argument is an aggregate which is passed by value, thus we need to
5804       // create a copy of it in the local variable space of the current stack
5805       // frame (which is the stack frame of the caller) and pass the address of
5806       // this copy to the callee.
5807       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5808       CCValAssign &ByValVA = ByValArgLocs[j++];
5809       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5810 
5811       // Memory reserved in the local variable space of the callers stack frame.
5812       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5813 
5814       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5815       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5816                            StackPtr, PtrOff);
5817 
5818       // Create a copy of the argument in the local area of the current
5819       // stack frame.
5820       SDValue MemcpyCall =
5821         CreateCopyOfByValArgument(Arg, PtrOff,
5822                                   CallSeqStart.getNode()->getOperand(0),
5823                                   Flags, DAG, dl);
5824 
5825       // This must go outside the CALLSEQ_START..END.
5826       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5827                                                      SDLoc(MemcpyCall));
5828       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5829                              NewCallSeqStart.getNode());
5830       Chain = CallSeqStart = NewCallSeqStart;
5831 
5832       // Pass the address of the aggregate copy on the stack either in a
5833       // physical register or in the parameter list area of the current stack
5834       // frame to the callee.
5835       Arg = PtrOff;
5836     }
5837 
5838     // When useCRBits() is true, there can be i1 arguments.
5839     // It is because getRegisterType(MVT::i1) => MVT::i1,
5840     // and for other integer types getRegisterType() => MVT::i32.
5841     // Extend i1 and ensure callee will get i32.
5842     if (Arg.getValueType() == MVT::i1)
5843       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5844                         dl, MVT::i32, Arg);
5845 
5846     if (VA.isRegLoc()) {
5847       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5848       // Put argument in a physical register.
5849       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5850         bool IsLE = Subtarget.isLittleEndian();
5851         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5852                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5853         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5854         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5855                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5856         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5857                              SVal.getValue(0)));
5858       } else
5859         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5860     } else {
5861       // Put argument in the parameter list area of the current stack frame.
5862       assert(VA.isMemLoc());
5863       unsigned LocMemOffset = VA.getLocMemOffset();
5864 
5865       if (!IsTailCall) {
5866         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5867         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5868                              StackPtr, PtrOff);
5869 
5870         MemOpChains.push_back(
5871             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5872       } else {
5873         // Calculate and remember argument location.
5874         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5875                                  TailCallArguments);
5876       }
5877     }
5878   }
5879 
5880   if (!MemOpChains.empty())
5881     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5882 
5883   // Build a sequence of copy-to-reg nodes chained together with token chain
5884   // and flag operands which copy the outgoing args into the appropriate regs.
5885   SDValue InFlag;
5886   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5887     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5888                              RegsToPass[i].second, InFlag);
5889     InFlag = Chain.getValue(1);
5890   }
5891 
5892   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5893   // registers.
5894   if (IsVarArg) {
5895     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5896     SDValue Ops[] = { Chain, InFlag };
5897 
5898     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5899                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5900 
5901     InFlag = Chain.getValue(1);
5902   }
5903 
5904   if (IsTailCall)
5905     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5906                     TailCallArguments);
5907 
5908   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5909                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5910 }
5911 
5912 // Copy an argument into memory, being careful to do this outside the
5913 // call sequence for the call to which the argument belongs.
5914 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5915     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5916     SelectionDAG &DAG, const SDLoc &dl) const {
5917   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5918                         CallSeqStart.getNode()->getOperand(0),
5919                         Flags, DAG, dl);
5920   // The MEMCPY must go outside the CALLSEQ_START..END.
5921   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5922   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5923                                                  SDLoc(MemcpyCall));
5924   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5925                          NewCallSeqStart.getNode());
5926   return NewCallSeqStart;
5927 }
5928 
5929 SDValue PPCTargetLowering::LowerCall_64SVR4(
5930     SDValue Chain, SDValue Callee, CallFlags CFlags,
5931     const SmallVectorImpl<ISD::OutputArg> &Outs,
5932     const SmallVectorImpl<SDValue> &OutVals,
5933     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5934     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5935     const CallBase *CB) const {
5936   bool isELFv2ABI = Subtarget.isELFv2ABI();
5937   bool isLittleEndian = Subtarget.isLittleEndian();
5938   unsigned NumOps = Outs.size();
5939   bool IsSibCall = false;
5940   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5941 
5942   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5943   unsigned PtrByteSize = 8;
5944 
5945   MachineFunction &MF = DAG.getMachineFunction();
5946 
5947   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5948     IsSibCall = true;
5949 
5950   // Mark this function as potentially containing a function that contains a
5951   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5952   // and restoring the callers stack pointer in this functions epilog. This is
5953   // done because by tail calling the called function might overwrite the value
5954   // in this function's (MF) stack pointer stack slot 0(SP).
5955   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5956     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5957 
5958   assert(!(IsFastCall && CFlags.IsVarArg) &&
5959          "fastcc not supported on varargs functions");
5960 
5961   // Count how many bytes are to be pushed on the stack, including the linkage
5962   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5963   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5964   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5965   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5966   unsigned NumBytes = LinkageSize;
5967   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5968 
5969   static const MCPhysReg GPR[] = {
5970     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5971     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5972   };
5973   static const MCPhysReg VR[] = {
5974     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5975     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5976   };
5977 
5978   const unsigned NumGPRs = array_lengthof(GPR);
5979   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5980   const unsigned NumVRs  = array_lengthof(VR);
5981 
5982   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5983   // can be passed to the callee in registers.
5984   // For the fast calling convention, there is another check below.
5985   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5986   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5987   if (!HasParameterArea) {
5988     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5989     unsigned AvailableFPRs = NumFPRs;
5990     unsigned AvailableVRs = NumVRs;
5991     unsigned NumBytesTmp = NumBytes;
5992     for (unsigned i = 0; i != NumOps; ++i) {
5993       if (Outs[i].Flags.isNest()) continue;
5994       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5995                                  PtrByteSize, LinkageSize, ParamAreaSize,
5996                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5997         HasParameterArea = true;
5998     }
5999   }
6000 
6001   // When using the fast calling convention, we don't provide backing for
6002   // arguments that will be in registers.
6003   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6004 
6005   // Avoid allocating parameter area for fastcc functions if all the arguments
6006   // can be passed in the registers.
6007   if (IsFastCall)
6008     HasParameterArea = false;
6009 
6010   // Add up all the space actually used.
6011   for (unsigned i = 0; i != NumOps; ++i) {
6012     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6013     EVT ArgVT = Outs[i].VT;
6014     EVT OrigVT = Outs[i].ArgVT;
6015 
6016     if (Flags.isNest())
6017       continue;
6018 
6019     if (IsFastCall) {
6020       if (Flags.isByVal()) {
6021         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6022         if (NumGPRsUsed > NumGPRs)
6023           HasParameterArea = true;
6024       } else {
6025         switch (ArgVT.getSimpleVT().SimpleTy) {
6026         default: llvm_unreachable("Unexpected ValueType for argument!");
6027         case MVT::i1:
6028         case MVT::i32:
6029         case MVT::i64:
6030           if (++NumGPRsUsed <= NumGPRs)
6031             continue;
6032           break;
6033         case MVT::v4i32:
6034         case MVT::v8i16:
6035         case MVT::v16i8:
6036         case MVT::v2f64:
6037         case MVT::v2i64:
6038         case MVT::v1i128:
6039         case MVT::f128:
6040           if (++NumVRsUsed <= NumVRs)
6041             continue;
6042           break;
6043         case MVT::v4f32:
6044           if (++NumVRsUsed <= NumVRs)
6045             continue;
6046           break;
6047         case MVT::f32:
6048         case MVT::f64:
6049           if (++NumFPRsUsed <= NumFPRs)
6050             continue;
6051           break;
6052         }
6053         HasParameterArea = true;
6054       }
6055     }
6056 
6057     /* Respect alignment of argument on the stack.  */
6058     auto Alignement =
6059         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6060     NumBytes = alignTo(NumBytes, Alignement);
6061 
6062     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6063     if (Flags.isInConsecutiveRegsLast())
6064       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6065   }
6066 
6067   unsigned NumBytesActuallyUsed = NumBytes;
6068 
6069   // In the old ELFv1 ABI,
6070   // the prolog code of the callee may store up to 8 GPR argument registers to
6071   // the stack, allowing va_start to index over them in memory if its varargs.
6072   // Because we cannot tell if this is needed on the caller side, we have to
6073   // conservatively assume that it is needed.  As such, make sure we have at
6074   // least enough stack space for the caller to store the 8 GPRs.
6075   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6076   // really requires memory operands, e.g. a vararg function.
6077   if (HasParameterArea)
6078     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6079   else
6080     NumBytes = LinkageSize;
6081 
6082   // Tail call needs the stack to be aligned.
6083   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6084     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6085 
6086   int SPDiff = 0;
6087 
6088   // Calculate by how many bytes the stack has to be adjusted in case of tail
6089   // call optimization.
6090   if (!IsSibCall)
6091     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6092 
6093   // To protect arguments on the stack from being clobbered in a tail call,
6094   // force all the loads to happen before doing any other lowering.
6095   if (CFlags.IsTailCall)
6096     Chain = DAG.getStackArgumentTokenFactor(Chain);
6097 
6098   // Adjust the stack pointer for the new arguments...
6099   // These operations are automatically eliminated by the prolog/epilog pass
6100   if (!IsSibCall)
6101     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6102   SDValue CallSeqStart = Chain;
6103 
6104   // Load the return address and frame pointer so it can be move somewhere else
6105   // later.
6106   SDValue LROp, FPOp;
6107   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6108 
6109   // Set up a copy of the stack pointer for use loading and storing any
6110   // arguments that may not fit in the registers available for argument
6111   // passing.
6112   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6113 
6114   // Figure out which arguments are going to go in registers, and which in
6115   // memory.  Also, if this is a vararg function, floating point operations
6116   // must be stored to our stack, and loaded into integer regs as well, if
6117   // any integer regs are available for argument passing.
6118   unsigned ArgOffset = LinkageSize;
6119 
6120   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6121   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6122 
6123   SmallVector<SDValue, 8> MemOpChains;
6124   for (unsigned i = 0; i != NumOps; ++i) {
6125     SDValue Arg = OutVals[i];
6126     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6127     EVT ArgVT = Outs[i].VT;
6128     EVT OrigVT = Outs[i].ArgVT;
6129 
6130     // PtrOff will be used to store the current argument to the stack if a
6131     // register cannot be found for it.
6132     SDValue PtrOff;
6133 
6134     // We re-align the argument offset for each argument, except when using the
6135     // fast calling convention, when we need to make sure we do that only when
6136     // we'll actually use a stack slot.
6137     auto ComputePtrOff = [&]() {
6138       /* Respect alignment of argument on the stack.  */
6139       auto Alignment =
6140           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6141       ArgOffset = alignTo(ArgOffset, Alignment);
6142 
6143       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6144 
6145       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6146     };
6147 
6148     if (!IsFastCall) {
6149       ComputePtrOff();
6150 
6151       /* Compute GPR index associated with argument offset.  */
6152       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6153       GPR_idx = std::min(GPR_idx, NumGPRs);
6154     }
6155 
6156     // Promote integers to 64-bit values.
6157     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6158       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6159       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6160       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6161     }
6162 
6163     // FIXME memcpy is used way more than necessary.  Correctness first.
6164     // Note: "by value" is code for passing a structure by value, not
6165     // basic types.
6166     if (Flags.isByVal()) {
6167       // Note: Size includes alignment padding, so
6168       //   struct x { short a; char b; }
6169       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6170       // These are the proper values we need for right-justifying the
6171       // aggregate in a parameter register.
6172       unsigned Size = Flags.getByValSize();
6173 
6174       // An empty aggregate parameter takes up no storage and no
6175       // registers.
6176       if (Size == 0)
6177         continue;
6178 
6179       if (IsFastCall)
6180         ComputePtrOff();
6181 
6182       // All aggregates smaller than 8 bytes must be passed right-justified.
6183       if (Size==1 || Size==2 || Size==4) {
6184         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6185         if (GPR_idx != NumGPRs) {
6186           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6187                                         MachinePointerInfo(), VT);
6188           MemOpChains.push_back(Load.getValue(1));
6189           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6190 
6191           ArgOffset += PtrByteSize;
6192           continue;
6193         }
6194       }
6195 
6196       if (GPR_idx == NumGPRs && Size < 8) {
6197         SDValue AddPtr = PtrOff;
6198         if (!isLittleEndian) {
6199           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6200                                           PtrOff.getValueType());
6201           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6202         }
6203         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6204                                                           CallSeqStart,
6205                                                           Flags, DAG, dl);
6206         ArgOffset += PtrByteSize;
6207         continue;
6208       }
6209       // Copy the object to parameter save area if it can not be entirely passed
6210       // by registers.
6211       // FIXME: we only need to copy the parts which need to be passed in
6212       // parameter save area. For the parts passed by registers, we don't need
6213       // to copy them to the stack although we need to allocate space for them
6214       // in parameter save area.
6215       if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6216         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6217                                                           CallSeqStart,
6218                                                           Flags, DAG, dl);
6219 
6220       // When a register is available, pass a small aggregate right-justified.
6221       if (Size < 8 && GPR_idx != NumGPRs) {
6222         // The easiest way to get this right-justified in a register
6223         // is to copy the structure into the rightmost portion of a
6224         // local variable slot, then load the whole slot into the
6225         // register.
6226         // FIXME: The memcpy seems to produce pretty awful code for
6227         // small aggregates, particularly for packed ones.
6228         // FIXME: It would be preferable to use the slot in the
6229         // parameter save area instead of a new local variable.
6230         SDValue AddPtr = PtrOff;
6231         if (!isLittleEndian) {
6232           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6233           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6234         }
6235         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6236                                                           CallSeqStart,
6237                                                           Flags, DAG, dl);
6238 
6239         // Load the slot into the register.
6240         SDValue Load =
6241             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6242         MemOpChains.push_back(Load.getValue(1));
6243         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6244 
6245         // Done with this argument.
6246         ArgOffset += PtrByteSize;
6247         continue;
6248       }
6249 
6250       // For aggregates larger than PtrByteSize, copy the pieces of the
6251       // object that fit into registers from the parameter save area.
6252       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6253         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6254         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6255         if (GPR_idx != NumGPRs) {
6256           SDValue Load =
6257               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6258           MemOpChains.push_back(Load.getValue(1));
6259           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6260           ArgOffset += PtrByteSize;
6261         } else {
6262           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6263           break;
6264         }
6265       }
6266       continue;
6267     }
6268 
6269     switch (Arg.getSimpleValueType().SimpleTy) {
6270     default: llvm_unreachable("Unexpected ValueType for argument!");
6271     case MVT::i1:
6272     case MVT::i32:
6273     case MVT::i64:
6274       if (Flags.isNest()) {
6275         // The 'nest' parameter, if any, is passed in R11.
6276         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6277         break;
6278       }
6279 
6280       // These can be scalar arguments or elements of an integer array type
6281       // passed directly.  Clang may use those instead of "byval" aggregate
6282       // types to avoid forcing arguments to memory unnecessarily.
6283       if (GPR_idx != NumGPRs) {
6284         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6285       } else {
6286         if (IsFastCall)
6287           ComputePtrOff();
6288 
6289         assert(HasParameterArea &&
6290                "Parameter area must exist to pass an argument in memory.");
6291         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6292                          true, CFlags.IsTailCall, false, MemOpChains,
6293                          TailCallArguments, dl);
6294         if (IsFastCall)
6295           ArgOffset += PtrByteSize;
6296       }
6297       if (!IsFastCall)
6298         ArgOffset += PtrByteSize;
6299       break;
6300     case MVT::f32:
6301     case MVT::f64: {
6302       // These can be scalar arguments or elements of a float array type
6303       // passed directly.  The latter are used to implement ELFv2 homogenous
6304       // float aggregates.
6305 
6306       // Named arguments go into FPRs first, and once they overflow, the
6307       // remaining arguments go into GPRs and then the parameter save area.
6308       // Unnamed arguments for vararg functions always go to GPRs and
6309       // then the parameter save area.  For now, put all arguments to vararg
6310       // routines always in both locations (FPR *and* GPR or stack slot).
6311       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6312       bool NeededLoad = false;
6313 
6314       // First load the argument into the next available FPR.
6315       if (FPR_idx != NumFPRs)
6316         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6317 
6318       // Next, load the argument into GPR or stack slot if needed.
6319       if (!NeedGPROrStack)
6320         ;
6321       else if (GPR_idx != NumGPRs && !IsFastCall) {
6322         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6323         // once we support fp <-> gpr moves.
6324 
6325         // In the non-vararg case, this can only ever happen in the
6326         // presence of f32 array types, since otherwise we never run
6327         // out of FPRs before running out of GPRs.
6328         SDValue ArgVal;
6329 
6330         // Double values are always passed in a single GPR.
6331         if (Arg.getValueType() != MVT::f32) {
6332           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6333 
6334         // Non-array float values are extended and passed in a GPR.
6335         } else if (!Flags.isInConsecutiveRegs()) {
6336           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6337           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6338 
6339         // If we have an array of floats, we collect every odd element
6340         // together with its predecessor into one GPR.
6341         } else if (ArgOffset % PtrByteSize != 0) {
6342           SDValue Lo, Hi;
6343           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6344           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6345           if (!isLittleEndian)
6346             std::swap(Lo, Hi);
6347           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6348 
6349         // The final element, if even, goes into the first half of a GPR.
6350         } else if (Flags.isInConsecutiveRegsLast()) {
6351           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6352           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6353           if (!isLittleEndian)
6354             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6355                                  DAG.getConstant(32, dl, MVT::i32));
6356 
6357         // Non-final even elements are skipped; they will be handled
6358         // together the with subsequent argument on the next go-around.
6359         } else
6360           ArgVal = SDValue();
6361 
6362         if (ArgVal.getNode())
6363           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6364       } else {
6365         if (IsFastCall)
6366           ComputePtrOff();
6367 
6368         // Single-precision floating-point values are mapped to the
6369         // second (rightmost) word of the stack doubleword.
6370         if (Arg.getValueType() == MVT::f32 &&
6371             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6372           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6373           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6374         }
6375 
6376         assert(HasParameterArea &&
6377                "Parameter area must exist to pass an argument in memory.");
6378         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6379                          true, CFlags.IsTailCall, false, MemOpChains,
6380                          TailCallArguments, dl);
6381 
6382         NeededLoad = true;
6383       }
6384       // When passing an array of floats, the array occupies consecutive
6385       // space in the argument area; only round up to the next doubleword
6386       // at the end of the array.  Otherwise, each float takes 8 bytes.
6387       if (!IsFastCall || NeededLoad) {
6388         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6389                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6390         if (Flags.isInConsecutiveRegsLast())
6391           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6392       }
6393       break;
6394     }
6395     case MVT::v4f32:
6396     case MVT::v4i32:
6397     case MVT::v8i16:
6398     case MVT::v16i8:
6399     case MVT::v2f64:
6400     case MVT::v2i64:
6401     case MVT::v1i128:
6402     case MVT::f128:
6403       // These can be scalar arguments or elements of a vector array type
6404       // passed directly.  The latter are used to implement ELFv2 homogenous
6405       // vector aggregates.
6406 
6407       // For a varargs call, named arguments go into VRs or on the stack as
6408       // usual; unnamed arguments always go to the stack or the corresponding
6409       // GPRs when within range.  For now, we always put the value in both
6410       // locations (or even all three).
6411       if (CFlags.IsVarArg) {
6412         assert(HasParameterArea &&
6413                "Parameter area must exist if we have a varargs call.");
6414         // We could elide this store in the case where the object fits
6415         // entirely in R registers.  Maybe later.
6416         SDValue Store =
6417             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6418         MemOpChains.push_back(Store);
6419         if (VR_idx != NumVRs) {
6420           SDValue Load =
6421               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6422           MemOpChains.push_back(Load.getValue(1));
6423           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6424         }
6425         ArgOffset += 16;
6426         for (unsigned i=0; i<16; i+=PtrByteSize) {
6427           if (GPR_idx == NumGPRs)
6428             break;
6429           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6430                                    DAG.getConstant(i, dl, PtrVT));
6431           SDValue Load =
6432               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6433           MemOpChains.push_back(Load.getValue(1));
6434           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6435         }
6436         break;
6437       }
6438 
6439       // Non-varargs Altivec params go into VRs or on the stack.
6440       if (VR_idx != NumVRs) {
6441         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6442       } else {
6443         if (IsFastCall)
6444           ComputePtrOff();
6445 
6446         assert(HasParameterArea &&
6447                "Parameter area must exist to pass an argument in memory.");
6448         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6449                          true, CFlags.IsTailCall, true, MemOpChains,
6450                          TailCallArguments, dl);
6451         if (IsFastCall)
6452           ArgOffset += 16;
6453       }
6454 
6455       if (!IsFastCall)
6456         ArgOffset += 16;
6457       break;
6458     }
6459   }
6460 
6461   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6462          "mismatch in size of parameter area");
6463   (void)NumBytesActuallyUsed;
6464 
6465   if (!MemOpChains.empty())
6466     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6467 
6468   // Check if this is an indirect call (MTCTR/BCTRL).
6469   // See prepareDescriptorIndirectCall and buildCallOperands for more
6470   // information about calls through function pointers in the 64-bit SVR4 ABI.
6471   if (CFlags.IsIndirect) {
6472     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6473     // caller in the TOC save area.
6474     if (isTOCSaveRestoreRequired(Subtarget)) {
6475       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6476       // Load r2 into a virtual register and store it to the TOC save area.
6477       setUsesTOCBasePtr(DAG);
6478       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6479       // TOC save area offset.
6480       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6481       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6482       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6483       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6484                            MachinePointerInfo::getStack(
6485                                DAG.getMachineFunction(), TOCSaveOffset));
6486     }
6487     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6488     // This does not mean the MTCTR instruction must use R12; it's easier
6489     // to model this as an extra parameter, so do that.
6490     if (isELFv2ABI && !CFlags.IsPatchPoint)
6491       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6492   }
6493 
6494   // Build a sequence of copy-to-reg nodes chained together with token chain
6495   // and flag operands which copy the outgoing args into the appropriate regs.
6496   SDValue InFlag;
6497   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6498     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6499                              RegsToPass[i].second, InFlag);
6500     InFlag = Chain.getValue(1);
6501   }
6502 
6503   if (CFlags.IsTailCall && !IsSibCall)
6504     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6505                     TailCallArguments);
6506 
6507   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6508                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6509 }
6510 
6511 // Returns true when the shadow of a general purpose argument register
6512 // in the parameter save area is aligned to at least 'RequiredAlign'.
6513 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6514   assert(RequiredAlign.value() <= 16 &&
6515          "Required alignment greater than stack alignment.");
6516   switch (Reg) {
6517   default:
6518     report_fatal_error("called on invalid register.");
6519   case PPC::R5:
6520   case PPC::R9:
6521   case PPC::X3:
6522   case PPC::X5:
6523   case PPC::X7:
6524   case PPC::X9:
6525     // These registers are 16 byte aligned which is the most strict aligment
6526     // we can support.
6527     return true;
6528   case PPC::R3:
6529   case PPC::R7:
6530   case PPC::X4:
6531   case PPC::X6:
6532   case PPC::X8:
6533   case PPC::X10:
6534     // The shadow of these registers in the PSA is 8 byte aligned.
6535     return RequiredAlign <= 8;
6536   case PPC::R4:
6537   case PPC::R6:
6538   case PPC::R8:
6539   case PPC::R10:
6540     return RequiredAlign <= 4;
6541   }
6542 }
6543 
6544 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6545                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6546                    CCState &S) {
6547   AIXCCState &State = static_cast<AIXCCState &>(S);
6548   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6549       State.getMachineFunction().getSubtarget());
6550   const bool IsPPC64 = Subtarget.isPPC64();
6551   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6552   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6553 
6554   if (ValVT == MVT::f128)
6555     report_fatal_error("f128 is unimplemented on AIX.");
6556 
6557   if (ArgFlags.isNest())
6558     report_fatal_error("Nest arguments are unimplemented.");
6559 
6560   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6561                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6562                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6563   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6564                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6565                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6566 
6567   static const MCPhysReg VR[] = {// Vector registers.
6568                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6569                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6570                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6571 
6572   if (ArgFlags.isByVal()) {
6573     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6574       report_fatal_error("Pass-by-value arguments with alignment greater than "
6575                          "register width are not supported.");
6576 
6577     const unsigned ByValSize = ArgFlags.getByValSize();
6578 
6579     // An empty aggregate parameter takes up no storage and no registers,
6580     // but needs a MemLoc for a stack slot for the formal arguments side.
6581     if (ByValSize == 0) {
6582       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6583                                        State.getNextStackOffset(), RegVT,
6584                                        LocInfo));
6585       return false;
6586     }
6587 
6588     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6589     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6590     for (const unsigned E = Offset + StackSize; Offset < E;
6591          Offset += PtrAlign.value()) {
6592       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6593         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6594       else {
6595         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6596                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6597                                          LocInfo));
6598         break;
6599       }
6600     }
6601     return false;
6602   }
6603 
6604   // Arguments always reserve parameter save area.
6605   switch (ValVT.SimpleTy) {
6606   default:
6607     report_fatal_error("Unhandled value type for argument.");
6608   case MVT::i64:
6609     // i64 arguments should have been split to i32 for PPC32.
6610     assert(IsPPC64 && "PPC32 should have split i64 values.");
6611     LLVM_FALLTHROUGH;
6612   case MVT::i1:
6613   case MVT::i32: {
6614     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6615     // AIX integer arguments are always passed in register width.
6616     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6617       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6618                                   : CCValAssign::LocInfo::ZExt;
6619     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6620       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6621     else
6622       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6623 
6624     return false;
6625   }
6626   case MVT::f32:
6627   case MVT::f64: {
6628     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6629     const unsigned StoreSize = LocVT.getStoreSize();
6630     // Floats are always 4-byte aligned in the PSA on AIX.
6631     // This includes f64 in 64-bit mode for ABI compatibility.
6632     const unsigned Offset =
6633         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6634     unsigned FReg = State.AllocateReg(FPR);
6635     if (FReg)
6636       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6637 
6638     // Reserve and initialize GPRs or initialize the PSA as required.
6639     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6640       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6641         assert(FReg && "An FPR should be available when a GPR is reserved.");
6642         if (State.isVarArg()) {
6643           // Successfully reserved GPRs are only initialized for vararg calls.
6644           // Custom handling is required for:
6645           //   f64 in PPC32 needs to be split into 2 GPRs.
6646           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6647           State.addLoc(
6648               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6649         }
6650       } else {
6651         // If there are insufficient GPRs, the PSA needs to be initialized.
6652         // Initialization occurs even if an FPR was initialized for
6653         // compatibility with the AIX XL compiler. The full memory for the
6654         // argument will be initialized even if a prior word is saved in GPR.
6655         // A custom memLoc is used when the argument also passes in FPR so
6656         // that the callee handling can skip over it easily.
6657         State.addLoc(
6658             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6659                                              LocInfo)
6660                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6661         break;
6662       }
6663     }
6664 
6665     return false;
6666   }
6667   case MVT::v4f32:
6668   case MVT::v4i32:
6669   case MVT::v8i16:
6670   case MVT::v16i8:
6671   case MVT::v2i64:
6672   case MVT::v2f64:
6673   case MVT::v1i128: {
6674     const unsigned VecSize = 16;
6675     const Align VecAlign(VecSize);
6676 
6677     if (!State.isVarArg()) {
6678       // If there are vector registers remaining we don't consume any stack
6679       // space.
6680       if (unsigned VReg = State.AllocateReg(VR)) {
6681         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6682         return false;
6683       }
6684       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6685       // might be allocated in the portion of the PSA that is shadowed by the
6686       // GPRs.
6687       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6688       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6689       return false;
6690     }
6691 
6692     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6693     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6694 
6695     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6696     // Burn any underaligned registers and their shadowed stack space until
6697     // we reach the required alignment.
6698     while (NextRegIndex != GPRs.size() &&
6699            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6700       // Shadow allocate register and its stack shadow.
6701       unsigned Reg = State.AllocateReg(GPRs);
6702       State.AllocateStack(PtrSize, PtrAlign);
6703       assert(Reg && "Allocating register unexpectedly failed.");
6704       (void)Reg;
6705       NextRegIndex = State.getFirstUnallocated(GPRs);
6706     }
6707 
6708     // Vectors that are passed as fixed arguments are handled differently.
6709     // They are passed in VRs if any are available (unlike arguments passed
6710     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6711     // functions)
6712     if (State.isFixed(ValNo)) {
6713       if (unsigned VReg = State.AllocateReg(VR)) {
6714         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6715         // Shadow allocate GPRs and stack space even though we pass in a VR.
6716         for (unsigned I = 0; I != VecSize; I += PtrSize)
6717           State.AllocateReg(GPRs);
6718         State.AllocateStack(VecSize, VecAlign);
6719         return false;
6720       }
6721       // No vector registers remain so pass on the stack.
6722       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6723       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6724       return false;
6725     }
6726 
6727     // If all GPRS are consumed then we pass the argument fully on the stack.
6728     if (NextRegIndex == GPRs.size()) {
6729       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6730       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6731       return false;
6732     }
6733 
6734     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6735     // half of the argument, and then need to pass the remaining half on the
6736     // stack.
6737     if (GPRs[NextRegIndex] == PPC::R9) {
6738       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6739       State.addLoc(
6740           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6741 
6742       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6743       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6744       assert(FirstReg && SecondReg &&
6745              "Allocating R9 or R10 unexpectedly failed.");
6746       State.addLoc(
6747           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6748       State.addLoc(
6749           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6750       return false;
6751     }
6752 
6753     // We have enough GPRs to fully pass the vector argument, and we have
6754     // already consumed any underaligned registers. Start with the custom
6755     // MemLoc and then the custom RegLocs.
6756     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6757     State.addLoc(
6758         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6759     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6760       const unsigned Reg = State.AllocateReg(GPRs);
6761       assert(Reg && "Failed to allocated register for vararg vector argument");
6762       State.addLoc(
6763           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6764     }
6765     return false;
6766   }
6767   }
6768   return true;
6769 }
6770 
6771 // So far, this function is only used by LowerFormalArguments_AIX()
6772 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6773                                                     bool IsPPC64,
6774                                                     bool HasP8Vector,
6775                                                     bool HasVSX) {
6776   assert((IsPPC64 || SVT != MVT::i64) &&
6777          "i64 should have been split for 32-bit codegen.");
6778 
6779   switch (SVT) {
6780   default:
6781     report_fatal_error("Unexpected value type for formal argument");
6782   case MVT::i1:
6783   case MVT::i32:
6784   case MVT::i64:
6785     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6786   case MVT::f32:
6787     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6788   case MVT::f64:
6789     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6790   case MVT::v4f32:
6791   case MVT::v4i32:
6792   case MVT::v8i16:
6793   case MVT::v16i8:
6794   case MVT::v2i64:
6795   case MVT::v2f64:
6796   case MVT::v1i128:
6797     return &PPC::VRRCRegClass;
6798   }
6799 }
6800 
6801 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6802                                         SelectionDAG &DAG, SDValue ArgValue,
6803                                         MVT LocVT, const SDLoc &dl) {
6804   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6805   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6806 
6807   if (Flags.isSExt())
6808     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6809                            DAG.getValueType(ValVT));
6810   else if (Flags.isZExt())
6811     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6812                            DAG.getValueType(ValVT));
6813 
6814   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6815 }
6816 
6817 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6818   const unsigned LASize = FL->getLinkageSize();
6819 
6820   if (PPC::GPRCRegClass.contains(Reg)) {
6821     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6822            "Reg must be a valid argument register!");
6823     return LASize + 4 * (Reg - PPC::R3);
6824   }
6825 
6826   if (PPC::G8RCRegClass.contains(Reg)) {
6827     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6828            "Reg must be a valid argument register!");
6829     return LASize + 8 * (Reg - PPC::X3);
6830   }
6831 
6832   llvm_unreachable("Only general purpose registers expected.");
6833 }
6834 
6835 //   AIX ABI Stack Frame Layout:
6836 //
6837 //   Low Memory +--------------------------------------------+
6838 //   SP   +---> | Back chain                                 | ---+
6839 //        |     +--------------------------------------------+    |
6840 //        |     | Saved Condition Register                   |    |
6841 //        |     +--------------------------------------------+    |
6842 //        |     | Saved Linkage Register                     |    |
6843 //        |     +--------------------------------------------+    | Linkage Area
6844 //        |     | Reserved for compilers                     |    |
6845 //        |     +--------------------------------------------+    |
6846 //        |     | Reserved for binders                       |    |
6847 //        |     +--------------------------------------------+    |
6848 //        |     | Saved TOC pointer                          | ---+
6849 //        |     +--------------------------------------------+
6850 //        |     | Parameter save area                        |
6851 //        |     +--------------------------------------------+
6852 //        |     | Alloca space                               |
6853 //        |     +--------------------------------------------+
6854 //        |     | Local variable space                       |
6855 //        |     +--------------------------------------------+
6856 //        |     | Float/int conversion temporary             |
6857 //        |     +--------------------------------------------+
6858 //        |     | Save area for AltiVec registers            |
6859 //        |     +--------------------------------------------+
6860 //        |     | AltiVec alignment padding                  |
6861 //        |     +--------------------------------------------+
6862 //        |     | Save area for VRSAVE register              |
6863 //        |     +--------------------------------------------+
6864 //        |     | Save area for General Purpose registers    |
6865 //        |     +--------------------------------------------+
6866 //        |     | Save area for Floating Point registers     |
6867 //        |     +--------------------------------------------+
6868 //        +---- | Back chain                                 |
6869 // High Memory  +--------------------------------------------+
6870 //
6871 //  Specifications:
6872 //  AIX 7.2 Assembler Language Reference
6873 //  Subroutine linkage convention
6874 
6875 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6876     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6877     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6878     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6879 
6880   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6881           CallConv == CallingConv::Fast) &&
6882          "Unexpected calling convention!");
6883 
6884   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6885     report_fatal_error("Tail call support is unimplemented on AIX.");
6886 
6887   if (useSoftFloat())
6888     report_fatal_error("Soft float support is unimplemented on AIX.");
6889 
6890   const PPCSubtarget &Subtarget =
6891       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6892 
6893   const bool IsPPC64 = Subtarget.isPPC64();
6894   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6895 
6896   // Assign locations to all of the incoming arguments.
6897   SmallVector<CCValAssign, 16> ArgLocs;
6898   MachineFunction &MF = DAG.getMachineFunction();
6899   MachineFrameInfo &MFI = MF.getFrameInfo();
6900   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6901   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6902 
6903   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6904   // Reserve space for the linkage area on the stack.
6905   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6906   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6907   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6908 
6909   SmallVector<SDValue, 8> MemOps;
6910 
6911   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6912     CCValAssign &VA = ArgLocs[I++];
6913     MVT LocVT = VA.getLocVT();
6914     MVT ValVT = VA.getValVT();
6915     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6916     // For compatibility with the AIX XL compiler, the float args in the
6917     // parameter save area are initialized even if the argument is available
6918     // in register.  The caller is required to initialize both the register
6919     // and memory, however, the callee can choose to expect it in either.
6920     // The memloc is dismissed here because the argument is retrieved from
6921     // the register.
6922     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6923       continue;
6924 
6925     auto HandleMemLoc = [&]() {
6926       const unsigned LocSize = LocVT.getStoreSize();
6927       const unsigned ValSize = ValVT.getStoreSize();
6928       assert((ValSize <= LocSize) &&
6929              "Object size is larger than size of MemLoc");
6930       int CurArgOffset = VA.getLocMemOffset();
6931       // Objects are right-justified because AIX is big-endian.
6932       if (LocSize > ValSize)
6933         CurArgOffset += LocSize - ValSize;
6934       // Potential tail calls could cause overwriting of argument stack slots.
6935       const bool IsImmutable =
6936           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6937             (CallConv == CallingConv::Fast));
6938       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6939       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6940       SDValue ArgValue =
6941           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6942       InVals.push_back(ArgValue);
6943     };
6944 
6945     // Vector arguments to VaArg functions are passed both on the stack, and
6946     // in any available GPRs. Load the value from the stack and add the GPRs
6947     // as live ins.
6948     if (VA.isMemLoc() && VA.needsCustom()) {
6949       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6950       assert(isVarArg && "Only use custom memloc for vararg.");
6951       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6952       // matching custom RegLocs.
6953       const unsigned OriginalValNo = VA.getValNo();
6954       (void)OriginalValNo;
6955 
6956       auto HandleCustomVecRegLoc = [&]() {
6957         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6958                "Missing custom RegLoc.");
6959         VA = ArgLocs[I++];
6960         assert(VA.getValVT().isVector() &&
6961                "Unexpected Val type for custom RegLoc.");
6962         assert(VA.getValNo() == OriginalValNo &&
6963                "ValNo mismatch between custom MemLoc and RegLoc.");
6964         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6965         MF.addLiveIn(VA.getLocReg(),
6966                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
6967                                        Subtarget.hasVSX()));
6968       };
6969 
6970       HandleMemLoc();
6971       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6972       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6973       // R10.
6974       HandleCustomVecRegLoc();
6975       HandleCustomVecRegLoc();
6976 
6977       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6978       // we passed the vector in R5, R6, R7 and R8.
6979       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
6980         assert(!IsPPC64 &&
6981                "Only 2 custom RegLocs expected for 64-bit codegen.");
6982         HandleCustomVecRegLoc();
6983         HandleCustomVecRegLoc();
6984       }
6985 
6986       continue;
6987     }
6988 
6989     if (VA.isRegLoc()) {
6990       if (VA.getValVT().isScalarInteger())
6991         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6992       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
6993         switch (VA.getValVT().SimpleTy) {
6994         default:
6995           report_fatal_error("Unhandled value type for argument.");
6996         case MVT::f32:
6997           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
6998           break;
6999         case MVT::f64:
7000           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7001           break;
7002         }
7003       } else if (VA.getValVT().isVector()) {
7004         switch (VA.getValVT().SimpleTy) {
7005         default:
7006           report_fatal_error("Unhandled value type for argument.");
7007         case MVT::v16i8:
7008           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7009           break;
7010         case MVT::v8i16:
7011           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7012           break;
7013         case MVT::v4i32:
7014         case MVT::v2i64:
7015         case MVT::v1i128:
7016           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7017           break;
7018         case MVT::v4f32:
7019         case MVT::v2f64:
7020           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7021           break;
7022         }
7023       }
7024     }
7025 
7026     if (Flags.isByVal() && VA.isMemLoc()) {
7027       const unsigned Size =
7028           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7029                   PtrByteSize);
7030       const int FI = MF.getFrameInfo().CreateFixedObject(
7031           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7032           /* IsAliased */ true);
7033       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7034       InVals.push_back(FIN);
7035 
7036       continue;
7037     }
7038 
7039     if (Flags.isByVal()) {
7040       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7041 
7042       const MCPhysReg ArgReg = VA.getLocReg();
7043       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7044 
7045       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7046         report_fatal_error("Over aligned byvals not supported yet.");
7047 
7048       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7049       const int FI = MF.getFrameInfo().CreateFixedObject(
7050           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7051           /* IsAliased */ true);
7052       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7053       InVals.push_back(FIN);
7054 
7055       // Add live ins for all the RegLocs for the same ByVal.
7056       const TargetRegisterClass *RegClass =
7057           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7058 
7059       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7060                                                unsigned Offset) {
7061         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7062         // Since the callers side has left justified the aggregate in the
7063         // register, we can simply store the entire register into the stack
7064         // slot.
7065         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7066         // The store to the fixedstack object is needed becuase accessing a
7067         // field of the ByVal will use a gep and load. Ideally we will optimize
7068         // to extracting the value from the register directly, and elide the
7069         // stores when the arguments address is not taken, but that will need to
7070         // be future work.
7071         SDValue Store = DAG.getStore(
7072             CopyFrom.getValue(1), dl, CopyFrom,
7073             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7074             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7075 
7076         MemOps.push_back(Store);
7077       };
7078 
7079       unsigned Offset = 0;
7080       HandleRegLoc(VA.getLocReg(), Offset);
7081       Offset += PtrByteSize;
7082       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7083            Offset += PtrByteSize) {
7084         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7085                "RegLocs should be for ByVal argument.");
7086 
7087         const CCValAssign RL = ArgLocs[I++];
7088         HandleRegLoc(RL.getLocReg(), Offset);
7089         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7090       }
7091 
7092       if (Offset != StackSize) {
7093         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7094                "Expected MemLoc for remaining bytes.");
7095         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7096         // Consume the MemLoc.The InVal has already been emitted, so nothing
7097         // more needs to be done.
7098         ++I;
7099       }
7100 
7101       continue;
7102     }
7103 
7104     if (VA.isRegLoc() && !VA.needsCustom()) {
7105       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7106       Register VReg =
7107           MF.addLiveIn(VA.getLocReg(),
7108                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7109                                          Subtarget.hasVSX()));
7110       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7111       if (ValVT.isScalarInteger() &&
7112           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7113         ArgValue =
7114             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7115       }
7116       InVals.push_back(ArgValue);
7117       continue;
7118     }
7119     if (VA.isMemLoc()) {
7120       HandleMemLoc();
7121       continue;
7122     }
7123   }
7124 
7125   // On AIX a minimum of 8 words is saved to the parameter save area.
7126   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7127   // Area that is at least reserved in the caller of this function.
7128   unsigned CallerReservedArea =
7129       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7130 
7131   // Set the size that is at least reserved in caller of this function. Tail
7132   // call optimized function's reserved stack space needs to be aligned so
7133   // that taking the difference between two stack areas will result in an
7134   // aligned stack.
7135   CallerReservedArea =
7136       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7137   FuncInfo->setMinReservedArea(CallerReservedArea);
7138 
7139   if (isVarArg) {
7140     FuncInfo->setVarArgsFrameIndex(
7141         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7142     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7143 
7144     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7145                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7146 
7147     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7148                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7149     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7150 
7151     // The fixed integer arguments of a variadic function are stored to the
7152     // VarArgsFrameIndex on the stack so that they may be loaded by
7153     // dereferencing the result of va_next.
7154     for (unsigned GPRIndex =
7155              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7156          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7157 
7158       const unsigned VReg =
7159           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7160                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7161 
7162       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7163       SDValue Store =
7164           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7165       MemOps.push_back(Store);
7166       // Increment the address for the next argument to store.
7167       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7168       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7169     }
7170   }
7171 
7172   if (!MemOps.empty())
7173     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7174 
7175   return Chain;
7176 }
7177 
7178 SDValue PPCTargetLowering::LowerCall_AIX(
7179     SDValue Chain, SDValue Callee, CallFlags CFlags,
7180     const SmallVectorImpl<ISD::OutputArg> &Outs,
7181     const SmallVectorImpl<SDValue> &OutVals,
7182     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7183     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7184     const CallBase *CB) const {
7185   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7186   // AIX ABI stack frame layout.
7187 
7188   assert((CFlags.CallConv == CallingConv::C ||
7189           CFlags.CallConv == CallingConv::Cold ||
7190           CFlags.CallConv == CallingConv::Fast) &&
7191          "Unexpected calling convention!");
7192 
7193   if (CFlags.IsPatchPoint)
7194     report_fatal_error("This call type is unimplemented on AIX.");
7195 
7196   const PPCSubtarget& Subtarget =
7197       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7198 
7199   MachineFunction &MF = DAG.getMachineFunction();
7200   SmallVector<CCValAssign, 16> ArgLocs;
7201   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7202                     *DAG.getContext());
7203 
7204   // Reserve space for the linkage save area (LSA) on the stack.
7205   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7206   //   [SP][CR][LR][2 x reserved][TOC].
7207   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7208   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7209   const bool IsPPC64 = Subtarget.isPPC64();
7210   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7211   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7212   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7213   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7214 
7215   // The prolog code of the callee may store up to 8 GPR argument registers to
7216   // the stack, allowing va_start to index over them in memory if the callee
7217   // is variadic.
7218   // Because we cannot tell if this is needed on the caller side, we have to
7219   // conservatively assume that it is needed.  As such, make sure we have at
7220   // least enough stack space for the caller to store the 8 GPRs.
7221   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7222   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7223                                      CCInfo.getNextStackOffset());
7224 
7225   // Adjust the stack pointer for the new arguments...
7226   // These operations are automatically eliminated by the prolog/epilog pass.
7227   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7228   SDValue CallSeqStart = Chain;
7229 
7230   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7231   SmallVector<SDValue, 8> MemOpChains;
7232 
7233   // Set up a copy of the stack pointer for loading and storing any
7234   // arguments that may not fit in the registers available for argument
7235   // passing.
7236   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7237                                    : DAG.getRegister(PPC::R1, MVT::i32);
7238 
7239   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7240     const unsigned ValNo = ArgLocs[I].getValNo();
7241     SDValue Arg = OutVals[ValNo];
7242     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7243 
7244     if (Flags.isByVal()) {
7245       const unsigned ByValSize = Flags.getByValSize();
7246 
7247       // Nothing to do for zero-sized ByVals on the caller side.
7248       if (!ByValSize) {
7249         ++I;
7250         continue;
7251       }
7252 
7253       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7254         return DAG.getExtLoad(
7255             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7256             (LoadOffset != 0)
7257                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7258                 : Arg,
7259             MachinePointerInfo(), VT);
7260       };
7261 
7262       unsigned LoadOffset = 0;
7263 
7264       // Initialize registers, which are fully occupied by the by-val argument.
7265       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7266         SDValue Load = GetLoad(PtrVT, LoadOffset);
7267         MemOpChains.push_back(Load.getValue(1));
7268         LoadOffset += PtrByteSize;
7269         const CCValAssign &ByValVA = ArgLocs[I++];
7270         assert(ByValVA.getValNo() == ValNo &&
7271                "Unexpected location for pass-by-value argument.");
7272         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7273       }
7274 
7275       if (LoadOffset == ByValSize)
7276         continue;
7277 
7278       // There must be one more loc to handle the remainder.
7279       assert(ArgLocs[I].getValNo() == ValNo &&
7280              "Expected additional location for by-value argument.");
7281 
7282       if (ArgLocs[I].isMemLoc()) {
7283         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7284         const CCValAssign &ByValVA = ArgLocs[I++];
7285         ISD::ArgFlagsTy MemcpyFlags = Flags;
7286         // Only memcpy the bytes that don't pass in register.
7287         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7288         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7289             (LoadOffset != 0)
7290                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7291                 : Arg,
7292             DAG.getObjectPtrOffset(dl, StackPtr,
7293                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7294             CallSeqStart, MemcpyFlags, DAG, dl);
7295         continue;
7296       }
7297 
7298       // Initialize the final register residue.
7299       // Any residue that occupies the final by-val arg register must be
7300       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7301       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7302       // 2 and 1 byte loads.
7303       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7304       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7305              "Unexpected register residue for by-value argument.");
7306       SDValue ResidueVal;
7307       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7308         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7309         const MVT VT =
7310             N == 1 ? MVT::i8
7311                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7312         SDValue Load = GetLoad(VT, LoadOffset);
7313         MemOpChains.push_back(Load.getValue(1));
7314         LoadOffset += N;
7315         Bytes += N;
7316 
7317         // By-val arguments are passed left-justfied in register.
7318         // Every load here needs to be shifted, otherwise a full register load
7319         // should have been used.
7320         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7321                "Unexpected load emitted during handling of pass-by-value "
7322                "argument.");
7323         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7324         EVT ShiftAmountTy =
7325             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7326         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7327         SDValue ShiftedLoad =
7328             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7329         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7330                                               ShiftedLoad)
7331                                 : ShiftedLoad;
7332       }
7333 
7334       const CCValAssign &ByValVA = ArgLocs[I++];
7335       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7336       continue;
7337     }
7338 
7339     CCValAssign &VA = ArgLocs[I++];
7340     const MVT LocVT = VA.getLocVT();
7341     const MVT ValVT = VA.getValVT();
7342 
7343     switch (VA.getLocInfo()) {
7344     default:
7345       report_fatal_error("Unexpected argument extension type.");
7346     case CCValAssign::Full:
7347       break;
7348     case CCValAssign::ZExt:
7349       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7350       break;
7351     case CCValAssign::SExt:
7352       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7353       break;
7354     }
7355 
7356     if (VA.isRegLoc() && !VA.needsCustom()) {
7357       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7358       continue;
7359     }
7360 
7361     // Vector arguments passed to VarArg functions need custom handling when
7362     // they are passed (at least partially) in GPRs.
7363     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7364       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7365       // Store value to its stack slot.
7366       SDValue PtrOff =
7367           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7368       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7369       SDValue Store =
7370           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7371       MemOpChains.push_back(Store);
7372       const unsigned OriginalValNo = VA.getValNo();
7373       // Then load the GPRs from the stack
7374       unsigned LoadOffset = 0;
7375       auto HandleCustomVecRegLoc = [&]() {
7376         assert(I != E && "Unexpected end of CCvalAssigns.");
7377         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7378                "Expected custom RegLoc.");
7379         CCValAssign RegVA = ArgLocs[I++];
7380         assert(RegVA.getValNo() == OriginalValNo &&
7381                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7382         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7383                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7384         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7385         MemOpChains.push_back(Load.getValue(1));
7386         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7387         LoadOffset += PtrByteSize;
7388       };
7389 
7390       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7391       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7392       // R10.
7393       HandleCustomVecRegLoc();
7394       HandleCustomVecRegLoc();
7395 
7396       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7397           ArgLocs[I].getValNo() == OriginalValNo) {
7398         assert(!IsPPC64 &&
7399                "Only 2 custom RegLocs expected for 64-bit codegen.");
7400         HandleCustomVecRegLoc();
7401         HandleCustomVecRegLoc();
7402       }
7403 
7404       continue;
7405     }
7406 
7407     if (VA.isMemLoc()) {
7408       SDValue PtrOff =
7409           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7410       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7411       MemOpChains.push_back(
7412           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7413 
7414       continue;
7415     }
7416 
7417     if (!ValVT.isFloatingPoint())
7418       report_fatal_error(
7419           "Unexpected register handling for calling convention.");
7420 
7421     // Custom handling is used for GPR initializations for vararg float
7422     // arguments.
7423     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7424            LocVT.isInteger() &&
7425            "Custom register handling only expected for VarArg.");
7426 
7427     SDValue ArgAsInt =
7428         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7429 
7430     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7431       // f32 in 32-bit GPR
7432       // f64 in 64-bit GPR
7433       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7434     else if (Arg.getValueType().getFixedSizeInBits() <
7435              LocVT.getFixedSizeInBits())
7436       // f32 in 64-bit GPR.
7437       RegsToPass.push_back(std::make_pair(
7438           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7439     else {
7440       // f64 in two 32-bit GPRs
7441       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7442       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7443              "Unexpected custom register for argument!");
7444       CCValAssign &GPR1 = VA;
7445       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7446                                      DAG.getConstant(32, dl, MVT::i8));
7447       RegsToPass.push_back(std::make_pair(
7448           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7449 
7450       if (I != E) {
7451         // If only 1 GPR was available, there will only be one custom GPR and
7452         // the argument will also pass in memory.
7453         CCValAssign &PeekArg = ArgLocs[I];
7454         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7455           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7456           CCValAssign &GPR2 = ArgLocs[I++];
7457           RegsToPass.push_back(std::make_pair(
7458               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7459         }
7460       }
7461     }
7462   }
7463 
7464   if (!MemOpChains.empty())
7465     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7466 
7467   // For indirect calls, we need to save the TOC base to the stack for
7468   // restoration after the call.
7469   if (CFlags.IsIndirect) {
7470     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7471     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7472     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7473     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7474     const unsigned TOCSaveOffset =
7475         Subtarget.getFrameLowering()->getTOCSaveOffset();
7476 
7477     setUsesTOCBasePtr(DAG);
7478     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7479     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7480     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7481     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7482     Chain = DAG.getStore(
7483         Val.getValue(1), dl, Val, AddPtr,
7484         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7485   }
7486 
7487   // Build a sequence of copy-to-reg nodes chained together with token chain
7488   // and flag operands which copy the outgoing args into the appropriate regs.
7489   SDValue InFlag;
7490   for (auto Reg : RegsToPass) {
7491     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7492     InFlag = Chain.getValue(1);
7493   }
7494 
7495   const int SPDiff = 0;
7496   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7497                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7498 }
7499 
7500 bool
7501 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7502                                   MachineFunction &MF, bool isVarArg,
7503                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7504                                   LLVMContext &Context) const {
7505   SmallVector<CCValAssign, 16> RVLocs;
7506   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7507   return CCInfo.CheckReturn(
7508       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7509                 ? RetCC_PPC_Cold
7510                 : RetCC_PPC);
7511 }
7512 
7513 SDValue
7514 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7515                                bool isVarArg,
7516                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7517                                const SmallVectorImpl<SDValue> &OutVals,
7518                                const SDLoc &dl, SelectionDAG &DAG) const {
7519   SmallVector<CCValAssign, 16> RVLocs;
7520   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7521                  *DAG.getContext());
7522   CCInfo.AnalyzeReturn(Outs,
7523                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7524                            ? RetCC_PPC_Cold
7525                            : RetCC_PPC);
7526 
7527   SDValue Flag;
7528   SmallVector<SDValue, 4> RetOps(1, Chain);
7529 
7530   // Copy the result values into the output registers.
7531   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7532     CCValAssign &VA = RVLocs[i];
7533     assert(VA.isRegLoc() && "Can only return in registers!");
7534 
7535     SDValue Arg = OutVals[RealResIdx];
7536 
7537     switch (VA.getLocInfo()) {
7538     default: llvm_unreachable("Unknown loc info!");
7539     case CCValAssign::Full: break;
7540     case CCValAssign::AExt:
7541       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7542       break;
7543     case CCValAssign::ZExt:
7544       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7545       break;
7546     case CCValAssign::SExt:
7547       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7548       break;
7549     }
7550     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7551       bool isLittleEndian = Subtarget.isLittleEndian();
7552       // Legalize ret f64 -> ret 2 x i32.
7553       SDValue SVal =
7554           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7555                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7556       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7557       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7558       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7559                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7560       Flag = Chain.getValue(1);
7561       VA = RVLocs[++i]; // skip ahead to next loc
7562       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7563     } else
7564       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7565     Flag = Chain.getValue(1);
7566     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7567   }
7568 
7569   RetOps[0] = Chain;  // Update chain.
7570 
7571   // Add the flag if we have it.
7572   if (Flag.getNode())
7573     RetOps.push_back(Flag);
7574 
7575   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7576 }
7577 
7578 SDValue
7579 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7580                                                 SelectionDAG &DAG) const {
7581   SDLoc dl(Op);
7582 
7583   // Get the correct type for integers.
7584   EVT IntVT = Op.getValueType();
7585 
7586   // Get the inputs.
7587   SDValue Chain = Op.getOperand(0);
7588   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7589   // Build a DYNAREAOFFSET node.
7590   SDValue Ops[2] = {Chain, FPSIdx};
7591   SDVTList VTs = DAG.getVTList(IntVT);
7592   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7593 }
7594 
7595 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7596                                              SelectionDAG &DAG) const {
7597   // When we pop the dynamic allocation we need to restore the SP link.
7598   SDLoc dl(Op);
7599 
7600   // Get the correct type for pointers.
7601   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7602 
7603   // Construct the stack pointer operand.
7604   bool isPPC64 = Subtarget.isPPC64();
7605   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7606   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7607 
7608   // Get the operands for the STACKRESTORE.
7609   SDValue Chain = Op.getOperand(0);
7610   SDValue SaveSP = Op.getOperand(1);
7611 
7612   // Load the old link SP.
7613   SDValue LoadLinkSP =
7614       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7615 
7616   // Restore the stack pointer.
7617   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7618 
7619   // Store the old link SP.
7620   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7621 }
7622 
7623 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7624   MachineFunction &MF = DAG.getMachineFunction();
7625   bool isPPC64 = Subtarget.isPPC64();
7626   EVT PtrVT = getPointerTy(MF.getDataLayout());
7627 
7628   // Get current frame pointer save index.  The users of this index will be
7629   // primarily DYNALLOC instructions.
7630   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7631   int RASI = FI->getReturnAddrSaveIndex();
7632 
7633   // If the frame pointer save index hasn't been defined yet.
7634   if (!RASI) {
7635     // Find out what the fix offset of the frame pointer save area.
7636     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7637     // Allocate the frame index for frame pointer save area.
7638     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7639     // Save the result.
7640     FI->setReturnAddrSaveIndex(RASI);
7641   }
7642   return DAG.getFrameIndex(RASI, PtrVT);
7643 }
7644 
7645 SDValue
7646 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7647   MachineFunction &MF = DAG.getMachineFunction();
7648   bool isPPC64 = Subtarget.isPPC64();
7649   EVT PtrVT = getPointerTy(MF.getDataLayout());
7650 
7651   // Get current frame pointer save index.  The users of this index will be
7652   // primarily DYNALLOC instructions.
7653   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7654   int FPSI = FI->getFramePointerSaveIndex();
7655 
7656   // If the frame pointer save index hasn't been defined yet.
7657   if (!FPSI) {
7658     // Find out what the fix offset of the frame pointer save area.
7659     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7660     // Allocate the frame index for frame pointer save area.
7661     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7662     // Save the result.
7663     FI->setFramePointerSaveIndex(FPSI);
7664   }
7665   return DAG.getFrameIndex(FPSI, PtrVT);
7666 }
7667 
7668 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7669                                                    SelectionDAG &DAG) const {
7670   MachineFunction &MF = DAG.getMachineFunction();
7671   // Get the inputs.
7672   SDValue Chain = Op.getOperand(0);
7673   SDValue Size  = Op.getOperand(1);
7674   SDLoc dl(Op);
7675 
7676   // Get the correct type for pointers.
7677   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7678   // Negate the size.
7679   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7680                                 DAG.getConstant(0, dl, PtrVT), Size);
7681   // Construct a node for the frame pointer save index.
7682   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7683   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7684   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7685   if (hasInlineStackProbe(MF))
7686     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7687   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7688 }
7689 
7690 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7691                                                      SelectionDAG &DAG) const {
7692   MachineFunction &MF = DAG.getMachineFunction();
7693 
7694   bool isPPC64 = Subtarget.isPPC64();
7695   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7696 
7697   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7698   return DAG.getFrameIndex(FI, PtrVT);
7699 }
7700 
7701 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7702                                                SelectionDAG &DAG) const {
7703   SDLoc DL(Op);
7704   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7705                      DAG.getVTList(MVT::i32, MVT::Other),
7706                      Op.getOperand(0), Op.getOperand(1));
7707 }
7708 
7709 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7710                                                 SelectionDAG &DAG) const {
7711   SDLoc DL(Op);
7712   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7713                      Op.getOperand(0), Op.getOperand(1));
7714 }
7715 
7716 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7717   if (Op.getValueType().isVector())
7718     return LowerVectorLoad(Op, DAG);
7719 
7720   assert(Op.getValueType() == MVT::i1 &&
7721          "Custom lowering only for i1 loads");
7722 
7723   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7724 
7725   SDLoc dl(Op);
7726   LoadSDNode *LD = cast<LoadSDNode>(Op);
7727 
7728   SDValue Chain = LD->getChain();
7729   SDValue BasePtr = LD->getBasePtr();
7730   MachineMemOperand *MMO = LD->getMemOperand();
7731 
7732   SDValue NewLD =
7733       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7734                      BasePtr, MVT::i8, MMO);
7735   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7736 
7737   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7738   return DAG.getMergeValues(Ops, dl);
7739 }
7740 
7741 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7742   if (Op.getOperand(1).getValueType().isVector())
7743     return LowerVectorStore(Op, DAG);
7744 
7745   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7746          "Custom lowering only for i1 stores");
7747 
7748   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7749 
7750   SDLoc dl(Op);
7751   StoreSDNode *ST = cast<StoreSDNode>(Op);
7752 
7753   SDValue Chain = ST->getChain();
7754   SDValue BasePtr = ST->getBasePtr();
7755   SDValue Value = ST->getValue();
7756   MachineMemOperand *MMO = ST->getMemOperand();
7757 
7758   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7759                       Value);
7760   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7761 }
7762 
7763 // FIXME: Remove this once the ANDI glue bug is fixed:
7764 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7765   assert(Op.getValueType() == MVT::i1 &&
7766          "Custom lowering only for i1 results");
7767 
7768   SDLoc DL(Op);
7769   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7770 }
7771 
7772 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7773                                                SelectionDAG &DAG) const {
7774 
7775   // Implements a vector truncate that fits in a vector register as a shuffle.
7776   // We want to legalize vector truncates down to where the source fits in
7777   // a vector register (and target is therefore smaller than vector register
7778   // size).  At that point legalization will try to custom lower the sub-legal
7779   // result and get here - where we can contain the truncate as a single target
7780   // operation.
7781 
7782   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7783   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7784   //
7785   // We will implement it for big-endian ordering as this (where x denotes
7786   // undefined):
7787   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7788   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7789   //
7790   // The same operation in little-endian ordering will be:
7791   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7792   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7793 
7794   EVT TrgVT = Op.getValueType();
7795   assert(TrgVT.isVector() && "Vector type expected.");
7796   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7797   EVT EltVT = TrgVT.getVectorElementType();
7798   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7799       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7800       !isPowerOf2_32(EltVT.getSizeInBits()))
7801     return SDValue();
7802 
7803   SDValue N1 = Op.getOperand(0);
7804   EVT SrcVT = N1.getValueType();
7805   unsigned SrcSize = SrcVT.getSizeInBits();
7806   if (SrcSize > 256 ||
7807       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7808       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7809     return SDValue();
7810   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7811     return SDValue();
7812 
7813   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7814   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7815 
7816   SDLoc DL(Op);
7817   SDValue Op1, Op2;
7818   if (SrcSize == 256) {
7819     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7820     EVT SplitVT =
7821         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7822     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7823     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7824                       DAG.getConstant(0, DL, VecIdxTy));
7825     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7826                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7827   }
7828   else {
7829     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7830     Op2 = DAG.getUNDEF(WideVT);
7831   }
7832 
7833   // First list the elements we want to keep.
7834   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7835   SmallVector<int, 16> ShuffV;
7836   if (Subtarget.isLittleEndian())
7837     for (unsigned i = 0; i < TrgNumElts; ++i)
7838       ShuffV.push_back(i * SizeMult);
7839   else
7840     for (unsigned i = 1; i <= TrgNumElts; ++i)
7841       ShuffV.push_back(i * SizeMult - 1);
7842 
7843   // Populate the remaining elements with undefs.
7844   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7845     // ShuffV.push_back(i + WideNumElts);
7846     ShuffV.push_back(WideNumElts + 1);
7847 
7848   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7849   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7850   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7851 }
7852 
7853 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7854 /// possible.
7855 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7856   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7857   EVT ResVT = Op.getValueType();
7858   EVT CmpVT = Op.getOperand(0).getValueType();
7859   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7860   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7861   SDLoc dl(Op);
7862 
7863   // Without power9-vector, we don't have native instruction for f128 comparison.
7864   // Following transformation to libcall is needed for setcc:
7865   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7866   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7867     SDValue Z = DAG.getSetCC(
7868         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7869         LHS, RHS, CC);
7870     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7871     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7872   }
7873 
7874   // Not FP, or using SPE? Not a fsel.
7875   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7876       Subtarget.hasSPE())
7877     return Op;
7878 
7879   SDNodeFlags Flags = Op.getNode()->getFlags();
7880 
7881   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7882   // presence of infinities.
7883   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7884     switch (CC) {
7885     default:
7886       break;
7887     case ISD::SETOGT:
7888     case ISD::SETGT:
7889       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7890     case ISD::SETOLT:
7891     case ISD::SETLT:
7892       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7893     }
7894   }
7895 
7896   // We might be able to do better than this under some circumstances, but in
7897   // general, fsel-based lowering of select is a finite-math-only optimization.
7898   // For more information, see section F.3 of the 2.06 ISA specification.
7899   // With ISA 3.0
7900   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7901       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7902     return Op;
7903 
7904   // If the RHS of the comparison is a 0.0, we don't need to do the
7905   // subtraction at all.
7906   SDValue Sel1;
7907   if (isFloatingPointZero(RHS))
7908     switch (CC) {
7909     default: break;       // SETUO etc aren't handled by fsel.
7910     case ISD::SETNE:
7911       std::swap(TV, FV);
7912       LLVM_FALLTHROUGH;
7913     case ISD::SETEQ:
7914       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7915         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7916       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7917       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7918         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7919       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7920                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7921     case ISD::SETULT:
7922     case ISD::SETLT:
7923       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7924       LLVM_FALLTHROUGH;
7925     case ISD::SETOGE:
7926     case ISD::SETGE:
7927       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7928         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7929       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7930     case ISD::SETUGT:
7931     case ISD::SETGT:
7932       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7933       LLVM_FALLTHROUGH;
7934     case ISD::SETOLE:
7935     case ISD::SETLE:
7936       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7937         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7938       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7939                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7940     }
7941 
7942   SDValue Cmp;
7943   switch (CC) {
7944   default: break;       // SETUO etc aren't handled by fsel.
7945   case ISD::SETNE:
7946     std::swap(TV, FV);
7947     LLVM_FALLTHROUGH;
7948   case ISD::SETEQ:
7949     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7950     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7951       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7952     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7953     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7954       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7955     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7956                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7957   case ISD::SETULT:
7958   case ISD::SETLT:
7959     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7960     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7961       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7962     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7963   case ISD::SETOGE:
7964   case ISD::SETGE:
7965     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7966     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7967       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7968     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7969   case ISD::SETUGT:
7970   case ISD::SETGT:
7971     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7972     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7973       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7974     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7975   case ISD::SETOLE:
7976   case ISD::SETLE:
7977     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7978     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7979       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7980     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7981   }
7982   return Op;
7983 }
7984 
7985 static unsigned getPPCStrictOpcode(unsigned Opc) {
7986   switch (Opc) {
7987   default:
7988     llvm_unreachable("No strict version of this opcode!");
7989   case PPCISD::FCTIDZ:
7990     return PPCISD::STRICT_FCTIDZ;
7991   case PPCISD::FCTIWZ:
7992     return PPCISD::STRICT_FCTIWZ;
7993   case PPCISD::FCTIDUZ:
7994     return PPCISD::STRICT_FCTIDUZ;
7995   case PPCISD::FCTIWUZ:
7996     return PPCISD::STRICT_FCTIWUZ;
7997   case PPCISD::FCFID:
7998     return PPCISD::STRICT_FCFID;
7999   case PPCISD::FCFIDU:
8000     return PPCISD::STRICT_FCFIDU;
8001   case PPCISD::FCFIDS:
8002     return PPCISD::STRICT_FCFIDS;
8003   case PPCISD::FCFIDUS:
8004     return PPCISD::STRICT_FCFIDUS;
8005   }
8006 }
8007 
8008 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8009                               const PPCSubtarget &Subtarget) {
8010   SDLoc dl(Op);
8011   bool IsStrict = Op->isStrictFPOpcode();
8012   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8013                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8014 
8015   // TODO: Any other flags to propagate?
8016   SDNodeFlags Flags;
8017   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8018 
8019   // For strict nodes, source is the second operand.
8020   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8021   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8022   assert(Src.getValueType().isFloatingPoint());
8023   if (Src.getValueType() == MVT::f32) {
8024     if (IsStrict) {
8025       Src =
8026           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8027                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8028       Chain = Src.getValue(1);
8029     } else
8030       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8031   }
8032   SDValue Conv;
8033   unsigned Opc = ISD::DELETED_NODE;
8034   switch (Op.getSimpleValueType().SimpleTy) {
8035   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8036   case MVT::i32:
8037     Opc = IsSigned ? PPCISD::FCTIWZ
8038                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8039     break;
8040   case MVT::i64:
8041     assert((IsSigned || Subtarget.hasFPCVT()) &&
8042            "i64 FP_TO_UINT is supported only with FPCVT");
8043     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8044   }
8045   if (IsStrict) {
8046     Opc = getPPCStrictOpcode(Opc);
8047     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8048                        {Chain, Src}, Flags);
8049   } else {
8050     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8051   }
8052   return Conv;
8053 }
8054 
8055 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8056                                                SelectionDAG &DAG,
8057                                                const SDLoc &dl) const {
8058   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8059   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8060                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8061   bool IsStrict = Op->isStrictFPOpcode();
8062 
8063   // Convert the FP value to an int value through memory.
8064   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8065                   (IsSigned || Subtarget.hasFPCVT());
8066   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8067   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8068   MachinePointerInfo MPI =
8069       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8070 
8071   // Emit a store to the stack slot.
8072   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8073   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8074   if (i32Stack) {
8075     MachineFunction &MF = DAG.getMachineFunction();
8076     Alignment = Align(4);
8077     MachineMemOperand *MMO =
8078         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8079     SDValue Ops[] = { Chain, Tmp, FIPtr };
8080     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8081               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8082   } else
8083     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8084 
8085   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8086   // add in a bias on big endian.
8087   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8088     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8089                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8090     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8091   }
8092 
8093   RLI.Chain = Chain;
8094   RLI.Ptr = FIPtr;
8095   RLI.MPI = MPI;
8096   RLI.Alignment = Alignment;
8097 }
8098 
8099 /// Custom lowers floating point to integer conversions to use
8100 /// the direct move instructions available in ISA 2.07 to avoid the
8101 /// need for load/store combinations.
8102 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8103                                                     SelectionDAG &DAG,
8104                                                     const SDLoc &dl) const {
8105   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8106   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8107   if (Op->isStrictFPOpcode())
8108     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8109   else
8110     return Mov;
8111 }
8112 
8113 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8114                                           const SDLoc &dl) const {
8115   bool IsStrict = Op->isStrictFPOpcode();
8116   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8117                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8118   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8119   EVT SrcVT = Src.getValueType();
8120   EVT DstVT = Op.getValueType();
8121 
8122   // FP to INT conversions are legal for f128.
8123   if (SrcVT == MVT::f128)
8124     return Subtarget.hasP9Vector() ? Op : SDValue();
8125 
8126   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8127   // PPC (the libcall is not available).
8128   if (SrcVT == MVT::ppcf128) {
8129     if (DstVT == MVT::i32) {
8130       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8131       // set other fast-math flags to FP operations in both strict and
8132       // non-strict cases. (FP_TO_SINT, FSUB)
8133       SDNodeFlags Flags;
8134       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8135 
8136       if (IsSigned) {
8137         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8138                                  DAG.getIntPtrConstant(0, dl));
8139         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8140                                  DAG.getIntPtrConstant(1, dl));
8141 
8142         // Add the two halves of the long double in round-to-zero mode, and use
8143         // a smaller FP_TO_SINT.
8144         if (IsStrict) {
8145           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8146                                     DAG.getVTList(MVT::f64, MVT::Other),
8147                                     {Op.getOperand(0), Lo, Hi}, Flags);
8148           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8149                              DAG.getVTList(MVT::i32, MVT::Other),
8150                              {Res.getValue(1), Res}, Flags);
8151         } else {
8152           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8153           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8154         }
8155       } else {
8156         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8157         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8158         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8159         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8160         if (IsStrict) {
8161           // Sel = Src < 0x80000000
8162           // FltOfs = select Sel, 0.0, 0x80000000
8163           // IntOfs = select Sel, 0, 0x80000000
8164           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8165           SDValue Chain = Op.getOperand(0);
8166           EVT SetCCVT =
8167               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8168           EVT DstSetCCVT =
8169               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8170           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8171                                      Chain, true);
8172           Chain = Sel.getValue(1);
8173 
8174           SDValue FltOfs = DAG.getSelect(
8175               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8176           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8177 
8178           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8179                                     DAG.getVTList(SrcVT, MVT::Other),
8180                                     {Chain, Src, FltOfs}, Flags);
8181           Chain = Val.getValue(1);
8182           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8183                                      DAG.getVTList(DstVT, MVT::Other),
8184                                      {Chain, Val}, Flags);
8185           Chain = SInt.getValue(1);
8186           SDValue IntOfs = DAG.getSelect(
8187               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8188           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8189           return DAG.getMergeValues({Result, Chain}, dl);
8190         } else {
8191           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8192           // FIXME: generated code sucks.
8193           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8194           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8195           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8196           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8197           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8198         }
8199       }
8200     }
8201 
8202     return SDValue();
8203   }
8204 
8205   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8206     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8207 
8208   ReuseLoadInfo RLI;
8209   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8210 
8211   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8212                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8213 }
8214 
8215 // We're trying to insert a regular store, S, and then a load, L. If the
8216 // incoming value, O, is a load, we might just be able to have our load use the
8217 // address used by O. However, we don't know if anything else will store to
8218 // that address before we can load from it. To prevent this situation, we need
8219 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8220 // the same chain operand as O, we create a token factor from the chain results
8221 // of O and L, and we replace all uses of O's chain result with that token
8222 // factor (see spliceIntoChain below for this last part).
8223 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8224                                             ReuseLoadInfo &RLI,
8225                                             SelectionDAG &DAG,
8226                                             ISD::LoadExtType ET) const {
8227   // Conservatively skip reusing for constrained FP nodes.
8228   if (Op->isStrictFPOpcode())
8229     return false;
8230 
8231   SDLoc dl(Op);
8232   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8233                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8234   if (ET == ISD::NON_EXTLOAD &&
8235       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8236       isOperationLegalOrCustom(Op.getOpcode(),
8237                                Op.getOperand(0).getValueType())) {
8238 
8239     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8240     return true;
8241   }
8242 
8243   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8244   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8245       LD->isNonTemporal())
8246     return false;
8247   if (LD->getMemoryVT() != MemVT)
8248     return false;
8249 
8250   // If the result of the load is an illegal type, then we can't build a
8251   // valid chain for reuse since the legalised loads and token factor node that
8252   // ties the legalised loads together uses a different output chain then the
8253   // illegal load.
8254   if (!isTypeLegal(LD->getValueType(0)))
8255     return false;
8256 
8257   RLI.Ptr = LD->getBasePtr();
8258   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8259     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8260            "Non-pre-inc AM on PPC?");
8261     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8262                           LD->getOffset());
8263   }
8264 
8265   RLI.Chain = LD->getChain();
8266   RLI.MPI = LD->getPointerInfo();
8267   RLI.IsDereferenceable = LD->isDereferenceable();
8268   RLI.IsInvariant = LD->isInvariant();
8269   RLI.Alignment = LD->getAlign();
8270   RLI.AAInfo = LD->getAAInfo();
8271   RLI.Ranges = LD->getRanges();
8272 
8273   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8274   return true;
8275 }
8276 
8277 // Given the head of the old chain, ResChain, insert a token factor containing
8278 // it and NewResChain, and make users of ResChain now be users of that token
8279 // factor.
8280 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8281 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8282                                         SDValue NewResChain,
8283                                         SelectionDAG &DAG) const {
8284   if (!ResChain)
8285     return;
8286 
8287   SDLoc dl(NewResChain);
8288 
8289   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8290                            NewResChain, DAG.getUNDEF(MVT::Other));
8291   assert(TF.getNode() != NewResChain.getNode() &&
8292          "A new TF really is required here");
8293 
8294   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8295   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8296 }
8297 
8298 /// Analyze profitability of direct move
8299 /// prefer float load to int load plus direct move
8300 /// when there is no integer use of int load
8301 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8302   SDNode *Origin = Op.getOperand(0).getNode();
8303   if (Origin->getOpcode() != ISD::LOAD)
8304     return true;
8305 
8306   // If there is no LXSIBZX/LXSIHZX, like Power8,
8307   // prefer direct move if the memory size is 1 or 2 bytes.
8308   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8309   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8310     return true;
8311 
8312   for (SDNode::use_iterator UI = Origin->use_begin(),
8313                             UE = Origin->use_end();
8314        UI != UE; ++UI) {
8315 
8316     // Only look at the users of the loaded value.
8317     if (UI.getUse().get().getResNo() != 0)
8318       continue;
8319 
8320     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8321         UI->getOpcode() != ISD::UINT_TO_FP &&
8322         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8323         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8324       return true;
8325   }
8326 
8327   return false;
8328 }
8329 
8330 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8331                               const PPCSubtarget &Subtarget,
8332                               SDValue Chain = SDValue()) {
8333   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8334                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8335   SDLoc dl(Op);
8336 
8337   // TODO: Any other flags to propagate?
8338   SDNodeFlags Flags;
8339   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8340 
8341   // If we have FCFIDS, then use it when converting to single-precision.
8342   // Otherwise, convert to double-precision and then round.
8343   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8344   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8345                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8346   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8347   if (Op->isStrictFPOpcode()) {
8348     if (!Chain)
8349       Chain = Op.getOperand(0);
8350     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8351                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8352   } else
8353     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8354 }
8355 
8356 /// Custom lowers integer to floating point conversions to use
8357 /// the direct move instructions available in ISA 2.07 to avoid the
8358 /// need for load/store combinations.
8359 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8360                                                     SelectionDAG &DAG,
8361                                                     const SDLoc &dl) const {
8362   assert((Op.getValueType() == MVT::f32 ||
8363           Op.getValueType() == MVT::f64) &&
8364          "Invalid floating point type as target of conversion");
8365   assert(Subtarget.hasFPCVT() &&
8366          "Int to FP conversions with direct moves require FPCVT");
8367   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8368   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8369   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8370                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8371   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8372   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8373   return convertIntToFP(Op, Mov, DAG, Subtarget);
8374 }
8375 
8376 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8377 
8378   EVT VecVT = Vec.getValueType();
8379   assert(VecVT.isVector() && "Expected a vector type.");
8380   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8381 
8382   EVT EltVT = VecVT.getVectorElementType();
8383   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8384   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8385 
8386   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8387   SmallVector<SDValue, 16> Ops(NumConcat);
8388   Ops[0] = Vec;
8389   SDValue UndefVec = DAG.getUNDEF(VecVT);
8390   for (unsigned i = 1; i < NumConcat; ++i)
8391     Ops[i] = UndefVec;
8392 
8393   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8394 }
8395 
8396 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8397                                                 const SDLoc &dl) const {
8398   bool IsStrict = Op->isStrictFPOpcode();
8399   unsigned Opc = Op.getOpcode();
8400   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8401   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8402           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8403          "Unexpected conversion type");
8404   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8405          "Supports conversions to v2f64/v4f32 only.");
8406 
8407   // TODO: Any other flags to propagate?
8408   SDNodeFlags Flags;
8409   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8410 
8411   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8412   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8413 
8414   SDValue Wide = widenVec(DAG, Src, dl);
8415   EVT WideVT = Wide.getValueType();
8416   unsigned WideNumElts = WideVT.getVectorNumElements();
8417   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8418 
8419   SmallVector<int, 16> ShuffV;
8420   for (unsigned i = 0; i < WideNumElts; ++i)
8421     ShuffV.push_back(i + WideNumElts);
8422 
8423   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8424   int SaveElts = FourEltRes ? 4 : 2;
8425   if (Subtarget.isLittleEndian())
8426     for (int i = 0; i < SaveElts; i++)
8427       ShuffV[i * Stride] = i;
8428   else
8429     for (int i = 1; i <= SaveElts; i++)
8430       ShuffV[i * Stride - 1] = i - 1;
8431 
8432   SDValue ShuffleSrc2 =
8433       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8434   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8435 
8436   SDValue Extend;
8437   if (SignedConv) {
8438     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8439     EVT ExtVT = Src.getValueType();
8440     if (Subtarget.hasP9Altivec())
8441       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8442                                IntermediateVT.getVectorNumElements());
8443 
8444     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8445                          DAG.getValueType(ExtVT));
8446   } else
8447     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8448 
8449   if (IsStrict)
8450     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8451                        {Op.getOperand(0), Extend}, Flags);
8452 
8453   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8454 }
8455 
8456 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8457                                           SelectionDAG &DAG) const {
8458   SDLoc dl(Op);
8459   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8460                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8461   bool IsStrict = Op->isStrictFPOpcode();
8462   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8463   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8464 
8465   // TODO: Any other flags to propagate?
8466   SDNodeFlags Flags;
8467   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8468 
8469   EVT InVT = Src.getValueType();
8470   EVT OutVT = Op.getValueType();
8471   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8472       isOperationCustom(Op.getOpcode(), InVT))
8473     return LowerINT_TO_FPVector(Op, DAG, dl);
8474 
8475   // Conversions to f128 are legal.
8476   if (Op.getValueType() == MVT::f128)
8477     return Subtarget.hasP9Vector() ? Op : SDValue();
8478 
8479   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8480   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8481     return SDValue();
8482 
8483   if (Src.getValueType() == MVT::i1) {
8484     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8485                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8486                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8487     if (IsStrict)
8488       return DAG.getMergeValues({Sel, Chain}, dl);
8489     else
8490       return Sel;
8491   }
8492 
8493   // If we have direct moves, we can do all the conversion, skip the store/load
8494   // however, without FPCVT we can't do most conversions.
8495   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8496       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8497     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8498 
8499   assert((IsSigned || Subtarget.hasFPCVT()) &&
8500          "UINT_TO_FP is supported only with FPCVT");
8501 
8502   if (Src.getValueType() == MVT::i64) {
8503     SDValue SINT = Src;
8504     // When converting to single-precision, we actually need to convert
8505     // to double-precision first and then round to single-precision.
8506     // To avoid double-rounding effects during that operation, we have
8507     // to prepare the input operand.  Bits that might be truncated when
8508     // converting to double-precision are replaced by a bit that won't
8509     // be lost at this stage, but is below the single-precision rounding
8510     // position.
8511     //
8512     // However, if -enable-unsafe-fp-math is in effect, accept double
8513     // rounding to avoid the extra overhead.
8514     if (Op.getValueType() == MVT::f32 &&
8515         !Subtarget.hasFPCVT() &&
8516         !DAG.getTarget().Options.UnsafeFPMath) {
8517 
8518       // Twiddle input to make sure the low 11 bits are zero.  (If this
8519       // is the case, we are guaranteed the value will fit into the 53 bit
8520       // mantissa of an IEEE double-precision value without rounding.)
8521       // If any of those low 11 bits were not zero originally, make sure
8522       // bit 12 (value 2048) is set instead, so that the final rounding
8523       // to single-precision gets the correct result.
8524       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8525                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8526       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8527                           Round, DAG.getConstant(2047, dl, MVT::i64));
8528       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8529       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8530                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8531 
8532       // However, we cannot use that value unconditionally: if the magnitude
8533       // of the input value is small, the bit-twiddling we did above might
8534       // end up visibly changing the output.  Fortunately, in that case, we
8535       // don't need to twiddle bits since the original input will convert
8536       // exactly to double-precision floating-point already.  Therefore,
8537       // construct a conditional to use the original value if the top 11
8538       // bits are all sign-bit copies, and use the rounded value computed
8539       // above otherwise.
8540       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8541                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8542       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8543                          Cond, DAG.getConstant(1, dl, MVT::i64));
8544       Cond = DAG.getSetCC(
8545           dl,
8546           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8547           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8548 
8549       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8550     }
8551 
8552     ReuseLoadInfo RLI;
8553     SDValue Bits;
8554 
8555     MachineFunction &MF = DAG.getMachineFunction();
8556     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8557       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8558                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8559       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8560     } else if (Subtarget.hasLFIWAX() &&
8561                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8562       MachineMemOperand *MMO =
8563         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8564                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8565       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8566       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8567                                      DAG.getVTList(MVT::f64, MVT::Other),
8568                                      Ops, MVT::i32, MMO);
8569       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8570     } else if (Subtarget.hasFPCVT() &&
8571                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8572       MachineMemOperand *MMO =
8573         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8574                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8575       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8576       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8577                                      DAG.getVTList(MVT::f64, MVT::Other),
8578                                      Ops, MVT::i32, MMO);
8579       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8580     } else if (((Subtarget.hasLFIWAX() &&
8581                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8582                 (Subtarget.hasFPCVT() &&
8583                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8584                SINT.getOperand(0).getValueType() == MVT::i32) {
8585       MachineFrameInfo &MFI = MF.getFrameInfo();
8586       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8587 
8588       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8589       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8590 
8591       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8592                                    MachinePointerInfo::getFixedStack(
8593                                        DAG.getMachineFunction(), FrameIdx));
8594       Chain = Store;
8595 
8596       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8597              "Expected an i32 store");
8598 
8599       RLI.Ptr = FIdx;
8600       RLI.Chain = Chain;
8601       RLI.MPI =
8602           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8603       RLI.Alignment = Align(4);
8604 
8605       MachineMemOperand *MMO =
8606         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8607                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8608       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8609       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8610                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8611                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8612                                      Ops, MVT::i32, MMO);
8613       Chain = Bits.getValue(1);
8614     } else
8615       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8616 
8617     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8618     if (IsStrict)
8619       Chain = FP.getValue(1);
8620 
8621     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8622       if (IsStrict)
8623         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8624                          DAG.getVTList(MVT::f32, MVT::Other),
8625                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8626       else
8627         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8628                          DAG.getIntPtrConstant(0, dl));
8629     }
8630     return FP;
8631   }
8632 
8633   assert(Src.getValueType() == MVT::i32 &&
8634          "Unhandled INT_TO_FP type in custom expander!");
8635   // Since we only generate this in 64-bit mode, we can take advantage of
8636   // 64-bit registers.  In particular, sign extend the input value into the
8637   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8638   // then lfd it and fcfid it.
8639   MachineFunction &MF = DAG.getMachineFunction();
8640   MachineFrameInfo &MFI = MF.getFrameInfo();
8641   EVT PtrVT = getPointerTy(MF.getDataLayout());
8642 
8643   SDValue Ld;
8644   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8645     ReuseLoadInfo RLI;
8646     bool ReusingLoad;
8647     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8648       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8649       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8650 
8651       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8652                                    MachinePointerInfo::getFixedStack(
8653                                        DAG.getMachineFunction(), FrameIdx));
8654       Chain = Store;
8655 
8656       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8657              "Expected an i32 store");
8658 
8659       RLI.Ptr = FIdx;
8660       RLI.Chain = Chain;
8661       RLI.MPI =
8662           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8663       RLI.Alignment = Align(4);
8664     }
8665 
8666     MachineMemOperand *MMO =
8667       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8668                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8669     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8670     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8671                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8672                                  MVT::i32, MMO);
8673     Chain = Ld.getValue(1);
8674     if (ReusingLoad)
8675       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8676   } else {
8677     assert(Subtarget.isPPC64() &&
8678            "i32->FP without LFIWAX supported only on PPC64");
8679 
8680     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8681     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8682 
8683     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8684 
8685     // STD the extended value into the stack slot.
8686     SDValue Store = DAG.getStore(
8687         Chain, dl, Ext64, FIdx,
8688         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8689     Chain = Store;
8690 
8691     // Load the value as a double.
8692     Ld = DAG.getLoad(
8693         MVT::f64, dl, Chain, FIdx,
8694         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8695     Chain = Ld.getValue(1);
8696   }
8697 
8698   // FCFID it and return it.
8699   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8700   if (IsStrict)
8701     Chain = FP.getValue(1);
8702   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8703     if (IsStrict)
8704       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8705                        DAG.getVTList(MVT::f32, MVT::Other),
8706                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8707     else
8708       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8709                        DAG.getIntPtrConstant(0, dl));
8710   }
8711   return FP;
8712 }
8713 
8714 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8715                                             SelectionDAG &DAG) const {
8716   SDLoc dl(Op);
8717   /*
8718    The rounding mode is in bits 30:31 of FPSR, and has the following
8719    settings:
8720      00 Round to nearest
8721      01 Round to 0
8722      10 Round to +inf
8723      11 Round to -inf
8724 
8725   FLT_ROUNDS, on the other hand, expects the following:
8726     -1 Undefined
8727      0 Round to 0
8728      1 Round to nearest
8729      2 Round to +inf
8730      3 Round to -inf
8731 
8732   To perform the conversion, we do:
8733     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8734   */
8735 
8736   MachineFunction &MF = DAG.getMachineFunction();
8737   EVT VT = Op.getValueType();
8738   EVT PtrVT = getPointerTy(MF.getDataLayout());
8739 
8740   // Save FP Control Word to register
8741   SDValue Chain = Op.getOperand(0);
8742   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8743   Chain = MFFS.getValue(1);
8744 
8745   SDValue CWD;
8746   if (isTypeLegal(MVT::i64)) {
8747     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8748                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8749   } else {
8750     // Save FP register to stack slot
8751     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8752     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8753     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8754 
8755     // Load FP Control Word from low 32 bits of stack slot.
8756     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8757            "Stack slot adjustment is valid only on big endian subtargets!");
8758     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8759     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8760     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8761     Chain = CWD.getValue(1);
8762   }
8763 
8764   // Transform as necessary
8765   SDValue CWD1 =
8766     DAG.getNode(ISD::AND, dl, MVT::i32,
8767                 CWD, DAG.getConstant(3, dl, MVT::i32));
8768   SDValue CWD2 =
8769     DAG.getNode(ISD::SRL, dl, MVT::i32,
8770                 DAG.getNode(ISD::AND, dl, MVT::i32,
8771                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8772                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8773                             DAG.getConstant(3, dl, MVT::i32)),
8774                 DAG.getConstant(1, dl, MVT::i32));
8775 
8776   SDValue RetVal =
8777     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8778 
8779   RetVal =
8780       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8781                   dl, VT, RetVal);
8782 
8783   return DAG.getMergeValues({RetVal, Chain}, dl);
8784 }
8785 
8786 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8787   EVT VT = Op.getValueType();
8788   unsigned BitWidth = VT.getSizeInBits();
8789   SDLoc dl(Op);
8790   assert(Op.getNumOperands() == 3 &&
8791          VT == Op.getOperand(1).getValueType() &&
8792          "Unexpected SHL!");
8793 
8794   // Expand into a bunch of logical ops.  Note that these ops
8795   // depend on the PPC behavior for oversized shift amounts.
8796   SDValue Lo = Op.getOperand(0);
8797   SDValue Hi = Op.getOperand(1);
8798   SDValue Amt = Op.getOperand(2);
8799   EVT AmtVT = Amt.getValueType();
8800 
8801   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8802                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8803   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8804   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8805   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8806   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8807                              DAG.getConstant(-BitWidth, dl, AmtVT));
8808   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8809   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8810   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8811   SDValue OutOps[] = { OutLo, OutHi };
8812   return DAG.getMergeValues(OutOps, dl);
8813 }
8814 
8815 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8816   EVT VT = Op.getValueType();
8817   SDLoc dl(Op);
8818   unsigned BitWidth = VT.getSizeInBits();
8819   assert(Op.getNumOperands() == 3 &&
8820          VT == Op.getOperand(1).getValueType() &&
8821          "Unexpected SRL!");
8822 
8823   // Expand into a bunch of logical ops.  Note that these ops
8824   // depend on the PPC behavior for oversized shift amounts.
8825   SDValue Lo = Op.getOperand(0);
8826   SDValue Hi = Op.getOperand(1);
8827   SDValue Amt = Op.getOperand(2);
8828   EVT AmtVT = Amt.getValueType();
8829 
8830   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8831                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8832   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8833   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8834   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8835   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8836                              DAG.getConstant(-BitWidth, dl, AmtVT));
8837   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8838   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8839   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8840   SDValue OutOps[] = { OutLo, OutHi };
8841   return DAG.getMergeValues(OutOps, dl);
8842 }
8843 
8844 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8845   SDLoc dl(Op);
8846   EVT VT = Op.getValueType();
8847   unsigned BitWidth = VT.getSizeInBits();
8848   assert(Op.getNumOperands() == 3 &&
8849          VT == Op.getOperand(1).getValueType() &&
8850          "Unexpected SRA!");
8851 
8852   // Expand into a bunch of logical ops, followed by a select_cc.
8853   SDValue Lo = Op.getOperand(0);
8854   SDValue Hi = Op.getOperand(1);
8855   SDValue Amt = Op.getOperand(2);
8856   EVT AmtVT = Amt.getValueType();
8857 
8858   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8859                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8860   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8861   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8862   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8863   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8864                              DAG.getConstant(-BitWidth, dl, AmtVT));
8865   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8866   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8867   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8868                                   Tmp4, Tmp6, ISD::SETLE);
8869   SDValue OutOps[] = { OutLo, OutHi };
8870   return DAG.getMergeValues(OutOps, dl);
8871 }
8872 
8873 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8874                                             SelectionDAG &DAG) const {
8875   SDLoc dl(Op);
8876   EVT VT = Op.getValueType();
8877   unsigned BitWidth = VT.getSizeInBits();
8878 
8879   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8880   SDValue X = Op.getOperand(0);
8881   SDValue Y = Op.getOperand(1);
8882   SDValue Z = Op.getOperand(2);
8883   EVT AmtVT = Z.getValueType();
8884 
8885   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8886   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8887   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8888   // on PowerPC shift by BW being well defined.
8889   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8890                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8891   SDValue SubZ =
8892       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8893   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8894   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8895   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8896 }
8897 
8898 //===----------------------------------------------------------------------===//
8899 // Vector related lowering.
8900 //
8901 
8902 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8903 /// element size of SplatSize. Cast the result to VT.
8904 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8905                                       SelectionDAG &DAG, const SDLoc &dl) {
8906   static const MVT VTys[] = { // canonical VT to use for each size.
8907     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8908   };
8909 
8910   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8911 
8912   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8913   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8914     SplatSize = 1;
8915     Val = 0xFF;
8916   }
8917 
8918   EVT CanonicalVT = VTys[SplatSize-1];
8919 
8920   // Build a canonical splat for this value.
8921   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8922 }
8923 
8924 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8925 /// specified intrinsic ID.
8926 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8927                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8928   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8929   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8930                      DAG.getConstant(IID, dl, MVT::i32), Op);
8931 }
8932 
8933 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8934 /// specified intrinsic ID.
8935 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8936                                 SelectionDAG &DAG, const SDLoc &dl,
8937                                 EVT DestVT = MVT::Other) {
8938   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8939   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8940                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8941 }
8942 
8943 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8944 /// specified intrinsic ID.
8945 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8946                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8947                                 EVT DestVT = MVT::Other) {
8948   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8949   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8950                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8951 }
8952 
8953 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8954 /// amount.  The result has the specified value type.
8955 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8956                            SelectionDAG &DAG, const SDLoc &dl) {
8957   // Force LHS/RHS to be the right type.
8958   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8959   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8960 
8961   int Ops[16];
8962   for (unsigned i = 0; i != 16; ++i)
8963     Ops[i] = i + Amt;
8964   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8965   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8966 }
8967 
8968 /// Do we have an efficient pattern in a .td file for this node?
8969 ///
8970 /// \param V - pointer to the BuildVectorSDNode being matched
8971 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8972 ///
8973 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8974 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8975 /// the opposite is true (expansion is beneficial) are:
8976 /// - The node builds a vector out of integers that are not 32 or 64-bits
8977 /// - The node builds a vector out of constants
8978 /// - The node is a "load-and-splat"
8979 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8980 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8981                                             bool HasDirectMove,
8982                                             bool HasP8Vector) {
8983   EVT VecVT = V->getValueType(0);
8984   bool RightType = VecVT == MVT::v2f64 ||
8985     (HasP8Vector && VecVT == MVT::v4f32) ||
8986     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8987   if (!RightType)
8988     return false;
8989 
8990   bool IsSplat = true;
8991   bool IsLoad = false;
8992   SDValue Op0 = V->getOperand(0);
8993 
8994   // This function is called in a block that confirms the node is not a constant
8995   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8996   // different constants.
8997   if (V->isConstant())
8998     return false;
8999   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9000     if (V->getOperand(i).isUndef())
9001       return false;
9002     // We want to expand nodes that represent load-and-splat even if the
9003     // loaded value is a floating point truncation or conversion to int.
9004     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9005         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9006          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9007         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9008          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9009         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9010          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9011       IsLoad = true;
9012     // If the operands are different or the input is not a load and has more
9013     // uses than just this BV node, then it isn't a splat.
9014     if (V->getOperand(i) != Op0 ||
9015         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9016       IsSplat = false;
9017   }
9018   return !(IsSplat && IsLoad);
9019 }
9020 
9021 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9022 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9023 
9024   SDLoc dl(Op);
9025   SDValue Op0 = Op->getOperand(0);
9026 
9027   if ((Op.getValueType() != MVT::f128) ||
9028       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9029       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9030       (Op0.getOperand(1).getValueType() != MVT::i64))
9031     return SDValue();
9032 
9033   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9034                      Op0.getOperand(1));
9035 }
9036 
9037 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9038   const SDValue *InputLoad = &Op;
9039   if (InputLoad->getOpcode() == ISD::BITCAST)
9040     InputLoad = &InputLoad->getOperand(0);
9041   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9042       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9043     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9044     InputLoad = &InputLoad->getOperand(0);
9045   }
9046   if (InputLoad->getOpcode() != ISD::LOAD)
9047     return nullptr;
9048   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9049   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9050 }
9051 
9052 // Convert the argument APFloat to a single precision APFloat if there is no
9053 // loss in information during the conversion to single precision APFloat and the
9054 // resulting number is not a denormal number. Return true if successful.
9055 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9056   APFloat APFloatToConvert = ArgAPFloat;
9057   bool LosesInfo = true;
9058   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9059                            &LosesInfo);
9060   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9061   if (Success)
9062     ArgAPFloat = APFloatToConvert;
9063   return Success;
9064 }
9065 
9066 // Bitcast the argument APInt to a double and convert it to a single precision
9067 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9068 // argument if there is no loss in information during the conversion from
9069 // double to single precision APFloat and the resulting number is not a denormal
9070 // number. Return true if successful.
9071 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9072   double DpValue = ArgAPInt.bitsToDouble();
9073   APFloat APFloatDp(DpValue);
9074   bool Success = convertToNonDenormSingle(APFloatDp);
9075   if (Success)
9076     ArgAPInt = APFloatDp.bitcastToAPInt();
9077   return Success;
9078 }
9079 
9080 // Nondestructive check for convertTonNonDenormSingle.
9081 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9082   // Only convert if it loses info, since XXSPLTIDP should
9083   // handle the other case.
9084   APFloat APFloatToConvert = ArgAPFloat;
9085   bool LosesInfo = true;
9086   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9087                            &LosesInfo);
9088 
9089   return (!LosesInfo && !APFloatToConvert.isDenormal());
9090 }
9091 
9092 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9093                              unsigned &Opcode) {
9094   const SDNode *InputNode = Op.getOperand(0).getNode();
9095   if (!InputNode || !ISD::isUNINDEXEDLoad(InputNode))
9096     return false;
9097 
9098   if (!Subtarget.hasVSX())
9099     return false;
9100 
9101   EVT Ty = Op->getValueType(0);
9102   if (Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32 ||
9103       Ty == MVT::v8i16 || Ty == MVT::v16i8)
9104     return true;
9105 
9106   if (Ty == MVT::v2i64) {
9107     // Check the extend type, when the input type is i32, and the output vector
9108     // type is v2i64.
9109     if (cast<LoadSDNode>(Op.getOperand(0))->getMemoryVT() == MVT::i32) {
9110       if (ISD::isZEXTLoad(InputNode))
9111         Opcode = PPCISD::ZEXT_LD_SPLAT;
9112       if (ISD::isSEXTLoad(InputNode))
9113         Opcode = PPCISD::SEXT_LD_SPLAT;
9114     }
9115     return true;
9116   }
9117   return false;
9118 }
9119 
9120 // If this is a case we can't handle, return null and let the default
9121 // expansion code take care of it.  If we CAN select this case, and if it
9122 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9123 // this case more efficiently than a constant pool load, lower it to the
9124 // sequence of ops that should be used.
9125 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9126                                              SelectionDAG &DAG) const {
9127   SDLoc dl(Op);
9128   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9129   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9130 
9131   // Check if this is a splat of a constant value.
9132   APInt APSplatBits, APSplatUndef;
9133   unsigned SplatBitSize;
9134   bool HasAnyUndefs;
9135   bool BVNIsConstantSplat =
9136       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9137                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9138 
9139   // If it is a splat of a double, check if we can shrink it to a 32 bit
9140   // non-denormal float which when converted back to double gives us the same
9141   // double. This is to exploit the XXSPLTIDP instruction.
9142   // If we lose precision, we use XXSPLTI32DX.
9143   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9144       Subtarget.hasPrefixInstrs()) {
9145     // Check the type first to short-circuit so we don't modify APSplatBits if
9146     // this block isn't executed.
9147     if ((Op->getValueType(0) == MVT::v2f64) &&
9148         convertToNonDenormSingle(APSplatBits)) {
9149       SDValue SplatNode = DAG.getNode(
9150           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9151           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9152       return DAG.getBitcast(Op.getValueType(), SplatNode);
9153     } else {
9154       // We may lose precision, so we have to use XXSPLTI32DX.
9155 
9156       uint32_t Hi =
9157           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9158       uint32_t Lo =
9159           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9160       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9161 
9162       if (!Hi || !Lo)
9163         // If either load is 0, then we should generate XXLXOR to set to 0.
9164         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9165 
9166       if (Hi)
9167         SplatNode = DAG.getNode(
9168             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9169             DAG.getTargetConstant(0, dl, MVT::i32),
9170             DAG.getTargetConstant(Hi, dl, MVT::i32));
9171 
9172       if (Lo)
9173         SplatNode =
9174             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9175                         DAG.getTargetConstant(1, dl, MVT::i32),
9176                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9177 
9178       return DAG.getBitcast(Op.getValueType(), SplatNode);
9179     }
9180   }
9181 
9182   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9183     unsigned NewOpcode = PPCISD::LD_SPLAT;
9184 
9185     // Handle load-and-splat patterns as we have instructions that will do this
9186     // in one go.
9187     if (DAG.isSplatValue(Op, true) &&
9188         isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9189       const SDValue *InputLoad = &Op.getOperand(0);
9190       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9191 
9192       // If the input load is an extending load, it will be an i32 -> i64
9193       // extending load and isValidSplatLoad() will update NewOpcode.
9194       unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9195       unsigned ElementSize =
9196           MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9197 
9198       assert(((ElementSize == 2 * MemorySize)
9199                   ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9200                      NewOpcode == PPCISD::SEXT_LD_SPLAT)
9201                   : (NewOpcode == PPCISD::LD_SPLAT)) &&
9202              "Unmatched element size and opcode!\n");
9203 
9204       // Checking for a single use of this load, we have to check for vector
9205       // width (128 bits) / ElementSize uses (since each operand of the
9206       // BUILD_VECTOR is a separate use of the value.
9207       unsigned NumUsesOfInputLD = 128 / ElementSize;
9208       for (SDValue BVInOp : Op->ops())
9209         if (BVInOp.isUndef())
9210           NumUsesOfInputLD--;
9211 
9212       // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9213       // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9214       // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9215       // 15", but funciton IsValidSplatLoad() now will only return true when
9216       // the data at index 0 is not nullptr. So we will not get into trouble for
9217       // these cases.
9218       //
9219       // case 1 - lfiwzx/lfiwax
9220       // 1.1: load result is i32 and is sign/zero extend to i64;
9221       // 1.2: build a v2i64 vector type with above loaded value;
9222       // 1.3: the vector has only one value at index 0, others are all undef;
9223       // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9224       if (NumUsesOfInputLD == 1 &&
9225           (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9226            !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9227            Subtarget.hasLFIWAX()))
9228         return SDValue();
9229 
9230       // case 2 - lxvr[hb]x
9231       // 2.1: load result is at most i16;
9232       // 2.2: build a vector with above loaded value;
9233       // 2.3: the vector has only one value at index 0, others are all undef;
9234       // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9235       if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9236           Subtarget.isISA3_1() && ElementSize <= 16)
9237         return SDValue();
9238 
9239       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9240       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9241           Subtarget.hasVSX()) {
9242         SDValue Ops[] = {
9243           LD->getChain(),    // Chain
9244           LD->getBasePtr(),  // Ptr
9245           DAG.getValueType(Op.getValueType()) // VT
9246         };
9247         SDValue LdSplt = DAG.getMemIntrinsicNode(
9248             NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9249             LD->getMemoryVT(), LD->getMemOperand());
9250         // Replace all uses of the output chain of the original load with the
9251         // output chain of the new load.
9252         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9253                                       LdSplt.getValue(1));
9254         return LdSplt;
9255       }
9256     }
9257 
9258     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9259     // 32-bits can be lowered to VSX instructions under certain conditions.
9260     // Without VSX, there is no pattern more efficient than expanding the node.
9261     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9262         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9263                                         Subtarget.hasP8Vector()))
9264       return Op;
9265     return SDValue();
9266   }
9267 
9268   uint64_t SplatBits = APSplatBits.getZExtValue();
9269   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9270   unsigned SplatSize = SplatBitSize / 8;
9271 
9272   // First, handle single instruction cases.
9273 
9274   // All zeros?
9275   if (SplatBits == 0) {
9276     // Canonicalize all zero vectors to be v4i32.
9277     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9278       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9279       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9280     }
9281     return Op;
9282   }
9283 
9284   // We have XXSPLTIW for constant splats four bytes wide.
9285   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9286   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9287   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9288   // turned into a 4-byte splat of 0xABABABAB.
9289   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9290     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9291                                   Op.getValueType(), DAG, dl);
9292 
9293   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9294     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9295                                   dl);
9296 
9297   // We have XXSPLTIB for constant splats one byte wide.
9298   if (Subtarget.hasP9Vector() && SplatSize == 1)
9299     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9300                                   dl);
9301 
9302   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9303   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9304                     (32-SplatBitSize));
9305   if (SextVal >= -16 && SextVal <= 15)
9306     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9307                                   dl);
9308 
9309   // Two instruction sequences.
9310 
9311   // If this value is in the range [-32,30] and is even, use:
9312   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9313   // If this value is in the range [17,31] and is odd, use:
9314   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9315   // If this value is in the range [-31,-17] and is odd, use:
9316   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9317   // Note the last two are three-instruction sequences.
9318   if (SextVal >= -32 && SextVal <= 31) {
9319     // To avoid having these optimizations undone by constant folding,
9320     // we convert to a pseudo that will be expanded later into one of
9321     // the above forms.
9322     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9323     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9324               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9325     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9326     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9327     if (VT == Op.getValueType())
9328       return RetVal;
9329     else
9330       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9331   }
9332 
9333   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9334   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9335   // for fneg/fabs.
9336   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9337     // Make -1 and vspltisw -1:
9338     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9339 
9340     // Make the VSLW intrinsic, computing 0x8000_0000.
9341     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9342                                    OnesV, DAG, dl);
9343 
9344     // xor by OnesV to invert it.
9345     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9346     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9347   }
9348 
9349   // Check to see if this is a wide variety of vsplti*, binop self cases.
9350   static const signed char SplatCsts[] = {
9351     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9352     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9353   };
9354 
9355   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9356     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9357     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9358     int i = SplatCsts[idx];
9359 
9360     // Figure out what shift amount will be used by altivec if shifted by i in
9361     // this splat size.
9362     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9363 
9364     // vsplti + shl self.
9365     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9366       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9367       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9368         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9369         Intrinsic::ppc_altivec_vslw
9370       };
9371       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9372       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9373     }
9374 
9375     // vsplti + srl self.
9376     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9377       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9378       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9379         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9380         Intrinsic::ppc_altivec_vsrw
9381       };
9382       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9383       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9384     }
9385 
9386     // vsplti + rol self.
9387     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9388                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9389       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9390       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9391         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9392         Intrinsic::ppc_altivec_vrlw
9393       };
9394       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9395       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9396     }
9397 
9398     // t = vsplti c, result = vsldoi t, t, 1
9399     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9400       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9401       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9402       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9403     }
9404     // t = vsplti c, result = vsldoi t, t, 2
9405     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9406       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9407       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9408       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9409     }
9410     // t = vsplti c, result = vsldoi t, t, 3
9411     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9412       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9413       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9414       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9415     }
9416   }
9417 
9418   return SDValue();
9419 }
9420 
9421 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9422 /// the specified operations to build the shuffle.
9423 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9424                                       SDValue RHS, SelectionDAG &DAG,
9425                                       const SDLoc &dl) {
9426   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9427   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9428   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9429 
9430   enum {
9431     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9432     OP_VMRGHW,
9433     OP_VMRGLW,
9434     OP_VSPLTISW0,
9435     OP_VSPLTISW1,
9436     OP_VSPLTISW2,
9437     OP_VSPLTISW3,
9438     OP_VSLDOI4,
9439     OP_VSLDOI8,
9440     OP_VSLDOI12
9441   };
9442 
9443   if (OpNum == OP_COPY) {
9444     if (LHSID == (1*9+2)*9+3) return LHS;
9445     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9446     return RHS;
9447   }
9448 
9449   SDValue OpLHS, OpRHS;
9450   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9451   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9452 
9453   int ShufIdxs[16];
9454   switch (OpNum) {
9455   default: llvm_unreachable("Unknown i32 permute!");
9456   case OP_VMRGHW:
9457     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9458     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9459     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9460     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9461     break;
9462   case OP_VMRGLW:
9463     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9464     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9465     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9466     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9467     break;
9468   case OP_VSPLTISW0:
9469     for (unsigned i = 0; i != 16; ++i)
9470       ShufIdxs[i] = (i&3)+0;
9471     break;
9472   case OP_VSPLTISW1:
9473     for (unsigned i = 0; i != 16; ++i)
9474       ShufIdxs[i] = (i&3)+4;
9475     break;
9476   case OP_VSPLTISW2:
9477     for (unsigned i = 0; i != 16; ++i)
9478       ShufIdxs[i] = (i&3)+8;
9479     break;
9480   case OP_VSPLTISW3:
9481     for (unsigned i = 0; i != 16; ++i)
9482       ShufIdxs[i] = (i&3)+12;
9483     break;
9484   case OP_VSLDOI4:
9485     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9486   case OP_VSLDOI8:
9487     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9488   case OP_VSLDOI12:
9489     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9490   }
9491   EVT VT = OpLHS.getValueType();
9492   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9493   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9494   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9495   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9496 }
9497 
9498 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9499 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9500 /// SDValue.
9501 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9502                                            SelectionDAG &DAG) const {
9503   const unsigned BytesInVector = 16;
9504   bool IsLE = Subtarget.isLittleEndian();
9505   SDLoc dl(N);
9506   SDValue V1 = N->getOperand(0);
9507   SDValue V2 = N->getOperand(1);
9508   unsigned ShiftElts = 0, InsertAtByte = 0;
9509   bool Swap = false;
9510 
9511   // Shifts required to get the byte we want at element 7.
9512   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9513                                    0, 15, 14, 13, 12, 11, 10, 9};
9514   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9515                                 1, 2,  3,  4,  5,  6,  7,  8};
9516 
9517   ArrayRef<int> Mask = N->getMask();
9518   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9519 
9520   // For each mask element, find out if we're just inserting something
9521   // from V2 into V1 or vice versa.
9522   // Possible permutations inserting an element from V2 into V1:
9523   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9524   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9525   //   ...
9526   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9527   // Inserting from V1 into V2 will be similar, except mask range will be
9528   // [16,31].
9529 
9530   bool FoundCandidate = false;
9531   // If both vector operands for the shuffle are the same vector, the mask
9532   // will contain only elements from the first one and the second one will be
9533   // undef.
9534   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9535   // Go through the mask of half-words to find an element that's being moved
9536   // from one vector to the other.
9537   for (unsigned i = 0; i < BytesInVector; ++i) {
9538     unsigned CurrentElement = Mask[i];
9539     // If 2nd operand is undefined, we should only look for element 7 in the
9540     // Mask.
9541     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9542       continue;
9543 
9544     bool OtherElementsInOrder = true;
9545     // Examine the other elements in the Mask to see if they're in original
9546     // order.
9547     for (unsigned j = 0; j < BytesInVector; ++j) {
9548       if (j == i)
9549         continue;
9550       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9551       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9552       // in which we always assume we're always picking from the 1st operand.
9553       int MaskOffset =
9554           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9555       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9556         OtherElementsInOrder = false;
9557         break;
9558       }
9559     }
9560     // If other elements are in original order, we record the number of shifts
9561     // we need to get the element we want into element 7. Also record which byte
9562     // in the vector we should insert into.
9563     if (OtherElementsInOrder) {
9564       // If 2nd operand is undefined, we assume no shifts and no swapping.
9565       if (V2.isUndef()) {
9566         ShiftElts = 0;
9567         Swap = false;
9568       } else {
9569         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9570         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9571                          : BigEndianShifts[CurrentElement & 0xF];
9572         Swap = CurrentElement < BytesInVector;
9573       }
9574       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9575       FoundCandidate = true;
9576       break;
9577     }
9578   }
9579 
9580   if (!FoundCandidate)
9581     return SDValue();
9582 
9583   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9584   // optionally with VECSHL if shift is required.
9585   if (Swap)
9586     std::swap(V1, V2);
9587   if (V2.isUndef())
9588     V2 = V1;
9589   if (ShiftElts) {
9590     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9591                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9592     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9593                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9594   }
9595   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9596                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9597 }
9598 
9599 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9600 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9601 /// SDValue.
9602 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9603                                            SelectionDAG &DAG) const {
9604   const unsigned NumHalfWords = 8;
9605   const unsigned BytesInVector = NumHalfWords * 2;
9606   // Check that the shuffle is on half-words.
9607   if (!isNByteElemShuffleMask(N, 2, 1))
9608     return SDValue();
9609 
9610   bool IsLE = Subtarget.isLittleEndian();
9611   SDLoc dl(N);
9612   SDValue V1 = N->getOperand(0);
9613   SDValue V2 = N->getOperand(1);
9614   unsigned ShiftElts = 0, InsertAtByte = 0;
9615   bool Swap = false;
9616 
9617   // Shifts required to get the half-word we want at element 3.
9618   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9619   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9620 
9621   uint32_t Mask = 0;
9622   uint32_t OriginalOrderLow = 0x1234567;
9623   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9624   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9625   // 32-bit space, only need 4-bit nibbles per element.
9626   for (unsigned i = 0; i < NumHalfWords; ++i) {
9627     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9628     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9629   }
9630 
9631   // For each mask element, find out if we're just inserting something
9632   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9633   // from V2 into V1:
9634   //   X, 1, 2, 3, 4, 5, 6, 7
9635   //   0, X, 2, 3, 4, 5, 6, 7
9636   //   0, 1, X, 3, 4, 5, 6, 7
9637   //   0, 1, 2, X, 4, 5, 6, 7
9638   //   0, 1, 2, 3, X, 5, 6, 7
9639   //   0, 1, 2, 3, 4, X, 6, 7
9640   //   0, 1, 2, 3, 4, 5, X, 7
9641   //   0, 1, 2, 3, 4, 5, 6, X
9642   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9643 
9644   bool FoundCandidate = false;
9645   // Go through the mask of half-words to find an element that's being moved
9646   // from one vector to the other.
9647   for (unsigned i = 0; i < NumHalfWords; ++i) {
9648     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9649     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9650     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9651     uint32_t TargetOrder = 0x0;
9652 
9653     // If both vector operands for the shuffle are the same vector, the mask
9654     // will contain only elements from the first one and the second one will be
9655     // undef.
9656     if (V2.isUndef()) {
9657       ShiftElts = 0;
9658       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9659       TargetOrder = OriginalOrderLow;
9660       Swap = false;
9661       // Skip if not the correct element or mask of other elements don't equal
9662       // to our expected order.
9663       if (MaskOneElt == VINSERTHSrcElem &&
9664           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9665         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9666         FoundCandidate = true;
9667         break;
9668       }
9669     } else { // If both operands are defined.
9670       // Target order is [8,15] if the current mask is between [0,7].
9671       TargetOrder =
9672           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9673       // Skip if mask of other elements don't equal our expected order.
9674       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9675         // We only need the last 3 bits for the number of shifts.
9676         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9677                          : BigEndianShifts[MaskOneElt & 0x7];
9678         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9679         Swap = MaskOneElt < NumHalfWords;
9680         FoundCandidate = true;
9681         break;
9682       }
9683     }
9684   }
9685 
9686   if (!FoundCandidate)
9687     return SDValue();
9688 
9689   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9690   // optionally with VECSHL if shift is required.
9691   if (Swap)
9692     std::swap(V1, V2);
9693   if (V2.isUndef())
9694     V2 = V1;
9695   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9696   if (ShiftElts) {
9697     // Double ShiftElts because we're left shifting on v16i8 type.
9698     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9699                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9700     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9701     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9702                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9703     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9704   }
9705   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9706   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9707                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9708   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9709 }
9710 
9711 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9712 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9713 /// return the default SDValue.
9714 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9715                                               SelectionDAG &DAG) const {
9716   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9717   // to v16i8. Peek through the bitcasts to get the actual operands.
9718   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9719   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9720 
9721   auto ShuffleMask = SVN->getMask();
9722   SDValue VecShuffle(SVN, 0);
9723   SDLoc DL(SVN);
9724 
9725   // Check that we have a four byte shuffle.
9726   if (!isNByteElemShuffleMask(SVN, 4, 1))
9727     return SDValue();
9728 
9729   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9730   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9731     std::swap(LHS, RHS);
9732     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9733     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9734   }
9735 
9736   // Ensure that the RHS is a vector of constants.
9737   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9738   if (!BVN)
9739     return SDValue();
9740 
9741   // Check if RHS is a splat of 4-bytes (or smaller).
9742   APInt APSplatValue, APSplatUndef;
9743   unsigned SplatBitSize;
9744   bool HasAnyUndefs;
9745   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9746                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9747       SplatBitSize > 32)
9748     return SDValue();
9749 
9750   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9751   // The instruction splats a constant C into two words of the source vector
9752   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9753   // Thus we check that the shuffle mask is the equivalent  of
9754   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9755   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9756   // within each word are consecutive, so we only need to check the first byte.
9757   SDValue Index;
9758   bool IsLE = Subtarget.isLittleEndian();
9759   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9760       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9761        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9762     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9763   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9764            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9765             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9766     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9767   else
9768     return SDValue();
9769 
9770   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9771   // for XXSPLTI32DX.
9772   unsigned SplatVal = APSplatValue.getZExtValue();
9773   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9774     SplatVal |= (SplatVal << SplatBitSize);
9775 
9776   SDValue SplatNode = DAG.getNode(
9777       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9778       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9779   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9780 }
9781 
9782 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9783 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9784 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9785 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9786 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9787   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9788   assert(Op.getValueType() == MVT::v1i128 &&
9789          "Only set v1i128 as custom, other type shouldn't reach here!");
9790   SDLoc dl(Op);
9791   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9792   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9793   unsigned SHLAmt = N1.getConstantOperandVal(0);
9794   if (SHLAmt % 8 == 0) {
9795     SmallVector<int, 16> Mask(16, 0);
9796     std::iota(Mask.begin(), Mask.end(), 0);
9797     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9798     if (SDValue Shuffle =
9799             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9800                                  DAG.getUNDEF(MVT::v16i8), Mask))
9801       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9802   }
9803   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9804   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9805                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9806   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9807                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9808   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9809   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9810 }
9811 
9812 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9813 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9814 /// return the code it can be lowered into.  Worst case, it can always be
9815 /// lowered into a vperm.
9816 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9817                                                SelectionDAG &DAG) const {
9818   SDLoc dl(Op);
9819   SDValue V1 = Op.getOperand(0);
9820   SDValue V2 = Op.getOperand(1);
9821   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9822 
9823   // Any nodes that were combined in the target-independent combiner prior
9824   // to vector legalization will not be sent to the target combine. Try to
9825   // combine it here.
9826   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9827     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9828       return NewShuffle;
9829     Op = NewShuffle;
9830     SVOp = cast<ShuffleVectorSDNode>(Op);
9831     V1 = Op.getOperand(0);
9832     V2 = Op.getOperand(1);
9833   }
9834   EVT VT = Op.getValueType();
9835   bool isLittleEndian = Subtarget.isLittleEndian();
9836 
9837   unsigned ShiftElts, InsertAtByte;
9838   bool Swap = false;
9839 
9840   // If this is a load-and-splat, we can do that with a single instruction
9841   // in some cases. However if the load has multiple uses, we don't want to
9842   // combine it because that will just produce multiple loads.
9843   bool IsPermutedLoad = false;
9844   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9845   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9846       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9847       InputLoad->hasOneUse()) {
9848     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9849     int SplatIdx =
9850       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9851 
9852     // The splat index for permuted loads will be in the left half of the vector
9853     // which is strictly wider than the loaded value by 8 bytes. So we need to
9854     // adjust the splat index to point to the correct address in memory.
9855     if (IsPermutedLoad) {
9856       assert((isLittleEndian || IsFourByte) &&
9857              "Unexpected size for permuted load on big endian target");
9858       SplatIdx += IsFourByte ? 2 : 1;
9859       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9860              "Splat of a value outside of the loaded memory");
9861     }
9862 
9863     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9864     // For 4-byte load-and-splat, we need Power9.
9865     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9866       uint64_t Offset = 0;
9867       if (IsFourByte)
9868         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9869       else
9870         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9871 
9872       // If the width of the load is the same as the width of the splat,
9873       // loading with an offset would load the wrong memory.
9874       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9875         Offset = 0;
9876 
9877       SDValue BasePtr = LD->getBasePtr();
9878       if (Offset != 0)
9879         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9880                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9881       SDValue Ops[] = {
9882         LD->getChain(),    // Chain
9883         BasePtr,           // BasePtr
9884         DAG.getValueType(Op.getValueType()) // VT
9885       };
9886       SDVTList VTL =
9887         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9888       SDValue LdSplt =
9889         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9890                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9891       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9892       if (LdSplt.getValueType() != SVOp->getValueType(0))
9893         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9894       return LdSplt;
9895     }
9896   }
9897   if (Subtarget.hasP9Vector() &&
9898       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9899                            isLittleEndian)) {
9900     if (Swap)
9901       std::swap(V1, V2);
9902     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9903     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9904     if (ShiftElts) {
9905       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9906                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9907       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9908                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9909       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9910     }
9911     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9912                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9913     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9914   }
9915 
9916   if (Subtarget.hasPrefixInstrs()) {
9917     SDValue SplatInsertNode;
9918     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9919       return SplatInsertNode;
9920   }
9921 
9922   if (Subtarget.hasP9Altivec()) {
9923     SDValue NewISDNode;
9924     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9925       return NewISDNode;
9926 
9927     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9928       return NewISDNode;
9929   }
9930 
9931   if (Subtarget.hasVSX() &&
9932       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9933     if (Swap)
9934       std::swap(V1, V2);
9935     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9936     SDValue Conv2 =
9937         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9938 
9939     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9940                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9941     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9942   }
9943 
9944   if (Subtarget.hasVSX() &&
9945     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9946     if (Swap)
9947       std::swap(V1, V2);
9948     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9949     SDValue Conv2 =
9950         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9951 
9952     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9953                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9954     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9955   }
9956 
9957   if (Subtarget.hasP9Vector()) {
9958      if (PPC::isXXBRHShuffleMask(SVOp)) {
9959       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9960       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9961       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9962     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9963       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9964       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9965       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9966     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9967       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9968       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9969       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9970     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9971       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9972       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9973       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9974     }
9975   }
9976 
9977   if (Subtarget.hasVSX()) {
9978     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9979       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9980 
9981       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9982       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9983                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9984       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9985     }
9986 
9987     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9988     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9989       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9990       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9991       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9992     }
9993   }
9994 
9995   // Cases that are handled by instructions that take permute immediates
9996   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9997   // selected by the instruction selector.
9998   if (V2.isUndef()) {
9999     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10000         PPC::isSplatShuffleMask(SVOp, 2) ||
10001         PPC::isSplatShuffleMask(SVOp, 4) ||
10002         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10003         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10004         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10005         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10006         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10007         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10008         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10009         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10010         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10011         (Subtarget.hasP8Altivec() && (
10012          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10013          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10014          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10015       return Op;
10016     }
10017   }
10018 
10019   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10020   // and produce a fixed permutation.  If any of these match, do not lower to
10021   // VPERM.
10022   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10023   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10024       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10025       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10026       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10027       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10028       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10029       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10030       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10031       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10032       (Subtarget.hasP8Altivec() && (
10033        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10034        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10035        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10036     return Op;
10037 
10038   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10039   // perfect shuffle table to emit an optimal matching sequence.
10040   ArrayRef<int> PermMask = SVOp->getMask();
10041 
10042   unsigned PFIndexes[4];
10043   bool isFourElementShuffle = true;
10044   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
10045     unsigned EltNo = 8;   // Start out undef.
10046     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
10047       if (PermMask[i*4+j] < 0)
10048         continue;   // Undef, ignore it.
10049 
10050       unsigned ByteSource = PermMask[i*4+j];
10051       if ((ByteSource & 3) != j) {
10052         isFourElementShuffle = false;
10053         break;
10054       }
10055 
10056       if (EltNo == 8) {
10057         EltNo = ByteSource/4;
10058       } else if (EltNo != ByteSource/4) {
10059         isFourElementShuffle = false;
10060         break;
10061       }
10062     }
10063     PFIndexes[i] = EltNo;
10064   }
10065 
10066   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10067   // perfect shuffle vector to determine if it is cost effective to do this as
10068   // discrete instructions, or whether we should use a vperm.
10069   // For now, we skip this for little endian until such time as we have a
10070   // little-endian perfect shuffle table.
10071   if (isFourElementShuffle && !isLittleEndian) {
10072     // Compute the index in the perfect shuffle table.
10073     unsigned PFTableIndex =
10074       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10075 
10076     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10077     unsigned Cost  = (PFEntry >> 30);
10078 
10079     // Determining when to avoid vperm is tricky.  Many things affect the cost
10080     // of vperm, particularly how many times the perm mask needs to be computed.
10081     // For example, if the perm mask can be hoisted out of a loop or is already
10082     // used (perhaps because there are multiple permutes with the same shuffle
10083     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10084     // the loop requires an extra register.
10085     //
10086     // As a compromise, we only emit discrete instructions if the shuffle can be
10087     // generated in 3 or fewer operations.  When we have loop information
10088     // available, if this block is within a loop, we should avoid using vperm
10089     // for 3-operation perms and use a constant pool load instead.
10090     if (Cost < 3)
10091       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10092   }
10093 
10094   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10095   // vector that will get spilled to the constant pool.
10096   if (V2.isUndef()) V2 = V1;
10097 
10098   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10099   // that it is in input element units, not in bytes.  Convert now.
10100 
10101   // For little endian, the order of the input vectors is reversed, and
10102   // the permutation mask is complemented with respect to 31.  This is
10103   // necessary to produce proper semantics with the big-endian-biased vperm
10104   // instruction.
10105   EVT EltVT = V1.getValueType().getVectorElementType();
10106   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10107 
10108   SmallVector<SDValue, 16> ResultMask;
10109   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10110     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10111 
10112     for (unsigned j = 0; j != BytesPerElement; ++j)
10113       if (isLittleEndian)
10114         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10115                                              dl, MVT::i32));
10116       else
10117         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10118                                              MVT::i32));
10119   }
10120 
10121   ShufflesHandledWithVPERM++;
10122   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10123   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10124   LLVM_DEBUG(SVOp->dump());
10125   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10126   LLVM_DEBUG(VPermMask.dump());
10127 
10128   if (isLittleEndian)
10129     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10130                        V2, V1, VPermMask);
10131   else
10132     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10133                        V1, V2, VPermMask);
10134 }
10135 
10136 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10137 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10138 /// information about the intrinsic.
10139 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10140                                  bool &isDot, const PPCSubtarget &Subtarget) {
10141   unsigned IntrinsicID =
10142       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10143   CompareOpc = -1;
10144   isDot = false;
10145   switch (IntrinsicID) {
10146   default:
10147     return false;
10148   // Comparison predicates.
10149   case Intrinsic::ppc_altivec_vcmpbfp_p:
10150     CompareOpc = 966;
10151     isDot = true;
10152     break;
10153   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10154     CompareOpc = 198;
10155     isDot = true;
10156     break;
10157   case Intrinsic::ppc_altivec_vcmpequb_p:
10158     CompareOpc = 6;
10159     isDot = true;
10160     break;
10161   case Intrinsic::ppc_altivec_vcmpequh_p:
10162     CompareOpc = 70;
10163     isDot = true;
10164     break;
10165   case Intrinsic::ppc_altivec_vcmpequw_p:
10166     CompareOpc = 134;
10167     isDot = true;
10168     break;
10169   case Intrinsic::ppc_altivec_vcmpequd_p:
10170     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10171       CompareOpc = 199;
10172       isDot = true;
10173     } else
10174       return false;
10175     break;
10176   case Intrinsic::ppc_altivec_vcmpneb_p:
10177   case Intrinsic::ppc_altivec_vcmpneh_p:
10178   case Intrinsic::ppc_altivec_vcmpnew_p:
10179   case Intrinsic::ppc_altivec_vcmpnezb_p:
10180   case Intrinsic::ppc_altivec_vcmpnezh_p:
10181   case Intrinsic::ppc_altivec_vcmpnezw_p:
10182     if (Subtarget.hasP9Altivec()) {
10183       switch (IntrinsicID) {
10184       default:
10185         llvm_unreachable("Unknown comparison intrinsic.");
10186       case Intrinsic::ppc_altivec_vcmpneb_p:
10187         CompareOpc = 7;
10188         break;
10189       case Intrinsic::ppc_altivec_vcmpneh_p:
10190         CompareOpc = 71;
10191         break;
10192       case Intrinsic::ppc_altivec_vcmpnew_p:
10193         CompareOpc = 135;
10194         break;
10195       case Intrinsic::ppc_altivec_vcmpnezb_p:
10196         CompareOpc = 263;
10197         break;
10198       case Intrinsic::ppc_altivec_vcmpnezh_p:
10199         CompareOpc = 327;
10200         break;
10201       case Intrinsic::ppc_altivec_vcmpnezw_p:
10202         CompareOpc = 391;
10203         break;
10204       }
10205       isDot = true;
10206     } else
10207       return false;
10208     break;
10209   case Intrinsic::ppc_altivec_vcmpgefp_p:
10210     CompareOpc = 454;
10211     isDot = true;
10212     break;
10213   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10214     CompareOpc = 710;
10215     isDot = true;
10216     break;
10217   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10218     CompareOpc = 774;
10219     isDot = true;
10220     break;
10221   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10222     CompareOpc = 838;
10223     isDot = true;
10224     break;
10225   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10226     CompareOpc = 902;
10227     isDot = true;
10228     break;
10229   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10230     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10231       CompareOpc = 967;
10232       isDot = true;
10233     } else
10234       return false;
10235     break;
10236   case Intrinsic::ppc_altivec_vcmpgtub_p:
10237     CompareOpc = 518;
10238     isDot = true;
10239     break;
10240   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10241     CompareOpc = 582;
10242     isDot = true;
10243     break;
10244   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10245     CompareOpc = 646;
10246     isDot = true;
10247     break;
10248   case Intrinsic::ppc_altivec_vcmpgtud_p:
10249     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10250       CompareOpc = 711;
10251       isDot = true;
10252     } else
10253       return false;
10254     break;
10255 
10256   case Intrinsic::ppc_altivec_vcmpequq:
10257   case Intrinsic::ppc_altivec_vcmpgtsq:
10258   case Intrinsic::ppc_altivec_vcmpgtuq:
10259     if (!Subtarget.isISA3_1())
10260       return false;
10261     switch (IntrinsicID) {
10262     default:
10263       llvm_unreachable("Unknown comparison intrinsic.");
10264     case Intrinsic::ppc_altivec_vcmpequq:
10265       CompareOpc = 455;
10266       break;
10267     case Intrinsic::ppc_altivec_vcmpgtsq:
10268       CompareOpc = 903;
10269       break;
10270     case Intrinsic::ppc_altivec_vcmpgtuq:
10271       CompareOpc = 647;
10272       break;
10273     }
10274     break;
10275 
10276   // VSX predicate comparisons use the same infrastructure
10277   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10278   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10279   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10280   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10281   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10282   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10283     if (Subtarget.hasVSX()) {
10284       switch (IntrinsicID) {
10285       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10286         CompareOpc = 99;
10287         break;
10288       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10289         CompareOpc = 115;
10290         break;
10291       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10292         CompareOpc = 107;
10293         break;
10294       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10295         CompareOpc = 67;
10296         break;
10297       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10298         CompareOpc = 83;
10299         break;
10300       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10301         CompareOpc = 75;
10302         break;
10303       }
10304       isDot = true;
10305     } else
10306       return false;
10307     break;
10308 
10309   // Normal Comparisons.
10310   case Intrinsic::ppc_altivec_vcmpbfp:
10311     CompareOpc = 966;
10312     break;
10313   case Intrinsic::ppc_altivec_vcmpeqfp:
10314     CompareOpc = 198;
10315     break;
10316   case Intrinsic::ppc_altivec_vcmpequb:
10317     CompareOpc = 6;
10318     break;
10319   case Intrinsic::ppc_altivec_vcmpequh:
10320     CompareOpc = 70;
10321     break;
10322   case Intrinsic::ppc_altivec_vcmpequw:
10323     CompareOpc = 134;
10324     break;
10325   case Intrinsic::ppc_altivec_vcmpequd:
10326     if (Subtarget.hasP8Altivec())
10327       CompareOpc = 199;
10328     else
10329       return false;
10330     break;
10331   case Intrinsic::ppc_altivec_vcmpneb:
10332   case Intrinsic::ppc_altivec_vcmpneh:
10333   case Intrinsic::ppc_altivec_vcmpnew:
10334   case Intrinsic::ppc_altivec_vcmpnezb:
10335   case Intrinsic::ppc_altivec_vcmpnezh:
10336   case Intrinsic::ppc_altivec_vcmpnezw:
10337     if (Subtarget.hasP9Altivec())
10338       switch (IntrinsicID) {
10339       default:
10340         llvm_unreachable("Unknown comparison intrinsic.");
10341       case Intrinsic::ppc_altivec_vcmpneb:
10342         CompareOpc = 7;
10343         break;
10344       case Intrinsic::ppc_altivec_vcmpneh:
10345         CompareOpc = 71;
10346         break;
10347       case Intrinsic::ppc_altivec_vcmpnew:
10348         CompareOpc = 135;
10349         break;
10350       case Intrinsic::ppc_altivec_vcmpnezb:
10351         CompareOpc = 263;
10352         break;
10353       case Intrinsic::ppc_altivec_vcmpnezh:
10354         CompareOpc = 327;
10355         break;
10356       case Intrinsic::ppc_altivec_vcmpnezw:
10357         CompareOpc = 391;
10358         break;
10359       }
10360     else
10361       return false;
10362     break;
10363   case Intrinsic::ppc_altivec_vcmpgefp:
10364     CompareOpc = 454;
10365     break;
10366   case Intrinsic::ppc_altivec_vcmpgtfp:
10367     CompareOpc = 710;
10368     break;
10369   case Intrinsic::ppc_altivec_vcmpgtsb:
10370     CompareOpc = 774;
10371     break;
10372   case Intrinsic::ppc_altivec_vcmpgtsh:
10373     CompareOpc = 838;
10374     break;
10375   case Intrinsic::ppc_altivec_vcmpgtsw:
10376     CompareOpc = 902;
10377     break;
10378   case Intrinsic::ppc_altivec_vcmpgtsd:
10379     if (Subtarget.hasP8Altivec())
10380       CompareOpc = 967;
10381     else
10382       return false;
10383     break;
10384   case Intrinsic::ppc_altivec_vcmpgtub:
10385     CompareOpc = 518;
10386     break;
10387   case Intrinsic::ppc_altivec_vcmpgtuh:
10388     CompareOpc = 582;
10389     break;
10390   case Intrinsic::ppc_altivec_vcmpgtuw:
10391     CompareOpc = 646;
10392     break;
10393   case Intrinsic::ppc_altivec_vcmpgtud:
10394     if (Subtarget.hasP8Altivec())
10395       CompareOpc = 711;
10396     else
10397       return false;
10398     break;
10399   case Intrinsic::ppc_altivec_vcmpequq_p:
10400   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10401   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10402     if (!Subtarget.isISA3_1())
10403       return false;
10404     switch (IntrinsicID) {
10405     default:
10406       llvm_unreachable("Unknown comparison intrinsic.");
10407     case Intrinsic::ppc_altivec_vcmpequq_p:
10408       CompareOpc = 455;
10409       break;
10410     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10411       CompareOpc = 903;
10412       break;
10413     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10414       CompareOpc = 647;
10415       break;
10416     }
10417     isDot = true;
10418     break;
10419   }
10420   return true;
10421 }
10422 
10423 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10424 /// lower, do it, otherwise return null.
10425 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10426                                                    SelectionDAG &DAG) const {
10427   unsigned IntrinsicID =
10428     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10429 
10430   SDLoc dl(Op);
10431 
10432   switch (IntrinsicID) {
10433   case Intrinsic::thread_pointer:
10434     // Reads the thread pointer register, used for __builtin_thread_pointer.
10435     if (Subtarget.isPPC64())
10436       return DAG.getRegister(PPC::X13, MVT::i64);
10437     return DAG.getRegister(PPC::R2, MVT::i32);
10438 
10439   case Intrinsic::ppc_mma_disassemble_acc:
10440   case Intrinsic::ppc_vsx_disassemble_pair: {
10441     int NumVecs = 2;
10442     SDValue WideVec = Op.getOperand(1);
10443     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10444       NumVecs = 4;
10445       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10446     }
10447     SmallVector<SDValue, 4> RetOps;
10448     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10449       SDValue Extract = DAG.getNode(
10450           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10451           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10452                                                      : VecNo,
10453                           dl, getPointerTy(DAG.getDataLayout())));
10454       RetOps.push_back(Extract);
10455     }
10456     return DAG.getMergeValues(RetOps, dl);
10457   }
10458 
10459   case Intrinsic::ppc_unpack_longdouble: {
10460     auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10461     assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10462            "Argument of long double unpack must be 0 or 1!");
10463     return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10464                        DAG.getConstant(!!(Idx->getSExtValue()), dl,
10465                                        Idx->getValueType(0)));
10466   }
10467 
10468   case Intrinsic::ppc_compare_exp_lt:
10469   case Intrinsic::ppc_compare_exp_gt:
10470   case Intrinsic::ppc_compare_exp_eq:
10471   case Intrinsic::ppc_compare_exp_uo: {
10472     unsigned Pred;
10473     switch (IntrinsicID) {
10474     case Intrinsic::ppc_compare_exp_lt:
10475       Pred = PPC::PRED_LT;
10476       break;
10477     case Intrinsic::ppc_compare_exp_gt:
10478       Pred = PPC::PRED_GT;
10479       break;
10480     case Intrinsic::ppc_compare_exp_eq:
10481       Pred = PPC::PRED_EQ;
10482       break;
10483     case Intrinsic::ppc_compare_exp_uo:
10484       Pred = PPC::PRED_UN;
10485       break;
10486     }
10487     return SDValue(
10488         DAG.getMachineNode(
10489             PPC::SELECT_CC_I4, dl, MVT::i32,
10490             {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10491                                         Op.getOperand(1), Op.getOperand(2)),
10492                      0),
10493              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10494              DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10495         0);
10496   }
10497   case Intrinsic::ppc_test_data_class_d:
10498   case Intrinsic::ppc_test_data_class_f: {
10499     unsigned CmprOpc = PPC::XSTSTDCDP;
10500     if (IntrinsicID == Intrinsic::ppc_test_data_class_f)
10501       CmprOpc = PPC::XSTSTDCSP;
10502     return SDValue(
10503         DAG.getMachineNode(
10504             PPC::SELECT_CC_I4, dl, MVT::i32,
10505             {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10506                                         Op.getOperand(1)),
10507                      0),
10508              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10509              DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10510         0);
10511   }
10512   case Intrinsic::ppc_convert_f128_to_ppcf128:
10513   case Intrinsic::ppc_convert_ppcf128_to_f128: {
10514     RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10515                             ? RTLIB::CONVERT_PPCF128_F128
10516                             : RTLIB::CONVERT_F128_PPCF128;
10517     MakeLibCallOptions CallOptions;
10518     std::pair<SDValue, SDValue> Result =
10519         makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10520                     dl, SDValue());
10521     return Result.first;
10522   }
10523   }
10524 
10525   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10526   // opcode number of the comparison.
10527   int CompareOpc;
10528   bool isDot;
10529   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10530     return SDValue();    // Don't custom lower most intrinsics.
10531 
10532   // If this is a non-dot comparison, make the VCMP node and we are done.
10533   if (!isDot) {
10534     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10535                               Op.getOperand(1), Op.getOperand(2),
10536                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10537     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10538   }
10539 
10540   // Create the PPCISD altivec 'dot' comparison node.
10541   SDValue Ops[] = {
10542     Op.getOperand(2),  // LHS
10543     Op.getOperand(3),  // RHS
10544     DAG.getConstant(CompareOpc, dl, MVT::i32)
10545   };
10546   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10547   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10548 
10549   // Now that we have the comparison, emit a copy from the CR to a GPR.
10550   // This is flagged to the above dot comparison.
10551   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10552                                 DAG.getRegister(PPC::CR6, MVT::i32),
10553                                 CompNode.getValue(1));
10554 
10555   // Unpack the result based on how the target uses it.
10556   unsigned BitNo;   // Bit # of CR6.
10557   bool InvertBit;   // Invert result?
10558   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10559   default:  // Can't happen, don't crash on invalid number though.
10560   case 0:   // Return the value of the EQ bit of CR6.
10561     BitNo = 0; InvertBit = false;
10562     break;
10563   case 1:   // Return the inverted value of the EQ bit of CR6.
10564     BitNo = 0; InvertBit = true;
10565     break;
10566   case 2:   // Return the value of the LT bit of CR6.
10567     BitNo = 2; InvertBit = false;
10568     break;
10569   case 3:   // Return the inverted value of the LT bit of CR6.
10570     BitNo = 2; InvertBit = true;
10571     break;
10572   }
10573 
10574   // Shift the bit into the low position.
10575   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10576                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10577   // Isolate the bit.
10578   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10579                       DAG.getConstant(1, dl, MVT::i32));
10580 
10581   // If we are supposed to, toggle the bit.
10582   if (InvertBit)
10583     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10584                         DAG.getConstant(1, dl, MVT::i32));
10585   return Flags;
10586 }
10587 
10588 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10589                                                SelectionDAG &DAG) const {
10590   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10591   // the beginning of the argument list.
10592   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10593   SDLoc DL(Op);
10594   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10595   case Intrinsic::ppc_cfence: {
10596     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10597     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10598     SDValue Val = Op.getOperand(ArgStart + 1);
10599     EVT Ty = Val.getValueType();
10600     if (Ty == MVT::i128) {
10601       // FIXME: Testing one of two paired registers is sufficient to guarantee
10602       // ordering?
10603       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10604     }
10605     return SDValue(
10606         DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10607                            DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10608                            Op.getOperand(0)),
10609         0);
10610   }
10611   default:
10612     break;
10613   }
10614   return SDValue();
10615 }
10616 
10617 // Lower scalar BSWAP64 to xxbrd.
10618 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10619   SDLoc dl(Op);
10620   if (!Subtarget.isPPC64())
10621     return Op;
10622   // MTVSRDD
10623   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10624                    Op.getOperand(0));
10625   // XXBRD
10626   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10627   // MFVSRD
10628   int VectorIndex = 0;
10629   if (Subtarget.isLittleEndian())
10630     VectorIndex = 1;
10631   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10632                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10633   return Op;
10634 }
10635 
10636 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10637 // compared to a value that is atomically loaded (atomic loads zero-extend).
10638 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10639                                                 SelectionDAG &DAG) const {
10640   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10641          "Expecting an atomic compare-and-swap here.");
10642   SDLoc dl(Op);
10643   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10644   EVT MemVT = AtomicNode->getMemoryVT();
10645   if (MemVT.getSizeInBits() >= 32)
10646     return Op;
10647 
10648   SDValue CmpOp = Op.getOperand(2);
10649   // If this is already correctly zero-extended, leave it alone.
10650   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10651   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10652     return Op;
10653 
10654   // Clear the high bits of the compare operand.
10655   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10656   SDValue NewCmpOp =
10657     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10658                 DAG.getConstant(MaskVal, dl, MVT::i32));
10659 
10660   // Replace the existing compare operand with the properly zero-extended one.
10661   SmallVector<SDValue, 4> Ops;
10662   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10663     Ops.push_back(AtomicNode->getOperand(i));
10664   Ops[2] = NewCmpOp;
10665   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10666   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10667   auto NodeTy =
10668     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10669   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10670 }
10671 
10672 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10673                                                   SelectionDAG &DAG) const {
10674   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10675   EVT MemVT = N->getMemoryVT();
10676   assert(MemVT.getSimpleVT() == MVT::i128 &&
10677          "Expect quadword atomic operations");
10678   SDLoc dl(N);
10679   unsigned Opc = N->getOpcode();
10680   switch (Opc) {
10681   case ISD::ATOMIC_LOAD: {
10682     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10683     // lowered to ppc instructions by pattern matching instruction selector.
10684     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10685     SmallVector<SDValue, 4> Ops{
10686         N->getOperand(0),
10687         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10688     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10689       Ops.push_back(N->getOperand(I));
10690     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10691                                                 Ops, MemVT, N->getMemOperand());
10692     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10693     SDValue ValHi =
10694         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10695     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10696                         DAG.getConstant(64, dl, MVT::i32));
10697     SDValue Val =
10698         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10699     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10700                        {Val, LoadedVal.getValue(2)});
10701   }
10702   case ISD::ATOMIC_STORE: {
10703     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10704     // lowered to ppc instructions by pattern matching instruction selector.
10705     SDVTList Tys = DAG.getVTList(MVT::Other);
10706     SmallVector<SDValue, 4> Ops{
10707         N->getOperand(0),
10708         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10709     SDValue Val = N->getOperand(2);
10710     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10711     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10712                                 DAG.getConstant(64, dl, MVT::i32));
10713     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10714     Ops.push_back(ValLo);
10715     Ops.push_back(ValHi);
10716     Ops.push_back(N->getOperand(1));
10717     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10718                                    N->getMemOperand());
10719   }
10720   default:
10721     llvm_unreachable("Unexpected atomic opcode");
10722   }
10723 }
10724 
10725 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10726                                                  SelectionDAG &DAG) const {
10727   SDLoc dl(Op);
10728   // Create a stack slot that is 16-byte aligned.
10729   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10730   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10731   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10732   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10733 
10734   // Store the input value into Value#0 of the stack slot.
10735   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10736                                MachinePointerInfo());
10737   // Load it out.
10738   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10739 }
10740 
10741 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10742                                                   SelectionDAG &DAG) const {
10743   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10744          "Should only be called for ISD::INSERT_VECTOR_ELT");
10745 
10746   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10747 
10748   EVT VT = Op.getValueType();
10749   SDLoc dl(Op);
10750   SDValue V1 = Op.getOperand(0);
10751   SDValue V2 = Op.getOperand(1);
10752 
10753   if (VT == MVT::v2f64 && C)
10754     return Op;
10755 
10756   if (Subtarget.isISA3_1()) {
10757     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10758       return SDValue();
10759     // On P10, we have legal lowering for constant and variable indices for
10760     // all vectors.
10761     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10762         VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
10763       return Op;
10764   }
10765 
10766   // Before P10, we have legal lowering for constant indices but not for
10767   // variable ones.
10768   if (!C)
10769     return SDValue();
10770 
10771   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10772   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10773     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10774     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10775     unsigned InsertAtElement = C->getZExtValue();
10776     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10777     if (Subtarget.isLittleEndian()) {
10778       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10779     }
10780     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10781                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10782   }
10783   return Op;
10784 }
10785 
10786 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10787                                            SelectionDAG &DAG) const {
10788   SDLoc dl(Op);
10789   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10790   SDValue LoadChain = LN->getChain();
10791   SDValue BasePtr = LN->getBasePtr();
10792   EVT VT = Op.getValueType();
10793 
10794   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10795     return Op;
10796 
10797   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10798   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10799   // 2 or 4 vsx registers.
10800   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10801          "Type unsupported without MMA");
10802   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10803          "Type unsupported without paired vector support");
10804   Align Alignment = LN->getAlign();
10805   SmallVector<SDValue, 4> Loads;
10806   SmallVector<SDValue, 4> LoadChains;
10807   unsigned NumVecs = VT.getSizeInBits() / 128;
10808   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10809     SDValue Load =
10810         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10811                     LN->getPointerInfo().getWithOffset(Idx * 16),
10812                     commonAlignment(Alignment, Idx * 16),
10813                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10814     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10815                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10816     Loads.push_back(Load);
10817     LoadChains.push_back(Load.getValue(1));
10818   }
10819   if (Subtarget.isLittleEndian()) {
10820     std::reverse(Loads.begin(), Loads.end());
10821     std::reverse(LoadChains.begin(), LoadChains.end());
10822   }
10823   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10824   SDValue Value =
10825       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10826                   dl, VT, Loads);
10827   SDValue RetOps[] = {Value, TF};
10828   return DAG.getMergeValues(RetOps, dl);
10829 }
10830 
10831 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10832                                             SelectionDAG &DAG) const {
10833   SDLoc dl(Op);
10834   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10835   SDValue StoreChain = SN->getChain();
10836   SDValue BasePtr = SN->getBasePtr();
10837   SDValue Value = SN->getValue();
10838   EVT StoreVT = Value.getValueType();
10839 
10840   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10841     return Op;
10842 
10843   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10844   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10845   // underlying registers individually.
10846   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10847          "Type unsupported without MMA");
10848   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10849          "Type unsupported without paired vector support");
10850   Align Alignment = SN->getAlign();
10851   SmallVector<SDValue, 4> Stores;
10852   unsigned NumVecs = 2;
10853   if (StoreVT == MVT::v512i1) {
10854     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10855     NumVecs = 4;
10856   }
10857   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10858     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10859     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10860                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10861     SDValue Store =
10862         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10863                      SN->getPointerInfo().getWithOffset(Idx * 16),
10864                      commonAlignment(Alignment, Idx * 16),
10865                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10866     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10867                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10868     Stores.push_back(Store);
10869   }
10870   SDValue TF = DAG.getTokenFactor(dl, Stores);
10871   return TF;
10872 }
10873 
10874 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10875   SDLoc dl(Op);
10876   if (Op.getValueType() == MVT::v4i32) {
10877     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10878 
10879     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10880     // +16 as shift amt.
10881     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10882     SDValue RHSSwap =   // = vrlw RHS, 16
10883       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10884 
10885     // Shrinkify inputs to v8i16.
10886     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10887     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10888     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10889 
10890     // Low parts multiplied together, generating 32-bit results (we ignore the
10891     // top parts).
10892     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10893                                         LHS, RHS, DAG, dl, MVT::v4i32);
10894 
10895     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10896                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10897     // Shift the high parts up 16 bits.
10898     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10899                               Neg16, DAG, dl);
10900     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10901   } else if (Op.getValueType() == MVT::v16i8) {
10902     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10903     bool isLittleEndian = Subtarget.isLittleEndian();
10904 
10905     // Multiply the even 8-bit parts, producing 16-bit sums.
10906     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10907                                            LHS, RHS, DAG, dl, MVT::v8i16);
10908     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10909 
10910     // Multiply the odd 8-bit parts, producing 16-bit sums.
10911     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10912                                           LHS, RHS, DAG, dl, MVT::v8i16);
10913     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10914 
10915     // Merge the results together.  Because vmuleub and vmuloub are
10916     // instructions with a big-endian bias, we must reverse the
10917     // element numbering and reverse the meaning of "odd" and "even"
10918     // when generating little endian code.
10919     int Ops[16];
10920     for (unsigned i = 0; i != 8; ++i) {
10921       if (isLittleEndian) {
10922         Ops[i*2  ] = 2*i;
10923         Ops[i*2+1] = 2*i+16;
10924       } else {
10925         Ops[i*2  ] = 2*i+1;
10926         Ops[i*2+1] = 2*i+1+16;
10927       }
10928     }
10929     if (isLittleEndian)
10930       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10931     else
10932       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10933   } else {
10934     llvm_unreachable("Unknown mul to lower!");
10935   }
10936 }
10937 
10938 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10939   bool IsStrict = Op->isStrictFPOpcode();
10940   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10941       !Subtarget.hasP9Vector())
10942     return SDValue();
10943 
10944   return Op;
10945 }
10946 
10947 // Custom lowering for fpext vf32 to v2f64
10948 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10949 
10950   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10951          "Should only be called for ISD::FP_EXTEND");
10952 
10953   // FIXME: handle extends from half precision float vectors on P9.
10954   // We only want to custom lower an extend from v2f32 to v2f64.
10955   if (Op.getValueType() != MVT::v2f64 ||
10956       Op.getOperand(0).getValueType() != MVT::v2f32)
10957     return SDValue();
10958 
10959   SDLoc dl(Op);
10960   SDValue Op0 = Op.getOperand(0);
10961 
10962   switch (Op0.getOpcode()) {
10963   default:
10964     return SDValue();
10965   case ISD::EXTRACT_SUBVECTOR: {
10966     assert(Op0.getNumOperands() == 2 &&
10967            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10968            "Node should have 2 operands with second one being a constant!");
10969 
10970     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10971       return SDValue();
10972 
10973     // Custom lower is only done for high or low doubleword.
10974     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10975     if (Idx % 2 != 0)
10976       return SDValue();
10977 
10978     // Since input is v4f32, at this point Idx is either 0 or 2.
10979     // Shift to get the doubleword position we want.
10980     int DWord = Idx >> 1;
10981 
10982     // High and low word positions are different on little endian.
10983     if (Subtarget.isLittleEndian())
10984       DWord ^= 0x1;
10985 
10986     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10987                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10988   }
10989   case ISD::FADD:
10990   case ISD::FMUL:
10991   case ISD::FSUB: {
10992     SDValue NewLoad[2];
10993     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10994       // Ensure both input are loads.
10995       SDValue LdOp = Op0.getOperand(i);
10996       if (LdOp.getOpcode() != ISD::LOAD)
10997         return SDValue();
10998       // Generate new load node.
10999       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11000       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11001       NewLoad[i] = DAG.getMemIntrinsicNode(
11002           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11003           LD->getMemoryVT(), LD->getMemOperand());
11004     }
11005     SDValue NewOp =
11006         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11007                     NewLoad[1], Op0.getNode()->getFlags());
11008     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11009                        DAG.getConstant(0, dl, MVT::i32));
11010   }
11011   case ISD::LOAD: {
11012     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11013     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11014     SDValue NewLd = DAG.getMemIntrinsicNode(
11015         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11016         LD->getMemoryVT(), LD->getMemOperand());
11017     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11018                        DAG.getConstant(0, dl, MVT::i32));
11019   }
11020   }
11021   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11022 }
11023 
11024 /// LowerOperation - Provide custom lowering hooks for some operations.
11025 ///
11026 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11027   switch (Op.getOpcode()) {
11028   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11029   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11030   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11031   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11032   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11033   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11034   case ISD::STRICT_FSETCC:
11035   case ISD::STRICT_FSETCCS:
11036   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11037   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11038   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11039 
11040   case ISD::INLINEASM:
11041   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11042   // Variable argument lowering.
11043   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11044   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11045   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11046 
11047   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11048   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11049   case ISD::GET_DYNAMIC_AREA_OFFSET:
11050     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11051 
11052   // Exception handling lowering.
11053   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11054   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11055   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11056 
11057   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11058   case ISD::STORE:              return LowerSTORE(Op, DAG);
11059   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11060   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11061   case ISD::STRICT_FP_TO_UINT:
11062   case ISD::STRICT_FP_TO_SINT:
11063   case ISD::FP_TO_UINT:
11064   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11065   case ISD::STRICT_UINT_TO_FP:
11066   case ISD::STRICT_SINT_TO_FP:
11067   case ISD::UINT_TO_FP:
11068   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11069   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11070 
11071   // Lower 64-bit shifts.
11072   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11073   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11074   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11075 
11076   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11077   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11078 
11079   // Vector-related lowering.
11080   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11081   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11082   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11083   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11084   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11085   case ISD::MUL:                return LowerMUL(Op, DAG);
11086   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11087   case ISD::STRICT_FP_ROUND:
11088   case ISD::FP_ROUND:
11089     return LowerFP_ROUND(Op, DAG);
11090   case ISD::ROTL:               return LowerROTL(Op, DAG);
11091 
11092   // For counter-based loop handling.
11093   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11094 
11095   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11096 
11097   // Frame & Return address.
11098   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11099   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11100 
11101   case ISD::INTRINSIC_VOID:
11102     return LowerINTRINSIC_VOID(Op, DAG);
11103   case ISD::BSWAP:
11104     return LowerBSWAP(Op, DAG);
11105   case ISD::ATOMIC_CMP_SWAP:
11106     return LowerATOMIC_CMP_SWAP(Op, DAG);
11107   case ISD::ATOMIC_STORE:
11108     return LowerATOMIC_LOAD_STORE(Op, DAG);
11109   }
11110 }
11111 
11112 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11113                                            SmallVectorImpl<SDValue>&Results,
11114                                            SelectionDAG &DAG) const {
11115   SDLoc dl(N);
11116   switch (N->getOpcode()) {
11117   default:
11118     llvm_unreachable("Do not know how to custom type legalize this operation!");
11119   case ISD::ATOMIC_LOAD: {
11120     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11121     Results.push_back(Res);
11122     Results.push_back(Res.getValue(1));
11123     break;
11124   }
11125   case ISD::READCYCLECOUNTER: {
11126     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11127     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11128 
11129     Results.push_back(
11130         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11131     Results.push_back(RTB.getValue(2));
11132     break;
11133   }
11134   case ISD::INTRINSIC_W_CHAIN: {
11135     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11136         Intrinsic::loop_decrement)
11137       break;
11138 
11139     assert(N->getValueType(0) == MVT::i1 &&
11140            "Unexpected result type for CTR decrement intrinsic");
11141     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11142                                  N->getValueType(0));
11143     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11144     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11145                                  N->getOperand(1));
11146 
11147     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11148     Results.push_back(NewInt.getValue(1));
11149     break;
11150   }
11151   case ISD::INTRINSIC_WO_CHAIN: {
11152     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
11153     case Intrinsic::ppc_pack_longdouble:
11154       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11155                                     N->getOperand(2), N->getOperand(1)));
11156       break;
11157     case Intrinsic::ppc_convert_f128_to_ppcf128:
11158       Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11159       break;
11160     }
11161     break;
11162   }
11163   case ISD::VAARG: {
11164     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11165       return;
11166 
11167     EVT VT = N->getValueType(0);
11168 
11169     if (VT == MVT::i64) {
11170       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11171 
11172       Results.push_back(NewNode);
11173       Results.push_back(NewNode.getValue(1));
11174     }
11175     return;
11176   }
11177   case ISD::STRICT_FP_TO_SINT:
11178   case ISD::STRICT_FP_TO_UINT:
11179   case ISD::FP_TO_SINT:
11180   case ISD::FP_TO_UINT:
11181     // LowerFP_TO_INT() can only handle f32 and f64.
11182     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11183         MVT::ppcf128)
11184       return;
11185     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
11186     return;
11187   case ISD::TRUNCATE: {
11188     if (!N->getValueType(0).isVector())
11189       return;
11190     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11191     if (Lowered)
11192       Results.push_back(Lowered);
11193     return;
11194   }
11195   case ISD::FSHL:
11196   case ISD::FSHR:
11197     // Don't handle funnel shifts here.
11198     return;
11199   case ISD::BITCAST:
11200     // Don't handle bitcast here.
11201     return;
11202   case ISD::FP_EXTEND:
11203     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11204     if (Lowered)
11205       Results.push_back(Lowered);
11206     return;
11207   }
11208 }
11209 
11210 //===----------------------------------------------------------------------===//
11211 //  Other Lowering Code
11212 //===----------------------------------------------------------------------===//
11213 
11214 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11215   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11216   Function *Func = Intrinsic::getDeclaration(M, Id);
11217   return Builder.CreateCall(Func, {});
11218 }
11219 
11220 // The mappings for emitLeading/TrailingFence is taken from
11221 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11222 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11223                                                  Instruction *Inst,
11224                                                  AtomicOrdering Ord) const {
11225   if (Ord == AtomicOrdering::SequentiallyConsistent)
11226     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11227   if (isReleaseOrStronger(Ord))
11228     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11229   return nullptr;
11230 }
11231 
11232 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11233                                                   Instruction *Inst,
11234                                                   AtomicOrdering Ord) const {
11235   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11236     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11237     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11238     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11239     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11240       return Builder.CreateCall(
11241           Intrinsic::getDeclaration(
11242               Builder.GetInsertBlock()->getParent()->getParent(),
11243               Intrinsic::ppc_cfence, {Inst->getType()}),
11244           {Inst});
11245     // FIXME: Can use isync for rmw operation.
11246     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11247   }
11248   return nullptr;
11249 }
11250 
11251 MachineBasicBlock *
11252 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11253                                     unsigned AtomicSize,
11254                                     unsigned BinOpcode,
11255                                     unsigned CmpOpcode,
11256                                     unsigned CmpPred) const {
11257   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11258   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11259 
11260   auto LoadMnemonic = PPC::LDARX;
11261   auto StoreMnemonic = PPC::STDCX;
11262   switch (AtomicSize) {
11263   default:
11264     llvm_unreachable("Unexpected size of atomic entity");
11265   case 1:
11266     LoadMnemonic = PPC::LBARX;
11267     StoreMnemonic = PPC::STBCX;
11268     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11269     break;
11270   case 2:
11271     LoadMnemonic = PPC::LHARX;
11272     StoreMnemonic = PPC::STHCX;
11273     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11274     break;
11275   case 4:
11276     LoadMnemonic = PPC::LWARX;
11277     StoreMnemonic = PPC::STWCX;
11278     break;
11279   case 8:
11280     LoadMnemonic = PPC::LDARX;
11281     StoreMnemonic = PPC::STDCX;
11282     break;
11283   }
11284 
11285   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11286   MachineFunction *F = BB->getParent();
11287   MachineFunction::iterator It = ++BB->getIterator();
11288 
11289   Register dest = MI.getOperand(0).getReg();
11290   Register ptrA = MI.getOperand(1).getReg();
11291   Register ptrB = MI.getOperand(2).getReg();
11292   Register incr = MI.getOperand(3).getReg();
11293   DebugLoc dl = MI.getDebugLoc();
11294 
11295   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11296   MachineBasicBlock *loop2MBB =
11297     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11298   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11299   F->insert(It, loopMBB);
11300   if (CmpOpcode)
11301     F->insert(It, loop2MBB);
11302   F->insert(It, exitMBB);
11303   exitMBB->splice(exitMBB->begin(), BB,
11304                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11305   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11306 
11307   MachineRegisterInfo &RegInfo = F->getRegInfo();
11308   Register TmpReg = (!BinOpcode) ? incr :
11309     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11310                                            : &PPC::GPRCRegClass);
11311 
11312   //  thisMBB:
11313   //   ...
11314   //   fallthrough --> loopMBB
11315   BB->addSuccessor(loopMBB);
11316 
11317   //  loopMBB:
11318   //   l[wd]arx dest, ptr
11319   //   add r0, dest, incr
11320   //   st[wd]cx. r0, ptr
11321   //   bne- loopMBB
11322   //   fallthrough --> exitMBB
11323 
11324   // For max/min...
11325   //  loopMBB:
11326   //   l[wd]arx dest, ptr
11327   //   cmpl?[wd] incr, dest
11328   //   bgt exitMBB
11329   //  loop2MBB:
11330   //   st[wd]cx. dest, ptr
11331   //   bne- loopMBB
11332   //   fallthrough --> exitMBB
11333 
11334   BB = loopMBB;
11335   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11336     .addReg(ptrA).addReg(ptrB);
11337   if (BinOpcode)
11338     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11339   if (CmpOpcode) {
11340     // Signed comparisons of byte or halfword values must be sign-extended.
11341     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11342       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11343       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11344               ExtReg).addReg(dest);
11345       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11346         .addReg(incr).addReg(ExtReg);
11347     } else
11348       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11349         .addReg(incr).addReg(dest);
11350 
11351     BuildMI(BB, dl, TII->get(PPC::BCC))
11352       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11353     BB->addSuccessor(loop2MBB);
11354     BB->addSuccessor(exitMBB);
11355     BB = loop2MBB;
11356   }
11357   BuildMI(BB, dl, TII->get(StoreMnemonic))
11358     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11359   BuildMI(BB, dl, TII->get(PPC::BCC))
11360     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11361   BB->addSuccessor(loopMBB);
11362   BB->addSuccessor(exitMBB);
11363 
11364   //  exitMBB:
11365   //   ...
11366   BB = exitMBB;
11367   return BB;
11368 }
11369 
11370 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11371   switch(MI.getOpcode()) {
11372   default:
11373     return false;
11374   case PPC::COPY:
11375     return TII->isSignExtended(MI);
11376   case PPC::LHA:
11377   case PPC::LHA8:
11378   case PPC::LHAU:
11379   case PPC::LHAU8:
11380   case PPC::LHAUX:
11381   case PPC::LHAUX8:
11382   case PPC::LHAX:
11383   case PPC::LHAX8:
11384   case PPC::LWA:
11385   case PPC::LWAUX:
11386   case PPC::LWAX:
11387   case PPC::LWAX_32:
11388   case PPC::LWA_32:
11389   case PPC::PLHA:
11390   case PPC::PLHA8:
11391   case PPC::PLHA8pc:
11392   case PPC::PLHApc:
11393   case PPC::PLWA:
11394   case PPC::PLWA8:
11395   case PPC::PLWA8pc:
11396   case PPC::PLWApc:
11397   case PPC::EXTSB:
11398   case PPC::EXTSB8:
11399   case PPC::EXTSB8_32_64:
11400   case PPC::EXTSB8_rec:
11401   case PPC::EXTSB_rec:
11402   case PPC::EXTSH:
11403   case PPC::EXTSH8:
11404   case PPC::EXTSH8_32_64:
11405   case PPC::EXTSH8_rec:
11406   case PPC::EXTSH_rec:
11407   case PPC::EXTSW:
11408   case PPC::EXTSWSLI:
11409   case PPC::EXTSWSLI_32_64:
11410   case PPC::EXTSWSLI_32_64_rec:
11411   case PPC::EXTSWSLI_rec:
11412   case PPC::EXTSW_32:
11413   case PPC::EXTSW_32_64:
11414   case PPC::EXTSW_32_64_rec:
11415   case PPC::EXTSW_rec:
11416   case PPC::SRAW:
11417   case PPC::SRAWI:
11418   case PPC::SRAWI_rec:
11419   case PPC::SRAW_rec:
11420     return true;
11421   }
11422   return false;
11423 }
11424 
11425 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11426     MachineInstr &MI, MachineBasicBlock *BB,
11427     bool is8bit, // operation
11428     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11429   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11430   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11431 
11432   // If this is a signed comparison and the value being compared is not known
11433   // to be sign extended, sign extend it here.
11434   DebugLoc dl = MI.getDebugLoc();
11435   MachineFunction *F = BB->getParent();
11436   MachineRegisterInfo &RegInfo = F->getRegInfo();
11437   Register incr = MI.getOperand(3).getReg();
11438   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11439     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11440 
11441   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11442     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11443     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11444         .addReg(MI.getOperand(3).getReg());
11445     MI.getOperand(3).setReg(ValueReg);
11446   }
11447   // If we support part-word atomic mnemonics, just use them
11448   if (Subtarget.hasPartwordAtomics())
11449     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11450                             CmpPred);
11451 
11452   // In 64 bit mode we have to use 64 bits for addresses, even though the
11453   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11454   // registers without caring whether they're 32 or 64, but here we're
11455   // doing actual arithmetic on the addresses.
11456   bool is64bit = Subtarget.isPPC64();
11457   bool isLittleEndian = Subtarget.isLittleEndian();
11458   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11459 
11460   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11461   MachineFunction::iterator It = ++BB->getIterator();
11462 
11463   Register dest = MI.getOperand(0).getReg();
11464   Register ptrA = MI.getOperand(1).getReg();
11465   Register ptrB = MI.getOperand(2).getReg();
11466 
11467   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11468   MachineBasicBlock *loop2MBB =
11469       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11470   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11471   F->insert(It, loopMBB);
11472   if (CmpOpcode)
11473     F->insert(It, loop2MBB);
11474   F->insert(It, exitMBB);
11475   exitMBB->splice(exitMBB->begin(), BB,
11476                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11477   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11478 
11479   const TargetRegisterClass *RC =
11480       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11481   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11482 
11483   Register PtrReg = RegInfo.createVirtualRegister(RC);
11484   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11485   Register ShiftReg =
11486       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11487   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11488   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11489   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11490   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11491   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11492   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11493   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11494   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11495   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11496   Register Ptr1Reg;
11497   Register TmpReg =
11498       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11499 
11500   //  thisMBB:
11501   //   ...
11502   //   fallthrough --> loopMBB
11503   BB->addSuccessor(loopMBB);
11504 
11505   // The 4-byte load must be aligned, while a char or short may be
11506   // anywhere in the word.  Hence all this nasty bookkeeping code.
11507   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11508   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11509   //   xori shift, shift1, 24 [16]
11510   //   rlwinm ptr, ptr1, 0, 0, 29
11511   //   slw incr2, incr, shift
11512   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11513   //   slw mask, mask2, shift
11514   //  loopMBB:
11515   //   lwarx tmpDest, ptr
11516   //   add tmp, tmpDest, incr2
11517   //   andc tmp2, tmpDest, mask
11518   //   and tmp3, tmp, mask
11519   //   or tmp4, tmp3, tmp2
11520   //   stwcx. tmp4, ptr
11521   //   bne- loopMBB
11522   //   fallthrough --> exitMBB
11523   //   srw SrwDest, tmpDest, shift
11524   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11525   if (ptrA != ZeroReg) {
11526     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11527     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11528         .addReg(ptrA)
11529         .addReg(ptrB);
11530   } else {
11531     Ptr1Reg = ptrB;
11532   }
11533   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11534   // mode.
11535   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11536       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11537       .addImm(3)
11538       .addImm(27)
11539       .addImm(is8bit ? 28 : 27);
11540   if (!isLittleEndian)
11541     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11542         .addReg(Shift1Reg)
11543         .addImm(is8bit ? 24 : 16);
11544   if (is64bit)
11545     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11546         .addReg(Ptr1Reg)
11547         .addImm(0)
11548         .addImm(61);
11549   else
11550     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11551         .addReg(Ptr1Reg)
11552         .addImm(0)
11553         .addImm(0)
11554         .addImm(29);
11555   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11556   if (is8bit)
11557     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11558   else {
11559     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11560     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11561         .addReg(Mask3Reg)
11562         .addImm(65535);
11563   }
11564   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11565       .addReg(Mask2Reg)
11566       .addReg(ShiftReg);
11567 
11568   BB = loopMBB;
11569   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11570       .addReg(ZeroReg)
11571       .addReg(PtrReg);
11572   if (BinOpcode)
11573     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11574         .addReg(Incr2Reg)
11575         .addReg(TmpDestReg);
11576   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11577       .addReg(TmpDestReg)
11578       .addReg(MaskReg);
11579   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11580   if (CmpOpcode) {
11581     // For unsigned comparisons, we can directly compare the shifted values.
11582     // For signed comparisons we shift and sign extend.
11583     Register SReg = RegInfo.createVirtualRegister(GPRC);
11584     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11585         .addReg(TmpDestReg)
11586         .addReg(MaskReg);
11587     unsigned ValueReg = SReg;
11588     unsigned CmpReg = Incr2Reg;
11589     if (CmpOpcode == PPC::CMPW) {
11590       ValueReg = RegInfo.createVirtualRegister(GPRC);
11591       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11592           .addReg(SReg)
11593           .addReg(ShiftReg);
11594       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11595       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11596           .addReg(ValueReg);
11597       ValueReg = ValueSReg;
11598       CmpReg = incr;
11599     }
11600     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11601         .addReg(CmpReg)
11602         .addReg(ValueReg);
11603     BuildMI(BB, dl, TII->get(PPC::BCC))
11604         .addImm(CmpPred)
11605         .addReg(PPC::CR0)
11606         .addMBB(exitMBB);
11607     BB->addSuccessor(loop2MBB);
11608     BB->addSuccessor(exitMBB);
11609     BB = loop2MBB;
11610   }
11611   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11612   BuildMI(BB, dl, TII->get(PPC::STWCX))
11613       .addReg(Tmp4Reg)
11614       .addReg(ZeroReg)
11615       .addReg(PtrReg);
11616   BuildMI(BB, dl, TII->get(PPC::BCC))
11617       .addImm(PPC::PRED_NE)
11618       .addReg(PPC::CR0)
11619       .addMBB(loopMBB);
11620   BB->addSuccessor(loopMBB);
11621   BB->addSuccessor(exitMBB);
11622 
11623   //  exitMBB:
11624   //   ...
11625   BB = exitMBB;
11626   // Since the shift amount is not a constant, we need to clear
11627   // the upper bits with a separate RLWINM.
11628   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11629       .addReg(SrwDestReg)
11630       .addImm(0)
11631       .addImm(is8bit ? 24 : 16)
11632       .addImm(31);
11633   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11634       .addReg(TmpDestReg)
11635       .addReg(ShiftReg);
11636   return BB;
11637 }
11638 
11639 llvm::MachineBasicBlock *
11640 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11641                                     MachineBasicBlock *MBB) const {
11642   DebugLoc DL = MI.getDebugLoc();
11643   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11644   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11645 
11646   MachineFunction *MF = MBB->getParent();
11647   MachineRegisterInfo &MRI = MF->getRegInfo();
11648 
11649   const BasicBlock *BB = MBB->getBasicBlock();
11650   MachineFunction::iterator I = ++MBB->getIterator();
11651 
11652   Register DstReg = MI.getOperand(0).getReg();
11653   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11654   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11655   Register mainDstReg = MRI.createVirtualRegister(RC);
11656   Register restoreDstReg = MRI.createVirtualRegister(RC);
11657 
11658   MVT PVT = getPointerTy(MF->getDataLayout());
11659   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11660          "Invalid Pointer Size!");
11661   // For v = setjmp(buf), we generate
11662   //
11663   // thisMBB:
11664   //  SjLjSetup mainMBB
11665   //  bl mainMBB
11666   //  v_restore = 1
11667   //  b sinkMBB
11668   //
11669   // mainMBB:
11670   //  buf[LabelOffset] = LR
11671   //  v_main = 0
11672   //
11673   // sinkMBB:
11674   //  v = phi(main, restore)
11675   //
11676 
11677   MachineBasicBlock *thisMBB = MBB;
11678   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11679   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11680   MF->insert(I, mainMBB);
11681   MF->insert(I, sinkMBB);
11682 
11683   MachineInstrBuilder MIB;
11684 
11685   // Transfer the remainder of BB and its successor edges to sinkMBB.
11686   sinkMBB->splice(sinkMBB->begin(), MBB,
11687                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11688   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11689 
11690   // Note that the structure of the jmp_buf used here is not compatible
11691   // with that used by libc, and is not designed to be. Specifically, it
11692   // stores only those 'reserved' registers that LLVM does not otherwise
11693   // understand how to spill. Also, by convention, by the time this
11694   // intrinsic is called, Clang has already stored the frame address in the
11695   // first slot of the buffer and stack address in the third. Following the
11696   // X86 target code, we'll store the jump address in the second slot. We also
11697   // need to save the TOC pointer (R2) to handle jumps between shared
11698   // libraries, and that will be stored in the fourth slot. The thread
11699   // identifier (R13) is not affected.
11700 
11701   // thisMBB:
11702   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11703   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11704   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11705 
11706   // Prepare IP either in reg.
11707   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11708   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11709   Register BufReg = MI.getOperand(1).getReg();
11710 
11711   if (Subtarget.is64BitELFABI()) {
11712     setUsesTOCBasePtr(*MBB->getParent());
11713     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11714               .addReg(PPC::X2)
11715               .addImm(TOCOffset)
11716               .addReg(BufReg)
11717               .cloneMemRefs(MI);
11718   }
11719 
11720   // Naked functions never have a base pointer, and so we use r1. For all
11721   // other functions, this decision must be delayed until during PEI.
11722   unsigned BaseReg;
11723   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11724     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11725   else
11726     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11727 
11728   MIB = BuildMI(*thisMBB, MI, DL,
11729                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11730             .addReg(BaseReg)
11731             .addImm(BPOffset)
11732             .addReg(BufReg)
11733             .cloneMemRefs(MI);
11734 
11735   // Setup
11736   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11737   MIB.addRegMask(TRI->getNoPreservedMask());
11738 
11739   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11740 
11741   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11742           .addMBB(mainMBB);
11743   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11744 
11745   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11746   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11747 
11748   // mainMBB:
11749   //  mainDstReg = 0
11750   MIB =
11751       BuildMI(mainMBB, DL,
11752               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11753 
11754   // Store IP
11755   if (Subtarget.isPPC64()) {
11756     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11757             .addReg(LabelReg)
11758             .addImm(LabelOffset)
11759             .addReg(BufReg);
11760   } else {
11761     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11762             .addReg(LabelReg)
11763             .addImm(LabelOffset)
11764             .addReg(BufReg);
11765   }
11766   MIB.cloneMemRefs(MI);
11767 
11768   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11769   mainMBB->addSuccessor(sinkMBB);
11770 
11771   // sinkMBB:
11772   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11773           TII->get(PPC::PHI), DstReg)
11774     .addReg(mainDstReg).addMBB(mainMBB)
11775     .addReg(restoreDstReg).addMBB(thisMBB);
11776 
11777   MI.eraseFromParent();
11778   return sinkMBB;
11779 }
11780 
11781 MachineBasicBlock *
11782 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11783                                      MachineBasicBlock *MBB) const {
11784   DebugLoc DL = MI.getDebugLoc();
11785   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11786 
11787   MachineFunction *MF = MBB->getParent();
11788   MachineRegisterInfo &MRI = MF->getRegInfo();
11789 
11790   MVT PVT = getPointerTy(MF->getDataLayout());
11791   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11792          "Invalid Pointer Size!");
11793 
11794   const TargetRegisterClass *RC =
11795     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11796   Register Tmp = MRI.createVirtualRegister(RC);
11797   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11798   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11799   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11800   unsigned BP =
11801       (PVT == MVT::i64)
11802           ? PPC::X30
11803           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11804                                                               : PPC::R30);
11805 
11806   MachineInstrBuilder MIB;
11807 
11808   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11809   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11810   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11811   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11812 
11813   Register BufReg = MI.getOperand(0).getReg();
11814 
11815   // Reload FP (the jumped-to function may not have had a
11816   // frame pointer, and if so, then its r31 will be restored
11817   // as necessary).
11818   if (PVT == MVT::i64) {
11819     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11820             .addImm(0)
11821             .addReg(BufReg);
11822   } else {
11823     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11824             .addImm(0)
11825             .addReg(BufReg);
11826   }
11827   MIB.cloneMemRefs(MI);
11828 
11829   // Reload IP
11830   if (PVT == MVT::i64) {
11831     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11832             .addImm(LabelOffset)
11833             .addReg(BufReg);
11834   } else {
11835     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11836             .addImm(LabelOffset)
11837             .addReg(BufReg);
11838   }
11839   MIB.cloneMemRefs(MI);
11840 
11841   // Reload SP
11842   if (PVT == MVT::i64) {
11843     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11844             .addImm(SPOffset)
11845             .addReg(BufReg);
11846   } else {
11847     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11848             .addImm(SPOffset)
11849             .addReg(BufReg);
11850   }
11851   MIB.cloneMemRefs(MI);
11852 
11853   // Reload BP
11854   if (PVT == MVT::i64) {
11855     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11856             .addImm(BPOffset)
11857             .addReg(BufReg);
11858   } else {
11859     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11860             .addImm(BPOffset)
11861             .addReg(BufReg);
11862   }
11863   MIB.cloneMemRefs(MI);
11864 
11865   // Reload TOC
11866   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11867     setUsesTOCBasePtr(*MBB->getParent());
11868     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11869               .addImm(TOCOffset)
11870               .addReg(BufReg)
11871               .cloneMemRefs(MI);
11872   }
11873 
11874   // Jump
11875   BuildMI(*MBB, MI, DL,
11876           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11877   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11878 
11879   MI.eraseFromParent();
11880   return MBB;
11881 }
11882 
11883 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11884   // If the function specifically requests inline stack probes, emit them.
11885   if (MF.getFunction().hasFnAttribute("probe-stack"))
11886     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11887            "inline-asm";
11888   return false;
11889 }
11890 
11891 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11892   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11893   unsigned StackAlign = TFI->getStackAlignment();
11894   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11895          "Unexpected stack alignment");
11896   // The default stack probe size is 4096 if the function has no
11897   // stack-probe-size attribute.
11898   unsigned StackProbeSize = 4096;
11899   const Function &Fn = MF.getFunction();
11900   if (Fn.hasFnAttribute("stack-probe-size"))
11901     Fn.getFnAttribute("stack-probe-size")
11902         .getValueAsString()
11903         .getAsInteger(0, StackProbeSize);
11904   // Round down to the stack alignment.
11905   StackProbeSize &= ~(StackAlign - 1);
11906   return StackProbeSize ? StackProbeSize : StackAlign;
11907 }
11908 
11909 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11910 // into three phases. In the first phase, it uses pseudo instruction
11911 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11912 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11913 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11914 // MaxCallFrameSize so that it can calculate correct data area pointer.
11915 MachineBasicBlock *
11916 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11917                                     MachineBasicBlock *MBB) const {
11918   const bool isPPC64 = Subtarget.isPPC64();
11919   MachineFunction *MF = MBB->getParent();
11920   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11921   DebugLoc DL = MI.getDebugLoc();
11922   const unsigned ProbeSize = getStackProbeSize(*MF);
11923   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11924   MachineRegisterInfo &MRI = MF->getRegInfo();
11925   // The CFG of probing stack looks as
11926   //         +-----+
11927   //         | MBB |
11928   //         +--+--+
11929   //            |
11930   //       +----v----+
11931   //  +--->+ TestMBB +---+
11932   //  |    +----+----+   |
11933   //  |         |        |
11934   //  |   +-----v----+   |
11935   //  +---+ BlockMBB |   |
11936   //      +----------+   |
11937   //                     |
11938   //       +---------+   |
11939   //       | TailMBB +<--+
11940   //       +---------+
11941   // In MBB, calculate previous frame pointer and final stack pointer.
11942   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11943   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11944   // TailMBB is spliced via \p MI.
11945   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11946   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11947   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11948 
11949   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11950   MF->insert(MBBIter, TestMBB);
11951   MF->insert(MBBIter, BlockMBB);
11952   MF->insert(MBBIter, TailMBB);
11953 
11954   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11955   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11956 
11957   Register DstReg = MI.getOperand(0).getReg();
11958   Register NegSizeReg = MI.getOperand(1).getReg();
11959   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11960   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11961   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11962   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11963 
11964   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11965   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11966   // NegSize.
11967   unsigned ProbeOpc;
11968   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11969     ProbeOpc =
11970         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11971   else
11972     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11973     // and NegSizeReg will be allocated in the same phyreg to avoid
11974     // redundant copy when NegSizeReg has only one use which is current MI and
11975     // will be replaced by PREPARE_PROBED_ALLOCA then.
11976     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11977                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11978   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11979       .addDef(ActualNegSizeReg)
11980       .addReg(NegSizeReg)
11981       .add(MI.getOperand(2))
11982       .add(MI.getOperand(3));
11983 
11984   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11985   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11986           FinalStackPtr)
11987       .addReg(SPReg)
11988       .addReg(ActualNegSizeReg);
11989 
11990   // Materialize a scratch register for update.
11991   int64_t NegProbeSize = -(int64_t)ProbeSize;
11992   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11993   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11994   if (!isInt<16>(NegProbeSize)) {
11995     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11996     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11997         .addImm(NegProbeSize >> 16);
11998     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11999             ScratchReg)
12000         .addReg(TempReg)
12001         .addImm(NegProbeSize & 0xFFFF);
12002   } else
12003     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12004         .addImm(NegProbeSize);
12005 
12006   {
12007     // Probing leading residual part.
12008     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12009     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12010         .addReg(ActualNegSizeReg)
12011         .addReg(ScratchReg);
12012     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12013     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12014         .addReg(Div)
12015         .addReg(ScratchReg);
12016     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12017     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12018         .addReg(Mul)
12019         .addReg(ActualNegSizeReg);
12020     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12021         .addReg(FramePointer)
12022         .addReg(SPReg)
12023         .addReg(NegMod);
12024   }
12025 
12026   {
12027     // Remaining part should be multiple of ProbeSize.
12028     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12029     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12030         .addReg(SPReg)
12031         .addReg(FinalStackPtr);
12032     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12033         .addImm(PPC::PRED_EQ)
12034         .addReg(CmpResult)
12035         .addMBB(TailMBB);
12036     TestMBB->addSuccessor(BlockMBB);
12037     TestMBB->addSuccessor(TailMBB);
12038   }
12039 
12040   {
12041     // Touch the block.
12042     // |P...|P...|P...
12043     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12044         .addReg(FramePointer)
12045         .addReg(SPReg)
12046         .addReg(ScratchReg);
12047     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12048     BlockMBB->addSuccessor(TestMBB);
12049   }
12050 
12051   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12052   // DYNAREAOFFSET pseudo instruction to get the future result.
12053   Register MaxCallFrameSizeReg =
12054       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12055   BuildMI(TailMBB, DL,
12056           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12057           MaxCallFrameSizeReg)
12058       .add(MI.getOperand(2))
12059       .add(MI.getOperand(3));
12060   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12061       .addReg(SPReg)
12062       .addReg(MaxCallFrameSizeReg);
12063 
12064   // Splice instructions after MI to TailMBB.
12065   TailMBB->splice(TailMBB->end(), MBB,
12066                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12067   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12068   MBB->addSuccessor(TestMBB);
12069 
12070   // Delete the pseudo instruction.
12071   MI.eraseFromParent();
12072 
12073   ++NumDynamicAllocaProbed;
12074   return TailMBB;
12075 }
12076 
12077 MachineBasicBlock *
12078 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12079                                                MachineBasicBlock *BB) const {
12080   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12081       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12082     if (Subtarget.is64BitELFABI() &&
12083         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12084         !Subtarget.isUsingPCRelativeCalls()) {
12085       // Call lowering should have added an r2 operand to indicate a dependence
12086       // on the TOC base pointer value. It can't however, because there is no
12087       // way to mark the dependence as implicit there, and so the stackmap code
12088       // will confuse it with a regular operand. Instead, add the dependence
12089       // here.
12090       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12091     }
12092 
12093     return emitPatchPoint(MI, BB);
12094   }
12095 
12096   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12097       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12098     return emitEHSjLjSetJmp(MI, BB);
12099   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12100              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12101     return emitEHSjLjLongJmp(MI, BB);
12102   }
12103 
12104   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12105 
12106   // To "insert" these instructions we actually have to insert their
12107   // control-flow patterns.
12108   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12109   MachineFunction::iterator It = ++BB->getIterator();
12110 
12111   MachineFunction *F = BB->getParent();
12112   MachineRegisterInfo &MRI = F->getRegInfo();
12113 
12114   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12115       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12116       MI.getOpcode() == PPC::SELECT_I8) {
12117     SmallVector<MachineOperand, 2> Cond;
12118     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12119         MI.getOpcode() == PPC::SELECT_CC_I8)
12120       Cond.push_back(MI.getOperand(4));
12121     else
12122       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12123     Cond.push_back(MI.getOperand(1));
12124 
12125     DebugLoc dl = MI.getDebugLoc();
12126     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12127                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12128   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12129              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12130              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12131              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12132              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12133              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12134              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12135              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12136              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12137              MI.getOpcode() == PPC::SELECT_F4 ||
12138              MI.getOpcode() == PPC::SELECT_F8 ||
12139              MI.getOpcode() == PPC::SELECT_F16 ||
12140              MI.getOpcode() == PPC::SELECT_SPE ||
12141              MI.getOpcode() == PPC::SELECT_SPE4 ||
12142              MI.getOpcode() == PPC::SELECT_VRRC ||
12143              MI.getOpcode() == PPC::SELECT_VSFRC ||
12144              MI.getOpcode() == PPC::SELECT_VSSRC ||
12145              MI.getOpcode() == PPC::SELECT_VSRC) {
12146     // The incoming instruction knows the destination vreg to set, the
12147     // condition code register to branch on, the true/false values to
12148     // select between, and a branch opcode to use.
12149 
12150     //  thisMBB:
12151     //  ...
12152     //   TrueVal = ...
12153     //   cmpTY ccX, r1, r2
12154     //   bCC copy1MBB
12155     //   fallthrough --> copy0MBB
12156     MachineBasicBlock *thisMBB = BB;
12157     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12158     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12159     DebugLoc dl = MI.getDebugLoc();
12160     F->insert(It, copy0MBB);
12161     F->insert(It, sinkMBB);
12162 
12163     // Transfer the remainder of BB and its successor edges to sinkMBB.
12164     sinkMBB->splice(sinkMBB->begin(), BB,
12165                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12166     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12167 
12168     // Next, add the true and fallthrough blocks as its successors.
12169     BB->addSuccessor(copy0MBB);
12170     BB->addSuccessor(sinkMBB);
12171 
12172     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12173         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12174         MI.getOpcode() == PPC::SELECT_F16 ||
12175         MI.getOpcode() == PPC::SELECT_SPE4 ||
12176         MI.getOpcode() == PPC::SELECT_SPE ||
12177         MI.getOpcode() == PPC::SELECT_VRRC ||
12178         MI.getOpcode() == PPC::SELECT_VSFRC ||
12179         MI.getOpcode() == PPC::SELECT_VSSRC ||
12180         MI.getOpcode() == PPC::SELECT_VSRC) {
12181       BuildMI(BB, dl, TII->get(PPC::BC))
12182           .addReg(MI.getOperand(1).getReg())
12183           .addMBB(sinkMBB);
12184     } else {
12185       unsigned SelectPred = MI.getOperand(4).getImm();
12186       BuildMI(BB, dl, TII->get(PPC::BCC))
12187           .addImm(SelectPred)
12188           .addReg(MI.getOperand(1).getReg())
12189           .addMBB(sinkMBB);
12190     }
12191 
12192     //  copy0MBB:
12193     //   %FalseValue = ...
12194     //   # fallthrough to sinkMBB
12195     BB = copy0MBB;
12196 
12197     // Update machine-CFG edges
12198     BB->addSuccessor(sinkMBB);
12199 
12200     //  sinkMBB:
12201     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12202     //  ...
12203     BB = sinkMBB;
12204     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12205         .addReg(MI.getOperand(3).getReg())
12206         .addMBB(copy0MBB)
12207         .addReg(MI.getOperand(2).getReg())
12208         .addMBB(thisMBB);
12209   } else if (MI.getOpcode() == PPC::ReadTB) {
12210     // To read the 64-bit time-base register on a 32-bit target, we read the
12211     // two halves. Should the counter have wrapped while it was being read, we
12212     // need to try again.
12213     // ...
12214     // readLoop:
12215     // mfspr Rx,TBU # load from TBU
12216     // mfspr Ry,TB  # load from TB
12217     // mfspr Rz,TBU # load from TBU
12218     // cmpw crX,Rx,Rz # check if 'old'='new'
12219     // bne readLoop   # branch if they're not equal
12220     // ...
12221 
12222     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12223     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12224     DebugLoc dl = MI.getDebugLoc();
12225     F->insert(It, readMBB);
12226     F->insert(It, sinkMBB);
12227 
12228     // Transfer the remainder of BB and its successor edges to sinkMBB.
12229     sinkMBB->splice(sinkMBB->begin(), BB,
12230                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12231     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12232 
12233     BB->addSuccessor(readMBB);
12234     BB = readMBB;
12235 
12236     MachineRegisterInfo &RegInfo = F->getRegInfo();
12237     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12238     Register LoReg = MI.getOperand(0).getReg();
12239     Register HiReg = MI.getOperand(1).getReg();
12240 
12241     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12242     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12243     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12244 
12245     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12246 
12247     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12248         .addReg(HiReg)
12249         .addReg(ReadAgainReg);
12250     BuildMI(BB, dl, TII->get(PPC::BCC))
12251         .addImm(PPC::PRED_NE)
12252         .addReg(CmpReg)
12253         .addMBB(readMBB);
12254 
12255     BB->addSuccessor(readMBB);
12256     BB->addSuccessor(sinkMBB);
12257   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12258     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12259   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12260     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12261   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12262     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12263   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12264     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12265 
12266   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12267     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12268   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12269     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12270   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12271     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12272   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12273     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12274 
12275   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12276     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12277   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12278     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12279   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12280     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12281   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12282     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12283 
12284   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12285     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12286   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12287     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12288   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12289     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12290   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12291     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12292 
12293   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12294     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12295   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12296     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12297   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12298     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12299   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12300     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12301 
12302   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12303     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12304   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12305     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12306   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12307     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12308   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12309     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12310 
12311   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12312     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12313   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12314     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12315   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12316     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12317   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12318     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12319 
12320   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12321     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12322   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12323     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12324   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12325     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12326   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12327     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12328 
12329   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12330     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12331   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12332     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12333   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12334     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12335   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12336     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12337 
12338   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12339     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12340   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12341     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12342   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12343     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12344   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12345     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12346 
12347   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12348     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12349   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12350     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12351   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12352     BB = EmitAtomicBinary(MI, BB, 4, 0);
12353   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12354     BB = EmitAtomicBinary(MI, BB, 8, 0);
12355   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12356            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12357            (Subtarget.hasPartwordAtomics() &&
12358             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12359            (Subtarget.hasPartwordAtomics() &&
12360             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12361     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12362 
12363     auto LoadMnemonic = PPC::LDARX;
12364     auto StoreMnemonic = PPC::STDCX;
12365     switch (MI.getOpcode()) {
12366     default:
12367       llvm_unreachable("Compare and swap of unknown size");
12368     case PPC::ATOMIC_CMP_SWAP_I8:
12369       LoadMnemonic = PPC::LBARX;
12370       StoreMnemonic = PPC::STBCX;
12371       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12372       break;
12373     case PPC::ATOMIC_CMP_SWAP_I16:
12374       LoadMnemonic = PPC::LHARX;
12375       StoreMnemonic = PPC::STHCX;
12376       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12377       break;
12378     case PPC::ATOMIC_CMP_SWAP_I32:
12379       LoadMnemonic = PPC::LWARX;
12380       StoreMnemonic = PPC::STWCX;
12381       break;
12382     case PPC::ATOMIC_CMP_SWAP_I64:
12383       LoadMnemonic = PPC::LDARX;
12384       StoreMnemonic = PPC::STDCX;
12385       break;
12386     }
12387     Register dest = MI.getOperand(0).getReg();
12388     Register ptrA = MI.getOperand(1).getReg();
12389     Register ptrB = MI.getOperand(2).getReg();
12390     Register oldval = MI.getOperand(3).getReg();
12391     Register newval = MI.getOperand(4).getReg();
12392     DebugLoc dl = MI.getDebugLoc();
12393 
12394     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12395     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12396     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12397     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12398     F->insert(It, loop1MBB);
12399     F->insert(It, loop2MBB);
12400     F->insert(It, midMBB);
12401     F->insert(It, exitMBB);
12402     exitMBB->splice(exitMBB->begin(), BB,
12403                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12404     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12405 
12406     //  thisMBB:
12407     //   ...
12408     //   fallthrough --> loopMBB
12409     BB->addSuccessor(loop1MBB);
12410 
12411     // loop1MBB:
12412     //   l[bhwd]arx dest, ptr
12413     //   cmp[wd] dest, oldval
12414     //   bne- midMBB
12415     // loop2MBB:
12416     //   st[bhwd]cx. newval, ptr
12417     //   bne- loopMBB
12418     //   b exitBB
12419     // midMBB:
12420     //   st[bhwd]cx. dest, ptr
12421     // exitBB:
12422     BB = loop1MBB;
12423     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12424     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12425         .addReg(oldval)
12426         .addReg(dest);
12427     BuildMI(BB, dl, TII->get(PPC::BCC))
12428         .addImm(PPC::PRED_NE)
12429         .addReg(PPC::CR0)
12430         .addMBB(midMBB);
12431     BB->addSuccessor(loop2MBB);
12432     BB->addSuccessor(midMBB);
12433 
12434     BB = loop2MBB;
12435     BuildMI(BB, dl, TII->get(StoreMnemonic))
12436         .addReg(newval)
12437         .addReg(ptrA)
12438         .addReg(ptrB);
12439     BuildMI(BB, dl, TII->get(PPC::BCC))
12440         .addImm(PPC::PRED_NE)
12441         .addReg(PPC::CR0)
12442         .addMBB(loop1MBB);
12443     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12444     BB->addSuccessor(loop1MBB);
12445     BB->addSuccessor(exitMBB);
12446 
12447     BB = midMBB;
12448     BuildMI(BB, dl, TII->get(StoreMnemonic))
12449         .addReg(dest)
12450         .addReg(ptrA)
12451         .addReg(ptrB);
12452     BB->addSuccessor(exitMBB);
12453 
12454     //  exitMBB:
12455     //   ...
12456     BB = exitMBB;
12457   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12458              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12459     // We must use 64-bit registers for addresses when targeting 64-bit,
12460     // since we're actually doing arithmetic on them.  Other registers
12461     // can be 32-bit.
12462     bool is64bit = Subtarget.isPPC64();
12463     bool isLittleEndian = Subtarget.isLittleEndian();
12464     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12465 
12466     Register dest = MI.getOperand(0).getReg();
12467     Register ptrA = MI.getOperand(1).getReg();
12468     Register ptrB = MI.getOperand(2).getReg();
12469     Register oldval = MI.getOperand(3).getReg();
12470     Register newval = MI.getOperand(4).getReg();
12471     DebugLoc dl = MI.getDebugLoc();
12472 
12473     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12474     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12475     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12476     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12477     F->insert(It, loop1MBB);
12478     F->insert(It, loop2MBB);
12479     F->insert(It, midMBB);
12480     F->insert(It, exitMBB);
12481     exitMBB->splice(exitMBB->begin(), BB,
12482                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12483     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12484 
12485     MachineRegisterInfo &RegInfo = F->getRegInfo();
12486     const TargetRegisterClass *RC =
12487         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12488     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12489 
12490     Register PtrReg = RegInfo.createVirtualRegister(RC);
12491     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12492     Register ShiftReg =
12493         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12494     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12495     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12496     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12497     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12498     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12499     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12500     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12501     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12502     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12503     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12504     Register Ptr1Reg;
12505     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12506     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12507     //  thisMBB:
12508     //   ...
12509     //   fallthrough --> loopMBB
12510     BB->addSuccessor(loop1MBB);
12511 
12512     // The 4-byte load must be aligned, while a char or short may be
12513     // anywhere in the word.  Hence all this nasty bookkeeping code.
12514     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12515     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12516     //   xori shift, shift1, 24 [16]
12517     //   rlwinm ptr, ptr1, 0, 0, 29
12518     //   slw newval2, newval, shift
12519     //   slw oldval2, oldval,shift
12520     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12521     //   slw mask, mask2, shift
12522     //   and newval3, newval2, mask
12523     //   and oldval3, oldval2, mask
12524     // loop1MBB:
12525     //   lwarx tmpDest, ptr
12526     //   and tmp, tmpDest, mask
12527     //   cmpw tmp, oldval3
12528     //   bne- midMBB
12529     // loop2MBB:
12530     //   andc tmp2, tmpDest, mask
12531     //   or tmp4, tmp2, newval3
12532     //   stwcx. tmp4, ptr
12533     //   bne- loop1MBB
12534     //   b exitBB
12535     // midMBB:
12536     //   stwcx. tmpDest, ptr
12537     // exitBB:
12538     //   srw dest, tmpDest, shift
12539     if (ptrA != ZeroReg) {
12540       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12541       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12542           .addReg(ptrA)
12543           .addReg(ptrB);
12544     } else {
12545       Ptr1Reg = ptrB;
12546     }
12547 
12548     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12549     // mode.
12550     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12551         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12552         .addImm(3)
12553         .addImm(27)
12554         .addImm(is8bit ? 28 : 27);
12555     if (!isLittleEndian)
12556       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12557           .addReg(Shift1Reg)
12558           .addImm(is8bit ? 24 : 16);
12559     if (is64bit)
12560       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12561           .addReg(Ptr1Reg)
12562           .addImm(0)
12563           .addImm(61);
12564     else
12565       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12566           .addReg(Ptr1Reg)
12567           .addImm(0)
12568           .addImm(0)
12569           .addImm(29);
12570     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12571         .addReg(newval)
12572         .addReg(ShiftReg);
12573     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12574         .addReg(oldval)
12575         .addReg(ShiftReg);
12576     if (is8bit)
12577       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12578     else {
12579       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12580       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12581           .addReg(Mask3Reg)
12582           .addImm(65535);
12583     }
12584     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12585         .addReg(Mask2Reg)
12586         .addReg(ShiftReg);
12587     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12588         .addReg(NewVal2Reg)
12589         .addReg(MaskReg);
12590     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12591         .addReg(OldVal2Reg)
12592         .addReg(MaskReg);
12593 
12594     BB = loop1MBB;
12595     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12596         .addReg(ZeroReg)
12597         .addReg(PtrReg);
12598     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12599         .addReg(TmpDestReg)
12600         .addReg(MaskReg);
12601     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12602         .addReg(TmpReg)
12603         .addReg(OldVal3Reg);
12604     BuildMI(BB, dl, TII->get(PPC::BCC))
12605         .addImm(PPC::PRED_NE)
12606         .addReg(PPC::CR0)
12607         .addMBB(midMBB);
12608     BB->addSuccessor(loop2MBB);
12609     BB->addSuccessor(midMBB);
12610 
12611     BB = loop2MBB;
12612     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12613         .addReg(TmpDestReg)
12614         .addReg(MaskReg);
12615     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12616         .addReg(Tmp2Reg)
12617         .addReg(NewVal3Reg);
12618     BuildMI(BB, dl, TII->get(PPC::STWCX))
12619         .addReg(Tmp4Reg)
12620         .addReg(ZeroReg)
12621         .addReg(PtrReg);
12622     BuildMI(BB, dl, TII->get(PPC::BCC))
12623         .addImm(PPC::PRED_NE)
12624         .addReg(PPC::CR0)
12625         .addMBB(loop1MBB);
12626     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12627     BB->addSuccessor(loop1MBB);
12628     BB->addSuccessor(exitMBB);
12629 
12630     BB = midMBB;
12631     BuildMI(BB, dl, TII->get(PPC::STWCX))
12632         .addReg(TmpDestReg)
12633         .addReg(ZeroReg)
12634         .addReg(PtrReg);
12635     BB->addSuccessor(exitMBB);
12636 
12637     //  exitMBB:
12638     //   ...
12639     BB = exitMBB;
12640     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12641         .addReg(TmpReg)
12642         .addReg(ShiftReg);
12643   } else if (MI.getOpcode() == PPC::FADDrtz) {
12644     // This pseudo performs an FADD with rounding mode temporarily forced
12645     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12646     // is not modeled at the SelectionDAG level.
12647     Register Dest = MI.getOperand(0).getReg();
12648     Register Src1 = MI.getOperand(1).getReg();
12649     Register Src2 = MI.getOperand(2).getReg();
12650     DebugLoc dl = MI.getDebugLoc();
12651 
12652     MachineRegisterInfo &RegInfo = F->getRegInfo();
12653     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12654 
12655     // Save FPSCR value.
12656     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12657 
12658     // Set rounding mode to round-to-zero.
12659     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12660         .addImm(31)
12661         .addReg(PPC::RM, RegState::ImplicitDefine);
12662 
12663     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12664         .addImm(30)
12665         .addReg(PPC::RM, RegState::ImplicitDefine);
12666 
12667     // Perform addition.
12668     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12669                    .addReg(Src1)
12670                    .addReg(Src2);
12671     if (MI.getFlag(MachineInstr::NoFPExcept))
12672       MIB.setMIFlag(MachineInstr::NoFPExcept);
12673 
12674     // Restore FPSCR value.
12675     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12676   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12677              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12678              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12679              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12680     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12681                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12682                           ? PPC::ANDI8_rec
12683                           : PPC::ANDI_rec;
12684     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12685                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12686 
12687     MachineRegisterInfo &RegInfo = F->getRegInfo();
12688     Register Dest = RegInfo.createVirtualRegister(
12689         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12690 
12691     DebugLoc Dl = MI.getDebugLoc();
12692     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12693         .addReg(MI.getOperand(1).getReg())
12694         .addImm(1);
12695     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12696             MI.getOperand(0).getReg())
12697         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12698   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12699     DebugLoc Dl = MI.getDebugLoc();
12700     MachineRegisterInfo &RegInfo = F->getRegInfo();
12701     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12702     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12703     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12704             MI.getOperand(0).getReg())
12705         .addReg(CRReg);
12706   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12707     DebugLoc Dl = MI.getDebugLoc();
12708     unsigned Imm = MI.getOperand(1).getImm();
12709     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12710     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12711             MI.getOperand(0).getReg())
12712         .addReg(PPC::CR0EQ);
12713   } else if (MI.getOpcode() == PPC::SETRNDi) {
12714     DebugLoc dl = MI.getDebugLoc();
12715     Register OldFPSCRReg = MI.getOperand(0).getReg();
12716 
12717     // Save FPSCR value.
12718     if (MRI.use_empty(OldFPSCRReg))
12719       BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12720     else
12721       BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12722 
12723     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12724     // the following settings:
12725     //   00 Round to nearest
12726     //   01 Round to 0
12727     //   10 Round to +inf
12728     //   11 Round to -inf
12729 
12730     // When the operand is immediate, using the two least significant bits of
12731     // the immediate to set the bits 62:63 of FPSCR.
12732     unsigned Mode = MI.getOperand(1).getImm();
12733     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12734         .addImm(31)
12735         .addReg(PPC::RM, RegState::ImplicitDefine);
12736 
12737     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12738         .addImm(30)
12739         .addReg(PPC::RM, RegState::ImplicitDefine);
12740   } else if (MI.getOpcode() == PPC::SETRND) {
12741     DebugLoc dl = MI.getDebugLoc();
12742 
12743     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12744     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12745     // If the target doesn't have DirectMove, we should use stack to do the
12746     // conversion, because the target doesn't have the instructions like mtvsrd
12747     // or mfvsrd to do this conversion directly.
12748     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12749       if (Subtarget.hasDirectMove()) {
12750         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12751           .addReg(SrcReg);
12752       } else {
12753         // Use stack to do the register copy.
12754         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12755         MachineRegisterInfo &RegInfo = F->getRegInfo();
12756         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12757         if (RC == &PPC::F8RCRegClass) {
12758           // Copy register from F8RCRegClass to G8RCRegclass.
12759           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12760                  "Unsupported RegClass.");
12761 
12762           StoreOp = PPC::STFD;
12763           LoadOp = PPC::LD;
12764         } else {
12765           // Copy register from G8RCRegClass to F8RCRegclass.
12766           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12767                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12768                  "Unsupported RegClass.");
12769         }
12770 
12771         MachineFrameInfo &MFI = F->getFrameInfo();
12772         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12773 
12774         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12775             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12776             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12777             MFI.getObjectAlign(FrameIdx));
12778 
12779         // Store the SrcReg into the stack.
12780         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12781           .addReg(SrcReg)
12782           .addImm(0)
12783           .addFrameIndex(FrameIdx)
12784           .addMemOperand(MMOStore);
12785 
12786         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12787             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12788             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12789             MFI.getObjectAlign(FrameIdx));
12790 
12791         // Load from the stack where SrcReg is stored, and save to DestReg,
12792         // so we have done the RegClass conversion from RegClass::SrcReg to
12793         // RegClass::DestReg.
12794         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12795           .addImm(0)
12796           .addFrameIndex(FrameIdx)
12797           .addMemOperand(MMOLoad);
12798       }
12799     };
12800 
12801     Register OldFPSCRReg = MI.getOperand(0).getReg();
12802 
12803     // Save FPSCR value.
12804     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12805 
12806     // When the operand is gprc register, use two least significant bits of the
12807     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12808     //
12809     // copy OldFPSCRTmpReg, OldFPSCRReg
12810     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12811     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12812     // copy NewFPSCRReg, NewFPSCRTmpReg
12813     // mtfsf 255, NewFPSCRReg
12814     MachineOperand SrcOp = MI.getOperand(1);
12815     MachineRegisterInfo &RegInfo = F->getRegInfo();
12816     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12817 
12818     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12819 
12820     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12821     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12822 
12823     // The first operand of INSERT_SUBREG should be a register which has
12824     // subregisters, we only care about its RegClass, so we should use an
12825     // IMPLICIT_DEF register.
12826     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12827     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12828       .addReg(ImDefReg)
12829       .add(SrcOp)
12830       .addImm(1);
12831 
12832     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12833     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12834       .addReg(OldFPSCRTmpReg)
12835       .addReg(ExtSrcReg)
12836       .addImm(0)
12837       .addImm(62);
12838 
12839     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12840     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12841 
12842     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12843     // bits of FPSCR.
12844     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12845       .addImm(255)
12846       .addReg(NewFPSCRReg)
12847       .addImm(0)
12848       .addImm(0);
12849   } else if (MI.getOpcode() == PPC::SETFLM) {
12850     DebugLoc Dl = MI.getDebugLoc();
12851 
12852     // Result of setflm is previous FPSCR content, so we need to save it first.
12853     Register OldFPSCRReg = MI.getOperand(0).getReg();
12854     if (MRI.use_empty(OldFPSCRReg))
12855       BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12856     else
12857       BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12858 
12859     // Put bits in 32:63 to FPSCR.
12860     Register NewFPSCRReg = MI.getOperand(1).getReg();
12861     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12862         .addImm(255)
12863         .addReg(NewFPSCRReg)
12864         .addImm(0)
12865         .addImm(0);
12866   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12867              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12868     return emitProbedAlloca(MI, BB);
12869   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
12870     DebugLoc DL = MI.getDebugLoc();
12871     Register Src = MI.getOperand(2).getReg();
12872     Register Lo = MI.getOperand(0).getReg();
12873     Register Hi = MI.getOperand(1).getReg();
12874     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12875         .addDef(Lo)
12876         .addUse(Src, 0, PPC::sub_gp8_x1);
12877     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12878         .addDef(Hi)
12879         .addUse(Src, 0, PPC::sub_gp8_x0);
12880   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
12881              MI.getOpcode() == PPC::STQX_PSEUDO) {
12882     DebugLoc DL = MI.getDebugLoc();
12883     // Ptr is used as the ptr_rc_no_r0 part
12884     // of LQ/STQ's memory operand and adding result of RA and RB,
12885     // so it has to be g8rc_and_g8rc_nox0.
12886     Register Ptr =
12887         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
12888     Register Val = MI.getOperand(0).getReg();
12889     Register RA = MI.getOperand(1).getReg();
12890     Register RB = MI.getOperand(2).getReg();
12891     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
12892     BuildMI(*BB, MI, DL,
12893             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
12894                                               : TII->get(PPC::STQ))
12895         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
12896         .addImm(0)
12897         .addReg(Ptr);
12898   } else {
12899     llvm_unreachable("Unexpected instr type to insert");
12900   }
12901 
12902   MI.eraseFromParent(); // The pseudo instruction is gone now.
12903   return BB;
12904 }
12905 
12906 //===----------------------------------------------------------------------===//
12907 // Target Optimization Hooks
12908 //===----------------------------------------------------------------------===//
12909 
12910 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12911   // For the estimates, convergence is quadratic, so we essentially double the
12912   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12913   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12914   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12915   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12916   if (VT.getScalarType() == MVT::f64)
12917     RefinementSteps++;
12918   return RefinementSteps;
12919 }
12920 
12921 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12922                                             const DenormalMode &Mode) const {
12923   // We only have VSX Vector Test for software Square Root.
12924   EVT VT = Op.getValueType();
12925   if (!isTypeLegal(MVT::i1) ||
12926       (VT != MVT::f64 &&
12927        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12928     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12929 
12930   SDLoc DL(Op);
12931   // The output register of FTSQRT is CR field.
12932   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12933   // ftsqrt BF,FRB
12934   // Let e_b be the unbiased exponent of the double-precision
12935   // floating-point operand in register FRB.
12936   // fe_flag is set to 1 if either of the following conditions occurs.
12937   //   - The double-precision floating-point operand in register FRB is a zero,
12938   //     a NaN, or an infinity, or a negative value.
12939   //   - e_b is less than or equal to -970.
12940   // Otherwise fe_flag is set to 0.
12941   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12942   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12943   // exponent is less than -970)
12944   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12945   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12946                                     FTSQRT, SRIdxVal),
12947                  0);
12948 }
12949 
12950 SDValue
12951 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12952                                                SelectionDAG &DAG) const {
12953   // We only have VSX Vector Square Root.
12954   EVT VT = Op.getValueType();
12955   if (VT != MVT::f64 &&
12956       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12957     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12958 
12959   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12960 }
12961 
12962 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12963                                            int Enabled, int &RefinementSteps,
12964                                            bool &UseOneConstNR,
12965                                            bool Reciprocal) const {
12966   EVT VT = Operand.getValueType();
12967   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12968       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12969       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12970       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12971     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12972       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12973 
12974     // The Newton-Raphson computation with a single constant does not provide
12975     // enough accuracy on some CPUs.
12976     UseOneConstNR = !Subtarget.needsTwoConstNR();
12977     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12978   }
12979   return SDValue();
12980 }
12981 
12982 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12983                                             int Enabled,
12984                                             int &RefinementSteps) const {
12985   EVT VT = Operand.getValueType();
12986   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12987       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12988       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12989       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12990     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12991       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12992     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12993   }
12994   return SDValue();
12995 }
12996 
12997 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12998   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12999   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13000   // enabled for division), this functionality is redundant with the default
13001   // combiner logic (once the division -> reciprocal/multiply transformation
13002   // has taken place). As a result, this matters more for older cores than for
13003   // newer ones.
13004 
13005   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13006   // reciprocal if there are two or more FDIVs (for embedded cores with only
13007   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13008   switch (Subtarget.getCPUDirective()) {
13009   default:
13010     return 3;
13011   case PPC::DIR_440:
13012   case PPC::DIR_A2:
13013   case PPC::DIR_E500:
13014   case PPC::DIR_E500mc:
13015   case PPC::DIR_E5500:
13016     return 2;
13017   }
13018 }
13019 
13020 // isConsecutiveLSLoc needs to work even if all adds have not yet been
13021 // collapsed, and so we need to look through chains of them.
13022 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13023                                      int64_t& Offset, SelectionDAG &DAG) {
13024   if (DAG.isBaseWithConstantOffset(Loc)) {
13025     Base = Loc.getOperand(0);
13026     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13027 
13028     // The base might itself be a base plus an offset, and if so, accumulate
13029     // that as well.
13030     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13031   }
13032 }
13033 
13034 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13035                             unsigned Bytes, int Dist,
13036                             SelectionDAG &DAG) {
13037   if (VT.getSizeInBits() / 8 != Bytes)
13038     return false;
13039 
13040   SDValue BaseLoc = Base->getBasePtr();
13041   if (Loc.getOpcode() == ISD::FrameIndex) {
13042     if (BaseLoc.getOpcode() != ISD::FrameIndex)
13043       return false;
13044     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13045     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13046     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13047     int FS  = MFI.getObjectSize(FI);
13048     int BFS = MFI.getObjectSize(BFI);
13049     if (FS != BFS || FS != (int)Bytes) return false;
13050     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13051   }
13052 
13053   SDValue Base1 = Loc, Base2 = BaseLoc;
13054   int64_t Offset1 = 0, Offset2 = 0;
13055   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13056   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13057   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13058     return true;
13059 
13060   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13061   const GlobalValue *GV1 = nullptr;
13062   const GlobalValue *GV2 = nullptr;
13063   Offset1 = 0;
13064   Offset2 = 0;
13065   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13066   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13067   if (isGA1 && isGA2 && GV1 == GV2)
13068     return Offset1 == (Offset2 + Dist*Bytes);
13069   return false;
13070 }
13071 
13072 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13073 // not enforce equality of the chain operands.
13074 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13075                             unsigned Bytes, int Dist,
13076                             SelectionDAG &DAG) {
13077   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13078     EVT VT = LS->getMemoryVT();
13079     SDValue Loc = LS->getBasePtr();
13080     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13081   }
13082 
13083   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13084     EVT VT;
13085     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13086     default: return false;
13087     case Intrinsic::ppc_altivec_lvx:
13088     case Intrinsic::ppc_altivec_lvxl:
13089     case Intrinsic::ppc_vsx_lxvw4x:
13090     case Intrinsic::ppc_vsx_lxvw4x_be:
13091       VT = MVT::v4i32;
13092       break;
13093     case Intrinsic::ppc_vsx_lxvd2x:
13094     case Intrinsic::ppc_vsx_lxvd2x_be:
13095       VT = MVT::v2f64;
13096       break;
13097     case Intrinsic::ppc_altivec_lvebx:
13098       VT = MVT::i8;
13099       break;
13100     case Intrinsic::ppc_altivec_lvehx:
13101       VT = MVT::i16;
13102       break;
13103     case Intrinsic::ppc_altivec_lvewx:
13104       VT = MVT::i32;
13105       break;
13106     }
13107 
13108     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13109   }
13110 
13111   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13112     EVT VT;
13113     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13114     default: return false;
13115     case Intrinsic::ppc_altivec_stvx:
13116     case Intrinsic::ppc_altivec_stvxl:
13117     case Intrinsic::ppc_vsx_stxvw4x:
13118       VT = MVT::v4i32;
13119       break;
13120     case Intrinsic::ppc_vsx_stxvd2x:
13121       VT = MVT::v2f64;
13122       break;
13123     case Intrinsic::ppc_vsx_stxvw4x_be:
13124       VT = MVT::v4i32;
13125       break;
13126     case Intrinsic::ppc_vsx_stxvd2x_be:
13127       VT = MVT::v2f64;
13128       break;
13129     case Intrinsic::ppc_altivec_stvebx:
13130       VT = MVT::i8;
13131       break;
13132     case Intrinsic::ppc_altivec_stvehx:
13133       VT = MVT::i16;
13134       break;
13135     case Intrinsic::ppc_altivec_stvewx:
13136       VT = MVT::i32;
13137       break;
13138     }
13139 
13140     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13141   }
13142 
13143   return false;
13144 }
13145 
13146 // Return true is there is a nearyby consecutive load to the one provided
13147 // (regardless of alignment). We search up and down the chain, looking though
13148 // token factors and other loads (but nothing else). As a result, a true result
13149 // indicates that it is safe to create a new consecutive load adjacent to the
13150 // load provided.
13151 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13152   SDValue Chain = LD->getChain();
13153   EVT VT = LD->getMemoryVT();
13154 
13155   SmallSet<SDNode *, 16> LoadRoots;
13156   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13157   SmallSet<SDNode *, 16> Visited;
13158 
13159   // First, search up the chain, branching to follow all token-factor operands.
13160   // If we find a consecutive load, then we're done, otherwise, record all
13161   // nodes just above the top-level loads and token factors.
13162   while (!Queue.empty()) {
13163     SDNode *ChainNext = Queue.pop_back_val();
13164     if (!Visited.insert(ChainNext).second)
13165       continue;
13166 
13167     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13168       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13169         return true;
13170 
13171       if (!Visited.count(ChainLD->getChain().getNode()))
13172         Queue.push_back(ChainLD->getChain().getNode());
13173     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13174       for (const SDUse &O : ChainNext->ops())
13175         if (!Visited.count(O.getNode()))
13176           Queue.push_back(O.getNode());
13177     } else
13178       LoadRoots.insert(ChainNext);
13179   }
13180 
13181   // Second, search down the chain, starting from the top-level nodes recorded
13182   // in the first phase. These top-level nodes are the nodes just above all
13183   // loads and token factors. Starting with their uses, recursively look though
13184   // all loads (just the chain uses) and token factors to find a consecutive
13185   // load.
13186   Visited.clear();
13187   Queue.clear();
13188 
13189   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
13190        IE = LoadRoots.end(); I != IE; ++I) {
13191     Queue.push_back(*I);
13192 
13193     while (!Queue.empty()) {
13194       SDNode *LoadRoot = Queue.pop_back_val();
13195       if (!Visited.insert(LoadRoot).second)
13196         continue;
13197 
13198       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13199         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13200           return true;
13201 
13202       for (SDNode *U : LoadRoot->uses())
13203         if (((isa<MemSDNode>(U) &&
13204               cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13205              U->getOpcode() == ISD::TokenFactor) &&
13206             !Visited.count(U))
13207           Queue.push_back(U);
13208     }
13209   }
13210 
13211   return false;
13212 }
13213 
13214 /// This function is called when we have proved that a SETCC node can be replaced
13215 /// by subtraction (and other supporting instructions) so that the result of
13216 /// comparison is kept in a GPR instead of CR. This function is purely for
13217 /// codegen purposes and has some flags to guide the codegen process.
13218 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13219                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13220   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13221 
13222   // Zero extend the operands to the largest legal integer. Originally, they
13223   // must be of a strictly smaller size.
13224   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13225                          DAG.getConstant(Size, DL, MVT::i32));
13226   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13227                          DAG.getConstant(Size, DL, MVT::i32));
13228 
13229   // Swap if needed. Depends on the condition code.
13230   if (Swap)
13231     std::swap(Op0, Op1);
13232 
13233   // Subtract extended integers.
13234   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13235 
13236   // Move the sign bit to the least significant position and zero out the rest.
13237   // Now the least significant bit carries the result of original comparison.
13238   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13239                              DAG.getConstant(Size - 1, DL, MVT::i32));
13240   auto Final = Shifted;
13241 
13242   // Complement the result if needed. Based on the condition code.
13243   if (Complement)
13244     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13245                         DAG.getConstant(1, DL, MVT::i64));
13246 
13247   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13248 }
13249 
13250 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13251                                                   DAGCombinerInfo &DCI) const {
13252   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13253 
13254   SelectionDAG &DAG = DCI.DAG;
13255   SDLoc DL(N);
13256 
13257   // Size of integers being compared has a critical role in the following
13258   // analysis, so we prefer to do this when all types are legal.
13259   if (!DCI.isAfterLegalizeDAG())
13260     return SDValue();
13261 
13262   // If all users of SETCC extend its value to a legal integer type
13263   // then we replace SETCC with a subtraction
13264   for (const SDNode *U : N->uses())
13265     if (U->getOpcode() != ISD::ZERO_EXTEND)
13266       return SDValue();
13267 
13268   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13269   auto OpSize = N->getOperand(0).getValueSizeInBits();
13270 
13271   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13272 
13273   if (OpSize < Size) {
13274     switch (CC) {
13275     default: break;
13276     case ISD::SETULT:
13277       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13278     case ISD::SETULE:
13279       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13280     case ISD::SETUGT:
13281       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13282     case ISD::SETUGE:
13283       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13284     }
13285   }
13286 
13287   return SDValue();
13288 }
13289 
13290 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13291                                                   DAGCombinerInfo &DCI) const {
13292   SelectionDAG &DAG = DCI.DAG;
13293   SDLoc dl(N);
13294 
13295   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13296   // If we're tracking CR bits, we need to be careful that we don't have:
13297   //   trunc(binary-ops(zext(x), zext(y)))
13298   // or
13299   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13300   // such that we're unnecessarily moving things into GPRs when it would be
13301   // better to keep them in CR bits.
13302 
13303   // Note that trunc here can be an actual i1 trunc, or can be the effective
13304   // truncation that comes from a setcc or select_cc.
13305   if (N->getOpcode() == ISD::TRUNCATE &&
13306       N->getValueType(0) != MVT::i1)
13307     return SDValue();
13308 
13309   if (N->getOperand(0).getValueType() != MVT::i32 &&
13310       N->getOperand(0).getValueType() != MVT::i64)
13311     return SDValue();
13312 
13313   if (N->getOpcode() == ISD::SETCC ||
13314       N->getOpcode() == ISD::SELECT_CC) {
13315     // If we're looking at a comparison, then we need to make sure that the
13316     // high bits (all except for the first) don't matter the result.
13317     ISD::CondCode CC =
13318       cast<CondCodeSDNode>(N->getOperand(
13319         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13320     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13321 
13322     if (ISD::isSignedIntSetCC(CC)) {
13323       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13324           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13325         return SDValue();
13326     } else if (ISD::isUnsignedIntSetCC(CC)) {
13327       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13328                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13329           !DAG.MaskedValueIsZero(N->getOperand(1),
13330                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13331         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13332                                              : SDValue());
13333     } else {
13334       // This is neither a signed nor an unsigned comparison, just make sure
13335       // that the high bits are equal.
13336       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13337       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13338 
13339       // We don't really care about what is known about the first bit (if
13340       // anything), so pretend that it is known zero for both to ensure they can
13341       // be compared as constants.
13342       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13343       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13344 
13345       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13346           Op1Known.getConstant() != Op2Known.getConstant())
13347         return SDValue();
13348     }
13349   }
13350 
13351   // We now know that the higher-order bits are irrelevant, we just need to
13352   // make sure that all of the intermediate operations are bit operations, and
13353   // all inputs are extensions.
13354   if (N->getOperand(0).getOpcode() != ISD::AND &&
13355       N->getOperand(0).getOpcode() != ISD::OR  &&
13356       N->getOperand(0).getOpcode() != ISD::XOR &&
13357       N->getOperand(0).getOpcode() != ISD::SELECT &&
13358       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13359       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13360       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13361       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13362       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13363     return SDValue();
13364 
13365   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13366       N->getOperand(1).getOpcode() != ISD::AND &&
13367       N->getOperand(1).getOpcode() != ISD::OR  &&
13368       N->getOperand(1).getOpcode() != ISD::XOR &&
13369       N->getOperand(1).getOpcode() != ISD::SELECT &&
13370       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13371       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13372       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13373       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13374       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13375     return SDValue();
13376 
13377   SmallVector<SDValue, 4> Inputs;
13378   SmallVector<SDValue, 8> BinOps, PromOps;
13379   SmallPtrSet<SDNode *, 16> Visited;
13380 
13381   for (unsigned i = 0; i < 2; ++i) {
13382     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13383           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13384           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13385           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13386         isa<ConstantSDNode>(N->getOperand(i)))
13387       Inputs.push_back(N->getOperand(i));
13388     else
13389       BinOps.push_back(N->getOperand(i));
13390 
13391     if (N->getOpcode() == ISD::TRUNCATE)
13392       break;
13393   }
13394 
13395   // Visit all inputs, collect all binary operations (and, or, xor and
13396   // select) that are all fed by extensions.
13397   while (!BinOps.empty()) {
13398     SDValue BinOp = BinOps.pop_back_val();
13399 
13400     if (!Visited.insert(BinOp.getNode()).second)
13401       continue;
13402 
13403     PromOps.push_back(BinOp);
13404 
13405     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13406       // The condition of the select is not promoted.
13407       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13408         continue;
13409       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13410         continue;
13411 
13412       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13413             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13414             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13415            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13416           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13417         Inputs.push_back(BinOp.getOperand(i));
13418       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13419                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13420                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13421                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13422                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13423                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13424                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13425                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13426                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13427         BinOps.push_back(BinOp.getOperand(i));
13428       } else {
13429         // We have an input that is not an extension or another binary
13430         // operation; we'll abort this transformation.
13431         return SDValue();
13432       }
13433     }
13434   }
13435 
13436   // Make sure that this is a self-contained cluster of operations (which
13437   // is not quite the same thing as saying that everything has only one
13438   // use).
13439   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13440     if (isa<ConstantSDNode>(Inputs[i]))
13441       continue;
13442 
13443     for (const SDNode *User : Inputs[i].getNode()->uses()) {
13444       if (User != N && !Visited.count(User))
13445         return SDValue();
13446 
13447       // Make sure that we're not going to promote the non-output-value
13448       // operand(s) or SELECT or SELECT_CC.
13449       // FIXME: Although we could sometimes handle this, and it does occur in
13450       // practice that one of the condition inputs to the select is also one of
13451       // the outputs, we currently can't deal with this.
13452       if (User->getOpcode() == ISD::SELECT) {
13453         if (User->getOperand(0) == Inputs[i])
13454           return SDValue();
13455       } else if (User->getOpcode() == ISD::SELECT_CC) {
13456         if (User->getOperand(0) == Inputs[i] ||
13457             User->getOperand(1) == Inputs[i])
13458           return SDValue();
13459       }
13460     }
13461   }
13462 
13463   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13464     for (const SDNode *User : PromOps[i].getNode()->uses()) {
13465       if (User != N && !Visited.count(User))
13466         return SDValue();
13467 
13468       // Make sure that we're not going to promote the non-output-value
13469       // operand(s) or SELECT or SELECT_CC.
13470       // FIXME: Although we could sometimes handle this, and it does occur in
13471       // practice that one of the condition inputs to the select is also one of
13472       // the outputs, we currently can't deal with this.
13473       if (User->getOpcode() == ISD::SELECT) {
13474         if (User->getOperand(0) == PromOps[i])
13475           return SDValue();
13476       } else if (User->getOpcode() == ISD::SELECT_CC) {
13477         if (User->getOperand(0) == PromOps[i] ||
13478             User->getOperand(1) == PromOps[i])
13479           return SDValue();
13480       }
13481     }
13482   }
13483 
13484   // Replace all inputs with the extension operand.
13485   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13486     // Constants may have users outside the cluster of to-be-promoted nodes,
13487     // and so we need to replace those as we do the promotions.
13488     if (isa<ConstantSDNode>(Inputs[i]))
13489       continue;
13490     else
13491       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13492   }
13493 
13494   std::list<HandleSDNode> PromOpHandles;
13495   for (auto &PromOp : PromOps)
13496     PromOpHandles.emplace_back(PromOp);
13497 
13498   // Replace all operations (these are all the same, but have a different
13499   // (i1) return type). DAG.getNode will validate that the types of
13500   // a binary operator match, so go through the list in reverse so that
13501   // we've likely promoted both operands first. Any intermediate truncations or
13502   // extensions disappear.
13503   while (!PromOpHandles.empty()) {
13504     SDValue PromOp = PromOpHandles.back().getValue();
13505     PromOpHandles.pop_back();
13506 
13507     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13508         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13509         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13510         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13511       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13512           PromOp.getOperand(0).getValueType() != MVT::i1) {
13513         // The operand is not yet ready (see comment below).
13514         PromOpHandles.emplace_front(PromOp);
13515         continue;
13516       }
13517 
13518       SDValue RepValue = PromOp.getOperand(0);
13519       if (isa<ConstantSDNode>(RepValue))
13520         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13521 
13522       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13523       continue;
13524     }
13525 
13526     unsigned C;
13527     switch (PromOp.getOpcode()) {
13528     default:             C = 0; break;
13529     case ISD::SELECT:    C = 1; break;
13530     case ISD::SELECT_CC: C = 2; break;
13531     }
13532 
13533     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13534          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13535         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13536          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13537       // The to-be-promoted operands of this node have not yet been
13538       // promoted (this should be rare because we're going through the
13539       // list backward, but if one of the operands has several users in
13540       // this cluster of to-be-promoted nodes, it is possible).
13541       PromOpHandles.emplace_front(PromOp);
13542       continue;
13543     }
13544 
13545     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13546                                 PromOp.getNode()->op_end());
13547 
13548     // If there are any constant inputs, make sure they're replaced now.
13549     for (unsigned i = 0; i < 2; ++i)
13550       if (isa<ConstantSDNode>(Ops[C+i]))
13551         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13552 
13553     DAG.ReplaceAllUsesOfValueWith(PromOp,
13554       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13555   }
13556 
13557   // Now we're left with the initial truncation itself.
13558   if (N->getOpcode() == ISD::TRUNCATE)
13559     return N->getOperand(0);
13560 
13561   // Otherwise, this is a comparison. The operands to be compared have just
13562   // changed type (to i1), but everything else is the same.
13563   return SDValue(N, 0);
13564 }
13565 
13566 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13567                                                   DAGCombinerInfo &DCI) const {
13568   SelectionDAG &DAG = DCI.DAG;
13569   SDLoc dl(N);
13570 
13571   // If we're tracking CR bits, we need to be careful that we don't have:
13572   //   zext(binary-ops(trunc(x), trunc(y)))
13573   // or
13574   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13575   // such that we're unnecessarily moving things into CR bits that can more
13576   // efficiently stay in GPRs. Note that if we're not certain that the high
13577   // bits are set as required by the final extension, we still may need to do
13578   // some masking to get the proper behavior.
13579 
13580   // This same functionality is important on PPC64 when dealing with
13581   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13582   // the return values of functions. Because it is so similar, it is handled
13583   // here as well.
13584 
13585   if (N->getValueType(0) != MVT::i32 &&
13586       N->getValueType(0) != MVT::i64)
13587     return SDValue();
13588 
13589   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13590         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13591     return SDValue();
13592 
13593   if (N->getOperand(0).getOpcode() != ISD::AND &&
13594       N->getOperand(0).getOpcode() != ISD::OR  &&
13595       N->getOperand(0).getOpcode() != ISD::XOR &&
13596       N->getOperand(0).getOpcode() != ISD::SELECT &&
13597       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13598     return SDValue();
13599 
13600   SmallVector<SDValue, 4> Inputs;
13601   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13602   SmallPtrSet<SDNode *, 16> Visited;
13603 
13604   // Visit all inputs, collect all binary operations (and, or, xor and
13605   // select) that are all fed by truncations.
13606   while (!BinOps.empty()) {
13607     SDValue BinOp = BinOps.pop_back_val();
13608 
13609     if (!Visited.insert(BinOp.getNode()).second)
13610       continue;
13611 
13612     PromOps.push_back(BinOp);
13613 
13614     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13615       // The condition of the select is not promoted.
13616       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13617         continue;
13618       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13619         continue;
13620 
13621       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13622           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13623         Inputs.push_back(BinOp.getOperand(i));
13624       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13625                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13626                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13627                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13628                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13629         BinOps.push_back(BinOp.getOperand(i));
13630       } else {
13631         // We have an input that is not a truncation or another binary
13632         // operation; we'll abort this transformation.
13633         return SDValue();
13634       }
13635     }
13636   }
13637 
13638   // The operands of a select that must be truncated when the select is
13639   // promoted because the operand is actually part of the to-be-promoted set.
13640   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13641 
13642   // Make sure that this is a self-contained cluster of operations (which
13643   // is not quite the same thing as saying that everything has only one
13644   // use).
13645   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13646     if (isa<ConstantSDNode>(Inputs[i]))
13647       continue;
13648 
13649     for (SDNode *User : Inputs[i].getNode()->uses()) {
13650       if (User != N && !Visited.count(User))
13651         return SDValue();
13652 
13653       // If we're going to promote the non-output-value operand(s) or SELECT or
13654       // SELECT_CC, record them for truncation.
13655       if (User->getOpcode() == ISD::SELECT) {
13656         if (User->getOperand(0) == Inputs[i])
13657           SelectTruncOp[0].insert(std::make_pair(User,
13658                                     User->getOperand(0).getValueType()));
13659       } else if (User->getOpcode() == ISD::SELECT_CC) {
13660         if (User->getOperand(0) == Inputs[i])
13661           SelectTruncOp[0].insert(std::make_pair(User,
13662                                     User->getOperand(0).getValueType()));
13663         if (User->getOperand(1) == Inputs[i])
13664           SelectTruncOp[1].insert(std::make_pair(User,
13665                                     User->getOperand(1).getValueType()));
13666       }
13667     }
13668   }
13669 
13670   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13671     for (SDNode *User : PromOps[i].getNode()->uses()) {
13672       if (User != N && !Visited.count(User))
13673         return SDValue();
13674 
13675       // If we're going to promote the non-output-value operand(s) or SELECT or
13676       // SELECT_CC, record them for truncation.
13677       if (User->getOpcode() == ISD::SELECT) {
13678         if (User->getOperand(0) == PromOps[i])
13679           SelectTruncOp[0].insert(std::make_pair(User,
13680                                     User->getOperand(0).getValueType()));
13681       } else if (User->getOpcode() == ISD::SELECT_CC) {
13682         if (User->getOperand(0) == PromOps[i])
13683           SelectTruncOp[0].insert(std::make_pair(User,
13684                                     User->getOperand(0).getValueType()));
13685         if (User->getOperand(1) == PromOps[i])
13686           SelectTruncOp[1].insert(std::make_pair(User,
13687                                     User->getOperand(1).getValueType()));
13688       }
13689     }
13690   }
13691 
13692   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13693   bool ReallyNeedsExt = false;
13694   if (N->getOpcode() != ISD::ANY_EXTEND) {
13695     // If all of the inputs are not already sign/zero extended, then
13696     // we'll still need to do that at the end.
13697     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13698       if (isa<ConstantSDNode>(Inputs[i]))
13699         continue;
13700 
13701       unsigned OpBits =
13702         Inputs[i].getOperand(0).getValueSizeInBits();
13703       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13704 
13705       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13706            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13707                                   APInt::getHighBitsSet(OpBits,
13708                                                         OpBits-PromBits))) ||
13709           (N->getOpcode() == ISD::SIGN_EXTEND &&
13710            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13711              (OpBits-(PromBits-1)))) {
13712         ReallyNeedsExt = true;
13713         break;
13714       }
13715     }
13716   }
13717 
13718   // Replace all inputs, either with the truncation operand, or a
13719   // truncation or extension to the final output type.
13720   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13721     // Constant inputs need to be replaced with the to-be-promoted nodes that
13722     // use them because they might have users outside of the cluster of
13723     // promoted nodes.
13724     if (isa<ConstantSDNode>(Inputs[i]))
13725       continue;
13726 
13727     SDValue InSrc = Inputs[i].getOperand(0);
13728     if (Inputs[i].getValueType() == N->getValueType(0))
13729       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13730     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13731       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13732         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13733     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13734       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13735         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13736     else
13737       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13738         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13739   }
13740 
13741   std::list<HandleSDNode> PromOpHandles;
13742   for (auto &PromOp : PromOps)
13743     PromOpHandles.emplace_back(PromOp);
13744 
13745   // Replace all operations (these are all the same, but have a different
13746   // (promoted) return type). DAG.getNode will validate that the types of
13747   // a binary operator match, so go through the list in reverse so that
13748   // we've likely promoted both operands first.
13749   while (!PromOpHandles.empty()) {
13750     SDValue PromOp = PromOpHandles.back().getValue();
13751     PromOpHandles.pop_back();
13752 
13753     unsigned C;
13754     switch (PromOp.getOpcode()) {
13755     default:             C = 0; break;
13756     case ISD::SELECT:    C = 1; break;
13757     case ISD::SELECT_CC: C = 2; break;
13758     }
13759 
13760     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13761          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13762         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13763          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13764       // The to-be-promoted operands of this node have not yet been
13765       // promoted (this should be rare because we're going through the
13766       // list backward, but if one of the operands has several users in
13767       // this cluster of to-be-promoted nodes, it is possible).
13768       PromOpHandles.emplace_front(PromOp);
13769       continue;
13770     }
13771 
13772     // For SELECT and SELECT_CC nodes, we do a similar check for any
13773     // to-be-promoted comparison inputs.
13774     if (PromOp.getOpcode() == ISD::SELECT ||
13775         PromOp.getOpcode() == ISD::SELECT_CC) {
13776       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13777            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13778           (SelectTruncOp[1].count(PromOp.getNode()) &&
13779            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13780         PromOpHandles.emplace_front(PromOp);
13781         continue;
13782       }
13783     }
13784 
13785     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13786                                 PromOp.getNode()->op_end());
13787 
13788     // If this node has constant inputs, then they'll need to be promoted here.
13789     for (unsigned i = 0; i < 2; ++i) {
13790       if (!isa<ConstantSDNode>(Ops[C+i]))
13791         continue;
13792       if (Ops[C+i].getValueType() == N->getValueType(0))
13793         continue;
13794 
13795       if (N->getOpcode() == ISD::SIGN_EXTEND)
13796         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13797       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13798         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13799       else
13800         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13801     }
13802 
13803     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13804     // truncate them again to the original value type.
13805     if (PromOp.getOpcode() == ISD::SELECT ||
13806         PromOp.getOpcode() == ISD::SELECT_CC) {
13807       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13808       if (SI0 != SelectTruncOp[0].end())
13809         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13810       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13811       if (SI1 != SelectTruncOp[1].end())
13812         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13813     }
13814 
13815     DAG.ReplaceAllUsesOfValueWith(PromOp,
13816       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13817   }
13818 
13819   // Now we're left with the initial extension itself.
13820   if (!ReallyNeedsExt)
13821     return N->getOperand(0);
13822 
13823   // To zero extend, just mask off everything except for the first bit (in the
13824   // i1 case).
13825   if (N->getOpcode() == ISD::ZERO_EXTEND)
13826     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13827                        DAG.getConstant(APInt::getLowBitsSet(
13828                                          N->getValueSizeInBits(0), PromBits),
13829                                        dl, N->getValueType(0)));
13830 
13831   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13832          "Invalid extension type");
13833   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13834   SDValue ShiftCst =
13835       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13836   return DAG.getNode(
13837       ISD::SRA, dl, N->getValueType(0),
13838       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13839       ShiftCst);
13840 }
13841 
13842 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13843                                         DAGCombinerInfo &DCI) const {
13844   assert(N->getOpcode() == ISD::SETCC &&
13845          "Should be called with a SETCC node");
13846 
13847   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13848   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13849     SDValue LHS = N->getOperand(0);
13850     SDValue RHS = N->getOperand(1);
13851 
13852     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13853     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13854         LHS.hasOneUse())
13855       std::swap(LHS, RHS);
13856 
13857     // x == 0-y --> x+y == 0
13858     // x != 0-y --> x+y != 0
13859     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13860         RHS.hasOneUse()) {
13861       SDLoc DL(N);
13862       SelectionDAG &DAG = DCI.DAG;
13863       EVT VT = N->getValueType(0);
13864       EVT OpVT = LHS.getValueType();
13865       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13866       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13867     }
13868   }
13869 
13870   return DAGCombineTruncBoolExt(N, DCI);
13871 }
13872 
13873 // Is this an extending load from an f32 to an f64?
13874 static bool isFPExtLoad(SDValue Op) {
13875   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13876     return LD->getExtensionType() == ISD::EXTLOAD &&
13877       Op.getValueType() == MVT::f64;
13878   return false;
13879 }
13880 
13881 /// Reduces the number of fp-to-int conversion when building a vector.
13882 ///
13883 /// If this vector is built out of floating to integer conversions,
13884 /// transform it to a vector built out of floating point values followed by a
13885 /// single floating to integer conversion of the vector.
13886 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13887 /// becomes (fptosi (build_vector ($A, $B, ...)))
13888 SDValue PPCTargetLowering::
13889 combineElementTruncationToVectorTruncation(SDNode *N,
13890                                            DAGCombinerInfo &DCI) const {
13891   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13892          "Should be called with a BUILD_VECTOR node");
13893 
13894   SelectionDAG &DAG = DCI.DAG;
13895   SDLoc dl(N);
13896 
13897   SDValue FirstInput = N->getOperand(0);
13898   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13899          "The input operand must be an fp-to-int conversion.");
13900 
13901   // This combine happens after legalization so the fp_to_[su]i nodes are
13902   // already converted to PPCSISD nodes.
13903   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13904   if (FirstConversion == PPCISD::FCTIDZ ||
13905       FirstConversion == PPCISD::FCTIDUZ ||
13906       FirstConversion == PPCISD::FCTIWZ ||
13907       FirstConversion == PPCISD::FCTIWUZ) {
13908     bool IsSplat = true;
13909     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13910       FirstConversion == PPCISD::FCTIWUZ;
13911     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13912     SmallVector<SDValue, 4> Ops;
13913     EVT TargetVT = N->getValueType(0);
13914     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13915       SDValue NextOp = N->getOperand(i);
13916       if (NextOp.getOpcode() != PPCISD::MFVSR)
13917         return SDValue();
13918       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13919       if (NextConversion != FirstConversion)
13920         return SDValue();
13921       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13922       // This is not valid if the input was originally double precision. It is
13923       // also not profitable to do unless this is an extending load in which
13924       // case doing this combine will allow us to combine consecutive loads.
13925       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13926         return SDValue();
13927       if (N->getOperand(i) != FirstInput)
13928         IsSplat = false;
13929     }
13930 
13931     // If this is a splat, we leave it as-is since there will be only a single
13932     // fp-to-int conversion followed by a splat of the integer. This is better
13933     // for 32-bit and smaller ints and neutral for 64-bit ints.
13934     if (IsSplat)
13935       return SDValue();
13936 
13937     // Now that we know we have the right type of node, get its operands
13938     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13939       SDValue In = N->getOperand(i).getOperand(0);
13940       if (Is32Bit) {
13941         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13942         // here, we know that all inputs are extending loads so this is safe).
13943         if (In.isUndef())
13944           Ops.push_back(DAG.getUNDEF(SrcVT));
13945         else {
13946           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13947                                       MVT::f32, In.getOperand(0),
13948                                       DAG.getIntPtrConstant(1, dl));
13949           Ops.push_back(Trunc);
13950         }
13951       } else
13952         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13953     }
13954 
13955     unsigned Opcode;
13956     if (FirstConversion == PPCISD::FCTIDZ ||
13957         FirstConversion == PPCISD::FCTIWZ)
13958       Opcode = ISD::FP_TO_SINT;
13959     else
13960       Opcode = ISD::FP_TO_UINT;
13961 
13962     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13963     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13964     return DAG.getNode(Opcode, dl, TargetVT, BV);
13965   }
13966   return SDValue();
13967 }
13968 
13969 /// Reduce the number of loads when building a vector.
13970 ///
13971 /// Building a vector out of multiple loads can be converted to a load
13972 /// of the vector type if the loads are consecutive. If the loads are
13973 /// consecutive but in descending order, a shuffle is added at the end
13974 /// to reorder the vector.
13975 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13976   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13977          "Should be called with a BUILD_VECTOR node");
13978 
13979   SDLoc dl(N);
13980 
13981   // Return early for non byte-sized type, as they can't be consecutive.
13982   if (!N->getValueType(0).getVectorElementType().isByteSized())
13983     return SDValue();
13984 
13985   bool InputsAreConsecutiveLoads = true;
13986   bool InputsAreReverseConsecutive = true;
13987   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13988   SDValue FirstInput = N->getOperand(0);
13989   bool IsRoundOfExtLoad = false;
13990 
13991   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13992       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13993     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13994     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13995   }
13996   // Not a build vector of (possibly fp_rounded) loads.
13997   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13998       N->getNumOperands() == 1)
13999     return SDValue();
14000 
14001   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14002     // If any inputs are fp_round(extload), they all must be.
14003     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14004       return SDValue();
14005 
14006     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14007       N->getOperand(i);
14008     if (NextInput.getOpcode() != ISD::LOAD)
14009       return SDValue();
14010 
14011     SDValue PreviousInput =
14012       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14013     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
14014     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
14015 
14016     // If any inputs are fp_round(extload), they all must be.
14017     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14018       return SDValue();
14019 
14020     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
14021       InputsAreConsecutiveLoads = false;
14022     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
14023       InputsAreReverseConsecutive = false;
14024 
14025     // Exit early if the loads are neither consecutive nor reverse consecutive.
14026     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14027       return SDValue();
14028   }
14029 
14030   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14031          "The loads cannot be both consecutive and reverse consecutive.");
14032 
14033   SDValue FirstLoadOp =
14034     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
14035   SDValue LastLoadOp =
14036     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
14037                        N->getOperand(N->getNumOperands()-1);
14038 
14039   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
14040   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
14041   if (InputsAreConsecutiveLoads) {
14042     assert(LD1 && "Input needs to be a LoadSDNode.");
14043     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
14044                        LD1->getBasePtr(), LD1->getPointerInfo(),
14045                        LD1->getAlignment());
14046   }
14047   if (InputsAreReverseConsecutive) {
14048     assert(LDL && "Input needs to be a LoadSDNode.");
14049     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
14050                                LDL->getBasePtr(), LDL->getPointerInfo(),
14051                                LDL->getAlignment());
14052     SmallVector<int, 16> Ops;
14053     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14054       Ops.push_back(i);
14055 
14056     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
14057                                 DAG.getUNDEF(N->getValueType(0)), Ops);
14058   }
14059   return SDValue();
14060 }
14061 
14062 // This function adds the required vector_shuffle needed to get
14063 // the elements of the vector extract in the correct position
14064 // as specified by the CorrectElems encoding.
14065 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14066                                       SDValue Input, uint64_t Elems,
14067                                       uint64_t CorrectElems) {
14068   SDLoc dl(N);
14069 
14070   unsigned NumElems = Input.getValueType().getVectorNumElements();
14071   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14072 
14073   // Knowing the element indices being extracted from the original
14074   // vector and the order in which they're being inserted, just put
14075   // them at element indices required for the instruction.
14076   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14077     if (DAG.getDataLayout().isLittleEndian())
14078       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14079     else
14080       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14081     CorrectElems = CorrectElems >> 8;
14082     Elems = Elems >> 8;
14083   }
14084 
14085   SDValue Shuffle =
14086       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14087                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14088 
14089   EVT VT = N->getValueType(0);
14090   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14091 
14092   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14093                                Input.getValueType().getVectorElementType(),
14094                                VT.getVectorNumElements());
14095   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14096                      DAG.getValueType(ExtVT));
14097 }
14098 
14099 // Look for build vector patterns where input operands come from sign
14100 // extended vector_extract elements of specific indices. If the correct indices
14101 // aren't used, add a vector shuffle to fix up the indices and create
14102 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14103 // during instruction selection.
14104 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14105   // This array encodes the indices that the vector sign extend instructions
14106   // extract from when extending from one type to another for both BE and LE.
14107   // The right nibble of each byte corresponds to the LE incides.
14108   // and the left nibble of each byte corresponds to the BE incides.
14109   // For example: 0x3074B8FC  byte->word
14110   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14111   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14112   // For example: 0x000070F8  byte->double word
14113   // For LE: the allowed indices are: 0x0,0x8
14114   // For BE: the allowed indices are: 0x7,0xF
14115   uint64_t TargetElems[] = {
14116       0x3074B8FC, // b->w
14117       0x000070F8, // b->d
14118       0x10325476, // h->w
14119       0x00003074, // h->d
14120       0x00001032, // w->d
14121   };
14122 
14123   uint64_t Elems = 0;
14124   int Index;
14125   SDValue Input;
14126 
14127   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14128     if (!Op)
14129       return false;
14130     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14131         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14132       return false;
14133 
14134     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14135     // of the right width.
14136     SDValue Extract = Op.getOperand(0);
14137     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14138       Extract = Extract.getOperand(0);
14139     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14140       return false;
14141 
14142     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14143     if (!ExtOp)
14144       return false;
14145 
14146     Index = ExtOp->getZExtValue();
14147     if (Input && Input != Extract.getOperand(0))
14148       return false;
14149 
14150     if (!Input)
14151       Input = Extract.getOperand(0);
14152 
14153     Elems = Elems << 8;
14154     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14155     Elems |= Index;
14156 
14157     return true;
14158   };
14159 
14160   // If the build vector operands aren't sign extended vector extracts,
14161   // of the same input vector, then return.
14162   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14163     if (!isSExtOfVecExtract(N->getOperand(i))) {
14164       return SDValue();
14165     }
14166   }
14167 
14168   // If the vector extract indicies are not correct, add the appropriate
14169   // vector_shuffle.
14170   int TgtElemArrayIdx;
14171   int InputSize = Input.getValueType().getScalarSizeInBits();
14172   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14173   if (InputSize + OutputSize == 40)
14174     TgtElemArrayIdx = 0;
14175   else if (InputSize + OutputSize == 72)
14176     TgtElemArrayIdx = 1;
14177   else if (InputSize + OutputSize == 48)
14178     TgtElemArrayIdx = 2;
14179   else if (InputSize + OutputSize == 80)
14180     TgtElemArrayIdx = 3;
14181   else if (InputSize + OutputSize == 96)
14182     TgtElemArrayIdx = 4;
14183   else
14184     return SDValue();
14185 
14186   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14187   CorrectElems = DAG.getDataLayout().isLittleEndian()
14188                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14189                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14190   if (Elems != CorrectElems) {
14191     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14192   }
14193 
14194   // Regular lowering will catch cases where a shuffle is not needed.
14195   return SDValue();
14196 }
14197 
14198 // Look for the pattern of a load from a narrow width to i128, feeding
14199 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14200 // (LXVRZX). This node represents a zero extending load that will be matched
14201 // to the Load VSX Vector Rightmost instructions.
14202 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14203   SDLoc DL(N);
14204 
14205   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14206   if (N->getValueType(0) != MVT::v1i128)
14207     return SDValue();
14208 
14209   SDValue Operand = N->getOperand(0);
14210   // Proceed with the transformation if the operand to the BUILD_VECTOR
14211   // is a load instruction.
14212   if (Operand.getOpcode() != ISD::LOAD)
14213     return SDValue();
14214 
14215   auto *LD = cast<LoadSDNode>(Operand);
14216   EVT MemoryType = LD->getMemoryVT();
14217 
14218   // This transformation is only valid if the we are loading either a byte,
14219   // halfword, word, or doubleword.
14220   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14221                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14222 
14223   // Ensure that the load from the narrow width is being zero extended to i128.
14224   if (!ValidLDType ||
14225       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14226        LD->getExtensionType() != ISD::EXTLOAD))
14227     return SDValue();
14228 
14229   SDValue LoadOps[] = {
14230       LD->getChain(), LD->getBasePtr(),
14231       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14232 
14233   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14234                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14235                                  LoadOps, MemoryType, LD->getMemOperand());
14236 }
14237 
14238 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14239                                                  DAGCombinerInfo &DCI) const {
14240   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14241          "Should be called with a BUILD_VECTOR node");
14242 
14243   SelectionDAG &DAG = DCI.DAG;
14244   SDLoc dl(N);
14245 
14246   if (!Subtarget.hasVSX())
14247     return SDValue();
14248 
14249   // The target independent DAG combiner will leave a build_vector of
14250   // float-to-int conversions intact. We can generate MUCH better code for
14251   // a float-to-int conversion of a vector of floats.
14252   SDValue FirstInput = N->getOperand(0);
14253   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14254     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14255     if (Reduced)
14256       return Reduced;
14257   }
14258 
14259   // If we're building a vector out of consecutive loads, just load that
14260   // vector type.
14261   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14262   if (Reduced)
14263     return Reduced;
14264 
14265   // If we're building a vector out of extended elements from another vector
14266   // we have P9 vector integer extend instructions. The code assumes legal
14267   // input types (i.e. it can't handle things like v4i16) so do not run before
14268   // legalization.
14269   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14270     Reduced = combineBVOfVecSExt(N, DAG);
14271     if (Reduced)
14272       return Reduced;
14273   }
14274 
14275   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14276   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14277   // is a load from <valid narrow width> to i128.
14278   if (Subtarget.isISA3_1()) {
14279     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14280     if (BVOfZLoad)
14281       return BVOfZLoad;
14282   }
14283 
14284   if (N->getValueType(0) != MVT::v2f64)
14285     return SDValue();
14286 
14287   // Looking for:
14288   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14289   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14290       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14291     return SDValue();
14292   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14293       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14294     return SDValue();
14295   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14296     return SDValue();
14297 
14298   SDValue Ext1 = FirstInput.getOperand(0);
14299   SDValue Ext2 = N->getOperand(1).getOperand(0);
14300   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14301      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14302     return SDValue();
14303 
14304   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14305   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14306   if (!Ext1Op || !Ext2Op)
14307     return SDValue();
14308   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14309       Ext1.getOperand(0) != Ext2.getOperand(0))
14310     return SDValue();
14311 
14312   int FirstElem = Ext1Op->getZExtValue();
14313   int SecondElem = Ext2Op->getZExtValue();
14314   int SubvecIdx;
14315   if (FirstElem == 0 && SecondElem == 1)
14316     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14317   else if (FirstElem == 2 && SecondElem == 3)
14318     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14319   else
14320     return SDValue();
14321 
14322   SDValue SrcVec = Ext1.getOperand(0);
14323   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14324     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14325   return DAG.getNode(NodeType, dl, MVT::v2f64,
14326                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14327 }
14328 
14329 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14330                                               DAGCombinerInfo &DCI) const {
14331   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14332           N->getOpcode() == ISD::UINT_TO_FP) &&
14333          "Need an int -> FP conversion node here");
14334 
14335   if (useSoftFloat() || !Subtarget.has64BitSupport())
14336     return SDValue();
14337 
14338   SelectionDAG &DAG = DCI.DAG;
14339   SDLoc dl(N);
14340   SDValue Op(N, 0);
14341 
14342   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14343   // from the hardware.
14344   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14345     return SDValue();
14346   if (!Op.getOperand(0).getValueType().isSimple())
14347     return SDValue();
14348   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14349       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14350     return SDValue();
14351 
14352   SDValue FirstOperand(Op.getOperand(0));
14353   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14354     (FirstOperand.getValueType() == MVT::i8 ||
14355      FirstOperand.getValueType() == MVT::i16);
14356   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14357     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14358     bool DstDouble = Op.getValueType() == MVT::f64;
14359     unsigned ConvOp = Signed ?
14360       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14361       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14362     SDValue WidthConst =
14363       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14364                             dl, false);
14365     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14366     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14367     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14368                                          DAG.getVTList(MVT::f64, MVT::Other),
14369                                          Ops, MVT::i8, LDN->getMemOperand());
14370 
14371     // For signed conversion, we need to sign-extend the value in the VSR
14372     if (Signed) {
14373       SDValue ExtOps[] = { Ld, WidthConst };
14374       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14375       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14376     } else
14377       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14378   }
14379 
14380 
14381   // For i32 intermediate values, unfortunately, the conversion functions
14382   // leave the upper 32 bits of the value are undefined. Within the set of
14383   // scalar instructions, we have no method for zero- or sign-extending the
14384   // value. Thus, we cannot handle i32 intermediate values here.
14385   if (Op.getOperand(0).getValueType() == MVT::i32)
14386     return SDValue();
14387 
14388   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14389          "UINT_TO_FP is supported only with FPCVT");
14390 
14391   // If we have FCFIDS, then use it when converting to single-precision.
14392   // Otherwise, convert to double-precision and then round.
14393   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14394                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14395                                                             : PPCISD::FCFIDS)
14396                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14397                                                             : PPCISD::FCFID);
14398   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14399                   ? MVT::f32
14400                   : MVT::f64;
14401 
14402   // If we're converting from a float, to an int, and back to a float again,
14403   // then we don't need the store/load pair at all.
14404   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14405        Subtarget.hasFPCVT()) ||
14406       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14407     SDValue Src = Op.getOperand(0).getOperand(0);
14408     if (Src.getValueType() == MVT::f32) {
14409       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14410       DCI.AddToWorklist(Src.getNode());
14411     } else if (Src.getValueType() != MVT::f64) {
14412       // Make sure that we don't pick up a ppc_fp128 source value.
14413       return SDValue();
14414     }
14415 
14416     unsigned FCTOp =
14417       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14418                                                         PPCISD::FCTIDUZ;
14419 
14420     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14421     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14422 
14423     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14424       FP = DAG.getNode(ISD::FP_ROUND, dl,
14425                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14426       DCI.AddToWorklist(FP.getNode());
14427     }
14428 
14429     return FP;
14430   }
14431 
14432   return SDValue();
14433 }
14434 
14435 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14436 // builtins) into loads with swaps.
14437 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14438                                               DAGCombinerInfo &DCI) const {
14439   SelectionDAG &DAG = DCI.DAG;
14440   SDLoc dl(N);
14441   SDValue Chain;
14442   SDValue Base;
14443   MachineMemOperand *MMO;
14444 
14445   switch (N->getOpcode()) {
14446   default:
14447     llvm_unreachable("Unexpected opcode for little endian VSX load");
14448   case ISD::LOAD: {
14449     LoadSDNode *LD = cast<LoadSDNode>(N);
14450     Chain = LD->getChain();
14451     Base = LD->getBasePtr();
14452     MMO = LD->getMemOperand();
14453     // If the MMO suggests this isn't a load of a full vector, leave
14454     // things alone.  For a built-in, we have to make the change for
14455     // correctness, so if there is a size problem that will be a bug.
14456     if (MMO->getSize() < 16)
14457       return SDValue();
14458     break;
14459   }
14460   case ISD::INTRINSIC_W_CHAIN: {
14461     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14462     Chain = Intrin->getChain();
14463     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14464     // us what we want. Get operand 2 instead.
14465     Base = Intrin->getOperand(2);
14466     MMO = Intrin->getMemOperand();
14467     break;
14468   }
14469   }
14470 
14471   MVT VecTy = N->getValueType(0).getSimpleVT();
14472 
14473   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14474   // aligned and the type is a vector with elements up to 4 bytes
14475   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14476       VecTy.getScalarSizeInBits() <= 32) {
14477     return SDValue();
14478   }
14479 
14480   SDValue LoadOps[] = { Chain, Base };
14481   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14482                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14483                                          LoadOps, MVT::v2f64, MMO);
14484 
14485   DCI.AddToWorklist(Load.getNode());
14486   Chain = Load.getValue(1);
14487   SDValue Swap = DAG.getNode(
14488       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14489   DCI.AddToWorklist(Swap.getNode());
14490 
14491   // Add a bitcast if the resulting load type doesn't match v2f64.
14492   if (VecTy != MVT::v2f64) {
14493     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14494     DCI.AddToWorklist(N.getNode());
14495     // Package {bitcast value, swap's chain} to match Load's shape.
14496     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14497                        N, Swap.getValue(1));
14498   }
14499 
14500   return Swap;
14501 }
14502 
14503 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14504 // builtins) into stores with swaps.
14505 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14506                                                DAGCombinerInfo &DCI) const {
14507   SelectionDAG &DAG = DCI.DAG;
14508   SDLoc dl(N);
14509   SDValue Chain;
14510   SDValue Base;
14511   unsigned SrcOpnd;
14512   MachineMemOperand *MMO;
14513 
14514   switch (N->getOpcode()) {
14515   default:
14516     llvm_unreachable("Unexpected opcode for little endian VSX store");
14517   case ISD::STORE: {
14518     StoreSDNode *ST = cast<StoreSDNode>(N);
14519     Chain = ST->getChain();
14520     Base = ST->getBasePtr();
14521     MMO = ST->getMemOperand();
14522     SrcOpnd = 1;
14523     // If the MMO suggests this isn't a store of a full vector, leave
14524     // things alone.  For a built-in, we have to make the change for
14525     // correctness, so if there is a size problem that will be a bug.
14526     if (MMO->getSize() < 16)
14527       return SDValue();
14528     break;
14529   }
14530   case ISD::INTRINSIC_VOID: {
14531     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14532     Chain = Intrin->getChain();
14533     // Intrin->getBasePtr() oddly does not get what we want.
14534     Base = Intrin->getOperand(3);
14535     MMO = Intrin->getMemOperand();
14536     SrcOpnd = 2;
14537     break;
14538   }
14539   }
14540 
14541   SDValue Src = N->getOperand(SrcOpnd);
14542   MVT VecTy = Src.getValueType().getSimpleVT();
14543 
14544   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14545   // aligned and the type is a vector with elements up to 4 bytes
14546   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14547       VecTy.getScalarSizeInBits() <= 32) {
14548     return SDValue();
14549   }
14550 
14551   // All stores are done as v2f64 and possible bit cast.
14552   if (VecTy != MVT::v2f64) {
14553     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14554     DCI.AddToWorklist(Src.getNode());
14555   }
14556 
14557   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14558                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14559   DCI.AddToWorklist(Swap.getNode());
14560   Chain = Swap.getValue(1);
14561   SDValue StoreOps[] = { Chain, Swap, Base };
14562   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14563                                           DAG.getVTList(MVT::Other),
14564                                           StoreOps, VecTy, MMO);
14565   DCI.AddToWorklist(Store.getNode());
14566   return Store;
14567 }
14568 
14569 // Handle DAG combine for STORE (FP_TO_INT F).
14570 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14571                                                DAGCombinerInfo &DCI) const {
14572 
14573   SelectionDAG &DAG = DCI.DAG;
14574   SDLoc dl(N);
14575   unsigned Opcode = N->getOperand(1).getOpcode();
14576 
14577   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14578          && "Not a FP_TO_INT Instruction!");
14579 
14580   SDValue Val = N->getOperand(1).getOperand(0);
14581   EVT Op1VT = N->getOperand(1).getValueType();
14582   EVT ResVT = Val.getValueType();
14583 
14584   if (!isTypeLegal(ResVT))
14585     return SDValue();
14586 
14587   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14588   bool ValidTypeForStoreFltAsInt =
14589         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14590          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14591 
14592   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14593     return SDValue();
14594 
14595   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14596       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14597     return SDValue();
14598 
14599   // Extend f32 values to f64
14600   if (ResVT.getScalarSizeInBits() == 32) {
14601     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14602     DCI.AddToWorklist(Val.getNode());
14603   }
14604 
14605   // Set signed or unsigned conversion opcode.
14606   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14607                           PPCISD::FP_TO_SINT_IN_VSR :
14608                           PPCISD::FP_TO_UINT_IN_VSR;
14609 
14610   Val = DAG.getNode(ConvOpcode,
14611                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14612   DCI.AddToWorklist(Val.getNode());
14613 
14614   // Set number of bytes being converted.
14615   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14616   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14617                     DAG.getIntPtrConstant(ByteSize, dl, false),
14618                     DAG.getValueType(Op1VT) };
14619 
14620   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14621           DAG.getVTList(MVT::Other), Ops,
14622           cast<StoreSDNode>(N)->getMemoryVT(),
14623           cast<StoreSDNode>(N)->getMemOperand());
14624 
14625   DCI.AddToWorklist(Val.getNode());
14626   return Val;
14627 }
14628 
14629 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14630   // Check that the source of the element keeps flipping
14631   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14632   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14633   for (int i = 1, e = Mask.size(); i < e; i++) {
14634     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14635       return false;
14636     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14637       return false;
14638     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14639   }
14640   return true;
14641 }
14642 
14643 static bool isSplatBV(SDValue Op) {
14644   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14645     return false;
14646   SDValue FirstOp;
14647 
14648   // Find first non-undef input.
14649   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14650     FirstOp = Op.getOperand(i);
14651     if (!FirstOp.isUndef())
14652       break;
14653   }
14654 
14655   // All inputs are undef or the same as the first non-undef input.
14656   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14657     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14658       return false;
14659   return true;
14660 }
14661 
14662 static SDValue isScalarToVec(SDValue Op) {
14663   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14664     return Op;
14665   if (Op.getOpcode() != ISD::BITCAST)
14666     return SDValue();
14667   Op = Op.getOperand(0);
14668   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14669     return Op;
14670   return SDValue();
14671 }
14672 
14673 // Fix up the shuffle mask to account for the fact that the result of
14674 // scalar_to_vector is not in lane zero. This just takes all values in
14675 // the ranges specified by the min/max indices and adds the number of
14676 // elements required to ensure each element comes from the respective
14677 // position in the valid lane.
14678 // On little endian, that's just the corresponding element in the other
14679 // half of the vector. On big endian, it is in the same half but right
14680 // justified rather than left justified in that half.
14681 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14682                                             int LHSMaxIdx, int RHSMinIdx,
14683                                             int RHSMaxIdx, int HalfVec,
14684                                             unsigned ValidLaneWidth,
14685                                             const PPCSubtarget &Subtarget) {
14686   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14687     int Idx = ShuffV[i];
14688     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14689       ShuffV[i] +=
14690           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14691   }
14692 }
14693 
14694 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14695 // the original is:
14696 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14697 // In such a case, just change the shuffle mask to extract the element
14698 // from the permuted index.
14699 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14700                                const PPCSubtarget &Subtarget) {
14701   SDLoc dl(OrigSToV);
14702   EVT VT = OrigSToV.getValueType();
14703   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14704          "Expecting a SCALAR_TO_VECTOR here");
14705   SDValue Input = OrigSToV.getOperand(0);
14706 
14707   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14708     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14709     SDValue OrigVector = Input.getOperand(0);
14710 
14711     // Can't handle non-const element indices or different vector types
14712     // for the input to the extract and the output of the scalar_to_vector.
14713     if (Idx && VT == OrigVector.getValueType()) {
14714       unsigned NumElts = VT.getVectorNumElements();
14715       assert(
14716           NumElts > 1 &&
14717           "Cannot produce a permuted scalar_to_vector for one element vector");
14718       SmallVector<int, 16> NewMask(NumElts, -1);
14719       unsigned ResultInElt = NumElts / 2;
14720       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14721       NewMask[ResultInElt] = Idx->getZExtValue();
14722       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14723     }
14724   }
14725   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14726                      OrigSToV.getOperand(0));
14727 }
14728 
14729 // On little endian subtargets, combine shuffles such as:
14730 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14731 // into:
14732 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14733 // because the latter can be matched to a single instruction merge.
14734 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14735 // to put the value into element zero. Adjust the shuffle mask so that the
14736 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14737 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14738 // nodes with elements smaller than doubleword because all the ways
14739 // of getting scalar data into a vector register put the value in the
14740 // rightmost element of the left half of the vector.
14741 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14742                                                 SelectionDAG &DAG) const {
14743   SDValue LHS = SVN->getOperand(0);
14744   SDValue RHS = SVN->getOperand(1);
14745   auto Mask = SVN->getMask();
14746   int NumElts = LHS.getValueType().getVectorNumElements();
14747   SDValue Res(SVN, 0);
14748   SDLoc dl(SVN);
14749   bool IsLittleEndian = Subtarget.isLittleEndian();
14750 
14751   // On big endian targets this is only useful for subtargets with direct moves.
14752   // On little endian targets it would be useful for all subtargets with VSX.
14753   // However adding special handling for LE subtargets without direct moves
14754   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14755   // which includes direct moves.
14756   if (!Subtarget.hasDirectMove())
14757     return Res;
14758 
14759   // If this is not a shuffle of a shuffle and the first element comes from
14760   // the second vector, canonicalize to the commuted form. This will make it
14761   // more likely to match one of the single instruction patterns.
14762   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14763       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14764     std::swap(LHS, RHS);
14765     Res = DAG.getCommutedVectorShuffle(*SVN);
14766     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14767   }
14768 
14769   // Adjust the shuffle mask if either input vector comes from a
14770   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14771   // form (to prevent the need for a swap).
14772   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14773   SDValue SToVLHS = isScalarToVec(LHS);
14774   SDValue SToVRHS = isScalarToVec(RHS);
14775   if (SToVLHS || SToVRHS) {
14776     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14777                             : SToVRHS.getValueType().getVectorNumElements();
14778     int NumEltsOut = ShuffV.size();
14779     // The width of the "valid lane" (i.e. the lane that contains the value that
14780     // is vectorized) needs to be expressed in terms of the number of elements
14781     // of the shuffle. It is thereby the ratio of the values before and after
14782     // any bitcast.
14783     unsigned ValidLaneWidth =
14784         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
14785                       LHS.getValueType().getScalarSizeInBits()
14786                 : SToVRHS.getValueType().getScalarSizeInBits() /
14787                       RHS.getValueType().getScalarSizeInBits();
14788 
14789     // Initially assume that neither input is permuted. These will be adjusted
14790     // accordingly if either input is.
14791     int LHSMaxIdx = -1;
14792     int RHSMinIdx = -1;
14793     int RHSMaxIdx = -1;
14794     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14795 
14796     // Get the permuted scalar to vector nodes for the source(s) that come from
14797     // ISD::SCALAR_TO_VECTOR.
14798     // On big endian systems, this only makes sense for element sizes smaller
14799     // than 64 bits since for 64-bit elements, all instructions already put
14800     // the value into element zero. Since scalar size of LHS and RHS may differ
14801     // after isScalarToVec, this should be checked using their own sizes.
14802     if (SToVLHS) {
14803       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
14804         return Res;
14805       // Set up the values for the shuffle vector fixup.
14806       LHSMaxIdx = NumEltsOut / NumEltsIn;
14807       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14808       if (SToVLHS.getValueType() != LHS.getValueType())
14809         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14810       LHS = SToVLHS;
14811     }
14812     if (SToVRHS) {
14813       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
14814         return Res;
14815       RHSMinIdx = NumEltsOut;
14816       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14817       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14818       if (SToVRHS.getValueType() != RHS.getValueType())
14819         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14820       RHS = SToVRHS;
14821     }
14822 
14823     // Fix up the shuffle mask to reflect where the desired element actually is.
14824     // The minimum and maximum indices that correspond to element zero for both
14825     // the LHS and RHS are computed and will control which shuffle mask entries
14826     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14827     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14828     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14829                                     HalfVec, ValidLaneWidth, Subtarget);
14830     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14831 
14832     // We may have simplified away the shuffle. We won't be able to do anything
14833     // further with it here.
14834     if (!isa<ShuffleVectorSDNode>(Res))
14835       return Res;
14836     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14837   }
14838 
14839   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14840   // The common case after we commuted the shuffle is that the RHS is a splat
14841   // and we have elements coming in from the splat at indices that are not
14842   // conducive to using a merge.
14843   // Example:
14844   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14845   if (!isSplatBV(TheSplat))
14846     return Res;
14847 
14848   // We are looking for a mask such that all even elements are from
14849   // one vector and all odd elements from the other.
14850   if (!isAlternatingShuffMask(Mask, NumElts))
14851     return Res;
14852 
14853   // Adjust the mask so we are pulling in the same index from the splat
14854   // as the index from the interesting vector in consecutive elements.
14855   if (IsLittleEndian) {
14856     // Example (even elements from first vector):
14857     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14858     if (Mask[0] < NumElts)
14859       for (int i = 1, e = Mask.size(); i < e; i += 2)
14860         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14861     // Example (odd elements from first vector):
14862     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14863     else
14864       for (int i = 0, e = Mask.size(); i < e; i += 2)
14865         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14866   } else {
14867     // Example (even elements from first vector):
14868     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14869     if (Mask[0] < NumElts)
14870       for (int i = 0, e = Mask.size(); i < e; i += 2)
14871         ShuffV[i] = ShuffV[i + 1] - NumElts;
14872     // Example (odd elements from first vector):
14873     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14874     else
14875       for (int i = 1, e = Mask.size(); i < e; i += 2)
14876         ShuffV[i] = ShuffV[i - 1] - NumElts;
14877   }
14878 
14879   // If the RHS has undefs, we need to remove them since we may have created
14880   // a shuffle that adds those instead of the splat value.
14881   SDValue SplatVal =
14882       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14883   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
14884 
14885   if (IsLittleEndian)
14886     RHS = TheSplat;
14887   else
14888     LHS = TheSplat;
14889   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14890 }
14891 
14892 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14893                                                 LSBaseSDNode *LSBase,
14894                                                 DAGCombinerInfo &DCI) const {
14895   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14896         "Not a reverse memop pattern!");
14897 
14898   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14899     auto Mask = SVN->getMask();
14900     int i = 0;
14901     auto I = Mask.rbegin();
14902     auto E = Mask.rend();
14903 
14904     for (; I != E; ++I) {
14905       if (*I != i)
14906         return false;
14907       i++;
14908     }
14909     return true;
14910   };
14911 
14912   SelectionDAG &DAG = DCI.DAG;
14913   EVT VT = SVN->getValueType(0);
14914 
14915   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14916     return SDValue();
14917 
14918   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14919   // See comment in PPCVSXSwapRemoval.cpp.
14920   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14921   if (!Subtarget.hasP9Vector())
14922     return SDValue();
14923 
14924   if(!IsElementReverse(SVN))
14925     return SDValue();
14926 
14927   if (LSBase->getOpcode() == ISD::LOAD) {
14928     // If the load return value 0 has more than one user except the
14929     // shufflevector instruction, it is not profitable to replace the
14930     // shufflevector with a reverse load.
14931     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
14932          UI != UE; ++UI)
14933       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
14934         return SDValue();
14935 
14936     SDLoc dl(LSBase);
14937     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14938     return DAG.getMemIntrinsicNode(
14939         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14940         LSBase->getMemoryVT(), LSBase->getMemOperand());
14941   }
14942 
14943   if (LSBase->getOpcode() == ISD::STORE) {
14944     // If there are other uses of the shuffle, the swap cannot be avoided.
14945     // Forcing the use of an X-Form (since swapped stores only have
14946     // X-Forms) without removing the swap is unprofitable.
14947     if (!SVN->hasOneUse())
14948       return SDValue();
14949 
14950     SDLoc dl(LSBase);
14951     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14952                           LSBase->getBasePtr()};
14953     return DAG.getMemIntrinsicNode(
14954         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14955         LSBase->getMemoryVT(), LSBase->getMemOperand());
14956   }
14957 
14958   llvm_unreachable("Expected a load or store node here");
14959 }
14960 
14961 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14962                                              DAGCombinerInfo &DCI) const {
14963   SelectionDAG &DAG = DCI.DAG;
14964   SDLoc dl(N);
14965   switch (N->getOpcode()) {
14966   default: break;
14967   case ISD::ADD:
14968     return combineADD(N, DCI);
14969   case ISD::SHL:
14970     return combineSHL(N, DCI);
14971   case ISD::SRA:
14972     return combineSRA(N, DCI);
14973   case ISD::SRL:
14974     return combineSRL(N, DCI);
14975   case ISD::MUL:
14976     return combineMUL(N, DCI);
14977   case ISD::FMA:
14978   case PPCISD::FNMSUB:
14979     return combineFMALike(N, DCI);
14980   case PPCISD::SHL:
14981     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14982         return N->getOperand(0);
14983     break;
14984   case PPCISD::SRL:
14985     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14986         return N->getOperand(0);
14987     break;
14988   case PPCISD::SRA:
14989     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14990       if (C->isZero() ||  //  0 >>s V -> 0.
14991           C->isAllOnes()) // -1 >>s V -> -1.
14992         return N->getOperand(0);
14993     }
14994     break;
14995   case ISD::SIGN_EXTEND:
14996   case ISD::ZERO_EXTEND:
14997   case ISD::ANY_EXTEND:
14998     return DAGCombineExtBoolTrunc(N, DCI);
14999   case ISD::TRUNCATE:
15000     return combineTRUNCATE(N, DCI);
15001   case ISD::SETCC:
15002     if (SDValue CSCC = combineSetCC(N, DCI))
15003       return CSCC;
15004     LLVM_FALLTHROUGH;
15005   case ISD::SELECT_CC:
15006     return DAGCombineTruncBoolExt(N, DCI);
15007   case ISD::SINT_TO_FP:
15008   case ISD::UINT_TO_FP:
15009     return combineFPToIntToFP(N, DCI);
15010   case ISD::VECTOR_SHUFFLE:
15011     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15012       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15013       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15014     }
15015     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15016   case ISD::STORE: {
15017 
15018     EVT Op1VT = N->getOperand(1).getValueType();
15019     unsigned Opcode = N->getOperand(1).getOpcode();
15020 
15021     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
15022       SDValue Val= combineStoreFPToInt(N, DCI);
15023       if (Val)
15024         return Val;
15025     }
15026 
15027     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15028       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15029       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15030       if (Val)
15031         return Val;
15032     }
15033 
15034     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15035     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15036         N->getOperand(1).getNode()->hasOneUse() &&
15037         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15038          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15039 
15040       // STBRX can only handle simple types and it makes no sense to store less
15041       // two bytes in byte-reversed order.
15042       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15043       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15044         break;
15045 
15046       SDValue BSwapOp = N->getOperand(1).getOperand(0);
15047       // Do an any-extend to 32-bits if this is a half-word input.
15048       if (BSwapOp.getValueType() == MVT::i16)
15049         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15050 
15051       // If the type of BSWAP operand is wider than stored memory width
15052       // it need to be shifted to the right side before STBRX.
15053       if (Op1VT.bitsGT(mVT)) {
15054         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15055         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15056                               DAG.getConstant(Shift, dl, MVT::i32));
15057         // Need to truncate if this is a bswap of i64 stored as i32/i16.
15058         if (Op1VT == MVT::i64)
15059           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15060       }
15061 
15062       SDValue Ops[] = {
15063         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15064       };
15065       return
15066         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15067                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15068                                 cast<StoreSDNode>(N)->getMemOperand());
15069     }
15070 
15071     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15072     // So it can increase the chance of CSE constant construction.
15073     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15074         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15075       // Need to sign-extended to 64-bits to handle negative values.
15076       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15077       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15078                                     MemVT.getSizeInBits());
15079       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15080 
15081       // DAG.getTruncStore() can't be used here because it doesn't accept
15082       // the general (base + offset) addressing mode.
15083       // So we use UpdateNodeOperands and setTruncatingStore instead.
15084       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15085                              N->getOperand(3));
15086       cast<StoreSDNode>(N)->setTruncatingStore(true);
15087       return SDValue(N, 0);
15088     }
15089 
15090     // For little endian, VSX stores require generating xxswapd/lxvd2x.
15091     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15092     if (Op1VT.isSimple()) {
15093       MVT StoreVT = Op1VT.getSimpleVT();
15094       if (Subtarget.needsSwapsForVSXMemOps() &&
15095           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15096            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15097         return expandVSXStoreForLE(N, DCI);
15098     }
15099     break;
15100   }
15101   case ISD::LOAD: {
15102     LoadSDNode *LD = cast<LoadSDNode>(N);
15103     EVT VT = LD->getValueType(0);
15104 
15105     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15106     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15107     if (VT.isSimple()) {
15108       MVT LoadVT = VT.getSimpleVT();
15109       if (Subtarget.needsSwapsForVSXMemOps() &&
15110           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15111            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15112         return expandVSXLoadForLE(N, DCI);
15113     }
15114 
15115     // We sometimes end up with a 64-bit integer load, from which we extract
15116     // two single-precision floating-point numbers. This happens with
15117     // std::complex<float>, and other similar structures, because of the way we
15118     // canonicalize structure copies. However, if we lack direct moves,
15119     // then the final bitcasts from the extracted integer values to the
15120     // floating-point numbers turn into store/load pairs. Even with direct moves,
15121     // just loading the two floating-point numbers is likely better.
15122     auto ReplaceTwoFloatLoad = [&]() {
15123       if (VT != MVT::i64)
15124         return false;
15125 
15126       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15127           LD->isVolatile())
15128         return false;
15129 
15130       //  We're looking for a sequence like this:
15131       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15132       //      t16: i64 = srl t13, Constant:i32<32>
15133       //    t17: i32 = truncate t16
15134       //  t18: f32 = bitcast t17
15135       //    t19: i32 = truncate t13
15136       //  t20: f32 = bitcast t19
15137 
15138       if (!LD->hasNUsesOfValue(2, 0))
15139         return false;
15140 
15141       auto UI = LD->use_begin();
15142       while (UI.getUse().getResNo() != 0) ++UI;
15143       SDNode *Trunc = *UI++;
15144       while (UI.getUse().getResNo() != 0) ++UI;
15145       SDNode *RightShift = *UI;
15146       if (Trunc->getOpcode() != ISD::TRUNCATE)
15147         std::swap(Trunc, RightShift);
15148 
15149       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15150           Trunc->getValueType(0) != MVT::i32 ||
15151           !Trunc->hasOneUse())
15152         return false;
15153       if (RightShift->getOpcode() != ISD::SRL ||
15154           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15155           RightShift->getConstantOperandVal(1) != 32 ||
15156           !RightShift->hasOneUse())
15157         return false;
15158 
15159       SDNode *Trunc2 = *RightShift->use_begin();
15160       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15161           Trunc2->getValueType(0) != MVT::i32 ||
15162           !Trunc2->hasOneUse())
15163         return false;
15164 
15165       SDNode *Bitcast = *Trunc->use_begin();
15166       SDNode *Bitcast2 = *Trunc2->use_begin();
15167 
15168       if (Bitcast->getOpcode() != ISD::BITCAST ||
15169           Bitcast->getValueType(0) != MVT::f32)
15170         return false;
15171       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15172           Bitcast2->getValueType(0) != MVT::f32)
15173         return false;
15174 
15175       if (Subtarget.isLittleEndian())
15176         std::swap(Bitcast, Bitcast2);
15177 
15178       // Bitcast has the second float (in memory-layout order) and Bitcast2
15179       // has the first one.
15180 
15181       SDValue BasePtr = LD->getBasePtr();
15182       if (LD->isIndexed()) {
15183         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15184                "Non-pre-inc AM on PPC?");
15185         BasePtr =
15186           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15187                       LD->getOffset());
15188       }
15189 
15190       auto MMOFlags =
15191           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15192       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15193                                       LD->getPointerInfo(), LD->getAlignment(),
15194                                       MMOFlags, LD->getAAInfo());
15195       SDValue AddPtr =
15196         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15197                     BasePtr, DAG.getIntPtrConstant(4, dl));
15198       SDValue FloatLoad2 = DAG.getLoad(
15199           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15200           LD->getPointerInfo().getWithOffset(4),
15201           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
15202 
15203       if (LD->isIndexed()) {
15204         // Note that DAGCombine should re-form any pre-increment load(s) from
15205         // what is produced here if that makes sense.
15206         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15207       }
15208 
15209       DCI.CombineTo(Bitcast2, FloatLoad);
15210       DCI.CombineTo(Bitcast, FloatLoad2);
15211 
15212       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15213                                     SDValue(FloatLoad2.getNode(), 1));
15214       return true;
15215     };
15216 
15217     if (ReplaceTwoFloatLoad())
15218       return SDValue(N, 0);
15219 
15220     EVT MemVT = LD->getMemoryVT();
15221     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15222     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15223     if (LD->isUnindexed() && VT.isVector() &&
15224         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15225           // P8 and later hardware should just use LOAD.
15226           !Subtarget.hasP8Vector() &&
15227           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15228            VT == MVT::v4f32))) &&
15229         LD->getAlign() < ABIAlignment) {
15230       // This is a type-legal unaligned Altivec load.
15231       SDValue Chain = LD->getChain();
15232       SDValue Ptr = LD->getBasePtr();
15233       bool isLittleEndian = Subtarget.isLittleEndian();
15234 
15235       // This implements the loading of unaligned vectors as described in
15236       // the venerable Apple Velocity Engine overview. Specifically:
15237       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15238       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15239       //
15240       // The general idea is to expand a sequence of one or more unaligned
15241       // loads into an alignment-based permutation-control instruction (lvsl
15242       // or lvsr), a series of regular vector loads (which always truncate
15243       // their input address to an aligned address), and a series of
15244       // permutations.  The results of these permutations are the requested
15245       // loaded values.  The trick is that the last "extra" load is not taken
15246       // from the address you might suspect (sizeof(vector) bytes after the
15247       // last requested load), but rather sizeof(vector) - 1 bytes after the
15248       // last requested vector. The point of this is to avoid a page fault if
15249       // the base address happened to be aligned. This works because if the
15250       // base address is aligned, then adding less than a full vector length
15251       // will cause the last vector in the sequence to be (re)loaded.
15252       // Otherwise, the next vector will be fetched as you might suspect was
15253       // necessary.
15254 
15255       // We might be able to reuse the permutation generation from
15256       // a different base address offset from this one by an aligned amount.
15257       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15258       // optimization later.
15259       Intrinsic::ID Intr, IntrLD, IntrPerm;
15260       MVT PermCntlTy, PermTy, LDTy;
15261       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15262                             : Intrinsic::ppc_altivec_lvsl;
15263       IntrLD = Intrinsic::ppc_altivec_lvx;
15264       IntrPerm = Intrinsic::ppc_altivec_vperm;
15265       PermCntlTy = MVT::v16i8;
15266       PermTy = MVT::v4i32;
15267       LDTy = MVT::v4i32;
15268 
15269       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15270 
15271       // Create the new MMO for the new base load. It is like the original MMO,
15272       // but represents an area in memory almost twice the vector size centered
15273       // on the original address. If the address is unaligned, we might start
15274       // reading up to (sizeof(vector)-1) bytes below the address of the
15275       // original unaligned load.
15276       MachineFunction &MF = DAG.getMachineFunction();
15277       MachineMemOperand *BaseMMO =
15278         MF.getMachineMemOperand(LD->getMemOperand(),
15279                                 -(long)MemVT.getStoreSize()+1,
15280                                 2*MemVT.getStoreSize()-1);
15281 
15282       // Create the new base load.
15283       SDValue LDXIntID =
15284           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15285       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15286       SDValue BaseLoad =
15287         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15288                                 DAG.getVTList(PermTy, MVT::Other),
15289                                 BaseLoadOps, LDTy, BaseMMO);
15290 
15291       // Note that the value of IncOffset (which is provided to the next
15292       // load's pointer info offset value, and thus used to calculate the
15293       // alignment), and the value of IncValue (which is actually used to
15294       // increment the pointer value) are different! This is because we
15295       // require the next load to appear to be aligned, even though it
15296       // is actually offset from the base pointer by a lesser amount.
15297       int IncOffset = VT.getSizeInBits() / 8;
15298       int IncValue = IncOffset;
15299 
15300       // Walk (both up and down) the chain looking for another load at the real
15301       // (aligned) offset (the alignment of the other load does not matter in
15302       // this case). If found, then do not use the offset reduction trick, as
15303       // that will prevent the loads from being later combined (as they would
15304       // otherwise be duplicates).
15305       if (!findConsecutiveLoad(LD, DAG))
15306         --IncValue;
15307 
15308       SDValue Increment =
15309           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15310       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15311 
15312       MachineMemOperand *ExtraMMO =
15313         MF.getMachineMemOperand(LD->getMemOperand(),
15314                                 1, 2*MemVT.getStoreSize()-1);
15315       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15316       SDValue ExtraLoad =
15317         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15318                                 DAG.getVTList(PermTy, MVT::Other),
15319                                 ExtraLoadOps, LDTy, ExtraMMO);
15320 
15321       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15322         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15323 
15324       // Because vperm has a big-endian bias, we must reverse the order
15325       // of the input vectors and complement the permute control vector
15326       // when generating little endian code.  We have already handled the
15327       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15328       // and ExtraLoad here.
15329       SDValue Perm;
15330       if (isLittleEndian)
15331         Perm = BuildIntrinsicOp(IntrPerm,
15332                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15333       else
15334         Perm = BuildIntrinsicOp(IntrPerm,
15335                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15336 
15337       if (VT != PermTy)
15338         Perm = Subtarget.hasAltivec()
15339                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15340                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15341                                  DAG.getTargetConstant(1, dl, MVT::i64));
15342                                // second argument is 1 because this rounding
15343                                // is always exact.
15344 
15345       // The output of the permutation is our loaded result, the TokenFactor is
15346       // our new chain.
15347       DCI.CombineTo(N, Perm, TF);
15348       return SDValue(N, 0);
15349     }
15350     }
15351     break;
15352     case ISD::INTRINSIC_WO_CHAIN: {
15353       bool isLittleEndian = Subtarget.isLittleEndian();
15354       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15355       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15356                                            : Intrinsic::ppc_altivec_lvsl);
15357       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15358         SDValue Add = N->getOperand(1);
15359 
15360         int Bits = 4 /* 16 byte alignment */;
15361 
15362         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15363                                   APInt::getAllOnes(Bits /* alignment */)
15364                                       .zext(Add.getScalarValueSizeInBits()))) {
15365           SDNode *BasePtr = Add->getOperand(0).getNode();
15366           for (SDNode *U : BasePtr->uses()) {
15367             if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15368                 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) {
15369               // We've found another LVSL/LVSR, and this address is an aligned
15370               // multiple of that one. The results will be the same, so use the
15371               // one we've just found instead.
15372 
15373               return SDValue(U, 0);
15374             }
15375           }
15376         }
15377 
15378         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15379           SDNode *BasePtr = Add->getOperand(0).getNode();
15380           for (SDNode *U : BasePtr->uses()) {
15381             if (U->getOpcode() == ISD::ADD &&
15382                 isa<ConstantSDNode>(U->getOperand(1)) &&
15383                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15384                  cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) %
15385                         (1ULL << Bits) ==
15386                     0) {
15387               SDNode *OtherAdd = U;
15388               for (SDNode *V : OtherAdd->uses()) {
15389                 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15390                     cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() ==
15391                         IID) {
15392                   return SDValue(V, 0);
15393                 }
15394               }
15395             }
15396           }
15397         }
15398       }
15399 
15400       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15401       // Expose the vabsduw/h/b opportunity for down stream
15402       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15403           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15404            IID == Intrinsic::ppc_altivec_vmaxsh ||
15405            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15406         SDValue V1 = N->getOperand(1);
15407         SDValue V2 = N->getOperand(2);
15408         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15409              V1.getSimpleValueType() == MVT::v8i16 ||
15410              V1.getSimpleValueType() == MVT::v16i8) &&
15411             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15412           // (0-a, a)
15413           if (V1.getOpcode() == ISD::SUB &&
15414               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15415               V1.getOperand(1) == V2) {
15416             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15417           }
15418           // (a, 0-a)
15419           if (V2.getOpcode() == ISD::SUB &&
15420               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15421               V2.getOperand(1) == V1) {
15422             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15423           }
15424           // (x-y, y-x)
15425           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15426               V1.getOperand(0) == V2.getOperand(1) &&
15427               V1.getOperand(1) == V2.getOperand(0)) {
15428             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15429           }
15430         }
15431       }
15432     }
15433 
15434     break;
15435   case ISD::INTRINSIC_W_CHAIN:
15436     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15437     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15438     if (Subtarget.needsSwapsForVSXMemOps()) {
15439       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15440       default:
15441         break;
15442       case Intrinsic::ppc_vsx_lxvw4x:
15443       case Intrinsic::ppc_vsx_lxvd2x:
15444         return expandVSXLoadForLE(N, DCI);
15445       }
15446     }
15447     break;
15448   case ISD::INTRINSIC_VOID:
15449     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15450     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15451     if (Subtarget.needsSwapsForVSXMemOps()) {
15452       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15453       default:
15454         break;
15455       case Intrinsic::ppc_vsx_stxvw4x:
15456       case Intrinsic::ppc_vsx_stxvd2x:
15457         return expandVSXStoreForLE(N, DCI);
15458       }
15459     }
15460     break;
15461   case ISD::BSWAP: {
15462     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15463     // For subtargets without LDBRX, we can still do better than the default
15464     // expansion even for 64-bit BSWAP (LOAD).
15465     bool Is64BitBswapOn64BitTgt =
15466         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15467     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15468                                N->getOperand(0).hasOneUse();
15469     if (IsSingleUseNormalLd &&
15470         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15471          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15472       SDValue Load = N->getOperand(0);
15473       LoadSDNode *LD = cast<LoadSDNode>(Load);
15474       // Create the byte-swapping load.
15475       SDValue Ops[] = {
15476         LD->getChain(),    // Chain
15477         LD->getBasePtr(),  // Ptr
15478         DAG.getValueType(N->getValueType(0)) // VT
15479       };
15480       SDValue BSLoad =
15481         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15482                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15483                                               MVT::i64 : MVT::i32, MVT::Other),
15484                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15485 
15486       // If this is an i16 load, insert the truncate.
15487       SDValue ResVal = BSLoad;
15488       if (N->getValueType(0) == MVT::i16)
15489         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15490 
15491       // First, combine the bswap away.  This makes the value produced by the
15492       // load dead.
15493       DCI.CombineTo(N, ResVal);
15494 
15495       // Next, combine the load away, we give it a bogus result value but a real
15496       // chain result.  The result value is dead because the bswap is dead.
15497       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15498 
15499       // Return N so it doesn't get rechecked!
15500       return SDValue(N, 0);
15501     }
15502     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15503     // before legalization so that the BUILD_PAIR is handled correctly.
15504     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15505         !IsSingleUseNormalLd)
15506       return SDValue();
15507     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15508 
15509     // Can't split volatile or atomic loads.
15510     if (!LD->isSimple())
15511       return SDValue();
15512     SDValue BasePtr = LD->getBasePtr();
15513     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15514                              LD->getPointerInfo(), LD->getAlignment());
15515     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15516     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15517                           DAG.getIntPtrConstant(4, dl));
15518     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15519         LD->getMemOperand(), 4, 4);
15520     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15521     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15522     SDValue Res;
15523     if (Subtarget.isLittleEndian())
15524       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15525     else
15526       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15527     SDValue TF =
15528         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15529                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15530     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15531     return Res;
15532   }
15533   case PPCISD::VCMP:
15534     // If a VCMP_rec node already exists with exactly the same operands as this
15535     // node, use its result instead of this node (VCMP_rec computes both a CR6
15536     // and a normal output).
15537     //
15538     if (!N->getOperand(0).hasOneUse() &&
15539         !N->getOperand(1).hasOneUse() &&
15540         !N->getOperand(2).hasOneUse()) {
15541 
15542       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15543       SDNode *VCMPrecNode = nullptr;
15544 
15545       SDNode *LHSN = N->getOperand(0).getNode();
15546       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15547            UI != E; ++UI)
15548         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15549             UI->getOperand(1) == N->getOperand(1) &&
15550             UI->getOperand(2) == N->getOperand(2) &&
15551             UI->getOperand(0) == N->getOperand(0)) {
15552           VCMPrecNode = *UI;
15553           break;
15554         }
15555 
15556       // If there is no VCMP_rec node, or if the flag value has a single use,
15557       // don't transform this.
15558       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15559         break;
15560 
15561       // Look at the (necessarily single) use of the flag value.  If it has a
15562       // chain, this transformation is more complex.  Note that multiple things
15563       // could use the value result, which we should ignore.
15564       SDNode *FlagUser = nullptr;
15565       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15566            FlagUser == nullptr; ++UI) {
15567         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15568         SDNode *User = *UI;
15569         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15570           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15571             FlagUser = User;
15572             break;
15573           }
15574         }
15575       }
15576 
15577       // If the user is a MFOCRF instruction, we know this is safe.
15578       // Otherwise we give up for right now.
15579       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15580         return SDValue(VCMPrecNode, 0);
15581     }
15582     break;
15583   case ISD::BRCOND: {
15584     SDValue Cond = N->getOperand(1);
15585     SDValue Target = N->getOperand(2);
15586 
15587     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15588         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15589           Intrinsic::loop_decrement) {
15590 
15591       // We now need to make the intrinsic dead (it cannot be instruction
15592       // selected).
15593       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15594       assert(Cond.getNode()->hasOneUse() &&
15595              "Counter decrement has more than one use");
15596 
15597       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15598                          N->getOperand(0), Target);
15599     }
15600   }
15601   break;
15602   case ISD::BR_CC: {
15603     // If this is a branch on an altivec predicate comparison, lower this so
15604     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15605     // lowering is done pre-legalize, because the legalizer lowers the predicate
15606     // compare down to code that is difficult to reassemble.
15607     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15608     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15609 
15610     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15611     // value. If so, pass-through the AND to get to the intrinsic.
15612     if (LHS.getOpcode() == ISD::AND &&
15613         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15614         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15615           Intrinsic::loop_decrement &&
15616         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15617         !isNullConstant(LHS.getOperand(1)))
15618       LHS = LHS.getOperand(0);
15619 
15620     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15621         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15622           Intrinsic::loop_decrement &&
15623         isa<ConstantSDNode>(RHS)) {
15624       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15625              "Counter decrement comparison is not EQ or NE");
15626 
15627       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15628       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15629                     (CC == ISD::SETNE && !Val);
15630 
15631       // We now need to make the intrinsic dead (it cannot be instruction
15632       // selected).
15633       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15634       assert(LHS.getNode()->hasOneUse() &&
15635              "Counter decrement has more than one use");
15636 
15637       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15638                          N->getOperand(0), N->getOperand(4));
15639     }
15640 
15641     int CompareOpc;
15642     bool isDot;
15643 
15644     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15645         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15646         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15647       assert(isDot && "Can't compare against a vector result!");
15648 
15649       // If this is a comparison against something other than 0/1, then we know
15650       // that the condition is never/always true.
15651       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15652       if (Val != 0 && Val != 1) {
15653         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15654           return N->getOperand(0);
15655         // Always !=, turn it into an unconditional branch.
15656         return DAG.getNode(ISD::BR, dl, MVT::Other,
15657                            N->getOperand(0), N->getOperand(4));
15658       }
15659 
15660       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15661 
15662       // Create the PPCISD altivec 'dot' comparison node.
15663       SDValue Ops[] = {
15664         LHS.getOperand(2),  // LHS of compare
15665         LHS.getOperand(3),  // RHS of compare
15666         DAG.getConstant(CompareOpc, dl, MVT::i32)
15667       };
15668       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15669       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15670 
15671       // Unpack the result based on how the target uses it.
15672       PPC::Predicate CompOpc;
15673       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15674       default:  // Can't happen, don't crash on invalid number though.
15675       case 0:   // Branch on the value of the EQ bit of CR6.
15676         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15677         break;
15678       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15679         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15680         break;
15681       case 2:   // Branch on the value of the LT bit of CR6.
15682         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15683         break;
15684       case 3:   // Branch on the inverted value of the LT bit of CR6.
15685         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15686         break;
15687       }
15688 
15689       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15690                          DAG.getConstant(CompOpc, dl, MVT::i32),
15691                          DAG.getRegister(PPC::CR6, MVT::i32),
15692                          N->getOperand(4), CompNode.getValue(1));
15693     }
15694     break;
15695   }
15696   case ISD::BUILD_VECTOR:
15697     return DAGCombineBuildVector(N, DCI);
15698   case ISD::ABS:
15699     return combineABS(N, DCI);
15700   case ISD::VSELECT:
15701     return combineVSelect(N, DCI);
15702   }
15703 
15704   return SDValue();
15705 }
15706 
15707 SDValue
15708 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15709                                  SelectionDAG &DAG,
15710                                  SmallVectorImpl<SDNode *> &Created) const {
15711   // fold (sdiv X, pow2)
15712   EVT VT = N->getValueType(0);
15713   if (VT == MVT::i64 && !Subtarget.isPPC64())
15714     return SDValue();
15715   if ((VT != MVT::i32 && VT != MVT::i64) ||
15716       !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
15717     return SDValue();
15718 
15719   SDLoc DL(N);
15720   SDValue N0 = N->getOperand(0);
15721 
15722   bool IsNegPow2 = Divisor.isNegatedPowerOf2();
15723   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15724   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15725 
15726   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15727   Created.push_back(Op.getNode());
15728 
15729   if (IsNegPow2) {
15730     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15731     Created.push_back(Op.getNode());
15732   }
15733 
15734   return Op;
15735 }
15736 
15737 //===----------------------------------------------------------------------===//
15738 // Inline Assembly Support
15739 //===----------------------------------------------------------------------===//
15740 
15741 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15742                                                       KnownBits &Known,
15743                                                       const APInt &DemandedElts,
15744                                                       const SelectionDAG &DAG,
15745                                                       unsigned Depth) const {
15746   Known.resetAll();
15747   switch (Op.getOpcode()) {
15748   default: break;
15749   case PPCISD::LBRX: {
15750     // lhbrx is known to have the top bits cleared out.
15751     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15752       Known.Zero = 0xFFFF0000;
15753     break;
15754   }
15755   case ISD::INTRINSIC_WO_CHAIN: {
15756     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15757     default: break;
15758     case Intrinsic::ppc_altivec_vcmpbfp_p:
15759     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15760     case Intrinsic::ppc_altivec_vcmpequb_p:
15761     case Intrinsic::ppc_altivec_vcmpequh_p:
15762     case Intrinsic::ppc_altivec_vcmpequw_p:
15763     case Intrinsic::ppc_altivec_vcmpequd_p:
15764     case Intrinsic::ppc_altivec_vcmpequq_p:
15765     case Intrinsic::ppc_altivec_vcmpgefp_p:
15766     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15767     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15768     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15769     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15770     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15771     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15772     case Intrinsic::ppc_altivec_vcmpgtub_p:
15773     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15774     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15775     case Intrinsic::ppc_altivec_vcmpgtud_p:
15776     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15777       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15778       break;
15779     }
15780     break;
15781   }
15782   case ISD::INTRINSIC_W_CHAIN: {
15783     switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
15784     default:
15785       break;
15786     case Intrinsic::ppc_load2r:
15787       // Top bits are cleared for load2r (which is the same as lhbrx).
15788       Known.Zero = 0xFFFF0000;
15789       break;
15790     }
15791     break;
15792   }
15793   }
15794 }
15795 
15796 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15797   switch (Subtarget.getCPUDirective()) {
15798   default: break;
15799   case PPC::DIR_970:
15800   case PPC::DIR_PWR4:
15801   case PPC::DIR_PWR5:
15802   case PPC::DIR_PWR5X:
15803   case PPC::DIR_PWR6:
15804   case PPC::DIR_PWR6X:
15805   case PPC::DIR_PWR7:
15806   case PPC::DIR_PWR8:
15807   case PPC::DIR_PWR9:
15808   case PPC::DIR_PWR10:
15809   case PPC::DIR_PWR_FUTURE: {
15810     if (!ML)
15811       break;
15812 
15813     if (!DisableInnermostLoopAlign32) {
15814       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15815       // so that we can decrease cache misses and branch-prediction misses.
15816       // Actual alignment of the loop will depend on the hotness check and other
15817       // logic in alignBlocks.
15818       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15819         return Align(32);
15820     }
15821 
15822     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15823 
15824     // For small loops (between 5 and 8 instructions), align to a 32-byte
15825     // boundary so that the entire loop fits in one instruction-cache line.
15826     uint64_t LoopSize = 0;
15827     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15828       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15829         LoopSize += TII->getInstSizeInBytes(*J);
15830         if (LoopSize > 32)
15831           break;
15832       }
15833 
15834     if (LoopSize > 16 && LoopSize <= 32)
15835       return Align(32);
15836 
15837     break;
15838   }
15839   }
15840 
15841   return TargetLowering::getPrefLoopAlignment(ML);
15842 }
15843 
15844 /// getConstraintType - Given a constraint, return the type of
15845 /// constraint it is for this target.
15846 PPCTargetLowering::ConstraintType
15847 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15848   if (Constraint.size() == 1) {
15849     switch (Constraint[0]) {
15850     default: break;
15851     case 'b':
15852     case 'r':
15853     case 'f':
15854     case 'd':
15855     case 'v':
15856     case 'y':
15857       return C_RegisterClass;
15858     case 'Z':
15859       // FIXME: While Z does indicate a memory constraint, it specifically
15860       // indicates an r+r address (used in conjunction with the 'y' modifier
15861       // in the replacement string). Currently, we're forcing the base
15862       // register to be r0 in the asm printer (which is interpreted as zero)
15863       // and forming the complete address in the second register. This is
15864       // suboptimal.
15865       return C_Memory;
15866     }
15867   } else if (Constraint == "wc") { // individual CR bits.
15868     return C_RegisterClass;
15869   } else if (Constraint == "wa" || Constraint == "wd" ||
15870              Constraint == "wf" || Constraint == "ws" ||
15871              Constraint == "wi" || Constraint == "ww") {
15872     return C_RegisterClass; // VSX registers.
15873   }
15874   return TargetLowering::getConstraintType(Constraint);
15875 }
15876 
15877 /// Examine constraint type and operand type and determine a weight value.
15878 /// This object must already have been set up with the operand type
15879 /// and the current alternative constraint selected.
15880 TargetLowering::ConstraintWeight
15881 PPCTargetLowering::getSingleConstraintMatchWeight(
15882     AsmOperandInfo &info, const char *constraint) const {
15883   ConstraintWeight weight = CW_Invalid;
15884   Value *CallOperandVal = info.CallOperandVal;
15885     // If we don't have a value, we can't do a match,
15886     // but allow it at the lowest weight.
15887   if (!CallOperandVal)
15888     return CW_Default;
15889   Type *type = CallOperandVal->getType();
15890 
15891   // Look at the constraint type.
15892   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15893     return CW_Register; // an individual CR bit.
15894   else if ((StringRef(constraint) == "wa" ||
15895             StringRef(constraint) == "wd" ||
15896             StringRef(constraint) == "wf") &&
15897            type->isVectorTy())
15898     return CW_Register;
15899   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15900     return CW_Register; // just hold 64-bit integers data.
15901   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15902     return CW_Register;
15903   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15904     return CW_Register;
15905 
15906   switch (*constraint) {
15907   default:
15908     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15909     break;
15910   case 'b':
15911     if (type->isIntegerTy())
15912       weight = CW_Register;
15913     break;
15914   case 'f':
15915     if (type->isFloatTy())
15916       weight = CW_Register;
15917     break;
15918   case 'd':
15919     if (type->isDoubleTy())
15920       weight = CW_Register;
15921     break;
15922   case 'v':
15923     if (type->isVectorTy())
15924       weight = CW_Register;
15925     break;
15926   case 'y':
15927     weight = CW_Register;
15928     break;
15929   case 'Z':
15930     weight = CW_Memory;
15931     break;
15932   }
15933   return weight;
15934 }
15935 
15936 std::pair<unsigned, const TargetRegisterClass *>
15937 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15938                                                 StringRef Constraint,
15939                                                 MVT VT) const {
15940   if (Constraint.size() == 1) {
15941     // GCC RS6000 Constraint Letters
15942     switch (Constraint[0]) {
15943     case 'b':   // R1-R31
15944       if (VT == MVT::i64 && Subtarget.isPPC64())
15945         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15946       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15947     case 'r':   // R0-R31
15948       if (VT == MVT::i64 && Subtarget.isPPC64())
15949         return std::make_pair(0U, &PPC::G8RCRegClass);
15950       return std::make_pair(0U, &PPC::GPRCRegClass);
15951     // 'd' and 'f' constraints are both defined to be "the floating point
15952     // registers", where one is for 32-bit and the other for 64-bit. We don't
15953     // really care overly much here so just give them all the same reg classes.
15954     case 'd':
15955     case 'f':
15956       if (Subtarget.hasSPE()) {
15957         if (VT == MVT::f32 || VT == MVT::i32)
15958           return std::make_pair(0U, &PPC::GPRCRegClass);
15959         if (VT == MVT::f64 || VT == MVT::i64)
15960           return std::make_pair(0U, &PPC::SPERCRegClass);
15961       } else {
15962         if (VT == MVT::f32 || VT == MVT::i32)
15963           return std::make_pair(0U, &PPC::F4RCRegClass);
15964         if (VT == MVT::f64 || VT == MVT::i64)
15965           return std::make_pair(0U, &PPC::F8RCRegClass);
15966       }
15967       break;
15968     case 'v':
15969       if (Subtarget.hasAltivec() && VT.isVector())
15970         return std::make_pair(0U, &PPC::VRRCRegClass);
15971       else if (Subtarget.hasVSX())
15972         // Scalars in Altivec registers only make sense with VSX.
15973         return std::make_pair(0U, &PPC::VFRCRegClass);
15974       break;
15975     case 'y':   // crrc
15976       return std::make_pair(0U, &PPC::CRRCRegClass);
15977     }
15978   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15979     // An individual CR bit.
15980     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15981   } else if ((Constraint == "wa" || Constraint == "wd" ||
15982              Constraint == "wf" || Constraint == "wi") &&
15983              Subtarget.hasVSX()) {
15984     // A VSX register for either a scalar (FP) or vector. There is no
15985     // support for single precision scalars on subtargets prior to Power8.
15986     if (VT.isVector())
15987       return std::make_pair(0U, &PPC::VSRCRegClass);
15988     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15989       return std::make_pair(0U, &PPC::VSSRCRegClass);
15990     return std::make_pair(0U, &PPC::VSFRCRegClass);
15991   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15992     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15993       return std::make_pair(0U, &PPC::VSSRCRegClass);
15994     else
15995       return std::make_pair(0U, &PPC::VSFRCRegClass);
15996   } else if (Constraint == "lr") {
15997     if (VT == MVT::i64)
15998       return std::make_pair(0U, &PPC::LR8RCRegClass);
15999     else
16000       return std::make_pair(0U, &PPC::LRRCRegClass);
16001   }
16002 
16003   // Handle special cases of physical registers that are not properly handled
16004   // by the base class.
16005   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16006     // If we name a VSX register, we can't defer to the base class because it
16007     // will not recognize the correct register (their names will be VSL{0-31}
16008     // and V{0-31} so they won't match). So we match them here.
16009     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16010       int VSNum = atoi(Constraint.data() + 3);
16011       assert(VSNum >= 0 && VSNum <= 63 &&
16012              "Attempted to access a vsr out of range");
16013       if (VSNum < 32)
16014         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16015       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16016     }
16017 
16018     // For float registers, we can't defer to the base class as it will match
16019     // the SPILLTOVSRRC class.
16020     if (Constraint.size() > 3 && Constraint[1] == 'f') {
16021       int RegNum = atoi(Constraint.data() + 2);
16022       if (RegNum > 31 || RegNum < 0)
16023         report_fatal_error("Invalid floating point register number");
16024       if (VT == MVT::f32 || VT == MVT::i32)
16025         return Subtarget.hasSPE()
16026                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16027                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16028       if (VT == MVT::f64 || VT == MVT::i64)
16029         return Subtarget.hasSPE()
16030                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16031                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16032     }
16033   }
16034 
16035   std::pair<unsigned, const TargetRegisterClass *> R =
16036       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16037 
16038   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16039   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16040   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16041   // register.
16042   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16043   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16044   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16045       PPC::GPRCRegClass.contains(R.first))
16046     return std::make_pair(TRI->getMatchingSuperReg(R.first,
16047                             PPC::sub_32, &PPC::G8RCRegClass),
16048                           &PPC::G8RCRegClass);
16049 
16050   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16051   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16052     R.first = PPC::CR0;
16053     R.second = &PPC::CRRCRegClass;
16054   }
16055   // FIXME: This warning should ideally be emitted in the front end.
16056   const auto &TM = getTargetMachine();
16057   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16058     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16059          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16060         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16061       errs() << "warning: vector registers 20 to 32 are reserved in the "
16062                 "default AIX AltiVec ABI and cannot be used\n";
16063   }
16064 
16065   return R;
16066 }
16067 
16068 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16069 /// vector.  If it is invalid, don't add anything to Ops.
16070 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16071                                                      std::string &Constraint,
16072                                                      std::vector<SDValue>&Ops,
16073                                                      SelectionDAG &DAG) const {
16074   SDValue Result;
16075 
16076   // Only support length 1 constraints.
16077   if (Constraint.length() > 1) return;
16078 
16079   char Letter = Constraint[0];
16080   switch (Letter) {
16081   default: break;
16082   case 'I':
16083   case 'J':
16084   case 'K':
16085   case 'L':
16086   case 'M':
16087   case 'N':
16088   case 'O':
16089   case 'P': {
16090     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16091     if (!CST) return; // Must be an immediate to match.
16092     SDLoc dl(Op);
16093     int64_t Value = CST->getSExtValue();
16094     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16095                          // numbers are printed as such.
16096     switch (Letter) {
16097     default: llvm_unreachable("Unknown constraint letter!");
16098     case 'I':  // "I" is a signed 16-bit constant.
16099       if (isInt<16>(Value))
16100         Result = DAG.getTargetConstant(Value, dl, TCVT);
16101       break;
16102     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16103       if (isShiftedUInt<16, 16>(Value))
16104         Result = DAG.getTargetConstant(Value, dl, TCVT);
16105       break;
16106     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16107       if (isShiftedInt<16, 16>(Value))
16108         Result = DAG.getTargetConstant(Value, dl, TCVT);
16109       break;
16110     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16111       if (isUInt<16>(Value))
16112         Result = DAG.getTargetConstant(Value, dl, TCVT);
16113       break;
16114     case 'M':  // "M" is a constant that is greater than 31.
16115       if (Value > 31)
16116         Result = DAG.getTargetConstant(Value, dl, TCVT);
16117       break;
16118     case 'N':  // "N" is a positive constant that is an exact power of two.
16119       if (Value > 0 && isPowerOf2_64(Value))
16120         Result = DAG.getTargetConstant(Value, dl, TCVT);
16121       break;
16122     case 'O':  // "O" is the constant zero.
16123       if (Value == 0)
16124         Result = DAG.getTargetConstant(Value, dl, TCVT);
16125       break;
16126     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16127       if (isInt<16>(-Value))
16128         Result = DAG.getTargetConstant(Value, dl, TCVT);
16129       break;
16130     }
16131     break;
16132   }
16133   }
16134 
16135   if (Result.getNode()) {
16136     Ops.push_back(Result);
16137     return;
16138   }
16139 
16140   // Handle standard constraint letters.
16141   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16142 }
16143 
16144 // isLegalAddressingMode - Return true if the addressing mode represented
16145 // by AM is legal for this target, for a load/store of the specified type.
16146 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16147                                               const AddrMode &AM, Type *Ty,
16148                                               unsigned AS,
16149                                               Instruction *I) const {
16150   // Vector type r+i form is supported since power9 as DQ form. We don't check
16151   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16152   // imm form is preferred and the offset can be adjusted to use imm form later
16153   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16154   // max offset to check legal addressing mode, we should be a little aggressive
16155   // to contain other offsets for that LSRUse.
16156   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16157     return false;
16158 
16159   // PPC allows a sign-extended 16-bit immediate field.
16160   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16161     return false;
16162 
16163   // No global is ever allowed as a base.
16164   if (AM.BaseGV)
16165     return false;
16166 
16167   // PPC only support r+r,
16168   switch (AM.Scale) {
16169   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16170     break;
16171   case 1:
16172     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16173       return false;
16174     // Otherwise we have r+r or r+i.
16175     break;
16176   case 2:
16177     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16178       return false;
16179     // Allow 2*r as r+r.
16180     break;
16181   default:
16182     // No other scales are supported.
16183     return false;
16184   }
16185 
16186   return true;
16187 }
16188 
16189 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16190                                            SelectionDAG &DAG) const {
16191   MachineFunction &MF = DAG.getMachineFunction();
16192   MachineFrameInfo &MFI = MF.getFrameInfo();
16193   MFI.setReturnAddressIsTaken(true);
16194 
16195   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16196     return SDValue();
16197 
16198   SDLoc dl(Op);
16199   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16200 
16201   // Make sure the function does not optimize away the store of the RA to
16202   // the stack.
16203   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16204   FuncInfo->setLRStoreRequired();
16205   bool isPPC64 = Subtarget.isPPC64();
16206   auto PtrVT = getPointerTy(MF.getDataLayout());
16207 
16208   if (Depth > 0) {
16209     // The link register (return address) is saved in the caller's frame
16210     // not the callee's stack frame. So we must get the caller's frame
16211     // address and load the return address at the LR offset from there.
16212     SDValue FrameAddr =
16213         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16214                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16215     SDValue Offset =
16216         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16217                         isPPC64 ? MVT::i64 : MVT::i32);
16218     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16219                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16220                        MachinePointerInfo());
16221   }
16222 
16223   // Just load the return address off the stack.
16224   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16225   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16226                      MachinePointerInfo());
16227 }
16228 
16229 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16230                                           SelectionDAG &DAG) const {
16231   SDLoc dl(Op);
16232   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16233 
16234   MachineFunction &MF = DAG.getMachineFunction();
16235   MachineFrameInfo &MFI = MF.getFrameInfo();
16236   MFI.setFrameAddressIsTaken(true);
16237 
16238   EVT PtrVT = getPointerTy(MF.getDataLayout());
16239   bool isPPC64 = PtrVT == MVT::i64;
16240 
16241   // Naked functions never have a frame pointer, and so we use r1. For all
16242   // other functions, this decision must be delayed until during PEI.
16243   unsigned FrameReg;
16244   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16245     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16246   else
16247     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16248 
16249   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16250                                          PtrVT);
16251   while (Depth--)
16252     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16253                             FrameAddr, MachinePointerInfo());
16254   return FrameAddr;
16255 }
16256 
16257 // FIXME? Maybe this could be a TableGen attribute on some registers and
16258 // this table could be generated automatically from RegInfo.
16259 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16260                                               const MachineFunction &MF) const {
16261   bool isPPC64 = Subtarget.isPPC64();
16262 
16263   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16264   if (!is64Bit && VT != LLT::scalar(32))
16265     report_fatal_error("Invalid register global variable type");
16266 
16267   Register Reg = StringSwitch<Register>(RegName)
16268                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16269                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16270                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16271                      .Default(Register());
16272 
16273   if (Reg)
16274     return Reg;
16275   report_fatal_error("Invalid register name global variable");
16276 }
16277 
16278 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16279   // 32-bit SVR4 ABI access everything as got-indirect.
16280   if (Subtarget.is32BitELFABI())
16281     return true;
16282 
16283   // AIX accesses everything indirectly through the TOC, which is similar to
16284   // the GOT.
16285   if (Subtarget.isAIXABI())
16286     return true;
16287 
16288   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16289   // If it is small or large code model, module locals are accessed
16290   // indirectly by loading their address from .toc/.got.
16291   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16292     return true;
16293 
16294   // JumpTable and BlockAddress are accessed as got-indirect.
16295   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16296     return true;
16297 
16298   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16299     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16300 
16301   return false;
16302 }
16303 
16304 bool
16305 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16306   // The PowerPC target isn't yet aware of offsets.
16307   return false;
16308 }
16309 
16310 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16311                                            const CallInst &I,
16312                                            MachineFunction &MF,
16313                                            unsigned Intrinsic) const {
16314   switch (Intrinsic) {
16315   case Intrinsic::ppc_atomicrmw_xchg_i128:
16316   case Intrinsic::ppc_atomicrmw_add_i128:
16317   case Intrinsic::ppc_atomicrmw_sub_i128:
16318   case Intrinsic::ppc_atomicrmw_nand_i128:
16319   case Intrinsic::ppc_atomicrmw_and_i128:
16320   case Intrinsic::ppc_atomicrmw_or_i128:
16321   case Intrinsic::ppc_atomicrmw_xor_i128:
16322   case Intrinsic::ppc_cmpxchg_i128:
16323     Info.opc = ISD::INTRINSIC_W_CHAIN;
16324     Info.memVT = MVT::i128;
16325     Info.ptrVal = I.getArgOperand(0);
16326     Info.offset = 0;
16327     Info.align = Align(16);
16328     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16329                  MachineMemOperand::MOVolatile;
16330     return true;
16331   case Intrinsic::ppc_atomic_load_i128:
16332     Info.opc = ISD::INTRINSIC_W_CHAIN;
16333     Info.memVT = MVT::i128;
16334     Info.ptrVal = I.getArgOperand(0);
16335     Info.offset = 0;
16336     Info.align = Align(16);
16337     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16338     return true;
16339   case Intrinsic::ppc_atomic_store_i128:
16340     Info.opc = ISD::INTRINSIC_VOID;
16341     Info.memVT = MVT::i128;
16342     Info.ptrVal = I.getArgOperand(2);
16343     Info.offset = 0;
16344     Info.align = Align(16);
16345     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16346     return true;
16347   case Intrinsic::ppc_altivec_lvx:
16348   case Intrinsic::ppc_altivec_lvxl:
16349   case Intrinsic::ppc_altivec_lvebx:
16350   case Intrinsic::ppc_altivec_lvehx:
16351   case Intrinsic::ppc_altivec_lvewx:
16352   case Intrinsic::ppc_vsx_lxvd2x:
16353   case Intrinsic::ppc_vsx_lxvw4x:
16354   case Intrinsic::ppc_vsx_lxvd2x_be:
16355   case Intrinsic::ppc_vsx_lxvw4x_be:
16356   case Intrinsic::ppc_vsx_lxvl:
16357   case Intrinsic::ppc_vsx_lxvll: {
16358     EVT VT;
16359     switch (Intrinsic) {
16360     case Intrinsic::ppc_altivec_lvebx:
16361       VT = MVT::i8;
16362       break;
16363     case Intrinsic::ppc_altivec_lvehx:
16364       VT = MVT::i16;
16365       break;
16366     case Intrinsic::ppc_altivec_lvewx:
16367       VT = MVT::i32;
16368       break;
16369     case Intrinsic::ppc_vsx_lxvd2x:
16370     case Intrinsic::ppc_vsx_lxvd2x_be:
16371       VT = MVT::v2f64;
16372       break;
16373     default:
16374       VT = MVT::v4i32;
16375       break;
16376     }
16377 
16378     Info.opc = ISD::INTRINSIC_W_CHAIN;
16379     Info.memVT = VT;
16380     Info.ptrVal = I.getArgOperand(0);
16381     Info.offset = -VT.getStoreSize()+1;
16382     Info.size = 2*VT.getStoreSize()-1;
16383     Info.align = Align(1);
16384     Info.flags = MachineMemOperand::MOLoad;
16385     return true;
16386   }
16387   case Intrinsic::ppc_altivec_stvx:
16388   case Intrinsic::ppc_altivec_stvxl:
16389   case Intrinsic::ppc_altivec_stvebx:
16390   case Intrinsic::ppc_altivec_stvehx:
16391   case Intrinsic::ppc_altivec_stvewx:
16392   case Intrinsic::ppc_vsx_stxvd2x:
16393   case Intrinsic::ppc_vsx_stxvw4x:
16394   case Intrinsic::ppc_vsx_stxvd2x_be:
16395   case Intrinsic::ppc_vsx_stxvw4x_be:
16396   case Intrinsic::ppc_vsx_stxvl:
16397   case Intrinsic::ppc_vsx_stxvll: {
16398     EVT VT;
16399     switch (Intrinsic) {
16400     case Intrinsic::ppc_altivec_stvebx:
16401       VT = MVT::i8;
16402       break;
16403     case Intrinsic::ppc_altivec_stvehx:
16404       VT = MVT::i16;
16405       break;
16406     case Intrinsic::ppc_altivec_stvewx:
16407       VT = MVT::i32;
16408       break;
16409     case Intrinsic::ppc_vsx_stxvd2x:
16410     case Intrinsic::ppc_vsx_stxvd2x_be:
16411       VT = MVT::v2f64;
16412       break;
16413     default:
16414       VT = MVT::v4i32;
16415       break;
16416     }
16417 
16418     Info.opc = ISD::INTRINSIC_VOID;
16419     Info.memVT = VT;
16420     Info.ptrVal = I.getArgOperand(1);
16421     Info.offset = -VT.getStoreSize()+1;
16422     Info.size = 2*VT.getStoreSize()-1;
16423     Info.align = Align(1);
16424     Info.flags = MachineMemOperand::MOStore;
16425     return true;
16426   }
16427   default:
16428     break;
16429   }
16430 
16431   return false;
16432 }
16433 
16434 /// It returns EVT::Other if the type should be determined using generic
16435 /// target-independent logic.
16436 EVT PPCTargetLowering::getOptimalMemOpType(
16437     const MemOp &Op, const AttributeList &FuncAttributes) const {
16438   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16439     // We should use Altivec/VSX loads and stores when available. For unaligned
16440     // addresses, unaligned VSX loads are only fast starting with the P8.
16441     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16442         (Op.isAligned(Align(16)) ||
16443          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16444       return MVT::v4i32;
16445   }
16446 
16447   if (Subtarget.isPPC64()) {
16448     return MVT::i64;
16449   }
16450 
16451   return MVT::i32;
16452 }
16453 
16454 /// Returns true if it is beneficial to convert a load of a constant
16455 /// to just the constant itself.
16456 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16457                                                           Type *Ty) const {
16458   assert(Ty->isIntegerTy());
16459 
16460   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16461   return !(BitSize == 0 || BitSize > 64);
16462 }
16463 
16464 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16465   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16466     return false;
16467   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16468   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16469   return NumBits1 == 64 && NumBits2 == 32;
16470 }
16471 
16472 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16473   if (!VT1.isInteger() || !VT2.isInteger())
16474     return false;
16475   unsigned NumBits1 = VT1.getSizeInBits();
16476   unsigned NumBits2 = VT2.getSizeInBits();
16477   return NumBits1 == 64 && NumBits2 == 32;
16478 }
16479 
16480 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16481   // Generally speaking, zexts are not free, but they are free when they can be
16482   // folded with other operations.
16483   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16484     EVT MemVT = LD->getMemoryVT();
16485     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16486          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16487         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16488          LD->getExtensionType() == ISD::ZEXTLOAD))
16489       return true;
16490   }
16491 
16492   // FIXME: Add other cases...
16493   //  - 32-bit shifts with a zext to i64
16494   //  - zext after ctlz, bswap, etc.
16495   //  - zext after and by a constant mask
16496 
16497   return TargetLowering::isZExtFree(Val, VT2);
16498 }
16499 
16500 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16501   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16502          "invalid fpext types");
16503   // Extending to float128 is not free.
16504   if (DestVT == MVT::f128)
16505     return false;
16506   return true;
16507 }
16508 
16509 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16510   return isInt<16>(Imm) || isUInt<16>(Imm);
16511 }
16512 
16513 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16514   return isInt<16>(Imm) || isUInt<16>(Imm);
16515 }
16516 
16517 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16518                                                        MachineMemOperand::Flags,
16519                                                        bool *Fast) const {
16520   if (DisablePPCUnaligned)
16521     return false;
16522 
16523   // PowerPC supports unaligned memory access for simple non-vector types.
16524   // Although accessing unaligned addresses is not as efficient as accessing
16525   // aligned addresses, it is generally more efficient than manual expansion,
16526   // and generally only traps for software emulation when crossing page
16527   // boundaries.
16528 
16529   if (!VT.isSimple())
16530     return false;
16531 
16532   if (VT.isFloatingPoint() && !VT.isVector() &&
16533       !Subtarget.allowsUnalignedFPAccess())
16534     return false;
16535 
16536   if (VT.getSimpleVT().isVector()) {
16537     if (Subtarget.hasVSX()) {
16538       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16539           VT != MVT::v4f32 && VT != MVT::v4i32)
16540         return false;
16541     } else {
16542       return false;
16543     }
16544   }
16545 
16546   if (VT == MVT::ppcf128)
16547     return false;
16548 
16549   if (Fast)
16550     *Fast = true;
16551 
16552   return true;
16553 }
16554 
16555 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16556                                                SDValue C) const {
16557   // Check integral scalar types.
16558   if (!VT.isScalarInteger())
16559     return false;
16560   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16561     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16562       return false;
16563     // This transformation will generate >= 2 operations. But the following
16564     // cases will generate <= 2 instructions during ISEL. So exclude them.
16565     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16566     // HW instruction, ie. MULLI
16567     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16568     // instruction is needed than case 1, ie. MULLI and RLDICR
16569     int64_t Imm = ConstNode->getSExtValue();
16570     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16571     Imm >>= Shift;
16572     if (isInt<16>(Imm))
16573       return false;
16574     uint64_t UImm = static_cast<uint64_t>(Imm);
16575     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16576         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16577       return true;
16578   }
16579   return false;
16580 }
16581 
16582 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16583                                                    EVT VT) const {
16584   return isFMAFasterThanFMulAndFAdd(
16585       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16586 }
16587 
16588 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16589                                                    Type *Ty) const {
16590   switch (Ty->getScalarType()->getTypeID()) {
16591   case Type::FloatTyID:
16592   case Type::DoubleTyID:
16593     return true;
16594   case Type::FP128TyID:
16595     return Subtarget.hasP9Vector();
16596   default:
16597     return false;
16598   }
16599 }
16600 
16601 // FIXME: add more patterns which are not profitable to hoist.
16602 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16603   if (!I->hasOneUse())
16604     return true;
16605 
16606   Instruction *User = I->user_back();
16607   assert(User && "A single use instruction with no uses.");
16608 
16609   switch (I->getOpcode()) {
16610   case Instruction::FMul: {
16611     // Don't break FMA, PowerPC prefers FMA.
16612     if (User->getOpcode() != Instruction::FSub &&
16613         User->getOpcode() != Instruction::FAdd)
16614       return true;
16615 
16616     const TargetOptions &Options = getTargetMachine().Options;
16617     const Function *F = I->getFunction();
16618     const DataLayout &DL = F->getParent()->getDataLayout();
16619     Type *Ty = User->getOperand(0)->getType();
16620 
16621     return !(
16622         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16623         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16624         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16625   }
16626   case Instruction::Load: {
16627     // Don't break "store (load float*)" pattern, this pattern will be combined
16628     // to "store (load int32)" in later InstCombine pass. See function
16629     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16630     // cycles than loading a 32 bit integer.
16631     LoadInst *LI = cast<LoadInst>(I);
16632     // For the loads that combineLoadToOperationType does nothing, like
16633     // ordered load, it should be profitable to hoist them.
16634     // For swifterror load, it can only be used for pointer to pointer type, so
16635     // later type check should get rid of this case.
16636     if (!LI->isUnordered())
16637       return true;
16638 
16639     if (User->getOpcode() != Instruction::Store)
16640       return true;
16641 
16642     if (I->getType()->getTypeID() != Type::FloatTyID)
16643       return true;
16644 
16645     return false;
16646   }
16647   default:
16648     return true;
16649   }
16650   return true;
16651 }
16652 
16653 const MCPhysReg *
16654 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16655   // LR is a callee-save register, but we must treat it as clobbered by any call
16656   // site. Hence we include LR in the scratch registers, which are in turn added
16657   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16658   // to CTR, which is used by any indirect call.
16659   static const MCPhysReg ScratchRegs[] = {
16660     PPC::X12, PPC::LR8, PPC::CTR8, 0
16661   };
16662 
16663   return ScratchRegs;
16664 }
16665 
16666 Register PPCTargetLowering::getExceptionPointerRegister(
16667     const Constant *PersonalityFn) const {
16668   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16669 }
16670 
16671 Register PPCTargetLowering::getExceptionSelectorRegister(
16672     const Constant *PersonalityFn) const {
16673   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16674 }
16675 
16676 bool
16677 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16678                      EVT VT , unsigned DefinedValues) const {
16679   if (VT == MVT::v2i64)
16680     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16681 
16682   if (Subtarget.hasVSX())
16683     return true;
16684 
16685   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16686 }
16687 
16688 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16689   if (DisableILPPref || Subtarget.enableMachineScheduler())
16690     return TargetLowering::getSchedulingPreference(N);
16691 
16692   return Sched::ILP;
16693 }
16694 
16695 // Create a fast isel object.
16696 FastISel *
16697 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16698                                   const TargetLibraryInfo *LibInfo) const {
16699   return PPC::createFastISel(FuncInfo, LibInfo);
16700 }
16701 
16702 // 'Inverted' means the FMA opcode after negating one multiplicand.
16703 // For example, (fma -a b c) = (fnmsub a b c)
16704 static unsigned invertFMAOpcode(unsigned Opc) {
16705   switch (Opc) {
16706   default:
16707     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16708   case ISD::FMA:
16709     return PPCISD::FNMSUB;
16710   case PPCISD::FNMSUB:
16711     return ISD::FMA;
16712   }
16713 }
16714 
16715 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16716                                                 bool LegalOps, bool OptForSize,
16717                                                 NegatibleCost &Cost,
16718                                                 unsigned Depth) const {
16719   if (Depth > SelectionDAG::MaxRecursionDepth)
16720     return SDValue();
16721 
16722   unsigned Opc = Op.getOpcode();
16723   EVT VT = Op.getValueType();
16724   SDNodeFlags Flags = Op.getNode()->getFlags();
16725 
16726   switch (Opc) {
16727   case PPCISD::FNMSUB:
16728     if (!Op.hasOneUse() || !isTypeLegal(VT))
16729       break;
16730 
16731     const TargetOptions &Options = getTargetMachine().Options;
16732     SDValue N0 = Op.getOperand(0);
16733     SDValue N1 = Op.getOperand(1);
16734     SDValue N2 = Op.getOperand(2);
16735     SDLoc Loc(Op);
16736 
16737     NegatibleCost N2Cost = NegatibleCost::Expensive;
16738     SDValue NegN2 =
16739         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16740 
16741     if (!NegN2)
16742       return SDValue();
16743 
16744     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16745     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16746     // These transformations may change sign of zeroes. For example,
16747     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16748     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16749       // Try and choose the cheaper one to negate.
16750       NegatibleCost N0Cost = NegatibleCost::Expensive;
16751       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16752                                            N0Cost, Depth + 1);
16753 
16754       NegatibleCost N1Cost = NegatibleCost::Expensive;
16755       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16756                                            N1Cost, Depth + 1);
16757 
16758       if (NegN0 && N0Cost <= N1Cost) {
16759         Cost = std::min(N0Cost, N2Cost);
16760         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16761       } else if (NegN1) {
16762         Cost = std::min(N1Cost, N2Cost);
16763         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16764       }
16765     }
16766 
16767     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16768     if (isOperationLegal(ISD::FMA, VT)) {
16769       Cost = N2Cost;
16770       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16771     }
16772 
16773     break;
16774   }
16775 
16776   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16777                                               Cost, Depth);
16778 }
16779 
16780 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16781 bool PPCTargetLowering::useLoadStackGuardNode() const {
16782   if (!Subtarget.isTargetLinux())
16783     return TargetLowering::useLoadStackGuardNode();
16784   return true;
16785 }
16786 
16787 // Override to disable global variable loading on Linux and insert AIX canary
16788 // word declaration.
16789 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16790   if (Subtarget.isAIXABI()) {
16791     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16792                         Type::getInt8PtrTy(M.getContext()));
16793     return;
16794   }
16795   if (!Subtarget.isTargetLinux())
16796     return TargetLowering::insertSSPDeclarations(M);
16797 }
16798 
16799 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16800   if (Subtarget.isAIXABI())
16801     return M.getGlobalVariable(AIXSSPCanaryWordName);
16802   return TargetLowering::getSDagStackGuard(M);
16803 }
16804 
16805 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16806                                      bool ForCodeSize) const {
16807   if (!VT.isSimple() || !Subtarget.hasVSX())
16808     return false;
16809 
16810   switch(VT.getSimpleVT().SimpleTy) {
16811   default:
16812     // For FP types that are currently not supported by PPC backend, return
16813     // false. Examples: f16, f80.
16814     return false;
16815   case MVT::f32:
16816   case MVT::f64:
16817     if (Subtarget.hasPrefixInstrs()) {
16818       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16819       return true;
16820     }
16821     LLVM_FALLTHROUGH;
16822   case MVT::ppcf128:
16823     return Imm.isPosZero();
16824   }
16825 }
16826 
16827 // For vector shift operation op, fold
16828 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16829 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16830                                   SelectionDAG &DAG) {
16831   SDValue N0 = N->getOperand(0);
16832   SDValue N1 = N->getOperand(1);
16833   EVT VT = N0.getValueType();
16834   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16835   unsigned Opcode = N->getOpcode();
16836   unsigned TargetOpcode;
16837 
16838   switch (Opcode) {
16839   default:
16840     llvm_unreachable("Unexpected shift operation");
16841   case ISD::SHL:
16842     TargetOpcode = PPCISD::SHL;
16843     break;
16844   case ISD::SRL:
16845     TargetOpcode = PPCISD::SRL;
16846     break;
16847   case ISD::SRA:
16848     TargetOpcode = PPCISD::SRA;
16849     break;
16850   }
16851 
16852   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16853       N1->getOpcode() == ISD::AND)
16854     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16855       if (Mask->getZExtValue() == OpSizeInBits - 1)
16856         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16857 
16858   return SDValue();
16859 }
16860 
16861 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16862   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16863     return Value;
16864 
16865   SDValue N0 = N->getOperand(0);
16866   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16867   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16868       N0.getOpcode() != ISD::SIGN_EXTEND ||
16869       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16870       N->getValueType(0) != MVT::i64)
16871     return SDValue();
16872 
16873   // We can't save an operation here if the value is already extended, and
16874   // the existing shift is easier to combine.
16875   SDValue ExtsSrc = N0.getOperand(0);
16876   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16877       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16878     return SDValue();
16879 
16880   SDLoc DL(N0);
16881   SDValue ShiftBy = SDValue(CN1, 0);
16882   // We want the shift amount to be i32 on the extswli, but the shift could
16883   // have an i64.
16884   if (ShiftBy.getValueType() == MVT::i64)
16885     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16886 
16887   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16888                          ShiftBy);
16889 }
16890 
16891 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16892   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16893     return Value;
16894 
16895   return SDValue();
16896 }
16897 
16898 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16899   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16900     return Value;
16901 
16902   return SDValue();
16903 }
16904 
16905 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16906 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16907 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16908 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16909 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16910                                  const PPCSubtarget &Subtarget) {
16911   if (!Subtarget.isPPC64())
16912     return SDValue();
16913 
16914   SDValue LHS = N->getOperand(0);
16915   SDValue RHS = N->getOperand(1);
16916 
16917   auto isZextOfCompareWithConstant = [](SDValue Op) {
16918     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16919         Op.getValueType() != MVT::i64)
16920       return false;
16921 
16922     SDValue Cmp = Op.getOperand(0);
16923     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16924         Cmp.getOperand(0).getValueType() != MVT::i64)
16925       return false;
16926 
16927     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16928       int64_t NegConstant = 0 - Constant->getSExtValue();
16929       // Due to the limitations of the addi instruction,
16930       // -C is required to be [-32768, 32767].
16931       return isInt<16>(NegConstant);
16932     }
16933 
16934     return false;
16935   };
16936 
16937   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16938   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16939 
16940   // If there is a pattern, canonicalize a zext operand to the RHS.
16941   if (LHSHasPattern && !RHSHasPattern)
16942     std::swap(LHS, RHS);
16943   else if (!LHSHasPattern && !RHSHasPattern)
16944     return SDValue();
16945 
16946   SDLoc DL(N);
16947   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16948   SDValue Cmp = RHS.getOperand(0);
16949   SDValue Z = Cmp.getOperand(0);
16950   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
16951   int64_t NegConstant = 0 - Constant->getSExtValue();
16952 
16953   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16954   default: break;
16955   case ISD::SETNE: {
16956     //                                 when C == 0
16957     //                             --> addze X, (addic Z, -1).carry
16958     //                            /
16959     // add X, (zext(setne Z, C))--
16960     //                            \    when -32768 <= -C <= 32767 && C != 0
16961     //                             --> addze X, (addic (addi Z, -C), -1).carry
16962     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16963                               DAG.getConstant(NegConstant, DL, MVT::i64));
16964     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16965     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16966                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16967     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16968                        SDValue(Addc.getNode(), 1));
16969     }
16970   case ISD::SETEQ: {
16971     //                                 when C == 0
16972     //                             --> addze X, (subfic Z, 0).carry
16973     //                            /
16974     // add X, (zext(sete  Z, C))--
16975     //                            \    when -32768 <= -C <= 32767 && C != 0
16976     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16977     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16978                               DAG.getConstant(NegConstant, DL, MVT::i64));
16979     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16980     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16981                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16982     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16983                        SDValue(Subc.getNode(), 1));
16984     }
16985   }
16986 
16987   return SDValue();
16988 }
16989 
16990 // Transform
16991 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16992 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16993 // In this case both C1 and C2 must be known constants.
16994 // C1+C2 must fit into a 34 bit signed integer.
16995 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16996                                           const PPCSubtarget &Subtarget) {
16997   if (!Subtarget.isUsingPCRelativeCalls())
16998     return SDValue();
16999 
17000   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17001   // If we find that node try to cast the Global Address and the Constant.
17002   SDValue LHS = N->getOperand(0);
17003   SDValue RHS = N->getOperand(1);
17004 
17005   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17006     std::swap(LHS, RHS);
17007 
17008   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17009     return SDValue();
17010 
17011   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17012   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17013   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17014 
17015   // Check that both casts succeeded.
17016   if (!GSDN || !ConstNode)
17017     return SDValue();
17018 
17019   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17020   SDLoc DL(GSDN);
17021 
17022   // The signed int offset needs to fit in 34 bits.
17023   if (!isInt<34>(NewOffset))
17024     return SDValue();
17025 
17026   // The new global address is a copy of the old global address except
17027   // that it has the updated Offset.
17028   SDValue GA =
17029       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17030                                  NewOffset, GSDN->getTargetFlags());
17031   SDValue MatPCRel =
17032       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17033   return MatPCRel;
17034 }
17035 
17036 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17037   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17038     return Value;
17039 
17040   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17041     return Value;
17042 
17043   return SDValue();
17044 }
17045 
17046 // Detect TRUNCATE operations on bitcasts of float128 values.
17047 // What we are looking for here is the situtation where we extract a subset
17048 // of bits from a 128 bit float.
17049 // This can be of two forms:
17050 // 1) BITCAST of f128 feeding TRUNCATE
17051 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17052 // The reason this is required is because we do not have a legal i128 type
17053 // and so we want to prevent having to store the f128 and then reload part
17054 // of it.
17055 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17056                                            DAGCombinerInfo &DCI) const {
17057   // If we are using CRBits then try that first.
17058   if (Subtarget.useCRBits()) {
17059     // Check if CRBits did anything and return that if it did.
17060     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17061       return CRTruncValue;
17062   }
17063 
17064   SDLoc dl(N);
17065   SDValue Op0 = N->getOperand(0);
17066 
17067   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
17068   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
17069     EVT VT = N->getValueType(0);
17070     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17071       return SDValue();
17072     SDValue Sub = Op0.getOperand(0);
17073     if (Sub.getOpcode() == ISD::SUB) {
17074       SDValue SubOp0 = Sub.getOperand(0);
17075       SDValue SubOp1 = Sub.getOperand(1);
17076       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
17077           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
17078         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
17079                                SubOp1.getOperand(0),
17080                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
17081       }
17082     }
17083   }
17084 
17085   // Looking for a truncate of i128 to i64.
17086   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17087     return SDValue();
17088 
17089   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17090 
17091   // SRL feeding TRUNCATE.
17092   if (Op0.getOpcode() == ISD::SRL) {
17093     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17094     // The right shift has to be by 64 bits.
17095     if (!ConstNode || ConstNode->getZExtValue() != 64)
17096       return SDValue();
17097 
17098     // Switch the element number to extract.
17099     EltToExtract = EltToExtract ? 0 : 1;
17100     // Update Op0 past the SRL.
17101     Op0 = Op0.getOperand(0);
17102   }
17103 
17104   // BITCAST feeding a TRUNCATE possibly via SRL.
17105   if (Op0.getOpcode() == ISD::BITCAST &&
17106       Op0.getValueType() == MVT::i128 &&
17107       Op0.getOperand(0).getValueType() == MVT::f128) {
17108     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17109     return DCI.DAG.getNode(
17110         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17111         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17112   }
17113   return SDValue();
17114 }
17115 
17116 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17117   SelectionDAG &DAG = DCI.DAG;
17118 
17119   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17120   if (!ConstOpOrElement)
17121     return SDValue();
17122 
17123   // An imul is usually smaller than the alternative sequence for legal type.
17124   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17125       isOperationLegal(ISD::MUL, N->getValueType(0)))
17126     return SDValue();
17127 
17128   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17129     switch (this->Subtarget.getCPUDirective()) {
17130     default:
17131       // TODO: enhance the condition for subtarget before pwr8
17132       return false;
17133     case PPC::DIR_PWR8:
17134       //  type        mul     add    shl
17135       // scalar        4       1      1
17136       // vector        7       2      2
17137       return true;
17138     case PPC::DIR_PWR9:
17139     case PPC::DIR_PWR10:
17140     case PPC::DIR_PWR_FUTURE:
17141       //  type        mul     add    shl
17142       // scalar        5       2      2
17143       // vector        7       2      2
17144 
17145       // The cycle RATIO of related operations are showed as a table above.
17146       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17147       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17148       // are 4, it is always profitable; but for 3 instrs patterns
17149       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17150       // So we should only do it for vector type.
17151       return IsAddOne && IsNeg ? VT.isVector() : true;
17152     }
17153   };
17154 
17155   EVT VT = N->getValueType(0);
17156   SDLoc DL(N);
17157 
17158   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17159   bool IsNeg = MulAmt.isNegative();
17160   APInt MulAmtAbs = MulAmt.abs();
17161 
17162   if ((MulAmtAbs - 1).isPowerOf2()) {
17163     // (mul x, 2^N + 1) => (add (shl x, N), x)
17164     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17165 
17166     if (!IsProfitable(IsNeg, true, VT))
17167       return SDValue();
17168 
17169     SDValue Op0 = N->getOperand(0);
17170     SDValue Op1 =
17171         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17172                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17173     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17174 
17175     if (!IsNeg)
17176       return Res;
17177 
17178     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17179   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17180     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17181     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17182 
17183     if (!IsProfitable(IsNeg, false, VT))
17184       return SDValue();
17185 
17186     SDValue Op0 = N->getOperand(0);
17187     SDValue Op1 =
17188         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17189                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17190 
17191     if (!IsNeg)
17192       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17193     else
17194       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17195 
17196   } else {
17197     return SDValue();
17198   }
17199 }
17200 
17201 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17202 // in combiner since we need to check SD flags and other subtarget features.
17203 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17204                                           DAGCombinerInfo &DCI) const {
17205   SDValue N0 = N->getOperand(0);
17206   SDValue N1 = N->getOperand(1);
17207   SDValue N2 = N->getOperand(2);
17208   SDNodeFlags Flags = N->getFlags();
17209   EVT VT = N->getValueType(0);
17210   SelectionDAG &DAG = DCI.DAG;
17211   const TargetOptions &Options = getTargetMachine().Options;
17212   unsigned Opc = N->getOpcode();
17213   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17214   bool LegalOps = !DCI.isBeforeLegalizeOps();
17215   SDLoc Loc(N);
17216 
17217   if (!isOperationLegal(ISD::FMA, VT))
17218     return SDValue();
17219 
17220   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17221   // since (fnmsub a b c)=-0 while c-ab=+0.
17222   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17223     return SDValue();
17224 
17225   // (fma (fneg a) b c) => (fnmsub a b c)
17226   // (fnmsub (fneg a) b c) => (fma a b c)
17227   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17228     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17229 
17230   // (fma a (fneg b) c) => (fnmsub a b c)
17231   // (fnmsub a (fneg b) c) => (fma a b c)
17232   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17233     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17234 
17235   return SDValue();
17236 }
17237 
17238 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17239   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17240   if (!Subtarget.is64BitELFABI())
17241     return false;
17242 
17243   // If not a tail call then no need to proceed.
17244   if (!CI->isTailCall())
17245     return false;
17246 
17247   // If sibling calls have been disabled and tail-calls aren't guaranteed
17248   // there is no reason to duplicate.
17249   auto &TM = getTargetMachine();
17250   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17251     return false;
17252 
17253   // Can't tail call a function called indirectly, or if it has variadic args.
17254   const Function *Callee = CI->getCalledFunction();
17255   if (!Callee || Callee->isVarArg())
17256     return false;
17257 
17258   // Make sure the callee and caller calling conventions are eligible for tco.
17259   const Function *Caller = CI->getParent()->getParent();
17260   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17261                                            CI->getCallingConv()))
17262       return false;
17263 
17264   // If the function is local then we have a good chance at tail-calling it
17265   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17266 }
17267 
17268 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17269   if (!Subtarget.hasVSX())
17270     return false;
17271   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17272     return true;
17273   return VT == MVT::f32 || VT == MVT::f64 ||
17274     VT == MVT::v4f32 || VT == MVT::v2f64;
17275 }
17276 
17277 bool PPCTargetLowering::
17278 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17279   const Value *Mask = AndI.getOperand(1);
17280   // If the mask is suitable for andi. or andis. we should sink the and.
17281   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17282     // Can't handle constants wider than 64-bits.
17283     if (CI->getBitWidth() > 64)
17284       return false;
17285     int64_t ConstVal = CI->getZExtValue();
17286     return isUInt<16>(ConstVal) ||
17287       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17288   }
17289 
17290   // For non-constant masks, we can always use the record-form and.
17291   return true;
17292 }
17293 
17294 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17295 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17296 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17297 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17298 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17299 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17300   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17301   assert(Subtarget.hasP9Altivec() &&
17302          "Only combine this when P9 altivec supported!");
17303   EVT VT = N->getValueType(0);
17304   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17305     return SDValue();
17306 
17307   SelectionDAG &DAG = DCI.DAG;
17308   SDLoc dl(N);
17309   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17310     // Even for signed integers, if it's known to be positive (as signed
17311     // integer) due to zero-extended inputs.
17312     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17313     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17314     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17315          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17316         (SubOpcd1 == ISD::ZERO_EXTEND ||
17317          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17318       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17319                          N->getOperand(0)->getOperand(0),
17320                          N->getOperand(0)->getOperand(1),
17321                          DAG.getTargetConstant(0, dl, MVT::i32));
17322     }
17323 
17324     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17325     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17326         N->getOperand(0).hasOneUse()) {
17327       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17328                          N->getOperand(0)->getOperand(0),
17329                          N->getOperand(0)->getOperand(1),
17330                          DAG.getTargetConstant(1, dl, MVT::i32));
17331     }
17332   }
17333 
17334   return SDValue();
17335 }
17336 
17337 // For type v4i32/v8ii16/v16i8, transform
17338 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17339 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17340 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17341 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17342 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17343                                           DAGCombinerInfo &DCI) const {
17344   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17345   assert(Subtarget.hasP9Altivec() &&
17346          "Only combine this when P9 altivec supported!");
17347 
17348   SelectionDAG &DAG = DCI.DAG;
17349   SDLoc dl(N);
17350   SDValue Cond = N->getOperand(0);
17351   SDValue TrueOpnd = N->getOperand(1);
17352   SDValue FalseOpnd = N->getOperand(2);
17353   EVT VT = N->getOperand(1).getValueType();
17354 
17355   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17356       FalseOpnd.getOpcode() != ISD::SUB)
17357     return SDValue();
17358 
17359   // ABSD only available for type v4i32/v8i16/v16i8
17360   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17361     return SDValue();
17362 
17363   // At least to save one more dependent computation
17364   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17365     return SDValue();
17366 
17367   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17368 
17369   // Can only handle unsigned comparison here
17370   switch (CC) {
17371   default:
17372     return SDValue();
17373   case ISD::SETUGT:
17374   case ISD::SETUGE:
17375     break;
17376   case ISD::SETULT:
17377   case ISD::SETULE:
17378     std::swap(TrueOpnd, FalseOpnd);
17379     break;
17380   }
17381 
17382   SDValue CmpOpnd1 = Cond.getOperand(0);
17383   SDValue CmpOpnd2 = Cond.getOperand(1);
17384 
17385   // SETCC CmpOpnd1 CmpOpnd2 cond
17386   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17387   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17388   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17389       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17390       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17391       FalseOpnd.getOperand(1) == CmpOpnd1) {
17392     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17393                        CmpOpnd1, CmpOpnd2,
17394                        DAG.getTargetConstant(0, dl, MVT::i32));
17395   }
17396 
17397   return SDValue();
17398 }
17399 
17400 /// getAddrModeForFlags - Based on the set of address flags, select the most
17401 /// optimal instruction format to match by.
17402 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17403   // This is not a node we should be handling here.
17404   if (Flags == PPC::MOF_None)
17405     return PPC::AM_None;
17406   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17407   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17408     if ((Flags & FlagSet) == FlagSet)
17409       return PPC::AM_DForm;
17410   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17411     if ((Flags & FlagSet) == FlagSet)
17412       return PPC::AM_DSForm;
17413   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17414     if ((Flags & FlagSet) == FlagSet)
17415       return PPC::AM_DQForm;
17416   for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
17417     if ((Flags & FlagSet) == FlagSet)
17418       return PPC::AM_PrefixDForm;
17419   // If no other forms are selected, return an X-Form as it is the most
17420   // general addressing mode.
17421   return PPC::AM_XForm;
17422 }
17423 
17424 /// Set alignment flags based on whether or not the Frame Index is aligned.
17425 /// Utilized when computing flags for address computation when selecting
17426 /// load and store instructions.
17427 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17428                                SelectionDAG &DAG) {
17429   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17430   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17431   if (!FI)
17432     return;
17433   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17434   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17435   // If this is (add $FI, $S16Imm), the alignment flags are already set
17436   // based on the immediate. We just need to clear the alignment flags
17437   // if the FI alignment is weaker.
17438   if ((FrameIndexAlign % 4) != 0)
17439     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17440   if ((FrameIndexAlign % 16) != 0)
17441     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17442   // If the address is a plain FrameIndex, set alignment flags based on
17443   // FI alignment.
17444   if (!IsAdd) {
17445     if ((FrameIndexAlign % 4) == 0)
17446       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17447     if ((FrameIndexAlign % 16) == 0)
17448       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17449   }
17450 }
17451 
17452 /// Given a node, compute flags that are used for address computation when
17453 /// selecting load and store instructions. The flags computed are stored in
17454 /// FlagSet. This function takes into account whether the node is a constant,
17455 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17456 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17457                                               SelectionDAG &DAG) {
17458   // Set the alignment flags for the node depending on if the node is
17459   // 4-byte or 16-byte aligned.
17460   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17461     if ((Imm & 0x3) == 0)
17462       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17463     if ((Imm & 0xf) == 0)
17464       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17465   };
17466 
17467   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17468     // All 32-bit constants can be computed as LIS + Disp.
17469     const APInt &ConstImm = CN->getAPIntValue();
17470     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17471       FlagSet |= PPC::MOF_AddrIsSImm32;
17472       SetAlignFlagsForImm(ConstImm.getZExtValue());
17473       setAlignFlagsForFI(N, FlagSet, DAG);
17474     }
17475     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17476       FlagSet |= PPC::MOF_RPlusSImm34;
17477     else // Let constant materialization handle large constants.
17478       FlagSet |= PPC::MOF_NotAddNorCst;
17479   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17480     // This address can be represented as an addition of:
17481     // - Register + Imm16 (possibly a multiple of 4/16)
17482     // - Register + Imm34
17483     // - Register + PPCISD::Lo
17484     // - Register + Register
17485     // In any case, we won't have to match this as Base + Zero.
17486     SDValue RHS = N.getOperand(1);
17487     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17488       const APInt &ConstImm = CN->getAPIntValue();
17489       if (ConstImm.isSignedIntN(16)) {
17490         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17491         SetAlignFlagsForImm(ConstImm.getZExtValue());
17492         setAlignFlagsForFI(N, FlagSet, DAG);
17493       }
17494       if (ConstImm.isSignedIntN(34))
17495         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17496       else
17497         FlagSet |= PPC::MOF_RPlusR; // Register.
17498     } else if (RHS.getOpcode() == PPCISD::Lo &&
17499                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17500       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17501     else
17502       FlagSet |= PPC::MOF_RPlusR;
17503   } else { // The address computation is not a constant or an addition.
17504     setAlignFlagsForFI(N, FlagSet, DAG);
17505     FlagSet |= PPC::MOF_NotAddNorCst;
17506   }
17507 }
17508 
17509 static bool isPCRelNode(SDValue N) {
17510   return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
17511       isValidPCRelNode<ConstantPoolSDNode>(N) ||
17512       isValidPCRelNode<GlobalAddressSDNode>(N) ||
17513       isValidPCRelNode<JumpTableSDNode>(N) ||
17514       isValidPCRelNode<BlockAddressSDNode>(N));
17515 }
17516 
17517 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17518 /// the address flags of the load/store instruction that is to be matched.
17519 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17520                                            SelectionDAG &DAG) const {
17521   unsigned FlagSet = PPC::MOF_None;
17522 
17523   // Compute subtarget flags.
17524   if (!Subtarget.hasP9Vector())
17525     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17526   else {
17527     FlagSet |= PPC::MOF_SubtargetP9;
17528     if (Subtarget.hasPrefixInstrs())
17529       FlagSet |= PPC::MOF_SubtargetP10;
17530   }
17531   if (Subtarget.hasSPE())
17532     FlagSet |= PPC::MOF_SubtargetSPE;
17533 
17534   // Check if we have a PCRel node and return early.
17535   if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
17536     return FlagSet;
17537 
17538   // If the node is the paired load/store intrinsics, compute flags for
17539   // address computation and return early.
17540   unsigned ParentOp = Parent->getOpcode();
17541   if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
17542                                (ParentOp == ISD::INTRINSIC_VOID))) {
17543     unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
17544     if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
17545       SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
17546                              ? Parent->getOperand(2)
17547                              : Parent->getOperand(3);
17548       computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
17549       FlagSet |= PPC::MOF_Vector;
17550       return FlagSet;
17551     }
17552   }
17553 
17554   // Mark this as something we don't want to handle here if it is atomic
17555   // or pre-increment instruction.
17556   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17557     if (LSB->isIndexed())
17558       return PPC::MOF_None;
17559 
17560   // Compute in-memory type flags. This is based on if there are scalars,
17561   // floats or vectors.
17562   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17563   assert(MN && "Parent should be a MemSDNode!");
17564   EVT MemVT = MN->getMemoryVT();
17565   unsigned Size = MemVT.getSizeInBits();
17566   if (MemVT.isScalarInteger()) {
17567     assert(Size <= 128 &&
17568            "Not expecting scalar integers larger than 16 bytes!");
17569     if (Size < 32)
17570       FlagSet |= PPC::MOF_SubWordInt;
17571     else if (Size == 32)
17572       FlagSet |= PPC::MOF_WordInt;
17573     else
17574       FlagSet |= PPC::MOF_DoubleWordInt;
17575   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17576     if (Size == 128)
17577       FlagSet |= PPC::MOF_Vector;
17578     else if (Size == 256) {
17579       assert(Subtarget.pairedVectorMemops() &&
17580              "256-bit vectors are only available when paired vector memops is "
17581              "enabled!");
17582       FlagSet |= PPC::MOF_Vector;
17583     } else
17584       llvm_unreachable("Not expecting illegal vectors!");
17585   } else { // Floating point type: can be scalar, f128 or vector types.
17586     if (Size == 32 || Size == 64)
17587       FlagSet |= PPC::MOF_ScalarFloat;
17588     else if (MemVT == MVT::f128 || MemVT.isVector())
17589       FlagSet |= PPC::MOF_Vector;
17590     else
17591       llvm_unreachable("Not expecting illegal scalar floats!");
17592   }
17593 
17594   // Compute flags for address computation.
17595   computeFlagsForAddressComputation(N, FlagSet, DAG);
17596 
17597   // Compute type extension flags.
17598   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17599     switch (LN->getExtensionType()) {
17600     case ISD::SEXTLOAD:
17601       FlagSet |= PPC::MOF_SExt;
17602       break;
17603     case ISD::EXTLOAD:
17604     case ISD::ZEXTLOAD:
17605       FlagSet |= PPC::MOF_ZExt;
17606       break;
17607     case ISD::NON_EXTLOAD:
17608       FlagSet |= PPC::MOF_NoExt;
17609       break;
17610     }
17611   } else
17612     FlagSet |= PPC::MOF_NoExt;
17613 
17614   // For integers, no extension is the same as zero extension.
17615   // We set the extension mode to zero extension so we don't have
17616   // to add separate entries in AddrModesMap for loads and stores.
17617   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17618     FlagSet |= PPC::MOF_ZExt;
17619     FlagSet &= ~PPC::MOF_NoExt;
17620   }
17621 
17622   // If we don't have prefixed instructions, 34-bit constants should be
17623   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17624   bool IsNonP1034BitConst =
17625       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17626        FlagSet) == PPC::MOF_RPlusSImm34;
17627   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17628       IsNonP1034BitConst)
17629     FlagSet |= PPC::MOF_NotAddNorCst;
17630 
17631   return FlagSet;
17632 }
17633 
17634 /// SelectForceXFormMode - Given the specified address, force it to be
17635 /// represented as an indexed [r+r] operation (an XForm instruction).
17636 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17637                                                       SDValue &Base,
17638                                                       SelectionDAG &DAG) const {
17639 
17640   PPC::AddrMode Mode = PPC::AM_XForm;
17641   int16_t ForceXFormImm = 0;
17642   if (provablyDisjointOr(DAG, N) &&
17643       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17644     Disp = N.getOperand(0);
17645     Base = N.getOperand(1);
17646     return Mode;
17647   }
17648 
17649   // If the address is the result of an add, we will utilize the fact that the
17650   // address calculation includes an implicit add.  However, we can reduce
17651   // register pressure if we do not materialize a constant just for use as the
17652   // index register.  We only get rid of the add if it is not an add of a
17653   // value and a 16-bit signed constant and both have a single use.
17654   if (N.getOpcode() == ISD::ADD &&
17655       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17656        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17657     Disp = N.getOperand(0);
17658     Base = N.getOperand(1);
17659     return Mode;
17660   }
17661 
17662   // Otherwise, use R0 as the base register.
17663   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17664                          N.getValueType());
17665   Base = N;
17666 
17667   return Mode;
17668 }
17669 
17670 bool PPCTargetLowering::splitValueIntoRegisterParts(
17671     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
17672     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
17673   EVT ValVT = Val.getValueType();
17674   // If we are splitting a scalar integer into f64 parts (i.e. so they
17675   // can be placed into VFRC registers), we need to zero extend and
17676   // bitcast the values. This will ensure the value is placed into a
17677   // VSR using direct moves or stack operations as needed.
17678   if (PartVT == MVT::f64 &&
17679       (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
17680     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
17681     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
17682     Parts[0] = Val;
17683     return true;
17684   }
17685   return false;
17686 }
17687 
17688 // If we happen to match to an aligned D-Form, check if the Frame Index is
17689 // adequately aligned. If it is not, reset the mode to match to X-Form.
17690 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
17691                                    PPC::AddrMode &Mode) {
17692   if (!isa<FrameIndexSDNode>(N))
17693     return;
17694   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
17695       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
17696     Mode = PPC::AM_XForm;
17697 }
17698 
17699 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17700 /// compute the address flags of the node, get the optimal address mode based
17701 /// on the flags, and set the Base and Disp based on the address mode.
17702 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17703                                                        SDValue N, SDValue &Disp,
17704                                                        SDValue &Base,
17705                                                        SelectionDAG &DAG,
17706                                                        MaybeAlign Align) const {
17707   SDLoc DL(Parent);
17708 
17709   // Compute the address flags.
17710   unsigned Flags = computeMOFlags(Parent, N, DAG);
17711 
17712   // Get the optimal address mode based on the Flags.
17713   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17714 
17715   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17716   // Select an X-Form load if it is not.
17717   setXFormForUnalignedFI(N, Flags, Mode);
17718 
17719   // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
17720   if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
17721     assert(Subtarget.isUsingPCRelativeCalls() &&
17722            "Must be using PC-Relative calls when a valid PC-Relative node is "
17723            "present!");
17724     Mode = PPC::AM_PCRel;
17725   }
17726 
17727   // Set Base and Disp accordingly depending on the address mode.
17728   switch (Mode) {
17729   case PPC::AM_DForm:
17730   case PPC::AM_DSForm:
17731   case PPC::AM_DQForm: {
17732     // This is a register plus a 16-bit immediate. The base will be the
17733     // register and the displacement will be the immediate unless it
17734     // isn't sufficiently aligned.
17735     if (Flags & PPC::MOF_RPlusSImm16) {
17736       SDValue Op0 = N.getOperand(0);
17737       SDValue Op1 = N.getOperand(1);
17738       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17739       if (!Align || isAligned(*Align, Imm)) {
17740         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17741         Base = Op0;
17742         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17743           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17744           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17745         }
17746         break;
17747       }
17748     }
17749     // This is a register plus the @lo relocation. The base is the register
17750     // and the displacement is the global address.
17751     else if (Flags & PPC::MOF_RPlusLo) {
17752       Disp = N.getOperand(1).getOperand(0); // The global address.
17753       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17754              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17755              Disp.getOpcode() == ISD::TargetConstantPool ||
17756              Disp.getOpcode() == ISD::TargetJumpTable);
17757       Base = N.getOperand(0);
17758       break;
17759     }
17760     // This is a constant address at most 32 bits. The base will be
17761     // zero or load-immediate-shifted and the displacement will be
17762     // the low 16 bits of the address.
17763     else if (Flags & PPC::MOF_AddrIsSImm32) {
17764       auto *CN = cast<ConstantSDNode>(N);
17765       EVT CNType = CN->getValueType(0);
17766       uint64_t CNImm = CN->getZExtValue();
17767       // If this address fits entirely in a 16-bit sext immediate field, codegen
17768       // this as "d, 0".
17769       int16_t Imm;
17770       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17771         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17772         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17773                                CNType);
17774         break;
17775       }
17776       // Handle 32-bit sext immediate with LIS + Addr mode.
17777       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
17778           (!Align || isAligned(*Align, CNImm))) {
17779         int32_t Addr = (int32_t)CNImm;
17780         // Otherwise, break this down into LIS + Disp.
17781         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
17782         Base =
17783             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
17784         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
17785         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
17786         break;
17787       }
17788     }
17789     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17790     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
17791     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
17792       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17793       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17794     } else
17795       Base = N;
17796     break;
17797   }
17798   case PPC::AM_PrefixDForm: {
17799     int64_t Imm34 = 0;
17800     unsigned Opcode = N.getOpcode();
17801     if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
17802         (isIntS34Immediate(N.getOperand(1), Imm34))) {
17803       // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
17804       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
17805       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
17806         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17807       else
17808         Base = N.getOperand(0);
17809     } else if (isIntS34Immediate(N, Imm34)) {
17810       // The address is a 34-bit signed immediate.
17811       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
17812       Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
17813     }
17814     break;
17815   }
17816   case PPC::AM_PCRel: {
17817     // When selecting PC-Relative instructions, "Base" is not utilized as
17818     // we select the address as [PC+imm].
17819     Disp = N;
17820     break;
17821   }
17822   case PPC::AM_None:
17823     break;
17824   default: { // By default, X-Form is always available to be selected.
17825     // When a frame index is not aligned, we also match by XForm.
17826     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
17827     Base = FI ? N : N.getOperand(1);
17828     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17829                                 N.getValueType())
17830               : N.getOperand(0);
17831     break;
17832   }
17833   }
17834   return Mode;
17835 }
17836 
17837 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
17838                                                  bool Return,
17839                                                  bool IsVarArg) const {
17840   switch (CC) {
17841   case CallingConv::Cold:
17842     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
17843   default:
17844     return CC_PPC64_ELF_FIS;
17845   }
17846 }
17847 
17848 TargetLowering::AtomicExpansionKind
17849 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
17850   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
17851   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17852     return AtomicExpansionKind::MaskedIntrinsic;
17853   return TargetLowering::shouldExpandAtomicRMWInIR(AI);
17854 }
17855 
17856 TargetLowering::AtomicExpansionKind
17857 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
17858   unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
17859   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17860     return AtomicExpansionKind::MaskedIntrinsic;
17861   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
17862 }
17863 
17864 static Intrinsic::ID
17865 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
17866   switch (BinOp) {
17867   default:
17868     llvm_unreachable("Unexpected AtomicRMW BinOp");
17869   case AtomicRMWInst::Xchg:
17870     return Intrinsic::ppc_atomicrmw_xchg_i128;
17871   case AtomicRMWInst::Add:
17872     return Intrinsic::ppc_atomicrmw_add_i128;
17873   case AtomicRMWInst::Sub:
17874     return Intrinsic::ppc_atomicrmw_sub_i128;
17875   case AtomicRMWInst::And:
17876     return Intrinsic::ppc_atomicrmw_and_i128;
17877   case AtomicRMWInst::Or:
17878     return Intrinsic::ppc_atomicrmw_or_i128;
17879   case AtomicRMWInst::Xor:
17880     return Intrinsic::ppc_atomicrmw_xor_i128;
17881   case AtomicRMWInst::Nand:
17882     return Intrinsic::ppc_atomicrmw_nand_i128;
17883   }
17884 }
17885 
17886 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
17887     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
17888     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
17889   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17890          "Only support quadword now");
17891   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17892   Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
17893   assert(ValTy->getPrimitiveSizeInBits() == 128);
17894   Function *RMW = Intrinsic::getDeclaration(
17895       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
17896   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17897   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
17898   Value *IncrHi =
17899       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
17900   Value *Addr =
17901       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17902   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
17903   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17904   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17905   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17906   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17907   return Builder.CreateOr(
17908       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17909 }
17910 
17911 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
17912     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
17913     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
17914   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17915          "Only support quadword now");
17916   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17917   Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
17918   assert(ValTy->getPrimitiveSizeInBits() == 128);
17919   Function *IntCmpXchg =
17920       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
17921   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17922   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
17923   Value *CmpHi =
17924       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
17925   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
17926   Value *NewHi =
17927       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
17928   Value *Addr =
17929       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17930   emitLeadingFence(Builder, CI, Ord);
17931   Value *LoHi =
17932       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
17933   emitTrailingFence(Builder, CI, Ord);
17934   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17935   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17936   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17937   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17938   return Builder.CreateOr(
17939       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17940 }
17941