1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/CallingConv.h"
58 #include "llvm/IR/Constant.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/Intrinsics.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/MC/MCExpr.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Support/AtomicOrdering.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CodeGen.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/Format.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstdint>
92 #include <iterator>
93 #include <list>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 
99 #define DEBUG_TYPE "ppc-lowering"
100 
101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
103 
104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
106 
107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisableSCO("disable-ppc-sco",
111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
112 
113 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
114 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
115 
116 STATISTIC(NumTailCalls, "Number of tail calls");
117 STATISTIC(NumSiblingCalls, "Number of sibling calls");
118 
119 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
120 
121 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
122 
123 // FIXME: Remove this once the bug has been fixed!
124 extern cl::opt<bool> ANDIGlueBug;
125 
126 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
127                                      const PPCSubtarget &STI)
128     : TargetLowering(TM), Subtarget(STI) {
129   // Use _setjmp/_longjmp instead of setjmp/longjmp.
130   setUseUnderscoreSetJmp(true);
131   setUseUnderscoreLongJmp(true);
132 
133   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
134   // arguments are at least 4/8 bytes aligned.
135   bool isPPC64 = Subtarget.isPPC64();
136   setMinStackArgumentAlignment(isPPC64 ? 8:4);
137 
138   // Set up the register classes.
139   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
140   if (!useSoftFloat()) {
141     if (hasSPE()) {
142       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
143       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
144     } else {
145       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
146       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
147     }
148   }
149 
150   // Match BITREVERSE to customized fast code sequence in the td file.
151   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
152   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
153 
154   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
155   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
156 
157   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
158   for (MVT VT : MVT::integer_valuetypes()) {
159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
160     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
161   }
162 
163   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
164 
165   // PowerPC has pre-inc load and store's.
166   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
167   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
168   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
169   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
170   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
171   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
172   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
173   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
174   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
175   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
176   if (!Subtarget.hasSPE()) {
177     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
178     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
179     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
180     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
181   }
182 
183   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
184   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
185   for (MVT VT : ScalarIntVTs) {
186     setOperationAction(ISD::ADDC, VT, Legal);
187     setOperationAction(ISD::ADDE, VT, Legal);
188     setOperationAction(ISD::SUBC, VT, Legal);
189     setOperationAction(ISD::SUBE, VT, Legal);
190   }
191 
192   if (Subtarget.useCRBits()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
194 
195     if (isPPC64 || Subtarget.hasFPCVT()) {
196       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
197       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
198                          isPPC64 ? MVT::i64 : MVT::i32);
199       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
200       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
201                         isPPC64 ? MVT::i64 : MVT::i32);
202     } else {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
204       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
205     }
206 
207     // PowerPC does not support direct load/store of condition registers.
208     setOperationAction(ISD::LOAD, MVT::i1, Custom);
209     setOperationAction(ISD::STORE, MVT::i1, Custom);
210 
211     // FIXME: Remove this once the ANDI glue bug is fixed:
212     if (ANDIGlueBug)
213       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
214 
215     for (MVT VT : MVT::integer_valuetypes()) {
216       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
217       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
218       setTruncStoreAction(VT, MVT::i1, Expand);
219     }
220 
221     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
222   }
223 
224   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
225   // PPC (the libcall is not available).
226   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
227   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
228 
229   // We do not currently implement these libm ops for PowerPC.
230   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
231   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
232   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
233   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
234   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
235   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
236 
237   // PowerPC has no SREM/UREM instructions unless we are on P9
238   // On P9 we may use a hardware instruction to compute the remainder.
239   // The instructions are not legalized directly because in the cases where the
240   // result of both the remainder and the division is required it is more
241   // efficient to compute the remainder from the result of the division rather
242   // than use the remainder instruction.
243   if (Subtarget.isISA3_0()) {
244     setOperationAction(ISD::SREM, MVT::i32, Custom);
245     setOperationAction(ISD::UREM, MVT::i32, Custom);
246     setOperationAction(ISD::SREM, MVT::i64, Custom);
247     setOperationAction(ISD::UREM, MVT::i64, Custom);
248   } else {
249     setOperationAction(ISD::SREM, MVT::i32, Expand);
250     setOperationAction(ISD::UREM, MVT::i32, Expand);
251     setOperationAction(ISD::SREM, MVT::i64, Expand);
252     setOperationAction(ISD::UREM, MVT::i64, Expand);
253   }
254 
255   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
256   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
257   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
258   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
259   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
260   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
261   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
262   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
263   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
264 
265   // We don't support sin/cos/sqrt/fmod/pow
266   setOperationAction(ISD::FSIN , MVT::f64, Expand);
267   setOperationAction(ISD::FCOS , MVT::f64, Expand);
268   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
269   setOperationAction(ISD::FREM , MVT::f64, Expand);
270   setOperationAction(ISD::FPOW , MVT::f64, Expand);
271   setOperationAction(ISD::FSIN , MVT::f32, Expand);
272   setOperationAction(ISD::FCOS , MVT::f32, Expand);
273   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
274   setOperationAction(ISD::FREM , MVT::f32, Expand);
275   setOperationAction(ISD::FPOW , MVT::f32, Expand);
276   if (Subtarget.hasSPE()) {
277     setOperationAction(ISD::FMA  , MVT::f64, Expand);
278     setOperationAction(ISD::FMA  , MVT::f32, Expand);
279   } else {
280     setOperationAction(ISD::FMA  , MVT::f64, Legal);
281     setOperationAction(ISD::FMA  , MVT::f32, Legal);
282   }
283 
284   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
285 
286   // If we're enabling GP optimizations, use hardware square root
287   if (!Subtarget.hasFSQRT() &&
288       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
289         Subtarget.hasFRE()))
290     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
291 
292   if (!Subtarget.hasFSQRT() &&
293       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
294         Subtarget.hasFRES()))
295     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
296 
297   if (Subtarget.hasFCPSGN()) {
298     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
299     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
300   } else {
301     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
302     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
303   }
304 
305   if (Subtarget.hasFPRND()) {
306     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
307     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
308     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
309     setOperationAction(ISD::FROUND, MVT::f64, Legal);
310 
311     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
312     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
313     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
314     setOperationAction(ISD::FROUND, MVT::f32, Legal);
315   }
316 
317   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
318   // to speed up scalar BSWAP64.
319   // CTPOP or CTTZ were introduced in P8/P9 respectively
320   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
321   if (Subtarget.hasP9Vector())
322     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
323   else
324     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
325   if (Subtarget.isISA3_0()) {
326     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
327     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
328   } else {
329     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
330     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
331   }
332 
333   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
334     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
335     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
336   } else {
337     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
338     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
339   }
340 
341   // PowerPC does not have ROTR
342   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
343   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
344 
345   if (!Subtarget.useCRBits()) {
346     // PowerPC does not have Select
347     setOperationAction(ISD::SELECT, MVT::i32, Expand);
348     setOperationAction(ISD::SELECT, MVT::i64, Expand);
349     setOperationAction(ISD::SELECT, MVT::f32, Expand);
350     setOperationAction(ISD::SELECT, MVT::f64, Expand);
351   }
352 
353   // PowerPC wants to turn select_cc of FP into fsel when possible.
354   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
355   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
356 
357   // PowerPC wants to optimize integer setcc a bit
358   if (!Subtarget.useCRBits())
359     setOperationAction(ISD::SETCC, MVT::i32, Custom);
360 
361   // PowerPC does not have BRCOND which requires SetCC
362   if (!Subtarget.useCRBits())
363     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
364 
365   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
366 
367   if (Subtarget.hasSPE()) {
368     // SPE has built-in conversions
369     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
370     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
371     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
372   } else {
373     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
374     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
375 
376     // PowerPC does not have [U|S]INT_TO_FP
377     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
378     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
379   }
380 
381   if (Subtarget.hasDirectMove() && isPPC64) {
382     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
383     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
384     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
385     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
386   } else {
387     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
388     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
389     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
390     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
391   }
392 
393   // We cannot sextinreg(i1).  Expand to shifts.
394   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
395 
396   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
397   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
398   // support continuation, user-level threading, and etc.. As a result, no
399   // other SjLj exception interfaces are implemented and please don't build
400   // your own exception handling based on them.
401   // LLVM/Clang supports zero-cost DWARF exception handling.
402   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
403   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
404 
405   // We want to legalize GlobalAddress and ConstantPool nodes into the
406   // appropriate instructions to materialize the address.
407   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
408   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
409   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
410   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
411   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
412   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
413   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
414   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
415   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
416   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
417 
418   // TRAP is legal.
419   setOperationAction(ISD::TRAP, MVT::Other, Legal);
420 
421   // TRAMPOLINE is custom lowered.
422   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
423   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
424 
425   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
426   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
427 
428   if (Subtarget.isSVR4ABI()) {
429     if (isPPC64) {
430       // VAARG always uses double-word chunks, so promote anything smaller.
431       setOperationAction(ISD::VAARG, MVT::i1, Promote);
432       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
433       setOperationAction(ISD::VAARG, MVT::i8, Promote);
434       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
435       setOperationAction(ISD::VAARG, MVT::i16, Promote);
436       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
437       setOperationAction(ISD::VAARG, MVT::i32, Promote);
438       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
439       setOperationAction(ISD::VAARG, MVT::Other, Expand);
440     } else {
441       // VAARG is custom lowered with the 32-bit SVR4 ABI.
442       setOperationAction(ISD::VAARG, MVT::Other, Custom);
443       setOperationAction(ISD::VAARG, MVT::i64, Custom);
444     }
445   } else
446     setOperationAction(ISD::VAARG, MVT::Other, Expand);
447 
448   if (Subtarget.isSVR4ABI() && !isPPC64)
449     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
450     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
451   else
452     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
453 
454   // Use the default implementation.
455   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
456   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
457   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
458   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
459   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
460   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
461   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
462   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
463   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
464 
465   // We want to custom lower some of our intrinsics.
466   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
467 
468   // To handle counter-based loop conditions.
469   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
470 
471   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
472   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
473   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
474   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
475 
476   // Comparisons that require checking two conditions.
477   if (Subtarget.hasSPE()) {
478     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
479     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
480     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
481     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
482   }
483   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
484   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
485   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
486   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
487   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
488   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
489   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
490   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
491   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
492   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
493   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
494   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
495 
496   if (Subtarget.has64BitSupport()) {
497     // They also have instructions for converting between i64 and fp.
498     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
499     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
500     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
501     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
502     // This is just the low 32 bits of a (signed) fp->i64 conversion.
503     // We cannot do this with Promote because i64 is not a legal type.
504     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
505 
506     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
507       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
508   } else {
509     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
510     if (Subtarget.hasSPE())
511       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
512     else
513       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
514   }
515 
516   // With the instructions enabled under FPCVT, we can do everything.
517   if (Subtarget.hasFPCVT()) {
518     if (Subtarget.has64BitSupport()) {
519       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
520       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
521       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
522       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
523     }
524 
525     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
526     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
527     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
528     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
529   }
530 
531   if (Subtarget.use64BitRegs()) {
532     // 64-bit PowerPC implementations can support i64 types directly
533     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
534     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
535     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
536     // 64-bit PowerPC wants to expand i128 shifts itself.
537     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
538     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
539     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
540   } else {
541     // 32-bit PowerPC wants to expand i64 shifts itself.
542     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
543     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
544     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
545   }
546 
547   if (Subtarget.hasAltivec()) {
548     // First set operation action for all vector types to expand. Then we
549     // will selectively turn on ones that can be effectively codegen'd.
550     for (MVT VT : MVT::vector_valuetypes()) {
551       // add/sub are legal for all supported vector VT's.
552       setOperationAction(ISD::ADD, VT, Legal);
553       setOperationAction(ISD::SUB, VT, Legal);
554 
555       // Vector instructions introduced in P8
556       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
557         setOperationAction(ISD::CTPOP, VT, Legal);
558         setOperationAction(ISD::CTLZ, VT, Legal);
559       }
560       else {
561         setOperationAction(ISD::CTPOP, VT, Expand);
562         setOperationAction(ISD::CTLZ, VT, Expand);
563       }
564 
565       // Vector instructions introduced in P9
566       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
567         setOperationAction(ISD::CTTZ, VT, Legal);
568       else
569         setOperationAction(ISD::CTTZ, VT, Expand);
570 
571       // We promote all shuffles to v16i8.
572       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
573       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
574 
575       // We promote all non-typed operations to v4i32.
576       setOperationAction(ISD::AND   , VT, Promote);
577       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
578       setOperationAction(ISD::OR    , VT, Promote);
579       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
580       setOperationAction(ISD::XOR   , VT, Promote);
581       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
582       setOperationAction(ISD::LOAD  , VT, Promote);
583       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
584       setOperationAction(ISD::SELECT, VT, Promote);
585       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
586       setOperationAction(ISD::VSELECT, VT, Legal);
587       setOperationAction(ISD::SELECT_CC, VT, Promote);
588       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
589       setOperationAction(ISD::STORE, VT, Promote);
590       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
591 
592       // No other operations are legal.
593       setOperationAction(ISD::MUL , VT, Expand);
594       setOperationAction(ISD::SDIV, VT, Expand);
595       setOperationAction(ISD::SREM, VT, Expand);
596       setOperationAction(ISD::UDIV, VT, Expand);
597       setOperationAction(ISD::UREM, VT, Expand);
598       setOperationAction(ISD::FDIV, VT, Expand);
599       setOperationAction(ISD::FREM, VT, Expand);
600       setOperationAction(ISD::FNEG, VT, Expand);
601       setOperationAction(ISD::FSQRT, VT, Expand);
602       setOperationAction(ISD::FLOG, VT, Expand);
603       setOperationAction(ISD::FLOG10, VT, Expand);
604       setOperationAction(ISD::FLOG2, VT, Expand);
605       setOperationAction(ISD::FEXP, VT, Expand);
606       setOperationAction(ISD::FEXP2, VT, Expand);
607       setOperationAction(ISD::FSIN, VT, Expand);
608       setOperationAction(ISD::FCOS, VT, Expand);
609       setOperationAction(ISD::FABS, VT, Expand);
610       setOperationAction(ISD::FFLOOR, VT, Expand);
611       setOperationAction(ISD::FCEIL,  VT, Expand);
612       setOperationAction(ISD::FTRUNC, VT, Expand);
613       setOperationAction(ISD::FRINT,  VT, Expand);
614       setOperationAction(ISD::FNEARBYINT, VT, Expand);
615       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
616       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
617       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
618       setOperationAction(ISD::MULHU, VT, Expand);
619       setOperationAction(ISD::MULHS, VT, Expand);
620       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
621       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
622       setOperationAction(ISD::UDIVREM, VT, Expand);
623       setOperationAction(ISD::SDIVREM, VT, Expand);
624       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
625       setOperationAction(ISD::FPOW, VT, Expand);
626       setOperationAction(ISD::BSWAP, VT, Expand);
627       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
628       setOperationAction(ISD::ROTL, VT, Expand);
629       setOperationAction(ISD::ROTR, VT, Expand);
630 
631       for (MVT InnerVT : MVT::vector_valuetypes()) {
632         setTruncStoreAction(VT, InnerVT, Expand);
633         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
634         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
635         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
636       }
637     }
638 
639     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
640       setOperationAction(ISD::ABS, VT, Custom);
641 
642     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
643     // with merges, splats, etc.
644     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
645 
646     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
647     // are cheap, so handle them before they get expanded to scalar.
648     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
649     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
650     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
651     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
652     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
653 
654     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
655     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
656     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
657     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
658     setOperationAction(ISD::SELECT, MVT::v4i32,
659                        Subtarget.useCRBits() ? Legal : Expand);
660     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
661     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
662     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
663     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
664     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
665     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
666     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
667     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
668     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
669 
670     // Without hasP8Altivec set, v2i64 SMAX isn't available.
671     // But ABS custom lowering requires SMAX support.
672     if (!Subtarget.hasP8Altivec())
673       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
674 
675     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
676     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
677     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
678     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
679 
680     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
681     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
682 
683     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
684       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
685       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
686     }
687 
688     if (Subtarget.hasP8Altivec())
689       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
690     else
691       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
692 
693     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
694     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
695 
696     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
697     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
698 
699     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
700     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
701     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
702     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
703 
704     // Altivec does not contain unordered floating-point compare instructions
705     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
706     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
707     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
708     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
709 
710     if (Subtarget.hasVSX()) {
711       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
712       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
713       if (Subtarget.hasP8Vector()) {
714         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
715         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
716       }
717       if (Subtarget.hasDirectMove() && isPPC64) {
718         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
719         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
720         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
721         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
722         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
723         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
724         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
725         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
726       }
727       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
728 
729       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
730       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
731       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
732       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
733       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
734 
735       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
736 
737       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
738       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
739 
740       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
741       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
742 
743       // Share the Altivec comparison restrictions.
744       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
745       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
746       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
747       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
748 
749       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
750       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
751 
752       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
753 
754       if (Subtarget.hasP8Vector())
755         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
756 
757       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
758 
759       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
760       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
761       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
762 
763       if (Subtarget.hasP8Altivec()) {
764         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
765         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
766         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
767 
768         // 128 bit shifts can be accomplished via 3 instructions for SHL and
769         // SRL, but not for SRA because of the instructions available:
770         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
771         // doing
772         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
773         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
774         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
775 
776         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
777       }
778       else {
779         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
780         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
781         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
782 
783         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
784 
785         // VSX v2i64 only supports non-arithmetic operations.
786         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
787         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
788       }
789 
790       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
791       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
792       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
793       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
794 
795       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
796 
797       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
798       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
799       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
800       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
801 
802       // Custom handling for partial vectors of integers converted to
803       // floating point. We already have optimal handling for v2i32 through
804       // the DAG combine, so those aren't necessary.
805       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
806       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
807       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
808       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
809       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
810       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
811       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
812       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
813 
814       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
815       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
816       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
817       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
818 
819       if (Subtarget.hasDirectMove())
820         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
821       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
822 
823       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
824     }
825 
826     if (Subtarget.hasP8Altivec()) {
827       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
828       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
829     }
830 
831     if (Subtarget.hasP9Vector()) {
832       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
833       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
834 
835       // 128 bit shifts can be accomplished via 3 instructions for SHL and
836       // SRL, but not for SRA because of the instructions available:
837       // VS{RL} and VS{RL}O.
838       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
839       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
840       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
841 
842       if (EnableQuadPrecision) {
843         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
844         setOperationAction(ISD::FADD, MVT::f128, Legal);
845         setOperationAction(ISD::FSUB, MVT::f128, Legal);
846         setOperationAction(ISD::FDIV, MVT::f128, Legal);
847         setOperationAction(ISD::FMUL, MVT::f128, Legal);
848         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
849         // No extending loads to f128 on PPC.
850         for (MVT FPT : MVT::fp_valuetypes())
851           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
852         setOperationAction(ISD::FMA, MVT::f128, Legal);
853         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
854         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
855         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
856         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
857         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
858         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
859 
860         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
861         setOperationAction(ISD::FRINT, MVT::f128, Legal);
862         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
863         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
864         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
865         setOperationAction(ISD::FROUND, MVT::f128, Legal);
866 
867         setOperationAction(ISD::SELECT, MVT::f128, Expand);
868         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
869         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
870         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
871         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
872         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
873         // No implementation for these ops for PowerPC.
874         setOperationAction(ISD::FSIN , MVT::f128, Expand);
875         setOperationAction(ISD::FCOS , MVT::f128, Expand);
876         setOperationAction(ISD::FPOW, MVT::f128, Expand);
877         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
878         setOperationAction(ISD::FREM, MVT::f128, Expand);
879       }
880 
881     }
882 
883     if (Subtarget.hasP9Altivec()) {
884       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
885       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
886     }
887   }
888 
889   if (Subtarget.hasQPX()) {
890     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
891     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
892     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
893     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
894 
895     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
896     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
897 
898     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
899     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
900 
901     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
902     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
903 
904     if (!Subtarget.useCRBits())
905       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
906     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
907 
908     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
909     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
910     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
911     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
912     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
913     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
914     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
915 
916     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
917     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
918 
919     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
920     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
921     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
922 
923     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
924     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
925     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
926     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
927     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
928     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
929     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
930     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
931     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
932     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
933 
934     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
935     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
936 
937     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
938     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
939 
940     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
941 
942     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
943     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
944     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
945     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
946 
947     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
948     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
949 
950     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
951     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
952 
953     if (!Subtarget.useCRBits())
954       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
955     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
956 
957     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
958     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
959     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
960     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
961     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
962     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
963     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
964 
965     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
966     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
967 
968     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
969     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
970     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
971     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
972     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
973     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
974     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
975     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
976     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
977     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
978 
979     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
980     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
981 
982     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
983     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
984 
985     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
986 
987     setOperationAction(ISD::AND , MVT::v4i1, Legal);
988     setOperationAction(ISD::OR , MVT::v4i1, Legal);
989     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
990 
991     if (!Subtarget.useCRBits())
992       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
993     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
994 
995     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
996     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
997 
998     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
999     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1000     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1001     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1002     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1003     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1004     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1005 
1006     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1007     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1008 
1009     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1010 
1011     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1012     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1013     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1014     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1015 
1016     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1017     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1018     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1019     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1020 
1021     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1022     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1023 
1024     // These need to set FE_INEXACT, and so cannot be vectorized here.
1025     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1026     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1027 
1028     if (TM.Options.UnsafeFPMath) {
1029       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1030       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1031 
1032       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1033       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1034     } else {
1035       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1036       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1037 
1038       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1039       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1040     }
1041   }
1042 
1043   if (Subtarget.has64BitSupport())
1044     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1045 
1046   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1047 
1048   if (!isPPC64) {
1049     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1050     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1051   }
1052 
1053   setBooleanContents(ZeroOrOneBooleanContent);
1054 
1055   if (Subtarget.hasAltivec()) {
1056     // Altivec instructions set fields to all zeros or all ones.
1057     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1058   }
1059 
1060   if (!isPPC64) {
1061     // These libcalls are not available in 32-bit.
1062     setLibcallName(RTLIB::SHL_I128, nullptr);
1063     setLibcallName(RTLIB::SRL_I128, nullptr);
1064     setLibcallName(RTLIB::SRA_I128, nullptr);
1065   }
1066 
1067   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1068 
1069   // We have target-specific dag combine patterns for the following nodes:
1070   setTargetDAGCombine(ISD::ADD);
1071   setTargetDAGCombine(ISD::SHL);
1072   setTargetDAGCombine(ISD::SRA);
1073   setTargetDAGCombine(ISD::SRL);
1074   setTargetDAGCombine(ISD::MUL);
1075   setTargetDAGCombine(ISD::SINT_TO_FP);
1076   setTargetDAGCombine(ISD::BUILD_VECTOR);
1077   if (Subtarget.hasFPCVT())
1078     setTargetDAGCombine(ISD::UINT_TO_FP);
1079   setTargetDAGCombine(ISD::LOAD);
1080   setTargetDAGCombine(ISD::STORE);
1081   setTargetDAGCombine(ISD::BR_CC);
1082   if (Subtarget.useCRBits())
1083     setTargetDAGCombine(ISD::BRCOND);
1084   setTargetDAGCombine(ISD::BSWAP);
1085   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1086   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1087   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1088 
1089   setTargetDAGCombine(ISD::SIGN_EXTEND);
1090   setTargetDAGCombine(ISD::ZERO_EXTEND);
1091   setTargetDAGCombine(ISD::ANY_EXTEND);
1092 
1093   setTargetDAGCombine(ISD::TRUNCATE);
1094 
1095   if (Subtarget.useCRBits()) {
1096     setTargetDAGCombine(ISD::TRUNCATE);
1097     setTargetDAGCombine(ISD::SETCC);
1098     setTargetDAGCombine(ISD::SELECT_CC);
1099   }
1100 
1101   // Use reciprocal estimates.
1102   if (TM.Options.UnsafeFPMath) {
1103     setTargetDAGCombine(ISD::FDIV);
1104     setTargetDAGCombine(ISD::FSQRT);
1105   }
1106 
1107   if (Subtarget.hasP9Altivec()) {
1108     setTargetDAGCombine(ISD::ABS);
1109     setTargetDAGCombine(ISD::VSELECT);
1110   }
1111 
1112   // Darwin long double math library functions have $LDBL128 appended.
1113   if (Subtarget.isDarwin()) {
1114     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1115     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1116     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1117     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1118     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1119     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1120     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1121     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1122     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1123     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1124   }
1125 
1126   if (EnableQuadPrecision) {
1127     setLibcallName(RTLIB::LOG_F128, "logf128");
1128     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1129     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1130     setLibcallName(RTLIB::EXP_F128, "expf128");
1131     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1132     setLibcallName(RTLIB::SIN_F128, "sinf128");
1133     setLibcallName(RTLIB::COS_F128, "cosf128");
1134     setLibcallName(RTLIB::POW_F128, "powf128");
1135     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1136     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1137     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1138     setLibcallName(RTLIB::REM_F128, "fmodf128");
1139   }
1140 
1141   // With 32 condition bits, we don't need to sink (and duplicate) compares
1142   // aggressively in CodeGenPrep.
1143   if (Subtarget.useCRBits()) {
1144     setHasMultipleConditionRegisters();
1145     setJumpIsExpensive();
1146   }
1147 
1148   setMinFunctionAlignment(2);
1149   if (Subtarget.isDarwin())
1150     setPrefFunctionAlignment(4);
1151 
1152   switch (Subtarget.getDarwinDirective()) {
1153   default: break;
1154   case PPC::DIR_970:
1155   case PPC::DIR_A2:
1156   case PPC::DIR_E500:
1157   case PPC::DIR_E500mc:
1158   case PPC::DIR_E5500:
1159   case PPC::DIR_PWR4:
1160   case PPC::DIR_PWR5:
1161   case PPC::DIR_PWR5X:
1162   case PPC::DIR_PWR6:
1163   case PPC::DIR_PWR6X:
1164   case PPC::DIR_PWR7:
1165   case PPC::DIR_PWR8:
1166   case PPC::DIR_PWR9:
1167     setPrefFunctionAlignment(4);
1168     setPrefLoopAlignment(4);
1169     break;
1170   }
1171 
1172   if (Subtarget.enableMachineScheduler())
1173     setSchedulingPreference(Sched::Source);
1174   else
1175     setSchedulingPreference(Sched::Hybrid);
1176 
1177   computeRegisterProperties(STI.getRegisterInfo());
1178 
1179   // The Freescale cores do better with aggressive inlining of memcpy and
1180   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1181   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1182       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1183     MaxStoresPerMemset = 32;
1184     MaxStoresPerMemsetOptSize = 16;
1185     MaxStoresPerMemcpy = 32;
1186     MaxStoresPerMemcpyOptSize = 8;
1187     MaxStoresPerMemmove = 32;
1188     MaxStoresPerMemmoveOptSize = 8;
1189   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1190     // The A2 also benefits from (very) aggressive inlining of memcpy and
1191     // friends. The overhead of a the function call, even when warm, can be
1192     // over one hundred cycles.
1193     MaxStoresPerMemset = 128;
1194     MaxStoresPerMemcpy = 128;
1195     MaxStoresPerMemmove = 128;
1196     MaxLoadsPerMemcmp = 128;
1197   } else {
1198     MaxLoadsPerMemcmp = 8;
1199     MaxLoadsPerMemcmpOptSize = 4;
1200   }
1201 }
1202 
1203 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1204 /// the desired ByVal argument alignment.
1205 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1206                              unsigned MaxMaxAlign) {
1207   if (MaxAlign == MaxMaxAlign)
1208     return;
1209   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1210     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1211       MaxAlign = 32;
1212     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1213       MaxAlign = 16;
1214   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1215     unsigned EltAlign = 0;
1216     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1217     if (EltAlign > MaxAlign)
1218       MaxAlign = EltAlign;
1219   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1220     for (auto *EltTy : STy->elements()) {
1221       unsigned EltAlign = 0;
1222       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1223       if (EltAlign > MaxAlign)
1224         MaxAlign = EltAlign;
1225       if (MaxAlign == MaxMaxAlign)
1226         break;
1227     }
1228   }
1229 }
1230 
1231 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1232 /// function arguments in the caller parameter area.
1233 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1234                                                   const DataLayout &DL) const {
1235   // Darwin passes everything on 4 byte boundary.
1236   if (Subtarget.isDarwin())
1237     return 4;
1238 
1239   // 16byte and wider vectors are passed on 16byte boundary.
1240   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1241   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1242   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1243     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1244   return Align;
1245 }
1246 
1247 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1248                                                           CallingConv:: ID CC,
1249                                                           EVT VT) const {
1250   if (Subtarget.hasSPE() && VT == MVT::f64)
1251     return 2;
1252   return PPCTargetLowering::getNumRegisters(Context, VT);
1253 }
1254 
1255 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1256                                                      CallingConv:: ID CC,
1257                                                      EVT VT) const {
1258   if (Subtarget.hasSPE() && VT == MVT::f64)
1259     return MVT::i32;
1260   return PPCTargetLowering::getRegisterType(Context, VT);
1261 }
1262 
1263 bool PPCTargetLowering::useSoftFloat() const {
1264   return Subtarget.useSoftFloat();
1265 }
1266 
1267 bool PPCTargetLowering::hasSPE() const {
1268   return Subtarget.hasSPE();
1269 }
1270 
1271 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1272   switch ((PPCISD::NodeType)Opcode) {
1273   case PPCISD::FIRST_NUMBER:    break;
1274   case PPCISD::FSEL:            return "PPCISD::FSEL";
1275   case PPCISD::FCFID:           return "PPCISD::FCFID";
1276   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1277   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1278   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1279   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1280   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1281   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1282   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1283   case PPCISD::FP_TO_UINT_IN_VSR:
1284                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1285   case PPCISD::FP_TO_SINT_IN_VSR:
1286                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1287   case PPCISD::FRE:             return "PPCISD::FRE";
1288   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1289   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1290   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1291   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1292   case PPCISD::VPERM:           return "PPCISD::VPERM";
1293   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1294   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1295   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1296   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1297   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1298   case PPCISD::CMPB:            return "PPCISD::CMPB";
1299   case PPCISD::Hi:              return "PPCISD::Hi";
1300   case PPCISD::Lo:              return "PPCISD::Lo";
1301   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1302   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1303   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1304   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1305   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1306   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1307   case PPCISD::SRL:             return "PPCISD::SRL";
1308   case PPCISD::SRA:             return "PPCISD::SRA";
1309   case PPCISD::SHL:             return "PPCISD::SHL";
1310   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1311   case PPCISD::CALL:            return "PPCISD::CALL";
1312   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1313   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1314   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1315   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1316   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1317   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1318   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1319   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1320   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1321   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1322   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1323   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1324   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1325   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1326   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1327   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1328   case PPCISD::VCMP:            return "PPCISD::VCMP";
1329   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1330   case PPCISD::LBRX:            return "PPCISD::LBRX";
1331   case PPCISD::STBRX:           return "PPCISD::STBRX";
1332   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1333   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1334   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1335   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1336   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1337   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1338   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1339   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1340   case PPCISD::ST_VSR_SCAL_INT:
1341                                 return "PPCISD::ST_VSR_SCAL_INT";
1342   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1343   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1344   case PPCISD::BDZ:             return "PPCISD::BDZ";
1345   case PPCISD::MFFS:            return "PPCISD::MFFS";
1346   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1347   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1348   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1349   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1350   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1351   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1352   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1353   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1354   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1355   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1356   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1357   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1358   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1359   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1360   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1361   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1362   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1363   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1364   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1365   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1366   case PPCISD::SC:              return "PPCISD::SC";
1367   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1368   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1369   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1370   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1371   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1372   case PPCISD::VABSD:           return "PPCISD::VABSD";
1373   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1374   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1375   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1376   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1377   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1378   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1379   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1380   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1381   }
1382   return nullptr;
1383 }
1384 
1385 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1386                                           EVT VT) const {
1387   if (!VT.isVector())
1388     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1389 
1390   if (Subtarget.hasQPX())
1391     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1392 
1393   return VT.changeVectorElementTypeToInteger();
1394 }
1395 
1396 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1397   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1398   return true;
1399 }
1400 
1401 //===----------------------------------------------------------------------===//
1402 // Node matching predicates, for use by the tblgen matching code.
1403 //===----------------------------------------------------------------------===//
1404 
1405 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1406 static bool isFloatingPointZero(SDValue Op) {
1407   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1408     return CFP->getValueAPF().isZero();
1409   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1410     // Maybe this has already been legalized into the constant pool?
1411     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1412       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1413         return CFP->getValueAPF().isZero();
1414   }
1415   return false;
1416 }
1417 
1418 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1419 /// true if Op is undef or if it matches the specified value.
1420 static bool isConstantOrUndef(int Op, int Val) {
1421   return Op < 0 || Op == Val;
1422 }
1423 
1424 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1425 /// VPKUHUM instruction.
1426 /// The ShuffleKind distinguishes between big-endian operations with
1427 /// two different inputs (0), either-endian operations with two identical
1428 /// inputs (1), and little-endian operations with two different inputs (2).
1429 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1430 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1431                                SelectionDAG &DAG) {
1432   bool IsLE = DAG.getDataLayout().isLittleEndian();
1433   if (ShuffleKind == 0) {
1434     if (IsLE)
1435       return false;
1436     for (unsigned i = 0; i != 16; ++i)
1437       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1438         return false;
1439   } else if (ShuffleKind == 2) {
1440     if (!IsLE)
1441       return false;
1442     for (unsigned i = 0; i != 16; ++i)
1443       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1444         return false;
1445   } else if (ShuffleKind == 1) {
1446     unsigned j = IsLE ? 0 : 1;
1447     for (unsigned i = 0; i != 8; ++i)
1448       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1449           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1450         return false;
1451   }
1452   return true;
1453 }
1454 
1455 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1456 /// VPKUWUM instruction.
1457 /// The ShuffleKind distinguishes between big-endian operations with
1458 /// two different inputs (0), either-endian operations with two identical
1459 /// inputs (1), and little-endian operations with two different inputs (2).
1460 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1461 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1462                                SelectionDAG &DAG) {
1463   bool IsLE = DAG.getDataLayout().isLittleEndian();
1464   if (ShuffleKind == 0) {
1465     if (IsLE)
1466       return false;
1467     for (unsigned i = 0; i != 16; i += 2)
1468       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1469           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1470         return false;
1471   } else if (ShuffleKind == 2) {
1472     if (!IsLE)
1473       return false;
1474     for (unsigned i = 0; i != 16; i += 2)
1475       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1476           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1477         return false;
1478   } else if (ShuffleKind == 1) {
1479     unsigned j = IsLE ? 0 : 2;
1480     for (unsigned i = 0; i != 8; i += 2)
1481       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1482           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1483           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1484           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1485         return false;
1486   }
1487   return true;
1488 }
1489 
1490 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1491 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1492 /// current subtarget.
1493 ///
1494 /// The ShuffleKind distinguishes between big-endian operations with
1495 /// two different inputs (0), either-endian operations with two identical
1496 /// inputs (1), and little-endian operations with two different inputs (2).
1497 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1498 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1499                                SelectionDAG &DAG) {
1500   const PPCSubtarget& Subtarget =
1501     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1502   if (!Subtarget.hasP8Vector())
1503     return false;
1504 
1505   bool IsLE = DAG.getDataLayout().isLittleEndian();
1506   if (ShuffleKind == 0) {
1507     if (IsLE)
1508       return false;
1509     for (unsigned i = 0; i != 16; i += 4)
1510       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1511           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1512           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1513           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1514         return false;
1515   } else if (ShuffleKind == 2) {
1516     if (!IsLE)
1517       return false;
1518     for (unsigned i = 0; i != 16; i += 4)
1519       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1520           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1521           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1522           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1523         return false;
1524   } else if (ShuffleKind == 1) {
1525     unsigned j = IsLE ? 0 : 4;
1526     for (unsigned i = 0; i != 8; i += 4)
1527       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1528           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1529           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1530           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1531           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1532           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1533           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1534           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1535         return false;
1536   }
1537   return true;
1538 }
1539 
1540 /// isVMerge - Common function, used to match vmrg* shuffles.
1541 ///
1542 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1543                      unsigned LHSStart, unsigned RHSStart) {
1544   if (N->getValueType(0) != MVT::v16i8)
1545     return false;
1546   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1547          "Unsupported merge size!");
1548 
1549   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1550     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1551       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1552                              LHSStart+j+i*UnitSize) ||
1553           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1554                              RHSStart+j+i*UnitSize))
1555         return false;
1556     }
1557   return true;
1558 }
1559 
1560 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1561 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1562 /// The ShuffleKind distinguishes between big-endian merges with two
1563 /// different inputs (0), either-endian merges with two identical inputs (1),
1564 /// and little-endian merges with two different inputs (2).  For the latter,
1565 /// the input operands are swapped (see PPCInstrAltivec.td).
1566 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1567                              unsigned ShuffleKind, SelectionDAG &DAG) {
1568   if (DAG.getDataLayout().isLittleEndian()) {
1569     if (ShuffleKind == 1) // unary
1570       return isVMerge(N, UnitSize, 0, 0);
1571     else if (ShuffleKind == 2) // swapped
1572       return isVMerge(N, UnitSize, 0, 16);
1573     else
1574       return false;
1575   } else {
1576     if (ShuffleKind == 1) // unary
1577       return isVMerge(N, UnitSize, 8, 8);
1578     else if (ShuffleKind == 0) // normal
1579       return isVMerge(N, UnitSize, 8, 24);
1580     else
1581       return false;
1582   }
1583 }
1584 
1585 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1586 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1587 /// The ShuffleKind distinguishes between big-endian merges with two
1588 /// different inputs (0), either-endian merges with two identical inputs (1),
1589 /// and little-endian merges with two different inputs (2).  For the latter,
1590 /// the input operands are swapped (see PPCInstrAltivec.td).
1591 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1592                              unsigned ShuffleKind, SelectionDAG &DAG) {
1593   if (DAG.getDataLayout().isLittleEndian()) {
1594     if (ShuffleKind == 1) // unary
1595       return isVMerge(N, UnitSize, 8, 8);
1596     else if (ShuffleKind == 2) // swapped
1597       return isVMerge(N, UnitSize, 8, 24);
1598     else
1599       return false;
1600   } else {
1601     if (ShuffleKind == 1) // unary
1602       return isVMerge(N, UnitSize, 0, 0);
1603     else if (ShuffleKind == 0) // normal
1604       return isVMerge(N, UnitSize, 0, 16);
1605     else
1606       return false;
1607   }
1608 }
1609 
1610 /**
1611  * Common function used to match vmrgew and vmrgow shuffles
1612  *
1613  * The indexOffset determines whether to look for even or odd words in
1614  * the shuffle mask. This is based on the of the endianness of the target
1615  * machine.
1616  *   - Little Endian:
1617  *     - Use offset of 0 to check for odd elements
1618  *     - Use offset of 4 to check for even elements
1619  *   - Big Endian:
1620  *     - Use offset of 0 to check for even elements
1621  *     - Use offset of 4 to check for odd elements
1622  * A detailed description of the vector element ordering for little endian and
1623  * big endian can be found at
1624  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1625  * Targeting your applications - what little endian and big endian IBM XL C/C++
1626  * compiler differences mean to you
1627  *
1628  * The mask to the shuffle vector instruction specifies the indices of the
1629  * elements from the two input vectors to place in the result. The elements are
1630  * numbered in array-access order, starting with the first vector. These vectors
1631  * are always of type v16i8, thus each vector will contain 16 elements of size
1632  * 8. More info on the shuffle vector can be found in the
1633  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1634  * Language Reference.
1635  *
1636  * The RHSStartValue indicates whether the same input vectors are used (unary)
1637  * or two different input vectors are used, based on the following:
1638  *   - If the instruction uses the same vector for both inputs, the range of the
1639  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1640  *     be 0.
1641  *   - If the instruction has two different vectors then the range of the
1642  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1643  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1644  *     to 31 specify elements in the second vector).
1645  *
1646  * \param[in] N The shuffle vector SD Node to analyze
1647  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1648  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1649  * vector to the shuffle_vector instruction
1650  * \return true iff this shuffle vector represents an even or odd word merge
1651  */
1652 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1653                      unsigned RHSStartValue) {
1654   if (N->getValueType(0) != MVT::v16i8)
1655     return false;
1656 
1657   for (unsigned i = 0; i < 2; ++i)
1658     for (unsigned j = 0; j < 4; ++j)
1659       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1660                              i*RHSStartValue+j+IndexOffset) ||
1661           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1662                              i*RHSStartValue+j+IndexOffset+8))
1663         return false;
1664   return true;
1665 }
1666 
1667 /**
1668  * Determine if the specified shuffle mask is suitable for the vmrgew or
1669  * vmrgow instructions.
1670  *
1671  * \param[in] N The shuffle vector SD Node to analyze
1672  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1673  * \param[in] ShuffleKind Identify the type of merge:
1674  *   - 0 = big-endian merge with two different inputs;
1675  *   - 1 = either-endian merge with two identical inputs;
1676  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1677  *     little-endian merges).
1678  * \param[in] DAG The current SelectionDAG
1679  * \return true iff this shuffle mask
1680  */
1681 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1682                               unsigned ShuffleKind, SelectionDAG &DAG) {
1683   if (DAG.getDataLayout().isLittleEndian()) {
1684     unsigned indexOffset = CheckEven ? 4 : 0;
1685     if (ShuffleKind == 1) // Unary
1686       return isVMerge(N, indexOffset, 0);
1687     else if (ShuffleKind == 2) // swapped
1688       return isVMerge(N, indexOffset, 16);
1689     else
1690       return false;
1691   }
1692   else {
1693     unsigned indexOffset = CheckEven ? 0 : 4;
1694     if (ShuffleKind == 1) // Unary
1695       return isVMerge(N, indexOffset, 0);
1696     else if (ShuffleKind == 0) // Normal
1697       return isVMerge(N, indexOffset, 16);
1698     else
1699       return false;
1700   }
1701   return false;
1702 }
1703 
1704 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1705 /// amount, otherwise return -1.
1706 /// The ShuffleKind distinguishes between big-endian operations with two
1707 /// different inputs (0), either-endian operations with two identical inputs
1708 /// (1), and little-endian operations with two different inputs (2).  For the
1709 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1710 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1711                              SelectionDAG &DAG) {
1712   if (N->getValueType(0) != MVT::v16i8)
1713     return -1;
1714 
1715   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1716 
1717   // Find the first non-undef value in the shuffle mask.
1718   unsigned i;
1719   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1720     /*search*/;
1721 
1722   if (i == 16) return -1;  // all undef.
1723 
1724   // Otherwise, check to see if the rest of the elements are consecutively
1725   // numbered from this value.
1726   unsigned ShiftAmt = SVOp->getMaskElt(i);
1727   if (ShiftAmt < i) return -1;
1728 
1729   ShiftAmt -= i;
1730   bool isLE = DAG.getDataLayout().isLittleEndian();
1731 
1732   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1733     // Check the rest of the elements to see if they are consecutive.
1734     for (++i; i != 16; ++i)
1735       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1736         return -1;
1737   } else if (ShuffleKind == 1) {
1738     // Check the rest of the elements to see if they are consecutive.
1739     for (++i; i != 16; ++i)
1740       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1741         return -1;
1742   } else
1743     return -1;
1744 
1745   if (isLE)
1746     ShiftAmt = 16 - ShiftAmt;
1747 
1748   return ShiftAmt;
1749 }
1750 
1751 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1752 /// specifies a splat of a single element that is suitable for input to
1753 /// VSPLTB/VSPLTH/VSPLTW.
1754 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1755   assert(N->getValueType(0) == MVT::v16i8 &&
1756          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1757 
1758   // The consecutive indices need to specify an element, not part of two
1759   // different elements.  So abandon ship early if this isn't the case.
1760   if (N->getMaskElt(0) % EltSize != 0)
1761     return false;
1762 
1763   // This is a splat operation if each element of the permute is the same, and
1764   // if the value doesn't reference the second vector.
1765   unsigned ElementBase = N->getMaskElt(0);
1766 
1767   // FIXME: Handle UNDEF elements too!
1768   if (ElementBase >= 16)
1769     return false;
1770 
1771   // Check that the indices are consecutive, in the case of a multi-byte element
1772   // splatted with a v16i8 mask.
1773   for (unsigned i = 1; i != EltSize; ++i)
1774     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1775       return false;
1776 
1777   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1778     if (N->getMaskElt(i) < 0) continue;
1779     for (unsigned j = 0; j != EltSize; ++j)
1780       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1781         return false;
1782   }
1783   return true;
1784 }
1785 
1786 /// Check that the mask is shuffling N byte elements. Within each N byte
1787 /// element of the mask, the indices could be either in increasing or
1788 /// decreasing order as long as they are consecutive.
1789 /// \param[in] N the shuffle vector SD Node to analyze
1790 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1791 /// Word/DoubleWord/QuadWord).
1792 /// \param[in] StepLen the delta indices number among the N byte element, if
1793 /// the mask is in increasing/decreasing order then it is 1/-1.
1794 /// \return true iff the mask is shuffling N byte elements.
1795 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1796                                    int StepLen) {
1797   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1798          "Unexpected element width.");
1799   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1800 
1801   unsigned NumOfElem = 16 / Width;
1802   unsigned MaskVal[16]; //  Width is never greater than 16
1803   for (unsigned i = 0; i < NumOfElem; ++i) {
1804     MaskVal[0] = N->getMaskElt(i * Width);
1805     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1806       return false;
1807     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1808       return false;
1809     }
1810 
1811     for (unsigned int j = 1; j < Width; ++j) {
1812       MaskVal[j] = N->getMaskElt(i * Width + j);
1813       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1814         return false;
1815       }
1816     }
1817   }
1818 
1819   return true;
1820 }
1821 
1822 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1823                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1824   if (!isNByteElemShuffleMask(N, 4, 1))
1825     return false;
1826 
1827   // Now we look at mask elements 0,4,8,12
1828   unsigned M0 = N->getMaskElt(0) / 4;
1829   unsigned M1 = N->getMaskElt(4) / 4;
1830   unsigned M2 = N->getMaskElt(8) / 4;
1831   unsigned M3 = N->getMaskElt(12) / 4;
1832   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1833   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1834 
1835   // Below, let H and L be arbitrary elements of the shuffle mask
1836   // where H is in the range [4,7] and L is in the range [0,3].
1837   // H, 1, 2, 3 or L, 5, 6, 7
1838   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1839       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1840     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1841     InsertAtByte = IsLE ? 12 : 0;
1842     Swap = M0 < 4;
1843     return true;
1844   }
1845   // 0, H, 2, 3 or 4, L, 6, 7
1846   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1847       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1848     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1849     InsertAtByte = IsLE ? 8 : 4;
1850     Swap = M1 < 4;
1851     return true;
1852   }
1853   // 0, 1, H, 3 or 4, 5, L, 7
1854   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1855       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1856     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1857     InsertAtByte = IsLE ? 4 : 8;
1858     Swap = M2 < 4;
1859     return true;
1860   }
1861   // 0, 1, 2, H or 4, 5, 6, L
1862   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1863       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1864     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1865     InsertAtByte = IsLE ? 0 : 12;
1866     Swap = M3 < 4;
1867     return true;
1868   }
1869 
1870   // If both vector operands for the shuffle are the same vector, the mask will
1871   // contain only elements from the first one and the second one will be undef.
1872   if (N->getOperand(1).isUndef()) {
1873     ShiftElts = 0;
1874     Swap = true;
1875     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1876     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1877       InsertAtByte = IsLE ? 12 : 0;
1878       return true;
1879     }
1880     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1881       InsertAtByte = IsLE ? 8 : 4;
1882       return true;
1883     }
1884     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1885       InsertAtByte = IsLE ? 4 : 8;
1886       return true;
1887     }
1888     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1889       InsertAtByte = IsLE ? 0 : 12;
1890       return true;
1891     }
1892   }
1893 
1894   return false;
1895 }
1896 
1897 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1898                                bool &Swap, bool IsLE) {
1899   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1900   // Ensure each byte index of the word is consecutive.
1901   if (!isNByteElemShuffleMask(N, 4, 1))
1902     return false;
1903 
1904   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1905   unsigned M0 = N->getMaskElt(0) / 4;
1906   unsigned M1 = N->getMaskElt(4) / 4;
1907   unsigned M2 = N->getMaskElt(8) / 4;
1908   unsigned M3 = N->getMaskElt(12) / 4;
1909 
1910   // If both vector operands for the shuffle are the same vector, the mask will
1911   // contain only elements from the first one and the second one will be undef.
1912   if (N->getOperand(1).isUndef()) {
1913     assert(M0 < 4 && "Indexing into an undef vector?");
1914     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1915       return false;
1916 
1917     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1918     Swap = false;
1919     return true;
1920   }
1921 
1922   // Ensure each word index of the ShuffleVector Mask is consecutive.
1923   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1924     return false;
1925 
1926   if (IsLE) {
1927     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1928       // Input vectors don't need to be swapped if the leading element
1929       // of the result is one of the 3 left elements of the second vector
1930       // (or if there is no shift to be done at all).
1931       Swap = false;
1932       ShiftElts = (8 - M0) % 8;
1933     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1934       // Input vectors need to be swapped if the leading element
1935       // of the result is one of the 3 left elements of the first vector
1936       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1937       Swap = true;
1938       ShiftElts = (4 - M0) % 4;
1939     }
1940 
1941     return true;
1942   } else {                                          // BE
1943     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1944       // Input vectors don't need to be swapped if the leading element
1945       // of the result is one of the 4 elements of the first vector.
1946       Swap = false;
1947       ShiftElts = M0;
1948     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1949       // Input vectors need to be swapped if the leading element
1950       // of the result is one of the 4 elements of the right vector.
1951       Swap = true;
1952       ShiftElts = M0 - 4;
1953     }
1954 
1955     return true;
1956   }
1957 }
1958 
1959 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1960   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1961 
1962   if (!isNByteElemShuffleMask(N, Width, -1))
1963     return false;
1964 
1965   for (int i = 0; i < 16; i += Width)
1966     if (N->getMaskElt(i) != i + Width - 1)
1967       return false;
1968 
1969   return true;
1970 }
1971 
1972 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1973   return isXXBRShuffleMaskHelper(N, 2);
1974 }
1975 
1976 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1977   return isXXBRShuffleMaskHelper(N, 4);
1978 }
1979 
1980 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1981   return isXXBRShuffleMaskHelper(N, 8);
1982 }
1983 
1984 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1985   return isXXBRShuffleMaskHelper(N, 16);
1986 }
1987 
1988 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1989 /// if the inputs to the instruction should be swapped and set \p DM to the
1990 /// value for the immediate.
1991 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1992 /// AND element 0 of the result comes from the first input (LE) or second input
1993 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1994 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1995 /// mask.
1996 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1997                                bool &Swap, bool IsLE) {
1998   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1999 
2000   // Ensure each byte index of the double word is consecutive.
2001   if (!isNByteElemShuffleMask(N, 8, 1))
2002     return false;
2003 
2004   unsigned M0 = N->getMaskElt(0) / 8;
2005   unsigned M1 = N->getMaskElt(8) / 8;
2006   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2007 
2008   // If both vector operands for the shuffle are the same vector, the mask will
2009   // contain only elements from the first one and the second one will be undef.
2010   if (N->getOperand(1).isUndef()) {
2011     if ((M0 | M1) < 2) {
2012       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2013       Swap = false;
2014       return true;
2015     } else
2016       return false;
2017   }
2018 
2019   if (IsLE) {
2020     if (M0 > 1 && M1 < 2) {
2021       Swap = false;
2022     } else if (M0 < 2 && M1 > 1) {
2023       M0 = (M0 + 2) % 4;
2024       M1 = (M1 + 2) % 4;
2025       Swap = true;
2026     } else
2027       return false;
2028 
2029     // Note: if control flow comes here that means Swap is already set above
2030     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2031     return true;
2032   } else { // BE
2033     if (M0 < 2 && M1 > 1) {
2034       Swap = false;
2035     } else if (M0 > 1 && M1 < 2) {
2036       M0 = (M0 + 2) % 4;
2037       M1 = (M1 + 2) % 4;
2038       Swap = true;
2039     } else
2040       return false;
2041 
2042     // Note: if control flow comes here that means Swap is already set above
2043     DM = (M0 << 1) + (M1 & 1);
2044     return true;
2045   }
2046 }
2047 
2048 
2049 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2050 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2051 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2052                                 SelectionDAG &DAG) {
2053   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2054   assert(isSplatShuffleMask(SVOp, EltSize));
2055   if (DAG.getDataLayout().isLittleEndian())
2056     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2057   else
2058     return SVOp->getMaskElt(0) / EltSize;
2059 }
2060 
2061 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2062 /// by using a vspltis[bhw] instruction of the specified element size, return
2063 /// the constant being splatted.  The ByteSize field indicates the number of
2064 /// bytes of each element [124] -> [bhw].
2065 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2066   SDValue OpVal(nullptr, 0);
2067 
2068   // If ByteSize of the splat is bigger than the element size of the
2069   // build_vector, then we have a case where we are checking for a splat where
2070   // multiple elements of the buildvector are folded together into a single
2071   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2072   unsigned EltSize = 16/N->getNumOperands();
2073   if (EltSize < ByteSize) {
2074     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2075     SDValue UniquedVals[4];
2076     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2077 
2078     // See if all of the elements in the buildvector agree across.
2079     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2080       if (N->getOperand(i).isUndef()) continue;
2081       // If the element isn't a constant, bail fully out.
2082       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2083 
2084       if (!UniquedVals[i&(Multiple-1)].getNode())
2085         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2086       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2087         return SDValue();  // no match.
2088     }
2089 
2090     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2091     // either constant or undef values that are identical for each chunk.  See
2092     // if these chunks can form into a larger vspltis*.
2093 
2094     // Check to see if all of the leading entries are either 0 or -1.  If
2095     // neither, then this won't fit into the immediate field.
2096     bool LeadingZero = true;
2097     bool LeadingOnes = true;
2098     for (unsigned i = 0; i != Multiple-1; ++i) {
2099       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2100 
2101       LeadingZero &= isNullConstant(UniquedVals[i]);
2102       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2103     }
2104     // Finally, check the least significant entry.
2105     if (LeadingZero) {
2106       if (!UniquedVals[Multiple-1].getNode())
2107         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2108       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2109       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2110         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2111     }
2112     if (LeadingOnes) {
2113       if (!UniquedVals[Multiple-1].getNode())
2114         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2115       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2116       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2117         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2118     }
2119 
2120     return SDValue();
2121   }
2122 
2123   // Check to see if this buildvec has a single non-undef value in its elements.
2124   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2125     if (N->getOperand(i).isUndef()) continue;
2126     if (!OpVal.getNode())
2127       OpVal = N->getOperand(i);
2128     else if (OpVal != N->getOperand(i))
2129       return SDValue();
2130   }
2131 
2132   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2133 
2134   unsigned ValSizeInBytes = EltSize;
2135   uint64_t Value = 0;
2136   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2137     Value = CN->getZExtValue();
2138   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2139     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2140     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2141   }
2142 
2143   // If the splat value is larger than the element value, then we can never do
2144   // this splat.  The only case that we could fit the replicated bits into our
2145   // immediate field for would be zero, and we prefer to use vxor for it.
2146   if (ValSizeInBytes < ByteSize) return SDValue();
2147 
2148   // If the element value is larger than the splat value, check if it consists
2149   // of a repeated bit pattern of size ByteSize.
2150   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2151     return SDValue();
2152 
2153   // Properly sign extend the value.
2154   int MaskVal = SignExtend32(Value, ByteSize * 8);
2155 
2156   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2157   if (MaskVal == 0) return SDValue();
2158 
2159   // Finally, if this value fits in a 5 bit sext field, return it
2160   if (SignExtend32<5>(MaskVal) == MaskVal)
2161     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2162   return SDValue();
2163 }
2164 
2165 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2166 /// amount, otherwise return -1.
2167 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2168   EVT VT = N->getValueType(0);
2169   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2170     return -1;
2171 
2172   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2173 
2174   // Find the first non-undef value in the shuffle mask.
2175   unsigned i;
2176   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2177     /*search*/;
2178 
2179   if (i == 4) return -1;  // all undef.
2180 
2181   // Otherwise, check to see if the rest of the elements are consecutively
2182   // numbered from this value.
2183   unsigned ShiftAmt = SVOp->getMaskElt(i);
2184   if (ShiftAmt < i) return -1;
2185   ShiftAmt -= i;
2186 
2187   // Check the rest of the elements to see if they are consecutive.
2188   for (++i; i != 4; ++i)
2189     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2190       return -1;
2191 
2192   return ShiftAmt;
2193 }
2194 
2195 //===----------------------------------------------------------------------===//
2196 //  Addressing Mode Selection
2197 //===----------------------------------------------------------------------===//
2198 
2199 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2200 /// or 64-bit immediate, and if the value can be accurately represented as a
2201 /// sign extension from a 16-bit value.  If so, this returns true and the
2202 /// immediate.
2203 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2204   if (!isa<ConstantSDNode>(N))
2205     return false;
2206 
2207   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2208   if (N->getValueType(0) == MVT::i32)
2209     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2210   else
2211     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2212 }
2213 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2214   return isIntS16Immediate(Op.getNode(), Imm);
2215 }
2216 
2217 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2218 /// can be represented as an indexed [r+r] operation.  Returns false if it
2219 /// can be more efficiently represented with [r+imm].
2220 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2221                                             SDValue &Index,
2222                                             SelectionDAG &DAG) const {
2223   int16_t imm = 0;
2224   if (N.getOpcode() == ISD::ADD) {
2225     if (isIntS16Immediate(N.getOperand(1), imm))
2226       return false;    // r+i
2227     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2228       return false;    // r+i
2229 
2230     Base = N.getOperand(0);
2231     Index = N.getOperand(1);
2232     return true;
2233   } else if (N.getOpcode() == ISD::OR) {
2234     if (isIntS16Immediate(N.getOperand(1), imm))
2235       return false;    // r+i can fold it if we can.
2236 
2237     // If this is an or of disjoint bitfields, we can codegen this as an add
2238     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2239     // disjoint.
2240     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2241 
2242     if (LHSKnown.Zero.getBoolValue()) {
2243       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2244       // If all of the bits are known zero on the LHS or RHS, the add won't
2245       // carry.
2246       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2247         Base = N.getOperand(0);
2248         Index = N.getOperand(1);
2249         return true;
2250       }
2251     }
2252   }
2253 
2254   return false;
2255 }
2256 
2257 // If we happen to be doing an i64 load or store into a stack slot that has
2258 // less than a 4-byte alignment, then the frame-index elimination may need to
2259 // use an indexed load or store instruction (because the offset may not be a
2260 // multiple of 4). The extra register needed to hold the offset comes from the
2261 // register scavenger, and it is possible that the scavenger will need to use
2262 // an emergency spill slot. As a result, we need to make sure that a spill slot
2263 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2264 // stack slot.
2265 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2266   // FIXME: This does not handle the LWA case.
2267   if (VT != MVT::i64)
2268     return;
2269 
2270   // NOTE: We'll exclude negative FIs here, which come from argument
2271   // lowering, because there are no known test cases triggering this problem
2272   // using packed structures (or similar). We can remove this exclusion if
2273   // we find such a test case. The reason why this is so test-case driven is
2274   // because this entire 'fixup' is only to prevent crashes (from the
2275   // register scavenger) on not-really-valid inputs. For example, if we have:
2276   //   %a = alloca i1
2277   //   %b = bitcast i1* %a to i64*
2278   //   store i64* a, i64 b
2279   // then the store should really be marked as 'align 1', but is not. If it
2280   // were marked as 'align 1' then the indexed form would have been
2281   // instruction-selected initially, and the problem this 'fixup' is preventing
2282   // won't happen regardless.
2283   if (FrameIdx < 0)
2284     return;
2285 
2286   MachineFunction &MF = DAG.getMachineFunction();
2287   MachineFrameInfo &MFI = MF.getFrameInfo();
2288 
2289   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2290   if (Align >= 4)
2291     return;
2292 
2293   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2294   FuncInfo->setHasNonRISpills();
2295 }
2296 
2297 /// Returns true if the address N can be represented by a base register plus
2298 /// a signed 16-bit displacement [r+imm], and if it is not better
2299 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2300 /// displacements that are multiples of that value.
2301 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2302                                             SDValue &Base,
2303                                             SelectionDAG &DAG,
2304                                             unsigned Alignment) const {
2305   // FIXME dl should come from parent load or store, not from address
2306   SDLoc dl(N);
2307   // If this can be more profitably realized as r+r, fail.
2308   if (SelectAddressRegReg(N, Disp, Base, DAG))
2309     return false;
2310 
2311   if (N.getOpcode() == ISD::ADD) {
2312     int16_t imm = 0;
2313     if (isIntS16Immediate(N.getOperand(1), imm) &&
2314         (!Alignment || (imm % Alignment) == 0)) {
2315       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2316       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2317         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2318         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2319       } else {
2320         Base = N.getOperand(0);
2321       }
2322       return true; // [r+i]
2323     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2324       // Match LOAD (ADD (X, Lo(G))).
2325       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2326              && "Cannot handle constant offsets yet!");
2327       Disp = N.getOperand(1).getOperand(0);  // The global address.
2328       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2329              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2330              Disp.getOpcode() == ISD::TargetConstantPool ||
2331              Disp.getOpcode() == ISD::TargetJumpTable);
2332       Base = N.getOperand(0);
2333       return true;  // [&g+r]
2334     }
2335   } else if (N.getOpcode() == ISD::OR) {
2336     int16_t imm = 0;
2337     if (isIntS16Immediate(N.getOperand(1), imm) &&
2338         (!Alignment || (imm % Alignment) == 0)) {
2339       // If this is an or of disjoint bitfields, we can codegen this as an add
2340       // (for better address arithmetic) if the LHS and RHS of the OR are
2341       // provably disjoint.
2342       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2343 
2344       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2345         // If all of the bits are known zero on the LHS or RHS, the add won't
2346         // carry.
2347         if (FrameIndexSDNode *FI =
2348               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2349           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2350           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2351         } else {
2352           Base = N.getOperand(0);
2353         }
2354         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2355         return true;
2356       }
2357     }
2358   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2359     // Loading from a constant address.
2360 
2361     // If this address fits entirely in a 16-bit sext immediate field, codegen
2362     // this as "d, 0"
2363     int16_t Imm;
2364     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2365       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2366       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2367                              CN->getValueType(0));
2368       return true;
2369     }
2370 
2371     // Handle 32-bit sext immediates with LIS + addr mode.
2372     if ((CN->getValueType(0) == MVT::i32 ||
2373          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2374         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2375       int Addr = (int)CN->getZExtValue();
2376 
2377       // Otherwise, break this down into an LIS + disp.
2378       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2379 
2380       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2381                                    MVT::i32);
2382       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2383       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2384       return true;
2385     }
2386   }
2387 
2388   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2389   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2390     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2391     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2392   } else
2393     Base = N;
2394   return true;      // [r+0]
2395 }
2396 
2397 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2398 /// represented as an indexed [r+r] operation.
2399 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2400                                                 SDValue &Index,
2401                                                 SelectionDAG &DAG) const {
2402   // Check to see if we can easily represent this as an [r+r] address.  This
2403   // will fail if it thinks that the address is more profitably represented as
2404   // reg+imm, e.g. where imm = 0.
2405   if (SelectAddressRegReg(N, Base, Index, DAG))
2406     return true;
2407 
2408   // If the address is the result of an add, we will utilize the fact that the
2409   // address calculation includes an implicit add.  However, we can reduce
2410   // register pressure if we do not materialize a constant just for use as the
2411   // index register.  We only get rid of the add if it is not an add of a
2412   // value and a 16-bit signed constant and both have a single use.
2413   int16_t imm = 0;
2414   if (N.getOpcode() == ISD::ADD &&
2415       (!isIntS16Immediate(N.getOperand(1), imm) ||
2416        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2417     Base = N.getOperand(0);
2418     Index = N.getOperand(1);
2419     return true;
2420   }
2421 
2422   // Otherwise, do it the hard way, using R0 as the base register.
2423   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2424                          N.getValueType());
2425   Index = N;
2426   return true;
2427 }
2428 
2429 /// Returns true if we should use a direct load into vector instruction
2430 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2431 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2432 
2433   // If there are any other uses other than scalar to vector, then we should
2434   // keep it as a scalar load -> direct move pattern to prevent multiple
2435   // loads.
2436   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2437   if (!LD)
2438     return false;
2439 
2440   EVT MemVT = LD->getMemoryVT();
2441   if (!MemVT.isSimple())
2442     return false;
2443   switch(MemVT.getSimpleVT().SimpleTy) {
2444   case MVT::i64:
2445     break;
2446   case MVT::i32:
2447     if (!ST.hasP8Vector())
2448       return false;
2449     break;
2450   case MVT::i16:
2451   case MVT::i8:
2452     if (!ST.hasP9Vector())
2453       return false;
2454     break;
2455   default:
2456     return false;
2457   }
2458 
2459   SDValue LoadedVal(N, 0);
2460   if (!LoadedVal.hasOneUse())
2461     return false;
2462 
2463   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2464        UI != UE; ++UI)
2465     if (UI.getUse().get().getResNo() == 0 &&
2466         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2467       return false;
2468 
2469   return true;
2470 }
2471 
2472 /// getPreIndexedAddressParts - returns true by value, base pointer and
2473 /// offset pointer and addressing mode by reference if the node's address
2474 /// can be legally represented as pre-indexed load / store address.
2475 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2476                                                   SDValue &Offset,
2477                                                   ISD::MemIndexedMode &AM,
2478                                                   SelectionDAG &DAG) const {
2479   if (DisablePPCPreinc) return false;
2480 
2481   bool isLoad = true;
2482   SDValue Ptr;
2483   EVT VT;
2484   unsigned Alignment;
2485   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2486     Ptr = LD->getBasePtr();
2487     VT = LD->getMemoryVT();
2488     Alignment = LD->getAlignment();
2489   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2490     Ptr = ST->getBasePtr();
2491     VT  = ST->getMemoryVT();
2492     Alignment = ST->getAlignment();
2493     isLoad = false;
2494   } else
2495     return false;
2496 
2497   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2498   // instructions because we can fold these into a more efficient instruction
2499   // instead, (such as LXSD).
2500   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2501     return false;
2502   }
2503 
2504   // PowerPC doesn't have preinc load/store instructions for vectors (except
2505   // for QPX, which does have preinc r+r forms).
2506   if (VT.isVector()) {
2507     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2508       return false;
2509     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2510       AM = ISD::PRE_INC;
2511       return true;
2512     }
2513   }
2514 
2515   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2516     // Common code will reject creating a pre-inc form if the base pointer
2517     // is a frame index, or if N is a store and the base pointer is either
2518     // the same as or a predecessor of the value being stored.  Check for
2519     // those situations here, and try with swapped Base/Offset instead.
2520     bool Swap = false;
2521 
2522     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2523       Swap = true;
2524     else if (!isLoad) {
2525       SDValue Val = cast<StoreSDNode>(N)->getValue();
2526       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2527         Swap = true;
2528     }
2529 
2530     if (Swap)
2531       std::swap(Base, Offset);
2532 
2533     AM = ISD::PRE_INC;
2534     return true;
2535   }
2536 
2537   // LDU/STU can only handle immediates that are a multiple of 4.
2538   if (VT != MVT::i64) {
2539     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2540       return false;
2541   } else {
2542     // LDU/STU need an address with at least 4-byte alignment.
2543     if (Alignment < 4)
2544       return false;
2545 
2546     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2547       return false;
2548   }
2549 
2550   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2551     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2552     // sext i32 to i64 when addr mode is r+i.
2553     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2554         LD->getExtensionType() == ISD::SEXTLOAD &&
2555         isa<ConstantSDNode>(Offset))
2556       return false;
2557   }
2558 
2559   AM = ISD::PRE_INC;
2560   return true;
2561 }
2562 
2563 //===----------------------------------------------------------------------===//
2564 //  LowerOperation implementation
2565 //===----------------------------------------------------------------------===//
2566 
2567 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2568 /// and LoOpFlags to the target MO flags.
2569 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2570                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2571                                const GlobalValue *GV = nullptr) {
2572   HiOpFlags = PPCII::MO_HA;
2573   LoOpFlags = PPCII::MO_LO;
2574 
2575   // Don't use the pic base if not in PIC relocation model.
2576   if (IsPIC) {
2577     HiOpFlags |= PPCII::MO_PIC_FLAG;
2578     LoOpFlags |= PPCII::MO_PIC_FLAG;
2579   }
2580 
2581   // If this is a reference to a global value that requires a non-lazy-ptr, make
2582   // sure that instruction lowering adds it.
2583   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2584     HiOpFlags |= PPCII::MO_NLP_FLAG;
2585     LoOpFlags |= PPCII::MO_NLP_FLAG;
2586 
2587     if (GV->hasHiddenVisibility()) {
2588       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2589       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2590     }
2591   }
2592 }
2593 
2594 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2595                              SelectionDAG &DAG) {
2596   SDLoc DL(HiPart);
2597   EVT PtrVT = HiPart.getValueType();
2598   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2599 
2600   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2601   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2602 
2603   // With PIC, the first instruction is actually "GR+hi(&G)".
2604   if (isPIC)
2605     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2606                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2607 
2608   // Generate non-pic code that has direct accesses to the constant pool.
2609   // The address of the global is just (hi(&g)+lo(&g)).
2610   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2611 }
2612 
2613 static void setUsesTOCBasePtr(MachineFunction &MF) {
2614   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2615   FuncInfo->setUsesTOCBasePtr();
2616 }
2617 
2618 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2619   setUsesTOCBasePtr(DAG.getMachineFunction());
2620 }
2621 
2622 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2623                            SDValue GA) {
2624   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2625   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2626                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2627 
2628   SDValue Ops[] = { GA, Reg };
2629   return DAG.getMemIntrinsicNode(
2630       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2631       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2632       MachineMemOperand::MOLoad);
2633 }
2634 
2635 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2636                                              SelectionDAG &DAG) const {
2637   EVT PtrVT = Op.getValueType();
2638   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2639   const Constant *C = CP->getConstVal();
2640 
2641   // 64-bit SVR4 ABI code is always position-independent.
2642   // The actual address of the GlobalValue is stored in the TOC.
2643   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2644     setUsesTOCBasePtr(DAG);
2645     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2646     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2647   }
2648 
2649   unsigned MOHiFlag, MOLoFlag;
2650   bool IsPIC = isPositionIndependent();
2651   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2652 
2653   if (IsPIC && Subtarget.isSVR4ABI()) {
2654     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2655                                            PPCII::MO_PIC_FLAG);
2656     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2657   }
2658 
2659   SDValue CPIHi =
2660     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2661   SDValue CPILo =
2662     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2663   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2664 }
2665 
2666 // For 64-bit PowerPC, prefer the more compact relative encodings.
2667 // This trades 32 bits per jump table entry for one or two instructions
2668 // on the jump site.
2669 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2670   if (isJumpTableRelative())
2671     return MachineJumpTableInfo::EK_LabelDifference32;
2672 
2673   return TargetLowering::getJumpTableEncoding();
2674 }
2675 
2676 bool PPCTargetLowering::isJumpTableRelative() const {
2677   if (Subtarget.isPPC64())
2678     return true;
2679   return TargetLowering::isJumpTableRelative();
2680 }
2681 
2682 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2683                                                     SelectionDAG &DAG) const {
2684   if (!Subtarget.isPPC64())
2685     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2686 
2687   switch (getTargetMachine().getCodeModel()) {
2688   case CodeModel::Small:
2689   case CodeModel::Medium:
2690     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2691   default:
2692     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2693                        getPointerTy(DAG.getDataLayout()));
2694   }
2695 }
2696 
2697 const MCExpr *
2698 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2699                                                 unsigned JTI,
2700                                                 MCContext &Ctx) const {
2701   if (!Subtarget.isPPC64())
2702     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2703 
2704   switch (getTargetMachine().getCodeModel()) {
2705   case CodeModel::Small:
2706   case CodeModel::Medium:
2707     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2708   default:
2709     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2710   }
2711 }
2712 
2713 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2714   EVT PtrVT = Op.getValueType();
2715   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2716 
2717   // 64-bit SVR4 ABI code is always position-independent.
2718   // The actual address of the GlobalValue is stored in the TOC.
2719   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2720     setUsesTOCBasePtr(DAG);
2721     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2722     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2723   }
2724 
2725   unsigned MOHiFlag, MOLoFlag;
2726   bool IsPIC = isPositionIndependent();
2727   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2728 
2729   if (IsPIC && Subtarget.isSVR4ABI()) {
2730     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2731                                         PPCII::MO_PIC_FLAG);
2732     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2733   }
2734 
2735   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2736   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2737   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2738 }
2739 
2740 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2741                                              SelectionDAG &DAG) const {
2742   EVT PtrVT = Op.getValueType();
2743   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2744   const BlockAddress *BA = BASDN->getBlockAddress();
2745 
2746   // 64-bit SVR4 ABI code is always position-independent.
2747   // The actual BlockAddress is stored in the TOC.
2748   if (Subtarget.isSVR4ABI() &&
2749       (Subtarget.isPPC64() || isPositionIndependent())) {
2750     if (Subtarget.isPPC64())
2751       setUsesTOCBasePtr(DAG);
2752     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2753     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2754   }
2755 
2756   unsigned MOHiFlag, MOLoFlag;
2757   bool IsPIC = isPositionIndependent();
2758   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2759   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2760   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2761   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2762 }
2763 
2764 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2765                                               SelectionDAG &DAG) const {
2766   // FIXME: TLS addresses currently use medium model code sequences,
2767   // which is the most useful form.  Eventually support for small and
2768   // large models could be added if users need it, at the cost of
2769   // additional complexity.
2770   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2771   if (DAG.getTarget().useEmulatedTLS())
2772     return LowerToTLSEmulatedModel(GA, DAG);
2773 
2774   SDLoc dl(GA);
2775   const GlobalValue *GV = GA->getGlobal();
2776   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2777   bool is64bit = Subtarget.isPPC64();
2778   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2779   PICLevel::Level picLevel = M->getPICLevel();
2780 
2781   const TargetMachine &TM = getTargetMachine();
2782   TLSModel::Model Model = TM.getTLSModel(GV);
2783 
2784   if (Model == TLSModel::LocalExec) {
2785     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2786                                                PPCII::MO_TPREL_HA);
2787     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2788                                                PPCII::MO_TPREL_LO);
2789     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2790                              : DAG.getRegister(PPC::R2, MVT::i32);
2791 
2792     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2793     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2794   }
2795 
2796   if (Model == TLSModel::InitialExec) {
2797     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2798     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2799                                                 PPCII::MO_TLS);
2800     SDValue GOTPtr;
2801     if (is64bit) {
2802       setUsesTOCBasePtr(DAG);
2803       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2804       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2805                            PtrVT, GOTReg, TGA);
2806     } else {
2807       if (!TM.isPositionIndependent())
2808         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2809       else if (picLevel == PICLevel::SmallPIC)
2810         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2811       else
2812         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2813     }
2814     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2815                                    PtrVT, TGA, GOTPtr);
2816     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2817   }
2818 
2819   if (Model == TLSModel::GeneralDynamic) {
2820     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2821     SDValue GOTPtr;
2822     if (is64bit) {
2823       setUsesTOCBasePtr(DAG);
2824       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2825       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2826                                    GOTReg, TGA);
2827     } else {
2828       if (picLevel == PICLevel::SmallPIC)
2829         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2830       else
2831         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2832     }
2833     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2834                        GOTPtr, TGA, TGA);
2835   }
2836 
2837   if (Model == TLSModel::LocalDynamic) {
2838     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2839     SDValue GOTPtr;
2840     if (is64bit) {
2841       setUsesTOCBasePtr(DAG);
2842       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2843       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2844                            GOTReg, TGA);
2845     } else {
2846       if (picLevel == PICLevel::SmallPIC)
2847         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2848       else
2849         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2850     }
2851     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2852                                   PtrVT, GOTPtr, TGA, TGA);
2853     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2854                                       PtrVT, TLSAddr, TGA);
2855     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2856   }
2857 
2858   llvm_unreachable("Unknown TLS model!");
2859 }
2860 
2861 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2862                                               SelectionDAG &DAG) const {
2863   EVT PtrVT = Op.getValueType();
2864   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2865   SDLoc DL(GSDN);
2866   const GlobalValue *GV = GSDN->getGlobal();
2867 
2868   // 64-bit SVR4 ABI code is always position-independent.
2869   // The actual address of the GlobalValue is stored in the TOC.
2870   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2871     setUsesTOCBasePtr(DAG);
2872     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2873     return getTOCEntry(DAG, DL, true, GA);
2874   }
2875 
2876   unsigned MOHiFlag, MOLoFlag;
2877   bool IsPIC = isPositionIndependent();
2878   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2879 
2880   if (IsPIC && Subtarget.isSVR4ABI()) {
2881     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2882                                             GSDN->getOffset(),
2883                                             PPCII::MO_PIC_FLAG);
2884     return getTOCEntry(DAG, DL, false, GA);
2885   }
2886 
2887   SDValue GAHi =
2888     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2889   SDValue GALo =
2890     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2891 
2892   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2893 
2894   // If the global reference is actually to a non-lazy-pointer, we have to do an
2895   // extra load to get the address of the global.
2896   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2897     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2898   return Ptr;
2899 }
2900 
2901 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2902   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2903   SDLoc dl(Op);
2904 
2905   if (Op.getValueType() == MVT::v2i64) {
2906     // When the operands themselves are v2i64 values, we need to do something
2907     // special because VSX has no underlying comparison operations for these.
2908     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2909       // Equality can be handled by casting to the legal type for Altivec
2910       // comparisons, everything else needs to be expanded.
2911       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2912         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2913                  DAG.getSetCC(dl, MVT::v4i32,
2914                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2915                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2916                    CC));
2917       }
2918 
2919       return SDValue();
2920     }
2921 
2922     // We handle most of these in the usual way.
2923     return Op;
2924   }
2925 
2926   // If we're comparing for equality to zero, expose the fact that this is
2927   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2928   // fold the new nodes.
2929   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2930     return V;
2931 
2932   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2933     // Leave comparisons against 0 and -1 alone for now, since they're usually
2934     // optimized.  FIXME: revisit this when we can custom lower all setcc
2935     // optimizations.
2936     if (C->isAllOnesValue() || C->isNullValue())
2937       return SDValue();
2938   }
2939 
2940   // If we have an integer seteq/setne, turn it into a compare against zero
2941   // by xor'ing the rhs with the lhs, which is faster than setting a
2942   // condition register, reading it back out, and masking the correct bit.  The
2943   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2944   // the result to other bit-twiddling opportunities.
2945   EVT LHSVT = Op.getOperand(0).getValueType();
2946   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2947     EVT VT = Op.getValueType();
2948     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2949                                 Op.getOperand(1));
2950     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2951   }
2952   return SDValue();
2953 }
2954 
2955 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2956   SDNode *Node = Op.getNode();
2957   EVT VT = Node->getValueType(0);
2958   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2959   SDValue InChain = Node->getOperand(0);
2960   SDValue VAListPtr = Node->getOperand(1);
2961   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2962   SDLoc dl(Node);
2963 
2964   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2965 
2966   // gpr_index
2967   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2968                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2969   InChain = GprIndex.getValue(1);
2970 
2971   if (VT == MVT::i64) {
2972     // Check if GprIndex is even
2973     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2974                                  DAG.getConstant(1, dl, MVT::i32));
2975     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2976                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2977     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2978                                           DAG.getConstant(1, dl, MVT::i32));
2979     // Align GprIndex to be even if it isn't
2980     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2981                            GprIndex);
2982   }
2983 
2984   // fpr index is 1 byte after gpr
2985   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2986                                DAG.getConstant(1, dl, MVT::i32));
2987 
2988   // fpr
2989   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2990                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2991   InChain = FprIndex.getValue(1);
2992 
2993   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2994                                        DAG.getConstant(8, dl, MVT::i32));
2995 
2996   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2997                                         DAG.getConstant(4, dl, MVT::i32));
2998 
2999   // areas
3000   SDValue OverflowArea =
3001       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3002   InChain = OverflowArea.getValue(1);
3003 
3004   SDValue RegSaveArea =
3005       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3006   InChain = RegSaveArea.getValue(1);
3007 
3008   // select overflow_area if index > 8
3009   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3010                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3011 
3012   // adjustment constant gpr_index * 4/8
3013   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3014                                     VT.isInteger() ? GprIndex : FprIndex,
3015                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3016                                                     MVT::i32));
3017 
3018   // OurReg = RegSaveArea + RegConstant
3019   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3020                                RegConstant);
3021 
3022   // Floating types are 32 bytes into RegSaveArea
3023   if (VT.isFloatingPoint())
3024     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3025                          DAG.getConstant(32, dl, MVT::i32));
3026 
3027   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3028   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3029                                    VT.isInteger() ? GprIndex : FprIndex,
3030                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3031                                                    MVT::i32));
3032 
3033   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3034                               VT.isInteger() ? VAListPtr : FprPtr,
3035                               MachinePointerInfo(SV), MVT::i8);
3036 
3037   // determine if we should load from reg_save_area or overflow_area
3038   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3039 
3040   // increase overflow_area by 4/8 if gpr/fpr > 8
3041   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3042                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3043                                           dl, MVT::i32));
3044 
3045   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3046                              OverflowAreaPlusN);
3047 
3048   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3049                               MachinePointerInfo(), MVT::i32);
3050 
3051   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3052 }
3053 
3054 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3055   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3056 
3057   // We have to copy the entire va_list struct:
3058   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3059   return DAG.getMemcpy(Op.getOperand(0), Op,
3060                        Op.getOperand(1), Op.getOperand(2),
3061                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3062                        false, MachinePointerInfo(), MachinePointerInfo());
3063 }
3064 
3065 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3066                                                   SelectionDAG &DAG) const {
3067   return Op.getOperand(0);
3068 }
3069 
3070 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3071                                                 SelectionDAG &DAG) const {
3072   SDValue Chain = Op.getOperand(0);
3073   SDValue Trmp = Op.getOperand(1); // trampoline
3074   SDValue FPtr = Op.getOperand(2); // nested function
3075   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3076   SDLoc dl(Op);
3077 
3078   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3079   bool isPPC64 = (PtrVT == MVT::i64);
3080   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3081 
3082   TargetLowering::ArgListTy Args;
3083   TargetLowering::ArgListEntry Entry;
3084 
3085   Entry.Ty = IntPtrTy;
3086   Entry.Node = Trmp; Args.push_back(Entry);
3087 
3088   // TrampSize == (isPPC64 ? 48 : 40);
3089   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3090                                isPPC64 ? MVT::i64 : MVT::i32);
3091   Args.push_back(Entry);
3092 
3093   Entry.Node = FPtr; Args.push_back(Entry);
3094   Entry.Node = Nest; Args.push_back(Entry);
3095 
3096   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3097   TargetLowering::CallLoweringInfo CLI(DAG);
3098   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3099       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3100       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3101 
3102   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3103   return CallResult.second;
3104 }
3105 
3106 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3107   MachineFunction &MF = DAG.getMachineFunction();
3108   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3109   EVT PtrVT = getPointerTy(MF.getDataLayout());
3110 
3111   SDLoc dl(Op);
3112 
3113   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3114     // vastart just stores the address of the VarArgsFrameIndex slot into the
3115     // memory location argument.
3116     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3117     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3118     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3119                         MachinePointerInfo(SV));
3120   }
3121 
3122   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3123   // We suppose the given va_list is already allocated.
3124   //
3125   // typedef struct {
3126   //  char gpr;     /* index into the array of 8 GPRs
3127   //                 * stored in the register save area
3128   //                 * gpr=0 corresponds to r3,
3129   //                 * gpr=1 to r4, etc.
3130   //                 */
3131   //  char fpr;     /* index into the array of 8 FPRs
3132   //                 * stored in the register save area
3133   //                 * fpr=0 corresponds to f1,
3134   //                 * fpr=1 to f2, etc.
3135   //                 */
3136   //  char *overflow_arg_area;
3137   //                /* location on stack that holds
3138   //                 * the next overflow argument
3139   //                 */
3140   //  char *reg_save_area;
3141   //               /* where r3:r10 and f1:f8 (if saved)
3142   //                * are stored
3143   //                */
3144   // } va_list[1];
3145 
3146   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3147   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3148   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3149                                             PtrVT);
3150   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3151                                  PtrVT);
3152 
3153   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3154   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3155 
3156   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3157   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3158 
3159   uint64_t FPROffset = 1;
3160   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3161 
3162   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3163 
3164   // Store first byte : number of int regs
3165   SDValue firstStore =
3166       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3167                         MachinePointerInfo(SV), MVT::i8);
3168   uint64_t nextOffset = FPROffset;
3169   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3170                                   ConstFPROffset);
3171 
3172   // Store second byte : number of float regs
3173   SDValue secondStore =
3174       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3175                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3176   nextOffset += StackOffset;
3177   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3178 
3179   // Store second word : arguments given on stack
3180   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3181                                     MachinePointerInfo(SV, nextOffset));
3182   nextOffset += FrameOffset;
3183   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3184 
3185   // Store third word : arguments given in registers
3186   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3187                       MachinePointerInfo(SV, nextOffset));
3188 }
3189 
3190 /// FPR - The set of FP registers that should be allocated for arguments,
3191 /// on Darwin.
3192 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3193                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3194                                 PPC::F11, PPC::F12, PPC::F13};
3195 
3196 /// QFPR - The set of QPX registers that should be allocated for arguments.
3197 static const MCPhysReg QFPR[] = {
3198     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3199     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3200 
3201 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3202 /// the stack.
3203 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3204                                        unsigned PtrByteSize) {
3205   unsigned ArgSize = ArgVT.getStoreSize();
3206   if (Flags.isByVal())
3207     ArgSize = Flags.getByValSize();
3208 
3209   // Round up to multiples of the pointer size, except for array members,
3210   // which are always packed.
3211   if (!Flags.isInConsecutiveRegs())
3212     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3213 
3214   return ArgSize;
3215 }
3216 
3217 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3218 /// on the stack.
3219 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3220                                             ISD::ArgFlagsTy Flags,
3221                                             unsigned PtrByteSize) {
3222   unsigned Align = PtrByteSize;
3223 
3224   // Altivec parameters are padded to a 16 byte boundary.
3225   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3226       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3227       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3228       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3229     Align = 16;
3230   // QPX vector types stored in double-precision are padded to a 32 byte
3231   // boundary.
3232   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3233     Align = 32;
3234 
3235   // ByVal parameters are aligned as requested.
3236   if (Flags.isByVal()) {
3237     unsigned BVAlign = Flags.getByValAlign();
3238     if (BVAlign > PtrByteSize) {
3239       if (BVAlign % PtrByteSize != 0)
3240           llvm_unreachable(
3241             "ByVal alignment is not a multiple of the pointer size");
3242 
3243       Align = BVAlign;
3244     }
3245   }
3246 
3247   // Array members are always packed to their original alignment.
3248   if (Flags.isInConsecutiveRegs()) {
3249     // If the array member was split into multiple registers, the first
3250     // needs to be aligned to the size of the full type.  (Except for
3251     // ppcf128, which is only aligned as its f64 components.)
3252     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3253       Align = OrigVT.getStoreSize();
3254     else
3255       Align = ArgVT.getStoreSize();
3256   }
3257 
3258   return Align;
3259 }
3260 
3261 /// CalculateStackSlotUsed - Return whether this argument will use its
3262 /// stack slot (instead of being passed in registers).  ArgOffset,
3263 /// AvailableFPRs, and AvailableVRs must hold the current argument
3264 /// position, and will be updated to account for this argument.
3265 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3266                                    ISD::ArgFlagsTy Flags,
3267                                    unsigned PtrByteSize,
3268                                    unsigned LinkageSize,
3269                                    unsigned ParamAreaSize,
3270                                    unsigned &ArgOffset,
3271                                    unsigned &AvailableFPRs,
3272                                    unsigned &AvailableVRs, bool HasQPX) {
3273   bool UseMemory = false;
3274 
3275   // Respect alignment of argument on the stack.
3276   unsigned Align =
3277     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3278   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3279   // If there's no space left in the argument save area, we must
3280   // use memory (this check also catches zero-sized arguments).
3281   if (ArgOffset >= LinkageSize + ParamAreaSize)
3282     UseMemory = true;
3283 
3284   // Allocate argument on the stack.
3285   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3286   if (Flags.isInConsecutiveRegsLast())
3287     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3288   // If we overran the argument save area, we must use memory
3289   // (this check catches arguments passed partially in memory)
3290   if (ArgOffset > LinkageSize + ParamAreaSize)
3291     UseMemory = true;
3292 
3293   // However, if the argument is actually passed in an FPR or a VR,
3294   // we don't use memory after all.
3295   if (!Flags.isByVal()) {
3296     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3297         // QPX registers overlap with the scalar FP registers.
3298         (HasQPX && (ArgVT == MVT::v4f32 ||
3299                     ArgVT == MVT::v4f64 ||
3300                     ArgVT == MVT::v4i1)))
3301       if (AvailableFPRs > 0) {
3302         --AvailableFPRs;
3303         return false;
3304       }
3305     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3306         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3307         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3308         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3309       if (AvailableVRs > 0) {
3310         --AvailableVRs;
3311         return false;
3312       }
3313   }
3314 
3315   return UseMemory;
3316 }
3317 
3318 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3319 /// ensure minimum alignment required for target.
3320 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3321                                      unsigned NumBytes) {
3322   unsigned TargetAlign = Lowering->getStackAlignment();
3323   unsigned AlignMask = TargetAlign - 1;
3324   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3325   return NumBytes;
3326 }
3327 
3328 SDValue PPCTargetLowering::LowerFormalArguments(
3329     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3330     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3331     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3332   if (Subtarget.isSVR4ABI()) {
3333     if (Subtarget.isPPC64())
3334       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3335                                          dl, DAG, InVals);
3336     else
3337       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3338                                          dl, DAG, InVals);
3339   } else {
3340     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3341                                        dl, DAG, InVals);
3342   }
3343 }
3344 
3345 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3346     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3347     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3348     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3349 
3350   // 32-bit SVR4 ABI Stack Frame Layout:
3351   //              +-----------------------------------+
3352   //        +-->  |            Back chain             |
3353   //        |     +-----------------------------------+
3354   //        |     | Floating-point register save area |
3355   //        |     +-----------------------------------+
3356   //        |     |    General register save area     |
3357   //        |     +-----------------------------------+
3358   //        |     |          CR save word             |
3359   //        |     +-----------------------------------+
3360   //        |     |         VRSAVE save word          |
3361   //        |     +-----------------------------------+
3362   //        |     |         Alignment padding         |
3363   //        |     +-----------------------------------+
3364   //        |     |     Vector register save area     |
3365   //        |     +-----------------------------------+
3366   //        |     |       Local variable space        |
3367   //        |     +-----------------------------------+
3368   //        |     |        Parameter list area        |
3369   //        |     +-----------------------------------+
3370   //        |     |           LR save word            |
3371   //        |     +-----------------------------------+
3372   // SP-->  +---  |            Back chain             |
3373   //              +-----------------------------------+
3374   //
3375   // Specifications:
3376   //   System V Application Binary Interface PowerPC Processor Supplement
3377   //   AltiVec Technology Programming Interface Manual
3378 
3379   MachineFunction &MF = DAG.getMachineFunction();
3380   MachineFrameInfo &MFI = MF.getFrameInfo();
3381   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3382 
3383   EVT PtrVT = getPointerTy(MF.getDataLayout());
3384   // Potential tail calls could cause overwriting of argument stack slots.
3385   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3386                        (CallConv == CallingConv::Fast));
3387   unsigned PtrByteSize = 4;
3388 
3389   // Assign locations to all of the incoming arguments.
3390   SmallVector<CCValAssign, 16> ArgLocs;
3391   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3392                  *DAG.getContext());
3393 
3394   // Reserve space for the linkage area on the stack.
3395   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3396   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3397   if (useSoftFloat() || hasSPE())
3398     CCInfo.PreAnalyzeFormalArguments(Ins);
3399 
3400   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3401   CCInfo.clearWasPPCF128();
3402 
3403   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3404     CCValAssign &VA = ArgLocs[i];
3405 
3406     // Arguments stored in registers.
3407     if (VA.isRegLoc()) {
3408       const TargetRegisterClass *RC;
3409       EVT ValVT = VA.getValVT();
3410 
3411       switch (ValVT.getSimpleVT().SimpleTy) {
3412         default:
3413           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3414         case MVT::i1:
3415         case MVT::i32:
3416           RC = &PPC::GPRCRegClass;
3417           break;
3418         case MVT::f32:
3419           if (Subtarget.hasP8Vector())
3420             RC = &PPC::VSSRCRegClass;
3421           else if (Subtarget.hasSPE())
3422             RC = &PPC::SPE4RCRegClass;
3423           else
3424             RC = &PPC::F4RCRegClass;
3425           break;
3426         case MVT::f64:
3427           if (Subtarget.hasVSX())
3428             RC = &PPC::VSFRCRegClass;
3429           else if (Subtarget.hasSPE())
3430             RC = &PPC::SPERCRegClass;
3431           else
3432             RC = &PPC::F8RCRegClass;
3433           break;
3434         case MVT::v16i8:
3435         case MVT::v8i16:
3436         case MVT::v4i32:
3437           RC = &PPC::VRRCRegClass;
3438           break;
3439         case MVT::v4f32:
3440           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3441           break;
3442         case MVT::v2f64:
3443         case MVT::v2i64:
3444           RC = &PPC::VRRCRegClass;
3445           break;
3446         case MVT::v4f64:
3447           RC = &PPC::QFRCRegClass;
3448           break;
3449         case MVT::v4i1:
3450           RC = &PPC::QBRCRegClass;
3451           break;
3452       }
3453 
3454       // Transform the arguments stored in physical registers into virtual ones.
3455       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3456       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3457                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3458 
3459       if (ValVT == MVT::i1)
3460         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3461 
3462       InVals.push_back(ArgValue);
3463     } else {
3464       // Argument stored in memory.
3465       assert(VA.isMemLoc());
3466 
3467       // Get the extended size of the argument type in stack
3468       unsigned ArgSize = VA.getLocVT().getStoreSize();
3469       // Get the actual size of the argument type
3470       unsigned ObjSize = VA.getValVT().getStoreSize();
3471       unsigned ArgOffset = VA.getLocMemOffset();
3472       // Stack objects in PPC32 are right justified.
3473       ArgOffset += ArgSize - ObjSize;
3474       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3475 
3476       // Create load nodes to retrieve arguments from the stack.
3477       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3478       InVals.push_back(
3479           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3480     }
3481   }
3482 
3483   // Assign locations to all of the incoming aggregate by value arguments.
3484   // Aggregates passed by value are stored in the local variable space of the
3485   // caller's stack frame, right above the parameter list area.
3486   SmallVector<CCValAssign, 16> ByValArgLocs;
3487   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3488                       ByValArgLocs, *DAG.getContext());
3489 
3490   // Reserve stack space for the allocations in CCInfo.
3491   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3492 
3493   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3494 
3495   // Area that is at least reserved in the caller of this function.
3496   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3497   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3498 
3499   // Set the size that is at least reserved in caller of this function.  Tail
3500   // call optimized function's reserved stack space needs to be aligned so that
3501   // taking the difference between two stack areas will result in an aligned
3502   // stack.
3503   MinReservedArea =
3504       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3505   FuncInfo->setMinReservedArea(MinReservedArea);
3506 
3507   SmallVector<SDValue, 8> MemOps;
3508 
3509   // If the function takes variable number of arguments, make a frame index for
3510   // the start of the first vararg value... for expansion of llvm.va_start.
3511   if (isVarArg) {
3512     static const MCPhysReg GPArgRegs[] = {
3513       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3514       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3515     };
3516     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3517 
3518     static const MCPhysReg FPArgRegs[] = {
3519       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3520       PPC::F8
3521     };
3522     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3523 
3524     if (useSoftFloat() || hasSPE())
3525        NumFPArgRegs = 0;
3526 
3527     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3528     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3529 
3530     // Make room for NumGPArgRegs and NumFPArgRegs.
3531     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3532                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3533 
3534     FuncInfo->setVarArgsStackOffset(
3535       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3536                             CCInfo.getNextStackOffset(), true));
3537 
3538     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3539     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3540 
3541     // The fixed integer arguments of a variadic function are stored to the
3542     // VarArgsFrameIndex on the stack so that they may be loaded by
3543     // dereferencing the result of va_next.
3544     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3545       // Get an existing live-in vreg, or add a new one.
3546       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3547       if (!VReg)
3548         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3549 
3550       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3551       SDValue Store =
3552           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3553       MemOps.push_back(Store);
3554       // Increment the address by four for the next argument to store
3555       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3556       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3557     }
3558 
3559     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3560     // is set.
3561     // The double arguments are stored to the VarArgsFrameIndex
3562     // on the stack.
3563     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3564       // Get an existing live-in vreg, or add a new one.
3565       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3566       if (!VReg)
3567         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3568 
3569       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3570       SDValue Store =
3571           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3572       MemOps.push_back(Store);
3573       // Increment the address by eight for the next argument to store
3574       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3575                                          PtrVT);
3576       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3577     }
3578   }
3579 
3580   if (!MemOps.empty())
3581     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3582 
3583   return Chain;
3584 }
3585 
3586 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3587 // value to MVT::i64 and then truncate to the correct register size.
3588 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3589                                              EVT ObjectVT, SelectionDAG &DAG,
3590                                              SDValue ArgVal,
3591                                              const SDLoc &dl) const {
3592   if (Flags.isSExt())
3593     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3594                          DAG.getValueType(ObjectVT));
3595   else if (Flags.isZExt())
3596     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3597                          DAG.getValueType(ObjectVT));
3598 
3599   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3600 }
3601 
3602 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3603     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3604     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3605     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3606   // TODO: add description of PPC stack frame format, or at least some docs.
3607   //
3608   bool isELFv2ABI = Subtarget.isELFv2ABI();
3609   bool isLittleEndian = Subtarget.isLittleEndian();
3610   MachineFunction &MF = DAG.getMachineFunction();
3611   MachineFrameInfo &MFI = MF.getFrameInfo();
3612   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3613 
3614   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3615          "fastcc not supported on varargs functions");
3616 
3617   EVT PtrVT = getPointerTy(MF.getDataLayout());
3618   // Potential tail calls could cause overwriting of argument stack slots.
3619   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3620                        (CallConv == CallingConv::Fast));
3621   unsigned PtrByteSize = 8;
3622   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3623 
3624   static const MCPhysReg GPR[] = {
3625     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3626     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3627   };
3628   static const MCPhysReg VR[] = {
3629     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3630     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3631   };
3632 
3633   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3634   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3635   const unsigned Num_VR_Regs  = array_lengthof(VR);
3636   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3637 
3638   // Do a first pass over the arguments to determine whether the ABI
3639   // guarantees that our caller has allocated the parameter save area
3640   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3641   // in the ELFv2 ABI, it is true if this is a vararg function or if
3642   // any parameter is located in a stack slot.
3643 
3644   bool HasParameterArea = !isELFv2ABI || isVarArg;
3645   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3646   unsigned NumBytes = LinkageSize;
3647   unsigned AvailableFPRs = Num_FPR_Regs;
3648   unsigned AvailableVRs = Num_VR_Regs;
3649   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3650     if (Ins[i].Flags.isNest())
3651       continue;
3652 
3653     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3654                                PtrByteSize, LinkageSize, ParamAreaSize,
3655                                NumBytes, AvailableFPRs, AvailableVRs,
3656                                Subtarget.hasQPX()))
3657       HasParameterArea = true;
3658   }
3659 
3660   // Add DAG nodes to load the arguments or copy them out of registers.  On
3661   // entry to a function on PPC, the arguments start after the linkage area,
3662   // although the first ones are often in registers.
3663 
3664   unsigned ArgOffset = LinkageSize;
3665   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3666   unsigned &QFPR_idx = FPR_idx;
3667   SmallVector<SDValue, 8> MemOps;
3668   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3669   unsigned CurArgIdx = 0;
3670   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3671     SDValue ArgVal;
3672     bool needsLoad = false;
3673     EVT ObjectVT = Ins[ArgNo].VT;
3674     EVT OrigVT = Ins[ArgNo].ArgVT;
3675     unsigned ObjSize = ObjectVT.getStoreSize();
3676     unsigned ArgSize = ObjSize;
3677     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3678     if (Ins[ArgNo].isOrigArg()) {
3679       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3680       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3681     }
3682     // We re-align the argument offset for each argument, except when using the
3683     // fast calling convention, when we need to make sure we do that only when
3684     // we'll actually use a stack slot.
3685     unsigned CurArgOffset, Align;
3686     auto ComputeArgOffset = [&]() {
3687       /* Respect alignment of argument on the stack.  */
3688       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3689       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3690       CurArgOffset = ArgOffset;
3691     };
3692 
3693     if (CallConv != CallingConv::Fast) {
3694       ComputeArgOffset();
3695 
3696       /* Compute GPR index associated with argument offset.  */
3697       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3698       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3699     }
3700 
3701     // FIXME the codegen can be much improved in some cases.
3702     // We do not have to keep everything in memory.
3703     if (Flags.isByVal()) {
3704       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3705 
3706       if (CallConv == CallingConv::Fast)
3707         ComputeArgOffset();
3708 
3709       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3710       ObjSize = Flags.getByValSize();
3711       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3712       // Empty aggregate parameters do not take up registers.  Examples:
3713       //   struct { } a;
3714       //   union  { } b;
3715       //   int c[0];
3716       // etc.  However, we have to provide a place-holder in InVals, so
3717       // pretend we have an 8-byte item at the current address for that
3718       // purpose.
3719       if (!ObjSize) {
3720         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3721         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3722         InVals.push_back(FIN);
3723         continue;
3724       }
3725 
3726       // Create a stack object covering all stack doublewords occupied
3727       // by the argument.  If the argument is (fully or partially) on
3728       // the stack, or if the argument is fully in registers but the
3729       // caller has allocated the parameter save anyway, we can refer
3730       // directly to the caller's stack frame.  Otherwise, create a
3731       // local copy in our own frame.
3732       int FI;
3733       if (HasParameterArea ||
3734           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3735         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3736       else
3737         FI = MFI.CreateStackObject(ArgSize, Align, false);
3738       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3739 
3740       // Handle aggregates smaller than 8 bytes.
3741       if (ObjSize < PtrByteSize) {
3742         // The value of the object is its address, which differs from the
3743         // address of the enclosing doubleword on big-endian systems.
3744         SDValue Arg = FIN;
3745         if (!isLittleEndian) {
3746           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3747           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3748         }
3749         InVals.push_back(Arg);
3750 
3751         if (GPR_idx != Num_GPR_Regs) {
3752           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3753           FuncInfo->addLiveInAttr(VReg, Flags);
3754           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3755           SDValue Store;
3756 
3757           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3758             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3759                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3760             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3761                                       MachinePointerInfo(&*FuncArg), ObjType);
3762           } else {
3763             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3764             // store the whole register as-is to the parameter save area
3765             // slot.
3766             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3767                                  MachinePointerInfo(&*FuncArg));
3768           }
3769 
3770           MemOps.push_back(Store);
3771         }
3772         // Whether we copied from a register or not, advance the offset
3773         // into the parameter save area by a full doubleword.
3774         ArgOffset += PtrByteSize;
3775         continue;
3776       }
3777 
3778       // The value of the object is its address, which is the address of
3779       // its first stack doubleword.
3780       InVals.push_back(FIN);
3781 
3782       // Store whatever pieces of the object are in registers to memory.
3783       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3784         if (GPR_idx == Num_GPR_Regs)
3785           break;
3786 
3787         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3788         FuncInfo->addLiveInAttr(VReg, Flags);
3789         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3790         SDValue Addr = FIN;
3791         if (j) {
3792           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3793           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3794         }
3795         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3796                                      MachinePointerInfo(&*FuncArg, j));
3797         MemOps.push_back(Store);
3798         ++GPR_idx;
3799       }
3800       ArgOffset += ArgSize;
3801       continue;
3802     }
3803 
3804     switch (ObjectVT.getSimpleVT().SimpleTy) {
3805     default: llvm_unreachable("Unhandled argument type!");
3806     case MVT::i1:
3807     case MVT::i32:
3808     case MVT::i64:
3809       if (Flags.isNest()) {
3810         // The 'nest' parameter, if any, is passed in R11.
3811         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3812         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3813 
3814         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3815           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3816 
3817         break;
3818       }
3819 
3820       // These can be scalar arguments or elements of an integer array type
3821       // passed directly.  Clang may use those instead of "byval" aggregate
3822       // types to avoid forcing arguments to memory unnecessarily.
3823       if (GPR_idx != Num_GPR_Regs) {
3824         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3825         FuncInfo->addLiveInAttr(VReg, Flags);
3826         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3827 
3828         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3829           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3830           // value to MVT::i64 and then truncate to the correct register size.
3831           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3832       } else {
3833         if (CallConv == CallingConv::Fast)
3834           ComputeArgOffset();
3835 
3836         needsLoad = true;
3837         ArgSize = PtrByteSize;
3838       }
3839       if (CallConv != CallingConv::Fast || needsLoad)
3840         ArgOffset += 8;
3841       break;
3842 
3843     case MVT::f32:
3844     case MVT::f64:
3845       // These can be scalar arguments or elements of a float array type
3846       // passed directly.  The latter are used to implement ELFv2 homogenous
3847       // float aggregates.
3848       if (FPR_idx != Num_FPR_Regs) {
3849         unsigned VReg;
3850 
3851         if (ObjectVT == MVT::f32)
3852           VReg = MF.addLiveIn(FPR[FPR_idx],
3853                               Subtarget.hasP8Vector()
3854                                   ? &PPC::VSSRCRegClass
3855                                   : &PPC::F4RCRegClass);
3856         else
3857           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3858                                                 ? &PPC::VSFRCRegClass
3859                                                 : &PPC::F8RCRegClass);
3860 
3861         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3862         ++FPR_idx;
3863       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3864         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3865         // once we support fp <-> gpr moves.
3866 
3867         // This can only ever happen in the presence of f32 array types,
3868         // since otherwise we never run out of FPRs before running out
3869         // of GPRs.
3870         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3871         FuncInfo->addLiveInAttr(VReg, Flags);
3872         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3873 
3874         if (ObjectVT == MVT::f32) {
3875           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3876             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3877                                  DAG.getConstant(32, dl, MVT::i32));
3878           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3879         }
3880 
3881         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3882       } else {
3883         if (CallConv == CallingConv::Fast)
3884           ComputeArgOffset();
3885 
3886         needsLoad = true;
3887       }
3888 
3889       // When passing an array of floats, the array occupies consecutive
3890       // space in the argument area; only round up to the next doubleword
3891       // at the end of the array.  Otherwise, each float takes 8 bytes.
3892       if (CallConv != CallingConv::Fast || needsLoad) {
3893         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3894         ArgOffset += ArgSize;
3895         if (Flags.isInConsecutiveRegsLast())
3896           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3897       }
3898       break;
3899     case MVT::v4f32:
3900     case MVT::v4i32:
3901     case MVT::v8i16:
3902     case MVT::v16i8:
3903     case MVT::v2f64:
3904     case MVT::v2i64:
3905     case MVT::v1i128:
3906     case MVT::f128:
3907       if (!Subtarget.hasQPX()) {
3908         // These can be scalar arguments or elements of a vector array type
3909         // passed directly.  The latter are used to implement ELFv2 homogenous
3910         // vector aggregates.
3911         if (VR_idx != Num_VR_Regs) {
3912           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3913           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3914           ++VR_idx;
3915         } else {
3916           if (CallConv == CallingConv::Fast)
3917             ComputeArgOffset();
3918           needsLoad = true;
3919         }
3920         if (CallConv != CallingConv::Fast || needsLoad)
3921           ArgOffset += 16;
3922         break;
3923       } // not QPX
3924 
3925       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3926              "Invalid QPX parameter type");
3927       LLVM_FALLTHROUGH;
3928 
3929     case MVT::v4f64:
3930     case MVT::v4i1:
3931       // QPX vectors are treated like their scalar floating-point subregisters
3932       // (except that they're larger).
3933       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3934       if (QFPR_idx != Num_QFPR_Regs) {
3935         const TargetRegisterClass *RC;
3936         switch (ObjectVT.getSimpleVT().SimpleTy) {
3937         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3938         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3939         default:         RC = &PPC::QBRCRegClass; break;
3940         }
3941 
3942         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3943         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3944         ++QFPR_idx;
3945       } else {
3946         if (CallConv == CallingConv::Fast)
3947           ComputeArgOffset();
3948         needsLoad = true;
3949       }
3950       if (CallConv != CallingConv::Fast || needsLoad)
3951         ArgOffset += Sz;
3952       break;
3953     }
3954 
3955     // We need to load the argument to a virtual register if we determined
3956     // above that we ran out of physical registers of the appropriate type.
3957     if (needsLoad) {
3958       if (ObjSize < ArgSize && !isLittleEndian)
3959         CurArgOffset += ArgSize - ObjSize;
3960       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3961       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3962       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3963     }
3964 
3965     InVals.push_back(ArgVal);
3966   }
3967 
3968   // Area that is at least reserved in the caller of this function.
3969   unsigned MinReservedArea;
3970   if (HasParameterArea)
3971     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3972   else
3973     MinReservedArea = LinkageSize;
3974 
3975   // Set the size that is at least reserved in caller of this function.  Tail
3976   // call optimized functions' reserved stack space needs to be aligned so that
3977   // taking the difference between two stack areas will result in an aligned
3978   // stack.
3979   MinReservedArea =
3980       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3981   FuncInfo->setMinReservedArea(MinReservedArea);
3982 
3983   // If the function takes variable number of arguments, make a frame index for
3984   // the start of the first vararg value... for expansion of llvm.va_start.
3985   if (isVarArg) {
3986     int Depth = ArgOffset;
3987 
3988     FuncInfo->setVarArgsFrameIndex(
3989       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3990     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3991 
3992     // If this function is vararg, store any remaining integer argument regs
3993     // to their spots on the stack so that they may be loaded by dereferencing
3994     // the result of va_next.
3995     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3996          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3997       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3998       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3999       SDValue Store =
4000           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4001       MemOps.push_back(Store);
4002       // Increment the address by four for the next argument to store
4003       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4004       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4005     }
4006   }
4007 
4008   if (!MemOps.empty())
4009     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4010 
4011   return Chain;
4012 }
4013 
4014 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4015     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4016     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4017     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4018   // TODO: add description of PPC stack frame format, or at least some docs.
4019   //
4020   MachineFunction &MF = DAG.getMachineFunction();
4021   MachineFrameInfo &MFI = MF.getFrameInfo();
4022   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4023 
4024   EVT PtrVT = getPointerTy(MF.getDataLayout());
4025   bool isPPC64 = PtrVT == MVT::i64;
4026   // Potential tail calls could cause overwriting of argument stack slots.
4027   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4028                        (CallConv == CallingConv::Fast));
4029   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4030   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4031   unsigned ArgOffset = LinkageSize;
4032   // Area that is at least reserved in caller of this function.
4033   unsigned MinReservedArea = ArgOffset;
4034 
4035   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4036     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4037     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4038   };
4039   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4040     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4041     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4042   };
4043   static const MCPhysReg VR[] = {
4044     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4045     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4046   };
4047 
4048   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4049   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4050   const unsigned Num_VR_Regs  = array_lengthof( VR);
4051 
4052   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4053 
4054   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4055 
4056   // In 32-bit non-varargs functions, the stack space for vectors is after the
4057   // stack space for non-vectors.  We do not use this space unless we have
4058   // too many vectors to fit in registers, something that only occurs in
4059   // constructed examples:), but we have to walk the arglist to figure
4060   // that out...for the pathological case, compute VecArgOffset as the
4061   // start of the vector parameter area.  Computing VecArgOffset is the
4062   // entire point of the following loop.
4063   unsigned VecArgOffset = ArgOffset;
4064   if (!isVarArg && !isPPC64) {
4065     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4066          ++ArgNo) {
4067       EVT ObjectVT = Ins[ArgNo].VT;
4068       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4069 
4070       if (Flags.isByVal()) {
4071         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4072         unsigned ObjSize = Flags.getByValSize();
4073         unsigned ArgSize =
4074                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4075         VecArgOffset += ArgSize;
4076         continue;
4077       }
4078 
4079       switch(ObjectVT.getSimpleVT().SimpleTy) {
4080       default: llvm_unreachable("Unhandled argument type!");
4081       case MVT::i1:
4082       case MVT::i32:
4083       case MVT::f32:
4084         VecArgOffset += 4;
4085         break;
4086       case MVT::i64:  // PPC64
4087       case MVT::f64:
4088         // FIXME: We are guaranteed to be !isPPC64 at this point.
4089         // Does MVT::i64 apply?
4090         VecArgOffset += 8;
4091         break;
4092       case MVT::v4f32:
4093       case MVT::v4i32:
4094       case MVT::v8i16:
4095       case MVT::v16i8:
4096         // Nothing to do, we're only looking at Nonvector args here.
4097         break;
4098       }
4099     }
4100   }
4101   // We've found where the vector parameter area in memory is.  Skip the
4102   // first 12 parameters; these don't use that memory.
4103   VecArgOffset = ((VecArgOffset+15)/16)*16;
4104   VecArgOffset += 12*16;
4105 
4106   // Add DAG nodes to load the arguments or copy them out of registers.  On
4107   // entry to a function on PPC, the arguments start after the linkage area,
4108   // although the first ones are often in registers.
4109 
4110   SmallVector<SDValue, 8> MemOps;
4111   unsigned nAltivecParamsAtEnd = 0;
4112   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4113   unsigned CurArgIdx = 0;
4114   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4115     SDValue ArgVal;
4116     bool needsLoad = false;
4117     EVT ObjectVT = Ins[ArgNo].VT;
4118     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4119     unsigned ArgSize = ObjSize;
4120     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4121     if (Ins[ArgNo].isOrigArg()) {
4122       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4123       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4124     }
4125     unsigned CurArgOffset = ArgOffset;
4126 
4127     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4128     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4129         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4130       if (isVarArg || isPPC64) {
4131         MinReservedArea = ((MinReservedArea+15)/16)*16;
4132         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4133                                                   Flags,
4134                                                   PtrByteSize);
4135       } else  nAltivecParamsAtEnd++;
4136     } else
4137       // Calculate min reserved area.
4138       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4139                                                 Flags,
4140                                                 PtrByteSize);
4141 
4142     // FIXME the codegen can be much improved in some cases.
4143     // We do not have to keep everything in memory.
4144     if (Flags.isByVal()) {
4145       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4146 
4147       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4148       ObjSize = Flags.getByValSize();
4149       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4150       // Objects of size 1 and 2 are right justified, everything else is
4151       // left justified.  This means the memory address is adjusted forwards.
4152       if (ObjSize==1 || ObjSize==2) {
4153         CurArgOffset = CurArgOffset + (4 - ObjSize);
4154       }
4155       // The value of the object is its address.
4156       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4157       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4158       InVals.push_back(FIN);
4159       if (ObjSize==1 || ObjSize==2) {
4160         if (GPR_idx != Num_GPR_Regs) {
4161           unsigned VReg;
4162           if (isPPC64)
4163             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4164           else
4165             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4166           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4167           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4168           SDValue Store =
4169               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4170                                 MachinePointerInfo(&*FuncArg), ObjType);
4171           MemOps.push_back(Store);
4172           ++GPR_idx;
4173         }
4174 
4175         ArgOffset += PtrByteSize;
4176 
4177         continue;
4178       }
4179       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4180         // Store whatever pieces of the object are in registers
4181         // to memory.  ArgOffset will be the address of the beginning
4182         // of the object.
4183         if (GPR_idx != Num_GPR_Regs) {
4184           unsigned VReg;
4185           if (isPPC64)
4186             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4187           else
4188             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4189           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4190           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4191           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4192           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4193                                        MachinePointerInfo(&*FuncArg, j));
4194           MemOps.push_back(Store);
4195           ++GPR_idx;
4196           ArgOffset += PtrByteSize;
4197         } else {
4198           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4199           break;
4200         }
4201       }
4202       continue;
4203     }
4204 
4205     switch (ObjectVT.getSimpleVT().SimpleTy) {
4206     default: llvm_unreachable("Unhandled argument type!");
4207     case MVT::i1:
4208     case MVT::i32:
4209       if (!isPPC64) {
4210         if (GPR_idx != Num_GPR_Regs) {
4211           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4212           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4213 
4214           if (ObjectVT == MVT::i1)
4215             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4216 
4217           ++GPR_idx;
4218         } else {
4219           needsLoad = true;
4220           ArgSize = PtrByteSize;
4221         }
4222         // All int arguments reserve stack space in the Darwin ABI.
4223         ArgOffset += PtrByteSize;
4224         break;
4225       }
4226       LLVM_FALLTHROUGH;
4227     case MVT::i64:  // PPC64
4228       if (GPR_idx != Num_GPR_Regs) {
4229         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4230         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4231 
4232         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4233           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4234           // value to MVT::i64 and then truncate to the correct register size.
4235           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4236 
4237         ++GPR_idx;
4238       } else {
4239         needsLoad = true;
4240         ArgSize = PtrByteSize;
4241       }
4242       // All int arguments reserve stack space in the Darwin ABI.
4243       ArgOffset += 8;
4244       break;
4245 
4246     case MVT::f32:
4247     case MVT::f64:
4248       // Every 4 bytes of argument space consumes one of the GPRs available for
4249       // argument passing.
4250       if (GPR_idx != Num_GPR_Regs) {
4251         ++GPR_idx;
4252         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4253           ++GPR_idx;
4254       }
4255       if (FPR_idx != Num_FPR_Regs) {
4256         unsigned VReg;
4257 
4258         if (ObjectVT == MVT::f32)
4259           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4260         else
4261           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4262 
4263         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4264         ++FPR_idx;
4265       } else {
4266         needsLoad = true;
4267       }
4268 
4269       // All FP arguments reserve stack space in the Darwin ABI.
4270       ArgOffset += isPPC64 ? 8 : ObjSize;
4271       break;
4272     case MVT::v4f32:
4273     case MVT::v4i32:
4274     case MVT::v8i16:
4275     case MVT::v16i8:
4276       // Note that vector arguments in registers don't reserve stack space,
4277       // except in varargs functions.
4278       if (VR_idx != Num_VR_Regs) {
4279         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4280         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4281         if (isVarArg) {
4282           while ((ArgOffset % 16) != 0) {
4283             ArgOffset += PtrByteSize;
4284             if (GPR_idx != Num_GPR_Regs)
4285               GPR_idx++;
4286           }
4287           ArgOffset += 16;
4288           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4289         }
4290         ++VR_idx;
4291       } else {
4292         if (!isVarArg && !isPPC64) {
4293           // Vectors go after all the nonvectors.
4294           CurArgOffset = VecArgOffset;
4295           VecArgOffset += 16;
4296         } else {
4297           // Vectors are aligned.
4298           ArgOffset = ((ArgOffset+15)/16)*16;
4299           CurArgOffset = ArgOffset;
4300           ArgOffset += 16;
4301         }
4302         needsLoad = true;
4303       }
4304       break;
4305     }
4306 
4307     // We need to load the argument to a virtual register if we determined above
4308     // that we ran out of physical registers of the appropriate type.
4309     if (needsLoad) {
4310       int FI = MFI.CreateFixedObject(ObjSize,
4311                                      CurArgOffset + (ArgSize - ObjSize),
4312                                      isImmutable);
4313       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4314       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4315     }
4316 
4317     InVals.push_back(ArgVal);
4318   }
4319 
4320   // Allow for Altivec parameters at the end, if needed.
4321   if (nAltivecParamsAtEnd) {
4322     MinReservedArea = ((MinReservedArea+15)/16)*16;
4323     MinReservedArea += 16*nAltivecParamsAtEnd;
4324   }
4325 
4326   // Area that is at least reserved in the caller of this function.
4327   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4328 
4329   // Set the size that is at least reserved in caller of this function.  Tail
4330   // call optimized functions' reserved stack space needs to be aligned so that
4331   // taking the difference between two stack areas will result in an aligned
4332   // stack.
4333   MinReservedArea =
4334       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4335   FuncInfo->setMinReservedArea(MinReservedArea);
4336 
4337   // If the function takes variable number of arguments, make a frame index for
4338   // the start of the first vararg value... for expansion of llvm.va_start.
4339   if (isVarArg) {
4340     int Depth = ArgOffset;
4341 
4342     FuncInfo->setVarArgsFrameIndex(
4343       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4344                             Depth, true));
4345     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4346 
4347     // If this function is vararg, store any remaining integer argument regs
4348     // to their spots on the stack so that they may be loaded by dereferencing
4349     // the result of va_next.
4350     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4351       unsigned VReg;
4352 
4353       if (isPPC64)
4354         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4355       else
4356         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4357 
4358       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4359       SDValue Store =
4360           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4361       MemOps.push_back(Store);
4362       // Increment the address by four for the next argument to store
4363       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4364       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4365     }
4366   }
4367 
4368   if (!MemOps.empty())
4369     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4370 
4371   return Chain;
4372 }
4373 
4374 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4375 /// adjusted to accommodate the arguments for the tailcall.
4376 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4377                                    unsigned ParamSize) {
4378 
4379   if (!isTailCall) return 0;
4380 
4381   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4382   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4383   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4384   // Remember only if the new adjustment is bigger.
4385   if (SPDiff < FI->getTailCallSPDelta())
4386     FI->setTailCallSPDelta(SPDiff);
4387 
4388   return SPDiff;
4389 }
4390 
4391 static bool isFunctionGlobalAddress(SDValue Callee);
4392 
4393 static bool
4394 callsShareTOCBase(const Function *Caller, SDValue Callee,
4395                     const TargetMachine &TM) {
4396   // If !G, Callee can be an external symbol.
4397   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4398   if (!G)
4399     return false;
4400 
4401   // The medium and large code models are expected to provide a sufficiently
4402   // large TOC to provide all data addressing needs of a module with a
4403   // single TOC. Since each module will be addressed with a single TOC then we
4404   // only need to check that caller and callee don't cross dso boundaries.
4405   if (CodeModel::Medium == TM.getCodeModel() ||
4406       CodeModel::Large == TM.getCodeModel())
4407     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4408 
4409   // Otherwise we need to ensure callee and caller are in the same section,
4410   // since the linker may allocate multiple TOCs, and we don't know which
4411   // sections will belong to the same TOC base.
4412 
4413   const GlobalValue *GV = G->getGlobal();
4414   if (!GV->isStrongDefinitionForLinker())
4415     return false;
4416 
4417   // Any explicitly-specified sections and section prefixes must also match.
4418   // Also, if we're using -ffunction-sections, then each function is always in
4419   // a different section (the same is true for COMDAT functions).
4420   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4421       GV->getSection() != Caller->getSection())
4422     return false;
4423   if (const auto *F = dyn_cast<Function>(GV)) {
4424     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4425       return false;
4426   }
4427 
4428   // If the callee might be interposed, then we can't assume the ultimate call
4429   // target will be in the same section. Even in cases where we can assume that
4430   // interposition won't happen, in any case where the linker might insert a
4431   // stub to allow for interposition, we must generate code as though
4432   // interposition might occur. To understand why this matters, consider a
4433   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4434   // in the same section, but a is in a different module (i.e. has a different
4435   // TOC base pointer). If the linker allows for interposition between b and c,
4436   // then it will generate a stub for the call edge between b and c which will
4437   // save the TOC pointer into the designated stack slot allocated by b. If we
4438   // return true here, and therefore allow a tail call between b and c, that
4439   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4440   // pointer into the stack slot allocated by a (where the a -> b stub saved
4441   // a's TOC base pointer). If we're not considering a tail call, but rather,
4442   // whether a nop is needed after the call instruction in b, because the linker
4443   // will insert a stub, it might complain about a missing nop if we omit it
4444   // (although many don't complain in this case).
4445   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4446     return false;
4447 
4448   return true;
4449 }
4450 
4451 static bool
4452 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4453                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4454   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4455 
4456   const unsigned PtrByteSize = 8;
4457   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4458 
4459   static const MCPhysReg GPR[] = {
4460     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4461     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4462   };
4463   static const MCPhysReg VR[] = {
4464     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4465     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4466   };
4467 
4468   const unsigned NumGPRs = array_lengthof(GPR);
4469   const unsigned NumFPRs = 13;
4470   const unsigned NumVRs = array_lengthof(VR);
4471   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4472 
4473   unsigned NumBytes = LinkageSize;
4474   unsigned AvailableFPRs = NumFPRs;
4475   unsigned AvailableVRs = NumVRs;
4476 
4477   for (const ISD::OutputArg& Param : Outs) {
4478     if (Param.Flags.isNest()) continue;
4479 
4480     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4481                                PtrByteSize, LinkageSize, ParamAreaSize,
4482                                NumBytes, AvailableFPRs, AvailableVRs,
4483                                Subtarget.hasQPX()))
4484       return true;
4485   }
4486   return false;
4487 }
4488 
4489 static bool
4490 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4491   if (CS.arg_size() != CallerFn->arg_size())
4492     return false;
4493 
4494   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4495   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4496   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4497 
4498   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4499     const Value* CalleeArg = *CalleeArgIter;
4500     const Value* CallerArg = &(*CallerArgIter);
4501     if (CalleeArg == CallerArg)
4502       continue;
4503 
4504     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4505     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4506     //      }
4507     // 1st argument of callee is undef and has the same type as caller.
4508     if (CalleeArg->getType() == CallerArg->getType() &&
4509         isa<UndefValue>(CalleeArg))
4510       continue;
4511 
4512     return false;
4513   }
4514 
4515   return true;
4516 }
4517 
4518 // Returns true if TCO is possible between the callers and callees
4519 // calling conventions.
4520 static bool
4521 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4522                                     CallingConv::ID CalleeCC) {
4523   // Tail calls are possible with fastcc and ccc.
4524   auto isTailCallableCC  = [] (CallingConv::ID CC){
4525       return  CC == CallingConv::C || CC == CallingConv::Fast;
4526   };
4527   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4528     return false;
4529 
4530   // We can safely tail call both fastcc and ccc callees from a c calling
4531   // convention caller. If the caller is fastcc, we may have less stack space
4532   // than a non-fastcc caller with the same signature so disable tail-calls in
4533   // that case.
4534   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4535 }
4536 
4537 bool
4538 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4539                                     SDValue Callee,
4540                                     CallingConv::ID CalleeCC,
4541                                     ImmutableCallSite CS,
4542                                     bool isVarArg,
4543                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4544                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4545                                     SelectionDAG& DAG) const {
4546   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4547 
4548   if (DisableSCO && !TailCallOpt) return false;
4549 
4550   // Variadic argument functions are not supported.
4551   if (isVarArg) return false;
4552 
4553   auto &Caller = DAG.getMachineFunction().getFunction();
4554   // Check that the calling conventions are compatible for tco.
4555   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4556     return false;
4557 
4558   // Caller contains any byval parameter is not supported.
4559   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4560     return false;
4561 
4562   // Callee contains any byval parameter is not supported, too.
4563   // Note: This is a quick work around, because in some cases, e.g.
4564   // caller's stack size > callee's stack size, we are still able to apply
4565   // sibling call optimization. For example, gcc is able to do SCO for caller1
4566   // in the following example, but not for caller2.
4567   //   struct test {
4568   //     long int a;
4569   //     char ary[56];
4570   //   } gTest;
4571   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4572   //     b->a = v.a;
4573   //     return 0;
4574   //   }
4575   //   void caller1(struct test a, struct test c, struct test *b) {
4576   //     callee(gTest, b); }
4577   //   void caller2(struct test *b) { callee(gTest, b); }
4578   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4579     return false;
4580 
4581   // If callee and caller use different calling conventions, we cannot pass
4582   // parameters on stack since offsets for the parameter area may be different.
4583   if (Caller.getCallingConv() != CalleeCC &&
4584       needStackSlotPassParameters(Subtarget, Outs))
4585     return false;
4586 
4587   // No TCO/SCO on indirect call because Caller have to restore its TOC
4588   if (!isFunctionGlobalAddress(Callee) &&
4589       !isa<ExternalSymbolSDNode>(Callee))
4590     return false;
4591 
4592   // If the caller and callee potentially have different TOC bases then we
4593   // cannot tail call since we need to restore the TOC pointer after the call.
4594   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4595   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4596     return false;
4597 
4598   // TCO allows altering callee ABI, so we don't have to check further.
4599   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4600     return true;
4601 
4602   if (DisableSCO) return false;
4603 
4604   // If callee use the same argument list that caller is using, then we can
4605   // apply SCO on this case. If it is not, then we need to check if callee needs
4606   // stack for passing arguments.
4607   if (!hasSameArgumentList(&Caller, CS) &&
4608       needStackSlotPassParameters(Subtarget, Outs)) {
4609     return false;
4610   }
4611 
4612   return true;
4613 }
4614 
4615 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4616 /// for tail call optimization. Targets which want to do tail call
4617 /// optimization should implement this function.
4618 bool
4619 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4620                                                      CallingConv::ID CalleeCC,
4621                                                      bool isVarArg,
4622                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4623                                                      SelectionDAG& DAG) const {
4624   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4625     return false;
4626 
4627   // Variable argument functions are not supported.
4628   if (isVarArg)
4629     return false;
4630 
4631   MachineFunction &MF = DAG.getMachineFunction();
4632   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4633   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4634     // Functions containing by val parameters are not supported.
4635     for (unsigned i = 0; i != Ins.size(); i++) {
4636        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4637        if (Flags.isByVal()) return false;
4638     }
4639 
4640     // Non-PIC/GOT tail calls are supported.
4641     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4642       return true;
4643 
4644     // At the moment we can only do local tail calls (in same module, hidden
4645     // or protected) if we are generating PIC.
4646     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4647       return G->getGlobal()->hasHiddenVisibility()
4648           || G->getGlobal()->hasProtectedVisibility();
4649   }
4650 
4651   return false;
4652 }
4653 
4654 /// isCallCompatibleAddress - Return the immediate to use if the specified
4655 /// 32-bit value is representable in the immediate field of a BxA instruction.
4656 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4657   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4658   if (!C) return nullptr;
4659 
4660   int Addr = C->getZExtValue();
4661   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4662       SignExtend32<26>(Addr) != Addr)
4663     return nullptr;  // Top 6 bits have to be sext of immediate.
4664 
4665   return DAG
4666       .getConstant(
4667           (int)C->getZExtValue() >> 2, SDLoc(Op),
4668           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4669       .getNode();
4670 }
4671 
4672 namespace {
4673 
4674 struct TailCallArgumentInfo {
4675   SDValue Arg;
4676   SDValue FrameIdxOp;
4677   int FrameIdx = 0;
4678 
4679   TailCallArgumentInfo() = default;
4680 };
4681 
4682 } // end anonymous namespace
4683 
4684 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4685 static void StoreTailCallArgumentsToStackSlot(
4686     SelectionDAG &DAG, SDValue Chain,
4687     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4688     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4689   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4690     SDValue Arg = TailCallArgs[i].Arg;
4691     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4692     int FI = TailCallArgs[i].FrameIdx;
4693     // Store relative to framepointer.
4694     MemOpChains.push_back(DAG.getStore(
4695         Chain, dl, Arg, FIN,
4696         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4697   }
4698 }
4699 
4700 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4701 /// the appropriate stack slot for the tail call optimized function call.
4702 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4703                                              SDValue OldRetAddr, SDValue OldFP,
4704                                              int SPDiff, const SDLoc &dl) {
4705   if (SPDiff) {
4706     // Calculate the new stack slot for the return address.
4707     MachineFunction &MF = DAG.getMachineFunction();
4708     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4709     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4710     bool isPPC64 = Subtarget.isPPC64();
4711     int SlotSize = isPPC64 ? 8 : 4;
4712     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4713     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4714                                                          NewRetAddrLoc, true);
4715     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4716     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4717     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4718                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4719 
4720     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4721     // slot as the FP is never overwritten.
4722     if (Subtarget.isDarwinABI()) {
4723       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4724       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4725                                                          true);
4726       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4727       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4728                            MachinePointerInfo::getFixedStack(
4729                                DAG.getMachineFunction(), NewFPIdx));
4730     }
4731   }
4732   return Chain;
4733 }
4734 
4735 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4736 /// the position of the argument.
4737 static void
4738 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4739                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4740                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4741   int Offset = ArgOffset + SPDiff;
4742   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4743   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4744   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4745   SDValue FIN = DAG.getFrameIndex(FI, VT);
4746   TailCallArgumentInfo Info;
4747   Info.Arg = Arg;
4748   Info.FrameIdxOp = FIN;
4749   Info.FrameIdx = FI;
4750   TailCallArguments.push_back(Info);
4751 }
4752 
4753 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4754 /// stack slot. Returns the chain as result and the loaded frame pointers in
4755 /// LROpOut/FPOpout. Used when tail calling.
4756 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4757     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4758     SDValue &FPOpOut, const SDLoc &dl) const {
4759   if (SPDiff) {
4760     // Load the LR and FP stack slot for later adjusting.
4761     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4762     LROpOut = getReturnAddrFrameIndex(DAG);
4763     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4764     Chain = SDValue(LROpOut.getNode(), 1);
4765 
4766     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4767     // slot as the FP is never overwritten.
4768     if (Subtarget.isDarwinABI()) {
4769       FPOpOut = getFramePointerFrameIndex(DAG);
4770       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4771       Chain = SDValue(FPOpOut.getNode(), 1);
4772     }
4773   }
4774   return Chain;
4775 }
4776 
4777 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4778 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4779 /// specified by the specific parameter attribute. The copy will be passed as
4780 /// a byval function parameter.
4781 /// Sometimes what we are copying is the end of a larger object, the part that
4782 /// does not fit in registers.
4783 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4784                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4785                                          SelectionDAG &DAG, const SDLoc &dl) {
4786   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4787   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4788                        false, false, false, MachinePointerInfo(),
4789                        MachinePointerInfo());
4790 }
4791 
4792 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4793 /// tail calls.
4794 static void LowerMemOpCallTo(
4795     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4796     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4797     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4798     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4799   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4800   if (!isTailCall) {
4801     if (isVector) {
4802       SDValue StackPtr;
4803       if (isPPC64)
4804         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4805       else
4806         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4807       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4808                            DAG.getConstant(ArgOffset, dl, PtrVT));
4809     }
4810     MemOpChains.push_back(
4811         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4812     // Calculate and remember argument location.
4813   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4814                                   TailCallArguments);
4815 }
4816 
4817 static void
4818 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4819                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4820                 SDValue FPOp,
4821                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4822   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4823   // might overwrite each other in case of tail call optimization.
4824   SmallVector<SDValue, 8> MemOpChains2;
4825   // Do not flag preceding copytoreg stuff together with the following stuff.
4826   InFlag = SDValue();
4827   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4828                                     MemOpChains2, dl);
4829   if (!MemOpChains2.empty())
4830     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4831 
4832   // Store the return address to the appropriate stack slot.
4833   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4834 
4835   // Emit callseq_end just before tailcall node.
4836   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4837                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4838   InFlag = Chain.getValue(1);
4839 }
4840 
4841 // Is this global address that of a function that can be called by name? (as
4842 // opposed to something that must hold a descriptor for an indirect call).
4843 static bool isFunctionGlobalAddress(SDValue Callee) {
4844   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4845     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4846         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4847       return false;
4848 
4849     return G->getGlobal()->getValueType()->isFunctionTy();
4850   }
4851 
4852   return false;
4853 }
4854 
4855 static unsigned
4856 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4857             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4858             bool isPatchPoint, bool hasNest,
4859             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4860             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4861             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4862   bool isPPC64 = Subtarget.isPPC64();
4863   bool isSVR4ABI = Subtarget.isSVR4ABI();
4864   bool isELFv2ABI = Subtarget.isELFv2ABI();
4865 
4866   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4867   NodeTys.push_back(MVT::Other);   // Returns a chain
4868   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4869 
4870   unsigned CallOpc = PPCISD::CALL;
4871 
4872   bool needIndirectCall = true;
4873   if (!isSVR4ABI || !isPPC64)
4874     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4875       // If this is an absolute destination address, use the munged value.
4876       Callee = SDValue(Dest, 0);
4877       needIndirectCall = false;
4878     }
4879 
4880   // PC-relative references to external symbols should go through $stub, unless
4881   // we're building with the leopard linker or later, which automatically
4882   // synthesizes these stubs.
4883   const TargetMachine &TM = DAG.getTarget();
4884   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4885   const GlobalValue *GV = nullptr;
4886   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4887     GV = G->getGlobal();
4888   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4889   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4890 
4891   if (isFunctionGlobalAddress(Callee)) {
4892     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4893     // A call to a TLS address is actually an indirect call to a
4894     // thread-specific pointer.
4895     unsigned OpFlags = 0;
4896     if (UsePlt)
4897       OpFlags = PPCII::MO_PLT;
4898 
4899     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4900     // every direct call is) turn it into a TargetGlobalAddress /
4901     // TargetExternalSymbol node so that legalize doesn't hack it.
4902     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4903                                         Callee.getValueType(), 0, OpFlags);
4904     needIndirectCall = false;
4905   }
4906 
4907   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4908     unsigned char OpFlags = 0;
4909 
4910     if (UsePlt)
4911       OpFlags = PPCII::MO_PLT;
4912 
4913     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4914                                          OpFlags);
4915     needIndirectCall = false;
4916   }
4917 
4918   if (isPatchPoint) {
4919     // We'll form an invalid direct call when lowering a patchpoint; the full
4920     // sequence for an indirect call is complicated, and many of the
4921     // instructions introduced might have side effects (and, thus, can't be
4922     // removed later). The call itself will be removed as soon as the
4923     // argument/return lowering is complete, so the fact that it has the wrong
4924     // kind of operands should not really matter.
4925     needIndirectCall = false;
4926   }
4927 
4928   if (needIndirectCall) {
4929     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4930     // to do the call, we can't use PPCISD::CALL.
4931     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4932 
4933     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4934       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4935       // entry point, but to the function descriptor (the function entry point
4936       // address is part of the function descriptor though).
4937       // The function descriptor is a three doubleword structure with the
4938       // following fields: function entry point, TOC base address and
4939       // environment pointer.
4940       // Thus for a call through a function pointer, the following actions need
4941       // to be performed:
4942       //   1. Save the TOC of the caller in the TOC save area of its stack
4943       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4944       //   2. Load the address of the function entry point from the function
4945       //      descriptor.
4946       //   3. Load the TOC of the callee from the function descriptor into r2.
4947       //   4. Load the environment pointer from the function descriptor into
4948       //      r11.
4949       //   5. Branch to the function entry point address.
4950       //   6. On return of the callee, the TOC of the caller needs to be
4951       //      restored (this is done in FinishCall()).
4952       //
4953       // The loads are scheduled at the beginning of the call sequence, and the
4954       // register copies are flagged together to ensure that no other
4955       // operations can be scheduled in between. E.g. without flagging the
4956       // copies together, a TOC access in the caller could be scheduled between
4957       // the assignment of the callee TOC and the branch to the callee, which
4958       // results in the TOC access going through the TOC of the callee instead
4959       // of going through the TOC of the caller, which leads to incorrect code.
4960 
4961       // Load the address of the function entry point from the function
4962       // descriptor.
4963       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4964       if (LDChain.getValueType() == MVT::Glue)
4965         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4966 
4967       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4968                           ? (MachineMemOperand::MODereferenceable |
4969                              MachineMemOperand::MOInvariant)
4970                           : MachineMemOperand::MONone;
4971 
4972       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4973       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4974                                         /* Alignment = */ 8, MMOFlags);
4975 
4976       // Load environment pointer into r11.
4977       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4978       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4979       SDValue LoadEnvPtr =
4980           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4981                       /* Alignment = */ 8, MMOFlags);
4982 
4983       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4984       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4985       SDValue TOCPtr =
4986           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4987                       /* Alignment = */ 8, MMOFlags);
4988 
4989       setUsesTOCBasePtr(DAG);
4990       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4991                                         InFlag);
4992       Chain = TOCVal.getValue(0);
4993       InFlag = TOCVal.getValue(1);
4994 
4995       // If the function call has an explicit 'nest' parameter, it takes the
4996       // place of the environment pointer.
4997       if (!hasNest) {
4998         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4999                                           InFlag);
5000 
5001         Chain = EnvVal.getValue(0);
5002         InFlag = EnvVal.getValue(1);
5003       }
5004 
5005       MTCTROps[0] = Chain;
5006       MTCTROps[1] = LoadFuncPtr;
5007       MTCTROps[2] = InFlag;
5008     }
5009 
5010     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
5011                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
5012     InFlag = Chain.getValue(1);
5013 
5014     NodeTys.clear();
5015     NodeTys.push_back(MVT::Other);
5016     NodeTys.push_back(MVT::Glue);
5017     Ops.push_back(Chain);
5018     CallOpc = PPCISD::BCTRL;
5019     Callee.setNode(nullptr);
5020     // Add use of X11 (holding environment pointer)
5021     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
5022       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5023     // Add CTR register as callee so a bctr can be emitted later.
5024     if (isTailCall)
5025       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5026   }
5027 
5028   // If this is a direct call, pass the chain and the callee.
5029   if (Callee.getNode()) {
5030     Ops.push_back(Chain);
5031     Ops.push_back(Callee);
5032   }
5033   // If this is a tail call add stack pointer delta.
5034   if (isTailCall)
5035     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5036 
5037   // Add argument registers to the end of the list so that they are known live
5038   // into the call.
5039   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5040     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5041                                   RegsToPass[i].second.getValueType()));
5042 
5043   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5044   // into the call.
5045   // We do need to reserve X2 to appease the verifier for the PATCHPOINT.
5046   if (isSVR4ABI && isPPC64) {
5047     setUsesTOCBasePtr(DAG);
5048 
5049     // We cannot add X2 as an operand here for PATCHPOINT, because there is no
5050     // way to mark dependencies as implicit here. We will add the X2 dependency
5051     // in EmitInstrWithCustomInserter.
5052     if (!isPatchPoint)
5053       Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5054   }
5055 
5056   return CallOpc;
5057 }
5058 
5059 SDValue PPCTargetLowering::LowerCallResult(
5060     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5061     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5062     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5063   SmallVector<CCValAssign, 16> RVLocs;
5064   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5065                     *DAG.getContext());
5066 
5067   CCRetInfo.AnalyzeCallResult(
5068       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5069                ? RetCC_PPC_Cold
5070                : RetCC_PPC);
5071 
5072   // Copy all of the result registers out of their specified physreg.
5073   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5074     CCValAssign &VA = RVLocs[i];
5075     assert(VA.isRegLoc() && "Can only return in registers!");
5076 
5077     SDValue Val = DAG.getCopyFromReg(Chain, dl,
5078                                      VA.getLocReg(), VA.getLocVT(), InFlag);
5079     Chain = Val.getValue(1);
5080     InFlag = Val.getValue(2);
5081 
5082     switch (VA.getLocInfo()) {
5083     default: llvm_unreachable("Unknown loc info!");
5084     case CCValAssign::Full: break;
5085     case CCValAssign::AExt:
5086       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5087       break;
5088     case CCValAssign::ZExt:
5089       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5090                         DAG.getValueType(VA.getValVT()));
5091       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5092       break;
5093     case CCValAssign::SExt:
5094       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5095                         DAG.getValueType(VA.getValVT()));
5096       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5097       break;
5098     }
5099 
5100     InVals.push_back(Val);
5101   }
5102 
5103   return Chain;
5104 }
5105 
5106 SDValue PPCTargetLowering::FinishCall(
5107     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5108     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5109     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5110     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5111     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5112     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5113   std::vector<EVT> NodeTys;
5114   SmallVector<SDValue, 8> Ops;
5115   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5116                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5117                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5118 
5119   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5120   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5121     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5122 
5123   // When performing tail call optimization the callee pops its arguments off
5124   // the stack. Account for this here so these bytes can be pushed back on in
5125   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5126   int BytesCalleePops =
5127     (CallConv == CallingConv::Fast &&
5128      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5129 
5130   // Add a register mask operand representing the call-preserved registers.
5131   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5132   const uint32_t *Mask =
5133       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5134   assert(Mask && "Missing call preserved mask for calling convention");
5135   Ops.push_back(DAG.getRegisterMask(Mask));
5136 
5137   if (InFlag.getNode())
5138     Ops.push_back(InFlag);
5139 
5140   // Emit tail call.
5141   if (isTailCall) {
5142     assert(((Callee.getOpcode() == ISD::Register &&
5143              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5144             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5145             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5146             isa<ConstantSDNode>(Callee)) &&
5147     "Expecting an global address, external symbol, absolute value or register");
5148 
5149     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5150     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5151   }
5152 
5153   // Add a NOP immediately after the branch instruction when using the 64-bit
5154   // SVR4 ABI. At link time, if caller and callee are in a different module and
5155   // thus have a different TOC, the call will be replaced with a call to a stub
5156   // function which saves the current TOC, loads the TOC of the callee and
5157   // branches to the callee. The NOP will be replaced with a load instruction
5158   // which restores the TOC of the caller from the TOC save slot of the current
5159   // stack frame. If caller and callee belong to the same module (and have the
5160   // same TOC), the NOP will remain unchanged.
5161 
5162   MachineFunction &MF = DAG.getMachineFunction();
5163   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5164       !isPatchPoint) {
5165     if (CallOpc == PPCISD::BCTRL) {
5166       // This is a call through a function pointer.
5167       // Restore the caller TOC from the save area into R2.
5168       // See PrepareCall() for more information about calls through function
5169       // pointers in the 64-bit SVR4 ABI.
5170       // We are using a target-specific load with r2 hard coded, because the
5171       // result of a target-independent load would never go directly into r2,
5172       // since r2 is a reserved register (which prevents the register allocator
5173       // from allocating it), resulting in an additional register being
5174       // allocated and an unnecessary move instruction being generated.
5175       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5176 
5177       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5178       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5179       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5180       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5181       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5182 
5183       // The address needs to go after the chain input but before the flag (or
5184       // any other variadic arguments).
5185       Ops.insert(std::next(Ops.begin()), AddTOC);
5186     } else if (CallOpc == PPCISD::CALL &&
5187       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5188       // Otherwise insert NOP for non-local calls.
5189       CallOpc = PPCISD::CALL_NOP;
5190     }
5191   }
5192 
5193   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5194   InFlag = Chain.getValue(1);
5195 
5196   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5197                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5198                              InFlag, dl);
5199   if (!Ins.empty())
5200     InFlag = Chain.getValue(1);
5201 
5202   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5203                          Ins, dl, DAG, InVals);
5204 }
5205 
5206 SDValue
5207 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5208                              SmallVectorImpl<SDValue> &InVals) const {
5209   SelectionDAG &DAG                     = CLI.DAG;
5210   SDLoc &dl                             = CLI.DL;
5211   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5212   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5213   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5214   SDValue Chain                         = CLI.Chain;
5215   SDValue Callee                        = CLI.Callee;
5216   bool &isTailCall                      = CLI.IsTailCall;
5217   CallingConv::ID CallConv              = CLI.CallConv;
5218   bool isVarArg                         = CLI.IsVarArg;
5219   bool isPatchPoint                     = CLI.IsPatchPoint;
5220   ImmutableCallSite CS                  = CLI.CS;
5221 
5222   if (isTailCall) {
5223     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5224       isTailCall = false;
5225     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5226       isTailCall =
5227         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5228                                                  isVarArg, Outs, Ins, DAG);
5229     else
5230       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5231                                                      Ins, DAG);
5232     if (isTailCall) {
5233       ++NumTailCalls;
5234       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5235         ++NumSiblingCalls;
5236 
5237       assert(isa<GlobalAddressSDNode>(Callee) &&
5238              "Callee should be an llvm::Function object.");
5239       LLVM_DEBUG(
5240           const GlobalValue *GV =
5241               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5242           const unsigned Width =
5243               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5244           dbgs() << "TCO caller: "
5245                  << left_justify(DAG.getMachineFunction().getName(), Width)
5246                  << ", callee linkage: " << GV->getVisibility() << ", "
5247                  << GV->getLinkage() << "\n");
5248     }
5249   }
5250 
5251   if (!isTailCall && CS && CS.isMustTailCall())
5252     report_fatal_error("failed to perform tail call elimination on a call "
5253                        "site marked musttail");
5254 
5255   // When long calls (i.e. indirect calls) are always used, calls are always
5256   // made via function pointer. If we have a function name, first translate it
5257   // into a pointer.
5258   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5259       !isTailCall)
5260     Callee = LowerGlobalAddress(Callee, DAG);
5261 
5262   if (Subtarget.isSVR4ABI()) {
5263     if (Subtarget.isPPC64())
5264       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5265                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5266                               dl, DAG, InVals, CS);
5267     else
5268       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5269                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5270                               dl, DAG, InVals, CS);
5271   }
5272 
5273   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5274                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5275                           dl, DAG, InVals, CS);
5276 }
5277 
5278 SDValue PPCTargetLowering::LowerCall_32SVR4(
5279     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5280     bool isTailCall, bool isPatchPoint,
5281     const SmallVectorImpl<ISD::OutputArg> &Outs,
5282     const SmallVectorImpl<SDValue> &OutVals,
5283     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5284     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5285     ImmutableCallSite CS) const {
5286   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5287   // of the 32-bit SVR4 ABI stack frame layout.
5288 
5289   assert((CallConv == CallingConv::C ||
5290           CallConv == CallingConv::Cold ||
5291           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5292 
5293   unsigned PtrByteSize = 4;
5294 
5295   MachineFunction &MF = DAG.getMachineFunction();
5296 
5297   // Mark this function as potentially containing a function that contains a
5298   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5299   // and restoring the callers stack pointer in this functions epilog. This is
5300   // done because by tail calling the called function might overwrite the value
5301   // in this function's (MF) stack pointer stack slot 0(SP).
5302   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5303       CallConv == CallingConv::Fast)
5304     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5305 
5306   // Count how many bytes are to be pushed on the stack, including the linkage
5307   // area, parameter list area and the part of the local variable space which
5308   // contains copies of aggregates which are passed by value.
5309 
5310   // Assign locations to all of the outgoing arguments.
5311   SmallVector<CCValAssign, 16> ArgLocs;
5312   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5313 
5314   // Reserve space for the linkage area on the stack.
5315   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5316                        PtrByteSize);
5317   if (useSoftFloat())
5318     CCInfo.PreAnalyzeCallOperands(Outs);
5319 
5320   if (isVarArg) {
5321     // Handle fixed and variable vector arguments differently.
5322     // Fixed vector arguments go into registers as long as registers are
5323     // available. Variable vector arguments always go into memory.
5324     unsigned NumArgs = Outs.size();
5325 
5326     for (unsigned i = 0; i != NumArgs; ++i) {
5327       MVT ArgVT = Outs[i].VT;
5328       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5329       bool Result;
5330 
5331       if (Outs[i].IsFixed) {
5332         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5333                                CCInfo);
5334       } else {
5335         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5336                                       ArgFlags, CCInfo);
5337       }
5338 
5339       if (Result) {
5340 #ifndef NDEBUG
5341         errs() << "Call operand #" << i << " has unhandled type "
5342              << EVT(ArgVT).getEVTString() << "\n";
5343 #endif
5344         llvm_unreachable(nullptr);
5345       }
5346     }
5347   } else {
5348     // All arguments are treated the same.
5349     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5350   }
5351   CCInfo.clearWasPPCF128();
5352 
5353   // Assign locations to all of the outgoing aggregate by value arguments.
5354   SmallVector<CCValAssign, 16> ByValArgLocs;
5355   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5356 
5357   // Reserve stack space for the allocations in CCInfo.
5358   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5359 
5360   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5361 
5362   // Size of the linkage area, parameter list area and the part of the local
5363   // space variable where copies of aggregates which are passed by value are
5364   // stored.
5365   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5366 
5367   // Calculate by how many bytes the stack has to be adjusted in case of tail
5368   // call optimization.
5369   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5370 
5371   // Adjust the stack pointer for the new arguments...
5372   // These operations are automatically eliminated by the prolog/epilog pass
5373   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5374   SDValue CallSeqStart = Chain;
5375 
5376   // Load the return address and frame pointer so it can be moved somewhere else
5377   // later.
5378   SDValue LROp, FPOp;
5379   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5380 
5381   // Set up a copy of the stack pointer for use loading and storing any
5382   // arguments that may not fit in the registers available for argument
5383   // passing.
5384   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5385 
5386   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5387   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5388   SmallVector<SDValue, 8> MemOpChains;
5389 
5390   bool seenFloatArg = false;
5391   // Walk the register/memloc assignments, inserting copies/loads.
5392   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5393        i != e;
5394        ++i) {
5395     CCValAssign &VA = ArgLocs[i];
5396     SDValue Arg = OutVals[i];
5397     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5398 
5399     if (Flags.isByVal()) {
5400       // Argument is an aggregate which is passed by value, thus we need to
5401       // create a copy of it in the local variable space of the current stack
5402       // frame (which is the stack frame of the caller) and pass the address of
5403       // this copy to the callee.
5404       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5405       CCValAssign &ByValVA = ByValArgLocs[j++];
5406       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5407 
5408       // Memory reserved in the local variable space of the callers stack frame.
5409       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5410 
5411       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5412       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5413                            StackPtr, PtrOff);
5414 
5415       // Create a copy of the argument in the local area of the current
5416       // stack frame.
5417       SDValue MemcpyCall =
5418         CreateCopyOfByValArgument(Arg, PtrOff,
5419                                   CallSeqStart.getNode()->getOperand(0),
5420                                   Flags, DAG, dl);
5421 
5422       // This must go outside the CALLSEQ_START..END.
5423       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5424                                                      SDLoc(MemcpyCall));
5425       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5426                              NewCallSeqStart.getNode());
5427       Chain = CallSeqStart = NewCallSeqStart;
5428 
5429       // Pass the address of the aggregate copy on the stack either in a
5430       // physical register or in the parameter list area of the current stack
5431       // frame to the callee.
5432       Arg = PtrOff;
5433     }
5434 
5435     // When useCRBits() is true, there can be i1 arguments.
5436     // It is because getRegisterType(MVT::i1) => MVT::i1,
5437     // and for other integer types getRegisterType() => MVT::i32.
5438     // Extend i1 and ensure callee will get i32.
5439     if (Arg.getValueType() == MVT::i1)
5440       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5441                         dl, MVT::i32, Arg);
5442 
5443     if (VA.isRegLoc()) {
5444       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5445       // Put argument in a physical register.
5446       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5447     } else {
5448       // Put argument in the parameter list area of the current stack frame.
5449       assert(VA.isMemLoc());
5450       unsigned LocMemOffset = VA.getLocMemOffset();
5451 
5452       if (!isTailCall) {
5453         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5454         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5455                              StackPtr, PtrOff);
5456 
5457         MemOpChains.push_back(
5458             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5459       } else {
5460         // Calculate and remember argument location.
5461         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5462                                  TailCallArguments);
5463       }
5464     }
5465   }
5466 
5467   if (!MemOpChains.empty())
5468     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5469 
5470   // Build a sequence of copy-to-reg nodes chained together with token chain
5471   // and flag operands which copy the outgoing args into the appropriate regs.
5472   SDValue InFlag;
5473   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5474     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5475                              RegsToPass[i].second, InFlag);
5476     InFlag = Chain.getValue(1);
5477   }
5478 
5479   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5480   // registers.
5481   if (isVarArg) {
5482     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5483     SDValue Ops[] = { Chain, InFlag };
5484 
5485     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5486                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5487 
5488     InFlag = Chain.getValue(1);
5489   }
5490 
5491   if (isTailCall)
5492     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5493                     TailCallArguments);
5494 
5495   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5496                     /* unused except on PPC64 ELFv1 */ false, DAG,
5497                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5498                     NumBytes, Ins, InVals, CS);
5499 }
5500 
5501 // Copy an argument into memory, being careful to do this outside the
5502 // call sequence for the call to which the argument belongs.
5503 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5504     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5505     SelectionDAG &DAG, const SDLoc &dl) const {
5506   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5507                         CallSeqStart.getNode()->getOperand(0),
5508                         Flags, DAG, dl);
5509   // The MEMCPY must go outside the CALLSEQ_START..END.
5510   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5511   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5512                                                  SDLoc(MemcpyCall));
5513   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5514                          NewCallSeqStart.getNode());
5515   return NewCallSeqStart;
5516 }
5517 
5518 SDValue PPCTargetLowering::LowerCall_64SVR4(
5519     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5520     bool isTailCall, bool isPatchPoint,
5521     const SmallVectorImpl<ISD::OutputArg> &Outs,
5522     const SmallVectorImpl<SDValue> &OutVals,
5523     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5524     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5525     ImmutableCallSite CS) const {
5526   bool isELFv2ABI = Subtarget.isELFv2ABI();
5527   bool isLittleEndian = Subtarget.isLittleEndian();
5528   unsigned NumOps = Outs.size();
5529   bool hasNest = false;
5530   bool IsSibCall = false;
5531 
5532   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5533   unsigned PtrByteSize = 8;
5534 
5535   MachineFunction &MF = DAG.getMachineFunction();
5536 
5537   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5538     IsSibCall = true;
5539 
5540   // Mark this function as potentially containing a function that contains a
5541   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5542   // and restoring the callers stack pointer in this functions epilog. This is
5543   // done because by tail calling the called function might overwrite the value
5544   // in this function's (MF) stack pointer stack slot 0(SP).
5545   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5546       CallConv == CallingConv::Fast)
5547     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5548 
5549   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5550          "fastcc not supported on varargs functions");
5551 
5552   // Count how many bytes are to be pushed on the stack, including the linkage
5553   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5554   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5555   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5556   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5557   unsigned NumBytes = LinkageSize;
5558   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5559   unsigned &QFPR_idx = FPR_idx;
5560 
5561   static const MCPhysReg GPR[] = {
5562     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5563     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5564   };
5565   static const MCPhysReg VR[] = {
5566     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5567     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5568   };
5569 
5570   const unsigned NumGPRs = array_lengthof(GPR);
5571   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5572   const unsigned NumVRs  = array_lengthof(VR);
5573   const unsigned NumQFPRs = NumFPRs;
5574 
5575   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5576   // can be passed to the callee in registers.
5577   // For the fast calling convention, there is another check below.
5578   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5579   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5580   if (!HasParameterArea) {
5581     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5582     unsigned AvailableFPRs = NumFPRs;
5583     unsigned AvailableVRs = NumVRs;
5584     unsigned NumBytesTmp = NumBytes;
5585     for (unsigned i = 0; i != NumOps; ++i) {
5586       if (Outs[i].Flags.isNest()) continue;
5587       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5588                                 PtrByteSize, LinkageSize, ParamAreaSize,
5589                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5590                                 Subtarget.hasQPX()))
5591         HasParameterArea = true;
5592     }
5593   }
5594 
5595   // When using the fast calling convention, we don't provide backing for
5596   // arguments that will be in registers.
5597   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5598 
5599   // Avoid allocating parameter area for fastcc functions if all the arguments
5600   // can be passed in the registers.
5601   if (CallConv == CallingConv::Fast)
5602     HasParameterArea = false;
5603 
5604   // Add up all the space actually used.
5605   for (unsigned i = 0; i != NumOps; ++i) {
5606     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5607     EVT ArgVT = Outs[i].VT;
5608     EVT OrigVT = Outs[i].ArgVT;
5609 
5610     if (Flags.isNest())
5611       continue;
5612 
5613     if (CallConv == CallingConv::Fast) {
5614       if (Flags.isByVal()) {
5615         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5616         if (NumGPRsUsed > NumGPRs)
5617           HasParameterArea = true;
5618       } else {
5619         switch (ArgVT.getSimpleVT().SimpleTy) {
5620         default: llvm_unreachable("Unexpected ValueType for argument!");
5621         case MVT::i1:
5622         case MVT::i32:
5623         case MVT::i64:
5624           if (++NumGPRsUsed <= NumGPRs)
5625             continue;
5626           break;
5627         case MVT::v4i32:
5628         case MVT::v8i16:
5629         case MVT::v16i8:
5630         case MVT::v2f64:
5631         case MVT::v2i64:
5632         case MVT::v1i128:
5633         case MVT::f128:
5634           if (++NumVRsUsed <= NumVRs)
5635             continue;
5636           break;
5637         case MVT::v4f32:
5638           // When using QPX, this is handled like a FP register, otherwise, it
5639           // is an Altivec register.
5640           if (Subtarget.hasQPX()) {
5641             if (++NumFPRsUsed <= NumFPRs)
5642               continue;
5643           } else {
5644             if (++NumVRsUsed <= NumVRs)
5645               continue;
5646           }
5647           break;
5648         case MVT::f32:
5649         case MVT::f64:
5650         case MVT::v4f64: // QPX
5651         case MVT::v4i1:  // QPX
5652           if (++NumFPRsUsed <= NumFPRs)
5653             continue;
5654           break;
5655         }
5656         HasParameterArea = true;
5657       }
5658     }
5659 
5660     /* Respect alignment of argument on the stack.  */
5661     unsigned Align =
5662       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5663     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5664 
5665     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5666     if (Flags.isInConsecutiveRegsLast())
5667       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5668   }
5669 
5670   unsigned NumBytesActuallyUsed = NumBytes;
5671 
5672   // In the old ELFv1 ABI,
5673   // the prolog code of the callee may store up to 8 GPR argument registers to
5674   // the stack, allowing va_start to index over them in memory if its varargs.
5675   // Because we cannot tell if this is needed on the caller side, we have to
5676   // conservatively assume that it is needed.  As such, make sure we have at
5677   // least enough stack space for the caller to store the 8 GPRs.
5678   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5679   // really requires memory operands, e.g. a vararg function.
5680   if (HasParameterArea)
5681     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5682   else
5683     NumBytes = LinkageSize;
5684 
5685   // Tail call needs the stack to be aligned.
5686   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5687       CallConv == CallingConv::Fast)
5688     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5689 
5690   int SPDiff = 0;
5691 
5692   // Calculate by how many bytes the stack has to be adjusted in case of tail
5693   // call optimization.
5694   if (!IsSibCall)
5695     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5696 
5697   // To protect arguments on the stack from being clobbered in a tail call,
5698   // force all the loads to happen before doing any other lowering.
5699   if (isTailCall)
5700     Chain = DAG.getStackArgumentTokenFactor(Chain);
5701 
5702   // Adjust the stack pointer for the new arguments...
5703   // These operations are automatically eliminated by the prolog/epilog pass
5704   if (!IsSibCall)
5705     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5706   SDValue CallSeqStart = Chain;
5707 
5708   // Load the return address and frame pointer so it can be move somewhere else
5709   // later.
5710   SDValue LROp, FPOp;
5711   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5712 
5713   // Set up a copy of the stack pointer for use loading and storing any
5714   // arguments that may not fit in the registers available for argument
5715   // passing.
5716   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5717 
5718   // Figure out which arguments are going to go in registers, and which in
5719   // memory.  Also, if this is a vararg function, floating point operations
5720   // must be stored to our stack, and loaded into integer regs as well, if
5721   // any integer regs are available for argument passing.
5722   unsigned ArgOffset = LinkageSize;
5723 
5724   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5725   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5726 
5727   SmallVector<SDValue, 8> MemOpChains;
5728   for (unsigned i = 0; i != NumOps; ++i) {
5729     SDValue Arg = OutVals[i];
5730     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5731     EVT ArgVT = Outs[i].VT;
5732     EVT OrigVT = Outs[i].ArgVT;
5733 
5734     // PtrOff will be used to store the current argument to the stack if a
5735     // register cannot be found for it.
5736     SDValue PtrOff;
5737 
5738     // We re-align the argument offset for each argument, except when using the
5739     // fast calling convention, when we need to make sure we do that only when
5740     // we'll actually use a stack slot.
5741     auto ComputePtrOff = [&]() {
5742       /* Respect alignment of argument on the stack.  */
5743       unsigned Align =
5744         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5745       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5746 
5747       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5748 
5749       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5750     };
5751 
5752     if (CallConv != CallingConv::Fast) {
5753       ComputePtrOff();
5754 
5755       /* Compute GPR index associated with argument offset.  */
5756       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5757       GPR_idx = std::min(GPR_idx, NumGPRs);
5758     }
5759 
5760     // Promote integers to 64-bit values.
5761     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5762       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5763       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5764       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5765     }
5766 
5767     // FIXME memcpy is used way more than necessary.  Correctness first.
5768     // Note: "by value" is code for passing a structure by value, not
5769     // basic types.
5770     if (Flags.isByVal()) {
5771       // Note: Size includes alignment padding, so
5772       //   struct x { short a; char b; }
5773       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5774       // These are the proper values we need for right-justifying the
5775       // aggregate in a parameter register.
5776       unsigned Size = Flags.getByValSize();
5777 
5778       // An empty aggregate parameter takes up no storage and no
5779       // registers.
5780       if (Size == 0)
5781         continue;
5782 
5783       if (CallConv == CallingConv::Fast)
5784         ComputePtrOff();
5785 
5786       // All aggregates smaller than 8 bytes must be passed right-justified.
5787       if (Size==1 || Size==2 || Size==4) {
5788         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5789         if (GPR_idx != NumGPRs) {
5790           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5791                                         MachinePointerInfo(), VT);
5792           MemOpChains.push_back(Load.getValue(1));
5793           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5794 
5795           ArgOffset += PtrByteSize;
5796           continue;
5797         }
5798       }
5799 
5800       if (GPR_idx == NumGPRs && Size < 8) {
5801         SDValue AddPtr = PtrOff;
5802         if (!isLittleEndian) {
5803           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5804                                           PtrOff.getValueType());
5805           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5806         }
5807         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5808                                                           CallSeqStart,
5809                                                           Flags, DAG, dl);
5810         ArgOffset += PtrByteSize;
5811         continue;
5812       }
5813       // Copy entire object into memory.  There are cases where gcc-generated
5814       // code assumes it is there, even if it could be put entirely into
5815       // registers.  (This is not what the doc says.)
5816 
5817       // FIXME: The above statement is likely due to a misunderstanding of the
5818       // documents.  All arguments must be copied into the parameter area BY
5819       // THE CALLEE in the event that the callee takes the address of any
5820       // formal argument.  That has not yet been implemented.  However, it is
5821       // reasonable to use the stack area as a staging area for the register
5822       // load.
5823 
5824       // Skip this for small aggregates, as we will use the same slot for a
5825       // right-justified copy, below.
5826       if (Size >= 8)
5827         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5828                                                           CallSeqStart,
5829                                                           Flags, DAG, dl);
5830 
5831       // When a register is available, pass a small aggregate right-justified.
5832       if (Size < 8 && GPR_idx != NumGPRs) {
5833         // The easiest way to get this right-justified in a register
5834         // is to copy the structure into the rightmost portion of a
5835         // local variable slot, then load the whole slot into the
5836         // register.
5837         // FIXME: The memcpy seems to produce pretty awful code for
5838         // small aggregates, particularly for packed ones.
5839         // FIXME: It would be preferable to use the slot in the
5840         // parameter save area instead of a new local variable.
5841         SDValue AddPtr = PtrOff;
5842         if (!isLittleEndian) {
5843           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5844           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5845         }
5846         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5847                                                           CallSeqStart,
5848                                                           Flags, DAG, dl);
5849 
5850         // Load the slot into the register.
5851         SDValue Load =
5852             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5853         MemOpChains.push_back(Load.getValue(1));
5854         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5855 
5856         // Done with this argument.
5857         ArgOffset += PtrByteSize;
5858         continue;
5859       }
5860 
5861       // For aggregates larger than PtrByteSize, copy the pieces of the
5862       // object that fit into registers from the parameter save area.
5863       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5864         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5865         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5866         if (GPR_idx != NumGPRs) {
5867           SDValue Load =
5868               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5869           MemOpChains.push_back(Load.getValue(1));
5870           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5871           ArgOffset += PtrByteSize;
5872         } else {
5873           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5874           break;
5875         }
5876       }
5877       continue;
5878     }
5879 
5880     switch (Arg.getSimpleValueType().SimpleTy) {
5881     default: llvm_unreachable("Unexpected ValueType for argument!");
5882     case MVT::i1:
5883     case MVT::i32:
5884     case MVT::i64:
5885       if (Flags.isNest()) {
5886         // The 'nest' parameter, if any, is passed in R11.
5887         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5888         hasNest = true;
5889         break;
5890       }
5891 
5892       // These can be scalar arguments or elements of an integer array type
5893       // passed directly.  Clang may use those instead of "byval" aggregate
5894       // types to avoid forcing arguments to memory unnecessarily.
5895       if (GPR_idx != NumGPRs) {
5896         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5897       } else {
5898         if (CallConv == CallingConv::Fast)
5899           ComputePtrOff();
5900 
5901         assert(HasParameterArea &&
5902                "Parameter area must exist to pass an argument in memory.");
5903         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5904                          true, isTailCall, false, MemOpChains,
5905                          TailCallArguments, dl);
5906         if (CallConv == CallingConv::Fast)
5907           ArgOffset += PtrByteSize;
5908       }
5909       if (CallConv != CallingConv::Fast)
5910         ArgOffset += PtrByteSize;
5911       break;
5912     case MVT::f32:
5913     case MVT::f64: {
5914       // These can be scalar arguments or elements of a float array type
5915       // passed directly.  The latter are used to implement ELFv2 homogenous
5916       // float aggregates.
5917 
5918       // Named arguments go into FPRs first, and once they overflow, the
5919       // remaining arguments go into GPRs and then the parameter save area.
5920       // Unnamed arguments for vararg functions always go to GPRs and
5921       // then the parameter save area.  For now, put all arguments to vararg
5922       // routines always in both locations (FPR *and* GPR or stack slot).
5923       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5924       bool NeededLoad = false;
5925 
5926       // First load the argument into the next available FPR.
5927       if (FPR_idx != NumFPRs)
5928         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5929 
5930       // Next, load the argument into GPR or stack slot if needed.
5931       if (!NeedGPROrStack)
5932         ;
5933       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5934         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5935         // once we support fp <-> gpr moves.
5936 
5937         // In the non-vararg case, this can only ever happen in the
5938         // presence of f32 array types, since otherwise we never run
5939         // out of FPRs before running out of GPRs.
5940         SDValue ArgVal;
5941 
5942         // Double values are always passed in a single GPR.
5943         if (Arg.getValueType() != MVT::f32) {
5944           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5945 
5946         // Non-array float values are extended and passed in a GPR.
5947         } else if (!Flags.isInConsecutiveRegs()) {
5948           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5949           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5950 
5951         // If we have an array of floats, we collect every odd element
5952         // together with its predecessor into one GPR.
5953         } else if (ArgOffset % PtrByteSize != 0) {
5954           SDValue Lo, Hi;
5955           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5956           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5957           if (!isLittleEndian)
5958             std::swap(Lo, Hi);
5959           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5960 
5961         // The final element, if even, goes into the first half of a GPR.
5962         } else if (Flags.isInConsecutiveRegsLast()) {
5963           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5964           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5965           if (!isLittleEndian)
5966             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5967                                  DAG.getConstant(32, dl, MVT::i32));
5968 
5969         // Non-final even elements are skipped; they will be handled
5970         // together the with subsequent argument on the next go-around.
5971         } else
5972           ArgVal = SDValue();
5973 
5974         if (ArgVal.getNode())
5975           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5976       } else {
5977         if (CallConv == CallingConv::Fast)
5978           ComputePtrOff();
5979 
5980         // Single-precision floating-point values are mapped to the
5981         // second (rightmost) word of the stack doubleword.
5982         if (Arg.getValueType() == MVT::f32 &&
5983             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5984           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5985           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5986         }
5987 
5988         assert(HasParameterArea &&
5989                "Parameter area must exist to pass an argument in memory.");
5990         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5991                          true, isTailCall, false, MemOpChains,
5992                          TailCallArguments, dl);
5993 
5994         NeededLoad = true;
5995       }
5996       // When passing an array of floats, the array occupies consecutive
5997       // space in the argument area; only round up to the next doubleword
5998       // at the end of the array.  Otherwise, each float takes 8 bytes.
5999       if (CallConv != CallingConv::Fast || NeededLoad) {
6000         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6001                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6002         if (Flags.isInConsecutiveRegsLast())
6003           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6004       }
6005       break;
6006     }
6007     case MVT::v4f32:
6008     case MVT::v4i32:
6009     case MVT::v8i16:
6010     case MVT::v16i8:
6011     case MVT::v2f64:
6012     case MVT::v2i64:
6013     case MVT::v1i128:
6014     case MVT::f128:
6015       if (!Subtarget.hasQPX()) {
6016       // These can be scalar arguments or elements of a vector array type
6017       // passed directly.  The latter are used to implement ELFv2 homogenous
6018       // vector aggregates.
6019 
6020       // For a varargs call, named arguments go into VRs or on the stack as
6021       // usual; unnamed arguments always go to the stack or the corresponding
6022       // GPRs when within range.  For now, we always put the value in both
6023       // locations (or even all three).
6024       if (isVarArg) {
6025         assert(HasParameterArea &&
6026                "Parameter area must exist if we have a varargs call.");
6027         // We could elide this store in the case where the object fits
6028         // entirely in R registers.  Maybe later.
6029         SDValue Store =
6030             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6031         MemOpChains.push_back(Store);
6032         if (VR_idx != NumVRs) {
6033           SDValue Load =
6034               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6035           MemOpChains.push_back(Load.getValue(1));
6036           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6037         }
6038         ArgOffset += 16;
6039         for (unsigned i=0; i<16; i+=PtrByteSize) {
6040           if (GPR_idx == NumGPRs)
6041             break;
6042           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6043                                    DAG.getConstant(i, dl, PtrVT));
6044           SDValue Load =
6045               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6046           MemOpChains.push_back(Load.getValue(1));
6047           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6048         }
6049         break;
6050       }
6051 
6052       // Non-varargs Altivec params go into VRs or on the stack.
6053       if (VR_idx != NumVRs) {
6054         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6055       } else {
6056         if (CallConv == CallingConv::Fast)
6057           ComputePtrOff();
6058 
6059         assert(HasParameterArea &&
6060                "Parameter area must exist to pass an argument in memory.");
6061         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6062                          true, isTailCall, true, MemOpChains,
6063                          TailCallArguments, dl);
6064         if (CallConv == CallingConv::Fast)
6065           ArgOffset += 16;
6066       }
6067 
6068       if (CallConv != CallingConv::Fast)
6069         ArgOffset += 16;
6070       break;
6071       } // not QPX
6072 
6073       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6074              "Invalid QPX parameter type");
6075 
6076       LLVM_FALLTHROUGH;
6077     case MVT::v4f64:
6078     case MVT::v4i1: {
6079       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6080       if (isVarArg) {
6081         assert(HasParameterArea &&
6082                "Parameter area must exist if we have a varargs call.");
6083         // We could elide this store in the case where the object fits
6084         // entirely in R registers.  Maybe later.
6085         SDValue Store =
6086             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6087         MemOpChains.push_back(Store);
6088         if (QFPR_idx != NumQFPRs) {
6089           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6090                                      PtrOff, MachinePointerInfo());
6091           MemOpChains.push_back(Load.getValue(1));
6092           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6093         }
6094         ArgOffset += (IsF32 ? 16 : 32);
6095         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6096           if (GPR_idx == NumGPRs)
6097             break;
6098           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6099                                    DAG.getConstant(i, dl, PtrVT));
6100           SDValue Load =
6101               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6102           MemOpChains.push_back(Load.getValue(1));
6103           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6104         }
6105         break;
6106       }
6107 
6108       // Non-varargs QPX params go into registers or on the stack.
6109       if (QFPR_idx != NumQFPRs) {
6110         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6111       } else {
6112         if (CallConv == CallingConv::Fast)
6113           ComputePtrOff();
6114 
6115         assert(HasParameterArea &&
6116                "Parameter area must exist to pass an argument in memory.");
6117         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6118                          true, isTailCall, true, MemOpChains,
6119                          TailCallArguments, dl);
6120         if (CallConv == CallingConv::Fast)
6121           ArgOffset += (IsF32 ? 16 : 32);
6122       }
6123 
6124       if (CallConv != CallingConv::Fast)
6125         ArgOffset += (IsF32 ? 16 : 32);
6126       break;
6127       }
6128     }
6129   }
6130 
6131   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6132          "mismatch in size of parameter area");
6133   (void)NumBytesActuallyUsed;
6134 
6135   if (!MemOpChains.empty())
6136     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6137 
6138   // Check if this is an indirect call (MTCTR/BCTRL).
6139   // See PrepareCall() for more information about calls through function
6140   // pointers in the 64-bit SVR4 ABI.
6141   if (!isTailCall && !isPatchPoint &&
6142       !isFunctionGlobalAddress(Callee) &&
6143       !isa<ExternalSymbolSDNode>(Callee)) {
6144     // Load r2 into a virtual register and store it to the TOC save area.
6145     setUsesTOCBasePtr(DAG);
6146     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6147     // TOC save area offset.
6148     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6149     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6150     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6151     Chain = DAG.getStore(
6152         Val.getValue(1), dl, Val, AddPtr,
6153         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6154     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6155     // This does not mean the MTCTR instruction must use R12; it's easier
6156     // to model this as an extra parameter, so do that.
6157     if (isELFv2ABI && !isPatchPoint)
6158       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6159   }
6160 
6161   // Build a sequence of copy-to-reg nodes chained together with token chain
6162   // and flag operands which copy the outgoing args into the appropriate regs.
6163   SDValue InFlag;
6164   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6165     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6166                              RegsToPass[i].second, InFlag);
6167     InFlag = Chain.getValue(1);
6168   }
6169 
6170   if (isTailCall && !IsSibCall)
6171     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6172                     TailCallArguments);
6173 
6174   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6175                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6176                     SPDiff, NumBytes, Ins, InVals, CS);
6177 }
6178 
6179 SDValue PPCTargetLowering::LowerCall_Darwin(
6180     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6181     bool isTailCall, bool isPatchPoint,
6182     const SmallVectorImpl<ISD::OutputArg> &Outs,
6183     const SmallVectorImpl<SDValue> &OutVals,
6184     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6185     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6186     ImmutableCallSite CS) const {
6187   unsigned NumOps = Outs.size();
6188 
6189   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6190   bool isPPC64 = PtrVT == MVT::i64;
6191   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6192 
6193   MachineFunction &MF = DAG.getMachineFunction();
6194 
6195   // Mark this function as potentially containing a function that contains a
6196   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6197   // and restoring the callers stack pointer in this functions epilog. This is
6198   // done because by tail calling the called function might overwrite the value
6199   // in this function's (MF) stack pointer stack slot 0(SP).
6200   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6201       CallConv == CallingConv::Fast)
6202     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6203 
6204   // Count how many bytes are to be pushed on the stack, including the linkage
6205   // area, and parameter passing area.  We start with 24/48 bytes, which is
6206   // prereserved space for [SP][CR][LR][3 x unused].
6207   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6208   unsigned NumBytes = LinkageSize;
6209 
6210   // Add up all the space actually used.
6211   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6212   // they all go in registers, but we must reserve stack space for them for
6213   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6214   // assigned stack space in order, with padding so Altivec parameters are
6215   // 16-byte aligned.
6216   unsigned nAltivecParamsAtEnd = 0;
6217   for (unsigned i = 0; i != NumOps; ++i) {
6218     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6219     EVT ArgVT = Outs[i].VT;
6220     // Varargs Altivec parameters are padded to a 16 byte boundary.
6221     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6222         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6223         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6224       if (!isVarArg && !isPPC64) {
6225         // Non-varargs Altivec parameters go after all the non-Altivec
6226         // parameters; handle those later so we know how much padding we need.
6227         nAltivecParamsAtEnd++;
6228         continue;
6229       }
6230       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6231       NumBytes = ((NumBytes+15)/16)*16;
6232     }
6233     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6234   }
6235 
6236   // Allow for Altivec parameters at the end, if needed.
6237   if (nAltivecParamsAtEnd) {
6238     NumBytes = ((NumBytes+15)/16)*16;
6239     NumBytes += 16*nAltivecParamsAtEnd;
6240   }
6241 
6242   // The prolog code of the callee may store up to 8 GPR argument registers to
6243   // the stack, allowing va_start to index over them in memory if its varargs.
6244   // Because we cannot tell if this is needed on the caller side, we have to
6245   // conservatively assume that it is needed.  As such, make sure we have at
6246   // least enough stack space for the caller to store the 8 GPRs.
6247   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6248 
6249   // Tail call needs the stack to be aligned.
6250   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6251       CallConv == CallingConv::Fast)
6252     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6253 
6254   // Calculate by how many bytes the stack has to be adjusted in case of tail
6255   // call optimization.
6256   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6257 
6258   // To protect arguments on the stack from being clobbered in a tail call,
6259   // force all the loads to happen before doing any other lowering.
6260   if (isTailCall)
6261     Chain = DAG.getStackArgumentTokenFactor(Chain);
6262 
6263   // Adjust the stack pointer for the new arguments...
6264   // These operations are automatically eliminated by the prolog/epilog pass
6265   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6266   SDValue CallSeqStart = Chain;
6267 
6268   // Load the return address and frame pointer so it can be move somewhere else
6269   // later.
6270   SDValue LROp, FPOp;
6271   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6272 
6273   // Set up a copy of the stack pointer for use loading and storing any
6274   // arguments that may not fit in the registers available for argument
6275   // passing.
6276   SDValue StackPtr;
6277   if (isPPC64)
6278     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6279   else
6280     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6281 
6282   // Figure out which arguments are going to go in registers, and which in
6283   // memory.  Also, if this is a vararg function, floating point operations
6284   // must be stored to our stack, and loaded into integer regs as well, if
6285   // any integer regs are available for argument passing.
6286   unsigned ArgOffset = LinkageSize;
6287   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6288 
6289   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6290     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6291     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6292   };
6293   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6294     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6295     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6296   };
6297   static const MCPhysReg VR[] = {
6298     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6299     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6300   };
6301   const unsigned NumGPRs = array_lengthof(GPR_32);
6302   const unsigned NumFPRs = 13;
6303   const unsigned NumVRs  = array_lengthof(VR);
6304 
6305   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6306 
6307   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6308   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6309 
6310   SmallVector<SDValue, 8> MemOpChains;
6311   for (unsigned i = 0; i != NumOps; ++i) {
6312     SDValue Arg = OutVals[i];
6313     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6314 
6315     // PtrOff will be used to store the current argument to the stack if a
6316     // register cannot be found for it.
6317     SDValue PtrOff;
6318 
6319     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6320 
6321     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6322 
6323     // On PPC64, promote integers to 64-bit values.
6324     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6325       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6326       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6327       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6328     }
6329 
6330     // FIXME memcpy is used way more than necessary.  Correctness first.
6331     // Note: "by value" is code for passing a structure by value, not
6332     // basic types.
6333     if (Flags.isByVal()) {
6334       unsigned Size = Flags.getByValSize();
6335       // Very small objects are passed right-justified.  Everything else is
6336       // passed left-justified.
6337       if (Size==1 || Size==2) {
6338         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6339         if (GPR_idx != NumGPRs) {
6340           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6341                                         MachinePointerInfo(), VT);
6342           MemOpChains.push_back(Load.getValue(1));
6343           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6344 
6345           ArgOffset += PtrByteSize;
6346         } else {
6347           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6348                                           PtrOff.getValueType());
6349           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6350           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6351                                                             CallSeqStart,
6352                                                             Flags, DAG, dl);
6353           ArgOffset += PtrByteSize;
6354         }
6355         continue;
6356       }
6357       // Copy entire object into memory.  There are cases where gcc-generated
6358       // code assumes it is there, even if it could be put entirely into
6359       // registers.  (This is not what the doc says.)
6360       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6361                                                         CallSeqStart,
6362                                                         Flags, DAG, dl);
6363 
6364       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6365       // copy the pieces of the object that fit into registers from the
6366       // parameter save area.
6367       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6368         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6369         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6370         if (GPR_idx != NumGPRs) {
6371           SDValue Load =
6372               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6373           MemOpChains.push_back(Load.getValue(1));
6374           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6375           ArgOffset += PtrByteSize;
6376         } else {
6377           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6378           break;
6379         }
6380       }
6381       continue;
6382     }
6383 
6384     switch (Arg.getSimpleValueType().SimpleTy) {
6385     default: llvm_unreachable("Unexpected ValueType for argument!");
6386     case MVT::i1:
6387     case MVT::i32:
6388     case MVT::i64:
6389       if (GPR_idx != NumGPRs) {
6390         if (Arg.getValueType() == MVT::i1)
6391           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6392 
6393         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6394       } else {
6395         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6396                          isPPC64, isTailCall, false, MemOpChains,
6397                          TailCallArguments, dl);
6398       }
6399       ArgOffset += PtrByteSize;
6400       break;
6401     case MVT::f32:
6402     case MVT::f64:
6403       if (FPR_idx != NumFPRs) {
6404         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6405 
6406         if (isVarArg) {
6407           SDValue Store =
6408               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6409           MemOpChains.push_back(Store);
6410 
6411           // Float varargs are always shadowed in available integer registers
6412           if (GPR_idx != NumGPRs) {
6413             SDValue Load =
6414                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6415             MemOpChains.push_back(Load.getValue(1));
6416             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6417           }
6418           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6419             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6420             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6421             SDValue Load =
6422                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6423             MemOpChains.push_back(Load.getValue(1));
6424             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6425           }
6426         } else {
6427           // If we have any FPRs remaining, we may also have GPRs remaining.
6428           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6429           // GPRs.
6430           if (GPR_idx != NumGPRs)
6431             ++GPR_idx;
6432           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6433               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6434             ++GPR_idx;
6435         }
6436       } else
6437         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6438                          isPPC64, isTailCall, false, MemOpChains,
6439                          TailCallArguments, dl);
6440       if (isPPC64)
6441         ArgOffset += 8;
6442       else
6443         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6444       break;
6445     case MVT::v4f32:
6446     case MVT::v4i32:
6447     case MVT::v8i16:
6448     case MVT::v16i8:
6449       if (isVarArg) {
6450         // These go aligned on the stack, or in the corresponding R registers
6451         // when within range.  The Darwin PPC ABI doc claims they also go in
6452         // V registers; in fact gcc does this only for arguments that are
6453         // prototyped, not for those that match the ...  We do it for all
6454         // arguments, seems to work.
6455         while (ArgOffset % 16 !=0) {
6456           ArgOffset += PtrByteSize;
6457           if (GPR_idx != NumGPRs)
6458             GPR_idx++;
6459         }
6460         // We could elide this store in the case where the object fits
6461         // entirely in R registers.  Maybe later.
6462         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6463                              DAG.getConstant(ArgOffset, dl, PtrVT));
6464         SDValue Store =
6465             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6466         MemOpChains.push_back(Store);
6467         if (VR_idx != NumVRs) {
6468           SDValue Load =
6469               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6470           MemOpChains.push_back(Load.getValue(1));
6471           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6472         }
6473         ArgOffset += 16;
6474         for (unsigned i=0; i<16; i+=PtrByteSize) {
6475           if (GPR_idx == NumGPRs)
6476             break;
6477           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6478                                    DAG.getConstant(i, dl, PtrVT));
6479           SDValue Load =
6480               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6481           MemOpChains.push_back(Load.getValue(1));
6482           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6483         }
6484         break;
6485       }
6486 
6487       // Non-varargs Altivec params generally go in registers, but have
6488       // stack space allocated at the end.
6489       if (VR_idx != NumVRs) {
6490         // Doesn't have GPR space allocated.
6491         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6492       } else if (nAltivecParamsAtEnd==0) {
6493         // We are emitting Altivec params in order.
6494         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6495                          isPPC64, isTailCall, true, MemOpChains,
6496                          TailCallArguments, dl);
6497         ArgOffset += 16;
6498       }
6499       break;
6500     }
6501   }
6502   // If all Altivec parameters fit in registers, as they usually do,
6503   // they get stack space following the non-Altivec parameters.  We
6504   // don't track this here because nobody below needs it.
6505   // If there are more Altivec parameters than fit in registers emit
6506   // the stores here.
6507   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6508     unsigned j = 0;
6509     // Offset is aligned; skip 1st 12 params which go in V registers.
6510     ArgOffset = ((ArgOffset+15)/16)*16;
6511     ArgOffset += 12*16;
6512     for (unsigned i = 0; i != NumOps; ++i) {
6513       SDValue Arg = OutVals[i];
6514       EVT ArgType = Outs[i].VT;
6515       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6516           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6517         if (++j > NumVRs) {
6518           SDValue PtrOff;
6519           // We are emitting Altivec params in order.
6520           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6521                            isPPC64, isTailCall, true, MemOpChains,
6522                            TailCallArguments, dl);
6523           ArgOffset += 16;
6524         }
6525       }
6526     }
6527   }
6528 
6529   if (!MemOpChains.empty())
6530     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6531 
6532   // On Darwin, R12 must contain the address of an indirect callee.  This does
6533   // not mean the MTCTR instruction must use R12; it's easier to model this as
6534   // an extra parameter, so do that.
6535   if (!isTailCall &&
6536       !isFunctionGlobalAddress(Callee) &&
6537       !isa<ExternalSymbolSDNode>(Callee) &&
6538       !isBLACompatibleAddress(Callee, DAG))
6539     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6540                                                    PPC::R12), Callee));
6541 
6542   // Build a sequence of copy-to-reg nodes chained together with token chain
6543   // and flag operands which copy the outgoing args into the appropriate regs.
6544   SDValue InFlag;
6545   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6546     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6547                              RegsToPass[i].second, InFlag);
6548     InFlag = Chain.getValue(1);
6549   }
6550 
6551   if (isTailCall)
6552     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6553                     TailCallArguments);
6554 
6555   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6556                     /* unused except on PPC64 ELFv1 */ false, DAG,
6557                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6558                     NumBytes, Ins, InVals, CS);
6559 }
6560 
6561 bool
6562 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6563                                   MachineFunction &MF, bool isVarArg,
6564                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6565                                   LLVMContext &Context) const {
6566   SmallVector<CCValAssign, 16> RVLocs;
6567   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6568   return CCInfo.CheckReturn(
6569       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6570                 ? RetCC_PPC_Cold
6571                 : RetCC_PPC);
6572 }
6573 
6574 SDValue
6575 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6576                                bool isVarArg,
6577                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6578                                const SmallVectorImpl<SDValue> &OutVals,
6579                                const SDLoc &dl, SelectionDAG &DAG) const {
6580   SmallVector<CCValAssign, 16> RVLocs;
6581   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6582                  *DAG.getContext());
6583   CCInfo.AnalyzeReturn(Outs,
6584                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6585                            ? RetCC_PPC_Cold
6586                            : RetCC_PPC);
6587 
6588   SDValue Flag;
6589   SmallVector<SDValue, 4> RetOps(1, Chain);
6590 
6591   // Copy the result values into the output registers.
6592   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6593     CCValAssign &VA = RVLocs[i];
6594     assert(VA.isRegLoc() && "Can only return in registers!");
6595 
6596     SDValue Arg = OutVals[i];
6597 
6598     switch (VA.getLocInfo()) {
6599     default: llvm_unreachable("Unknown loc info!");
6600     case CCValAssign::Full: break;
6601     case CCValAssign::AExt:
6602       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6603       break;
6604     case CCValAssign::ZExt:
6605       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6606       break;
6607     case CCValAssign::SExt:
6608       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6609       break;
6610     }
6611 
6612     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6613     Flag = Chain.getValue(1);
6614     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6615   }
6616 
6617   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6618   const MCPhysReg *I =
6619     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6620   if (I) {
6621     for (; *I; ++I) {
6622 
6623       if (PPC::G8RCRegClass.contains(*I))
6624         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6625       else if (PPC::F8RCRegClass.contains(*I))
6626         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6627       else if (PPC::CRRCRegClass.contains(*I))
6628         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6629       else if (PPC::VRRCRegClass.contains(*I))
6630         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6631       else
6632         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6633     }
6634   }
6635 
6636   RetOps[0] = Chain;  // Update chain.
6637 
6638   // Add the flag if we have it.
6639   if (Flag.getNode())
6640     RetOps.push_back(Flag);
6641 
6642   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6643 }
6644 
6645 SDValue
6646 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6647                                                 SelectionDAG &DAG) const {
6648   SDLoc dl(Op);
6649 
6650   // Get the correct type for integers.
6651   EVT IntVT = Op.getValueType();
6652 
6653   // Get the inputs.
6654   SDValue Chain = Op.getOperand(0);
6655   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6656   // Build a DYNAREAOFFSET node.
6657   SDValue Ops[2] = {Chain, FPSIdx};
6658   SDVTList VTs = DAG.getVTList(IntVT);
6659   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6660 }
6661 
6662 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6663                                              SelectionDAG &DAG) const {
6664   // When we pop the dynamic allocation we need to restore the SP link.
6665   SDLoc dl(Op);
6666 
6667   // Get the correct type for pointers.
6668   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6669 
6670   // Construct the stack pointer operand.
6671   bool isPPC64 = Subtarget.isPPC64();
6672   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6673   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6674 
6675   // Get the operands for the STACKRESTORE.
6676   SDValue Chain = Op.getOperand(0);
6677   SDValue SaveSP = Op.getOperand(1);
6678 
6679   // Load the old link SP.
6680   SDValue LoadLinkSP =
6681       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6682 
6683   // Restore the stack pointer.
6684   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6685 
6686   // Store the old link SP.
6687   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6688 }
6689 
6690 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6691   MachineFunction &MF = DAG.getMachineFunction();
6692   bool isPPC64 = Subtarget.isPPC64();
6693   EVT PtrVT = getPointerTy(MF.getDataLayout());
6694 
6695   // Get current frame pointer save index.  The users of this index will be
6696   // primarily DYNALLOC instructions.
6697   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6698   int RASI = FI->getReturnAddrSaveIndex();
6699 
6700   // If the frame pointer save index hasn't been defined yet.
6701   if (!RASI) {
6702     // Find out what the fix offset of the frame pointer save area.
6703     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6704     // Allocate the frame index for frame pointer save area.
6705     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6706     // Save the result.
6707     FI->setReturnAddrSaveIndex(RASI);
6708   }
6709   return DAG.getFrameIndex(RASI, PtrVT);
6710 }
6711 
6712 SDValue
6713 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6714   MachineFunction &MF = DAG.getMachineFunction();
6715   bool isPPC64 = Subtarget.isPPC64();
6716   EVT PtrVT = getPointerTy(MF.getDataLayout());
6717 
6718   // Get current frame pointer save index.  The users of this index will be
6719   // primarily DYNALLOC instructions.
6720   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6721   int FPSI = FI->getFramePointerSaveIndex();
6722 
6723   // If the frame pointer save index hasn't been defined yet.
6724   if (!FPSI) {
6725     // Find out what the fix offset of the frame pointer save area.
6726     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6727     // Allocate the frame index for frame pointer save area.
6728     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6729     // Save the result.
6730     FI->setFramePointerSaveIndex(FPSI);
6731   }
6732   return DAG.getFrameIndex(FPSI, PtrVT);
6733 }
6734 
6735 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6736                                                    SelectionDAG &DAG) const {
6737   // Get the inputs.
6738   SDValue Chain = Op.getOperand(0);
6739   SDValue Size  = Op.getOperand(1);
6740   SDLoc dl(Op);
6741 
6742   // Get the correct type for pointers.
6743   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6744   // Negate the size.
6745   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6746                                 DAG.getConstant(0, dl, PtrVT), Size);
6747   // Construct a node for the frame pointer save index.
6748   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6749   // Build a DYNALLOC node.
6750   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6751   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6752   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6753 }
6754 
6755 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6756                                                      SelectionDAG &DAG) const {
6757   MachineFunction &MF = DAG.getMachineFunction();
6758 
6759   bool isPPC64 = Subtarget.isPPC64();
6760   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6761 
6762   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6763   return DAG.getFrameIndex(FI, PtrVT);
6764 }
6765 
6766 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6767                                                SelectionDAG &DAG) const {
6768   SDLoc DL(Op);
6769   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6770                      DAG.getVTList(MVT::i32, MVT::Other),
6771                      Op.getOperand(0), Op.getOperand(1));
6772 }
6773 
6774 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6775                                                 SelectionDAG &DAG) const {
6776   SDLoc DL(Op);
6777   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6778                      Op.getOperand(0), Op.getOperand(1));
6779 }
6780 
6781 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6782   if (Op.getValueType().isVector())
6783     return LowerVectorLoad(Op, DAG);
6784 
6785   assert(Op.getValueType() == MVT::i1 &&
6786          "Custom lowering only for i1 loads");
6787 
6788   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6789 
6790   SDLoc dl(Op);
6791   LoadSDNode *LD = cast<LoadSDNode>(Op);
6792 
6793   SDValue Chain = LD->getChain();
6794   SDValue BasePtr = LD->getBasePtr();
6795   MachineMemOperand *MMO = LD->getMemOperand();
6796 
6797   SDValue NewLD =
6798       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6799                      BasePtr, MVT::i8, MMO);
6800   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6801 
6802   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6803   return DAG.getMergeValues(Ops, dl);
6804 }
6805 
6806 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6807   if (Op.getOperand(1).getValueType().isVector())
6808     return LowerVectorStore(Op, DAG);
6809 
6810   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6811          "Custom lowering only for i1 stores");
6812 
6813   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6814 
6815   SDLoc dl(Op);
6816   StoreSDNode *ST = cast<StoreSDNode>(Op);
6817 
6818   SDValue Chain = ST->getChain();
6819   SDValue BasePtr = ST->getBasePtr();
6820   SDValue Value = ST->getValue();
6821   MachineMemOperand *MMO = ST->getMemOperand();
6822 
6823   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6824                       Value);
6825   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6826 }
6827 
6828 // FIXME: Remove this once the ANDI glue bug is fixed:
6829 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6830   assert(Op.getValueType() == MVT::i1 &&
6831          "Custom lowering only for i1 results");
6832 
6833   SDLoc DL(Op);
6834   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6835                      Op.getOperand(0));
6836 }
6837 
6838 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
6839                                                SelectionDAG &DAG) const {
6840 
6841   // Implements a vector truncate that fits in a vector register as a shuffle.
6842   // We want to legalize vector truncates down to where the source fits in
6843   // a vector register (and target is therefore smaller than vector register
6844   // size).  At that point legalization will try to custom lower the sub-legal
6845   // result and get here - where we can contain the truncate as a single target
6846   // operation.
6847 
6848   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
6849   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
6850   //
6851   // We will implement it for big-endian ordering as this (where x denotes
6852   // undefined):
6853   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
6854   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
6855   //
6856   // The same operation in little-endian ordering will be:
6857   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
6858   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
6859 
6860   assert(Op.getValueType().isVector() && "Vector type expected.");
6861 
6862   SDLoc DL(Op);
6863   SDValue N1 = Op.getOperand(0);
6864   unsigned SrcSize = N1.getValueType().getSizeInBits();
6865   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
6866   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
6867 
6868   EVT TrgVT = Op.getValueType();
6869   unsigned TrgNumElts = TrgVT.getVectorNumElements();
6870   EVT EltVT = TrgVT.getVectorElementType();
6871   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
6872   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
6873 
6874   // First list the elements we want to keep.
6875   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
6876   SmallVector<int, 16> ShuffV;
6877   if (Subtarget.isLittleEndian())
6878     for (unsigned i = 0; i < TrgNumElts; ++i)
6879       ShuffV.push_back(i * SizeMult);
6880   else
6881     for (unsigned i = 1; i <= TrgNumElts; ++i)
6882       ShuffV.push_back(i * SizeMult - 1);
6883 
6884   // Populate the remaining elements with undefs.
6885   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
6886     // ShuffV.push_back(i + WideNumElts);
6887     ShuffV.push_back(WideNumElts + 1);
6888 
6889   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
6890   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
6891 }
6892 
6893 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6894 /// possible.
6895 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6896   // Not FP? Not a fsel.
6897   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6898       !Op.getOperand(2).getValueType().isFloatingPoint())
6899     return Op;
6900 
6901   // We might be able to do better than this under some circumstances, but in
6902   // general, fsel-based lowering of select is a finite-math-only optimization.
6903   // For more information, see section F.3 of the 2.06 ISA specification.
6904   if (!DAG.getTarget().Options.NoInfsFPMath ||
6905       !DAG.getTarget().Options.NoNaNsFPMath)
6906     return Op;
6907   // TODO: Propagate flags from the select rather than global settings.
6908   SDNodeFlags Flags;
6909   Flags.setNoInfs(true);
6910   Flags.setNoNaNs(true);
6911 
6912   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6913 
6914   EVT ResVT = Op.getValueType();
6915   EVT CmpVT = Op.getOperand(0).getValueType();
6916   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6917   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6918   SDLoc dl(Op);
6919 
6920   // If the RHS of the comparison is a 0.0, we don't need to do the
6921   // subtraction at all.
6922   SDValue Sel1;
6923   if (isFloatingPointZero(RHS))
6924     switch (CC) {
6925     default: break;       // SETUO etc aren't handled by fsel.
6926     case ISD::SETNE:
6927       std::swap(TV, FV);
6928       LLVM_FALLTHROUGH;
6929     case ISD::SETEQ:
6930       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6931         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6932       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6933       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6934         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6935       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6936                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6937     case ISD::SETULT:
6938     case ISD::SETLT:
6939       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6940       LLVM_FALLTHROUGH;
6941     case ISD::SETOGE:
6942     case ISD::SETGE:
6943       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6944         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6945       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6946     case ISD::SETUGT:
6947     case ISD::SETGT:
6948       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6949       LLVM_FALLTHROUGH;
6950     case ISD::SETOLE:
6951     case ISD::SETLE:
6952       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6953         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6954       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6955                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6956     }
6957 
6958   SDValue Cmp;
6959   switch (CC) {
6960   default: break;       // SETUO etc aren't handled by fsel.
6961   case ISD::SETNE:
6962     std::swap(TV, FV);
6963     LLVM_FALLTHROUGH;
6964   case ISD::SETEQ:
6965     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6966     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6967       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6968     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6969     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6970       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6971     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6972                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6973   case ISD::SETULT:
6974   case ISD::SETLT:
6975     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6976     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6977       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6978     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6979   case ISD::SETOGE:
6980   case ISD::SETGE:
6981     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6982     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6983       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6984     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6985   case ISD::SETUGT:
6986   case ISD::SETGT:
6987     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6988     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6989       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6990     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6991   case ISD::SETOLE:
6992   case ISD::SETLE:
6993     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6994     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6995       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6996     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6997   }
6998   return Op;
6999 }
7000 
7001 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7002                                                SelectionDAG &DAG,
7003                                                const SDLoc &dl) const {
7004   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7005   SDValue Src = Op.getOperand(0);
7006   if (Src.getValueType() == MVT::f32)
7007     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7008 
7009   SDValue Tmp;
7010   switch (Op.getSimpleValueType().SimpleTy) {
7011   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7012   case MVT::i32:
7013     Tmp = DAG.getNode(
7014         Op.getOpcode() == ISD::FP_TO_SINT
7015             ? PPCISD::FCTIWZ
7016             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7017         dl, MVT::f64, Src);
7018     break;
7019   case MVT::i64:
7020     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7021            "i64 FP_TO_UINT is supported only with FPCVT");
7022     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7023                                                         PPCISD::FCTIDUZ,
7024                       dl, MVT::f64, Src);
7025     break;
7026   }
7027 
7028   // Convert the FP value to an int value through memory.
7029   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7030     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7031   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7032   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7033   MachinePointerInfo MPI =
7034       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7035 
7036   // Emit a store to the stack slot.
7037   SDValue Chain;
7038   if (i32Stack) {
7039     MachineFunction &MF = DAG.getMachineFunction();
7040     MachineMemOperand *MMO =
7041       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7042     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7043     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7044               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7045   } else
7046     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7047 
7048   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7049   // add in a bias on big endian.
7050   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7051     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7052                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7053     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7054   }
7055 
7056   RLI.Chain = Chain;
7057   RLI.Ptr = FIPtr;
7058   RLI.MPI = MPI;
7059 }
7060 
7061 /// Custom lowers floating point to integer conversions to use
7062 /// the direct move instructions available in ISA 2.07 to avoid the
7063 /// need for load/store combinations.
7064 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7065                                                     SelectionDAG &DAG,
7066                                                     const SDLoc &dl) const {
7067   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7068   SDValue Src = Op.getOperand(0);
7069 
7070   if (Src.getValueType() == MVT::f32)
7071     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7072 
7073   SDValue Tmp;
7074   switch (Op.getSimpleValueType().SimpleTy) {
7075   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7076   case MVT::i32:
7077     Tmp = DAG.getNode(
7078         Op.getOpcode() == ISD::FP_TO_SINT
7079             ? PPCISD::FCTIWZ
7080             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7081         dl, MVT::f64, Src);
7082     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7083     break;
7084   case MVT::i64:
7085     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7086            "i64 FP_TO_UINT is supported only with FPCVT");
7087     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7088                                                         PPCISD::FCTIDUZ,
7089                       dl, MVT::f64, Src);
7090     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7091     break;
7092   }
7093   return Tmp;
7094 }
7095 
7096 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7097                                           const SDLoc &dl) const {
7098 
7099   // FP to INT conversions are legal for f128.
7100   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7101     return Op;
7102 
7103   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7104   // PPC (the libcall is not available).
7105   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7106     if (Op.getValueType() == MVT::i32) {
7107       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7108         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7109                                  MVT::f64, Op.getOperand(0),
7110                                  DAG.getIntPtrConstant(0, dl));
7111         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7112                                  MVT::f64, Op.getOperand(0),
7113                                  DAG.getIntPtrConstant(1, dl));
7114 
7115         // Add the two halves of the long double in round-to-zero mode.
7116         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7117 
7118         // Now use a smaller FP_TO_SINT.
7119         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7120       }
7121       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7122         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7123         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7124         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7125         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7126         // FIXME: generated code sucks.
7127         // TODO: Are there fast-math-flags to propagate to this FSUB?
7128         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7129                                    Op.getOperand(0), Tmp);
7130         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7131         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7132                            DAG.getConstant(0x80000000, dl, MVT::i32));
7133         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7134                                     Op.getOperand(0));
7135         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7136                                ISD::SETGE);
7137       }
7138     }
7139 
7140     return SDValue();
7141   }
7142 
7143   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7144     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7145 
7146   ReuseLoadInfo RLI;
7147   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7148 
7149   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7150                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7151 }
7152 
7153 // We're trying to insert a regular store, S, and then a load, L. If the
7154 // incoming value, O, is a load, we might just be able to have our load use the
7155 // address used by O. However, we don't know if anything else will store to
7156 // that address before we can load from it. To prevent this situation, we need
7157 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7158 // the same chain operand as O, we create a token factor from the chain results
7159 // of O and L, and we replace all uses of O's chain result with that token
7160 // factor (see spliceIntoChain below for this last part).
7161 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7162                                             ReuseLoadInfo &RLI,
7163                                             SelectionDAG &DAG,
7164                                             ISD::LoadExtType ET) const {
7165   SDLoc dl(Op);
7166   if (ET == ISD::NON_EXTLOAD &&
7167       (Op.getOpcode() == ISD::FP_TO_UINT ||
7168        Op.getOpcode() == ISD::FP_TO_SINT) &&
7169       isOperationLegalOrCustom(Op.getOpcode(),
7170                                Op.getOperand(0).getValueType())) {
7171 
7172     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7173     return true;
7174   }
7175 
7176   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7177   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7178       LD->isNonTemporal())
7179     return false;
7180   if (LD->getMemoryVT() != MemVT)
7181     return false;
7182 
7183   RLI.Ptr = LD->getBasePtr();
7184   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7185     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7186            "Non-pre-inc AM on PPC?");
7187     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7188                           LD->getOffset());
7189   }
7190 
7191   RLI.Chain = LD->getChain();
7192   RLI.MPI = LD->getPointerInfo();
7193   RLI.IsDereferenceable = LD->isDereferenceable();
7194   RLI.IsInvariant = LD->isInvariant();
7195   RLI.Alignment = LD->getAlignment();
7196   RLI.AAInfo = LD->getAAInfo();
7197   RLI.Ranges = LD->getRanges();
7198 
7199   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7200   return true;
7201 }
7202 
7203 // Given the head of the old chain, ResChain, insert a token factor containing
7204 // it and NewResChain, and make users of ResChain now be users of that token
7205 // factor.
7206 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7207 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7208                                         SDValue NewResChain,
7209                                         SelectionDAG &DAG) const {
7210   if (!ResChain)
7211     return;
7212 
7213   SDLoc dl(NewResChain);
7214 
7215   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7216                            NewResChain, DAG.getUNDEF(MVT::Other));
7217   assert(TF.getNode() != NewResChain.getNode() &&
7218          "A new TF really is required here");
7219 
7220   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7221   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7222 }
7223 
7224 /// Analyze profitability of direct move
7225 /// prefer float load to int load plus direct move
7226 /// when there is no integer use of int load
7227 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7228   SDNode *Origin = Op.getOperand(0).getNode();
7229   if (Origin->getOpcode() != ISD::LOAD)
7230     return true;
7231 
7232   // If there is no LXSIBZX/LXSIHZX, like Power8,
7233   // prefer direct move if the memory size is 1 or 2 bytes.
7234   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7235   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7236     return true;
7237 
7238   for (SDNode::use_iterator UI = Origin->use_begin(),
7239                             UE = Origin->use_end();
7240        UI != UE; ++UI) {
7241 
7242     // Only look at the users of the loaded value.
7243     if (UI.getUse().get().getResNo() != 0)
7244       continue;
7245 
7246     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7247         UI->getOpcode() != ISD::UINT_TO_FP)
7248       return true;
7249   }
7250 
7251   return false;
7252 }
7253 
7254 /// Custom lowers integer to floating point conversions to use
7255 /// the direct move instructions available in ISA 2.07 to avoid the
7256 /// need for load/store combinations.
7257 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7258                                                     SelectionDAG &DAG,
7259                                                     const SDLoc &dl) const {
7260   assert((Op.getValueType() == MVT::f32 ||
7261           Op.getValueType() == MVT::f64) &&
7262          "Invalid floating point type as target of conversion");
7263   assert(Subtarget.hasFPCVT() &&
7264          "Int to FP conversions with direct moves require FPCVT");
7265   SDValue FP;
7266   SDValue Src = Op.getOperand(0);
7267   bool SinglePrec = Op.getValueType() == MVT::f32;
7268   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7269   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7270   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7271                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7272 
7273   if (WordInt) {
7274     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7275                      dl, MVT::f64, Src);
7276     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7277   }
7278   else {
7279     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7280     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7281   }
7282 
7283   return FP;
7284 }
7285 
7286 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7287 
7288   EVT VecVT = Vec.getValueType();
7289   assert(VecVT.isVector() && "Expected a vector type.");
7290   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7291 
7292   EVT EltVT = VecVT.getVectorElementType();
7293   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7294   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7295 
7296   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7297   SmallVector<SDValue, 16> Ops(NumConcat);
7298   Ops[0] = Vec;
7299   SDValue UndefVec = DAG.getUNDEF(VecVT);
7300   for (unsigned i = 1; i < NumConcat; ++i)
7301     Ops[i] = UndefVec;
7302 
7303   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7304 }
7305 
7306 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7307                                                 const SDLoc &dl) const {
7308 
7309   unsigned Opc = Op.getOpcode();
7310   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7311          "Unexpected conversion type");
7312   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7313          "Supports conversions to v2f64/v4f32 only.");
7314 
7315   bool SignedConv = Opc == ISD::SINT_TO_FP;
7316   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7317 
7318   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7319   EVT WideVT = Wide.getValueType();
7320   unsigned WideNumElts = WideVT.getVectorNumElements();
7321   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7322 
7323   SmallVector<int, 16> ShuffV;
7324   for (unsigned i = 0; i < WideNumElts; ++i)
7325     ShuffV.push_back(i + WideNumElts);
7326 
7327   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7328   int SaveElts = FourEltRes ? 4 : 2;
7329   if (Subtarget.isLittleEndian())
7330     for (int i = 0; i < SaveElts; i++)
7331       ShuffV[i * Stride] = i;
7332   else
7333     for (int i = 1; i <= SaveElts; i++)
7334       ShuffV[i * Stride - 1] = i - 1;
7335 
7336   SDValue ShuffleSrc2 =
7337       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7338   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7339   unsigned ExtendOp =
7340       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7341 
7342   SDValue Extend;
7343   if (!Subtarget.hasP9Altivec() && SignedConv) {
7344     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7345     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7346                          DAG.getValueType(Op.getOperand(0).getValueType()));
7347   } else
7348     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7349 
7350   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7351 }
7352 
7353 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7354                                           SelectionDAG &DAG) const {
7355   SDLoc dl(Op);
7356 
7357   EVT InVT = Op.getOperand(0).getValueType();
7358   EVT OutVT = Op.getValueType();
7359   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7360       isOperationCustom(Op.getOpcode(), InVT))
7361     return LowerINT_TO_FPVector(Op, DAG, dl);
7362 
7363   // Conversions to f128 are legal.
7364   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7365     return Op;
7366 
7367   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7368     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7369       return SDValue();
7370 
7371     SDValue Value = Op.getOperand(0);
7372     // The values are now known to be -1 (false) or 1 (true). To convert this
7373     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7374     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7375     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7376 
7377     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7378 
7379     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7380 
7381     if (Op.getValueType() != MVT::v4f64)
7382       Value = DAG.getNode(ISD::FP_ROUND, dl,
7383                           Op.getValueType(), Value,
7384                           DAG.getIntPtrConstant(1, dl));
7385     return Value;
7386   }
7387 
7388   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7389   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7390     return SDValue();
7391 
7392   if (Op.getOperand(0).getValueType() == MVT::i1)
7393     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7394                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7395                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7396 
7397   // If we have direct moves, we can do all the conversion, skip the store/load
7398   // however, without FPCVT we can't do most conversions.
7399   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7400       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7401     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7402 
7403   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7404          "UINT_TO_FP is supported only with FPCVT");
7405 
7406   // If we have FCFIDS, then use it when converting to single-precision.
7407   // Otherwise, convert to double-precision and then round.
7408   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7409                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7410                                                             : PPCISD::FCFIDS)
7411                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7412                                                             : PPCISD::FCFID);
7413   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7414                   ? MVT::f32
7415                   : MVT::f64;
7416 
7417   if (Op.getOperand(0).getValueType() == MVT::i64) {
7418     SDValue SINT = Op.getOperand(0);
7419     // When converting to single-precision, we actually need to convert
7420     // to double-precision first and then round to single-precision.
7421     // To avoid double-rounding effects during that operation, we have
7422     // to prepare the input operand.  Bits that might be truncated when
7423     // converting to double-precision are replaced by a bit that won't
7424     // be lost at this stage, but is below the single-precision rounding
7425     // position.
7426     //
7427     // However, if -enable-unsafe-fp-math is in effect, accept double
7428     // rounding to avoid the extra overhead.
7429     if (Op.getValueType() == MVT::f32 &&
7430         !Subtarget.hasFPCVT() &&
7431         !DAG.getTarget().Options.UnsafeFPMath) {
7432 
7433       // Twiddle input to make sure the low 11 bits are zero.  (If this
7434       // is the case, we are guaranteed the value will fit into the 53 bit
7435       // mantissa of an IEEE double-precision value without rounding.)
7436       // If any of those low 11 bits were not zero originally, make sure
7437       // bit 12 (value 2048) is set instead, so that the final rounding
7438       // to single-precision gets the correct result.
7439       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7440                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7441       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7442                           Round, DAG.getConstant(2047, dl, MVT::i64));
7443       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7444       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7445                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7446 
7447       // However, we cannot use that value unconditionally: if the magnitude
7448       // of the input value is small, the bit-twiddling we did above might
7449       // end up visibly changing the output.  Fortunately, in that case, we
7450       // don't need to twiddle bits since the original input will convert
7451       // exactly to double-precision floating-point already.  Therefore,
7452       // construct a conditional to use the original value if the top 11
7453       // bits are all sign-bit copies, and use the rounded value computed
7454       // above otherwise.
7455       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7456                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7457       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7458                          Cond, DAG.getConstant(1, dl, MVT::i64));
7459       Cond = DAG.getSetCC(dl, MVT::i32,
7460                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7461 
7462       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7463     }
7464 
7465     ReuseLoadInfo RLI;
7466     SDValue Bits;
7467 
7468     MachineFunction &MF = DAG.getMachineFunction();
7469     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7470       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7471                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7472       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7473     } else if (Subtarget.hasLFIWAX() &&
7474                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7475       MachineMemOperand *MMO =
7476         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7477                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7478       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7479       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7480                                      DAG.getVTList(MVT::f64, MVT::Other),
7481                                      Ops, MVT::i32, MMO);
7482       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7483     } else if (Subtarget.hasFPCVT() &&
7484                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7485       MachineMemOperand *MMO =
7486         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7487                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7488       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7489       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7490                                      DAG.getVTList(MVT::f64, MVT::Other),
7491                                      Ops, MVT::i32, MMO);
7492       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7493     } else if (((Subtarget.hasLFIWAX() &&
7494                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7495                 (Subtarget.hasFPCVT() &&
7496                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7497                SINT.getOperand(0).getValueType() == MVT::i32) {
7498       MachineFrameInfo &MFI = MF.getFrameInfo();
7499       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7500 
7501       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7502       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7503 
7504       SDValue Store =
7505           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7506                        MachinePointerInfo::getFixedStack(
7507                            DAG.getMachineFunction(), FrameIdx));
7508 
7509       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7510              "Expected an i32 store");
7511 
7512       RLI.Ptr = FIdx;
7513       RLI.Chain = Store;
7514       RLI.MPI =
7515           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7516       RLI.Alignment = 4;
7517 
7518       MachineMemOperand *MMO =
7519         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7520                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7521       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7522       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7523                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7524                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7525                                      Ops, MVT::i32, MMO);
7526     } else
7527       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7528 
7529     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7530 
7531     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7532       FP = DAG.getNode(ISD::FP_ROUND, dl,
7533                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7534     return FP;
7535   }
7536 
7537   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7538          "Unhandled INT_TO_FP type in custom expander!");
7539   // Since we only generate this in 64-bit mode, we can take advantage of
7540   // 64-bit registers.  In particular, sign extend the input value into the
7541   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7542   // then lfd it and fcfid it.
7543   MachineFunction &MF = DAG.getMachineFunction();
7544   MachineFrameInfo &MFI = MF.getFrameInfo();
7545   EVT PtrVT = getPointerTy(MF.getDataLayout());
7546 
7547   SDValue Ld;
7548   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7549     ReuseLoadInfo RLI;
7550     bool ReusingLoad;
7551     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7552                                             DAG))) {
7553       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7554       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7555 
7556       SDValue Store =
7557           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7558                        MachinePointerInfo::getFixedStack(
7559                            DAG.getMachineFunction(), FrameIdx));
7560 
7561       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7562              "Expected an i32 store");
7563 
7564       RLI.Ptr = FIdx;
7565       RLI.Chain = Store;
7566       RLI.MPI =
7567           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7568       RLI.Alignment = 4;
7569     }
7570 
7571     MachineMemOperand *MMO =
7572       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7573                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7574     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7575     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7576                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7577                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7578                                  Ops, MVT::i32, MMO);
7579     if (ReusingLoad)
7580       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7581   } else {
7582     assert(Subtarget.isPPC64() &&
7583            "i32->FP without LFIWAX supported only on PPC64");
7584 
7585     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7586     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7587 
7588     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7589                                 Op.getOperand(0));
7590 
7591     // STD the extended value into the stack slot.
7592     SDValue Store = DAG.getStore(
7593         DAG.getEntryNode(), dl, Ext64, FIdx,
7594         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7595 
7596     // Load the value as a double.
7597     Ld = DAG.getLoad(
7598         MVT::f64, dl, Store, FIdx,
7599         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7600   }
7601 
7602   // FCFID it and return it.
7603   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7604   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7605     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7606                      DAG.getIntPtrConstant(0, dl));
7607   return FP;
7608 }
7609 
7610 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7611                                             SelectionDAG &DAG) const {
7612   SDLoc dl(Op);
7613   /*
7614    The rounding mode is in bits 30:31 of FPSR, and has the following
7615    settings:
7616      00 Round to nearest
7617      01 Round to 0
7618      10 Round to +inf
7619      11 Round to -inf
7620 
7621   FLT_ROUNDS, on the other hand, expects the following:
7622     -1 Undefined
7623      0 Round to 0
7624      1 Round to nearest
7625      2 Round to +inf
7626      3 Round to -inf
7627 
7628   To perform the conversion, we do:
7629     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7630   */
7631 
7632   MachineFunction &MF = DAG.getMachineFunction();
7633   EVT VT = Op.getValueType();
7634   EVT PtrVT = getPointerTy(MF.getDataLayout());
7635 
7636   // Save FP Control Word to register
7637   EVT NodeTys[] = {
7638     MVT::f64,    // return register
7639     MVT::Glue    // unused in this context
7640   };
7641   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7642 
7643   // Save FP register to stack slot
7644   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7645   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7646   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7647                                MachinePointerInfo());
7648 
7649   // Load FP Control Word from low 32 bits of stack slot.
7650   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7651   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7652   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7653 
7654   // Transform as necessary
7655   SDValue CWD1 =
7656     DAG.getNode(ISD::AND, dl, MVT::i32,
7657                 CWD, DAG.getConstant(3, dl, MVT::i32));
7658   SDValue CWD2 =
7659     DAG.getNode(ISD::SRL, dl, MVT::i32,
7660                 DAG.getNode(ISD::AND, dl, MVT::i32,
7661                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7662                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7663                             DAG.getConstant(3, dl, MVT::i32)),
7664                 DAG.getConstant(1, dl, MVT::i32));
7665 
7666   SDValue RetVal =
7667     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7668 
7669   return DAG.getNode((VT.getSizeInBits() < 16 ?
7670                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7671 }
7672 
7673 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7674   EVT VT = Op.getValueType();
7675   unsigned BitWidth = VT.getSizeInBits();
7676   SDLoc dl(Op);
7677   assert(Op.getNumOperands() == 3 &&
7678          VT == Op.getOperand(1).getValueType() &&
7679          "Unexpected SHL!");
7680 
7681   // Expand into a bunch of logical ops.  Note that these ops
7682   // depend on the PPC behavior for oversized shift amounts.
7683   SDValue Lo = Op.getOperand(0);
7684   SDValue Hi = Op.getOperand(1);
7685   SDValue Amt = Op.getOperand(2);
7686   EVT AmtVT = Amt.getValueType();
7687 
7688   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7689                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7690   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7691   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7692   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7693   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7694                              DAG.getConstant(-BitWidth, dl, AmtVT));
7695   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7696   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7697   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7698   SDValue OutOps[] = { OutLo, OutHi };
7699   return DAG.getMergeValues(OutOps, dl);
7700 }
7701 
7702 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7703   EVT VT = Op.getValueType();
7704   SDLoc dl(Op);
7705   unsigned BitWidth = VT.getSizeInBits();
7706   assert(Op.getNumOperands() == 3 &&
7707          VT == Op.getOperand(1).getValueType() &&
7708          "Unexpected SRL!");
7709 
7710   // Expand into a bunch of logical ops.  Note that these ops
7711   // depend on the PPC behavior for oversized shift amounts.
7712   SDValue Lo = Op.getOperand(0);
7713   SDValue Hi = Op.getOperand(1);
7714   SDValue Amt = Op.getOperand(2);
7715   EVT AmtVT = Amt.getValueType();
7716 
7717   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7718                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7719   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7720   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7721   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7722   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7723                              DAG.getConstant(-BitWidth, dl, AmtVT));
7724   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7725   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7726   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7727   SDValue OutOps[] = { OutLo, OutHi };
7728   return DAG.getMergeValues(OutOps, dl);
7729 }
7730 
7731 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7732   SDLoc dl(Op);
7733   EVT VT = Op.getValueType();
7734   unsigned BitWidth = VT.getSizeInBits();
7735   assert(Op.getNumOperands() == 3 &&
7736          VT == Op.getOperand(1).getValueType() &&
7737          "Unexpected SRA!");
7738 
7739   // Expand into a bunch of logical ops, followed by a select_cc.
7740   SDValue Lo = Op.getOperand(0);
7741   SDValue Hi = Op.getOperand(1);
7742   SDValue Amt = Op.getOperand(2);
7743   EVT AmtVT = Amt.getValueType();
7744 
7745   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7746                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7747   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7748   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7749   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7750   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7751                              DAG.getConstant(-BitWidth, dl, AmtVT));
7752   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7753   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7754   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7755                                   Tmp4, Tmp6, ISD::SETLE);
7756   SDValue OutOps[] = { OutLo, OutHi };
7757   return DAG.getMergeValues(OutOps, dl);
7758 }
7759 
7760 //===----------------------------------------------------------------------===//
7761 // Vector related lowering.
7762 //
7763 
7764 /// BuildSplatI - Build a canonical splati of Val with an element size of
7765 /// SplatSize.  Cast the result to VT.
7766 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7767                            SelectionDAG &DAG, const SDLoc &dl) {
7768   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7769 
7770   static const MVT VTys[] = { // canonical VT to use for each size.
7771     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7772   };
7773 
7774   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7775 
7776   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7777   if (Val == -1)
7778     SplatSize = 1;
7779 
7780   EVT CanonicalVT = VTys[SplatSize-1];
7781 
7782   // Build a canonical splat for this value.
7783   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7784 }
7785 
7786 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7787 /// specified intrinsic ID.
7788 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7789                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7790   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7791   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7792                      DAG.getConstant(IID, dl, MVT::i32), Op);
7793 }
7794 
7795 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7796 /// specified intrinsic ID.
7797 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7798                                 SelectionDAG &DAG, const SDLoc &dl,
7799                                 EVT DestVT = MVT::Other) {
7800   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7801   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7802                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7803 }
7804 
7805 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7806 /// specified intrinsic ID.
7807 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7808                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7809                                 EVT DestVT = MVT::Other) {
7810   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7811   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7812                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7813 }
7814 
7815 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7816 /// amount.  The result has the specified value type.
7817 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7818                            SelectionDAG &DAG, const SDLoc &dl) {
7819   // Force LHS/RHS to be the right type.
7820   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7821   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7822 
7823   int Ops[16];
7824   for (unsigned i = 0; i != 16; ++i)
7825     Ops[i] = i + Amt;
7826   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7827   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7828 }
7829 
7830 /// Do we have an efficient pattern in a .td file for this node?
7831 ///
7832 /// \param V - pointer to the BuildVectorSDNode being matched
7833 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7834 ///
7835 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7836 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7837 /// the opposite is true (expansion is beneficial) are:
7838 /// - The node builds a vector out of integers that are not 32 or 64-bits
7839 /// - The node builds a vector out of constants
7840 /// - The node is a "load-and-splat"
7841 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7842 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7843                                             bool HasDirectMove,
7844                                             bool HasP8Vector) {
7845   EVT VecVT = V->getValueType(0);
7846   bool RightType = VecVT == MVT::v2f64 ||
7847     (HasP8Vector && VecVT == MVT::v4f32) ||
7848     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7849   if (!RightType)
7850     return false;
7851 
7852   bool IsSplat = true;
7853   bool IsLoad = false;
7854   SDValue Op0 = V->getOperand(0);
7855 
7856   // This function is called in a block that confirms the node is not a constant
7857   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7858   // different constants.
7859   if (V->isConstant())
7860     return false;
7861   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7862     if (V->getOperand(i).isUndef())
7863       return false;
7864     // We want to expand nodes that represent load-and-splat even if the
7865     // loaded value is a floating point truncation or conversion to int.
7866     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7867         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7868          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7869         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7870          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7871         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7872          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7873       IsLoad = true;
7874     // If the operands are different or the input is not a load and has more
7875     // uses than just this BV node, then it isn't a splat.
7876     if (V->getOperand(i) != Op0 ||
7877         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7878       IsSplat = false;
7879   }
7880   return !(IsSplat && IsLoad);
7881 }
7882 
7883 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
7884 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7885 
7886   SDLoc dl(Op);
7887   SDValue Op0 = Op->getOperand(0);
7888 
7889   if (!EnableQuadPrecision ||
7890       (Op.getValueType() != MVT::f128 ) ||
7891       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7892       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
7893       (Op0.getOperand(1).getValueType() != MVT::i64))
7894     return SDValue();
7895 
7896   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7897                      Op0.getOperand(1));
7898 }
7899 
7900 // If this is a case we can't handle, return null and let the default
7901 // expansion code take care of it.  If we CAN select this case, and if it
7902 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7903 // this case more efficiently than a constant pool load, lower it to the
7904 // sequence of ops that should be used.
7905 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7906                                              SelectionDAG &DAG) const {
7907   SDLoc dl(Op);
7908   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7909   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7910 
7911   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7912     // We first build an i32 vector, load it into a QPX register,
7913     // then convert it to a floating-point vector and compare it
7914     // to a zero vector to get the boolean result.
7915     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7916     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7917     MachinePointerInfo PtrInfo =
7918         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7919     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7920     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7921 
7922     assert(BVN->getNumOperands() == 4 &&
7923       "BUILD_VECTOR for v4i1 does not have 4 operands");
7924 
7925     bool IsConst = true;
7926     for (unsigned i = 0; i < 4; ++i) {
7927       if (BVN->getOperand(i).isUndef()) continue;
7928       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7929         IsConst = false;
7930         break;
7931       }
7932     }
7933 
7934     if (IsConst) {
7935       Constant *One =
7936         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7937       Constant *NegOne =
7938         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7939 
7940       Constant *CV[4];
7941       for (unsigned i = 0; i < 4; ++i) {
7942         if (BVN->getOperand(i).isUndef())
7943           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7944         else if (isNullConstant(BVN->getOperand(i)))
7945           CV[i] = NegOne;
7946         else
7947           CV[i] = One;
7948       }
7949 
7950       Constant *CP = ConstantVector::get(CV);
7951       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7952                                           16 /* alignment */);
7953 
7954       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7955       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7956       return DAG.getMemIntrinsicNode(
7957           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7958           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7959     }
7960 
7961     SmallVector<SDValue, 4> Stores;
7962     for (unsigned i = 0; i < 4; ++i) {
7963       if (BVN->getOperand(i).isUndef()) continue;
7964 
7965       unsigned Offset = 4*i;
7966       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7967       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7968 
7969       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7970       if (StoreSize > 4) {
7971         Stores.push_back(
7972             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7973                               PtrInfo.getWithOffset(Offset), MVT::i32));
7974       } else {
7975         SDValue StoreValue = BVN->getOperand(i);
7976         if (StoreSize < 4)
7977           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7978 
7979         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7980                                       PtrInfo.getWithOffset(Offset)));
7981       }
7982     }
7983 
7984     SDValue StoreChain;
7985     if (!Stores.empty())
7986       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7987     else
7988       StoreChain = DAG.getEntryNode();
7989 
7990     // Now load from v4i32 into the QPX register; this will extend it to
7991     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7992     // is typed as v4f64 because the QPX register integer states are not
7993     // explicitly represented.
7994 
7995     SDValue Ops[] = {StoreChain,
7996                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7997                      FIdx};
7998     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7999 
8000     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8001       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8002     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8003       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8004       LoadedVect);
8005 
8006     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8007 
8008     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8009   }
8010 
8011   // All other QPX vectors are handled by generic code.
8012   if (Subtarget.hasQPX())
8013     return SDValue();
8014 
8015   // Check if this is a splat of a constant value.
8016   APInt APSplatBits, APSplatUndef;
8017   unsigned SplatBitSize;
8018   bool HasAnyUndefs;
8019   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8020                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8021       SplatBitSize > 32) {
8022     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8023     // lowered to VSX instructions under certain conditions.
8024     // Without VSX, there is no pattern more efficient than expanding the node.
8025     if (Subtarget.hasVSX() &&
8026         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8027                                         Subtarget.hasP8Vector()))
8028       return Op;
8029     return SDValue();
8030   }
8031 
8032   unsigned SplatBits = APSplatBits.getZExtValue();
8033   unsigned SplatUndef = APSplatUndef.getZExtValue();
8034   unsigned SplatSize = SplatBitSize / 8;
8035 
8036   // First, handle single instruction cases.
8037 
8038   // All zeros?
8039   if (SplatBits == 0) {
8040     // Canonicalize all zero vectors to be v4i32.
8041     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8042       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8043       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8044     }
8045     return Op;
8046   }
8047 
8048   // We have XXSPLTIB for constant splats one byte wide
8049   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8050     // This is a splat of 1-byte elements with some elements potentially undef.
8051     // Rather than trying to match undef in the SDAG patterns, ensure that all
8052     // elements are the same constant.
8053     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8054       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8055                                                        dl, MVT::i32));
8056       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8057       if (Op.getValueType() != MVT::v16i8)
8058         return DAG.getBitcast(Op.getValueType(), NewBV);
8059       return NewBV;
8060     }
8061 
8062     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8063     // detect that constant splats like v8i16: 0xABAB are really just splats
8064     // of a 1-byte constant. In this case, we need to convert the node to a
8065     // splat of v16i8 and a bitcast.
8066     if (Op.getValueType() != MVT::v16i8)
8067       return DAG.getBitcast(Op.getValueType(),
8068                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8069 
8070     return Op;
8071   }
8072 
8073   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8074   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8075                     (32-SplatBitSize));
8076   if (SextVal >= -16 && SextVal <= 15)
8077     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8078 
8079   // Two instruction sequences.
8080 
8081   // If this value is in the range [-32,30] and is even, use:
8082   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8083   // If this value is in the range [17,31] and is odd, use:
8084   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8085   // If this value is in the range [-31,-17] and is odd, use:
8086   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8087   // Note the last two are three-instruction sequences.
8088   if (SextVal >= -32 && SextVal <= 31) {
8089     // To avoid having these optimizations undone by constant folding,
8090     // we convert to a pseudo that will be expanded later into one of
8091     // the above forms.
8092     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8093     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8094               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8095     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8096     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8097     if (VT == Op.getValueType())
8098       return RetVal;
8099     else
8100       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8101   }
8102 
8103   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8104   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8105   // for fneg/fabs.
8106   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8107     // Make -1 and vspltisw -1:
8108     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8109 
8110     // Make the VSLW intrinsic, computing 0x8000_0000.
8111     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8112                                    OnesV, DAG, dl);
8113 
8114     // xor by OnesV to invert it.
8115     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8116     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8117   }
8118 
8119   // Check to see if this is a wide variety of vsplti*, binop self cases.
8120   static const signed char SplatCsts[] = {
8121     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8122     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8123   };
8124 
8125   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8126     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8127     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8128     int i = SplatCsts[idx];
8129 
8130     // Figure out what shift amount will be used by altivec if shifted by i in
8131     // this splat size.
8132     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8133 
8134     // vsplti + shl self.
8135     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8136       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8137       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8138         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8139         Intrinsic::ppc_altivec_vslw
8140       };
8141       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8142       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8143     }
8144 
8145     // vsplti + srl self.
8146     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8147       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8148       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8149         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8150         Intrinsic::ppc_altivec_vsrw
8151       };
8152       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8153       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8154     }
8155 
8156     // vsplti + sra self.
8157     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8158       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8159       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8160         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8161         Intrinsic::ppc_altivec_vsraw
8162       };
8163       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8164       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8165     }
8166 
8167     // vsplti + rol self.
8168     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8169                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8170       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8171       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8172         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8173         Intrinsic::ppc_altivec_vrlw
8174       };
8175       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8176       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8177     }
8178 
8179     // t = vsplti c, result = vsldoi t, t, 1
8180     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8181       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8182       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8183       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8184     }
8185     // t = vsplti c, result = vsldoi t, t, 2
8186     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8187       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8188       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8189       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8190     }
8191     // t = vsplti c, result = vsldoi t, t, 3
8192     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8193       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8194       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8195       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8196     }
8197   }
8198 
8199   return SDValue();
8200 }
8201 
8202 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8203 /// the specified operations to build the shuffle.
8204 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8205                                       SDValue RHS, SelectionDAG &DAG,
8206                                       const SDLoc &dl) {
8207   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8208   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8209   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8210 
8211   enum {
8212     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8213     OP_VMRGHW,
8214     OP_VMRGLW,
8215     OP_VSPLTISW0,
8216     OP_VSPLTISW1,
8217     OP_VSPLTISW2,
8218     OP_VSPLTISW3,
8219     OP_VSLDOI4,
8220     OP_VSLDOI8,
8221     OP_VSLDOI12
8222   };
8223 
8224   if (OpNum == OP_COPY) {
8225     if (LHSID == (1*9+2)*9+3) return LHS;
8226     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8227     return RHS;
8228   }
8229 
8230   SDValue OpLHS, OpRHS;
8231   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8232   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8233 
8234   int ShufIdxs[16];
8235   switch (OpNum) {
8236   default: llvm_unreachable("Unknown i32 permute!");
8237   case OP_VMRGHW:
8238     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8239     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8240     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8241     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8242     break;
8243   case OP_VMRGLW:
8244     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8245     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8246     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8247     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8248     break;
8249   case OP_VSPLTISW0:
8250     for (unsigned i = 0; i != 16; ++i)
8251       ShufIdxs[i] = (i&3)+0;
8252     break;
8253   case OP_VSPLTISW1:
8254     for (unsigned i = 0; i != 16; ++i)
8255       ShufIdxs[i] = (i&3)+4;
8256     break;
8257   case OP_VSPLTISW2:
8258     for (unsigned i = 0; i != 16; ++i)
8259       ShufIdxs[i] = (i&3)+8;
8260     break;
8261   case OP_VSPLTISW3:
8262     for (unsigned i = 0; i != 16; ++i)
8263       ShufIdxs[i] = (i&3)+12;
8264     break;
8265   case OP_VSLDOI4:
8266     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8267   case OP_VSLDOI8:
8268     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8269   case OP_VSLDOI12:
8270     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8271   }
8272   EVT VT = OpLHS.getValueType();
8273   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8274   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8275   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8276   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8277 }
8278 
8279 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8280 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8281 /// SDValue.
8282 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8283                                            SelectionDAG &DAG) const {
8284   const unsigned BytesInVector = 16;
8285   bool IsLE = Subtarget.isLittleEndian();
8286   SDLoc dl(N);
8287   SDValue V1 = N->getOperand(0);
8288   SDValue V2 = N->getOperand(1);
8289   unsigned ShiftElts = 0, InsertAtByte = 0;
8290   bool Swap = false;
8291 
8292   // Shifts required to get the byte we want at element 7.
8293   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8294                                    0, 15, 14, 13, 12, 11, 10, 9};
8295   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8296                                 1, 2,  3,  4,  5,  6,  7,  8};
8297 
8298   ArrayRef<int> Mask = N->getMask();
8299   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8300 
8301   // For each mask element, find out if we're just inserting something
8302   // from V2 into V1 or vice versa.
8303   // Possible permutations inserting an element from V2 into V1:
8304   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8305   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8306   //   ...
8307   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8308   // Inserting from V1 into V2 will be similar, except mask range will be
8309   // [16,31].
8310 
8311   bool FoundCandidate = false;
8312   // If both vector operands for the shuffle are the same vector, the mask
8313   // will contain only elements from the first one and the second one will be
8314   // undef.
8315   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8316   // Go through the mask of half-words to find an element that's being moved
8317   // from one vector to the other.
8318   for (unsigned i = 0; i < BytesInVector; ++i) {
8319     unsigned CurrentElement = Mask[i];
8320     // If 2nd operand is undefined, we should only look for element 7 in the
8321     // Mask.
8322     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8323       continue;
8324 
8325     bool OtherElementsInOrder = true;
8326     // Examine the other elements in the Mask to see if they're in original
8327     // order.
8328     for (unsigned j = 0; j < BytesInVector; ++j) {
8329       if (j == i)
8330         continue;
8331       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8332       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8333       // in which we always assume we're always picking from the 1st operand.
8334       int MaskOffset =
8335           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8336       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8337         OtherElementsInOrder = false;
8338         break;
8339       }
8340     }
8341     // If other elements are in original order, we record the number of shifts
8342     // we need to get the element we want into element 7. Also record which byte
8343     // in the vector we should insert into.
8344     if (OtherElementsInOrder) {
8345       // If 2nd operand is undefined, we assume no shifts and no swapping.
8346       if (V2.isUndef()) {
8347         ShiftElts = 0;
8348         Swap = false;
8349       } else {
8350         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8351         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8352                          : BigEndianShifts[CurrentElement & 0xF];
8353         Swap = CurrentElement < BytesInVector;
8354       }
8355       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8356       FoundCandidate = true;
8357       break;
8358     }
8359   }
8360 
8361   if (!FoundCandidate)
8362     return SDValue();
8363 
8364   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8365   // optionally with VECSHL if shift is required.
8366   if (Swap)
8367     std::swap(V1, V2);
8368   if (V2.isUndef())
8369     V2 = V1;
8370   if (ShiftElts) {
8371     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8372                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8373     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8374                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8375   }
8376   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8377                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8378 }
8379 
8380 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8381 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8382 /// SDValue.
8383 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8384                                            SelectionDAG &DAG) const {
8385   const unsigned NumHalfWords = 8;
8386   const unsigned BytesInVector = NumHalfWords * 2;
8387   // Check that the shuffle is on half-words.
8388   if (!isNByteElemShuffleMask(N, 2, 1))
8389     return SDValue();
8390 
8391   bool IsLE = Subtarget.isLittleEndian();
8392   SDLoc dl(N);
8393   SDValue V1 = N->getOperand(0);
8394   SDValue V2 = N->getOperand(1);
8395   unsigned ShiftElts = 0, InsertAtByte = 0;
8396   bool Swap = false;
8397 
8398   // Shifts required to get the half-word we want at element 3.
8399   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8400   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8401 
8402   uint32_t Mask = 0;
8403   uint32_t OriginalOrderLow = 0x1234567;
8404   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8405   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8406   // 32-bit space, only need 4-bit nibbles per element.
8407   for (unsigned i = 0; i < NumHalfWords; ++i) {
8408     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8409     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8410   }
8411 
8412   // For each mask element, find out if we're just inserting something
8413   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8414   // from V2 into V1:
8415   //   X, 1, 2, 3, 4, 5, 6, 7
8416   //   0, X, 2, 3, 4, 5, 6, 7
8417   //   0, 1, X, 3, 4, 5, 6, 7
8418   //   0, 1, 2, X, 4, 5, 6, 7
8419   //   0, 1, 2, 3, X, 5, 6, 7
8420   //   0, 1, 2, 3, 4, X, 6, 7
8421   //   0, 1, 2, 3, 4, 5, X, 7
8422   //   0, 1, 2, 3, 4, 5, 6, X
8423   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8424 
8425   bool FoundCandidate = false;
8426   // Go through the mask of half-words to find an element that's being moved
8427   // from one vector to the other.
8428   for (unsigned i = 0; i < NumHalfWords; ++i) {
8429     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8430     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8431     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8432     uint32_t TargetOrder = 0x0;
8433 
8434     // If both vector operands for the shuffle are the same vector, the mask
8435     // will contain only elements from the first one and the second one will be
8436     // undef.
8437     if (V2.isUndef()) {
8438       ShiftElts = 0;
8439       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8440       TargetOrder = OriginalOrderLow;
8441       Swap = false;
8442       // Skip if not the correct element or mask of other elements don't equal
8443       // to our expected order.
8444       if (MaskOneElt == VINSERTHSrcElem &&
8445           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8446         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8447         FoundCandidate = true;
8448         break;
8449       }
8450     } else { // If both operands are defined.
8451       // Target order is [8,15] if the current mask is between [0,7].
8452       TargetOrder =
8453           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8454       // Skip if mask of other elements don't equal our expected order.
8455       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8456         // We only need the last 3 bits for the number of shifts.
8457         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8458                          : BigEndianShifts[MaskOneElt & 0x7];
8459         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8460         Swap = MaskOneElt < NumHalfWords;
8461         FoundCandidate = true;
8462         break;
8463       }
8464     }
8465   }
8466 
8467   if (!FoundCandidate)
8468     return SDValue();
8469 
8470   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8471   // optionally with VECSHL if shift is required.
8472   if (Swap)
8473     std::swap(V1, V2);
8474   if (V2.isUndef())
8475     V2 = V1;
8476   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8477   if (ShiftElts) {
8478     // Double ShiftElts because we're left shifting on v16i8 type.
8479     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8480                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8481     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8482     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8483                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8484     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8485   }
8486   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8487   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8488                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8489   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8490 }
8491 
8492 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8493 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8494 /// return the code it can be lowered into.  Worst case, it can always be
8495 /// lowered into a vperm.
8496 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8497                                                SelectionDAG &DAG) const {
8498   SDLoc dl(Op);
8499   SDValue V1 = Op.getOperand(0);
8500   SDValue V2 = Op.getOperand(1);
8501   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8502   EVT VT = Op.getValueType();
8503   bool isLittleEndian = Subtarget.isLittleEndian();
8504 
8505   unsigned ShiftElts, InsertAtByte;
8506   bool Swap = false;
8507   if (Subtarget.hasP9Vector() &&
8508       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8509                            isLittleEndian)) {
8510     if (Swap)
8511       std::swap(V1, V2);
8512     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8513     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8514     if (ShiftElts) {
8515       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8516                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8517       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8518                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8519       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8520     }
8521     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8522                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8523     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8524   }
8525 
8526   if (Subtarget.hasP9Altivec()) {
8527     SDValue NewISDNode;
8528     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8529       return NewISDNode;
8530 
8531     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8532       return NewISDNode;
8533   }
8534 
8535   if (Subtarget.hasVSX() &&
8536       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8537     if (Swap)
8538       std::swap(V1, V2);
8539     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8540     SDValue Conv2 =
8541         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8542 
8543     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8544                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8545     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8546   }
8547 
8548   if (Subtarget.hasVSX() &&
8549     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8550     if (Swap)
8551       std::swap(V1, V2);
8552     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8553     SDValue Conv2 =
8554         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8555 
8556     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8557                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8558     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8559   }
8560 
8561   if (Subtarget.hasP9Vector()) {
8562      if (PPC::isXXBRHShuffleMask(SVOp)) {
8563       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8564       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8565       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8566     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8567       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8568       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8569       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8570     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8571       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8572       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8573       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8574     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8575       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8576       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8577       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8578     }
8579   }
8580 
8581   if (Subtarget.hasVSX()) {
8582     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8583       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8584 
8585       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8586       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8587                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8588       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8589     }
8590 
8591     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8592     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8593       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8594       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8595       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8596     }
8597   }
8598 
8599   if (Subtarget.hasQPX()) {
8600     if (VT.getVectorNumElements() != 4)
8601       return SDValue();
8602 
8603     if (V2.isUndef()) V2 = V1;
8604 
8605     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8606     if (AlignIdx != -1) {
8607       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8608                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8609     } else if (SVOp->isSplat()) {
8610       int SplatIdx = SVOp->getSplatIndex();
8611       if (SplatIdx >= 4) {
8612         std::swap(V1, V2);
8613         SplatIdx -= 4;
8614       }
8615 
8616       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8617                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8618     }
8619 
8620     // Lower this into a qvgpci/qvfperm pair.
8621 
8622     // Compute the qvgpci literal
8623     unsigned idx = 0;
8624     for (unsigned i = 0; i < 4; ++i) {
8625       int m = SVOp->getMaskElt(i);
8626       unsigned mm = m >= 0 ? (unsigned) m : i;
8627       idx |= mm << (3-i)*3;
8628     }
8629 
8630     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8631                              DAG.getConstant(idx, dl, MVT::i32));
8632     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8633   }
8634 
8635   // Cases that are handled by instructions that take permute immediates
8636   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8637   // selected by the instruction selector.
8638   if (V2.isUndef()) {
8639     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8640         PPC::isSplatShuffleMask(SVOp, 2) ||
8641         PPC::isSplatShuffleMask(SVOp, 4) ||
8642         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8643         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8644         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8645         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8646         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8647         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8648         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8649         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8650         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8651         (Subtarget.hasP8Altivec() && (
8652          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8653          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8654          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8655       return Op;
8656     }
8657   }
8658 
8659   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8660   // and produce a fixed permutation.  If any of these match, do not lower to
8661   // VPERM.
8662   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8663   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8664       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8665       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8666       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8667       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8668       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8669       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8670       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8671       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8672       (Subtarget.hasP8Altivec() && (
8673        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8674        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8675        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8676     return Op;
8677 
8678   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8679   // perfect shuffle table to emit an optimal matching sequence.
8680   ArrayRef<int> PermMask = SVOp->getMask();
8681 
8682   unsigned PFIndexes[4];
8683   bool isFourElementShuffle = true;
8684   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8685     unsigned EltNo = 8;   // Start out undef.
8686     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8687       if (PermMask[i*4+j] < 0)
8688         continue;   // Undef, ignore it.
8689 
8690       unsigned ByteSource = PermMask[i*4+j];
8691       if ((ByteSource & 3) != j) {
8692         isFourElementShuffle = false;
8693         break;
8694       }
8695 
8696       if (EltNo == 8) {
8697         EltNo = ByteSource/4;
8698       } else if (EltNo != ByteSource/4) {
8699         isFourElementShuffle = false;
8700         break;
8701       }
8702     }
8703     PFIndexes[i] = EltNo;
8704   }
8705 
8706   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8707   // perfect shuffle vector to determine if it is cost effective to do this as
8708   // discrete instructions, or whether we should use a vperm.
8709   // For now, we skip this for little endian until such time as we have a
8710   // little-endian perfect shuffle table.
8711   if (isFourElementShuffle && !isLittleEndian) {
8712     // Compute the index in the perfect shuffle table.
8713     unsigned PFTableIndex =
8714       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8715 
8716     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8717     unsigned Cost  = (PFEntry >> 30);
8718 
8719     // Determining when to avoid vperm is tricky.  Many things affect the cost
8720     // of vperm, particularly how many times the perm mask needs to be computed.
8721     // For example, if the perm mask can be hoisted out of a loop or is already
8722     // used (perhaps because there are multiple permutes with the same shuffle
8723     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8724     // the loop requires an extra register.
8725     //
8726     // As a compromise, we only emit discrete instructions if the shuffle can be
8727     // generated in 3 or fewer operations.  When we have loop information
8728     // available, if this block is within a loop, we should avoid using vperm
8729     // for 3-operation perms and use a constant pool load instead.
8730     if (Cost < 3)
8731       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8732   }
8733 
8734   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8735   // vector that will get spilled to the constant pool.
8736   if (V2.isUndef()) V2 = V1;
8737 
8738   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8739   // that it is in input element units, not in bytes.  Convert now.
8740 
8741   // For little endian, the order of the input vectors is reversed, and
8742   // the permutation mask is complemented with respect to 31.  This is
8743   // necessary to produce proper semantics with the big-endian-biased vperm
8744   // instruction.
8745   EVT EltVT = V1.getValueType().getVectorElementType();
8746   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8747 
8748   SmallVector<SDValue, 16> ResultMask;
8749   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8750     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8751 
8752     for (unsigned j = 0; j != BytesPerElement; ++j)
8753       if (isLittleEndian)
8754         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8755                                              dl, MVT::i32));
8756       else
8757         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8758                                              MVT::i32));
8759   }
8760 
8761   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8762   if (isLittleEndian)
8763     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8764                        V2, V1, VPermMask);
8765   else
8766     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8767                        V1, V2, VPermMask);
8768 }
8769 
8770 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8771 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8772 /// information about the intrinsic.
8773 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8774                                  bool &isDot, const PPCSubtarget &Subtarget) {
8775   unsigned IntrinsicID =
8776       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8777   CompareOpc = -1;
8778   isDot = false;
8779   switch (IntrinsicID) {
8780   default:
8781     return false;
8782   // Comparison predicates.
8783   case Intrinsic::ppc_altivec_vcmpbfp_p:
8784     CompareOpc = 966;
8785     isDot = true;
8786     break;
8787   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8788     CompareOpc = 198;
8789     isDot = true;
8790     break;
8791   case Intrinsic::ppc_altivec_vcmpequb_p:
8792     CompareOpc = 6;
8793     isDot = true;
8794     break;
8795   case Intrinsic::ppc_altivec_vcmpequh_p:
8796     CompareOpc = 70;
8797     isDot = true;
8798     break;
8799   case Intrinsic::ppc_altivec_vcmpequw_p:
8800     CompareOpc = 134;
8801     isDot = true;
8802     break;
8803   case Intrinsic::ppc_altivec_vcmpequd_p:
8804     if (Subtarget.hasP8Altivec()) {
8805       CompareOpc = 199;
8806       isDot = true;
8807     } else
8808       return false;
8809     break;
8810   case Intrinsic::ppc_altivec_vcmpneb_p:
8811   case Intrinsic::ppc_altivec_vcmpneh_p:
8812   case Intrinsic::ppc_altivec_vcmpnew_p:
8813   case Intrinsic::ppc_altivec_vcmpnezb_p:
8814   case Intrinsic::ppc_altivec_vcmpnezh_p:
8815   case Intrinsic::ppc_altivec_vcmpnezw_p:
8816     if (Subtarget.hasP9Altivec()) {
8817       switch (IntrinsicID) {
8818       default:
8819         llvm_unreachable("Unknown comparison intrinsic.");
8820       case Intrinsic::ppc_altivec_vcmpneb_p:
8821         CompareOpc = 7;
8822         break;
8823       case Intrinsic::ppc_altivec_vcmpneh_p:
8824         CompareOpc = 71;
8825         break;
8826       case Intrinsic::ppc_altivec_vcmpnew_p:
8827         CompareOpc = 135;
8828         break;
8829       case Intrinsic::ppc_altivec_vcmpnezb_p:
8830         CompareOpc = 263;
8831         break;
8832       case Intrinsic::ppc_altivec_vcmpnezh_p:
8833         CompareOpc = 327;
8834         break;
8835       case Intrinsic::ppc_altivec_vcmpnezw_p:
8836         CompareOpc = 391;
8837         break;
8838       }
8839       isDot = true;
8840     } else
8841       return false;
8842     break;
8843   case Intrinsic::ppc_altivec_vcmpgefp_p:
8844     CompareOpc = 454;
8845     isDot = true;
8846     break;
8847   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8848     CompareOpc = 710;
8849     isDot = true;
8850     break;
8851   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8852     CompareOpc = 774;
8853     isDot = true;
8854     break;
8855   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8856     CompareOpc = 838;
8857     isDot = true;
8858     break;
8859   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8860     CompareOpc = 902;
8861     isDot = true;
8862     break;
8863   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8864     if (Subtarget.hasP8Altivec()) {
8865       CompareOpc = 967;
8866       isDot = true;
8867     } else
8868       return false;
8869     break;
8870   case Intrinsic::ppc_altivec_vcmpgtub_p:
8871     CompareOpc = 518;
8872     isDot = true;
8873     break;
8874   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8875     CompareOpc = 582;
8876     isDot = true;
8877     break;
8878   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8879     CompareOpc = 646;
8880     isDot = true;
8881     break;
8882   case Intrinsic::ppc_altivec_vcmpgtud_p:
8883     if (Subtarget.hasP8Altivec()) {
8884       CompareOpc = 711;
8885       isDot = true;
8886     } else
8887       return false;
8888     break;
8889 
8890   // VSX predicate comparisons use the same infrastructure
8891   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8892   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8893   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8894   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8895   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8896   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8897     if (Subtarget.hasVSX()) {
8898       switch (IntrinsicID) {
8899       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8900         CompareOpc = 99;
8901         break;
8902       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8903         CompareOpc = 115;
8904         break;
8905       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8906         CompareOpc = 107;
8907         break;
8908       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8909         CompareOpc = 67;
8910         break;
8911       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8912         CompareOpc = 83;
8913         break;
8914       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8915         CompareOpc = 75;
8916         break;
8917       }
8918       isDot = true;
8919     } else
8920       return false;
8921     break;
8922 
8923   // Normal Comparisons.
8924   case Intrinsic::ppc_altivec_vcmpbfp:
8925     CompareOpc = 966;
8926     break;
8927   case Intrinsic::ppc_altivec_vcmpeqfp:
8928     CompareOpc = 198;
8929     break;
8930   case Intrinsic::ppc_altivec_vcmpequb:
8931     CompareOpc = 6;
8932     break;
8933   case Intrinsic::ppc_altivec_vcmpequh:
8934     CompareOpc = 70;
8935     break;
8936   case Intrinsic::ppc_altivec_vcmpequw:
8937     CompareOpc = 134;
8938     break;
8939   case Intrinsic::ppc_altivec_vcmpequd:
8940     if (Subtarget.hasP8Altivec())
8941       CompareOpc = 199;
8942     else
8943       return false;
8944     break;
8945   case Intrinsic::ppc_altivec_vcmpneb:
8946   case Intrinsic::ppc_altivec_vcmpneh:
8947   case Intrinsic::ppc_altivec_vcmpnew:
8948   case Intrinsic::ppc_altivec_vcmpnezb:
8949   case Intrinsic::ppc_altivec_vcmpnezh:
8950   case Intrinsic::ppc_altivec_vcmpnezw:
8951     if (Subtarget.hasP9Altivec())
8952       switch (IntrinsicID) {
8953       default:
8954         llvm_unreachable("Unknown comparison intrinsic.");
8955       case Intrinsic::ppc_altivec_vcmpneb:
8956         CompareOpc = 7;
8957         break;
8958       case Intrinsic::ppc_altivec_vcmpneh:
8959         CompareOpc = 71;
8960         break;
8961       case Intrinsic::ppc_altivec_vcmpnew:
8962         CompareOpc = 135;
8963         break;
8964       case Intrinsic::ppc_altivec_vcmpnezb:
8965         CompareOpc = 263;
8966         break;
8967       case Intrinsic::ppc_altivec_vcmpnezh:
8968         CompareOpc = 327;
8969         break;
8970       case Intrinsic::ppc_altivec_vcmpnezw:
8971         CompareOpc = 391;
8972         break;
8973       }
8974     else
8975       return false;
8976     break;
8977   case Intrinsic::ppc_altivec_vcmpgefp:
8978     CompareOpc = 454;
8979     break;
8980   case Intrinsic::ppc_altivec_vcmpgtfp:
8981     CompareOpc = 710;
8982     break;
8983   case Intrinsic::ppc_altivec_vcmpgtsb:
8984     CompareOpc = 774;
8985     break;
8986   case Intrinsic::ppc_altivec_vcmpgtsh:
8987     CompareOpc = 838;
8988     break;
8989   case Intrinsic::ppc_altivec_vcmpgtsw:
8990     CompareOpc = 902;
8991     break;
8992   case Intrinsic::ppc_altivec_vcmpgtsd:
8993     if (Subtarget.hasP8Altivec())
8994       CompareOpc = 967;
8995     else
8996       return false;
8997     break;
8998   case Intrinsic::ppc_altivec_vcmpgtub:
8999     CompareOpc = 518;
9000     break;
9001   case Intrinsic::ppc_altivec_vcmpgtuh:
9002     CompareOpc = 582;
9003     break;
9004   case Intrinsic::ppc_altivec_vcmpgtuw:
9005     CompareOpc = 646;
9006     break;
9007   case Intrinsic::ppc_altivec_vcmpgtud:
9008     if (Subtarget.hasP8Altivec())
9009       CompareOpc = 711;
9010     else
9011       return false;
9012     break;
9013   }
9014   return true;
9015 }
9016 
9017 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9018 /// lower, do it, otherwise return null.
9019 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9020                                                    SelectionDAG &DAG) const {
9021   unsigned IntrinsicID =
9022     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9023 
9024   SDLoc dl(Op);
9025 
9026   if (IntrinsicID == Intrinsic::thread_pointer) {
9027     // Reads the thread pointer register, used for __builtin_thread_pointer.
9028     if (Subtarget.isPPC64())
9029       return DAG.getRegister(PPC::X13, MVT::i64);
9030     return DAG.getRegister(PPC::R2, MVT::i32);
9031   }
9032 
9033   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9034   // opcode number of the comparison.
9035   int CompareOpc;
9036   bool isDot;
9037   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9038     return SDValue();    // Don't custom lower most intrinsics.
9039 
9040   // If this is a non-dot comparison, make the VCMP node and we are done.
9041   if (!isDot) {
9042     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9043                               Op.getOperand(1), Op.getOperand(2),
9044                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9045     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9046   }
9047 
9048   // Create the PPCISD altivec 'dot' comparison node.
9049   SDValue Ops[] = {
9050     Op.getOperand(2),  // LHS
9051     Op.getOperand(3),  // RHS
9052     DAG.getConstant(CompareOpc, dl, MVT::i32)
9053   };
9054   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9055   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9056 
9057   // Now that we have the comparison, emit a copy from the CR to a GPR.
9058   // This is flagged to the above dot comparison.
9059   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9060                                 DAG.getRegister(PPC::CR6, MVT::i32),
9061                                 CompNode.getValue(1));
9062 
9063   // Unpack the result based on how the target uses it.
9064   unsigned BitNo;   // Bit # of CR6.
9065   bool InvertBit;   // Invert result?
9066   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9067   default:  // Can't happen, don't crash on invalid number though.
9068   case 0:   // Return the value of the EQ bit of CR6.
9069     BitNo = 0; InvertBit = false;
9070     break;
9071   case 1:   // Return the inverted value of the EQ bit of CR6.
9072     BitNo = 0; InvertBit = true;
9073     break;
9074   case 2:   // Return the value of the LT bit of CR6.
9075     BitNo = 2; InvertBit = false;
9076     break;
9077   case 3:   // Return the inverted value of the LT bit of CR6.
9078     BitNo = 2; InvertBit = true;
9079     break;
9080   }
9081 
9082   // Shift the bit into the low position.
9083   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9084                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9085   // Isolate the bit.
9086   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9087                       DAG.getConstant(1, dl, MVT::i32));
9088 
9089   // If we are supposed to, toggle the bit.
9090   if (InvertBit)
9091     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9092                         DAG.getConstant(1, dl, MVT::i32));
9093   return Flags;
9094 }
9095 
9096 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9097                                                SelectionDAG &DAG) const {
9098   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9099   // the beginning of the argument list.
9100   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9101   SDLoc DL(Op);
9102   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9103   case Intrinsic::ppc_cfence: {
9104     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9105     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9106     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9107                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9108                                                   Op.getOperand(ArgStart + 1)),
9109                                       Op.getOperand(0)),
9110                    0);
9111   }
9112   default:
9113     break;
9114   }
9115   return SDValue();
9116 }
9117 
9118 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9119   // Check for a DIV with the same operands as this REM.
9120   for (auto UI : Op.getOperand(1)->uses()) {
9121     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9122         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9123       if (UI->getOperand(0) == Op.getOperand(0) &&
9124           UI->getOperand(1) == Op.getOperand(1))
9125         return SDValue();
9126   }
9127   return Op;
9128 }
9129 
9130 // Lower scalar BSWAP64 to xxbrd.
9131 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9132   SDLoc dl(Op);
9133   // MTVSRDD
9134   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9135                    Op.getOperand(0));
9136   // XXBRD
9137   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9138   // MFVSRD
9139   int VectorIndex = 0;
9140   if (Subtarget.isLittleEndian())
9141     VectorIndex = 1;
9142   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9143                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9144   return Op;
9145 }
9146 
9147 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9148 // compared to a value that is atomically loaded (atomic loads zero-extend).
9149 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9150                                                 SelectionDAG &DAG) const {
9151   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9152          "Expecting an atomic compare-and-swap here.");
9153   SDLoc dl(Op);
9154   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9155   EVT MemVT = AtomicNode->getMemoryVT();
9156   if (MemVT.getSizeInBits() >= 32)
9157     return Op;
9158 
9159   SDValue CmpOp = Op.getOperand(2);
9160   // If this is already correctly zero-extended, leave it alone.
9161   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9162   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9163     return Op;
9164 
9165   // Clear the high bits of the compare operand.
9166   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9167   SDValue NewCmpOp =
9168     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9169                 DAG.getConstant(MaskVal, dl, MVT::i32));
9170 
9171   // Replace the existing compare operand with the properly zero-extended one.
9172   SmallVector<SDValue, 4> Ops;
9173   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9174     Ops.push_back(AtomicNode->getOperand(i));
9175   Ops[2] = NewCmpOp;
9176   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9177   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9178   auto NodeTy =
9179     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9180   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9181 }
9182 
9183 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9184                                                  SelectionDAG &DAG) const {
9185   SDLoc dl(Op);
9186   // Create a stack slot that is 16-byte aligned.
9187   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9188   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9189   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9190   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9191 
9192   // Store the input value into Value#0 of the stack slot.
9193   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9194                                MachinePointerInfo());
9195   // Load it out.
9196   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9197 }
9198 
9199 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9200                                                   SelectionDAG &DAG) const {
9201   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9202          "Should only be called for ISD::INSERT_VECTOR_ELT");
9203 
9204   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9205   // We have legal lowering for constant indices but not for variable ones.
9206   if (!C)
9207     return SDValue();
9208 
9209   EVT VT = Op.getValueType();
9210   SDLoc dl(Op);
9211   SDValue V1 = Op.getOperand(0);
9212   SDValue V2 = Op.getOperand(1);
9213   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9214   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9215     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9216     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9217     unsigned InsertAtElement = C->getZExtValue();
9218     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9219     if (Subtarget.isLittleEndian()) {
9220       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9221     }
9222     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9223                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9224   }
9225   return Op;
9226 }
9227 
9228 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9229                                                    SelectionDAG &DAG) const {
9230   SDLoc dl(Op);
9231   SDNode *N = Op.getNode();
9232 
9233   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9234          "Unknown extract_vector_elt type");
9235 
9236   SDValue Value = N->getOperand(0);
9237 
9238   // The first part of this is like the store lowering except that we don't
9239   // need to track the chain.
9240 
9241   // The values are now known to be -1 (false) or 1 (true). To convert this
9242   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9243   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9244   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9245 
9246   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9247   // understand how to form the extending load.
9248   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9249 
9250   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9251 
9252   // Now convert to an integer and store.
9253   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9254     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9255     Value);
9256 
9257   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9258   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9259   MachinePointerInfo PtrInfo =
9260       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9261   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9262   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9263 
9264   SDValue StoreChain = DAG.getEntryNode();
9265   SDValue Ops[] = {StoreChain,
9266                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9267                    Value, FIdx};
9268   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9269 
9270   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9271     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9272 
9273   // Extract the value requested.
9274   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9275   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9276   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9277 
9278   SDValue IntVal =
9279       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9280 
9281   if (!Subtarget.useCRBits())
9282     return IntVal;
9283 
9284   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9285 }
9286 
9287 /// Lowering for QPX v4i1 loads
9288 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9289                                            SelectionDAG &DAG) const {
9290   SDLoc dl(Op);
9291   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9292   SDValue LoadChain = LN->getChain();
9293   SDValue BasePtr = LN->getBasePtr();
9294 
9295   if (Op.getValueType() == MVT::v4f64 ||
9296       Op.getValueType() == MVT::v4f32) {
9297     EVT MemVT = LN->getMemoryVT();
9298     unsigned Alignment = LN->getAlignment();
9299 
9300     // If this load is properly aligned, then it is legal.
9301     if (Alignment >= MemVT.getStoreSize())
9302       return Op;
9303 
9304     EVT ScalarVT = Op.getValueType().getScalarType(),
9305         ScalarMemVT = MemVT.getScalarType();
9306     unsigned Stride = ScalarMemVT.getStoreSize();
9307 
9308     SDValue Vals[4], LoadChains[4];
9309     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9310       SDValue Load;
9311       if (ScalarVT != ScalarMemVT)
9312         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9313                               BasePtr,
9314                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9315                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9316                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9317       else
9318         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9319                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9320                            MinAlign(Alignment, Idx * Stride),
9321                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9322 
9323       if (Idx == 0 && LN->isIndexed()) {
9324         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9325                "Unknown addressing mode on vector load");
9326         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9327                                   LN->getAddressingMode());
9328       }
9329 
9330       Vals[Idx] = Load;
9331       LoadChains[Idx] = Load.getValue(1);
9332 
9333       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9334                             DAG.getConstant(Stride, dl,
9335                                             BasePtr.getValueType()));
9336     }
9337 
9338     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9339     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9340 
9341     if (LN->isIndexed()) {
9342       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9343       return DAG.getMergeValues(RetOps, dl);
9344     }
9345 
9346     SDValue RetOps[] = { Value, TF };
9347     return DAG.getMergeValues(RetOps, dl);
9348   }
9349 
9350   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9351   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9352 
9353   // To lower v4i1 from a byte array, we load the byte elements of the
9354   // vector and then reuse the BUILD_VECTOR logic.
9355 
9356   SDValue VectElmts[4], VectElmtChains[4];
9357   for (unsigned i = 0; i < 4; ++i) {
9358     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9359     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9360 
9361     VectElmts[i] = DAG.getExtLoad(
9362         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9363         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9364         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9365     VectElmtChains[i] = VectElmts[i].getValue(1);
9366   }
9367 
9368   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9369   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9370 
9371   SDValue RVals[] = { Value, LoadChain };
9372   return DAG.getMergeValues(RVals, dl);
9373 }
9374 
9375 /// Lowering for QPX v4i1 stores
9376 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9377                                             SelectionDAG &DAG) const {
9378   SDLoc dl(Op);
9379   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9380   SDValue StoreChain = SN->getChain();
9381   SDValue BasePtr = SN->getBasePtr();
9382   SDValue Value = SN->getValue();
9383 
9384   if (Value.getValueType() == MVT::v4f64 ||
9385       Value.getValueType() == MVT::v4f32) {
9386     EVT MemVT = SN->getMemoryVT();
9387     unsigned Alignment = SN->getAlignment();
9388 
9389     // If this store is properly aligned, then it is legal.
9390     if (Alignment >= MemVT.getStoreSize())
9391       return Op;
9392 
9393     EVT ScalarVT = Value.getValueType().getScalarType(),
9394         ScalarMemVT = MemVT.getScalarType();
9395     unsigned Stride = ScalarMemVT.getStoreSize();
9396 
9397     SDValue Stores[4];
9398     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9399       SDValue Ex = DAG.getNode(
9400           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9401           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9402       SDValue Store;
9403       if (ScalarVT != ScalarMemVT)
9404         Store =
9405             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9406                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9407                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9408                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9409       else
9410         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9411                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9412                              MinAlign(Alignment, Idx * Stride),
9413                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9414 
9415       if (Idx == 0 && SN->isIndexed()) {
9416         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9417                "Unknown addressing mode on vector store");
9418         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9419                                     SN->getAddressingMode());
9420       }
9421 
9422       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9423                             DAG.getConstant(Stride, dl,
9424                                             BasePtr.getValueType()));
9425       Stores[Idx] = Store;
9426     }
9427 
9428     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9429 
9430     if (SN->isIndexed()) {
9431       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9432       return DAG.getMergeValues(RetOps, dl);
9433     }
9434 
9435     return TF;
9436   }
9437 
9438   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9439   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9440 
9441   // The values are now known to be -1 (false) or 1 (true). To convert this
9442   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9443   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9444   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9445 
9446   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9447   // understand how to form the extending load.
9448   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9449 
9450   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9451 
9452   // Now convert to an integer and store.
9453   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9454     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9455     Value);
9456 
9457   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9458   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9459   MachinePointerInfo PtrInfo =
9460       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9461   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9462   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9463 
9464   SDValue Ops[] = {StoreChain,
9465                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9466                    Value, FIdx};
9467   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9468 
9469   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9470     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9471 
9472   // Move data into the byte array.
9473   SDValue Loads[4], LoadChains[4];
9474   for (unsigned i = 0; i < 4; ++i) {
9475     unsigned Offset = 4*i;
9476     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9477     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9478 
9479     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9480                            PtrInfo.getWithOffset(Offset));
9481     LoadChains[i] = Loads[i].getValue(1);
9482   }
9483 
9484   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9485 
9486   SDValue Stores[4];
9487   for (unsigned i = 0; i < 4; ++i) {
9488     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9489     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9490 
9491     Stores[i] = DAG.getTruncStore(
9492         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9493         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9494         SN->getAAInfo());
9495   }
9496 
9497   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9498 
9499   return StoreChain;
9500 }
9501 
9502 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9503   SDLoc dl(Op);
9504   if (Op.getValueType() == MVT::v4i32) {
9505     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9506 
9507     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9508     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9509 
9510     SDValue RHSSwap =   // = vrlw RHS, 16
9511       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9512 
9513     // Shrinkify inputs to v8i16.
9514     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9515     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9516     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9517 
9518     // Low parts multiplied together, generating 32-bit results (we ignore the
9519     // top parts).
9520     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9521                                         LHS, RHS, DAG, dl, MVT::v4i32);
9522 
9523     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9524                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9525     // Shift the high parts up 16 bits.
9526     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9527                               Neg16, DAG, dl);
9528     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9529   } else if (Op.getValueType() == MVT::v8i16) {
9530     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9531 
9532     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9533 
9534     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9535                             LHS, RHS, Zero, DAG, dl);
9536   } else if (Op.getValueType() == MVT::v16i8) {
9537     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9538     bool isLittleEndian = Subtarget.isLittleEndian();
9539 
9540     // Multiply the even 8-bit parts, producing 16-bit sums.
9541     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9542                                            LHS, RHS, DAG, dl, MVT::v8i16);
9543     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9544 
9545     // Multiply the odd 8-bit parts, producing 16-bit sums.
9546     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9547                                           LHS, RHS, DAG, dl, MVT::v8i16);
9548     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9549 
9550     // Merge the results together.  Because vmuleub and vmuloub are
9551     // instructions with a big-endian bias, we must reverse the
9552     // element numbering and reverse the meaning of "odd" and "even"
9553     // when generating little endian code.
9554     int Ops[16];
9555     for (unsigned i = 0; i != 8; ++i) {
9556       if (isLittleEndian) {
9557         Ops[i*2  ] = 2*i;
9558         Ops[i*2+1] = 2*i+16;
9559       } else {
9560         Ops[i*2  ] = 2*i+1;
9561         Ops[i*2+1] = 2*i+1+16;
9562       }
9563     }
9564     if (isLittleEndian)
9565       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9566     else
9567       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9568   } else {
9569     llvm_unreachable("Unknown mul to lower!");
9570   }
9571 }
9572 
9573 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9574 
9575   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9576 
9577   EVT VT = Op.getValueType();
9578   assert(VT.isVector() &&
9579          "Only set vector abs as custom, scalar abs shouldn't reach here!");
9580   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
9581           VT == MVT::v16i8) &&
9582          "Unexpected vector element type!");
9583   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
9584          "Current subtarget doesn't support smax v2i64!");
9585 
9586   // For vector abs, it can be lowered to:
9587   // abs x
9588   // ==>
9589   // y = -x
9590   // smax(x, y)
9591 
9592   SDLoc dl(Op);
9593   SDValue X = Op.getOperand(0);
9594   SDValue Zero = DAG.getConstant(0, dl, VT);
9595   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
9596 
9597   // SMAX patch https://reviews.llvm.org/D47332
9598   // hasn't landed yet, so use intrinsic first here.
9599   // TODO: Should use SMAX directly once SMAX patch landed
9600   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
9601   if (VT == MVT::v2i64)
9602     BifID = Intrinsic::ppc_altivec_vmaxsd;
9603   else if (VT == MVT::v8i16)
9604     BifID = Intrinsic::ppc_altivec_vmaxsh;
9605   else if (VT == MVT::v16i8)
9606     BifID = Intrinsic::ppc_altivec_vmaxsb;
9607 
9608   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
9609 }
9610 
9611 /// LowerOperation - Provide custom lowering hooks for some operations.
9612 ///
9613 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9614   switch (Op.getOpcode()) {
9615   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9616   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9617   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9618   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9619   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9620   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9621   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9622   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9623   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9624 
9625   // Variable argument lowering.
9626   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9627   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9628   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9629 
9630   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9631   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9632   case ISD::GET_DYNAMIC_AREA_OFFSET:
9633     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9634 
9635   // Exception handling lowering.
9636   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9637   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9638   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9639 
9640   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9641   case ISD::STORE:              return LowerSTORE(Op, DAG);
9642   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9643   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9644   case ISD::FP_TO_UINT:
9645   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9646   case ISD::UINT_TO_FP:
9647   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9648   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9649 
9650   // Lower 64-bit shifts.
9651   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9652   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9653   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9654 
9655   // Vector-related lowering.
9656   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9657   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9658   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9659   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9660   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9661   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9662   case ISD::MUL:                return LowerMUL(Op, DAG);
9663   case ISD::ABS:                return LowerABS(Op, DAG);
9664 
9665   // For counter-based loop handling.
9666   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9667 
9668   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9669 
9670   // Frame & Return address.
9671   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9672   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9673 
9674   case ISD::INTRINSIC_VOID:
9675     return LowerINTRINSIC_VOID(Op, DAG);
9676   case ISD::SREM:
9677   case ISD::UREM:
9678     return LowerREM(Op, DAG);
9679   case ISD::BSWAP:
9680     return LowerBSWAP(Op, DAG);
9681   case ISD::ATOMIC_CMP_SWAP:
9682     return LowerATOMIC_CMP_SWAP(Op, DAG);
9683   }
9684 }
9685 
9686 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9687                                            SmallVectorImpl<SDValue>&Results,
9688                                            SelectionDAG &DAG) const {
9689   SDLoc dl(N);
9690   switch (N->getOpcode()) {
9691   default:
9692     llvm_unreachable("Do not know how to custom type legalize this operation!");
9693   case ISD::READCYCLECOUNTER: {
9694     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9695     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9696 
9697     Results.push_back(RTB);
9698     Results.push_back(RTB.getValue(1));
9699     Results.push_back(RTB.getValue(2));
9700     break;
9701   }
9702   case ISD::INTRINSIC_W_CHAIN: {
9703     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9704         Intrinsic::ppc_is_decremented_ctr_nonzero)
9705       break;
9706 
9707     assert(N->getValueType(0) == MVT::i1 &&
9708            "Unexpected result type for CTR decrement intrinsic");
9709     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9710                                  N->getValueType(0));
9711     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9712     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9713                                  N->getOperand(1));
9714 
9715     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9716     Results.push_back(NewInt.getValue(1));
9717     break;
9718   }
9719   case ISD::VAARG: {
9720     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9721       return;
9722 
9723     EVT VT = N->getValueType(0);
9724 
9725     if (VT == MVT::i64) {
9726       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9727 
9728       Results.push_back(NewNode);
9729       Results.push_back(NewNode.getValue(1));
9730     }
9731     return;
9732   }
9733   case ISD::FP_TO_SINT:
9734   case ISD::FP_TO_UINT:
9735     // LowerFP_TO_INT() can only handle f32 and f64.
9736     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9737       return;
9738     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9739     return;
9740   case ISD::TRUNCATE: {
9741     EVT TrgVT = N->getValueType(0);
9742     if (TrgVT.isVector() &&
9743         isOperationCustom(N->getOpcode(), TrgVT) &&
9744         N->getOperand(0).getValueType().getSizeInBits() <= 128)
9745       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
9746     return;
9747   }
9748   case ISD::BITCAST:
9749     // Don't handle bitcast here.
9750     return;
9751   }
9752 }
9753 
9754 //===----------------------------------------------------------------------===//
9755 //  Other Lowering Code
9756 //===----------------------------------------------------------------------===//
9757 
9758 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9759   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9760   Function *Func = Intrinsic::getDeclaration(M, Id);
9761   return Builder.CreateCall(Func, {});
9762 }
9763 
9764 // The mappings for emitLeading/TrailingFence is taken from
9765 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9766 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9767                                                  Instruction *Inst,
9768                                                  AtomicOrdering Ord) const {
9769   if (Ord == AtomicOrdering::SequentiallyConsistent)
9770     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9771   if (isReleaseOrStronger(Ord))
9772     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9773   return nullptr;
9774 }
9775 
9776 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9777                                                   Instruction *Inst,
9778                                                   AtomicOrdering Ord) const {
9779   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9780     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9781     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9782     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9783     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9784       return Builder.CreateCall(
9785           Intrinsic::getDeclaration(
9786               Builder.GetInsertBlock()->getParent()->getParent(),
9787               Intrinsic::ppc_cfence, {Inst->getType()}),
9788           {Inst});
9789     // FIXME: Can use isync for rmw operation.
9790     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9791   }
9792   return nullptr;
9793 }
9794 
9795 MachineBasicBlock *
9796 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9797                                     unsigned AtomicSize,
9798                                     unsigned BinOpcode,
9799                                     unsigned CmpOpcode,
9800                                     unsigned CmpPred) const {
9801   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9802   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9803 
9804   auto LoadMnemonic = PPC::LDARX;
9805   auto StoreMnemonic = PPC::STDCX;
9806   switch (AtomicSize) {
9807   default:
9808     llvm_unreachable("Unexpected size of atomic entity");
9809   case 1:
9810     LoadMnemonic = PPC::LBARX;
9811     StoreMnemonic = PPC::STBCX;
9812     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9813     break;
9814   case 2:
9815     LoadMnemonic = PPC::LHARX;
9816     StoreMnemonic = PPC::STHCX;
9817     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9818     break;
9819   case 4:
9820     LoadMnemonic = PPC::LWARX;
9821     StoreMnemonic = PPC::STWCX;
9822     break;
9823   case 8:
9824     LoadMnemonic = PPC::LDARX;
9825     StoreMnemonic = PPC::STDCX;
9826     break;
9827   }
9828 
9829   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9830   MachineFunction *F = BB->getParent();
9831   MachineFunction::iterator It = ++BB->getIterator();
9832 
9833   unsigned dest = MI.getOperand(0).getReg();
9834   unsigned ptrA = MI.getOperand(1).getReg();
9835   unsigned ptrB = MI.getOperand(2).getReg();
9836   unsigned incr = MI.getOperand(3).getReg();
9837   DebugLoc dl = MI.getDebugLoc();
9838 
9839   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9840   MachineBasicBlock *loop2MBB =
9841     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9842   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9843   F->insert(It, loopMBB);
9844   if (CmpOpcode)
9845     F->insert(It, loop2MBB);
9846   F->insert(It, exitMBB);
9847   exitMBB->splice(exitMBB->begin(), BB,
9848                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9849   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9850 
9851   MachineRegisterInfo &RegInfo = F->getRegInfo();
9852   unsigned TmpReg = (!BinOpcode) ? incr :
9853     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9854                                            : &PPC::GPRCRegClass);
9855 
9856   //  thisMBB:
9857   //   ...
9858   //   fallthrough --> loopMBB
9859   BB->addSuccessor(loopMBB);
9860 
9861   //  loopMBB:
9862   //   l[wd]arx dest, ptr
9863   //   add r0, dest, incr
9864   //   st[wd]cx. r0, ptr
9865   //   bne- loopMBB
9866   //   fallthrough --> exitMBB
9867 
9868   // For max/min...
9869   //  loopMBB:
9870   //   l[wd]arx dest, ptr
9871   //   cmpl?[wd] incr, dest
9872   //   bgt exitMBB
9873   //  loop2MBB:
9874   //   st[wd]cx. dest, ptr
9875   //   bne- loopMBB
9876   //   fallthrough --> exitMBB
9877 
9878   BB = loopMBB;
9879   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9880     .addReg(ptrA).addReg(ptrB);
9881   if (BinOpcode)
9882     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9883   if (CmpOpcode) {
9884     // Signed comparisons of byte or halfword values must be sign-extended.
9885     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9886       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9887       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9888               ExtReg).addReg(dest);
9889       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9890         .addReg(incr).addReg(ExtReg);
9891     } else
9892       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9893         .addReg(incr).addReg(dest);
9894 
9895     BuildMI(BB, dl, TII->get(PPC::BCC))
9896       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9897     BB->addSuccessor(loop2MBB);
9898     BB->addSuccessor(exitMBB);
9899     BB = loop2MBB;
9900   }
9901   BuildMI(BB, dl, TII->get(StoreMnemonic))
9902     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9903   BuildMI(BB, dl, TII->get(PPC::BCC))
9904     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9905   BB->addSuccessor(loopMBB);
9906   BB->addSuccessor(exitMBB);
9907 
9908   //  exitMBB:
9909   //   ...
9910   BB = exitMBB;
9911   return BB;
9912 }
9913 
9914 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
9915     MachineInstr &MI, MachineBasicBlock *BB,
9916     bool is8bit, // operation
9917     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
9918   // If we support part-word atomic mnemonics, just use them
9919   if (Subtarget.hasPartwordAtomics())
9920     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
9921                             CmpPred);
9922 
9923   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9924   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9925   // In 64 bit mode we have to use 64 bits for addresses, even though the
9926   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9927   // registers without caring whether they're 32 or 64, but here we're
9928   // doing actual arithmetic on the addresses.
9929   bool is64bit = Subtarget.isPPC64();
9930   bool isLittleEndian = Subtarget.isLittleEndian();
9931   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9932 
9933   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9934   MachineFunction *F = BB->getParent();
9935   MachineFunction::iterator It = ++BB->getIterator();
9936 
9937   unsigned dest = MI.getOperand(0).getReg();
9938   unsigned ptrA = MI.getOperand(1).getReg();
9939   unsigned ptrB = MI.getOperand(2).getReg();
9940   unsigned incr = MI.getOperand(3).getReg();
9941   DebugLoc dl = MI.getDebugLoc();
9942 
9943   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9944   MachineBasicBlock *loop2MBB =
9945       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9946   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9947   F->insert(It, loopMBB);
9948   if (CmpOpcode)
9949     F->insert(It, loop2MBB);
9950   F->insert(It, exitMBB);
9951   exitMBB->splice(exitMBB->begin(), BB,
9952                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9953   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9954 
9955   MachineRegisterInfo &RegInfo = F->getRegInfo();
9956   const TargetRegisterClass *RC =
9957       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9958   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
9959 
9960   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9961   unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
9962   unsigned ShiftReg =
9963       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
9964   unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC);
9965   unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
9966   unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
9967   unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
9968   unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
9969   unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
9970   unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
9971   unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
9972   unsigned Ptr1Reg;
9973   unsigned TmpReg =
9974       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
9975 
9976   //  thisMBB:
9977   //   ...
9978   //   fallthrough --> loopMBB
9979   BB->addSuccessor(loopMBB);
9980 
9981   // The 4-byte load must be aligned, while a char or short may be
9982   // anywhere in the word.  Hence all this nasty bookkeeping code.
9983   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9984   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9985   //   xori shift, shift1, 24 [16]
9986   //   rlwinm ptr, ptr1, 0, 0, 29
9987   //   slw incr2, incr, shift
9988   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9989   //   slw mask, mask2, shift
9990   //  loopMBB:
9991   //   lwarx tmpDest, ptr
9992   //   add tmp, tmpDest, incr2
9993   //   andc tmp2, tmpDest, mask
9994   //   and tmp3, tmp, mask
9995   //   or tmp4, tmp3, tmp2
9996   //   stwcx. tmp4, ptr
9997   //   bne- loopMBB
9998   //   fallthrough --> exitMBB
9999   //   srw dest, tmpDest, shift
10000   if (ptrA != ZeroReg) {
10001     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10002     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10003         .addReg(ptrA)
10004         .addReg(ptrB);
10005   } else {
10006     Ptr1Reg = ptrB;
10007   }
10008   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10009   // mode.
10010   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10011       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10012       .addImm(3)
10013       .addImm(27)
10014       .addImm(is8bit ? 28 : 27);
10015   if (!isLittleEndian)
10016     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10017         .addReg(Shift1Reg)
10018         .addImm(is8bit ? 24 : 16);
10019   if (is64bit)
10020     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10021         .addReg(Ptr1Reg)
10022         .addImm(0)
10023         .addImm(61);
10024   else
10025     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10026         .addReg(Ptr1Reg)
10027         .addImm(0)
10028         .addImm(0)
10029         .addImm(29);
10030   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10031   if (is8bit)
10032     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10033   else {
10034     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10035     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10036         .addReg(Mask3Reg)
10037         .addImm(65535);
10038   }
10039   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10040       .addReg(Mask2Reg)
10041       .addReg(ShiftReg);
10042 
10043   BB = loopMBB;
10044   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10045       .addReg(ZeroReg)
10046       .addReg(PtrReg);
10047   if (BinOpcode)
10048     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10049         .addReg(Incr2Reg)
10050         .addReg(TmpDestReg);
10051   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10052       .addReg(TmpDestReg)
10053       .addReg(MaskReg);
10054   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10055   if (CmpOpcode) {
10056     // For unsigned comparisons, we can directly compare the shifted values.
10057     // For signed comparisons we shift and sign extend.
10058     unsigned SReg = RegInfo.createVirtualRegister(GPRC);
10059     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10060         .addReg(TmpDestReg)
10061         .addReg(MaskReg);
10062     unsigned ValueReg = SReg;
10063     unsigned CmpReg = Incr2Reg;
10064     if (CmpOpcode == PPC::CMPW) {
10065       ValueReg = RegInfo.createVirtualRegister(GPRC);
10066       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10067           .addReg(SReg)
10068           .addReg(ShiftReg);
10069       unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
10070       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10071           .addReg(ValueReg);
10072       ValueReg = ValueSReg;
10073       CmpReg = incr;
10074     }
10075     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10076         .addReg(CmpReg)
10077         .addReg(ValueReg);
10078     BuildMI(BB, dl, TII->get(PPC::BCC))
10079         .addImm(CmpPred)
10080         .addReg(PPC::CR0)
10081         .addMBB(exitMBB);
10082     BB->addSuccessor(loop2MBB);
10083     BB->addSuccessor(exitMBB);
10084     BB = loop2MBB;
10085   }
10086   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10087   BuildMI(BB, dl, TII->get(PPC::STWCX))
10088       .addReg(Tmp4Reg)
10089       .addReg(ZeroReg)
10090       .addReg(PtrReg);
10091   BuildMI(BB, dl, TII->get(PPC::BCC))
10092       .addImm(PPC::PRED_NE)
10093       .addReg(PPC::CR0)
10094       .addMBB(loopMBB);
10095   BB->addSuccessor(loopMBB);
10096   BB->addSuccessor(exitMBB);
10097 
10098   //  exitMBB:
10099   //   ...
10100   BB = exitMBB;
10101   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10102       .addReg(TmpDestReg)
10103       .addReg(ShiftReg);
10104   return BB;
10105 }
10106 
10107 llvm::MachineBasicBlock *
10108 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10109                                     MachineBasicBlock *MBB) const {
10110   DebugLoc DL = MI.getDebugLoc();
10111   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10112   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10113 
10114   MachineFunction *MF = MBB->getParent();
10115   MachineRegisterInfo &MRI = MF->getRegInfo();
10116 
10117   const BasicBlock *BB = MBB->getBasicBlock();
10118   MachineFunction::iterator I = ++MBB->getIterator();
10119 
10120   unsigned DstReg = MI.getOperand(0).getReg();
10121   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10122   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10123   unsigned mainDstReg = MRI.createVirtualRegister(RC);
10124   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10125 
10126   MVT PVT = getPointerTy(MF->getDataLayout());
10127   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10128          "Invalid Pointer Size!");
10129   // For v = setjmp(buf), we generate
10130   //
10131   // thisMBB:
10132   //  SjLjSetup mainMBB
10133   //  bl mainMBB
10134   //  v_restore = 1
10135   //  b sinkMBB
10136   //
10137   // mainMBB:
10138   //  buf[LabelOffset] = LR
10139   //  v_main = 0
10140   //
10141   // sinkMBB:
10142   //  v = phi(main, restore)
10143   //
10144 
10145   MachineBasicBlock *thisMBB = MBB;
10146   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10147   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10148   MF->insert(I, mainMBB);
10149   MF->insert(I, sinkMBB);
10150 
10151   MachineInstrBuilder MIB;
10152 
10153   // Transfer the remainder of BB and its successor edges to sinkMBB.
10154   sinkMBB->splice(sinkMBB->begin(), MBB,
10155                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10156   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10157 
10158   // Note that the structure of the jmp_buf used here is not compatible
10159   // with that used by libc, and is not designed to be. Specifically, it
10160   // stores only those 'reserved' registers that LLVM does not otherwise
10161   // understand how to spill. Also, by convention, by the time this
10162   // intrinsic is called, Clang has already stored the frame address in the
10163   // first slot of the buffer and stack address in the third. Following the
10164   // X86 target code, we'll store the jump address in the second slot. We also
10165   // need to save the TOC pointer (R2) to handle jumps between shared
10166   // libraries, and that will be stored in the fourth slot. The thread
10167   // identifier (R13) is not affected.
10168 
10169   // thisMBB:
10170   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10171   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10172   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10173 
10174   // Prepare IP either in reg.
10175   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10176   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10177   unsigned BufReg = MI.getOperand(1).getReg();
10178 
10179   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10180     setUsesTOCBasePtr(*MBB->getParent());
10181     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10182               .addReg(PPC::X2)
10183               .addImm(TOCOffset)
10184               .addReg(BufReg)
10185               .cloneMemRefs(MI);
10186   }
10187 
10188   // Naked functions never have a base pointer, and so we use r1. For all
10189   // other functions, this decision must be delayed until during PEI.
10190   unsigned BaseReg;
10191   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10192     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10193   else
10194     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10195 
10196   MIB = BuildMI(*thisMBB, MI, DL,
10197                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10198             .addReg(BaseReg)
10199             .addImm(BPOffset)
10200             .addReg(BufReg)
10201             .cloneMemRefs(MI);
10202 
10203   // Setup
10204   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10205   MIB.addRegMask(TRI->getNoPreservedMask());
10206 
10207   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10208 
10209   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10210           .addMBB(mainMBB);
10211   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10212 
10213   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10214   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10215 
10216   // mainMBB:
10217   //  mainDstReg = 0
10218   MIB =
10219       BuildMI(mainMBB, DL,
10220               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10221 
10222   // Store IP
10223   if (Subtarget.isPPC64()) {
10224     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10225             .addReg(LabelReg)
10226             .addImm(LabelOffset)
10227             .addReg(BufReg);
10228   } else {
10229     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10230             .addReg(LabelReg)
10231             .addImm(LabelOffset)
10232             .addReg(BufReg);
10233   }
10234   MIB.cloneMemRefs(MI);
10235 
10236   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10237   mainMBB->addSuccessor(sinkMBB);
10238 
10239   // sinkMBB:
10240   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10241           TII->get(PPC::PHI), DstReg)
10242     .addReg(mainDstReg).addMBB(mainMBB)
10243     .addReg(restoreDstReg).addMBB(thisMBB);
10244 
10245   MI.eraseFromParent();
10246   return sinkMBB;
10247 }
10248 
10249 MachineBasicBlock *
10250 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10251                                      MachineBasicBlock *MBB) const {
10252   DebugLoc DL = MI.getDebugLoc();
10253   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10254 
10255   MachineFunction *MF = MBB->getParent();
10256   MachineRegisterInfo &MRI = MF->getRegInfo();
10257 
10258   MVT PVT = getPointerTy(MF->getDataLayout());
10259   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10260          "Invalid Pointer Size!");
10261 
10262   const TargetRegisterClass *RC =
10263     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10264   unsigned Tmp = MRI.createVirtualRegister(RC);
10265   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10266   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10267   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10268   unsigned BP =
10269       (PVT == MVT::i64)
10270           ? PPC::X30
10271           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10272                                                               : PPC::R30);
10273 
10274   MachineInstrBuilder MIB;
10275 
10276   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10277   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10278   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10279   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10280 
10281   unsigned BufReg = MI.getOperand(0).getReg();
10282 
10283   // Reload FP (the jumped-to function may not have had a
10284   // frame pointer, and if so, then its r31 will be restored
10285   // as necessary).
10286   if (PVT == MVT::i64) {
10287     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10288             .addImm(0)
10289             .addReg(BufReg);
10290   } else {
10291     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10292             .addImm(0)
10293             .addReg(BufReg);
10294   }
10295   MIB.cloneMemRefs(MI);
10296 
10297   // Reload IP
10298   if (PVT == MVT::i64) {
10299     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10300             .addImm(LabelOffset)
10301             .addReg(BufReg);
10302   } else {
10303     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10304             .addImm(LabelOffset)
10305             .addReg(BufReg);
10306   }
10307   MIB.cloneMemRefs(MI);
10308 
10309   // Reload SP
10310   if (PVT == MVT::i64) {
10311     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10312             .addImm(SPOffset)
10313             .addReg(BufReg);
10314   } else {
10315     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10316             .addImm(SPOffset)
10317             .addReg(BufReg);
10318   }
10319   MIB.cloneMemRefs(MI);
10320 
10321   // Reload BP
10322   if (PVT == MVT::i64) {
10323     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10324             .addImm(BPOffset)
10325             .addReg(BufReg);
10326   } else {
10327     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10328             .addImm(BPOffset)
10329             .addReg(BufReg);
10330   }
10331   MIB.cloneMemRefs(MI);
10332 
10333   // Reload TOC
10334   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10335     setUsesTOCBasePtr(*MBB->getParent());
10336     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10337               .addImm(TOCOffset)
10338               .addReg(BufReg)
10339               .cloneMemRefs(MI);
10340   }
10341 
10342   // Jump
10343   BuildMI(*MBB, MI, DL,
10344           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10345   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10346 
10347   MI.eraseFromParent();
10348   return MBB;
10349 }
10350 
10351 MachineBasicBlock *
10352 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10353                                                MachineBasicBlock *BB) const {
10354   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10355       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10356     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10357         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10358       // Call lowering should have added an r2 operand to indicate a dependence
10359       // on the TOC base pointer value. It can't however, because there is no
10360       // way to mark the dependence as implicit there, and so the stackmap code
10361       // will confuse it with a regular operand. Instead, add the dependence
10362       // here.
10363       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10364     }
10365 
10366     return emitPatchPoint(MI, BB);
10367   }
10368 
10369   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10370       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10371     return emitEHSjLjSetJmp(MI, BB);
10372   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10373              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10374     return emitEHSjLjLongJmp(MI, BB);
10375   }
10376 
10377   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10378 
10379   // To "insert" these instructions we actually have to insert their
10380   // control-flow patterns.
10381   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10382   MachineFunction::iterator It = ++BB->getIterator();
10383 
10384   MachineFunction *F = BB->getParent();
10385 
10386   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10387       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10388       MI.getOpcode() == PPC::SELECT_I8) {
10389     SmallVector<MachineOperand, 2> Cond;
10390     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10391         MI.getOpcode() == PPC::SELECT_CC_I8)
10392       Cond.push_back(MI.getOperand(4));
10393     else
10394       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10395     Cond.push_back(MI.getOperand(1));
10396 
10397     DebugLoc dl = MI.getDebugLoc();
10398     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10399                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10400   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10401              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10402              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10403              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10404              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10405              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10406              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10407              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10408              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10409              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10410              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10411              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10412              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10413              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10414              MI.getOpcode() == PPC::SELECT_I4 ||
10415              MI.getOpcode() == PPC::SELECT_I8 ||
10416              MI.getOpcode() == PPC::SELECT_F4 ||
10417              MI.getOpcode() == PPC::SELECT_F8 ||
10418              MI.getOpcode() == PPC::SELECT_F16 ||
10419              MI.getOpcode() == PPC::SELECT_QFRC ||
10420              MI.getOpcode() == PPC::SELECT_QSRC ||
10421              MI.getOpcode() == PPC::SELECT_QBRC ||
10422              MI.getOpcode() == PPC::SELECT_SPE ||
10423              MI.getOpcode() == PPC::SELECT_SPE4 ||
10424              MI.getOpcode() == PPC::SELECT_VRRC ||
10425              MI.getOpcode() == PPC::SELECT_VSFRC ||
10426              MI.getOpcode() == PPC::SELECT_VSSRC ||
10427              MI.getOpcode() == PPC::SELECT_VSRC) {
10428     // The incoming instruction knows the destination vreg to set, the
10429     // condition code register to branch on, the true/false values to
10430     // select between, and a branch opcode to use.
10431 
10432     //  thisMBB:
10433     //  ...
10434     //   TrueVal = ...
10435     //   cmpTY ccX, r1, r2
10436     //   bCC copy1MBB
10437     //   fallthrough --> copy0MBB
10438     MachineBasicBlock *thisMBB = BB;
10439     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10440     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10441     DebugLoc dl = MI.getDebugLoc();
10442     F->insert(It, copy0MBB);
10443     F->insert(It, sinkMBB);
10444 
10445     // Transfer the remainder of BB and its successor edges to sinkMBB.
10446     sinkMBB->splice(sinkMBB->begin(), BB,
10447                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10448     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10449 
10450     // Next, add the true and fallthrough blocks as its successors.
10451     BB->addSuccessor(copy0MBB);
10452     BB->addSuccessor(sinkMBB);
10453 
10454     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10455         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10456         MI.getOpcode() == PPC::SELECT_F16 ||
10457         MI.getOpcode() == PPC::SELECT_SPE4 ||
10458         MI.getOpcode() == PPC::SELECT_SPE ||
10459         MI.getOpcode() == PPC::SELECT_QFRC ||
10460         MI.getOpcode() == PPC::SELECT_QSRC ||
10461         MI.getOpcode() == PPC::SELECT_QBRC ||
10462         MI.getOpcode() == PPC::SELECT_VRRC ||
10463         MI.getOpcode() == PPC::SELECT_VSFRC ||
10464         MI.getOpcode() == PPC::SELECT_VSSRC ||
10465         MI.getOpcode() == PPC::SELECT_VSRC) {
10466       BuildMI(BB, dl, TII->get(PPC::BC))
10467           .addReg(MI.getOperand(1).getReg())
10468           .addMBB(sinkMBB);
10469     } else {
10470       unsigned SelectPred = MI.getOperand(4).getImm();
10471       BuildMI(BB, dl, TII->get(PPC::BCC))
10472           .addImm(SelectPred)
10473           .addReg(MI.getOperand(1).getReg())
10474           .addMBB(sinkMBB);
10475     }
10476 
10477     //  copy0MBB:
10478     //   %FalseValue = ...
10479     //   # fallthrough to sinkMBB
10480     BB = copy0MBB;
10481 
10482     // Update machine-CFG edges
10483     BB->addSuccessor(sinkMBB);
10484 
10485     //  sinkMBB:
10486     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10487     //  ...
10488     BB = sinkMBB;
10489     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10490         .addReg(MI.getOperand(3).getReg())
10491         .addMBB(copy0MBB)
10492         .addReg(MI.getOperand(2).getReg())
10493         .addMBB(thisMBB);
10494   } else if (MI.getOpcode() == PPC::ReadTB) {
10495     // To read the 64-bit time-base register on a 32-bit target, we read the
10496     // two halves. Should the counter have wrapped while it was being read, we
10497     // need to try again.
10498     // ...
10499     // readLoop:
10500     // mfspr Rx,TBU # load from TBU
10501     // mfspr Ry,TB  # load from TB
10502     // mfspr Rz,TBU # load from TBU
10503     // cmpw crX,Rx,Rz # check if 'old'='new'
10504     // bne readLoop   # branch if they're not equal
10505     // ...
10506 
10507     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10508     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10509     DebugLoc dl = MI.getDebugLoc();
10510     F->insert(It, readMBB);
10511     F->insert(It, sinkMBB);
10512 
10513     // Transfer the remainder of BB and its successor edges to sinkMBB.
10514     sinkMBB->splice(sinkMBB->begin(), BB,
10515                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10516     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10517 
10518     BB->addSuccessor(readMBB);
10519     BB = readMBB;
10520 
10521     MachineRegisterInfo &RegInfo = F->getRegInfo();
10522     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10523     unsigned LoReg = MI.getOperand(0).getReg();
10524     unsigned HiReg = MI.getOperand(1).getReg();
10525 
10526     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10527     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10528     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10529 
10530     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10531 
10532     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10533         .addReg(HiReg)
10534         .addReg(ReadAgainReg);
10535     BuildMI(BB, dl, TII->get(PPC::BCC))
10536         .addImm(PPC::PRED_NE)
10537         .addReg(CmpReg)
10538         .addMBB(readMBB);
10539 
10540     BB->addSuccessor(readMBB);
10541     BB->addSuccessor(sinkMBB);
10542   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10543     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10544   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10545     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10546   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10547     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10548   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10549     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10550 
10551   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10552     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10553   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10554     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10555   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10556     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10557   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10558     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10559 
10560   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10561     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10562   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10563     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10564   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10565     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10566   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10567     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10568 
10569   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10570     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10571   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10572     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10573   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10574     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10575   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10576     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10577 
10578   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10579     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10580   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10581     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10582   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10583     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10584   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10585     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10586 
10587   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10588     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10589   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10590     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10591   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10592     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10593   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10594     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10595 
10596   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10597     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10598   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10599     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10600   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10601     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10602   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10603     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10604 
10605   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10606     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10607   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10608     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10609   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10610     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10611   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10612     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10613 
10614   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10615     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10616   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10617     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10618   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10619     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10620   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10621     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10622 
10623   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10624     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10625   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10626     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10627   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10628     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10629   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10630     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10631 
10632   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10633     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10634   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10635     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10636   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10637     BB = EmitAtomicBinary(MI, BB, 4, 0);
10638   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10639     BB = EmitAtomicBinary(MI, BB, 8, 0);
10640   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10641            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10642            (Subtarget.hasPartwordAtomics() &&
10643             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10644            (Subtarget.hasPartwordAtomics() &&
10645             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10646     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10647 
10648     auto LoadMnemonic = PPC::LDARX;
10649     auto StoreMnemonic = PPC::STDCX;
10650     switch (MI.getOpcode()) {
10651     default:
10652       llvm_unreachable("Compare and swap of unknown size");
10653     case PPC::ATOMIC_CMP_SWAP_I8:
10654       LoadMnemonic = PPC::LBARX;
10655       StoreMnemonic = PPC::STBCX;
10656       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10657       break;
10658     case PPC::ATOMIC_CMP_SWAP_I16:
10659       LoadMnemonic = PPC::LHARX;
10660       StoreMnemonic = PPC::STHCX;
10661       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10662       break;
10663     case PPC::ATOMIC_CMP_SWAP_I32:
10664       LoadMnemonic = PPC::LWARX;
10665       StoreMnemonic = PPC::STWCX;
10666       break;
10667     case PPC::ATOMIC_CMP_SWAP_I64:
10668       LoadMnemonic = PPC::LDARX;
10669       StoreMnemonic = PPC::STDCX;
10670       break;
10671     }
10672     unsigned dest = MI.getOperand(0).getReg();
10673     unsigned ptrA = MI.getOperand(1).getReg();
10674     unsigned ptrB = MI.getOperand(2).getReg();
10675     unsigned oldval = MI.getOperand(3).getReg();
10676     unsigned newval = MI.getOperand(4).getReg();
10677     DebugLoc dl = MI.getDebugLoc();
10678 
10679     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10680     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10681     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10682     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10683     F->insert(It, loop1MBB);
10684     F->insert(It, loop2MBB);
10685     F->insert(It, midMBB);
10686     F->insert(It, exitMBB);
10687     exitMBB->splice(exitMBB->begin(), BB,
10688                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10689     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10690 
10691     //  thisMBB:
10692     //   ...
10693     //   fallthrough --> loopMBB
10694     BB->addSuccessor(loop1MBB);
10695 
10696     // loop1MBB:
10697     //   l[bhwd]arx dest, ptr
10698     //   cmp[wd] dest, oldval
10699     //   bne- midMBB
10700     // loop2MBB:
10701     //   st[bhwd]cx. newval, ptr
10702     //   bne- loopMBB
10703     //   b exitBB
10704     // midMBB:
10705     //   st[bhwd]cx. dest, ptr
10706     // exitBB:
10707     BB = loop1MBB;
10708     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
10709     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10710         .addReg(oldval)
10711         .addReg(dest);
10712     BuildMI(BB, dl, TII->get(PPC::BCC))
10713         .addImm(PPC::PRED_NE)
10714         .addReg(PPC::CR0)
10715         .addMBB(midMBB);
10716     BB->addSuccessor(loop2MBB);
10717     BB->addSuccessor(midMBB);
10718 
10719     BB = loop2MBB;
10720     BuildMI(BB, dl, TII->get(StoreMnemonic))
10721         .addReg(newval)
10722         .addReg(ptrA)
10723         .addReg(ptrB);
10724     BuildMI(BB, dl, TII->get(PPC::BCC))
10725         .addImm(PPC::PRED_NE)
10726         .addReg(PPC::CR0)
10727         .addMBB(loop1MBB);
10728     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10729     BB->addSuccessor(loop1MBB);
10730     BB->addSuccessor(exitMBB);
10731 
10732     BB = midMBB;
10733     BuildMI(BB, dl, TII->get(StoreMnemonic))
10734         .addReg(dest)
10735         .addReg(ptrA)
10736         .addReg(ptrB);
10737     BB->addSuccessor(exitMBB);
10738 
10739     //  exitMBB:
10740     //   ...
10741     BB = exitMBB;
10742   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10743              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10744     // We must use 64-bit registers for addresses when targeting 64-bit,
10745     // since we're actually doing arithmetic on them.  Other registers
10746     // can be 32-bit.
10747     bool is64bit = Subtarget.isPPC64();
10748     bool isLittleEndian = Subtarget.isLittleEndian();
10749     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10750 
10751     unsigned dest = MI.getOperand(0).getReg();
10752     unsigned ptrA = MI.getOperand(1).getReg();
10753     unsigned ptrB = MI.getOperand(2).getReg();
10754     unsigned oldval = MI.getOperand(3).getReg();
10755     unsigned newval = MI.getOperand(4).getReg();
10756     DebugLoc dl = MI.getDebugLoc();
10757 
10758     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10759     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10760     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10761     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10762     F->insert(It, loop1MBB);
10763     F->insert(It, loop2MBB);
10764     F->insert(It, midMBB);
10765     F->insert(It, exitMBB);
10766     exitMBB->splice(exitMBB->begin(), BB,
10767                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10768     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10769 
10770     MachineRegisterInfo &RegInfo = F->getRegInfo();
10771     const TargetRegisterClass *RC =
10772         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10773     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10774 
10775     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10776     unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10777     unsigned ShiftReg =
10778         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10779     unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
10780     unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
10781     unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
10782     unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
10783     unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
10784     unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10785     unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10786     unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10787     unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10788     unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10789     unsigned Ptr1Reg;
10790     unsigned TmpReg = RegInfo.createVirtualRegister(GPRC);
10791     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10792     //  thisMBB:
10793     //   ...
10794     //   fallthrough --> loopMBB
10795     BB->addSuccessor(loop1MBB);
10796 
10797     // The 4-byte load must be aligned, while a char or short may be
10798     // anywhere in the word.  Hence all this nasty bookkeeping code.
10799     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10800     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10801     //   xori shift, shift1, 24 [16]
10802     //   rlwinm ptr, ptr1, 0, 0, 29
10803     //   slw newval2, newval, shift
10804     //   slw oldval2, oldval,shift
10805     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10806     //   slw mask, mask2, shift
10807     //   and newval3, newval2, mask
10808     //   and oldval3, oldval2, mask
10809     // loop1MBB:
10810     //   lwarx tmpDest, ptr
10811     //   and tmp, tmpDest, mask
10812     //   cmpw tmp, oldval3
10813     //   bne- midMBB
10814     // loop2MBB:
10815     //   andc tmp2, tmpDest, mask
10816     //   or tmp4, tmp2, newval3
10817     //   stwcx. tmp4, ptr
10818     //   bne- loop1MBB
10819     //   b exitBB
10820     // midMBB:
10821     //   stwcx. tmpDest, ptr
10822     // exitBB:
10823     //   srw dest, tmpDest, shift
10824     if (ptrA != ZeroReg) {
10825       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10826       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10827           .addReg(ptrA)
10828           .addReg(ptrB);
10829     } else {
10830       Ptr1Reg = ptrB;
10831     }
10832 
10833     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10834     // mode.
10835     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10836         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10837         .addImm(3)
10838         .addImm(27)
10839         .addImm(is8bit ? 28 : 27);
10840     if (!isLittleEndian)
10841       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10842           .addReg(Shift1Reg)
10843           .addImm(is8bit ? 24 : 16);
10844     if (is64bit)
10845       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10846           .addReg(Ptr1Reg)
10847           .addImm(0)
10848           .addImm(61);
10849     else
10850       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10851           .addReg(Ptr1Reg)
10852           .addImm(0)
10853           .addImm(0)
10854           .addImm(29);
10855     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10856         .addReg(newval)
10857         .addReg(ShiftReg);
10858     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10859         .addReg(oldval)
10860         .addReg(ShiftReg);
10861     if (is8bit)
10862       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10863     else {
10864       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10865       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10866           .addReg(Mask3Reg)
10867           .addImm(65535);
10868     }
10869     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10870         .addReg(Mask2Reg)
10871         .addReg(ShiftReg);
10872     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10873         .addReg(NewVal2Reg)
10874         .addReg(MaskReg);
10875     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10876         .addReg(OldVal2Reg)
10877         .addReg(MaskReg);
10878 
10879     BB = loop1MBB;
10880     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10881         .addReg(ZeroReg)
10882         .addReg(PtrReg);
10883     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
10884         .addReg(TmpDestReg)
10885         .addReg(MaskReg);
10886     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10887         .addReg(TmpReg)
10888         .addReg(OldVal3Reg);
10889     BuildMI(BB, dl, TII->get(PPC::BCC))
10890         .addImm(PPC::PRED_NE)
10891         .addReg(PPC::CR0)
10892         .addMBB(midMBB);
10893     BB->addSuccessor(loop2MBB);
10894     BB->addSuccessor(midMBB);
10895 
10896     BB = loop2MBB;
10897     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10898         .addReg(TmpDestReg)
10899         .addReg(MaskReg);
10900     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
10901         .addReg(Tmp2Reg)
10902         .addReg(NewVal3Reg);
10903     BuildMI(BB, dl, TII->get(PPC::STWCX))
10904         .addReg(Tmp4Reg)
10905         .addReg(ZeroReg)
10906         .addReg(PtrReg);
10907     BuildMI(BB, dl, TII->get(PPC::BCC))
10908         .addImm(PPC::PRED_NE)
10909         .addReg(PPC::CR0)
10910         .addMBB(loop1MBB);
10911     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10912     BB->addSuccessor(loop1MBB);
10913     BB->addSuccessor(exitMBB);
10914 
10915     BB = midMBB;
10916     BuildMI(BB, dl, TII->get(PPC::STWCX))
10917         .addReg(TmpDestReg)
10918         .addReg(ZeroReg)
10919         .addReg(PtrReg);
10920     BB->addSuccessor(exitMBB);
10921 
10922     //  exitMBB:
10923     //   ...
10924     BB = exitMBB;
10925     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10926         .addReg(TmpReg)
10927         .addReg(ShiftReg);
10928   } else if (MI.getOpcode() == PPC::FADDrtz) {
10929     // This pseudo performs an FADD with rounding mode temporarily forced
10930     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10931     // is not modeled at the SelectionDAG level.
10932     unsigned Dest = MI.getOperand(0).getReg();
10933     unsigned Src1 = MI.getOperand(1).getReg();
10934     unsigned Src2 = MI.getOperand(2).getReg();
10935     DebugLoc dl = MI.getDebugLoc();
10936 
10937     MachineRegisterInfo &RegInfo = F->getRegInfo();
10938     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10939 
10940     // Save FPSCR value.
10941     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10942 
10943     // Set rounding mode to round-to-zero.
10944     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10945     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10946 
10947     // Perform addition.
10948     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10949 
10950     // Restore FPSCR value.
10951     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10952   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10953              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10954              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10955              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10956     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10957                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10958                           ? PPC::ANDIo8
10959                           : PPC::ANDIo;
10960     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10961                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10962 
10963     MachineRegisterInfo &RegInfo = F->getRegInfo();
10964     unsigned Dest = RegInfo.createVirtualRegister(
10965         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
10966 
10967     DebugLoc dl = MI.getDebugLoc();
10968     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10969         .addReg(MI.getOperand(1).getReg())
10970         .addImm(1);
10971     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10972             MI.getOperand(0).getReg())
10973         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10974   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10975     DebugLoc Dl = MI.getDebugLoc();
10976     MachineRegisterInfo &RegInfo = F->getRegInfo();
10977     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10978     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10979     return BB;
10980   } else if (MI.getOpcode() == PPC::SETRNDi) {
10981     DebugLoc dl = MI.getDebugLoc();
10982     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
10983 
10984     // Save FPSCR value.
10985     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
10986 
10987     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
10988     // the following settings:
10989     //   00 Round to nearest
10990     //   01 Round to 0
10991     //   10 Round to +inf
10992     //   11 Round to -inf
10993 
10994     // When the operand is immediate, using the two least significant bits of
10995     // the immediate to set the bits 62:63 of FPSCR.
10996     unsigned Mode = MI.getOperand(1).getImm();
10997     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
10998       .addImm(31);
10999 
11000     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11001       .addImm(30);
11002   } else if (MI.getOpcode() == PPC::SETRND) {
11003     DebugLoc dl = MI.getDebugLoc();
11004 
11005     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11006     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11007     // If the target doesn't have DirectMove, we should use stack to do the
11008     // conversion, because the target doesn't have the instructions like mtvsrd
11009     // or mfvsrd to do this conversion directly.
11010     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11011       if (Subtarget.hasDirectMove()) {
11012         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11013           .addReg(SrcReg);
11014       } else {
11015         // Use stack to do the register copy.
11016         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11017         MachineRegisterInfo &RegInfo = F->getRegInfo();
11018         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11019         if (RC == &PPC::F8RCRegClass) {
11020           // Copy register from F8RCRegClass to G8RCRegclass.
11021           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11022                  "Unsupported RegClass.");
11023 
11024           StoreOp = PPC::STFD;
11025           LoadOp = PPC::LD;
11026         } else {
11027           // Copy register from G8RCRegClass to F8RCRegclass.
11028           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11029                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11030                  "Unsupported RegClass.");
11031         }
11032 
11033         MachineFrameInfo &MFI = F->getFrameInfo();
11034         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11035 
11036         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11037           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11038           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11039           MFI.getObjectAlignment(FrameIdx));
11040 
11041         // Store the SrcReg into the stack.
11042         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11043           .addReg(SrcReg)
11044           .addImm(0)
11045           .addFrameIndex(FrameIdx)
11046           .addMemOperand(MMOStore);
11047 
11048         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11049           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11050           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11051           MFI.getObjectAlignment(FrameIdx));
11052 
11053         // Load from the stack where SrcReg is stored, and save to DestReg,
11054         // so we have done the RegClass conversion from RegClass::SrcReg to
11055         // RegClass::DestReg.
11056         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11057           .addImm(0)
11058           .addFrameIndex(FrameIdx)
11059           .addMemOperand(MMOLoad);
11060       }
11061     };
11062 
11063     unsigned OldFPSCRReg = MI.getOperand(0).getReg();
11064 
11065     // Save FPSCR value.
11066     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11067 
11068     // When the operand is gprc register, use two least significant bits of the
11069     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11070     //
11071     // copy OldFPSCRTmpReg, OldFPSCRReg
11072     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11073     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11074     // copy NewFPSCRReg, NewFPSCRTmpReg
11075     // mtfsf 255, NewFPSCRReg
11076     MachineOperand SrcOp = MI.getOperand(1);
11077     MachineRegisterInfo &RegInfo = F->getRegInfo();
11078     unsigned OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11079 
11080     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11081 
11082     unsigned ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11083     unsigned ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11084 
11085     // The first operand of INSERT_SUBREG should be a register which has
11086     // subregisters, we only care about its RegClass, so we should use an
11087     // IMPLICIT_DEF register.
11088     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11089     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11090       .addReg(ImDefReg)
11091       .add(SrcOp)
11092       .addImm(1);
11093 
11094     unsigned NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11095     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11096       .addReg(OldFPSCRTmpReg)
11097       .addReg(ExtSrcReg)
11098       .addImm(0)
11099       .addImm(62);
11100 
11101     unsigned NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11102     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11103 
11104     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11105     // bits of FPSCR.
11106     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11107       .addImm(255)
11108       .addReg(NewFPSCRReg)
11109       .addImm(0)
11110       .addImm(0);
11111   } else {
11112     llvm_unreachable("Unexpected instr type to insert");
11113   }
11114 
11115   MI.eraseFromParent(); // The pseudo instruction is gone now.
11116   return BB;
11117 }
11118 
11119 //===----------------------------------------------------------------------===//
11120 // Target Optimization Hooks
11121 //===----------------------------------------------------------------------===//
11122 
11123 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11124   // For the estimates, convergence is quadratic, so we essentially double the
11125   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11126   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11127   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11128   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11129   if (VT.getScalarType() == MVT::f64)
11130     RefinementSteps++;
11131   return RefinementSteps;
11132 }
11133 
11134 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11135                                            int Enabled, int &RefinementSteps,
11136                                            bool &UseOneConstNR,
11137                                            bool Reciprocal) const {
11138   EVT VT = Operand.getValueType();
11139   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11140       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11141       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11142       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11143       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11144       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11145     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11146       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11147 
11148     // The Newton-Raphson computation with a single constant does not provide
11149     // enough accuracy on some CPUs.
11150     UseOneConstNR = !Subtarget.needsTwoConstNR();
11151     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11152   }
11153   return SDValue();
11154 }
11155 
11156 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11157                                             int Enabled,
11158                                             int &RefinementSteps) const {
11159   EVT VT = Operand.getValueType();
11160   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11161       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11162       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11163       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11164       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11165       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11166     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11167       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11168     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11169   }
11170   return SDValue();
11171 }
11172 
11173 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11174   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11175   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11176   // enabled for division), this functionality is redundant with the default
11177   // combiner logic (once the division -> reciprocal/multiply transformation
11178   // has taken place). As a result, this matters more for older cores than for
11179   // newer ones.
11180 
11181   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11182   // reciprocal if there are two or more FDIVs (for embedded cores with only
11183   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11184   switch (Subtarget.getDarwinDirective()) {
11185   default:
11186     return 3;
11187   case PPC::DIR_440:
11188   case PPC::DIR_A2:
11189   case PPC::DIR_E500:
11190   case PPC::DIR_E500mc:
11191   case PPC::DIR_E5500:
11192     return 2;
11193   }
11194 }
11195 
11196 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11197 // collapsed, and so we need to look through chains of them.
11198 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11199                                      int64_t& Offset, SelectionDAG &DAG) {
11200   if (DAG.isBaseWithConstantOffset(Loc)) {
11201     Base = Loc.getOperand(0);
11202     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11203 
11204     // The base might itself be a base plus an offset, and if so, accumulate
11205     // that as well.
11206     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11207   }
11208 }
11209 
11210 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11211                             unsigned Bytes, int Dist,
11212                             SelectionDAG &DAG) {
11213   if (VT.getSizeInBits() / 8 != Bytes)
11214     return false;
11215 
11216   SDValue BaseLoc = Base->getBasePtr();
11217   if (Loc.getOpcode() == ISD::FrameIndex) {
11218     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11219       return false;
11220     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11221     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11222     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11223     int FS  = MFI.getObjectSize(FI);
11224     int BFS = MFI.getObjectSize(BFI);
11225     if (FS != BFS || FS != (int)Bytes) return false;
11226     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11227   }
11228 
11229   SDValue Base1 = Loc, Base2 = BaseLoc;
11230   int64_t Offset1 = 0, Offset2 = 0;
11231   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11232   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11233   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11234     return true;
11235 
11236   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11237   const GlobalValue *GV1 = nullptr;
11238   const GlobalValue *GV2 = nullptr;
11239   Offset1 = 0;
11240   Offset2 = 0;
11241   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11242   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11243   if (isGA1 && isGA2 && GV1 == GV2)
11244     return Offset1 == (Offset2 + Dist*Bytes);
11245   return false;
11246 }
11247 
11248 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11249 // not enforce equality of the chain operands.
11250 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11251                             unsigned Bytes, int Dist,
11252                             SelectionDAG &DAG) {
11253   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11254     EVT VT = LS->getMemoryVT();
11255     SDValue Loc = LS->getBasePtr();
11256     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11257   }
11258 
11259   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11260     EVT VT;
11261     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11262     default: return false;
11263     case Intrinsic::ppc_qpx_qvlfd:
11264     case Intrinsic::ppc_qpx_qvlfda:
11265       VT = MVT::v4f64;
11266       break;
11267     case Intrinsic::ppc_qpx_qvlfs:
11268     case Intrinsic::ppc_qpx_qvlfsa:
11269       VT = MVT::v4f32;
11270       break;
11271     case Intrinsic::ppc_qpx_qvlfcd:
11272     case Intrinsic::ppc_qpx_qvlfcda:
11273       VT = MVT::v2f64;
11274       break;
11275     case Intrinsic::ppc_qpx_qvlfcs:
11276     case Intrinsic::ppc_qpx_qvlfcsa:
11277       VT = MVT::v2f32;
11278       break;
11279     case Intrinsic::ppc_qpx_qvlfiwa:
11280     case Intrinsic::ppc_qpx_qvlfiwz:
11281     case Intrinsic::ppc_altivec_lvx:
11282     case Intrinsic::ppc_altivec_lvxl:
11283     case Intrinsic::ppc_vsx_lxvw4x:
11284     case Intrinsic::ppc_vsx_lxvw4x_be:
11285       VT = MVT::v4i32;
11286       break;
11287     case Intrinsic::ppc_vsx_lxvd2x:
11288     case Intrinsic::ppc_vsx_lxvd2x_be:
11289       VT = MVT::v2f64;
11290       break;
11291     case Intrinsic::ppc_altivec_lvebx:
11292       VT = MVT::i8;
11293       break;
11294     case Intrinsic::ppc_altivec_lvehx:
11295       VT = MVT::i16;
11296       break;
11297     case Intrinsic::ppc_altivec_lvewx:
11298       VT = MVT::i32;
11299       break;
11300     }
11301 
11302     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11303   }
11304 
11305   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11306     EVT VT;
11307     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11308     default: return false;
11309     case Intrinsic::ppc_qpx_qvstfd:
11310     case Intrinsic::ppc_qpx_qvstfda:
11311       VT = MVT::v4f64;
11312       break;
11313     case Intrinsic::ppc_qpx_qvstfs:
11314     case Intrinsic::ppc_qpx_qvstfsa:
11315       VT = MVT::v4f32;
11316       break;
11317     case Intrinsic::ppc_qpx_qvstfcd:
11318     case Intrinsic::ppc_qpx_qvstfcda:
11319       VT = MVT::v2f64;
11320       break;
11321     case Intrinsic::ppc_qpx_qvstfcs:
11322     case Intrinsic::ppc_qpx_qvstfcsa:
11323       VT = MVT::v2f32;
11324       break;
11325     case Intrinsic::ppc_qpx_qvstfiw:
11326     case Intrinsic::ppc_qpx_qvstfiwa:
11327     case Intrinsic::ppc_altivec_stvx:
11328     case Intrinsic::ppc_altivec_stvxl:
11329     case Intrinsic::ppc_vsx_stxvw4x:
11330       VT = MVT::v4i32;
11331       break;
11332     case Intrinsic::ppc_vsx_stxvd2x:
11333       VT = MVT::v2f64;
11334       break;
11335     case Intrinsic::ppc_vsx_stxvw4x_be:
11336       VT = MVT::v4i32;
11337       break;
11338     case Intrinsic::ppc_vsx_stxvd2x_be:
11339       VT = MVT::v2f64;
11340       break;
11341     case Intrinsic::ppc_altivec_stvebx:
11342       VT = MVT::i8;
11343       break;
11344     case Intrinsic::ppc_altivec_stvehx:
11345       VT = MVT::i16;
11346       break;
11347     case Intrinsic::ppc_altivec_stvewx:
11348       VT = MVT::i32;
11349       break;
11350     }
11351 
11352     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11353   }
11354 
11355   return false;
11356 }
11357 
11358 // Return true is there is a nearyby consecutive load to the one provided
11359 // (regardless of alignment). We search up and down the chain, looking though
11360 // token factors and other loads (but nothing else). As a result, a true result
11361 // indicates that it is safe to create a new consecutive load adjacent to the
11362 // load provided.
11363 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11364   SDValue Chain = LD->getChain();
11365   EVT VT = LD->getMemoryVT();
11366 
11367   SmallSet<SDNode *, 16> LoadRoots;
11368   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11369   SmallSet<SDNode *, 16> Visited;
11370 
11371   // First, search up the chain, branching to follow all token-factor operands.
11372   // If we find a consecutive load, then we're done, otherwise, record all
11373   // nodes just above the top-level loads and token factors.
11374   while (!Queue.empty()) {
11375     SDNode *ChainNext = Queue.pop_back_val();
11376     if (!Visited.insert(ChainNext).second)
11377       continue;
11378 
11379     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11380       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11381         return true;
11382 
11383       if (!Visited.count(ChainLD->getChain().getNode()))
11384         Queue.push_back(ChainLD->getChain().getNode());
11385     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11386       for (const SDUse &O : ChainNext->ops())
11387         if (!Visited.count(O.getNode()))
11388           Queue.push_back(O.getNode());
11389     } else
11390       LoadRoots.insert(ChainNext);
11391   }
11392 
11393   // Second, search down the chain, starting from the top-level nodes recorded
11394   // in the first phase. These top-level nodes are the nodes just above all
11395   // loads and token factors. Starting with their uses, recursively look though
11396   // all loads (just the chain uses) and token factors to find a consecutive
11397   // load.
11398   Visited.clear();
11399   Queue.clear();
11400 
11401   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11402        IE = LoadRoots.end(); I != IE; ++I) {
11403     Queue.push_back(*I);
11404 
11405     while (!Queue.empty()) {
11406       SDNode *LoadRoot = Queue.pop_back_val();
11407       if (!Visited.insert(LoadRoot).second)
11408         continue;
11409 
11410       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11411         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11412           return true;
11413 
11414       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11415            UE = LoadRoot->use_end(); UI != UE; ++UI)
11416         if (((isa<MemSDNode>(*UI) &&
11417             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11418             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11419           Queue.push_back(*UI);
11420     }
11421   }
11422 
11423   return false;
11424 }
11425 
11426 /// This function is called when we have proved that a SETCC node can be replaced
11427 /// by subtraction (and other supporting instructions) so that the result of
11428 /// comparison is kept in a GPR instead of CR. This function is purely for
11429 /// codegen purposes and has some flags to guide the codegen process.
11430 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11431                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11432   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11433 
11434   // Zero extend the operands to the largest legal integer. Originally, they
11435   // must be of a strictly smaller size.
11436   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11437                          DAG.getConstant(Size, DL, MVT::i32));
11438   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11439                          DAG.getConstant(Size, DL, MVT::i32));
11440 
11441   // Swap if needed. Depends on the condition code.
11442   if (Swap)
11443     std::swap(Op0, Op1);
11444 
11445   // Subtract extended integers.
11446   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11447 
11448   // Move the sign bit to the least significant position and zero out the rest.
11449   // Now the least significant bit carries the result of original comparison.
11450   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11451                              DAG.getConstant(Size - 1, DL, MVT::i32));
11452   auto Final = Shifted;
11453 
11454   // Complement the result if needed. Based on the condition code.
11455   if (Complement)
11456     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11457                         DAG.getConstant(1, DL, MVT::i64));
11458 
11459   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11460 }
11461 
11462 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11463                                                   DAGCombinerInfo &DCI) const {
11464   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11465 
11466   SelectionDAG &DAG = DCI.DAG;
11467   SDLoc DL(N);
11468 
11469   // Size of integers being compared has a critical role in the following
11470   // analysis, so we prefer to do this when all types are legal.
11471   if (!DCI.isAfterLegalizeDAG())
11472     return SDValue();
11473 
11474   // If all users of SETCC extend its value to a legal integer type
11475   // then we replace SETCC with a subtraction
11476   for (SDNode::use_iterator UI = N->use_begin(),
11477        UE = N->use_end(); UI != UE; ++UI) {
11478     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11479       return SDValue();
11480   }
11481 
11482   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11483   auto OpSize = N->getOperand(0).getValueSizeInBits();
11484 
11485   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11486 
11487   if (OpSize < Size) {
11488     switch (CC) {
11489     default: break;
11490     case ISD::SETULT:
11491       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11492     case ISD::SETULE:
11493       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11494     case ISD::SETUGT:
11495       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11496     case ISD::SETUGE:
11497       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11498     }
11499   }
11500 
11501   return SDValue();
11502 }
11503 
11504 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11505                                                   DAGCombinerInfo &DCI) const {
11506   SelectionDAG &DAG = DCI.DAG;
11507   SDLoc dl(N);
11508 
11509   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11510   // If we're tracking CR bits, we need to be careful that we don't have:
11511   //   trunc(binary-ops(zext(x), zext(y)))
11512   // or
11513   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11514   // such that we're unnecessarily moving things into GPRs when it would be
11515   // better to keep them in CR bits.
11516 
11517   // Note that trunc here can be an actual i1 trunc, or can be the effective
11518   // truncation that comes from a setcc or select_cc.
11519   if (N->getOpcode() == ISD::TRUNCATE &&
11520       N->getValueType(0) != MVT::i1)
11521     return SDValue();
11522 
11523   if (N->getOperand(0).getValueType() != MVT::i32 &&
11524       N->getOperand(0).getValueType() != MVT::i64)
11525     return SDValue();
11526 
11527   if (N->getOpcode() == ISD::SETCC ||
11528       N->getOpcode() == ISD::SELECT_CC) {
11529     // If we're looking at a comparison, then we need to make sure that the
11530     // high bits (all except for the first) don't matter the result.
11531     ISD::CondCode CC =
11532       cast<CondCodeSDNode>(N->getOperand(
11533         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11534     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11535 
11536     if (ISD::isSignedIntSetCC(CC)) {
11537       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11538           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11539         return SDValue();
11540     } else if (ISD::isUnsignedIntSetCC(CC)) {
11541       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11542                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11543           !DAG.MaskedValueIsZero(N->getOperand(1),
11544                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11545         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11546                                              : SDValue());
11547     } else {
11548       // This is neither a signed nor an unsigned comparison, just make sure
11549       // that the high bits are equal.
11550       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
11551       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
11552 
11553       // We don't really care about what is known about the first bit (if
11554       // anything), so clear it in all masks prior to comparing them.
11555       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11556       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11557 
11558       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11559         return SDValue();
11560     }
11561   }
11562 
11563   // We now know that the higher-order bits are irrelevant, we just need to
11564   // make sure that all of the intermediate operations are bit operations, and
11565   // all inputs are extensions.
11566   if (N->getOperand(0).getOpcode() != ISD::AND &&
11567       N->getOperand(0).getOpcode() != ISD::OR  &&
11568       N->getOperand(0).getOpcode() != ISD::XOR &&
11569       N->getOperand(0).getOpcode() != ISD::SELECT &&
11570       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11571       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11572       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11573       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11574       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11575     return SDValue();
11576 
11577   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11578       N->getOperand(1).getOpcode() != ISD::AND &&
11579       N->getOperand(1).getOpcode() != ISD::OR  &&
11580       N->getOperand(1).getOpcode() != ISD::XOR &&
11581       N->getOperand(1).getOpcode() != ISD::SELECT &&
11582       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11583       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11584       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11585       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11586       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11587     return SDValue();
11588 
11589   SmallVector<SDValue, 4> Inputs;
11590   SmallVector<SDValue, 8> BinOps, PromOps;
11591   SmallPtrSet<SDNode *, 16> Visited;
11592 
11593   for (unsigned i = 0; i < 2; ++i) {
11594     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11595           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11596           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11597           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11598         isa<ConstantSDNode>(N->getOperand(i)))
11599       Inputs.push_back(N->getOperand(i));
11600     else
11601       BinOps.push_back(N->getOperand(i));
11602 
11603     if (N->getOpcode() == ISD::TRUNCATE)
11604       break;
11605   }
11606 
11607   // Visit all inputs, collect all binary operations (and, or, xor and
11608   // select) that are all fed by extensions.
11609   while (!BinOps.empty()) {
11610     SDValue BinOp = BinOps.back();
11611     BinOps.pop_back();
11612 
11613     if (!Visited.insert(BinOp.getNode()).second)
11614       continue;
11615 
11616     PromOps.push_back(BinOp);
11617 
11618     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11619       // The condition of the select is not promoted.
11620       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11621         continue;
11622       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11623         continue;
11624 
11625       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11626             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11627             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11628            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11629           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11630         Inputs.push_back(BinOp.getOperand(i));
11631       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11632                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11633                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11634                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11635                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11636                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11637                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11638                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11639                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11640         BinOps.push_back(BinOp.getOperand(i));
11641       } else {
11642         // We have an input that is not an extension or another binary
11643         // operation; we'll abort this transformation.
11644         return SDValue();
11645       }
11646     }
11647   }
11648 
11649   // Make sure that this is a self-contained cluster of operations (which
11650   // is not quite the same thing as saying that everything has only one
11651   // use).
11652   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11653     if (isa<ConstantSDNode>(Inputs[i]))
11654       continue;
11655 
11656     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11657                               UE = Inputs[i].getNode()->use_end();
11658          UI != UE; ++UI) {
11659       SDNode *User = *UI;
11660       if (User != N && !Visited.count(User))
11661         return SDValue();
11662 
11663       // Make sure that we're not going to promote the non-output-value
11664       // operand(s) or SELECT or SELECT_CC.
11665       // FIXME: Although we could sometimes handle this, and it does occur in
11666       // practice that one of the condition inputs to the select is also one of
11667       // the outputs, we currently can't deal with this.
11668       if (User->getOpcode() == ISD::SELECT) {
11669         if (User->getOperand(0) == Inputs[i])
11670           return SDValue();
11671       } else if (User->getOpcode() == ISD::SELECT_CC) {
11672         if (User->getOperand(0) == Inputs[i] ||
11673             User->getOperand(1) == Inputs[i])
11674           return SDValue();
11675       }
11676     }
11677   }
11678 
11679   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11680     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11681                               UE = PromOps[i].getNode()->use_end();
11682          UI != UE; ++UI) {
11683       SDNode *User = *UI;
11684       if (User != N && !Visited.count(User))
11685         return SDValue();
11686 
11687       // Make sure that we're not going to promote the non-output-value
11688       // operand(s) or SELECT or SELECT_CC.
11689       // FIXME: Although we could sometimes handle this, and it does occur in
11690       // practice that one of the condition inputs to the select is also one of
11691       // the outputs, we currently can't deal with this.
11692       if (User->getOpcode() == ISD::SELECT) {
11693         if (User->getOperand(0) == PromOps[i])
11694           return SDValue();
11695       } else if (User->getOpcode() == ISD::SELECT_CC) {
11696         if (User->getOperand(0) == PromOps[i] ||
11697             User->getOperand(1) == PromOps[i])
11698           return SDValue();
11699       }
11700     }
11701   }
11702 
11703   // Replace all inputs with the extension operand.
11704   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11705     // Constants may have users outside the cluster of to-be-promoted nodes,
11706     // and so we need to replace those as we do the promotions.
11707     if (isa<ConstantSDNode>(Inputs[i]))
11708       continue;
11709     else
11710       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11711   }
11712 
11713   std::list<HandleSDNode> PromOpHandles;
11714   for (auto &PromOp : PromOps)
11715     PromOpHandles.emplace_back(PromOp);
11716 
11717   // Replace all operations (these are all the same, but have a different
11718   // (i1) return type). DAG.getNode will validate that the types of
11719   // a binary operator match, so go through the list in reverse so that
11720   // we've likely promoted both operands first. Any intermediate truncations or
11721   // extensions disappear.
11722   while (!PromOpHandles.empty()) {
11723     SDValue PromOp = PromOpHandles.back().getValue();
11724     PromOpHandles.pop_back();
11725 
11726     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11727         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11728         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11729         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11730       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11731           PromOp.getOperand(0).getValueType() != MVT::i1) {
11732         // The operand is not yet ready (see comment below).
11733         PromOpHandles.emplace_front(PromOp);
11734         continue;
11735       }
11736 
11737       SDValue RepValue = PromOp.getOperand(0);
11738       if (isa<ConstantSDNode>(RepValue))
11739         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11740 
11741       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11742       continue;
11743     }
11744 
11745     unsigned C;
11746     switch (PromOp.getOpcode()) {
11747     default:             C = 0; break;
11748     case ISD::SELECT:    C = 1; break;
11749     case ISD::SELECT_CC: C = 2; break;
11750     }
11751 
11752     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11753          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11754         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11755          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11756       // The to-be-promoted operands of this node have not yet been
11757       // promoted (this should be rare because we're going through the
11758       // list backward, but if one of the operands has several users in
11759       // this cluster of to-be-promoted nodes, it is possible).
11760       PromOpHandles.emplace_front(PromOp);
11761       continue;
11762     }
11763 
11764     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11765                                 PromOp.getNode()->op_end());
11766 
11767     // If there are any constant inputs, make sure they're replaced now.
11768     for (unsigned i = 0; i < 2; ++i)
11769       if (isa<ConstantSDNode>(Ops[C+i]))
11770         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11771 
11772     DAG.ReplaceAllUsesOfValueWith(PromOp,
11773       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11774   }
11775 
11776   // Now we're left with the initial truncation itself.
11777   if (N->getOpcode() == ISD::TRUNCATE)
11778     return N->getOperand(0);
11779 
11780   // Otherwise, this is a comparison. The operands to be compared have just
11781   // changed type (to i1), but everything else is the same.
11782   return SDValue(N, 0);
11783 }
11784 
11785 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11786                                                   DAGCombinerInfo &DCI) const {
11787   SelectionDAG &DAG = DCI.DAG;
11788   SDLoc dl(N);
11789 
11790   // If we're tracking CR bits, we need to be careful that we don't have:
11791   //   zext(binary-ops(trunc(x), trunc(y)))
11792   // or
11793   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11794   // such that we're unnecessarily moving things into CR bits that can more
11795   // efficiently stay in GPRs. Note that if we're not certain that the high
11796   // bits are set as required by the final extension, we still may need to do
11797   // some masking to get the proper behavior.
11798 
11799   // This same functionality is important on PPC64 when dealing with
11800   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11801   // the return values of functions. Because it is so similar, it is handled
11802   // here as well.
11803 
11804   if (N->getValueType(0) != MVT::i32 &&
11805       N->getValueType(0) != MVT::i64)
11806     return SDValue();
11807 
11808   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11809         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11810     return SDValue();
11811 
11812   if (N->getOperand(0).getOpcode() != ISD::AND &&
11813       N->getOperand(0).getOpcode() != ISD::OR  &&
11814       N->getOperand(0).getOpcode() != ISD::XOR &&
11815       N->getOperand(0).getOpcode() != ISD::SELECT &&
11816       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11817     return SDValue();
11818 
11819   SmallVector<SDValue, 4> Inputs;
11820   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11821   SmallPtrSet<SDNode *, 16> Visited;
11822 
11823   // Visit all inputs, collect all binary operations (and, or, xor and
11824   // select) that are all fed by truncations.
11825   while (!BinOps.empty()) {
11826     SDValue BinOp = BinOps.back();
11827     BinOps.pop_back();
11828 
11829     if (!Visited.insert(BinOp.getNode()).second)
11830       continue;
11831 
11832     PromOps.push_back(BinOp);
11833 
11834     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11835       // The condition of the select is not promoted.
11836       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11837         continue;
11838       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11839         continue;
11840 
11841       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11842           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11843         Inputs.push_back(BinOp.getOperand(i));
11844       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11845                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11846                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11847                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11848                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11849         BinOps.push_back(BinOp.getOperand(i));
11850       } else {
11851         // We have an input that is not a truncation or another binary
11852         // operation; we'll abort this transformation.
11853         return SDValue();
11854       }
11855     }
11856   }
11857 
11858   // The operands of a select that must be truncated when the select is
11859   // promoted because the operand is actually part of the to-be-promoted set.
11860   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11861 
11862   // Make sure that this is a self-contained cluster of operations (which
11863   // is not quite the same thing as saying that everything has only one
11864   // use).
11865   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11866     if (isa<ConstantSDNode>(Inputs[i]))
11867       continue;
11868 
11869     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11870                               UE = Inputs[i].getNode()->use_end();
11871          UI != UE; ++UI) {
11872       SDNode *User = *UI;
11873       if (User != N && !Visited.count(User))
11874         return SDValue();
11875 
11876       // If we're going to promote the non-output-value operand(s) or SELECT or
11877       // SELECT_CC, record them for truncation.
11878       if (User->getOpcode() == ISD::SELECT) {
11879         if (User->getOperand(0) == Inputs[i])
11880           SelectTruncOp[0].insert(std::make_pair(User,
11881                                     User->getOperand(0).getValueType()));
11882       } else if (User->getOpcode() == ISD::SELECT_CC) {
11883         if (User->getOperand(0) == Inputs[i])
11884           SelectTruncOp[0].insert(std::make_pair(User,
11885                                     User->getOperand(0).getValueType()));
11886         if (User->getOperand(1) == Inputs[i])
11887           SelectTruncOp[1].insert(std::make_pair(User,
11888                                     User->getOperand(1).getValueType()));
11889       }
11890     }
11891   }
11892 
11893   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11894     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11895                               UE = PromOps[i].getNode()->use_end();
11896          UI != UE; ++UI) {
11897       SDNode *User = *UI;
11898       if (User != N && !Visited.count(User))
11899         return SDValue();
11900 
11901       // If we're going to promote the non-output-value operand(s) or SELECT or
11902       // SELECT_CC, record them for truncation.
11903       if (User->getOpcode() == ISD::SELECT) {
11904         if (User->getOperand(0) == PromOps[i])
11905           SelectTruncOp[0].insert(std::make_pair(User,
11906                                     User->getOperand(0).getValueType()));
11907       } else if (User->getOpcode() == ISD::SELECT_CC) {
11908         if (User->getOperand(0) == PromOps[i])
11909           SelectTruncOp[0].insert(std::make_pair(User,
11910                                     User->getOperand(0).getValueType()));
11911         if (User->getOperand(1) == PromOps[i])
11912           SelectTruncOp[1].insert(std::make_pair(User,
11913                                     User->getOperand(1).getValueType()));
11914       }
11915     }
11916   }
11917 
11918   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11919   bool ReallyNeedsExt = false;
11920   if (N->getOpcode() != ISD::ANY_EXTEND) {
11921     // If all of the inputs are not already sign/zero extended, then
11922     // we'll still need to do that at the end.
11923     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11924       if (isa<ConstantSDNode>(Inputs[i]))
11925         continue;
11926 
11927       unsigned OpBits =
11928         Inputs[i].getOperand(0).getValueSizeInBits();
11929       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11930 
11931       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11932            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11933                                   APInt::getHighBitsSet(OpBits,
11934                                                         OpBits-PromBits))) ||
11935           (N->getOpcode() == ISD::SIGN_EXTEND &&
11936            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11937              (OpBits-(PromBits-1)))) {
11938         ReallyNeedsExt = true;
11939         break;
11940       }
11941     }
11942   }
11943 
11944   // Replace all inputs, either with the truncation operand, or a
11945   // truncation or extension to the final output type.
11946   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11947     // Constant inputs need to be replaced with the to-be-promoted nodes that
11948     // use them because they might have users outside of the cluster of
11949     // promoted nodes.
11950     if (isa<ConstantSDNode>(Inputs[i]))
11951       continue;
11952 
11953     SDValue InSrc = Inputs[i].getOperand(0);
11954     if (Inputs[i].getValueType() == N->getValueType(0))
11955       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11956     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11957       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11958         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11959     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11960       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11961         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11962     else
11963       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11964         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11965   }
11966 
11967   std::list<HandleSDNode> PromOpHandles;
11968   for (auto &PromOp : PromOps)
11969     PromOpHandles.emplace_back(PromOp);
11970 
11971   // Replace all operations (these are all the same, but have a different
11972   // (promoted) return type). DAG.getNode will validate that the types of
11973   // a binary operator match, so go through the list in reverse so that
11974   // we've likely promoted both operands first.
11975   while (!PromOpHandles.empty()) {
11976     SDValue PromOp = PromOpHandles.back().getValue();
11977     PromOpHandles.pop_back();
11978 
11979     unsigned C;
11980     switch (PromOp.getOpcode()) {
11981     default:             C = 0; break;
11982     case ISD::SELECT:    C = 1; break;
11983     case ISD::SELECT_CC: C = 2; break;
11984     }
11985 
11986     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11987          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11988         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11989          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11990       // The to-be-promoted operands of this node have not yet been
11991       // promoted (this should be rare because we're going through the
11992       // list backward, but if one of the operands has several users in
11993       // this cluster of to-be-promoted nodes, it is possible).
11994       PromOpHandles.emplace_front(PromOp);
11995       continue;
11996     }
11997 
11998     // For SELECT and SELECT_CC nodes, we do a similar check for any
11999     // to-be-promoted comparison inputs.
12000     if (PromOp.getOpcode() == ISD::SELECT ||
12001         PromOp.getOpcode() == ISD::SELECT_CC) {
12002       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12003            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12004           (SelectTruncOp[1].count(PromOp.getNode()) &&
12005            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12006         PromOpHandles.emplace_front(PromOp);
12007         continue;
12008       }
12009     }
12010 
12011     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12012                                 PromOp.getNode()->op_end());
12013 
12014     // If this node has constant inputs, then they'll need to be promoted here.
12015     for (unsigned i = 0; i < 2; ++i) {
12016       if (!isa<ConstantSDNode>(Ops[C+i]))
12017         continue;
12018       if (Ops[C+i].getValueType() == N->getValueType(0))
12019         continue;
12020 
12021       if (N->getOpcode() == ISD::SIGN_EXTEND)
12022         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12023       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12024         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12025       else
12026         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12027     }
12028 
12029     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12030     // truncate them again to the original value type.
12031     if (PromOp.getOpcode() == ISD::SELECT ||
12032         PromOp.getOpcode() == ISD::SELECT_CC) {
12033       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12034       if (SI0 != SelectTruncOp[0].end())
12035         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12036       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12037       if (SI1 != SelectTruncOp[1].end())
12038         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12039     }
12040 
12041     DAG.ReplaceAllUsesOfValueWith(PromOp,
12042       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12043   }
12044 
12045   // Now we're left with the initial extension itself.
12046   if (!ReallyNeedsExt)
12047     return N->getOperand(0);
12048 
12049   // To zero extend, just mask off everything except for the first bit (in the
12050   // i1 case).
12051   if (N->getOpcode() == ISD::ZERO_EXTEND)
12052     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12053                        DAG.getConstant(APInt::getLowBitsSet(
12054                                          N->getValueSizeInBits(0), PromBits),
12055                                        dl, N->getValueType(0)));
12056 
12057   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12058          "Invalid extension type");
12059   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12060   SDValue ShiftCst =
12061       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12062   return DAG.getNode(
12063       ISD::SRA, dl, N->getValueType(0),
12064       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12065       ShiftCst);
12066 }
12067 
12068 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12069                                         DAGCombinerInfo &DCI) const {
12070   assert(N->getOpcode() == ISD::SETCC &&
12071          "Should be called with a SETCC node");
12072 
12073   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12074   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12075     SDValue LHS = N->getOperand(0);
12076     SDValue RHS = N->getOperand(1);
12077 
12078     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12079     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12080         LHS.hasOneUse())
12081       std::swap(LHS, RHS);
12082 
12083     // x == 0-y --> x+y == 0
12084     // x != 0-y --> x+y != 0
12085     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12086         RHS.hasOneUse()) {
12087       SDLoc DL(N);
12088       SelectionDAG &DAG = DCI.DAG;
12089       EVT VT = N->getValueType(0);
12090       EVT OpVT = LHS.getValueType();
12091       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12092       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12093     }
12094   }
12095 
12096   return DAGCombineTruncBoolExt(N, DCI);
12097 }
12098 
12099 // Is this an extending load from an f32 to an f64?
12100 static bool isFPExtLoad(SDValue Op) {
12101   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12102     return LD->getExtensionType() == ISD::EXTLOAD &&
12103       Op.getValueType() == MVT::f64;
12104   return false;
12105 }
12106 
12107 /// Reduces the number of fp-to-int conversion when building a vector.
12108 ///
12109 /// If this vector is built out of floating to integer conversions,
12110 /// transform it to a vector built out of floating point values followed by a
12111 /// single floating to integer conversion of the vector.
12112 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12113 /// becomes (fptosi (build_vector ($A, $B, ...)))
12114 SDValue PPCTargetLowering::
12115 combineElementTruncationToVectorTruncation(SDNode *N,
12116                                            DAGCombinerInfo &DCI) const {
12117   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12118          "Should be called with a BUILD_VECTOR node");
12119 
12120   SelectionDAG &DAG = DCI.DAG;
12121   SDLoc dl(N);
12122 
12123   SDValue FirstInput = N->getOperand(0);
12124   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12125          "The input operand must be an fp-to-int conversion.");
12126 
12127   // This combine happens after legalization so the fp_to_[su]i nodes are
12128   // already converted to PPCSISD nodes.
12129   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12130   if (FirstConversion == PPCISD::FCTIDZ ||
12131       FirstConversion == PPCISD::FCTIDUZ ||
12132       FirstConversion == PPCISD::FCTIWZ ||
12133       FirstConversion == PPCISD::FCTIWUZ) {
12134     bool IsSplat = true;
12135     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12136       FirstConversion == PPCISD::FCTIWUZ;
12137     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12138     SmallVector<SDValue, 4> Ops;
12139     EVT TargetVT = N->getValueType(0);
12140     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12141       SDValue NextOp = N->getOperand(i);
12142       if (NextOp.getOpcode() != PPCISD::MFVSR)
12143         return SDValue();
12144       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12145       if (NextConversion != FirstConversion)
12146         return SDValue();
12147       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12148       // This is not valid if the input was originally double precision. It is
12149       // also not profitable to do unless this is an extending load in which
12150       // case doing this combine will allow us to combine consecutive loads.
12151       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12152         return SDValue();
12153       if (N->getOperand(i) != FirstInput)
12154         IsSplat = false;
12155     }
12156 
12157     // If this is a splat, we leave it as-is since there will be only a single
12158     // fp-to-int conversion followed by a splat of the integer. This is better
12159     // for 32-bit and smaller ints and neutral for 64-bit ints.
12160     if (IsSplat)
12161       return SDValue();
12162 
12163     // Now that we know we have the right type of node, get its operands
12164     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12165       SDValue In = N->getOperand(i).getOperand(0);
12166       if (Is32Bit) {
12167         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12168         // here, we know that all inputs are extending loads so this is safe).
12169         if (In.isUndef())
12170           Ops.push_back(DAG.getUNDEF(SrcVT));
12171         else {
12172           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12173                                       MVT::f32, In.getOperand(0),
12174                                       DAG.getIntPtrConstant(1, dl));
12175           Ops.push_back(Trunc);
12176         }
12177       } else
12178         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12179     }
12180 
12181     unsigned Opcode;
12182     if (FirstConversion == PPCISD::FCTIDZ ||
12183         FirstConversion == PPCISD::FCTIWZ)
12184       Opcode = ISD::FP_TO_SINT;
12185     else
12186       Opcode = ISD::FP_TO_UINT;
12187 
12188     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12189     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12190     return DAG.getNode(Opcode, dl, TargetVT, BV);
12191   }
12192   return SDValue();
12193 }
12194 
12195 /// Reduce the number of loads when building a vector.
12196 ///
12197 /// Building a vector out of multiple loads can be converted to a load
12198 /// of the vector type if the loads are consecutive. If the loads are
12199 /// consecutive but in descending order, a shuffle is added at the end
12200 /// to reorder the vector.
12201 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12202   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12203          "Should be called with a BUILD_VECTOR node");
12204 
12205   SDLoc dl(N);
12206 
12207   // Return early for non byte-sized type, as they can't be consecutive.
12208   if (!N->getValueType(0).getVectorElementType().isByteSized())
12209     return SDValue();
12210 
12211   bool InputsAreConsecutiveLoads = true;
12212   bool InputsAreReverseConsecutive = true;
12213   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
12214   SDValue FirstInput = N->getOperand(0);
12215   bool IsRoundOfExtLoad = false;
12216 
12217   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12218       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12219     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12220     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12221   }
12222   // Not a build vector of (possibly fp_rounded) loads.
12223   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12224       N->getNumOperands() == 1)
12225     return SDValue();
12226 
12227   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12228     // If any inputs are fp_round(extload), they all must be.
12229     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12230       return SDValue();
12231 
12232     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12233       N->getOperand(i);
12234     if (NextInput.getOpcode() != ISD::LOAD)
12235       return SDValue();
12236 
12237     SDValue PreviousInput =
12238       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12239     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12240     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12241 
12242     // If any inputs are fp_round(extload), they all must be.
12243     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12244       return SDValue();
12245 
12246     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12247       InputsAreConsecutiveLoads = false;
12248     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12249       InputsAreReverseConsecutive = false;
12250 
12251     // Exit early if the loads are neither consecutive nor reverse consecutive.
12252     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12253       return SDValue();
12254   }
12255 
12256   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12257          "The loads cannot be both consecutive and reverse consecutive.");
12258 
12259   SDValue FirstLoadOp =
12260     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12261   SDValue LastLoadOp =
12262     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12263                        N->getOperand(N->getNumOperands()-1);
12264 
12265   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12266   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12267   if (InputsAreConsecutiveLoads) {
12268     assert(LD1 && "Input needs to be a LoadSDNode.");
12269     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12270                        LD1->getBasePtr(), LD1->getPointerInfo(),
12271                        LD1->getAlignment());
12272   }
12273   if (InputsAreReverseConsecutive) {
12274     assert(LDL && "Input needs to be a LoadSDNode.");
12275     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12276                                LDL->getBasePtr(), LDL->getPointerInfo(),
12277                                LDL->getAlignment());
12278     SmallVector<int, 16> Ops;
12279     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12280       Ops.push_back(i);
12281 
12282     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12283                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12284   }
12285   return SDValue();
12286 }
12287 
12288 // This function adds the required vector_shuffle needed to get
12289 // the elements of the vector extract in the correct position
12290 // as specified by the CorrectElems encoding.
12291 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12292                                       SDValue Input, uint64_t Elems,
12293                                       uint64_t CorrectElems) {
12294   SDLoc dl(N);
12295 
12296   unsigned NumElems = Input.getValueType().getVectorNumElements();
12297   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12298 
12299   // Knowing the element indices being extracted from the original
12300   // vector and the order in which they're being inserted, just put
12301   // them at element indices required for the instruction.
12302   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12303     if (DAG.getDataLayout().isLittleEndian())
12304       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12305     else
12306       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12307     CorrectElems = CorrectElems >> 8;
12308     Elems = Elems >> 8;
12309   }
12310 
12311   SDValue Shuffle =
12312       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12313                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12314 
12315   EVT Ty = N->getValueType(0);
12316   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12317   return BV;
12318 }
12319 
12320 // Look for build vector patterns where input operands come from sign
12321 // extended vector_extract elements of specific indices. If the correct indices
12322 // aren't used, add a vector shuffle to fix up the indices and create a new
12323 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12324 // during instruction selection.
12325 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12326   // This array encodes the indices that the vector sign extend instructions
12327   // extract from when extending from one type to another for both BE and LE.
12328   // The right nibble of each byte corresponds to the LE incides.
12329   // and the left nibble of each byte corresponds to the BE incides.
12330   // For example: 0x3074B8FC  byte->word
12331   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12332   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12333   // For example: 0x000070F8  byte->double word
12334   // For LE: the allowed indices are: 0x0,0x8
12335   // For BE: the allowed indices are: 0x7,0xF
12336   uint64_t TargetElems[] = {
12337       0x3074B8FC, // b->w
12338       0x000070F8, // b->d
12339       0x10325476, // h->w
12340       0x00003074, // h->d
12341       0x00001032, // w->d
12342   };
12343 
12344   uint64_t Elems = 0;
12345   int Index;
12346   SDValue Input;
12347 
12348   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12349     if (!Op)
12350       return false;
12351     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12352         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12353       return false;
12354 
12355     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12356     // of the right width.
12357     SDValue Extract = Op.getOperand(0);
12358     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12359       Extract = Extract.getOperand(0);
12360     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12361       return false;
12362 
12363     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12364     if (!ExtOp)
12365       return false;
12366 
12367     Index = ExtOp->getZExtValue();
12368     if (Input && Input != Extract.getOperand(0))
12369       return false;
12370 
12371     if (!Input)
12372       Input = Extract.getOperand(0);
12373 
12374     Elems = Elems << 8;
12375     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12376     Elems |= Index;
12377 
12378     return true;
12379   };
12380 
12381   // If the build vector operands aren't sign extended vector extracts,
12382   // of the same input vector, then return.
12383   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12384     if (!isSExtOfVecExtract(N->getOperand(i))) {
12385       return SDValue();
12386     }
12387   }
12388 
12389   // If the vector extract indicies are not correct, add the appropriate
12390   // vector_shuffle.
12391   int TgtElemArrayIdx;
12392   int InputSize = Input.getValueType().getScalarSizeInBits();
12393   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12394   if (InputSize + OutputSize == 40)
12395     TgtElemArrayIdx = 0;
12396   else if (InputSize + OutputSize == 72)
12397     TgtElemArrayIdx = 1;
12398   else if (InputSize + OutputSize == 48)
12399     TgtElemArrayIdx = 2;
12400   else if (InputSize + OutputSize == 80)
12401     TgtElemArrayIdx = 3;
12402   else if (InputSize + OutputSize == 96)
12403     TgtElemArrayIdx = 4;
12404   else
12405     return SDValue();
12406 
12407   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12408   CorrectElems = DAG.getDataLayout().isLittleEndian()
12409                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12410                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12411   if (Elems != CorrectElems) {
12412     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12413   }
12414 
12415   // Regular lowering will catch cases where a shuffle is not needed.
12416   return SDValue();
12417 }
12418 
12419 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12420                                                  DAGCombinerInfo &DCI) const {
12421   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12422          "Should be called with a BUILD_VECTOR node");
12423 
12424   SelectionDAG &DAG = DCI.DAG;
12425   SDLoc dl(N);
12426 
12427   if (!Subtarget.hasVSX())
12428     return SDValue();
12429 
12430   // The target independent DAG combiner will leave a build_vector of
12431   // float-to-int conversions intact. We can generate MUCH better code for
12432   // a float-to-int conversion of a vector of floats.
12433   SDValue FirstInput = N->getOperand(0);
12434   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12435     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12436     if (Reduced)
12437       return Reduced;
12438   }
12439 
12440   // If we're building a vector out of consecutive loads, just load that
12441   // vector type.
12442   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12443   if (Reduced)
12444     return Reduced;
12445 
12446   // If we're building a vector out of extended elements from another vector
12447   // we have P9 vector integer extend instructions. The code assumes legal
12448   // input types (i.e. it can't handle things like v4i16) so do not run before
12449   // legalization.
12450   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12451     Reduced = combineBVOfVecSExt(N, DAG);
12452     if (Reduced)
12453       return Reduced;
12454   }
12455 
12456 
12457   if (N->getValueType(0) != MVT::v2f64)
12458     return SDValue();
12459 
12460   // Looking for:
12461   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12462   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12463       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12464     return SDValue();
12465   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12466       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12467     return SDValue();
12468   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12469     return SDValue();
12470 
12471   SDValue Ext1 = FirstInput.getOperand(0);
12472   SDValue Ext2 = N->getOperand(1).getOperand(0);
12473   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12474      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12475     return SDValue();
12476 
12477   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12478   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12479   if (!Ext1Op || !Ext2Op)
12480     return SDValue();
12481   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
12482       Ext1.getOperand(0) != Ext2.getOperand(0))
12483     return SDValue();
12484 
12485   int FirstElem = Ext1Op->getZExtValue();
12486   int SecondElem = Ext2Op->getZExtValue();
12487   int SubvecIdx;
12488   if (FirstElem == 0 && SecondElem == 1)
12489     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12490   else if (FirstElem == 2 && SecondElem == 3)
12491     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12492   else
12493     return SDValue();
12494 
12495   SDValue SrcVec = Ext1.getOperand(0);
12496   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12497     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12498   return DAG.getNode(NodeType, dl, MVT::v2f64,
12499                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12500 }
12501 
12502 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12503                                               DAGCombinerInfo &DCI) const {
12504   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12505           N->getOpcode() == ISD::UINT_TO_FP) &&
12506          "Need an int -> FP conversion node here");
12507 
12508   if (useSoftFloat() || !Subtarget.has64BitSupport())
12509     return SDValue();
12510 
12511   SelectionDAG &DAG = DCI.DAG;
12512   SDLoc dl(N);
12513   SDValue Op(N, 0);
12514 
12515   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12516   // from the hardware.
12517   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12518     return SDValue();
12519   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12520       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12521     return SDValue();
12522 
12523   SDValue FirstOperand(Op.getOperand(0));
12524   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12525     (FirstOperand.getValueType() == MVT::i8 ||
12526      FirstOperand.getValueType() == MVT::i16);
12527   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12528     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12529     bool DstDouble = Op.getValueType() == MVT::f64;
12530     unsigned ConvOp = Signed ?
12531       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12532       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12533     SDValue WidthConst =
12534       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12535                             dl, false);
12536     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12537     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12538     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12539                                          DAG.getVTList(MVT::f64, MVT::Other),
12540                                          Ops, MVT::i8, LDN->getMemOperand());
12541 
12542     // For signed conversion, we need to sign-extend the value in the VSR
12543     if (Signed) {
12544       SDValue ExtOps[] = { Ld, WidthConst };
12545       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12546       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12547     } else
12548       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12549   }
12550 
12551 
12552   // For i32 intermediate values, unfortunately, the conversion functions
12553   // leave the upper 32 bits of the value are undefined. Within the set of
12554   // scalar instructions, we have no method for zero- or sign-extending the
12555   // value. Thus, we cannot handle i32 intermediate values here.
12556   if (Op.getOperand(0).getValueType() == MVT::i32)
12557     return SDValue();
12558 
12559   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12560          "UINT_TO_FP is supported only with FPCVT");
12561 
12562   // If we have FCFIDS, then use it when converting to single-precision.
12563   // Otherwise, convert to double-precision and then round.
12564   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12565                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12566                                                             : PPCISD::FCFIDS)
12567                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12568                                                             : PPCISD::FCFID);
12569   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12570                   ? MVT::f32
12571                   : MVT::f64;
12572 
12573   // If we're converting from a float, to an int, and back to a float again,
12574   // then we don't need the store/load pair at all.
12575   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12576        Subtarget.hasFPCVT()) ||
12577       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12578     SDValue Src = Op.getOperand(0).getOperand(0);
12579     if (Src.getValueType() == MVT::f32) {
12580       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12581       DCI.AddToWorklist(Src.getNode());
12582     } else if (Src.getValueType() != MVT::f64) {
12583       // Make sure that we don't pick up a ppc_fp128 source value.
12584       return SDValue();
12585     }
12586 
12587     unsigned FCTOp =
12588       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12589                                                         PPCISD::FCTIDUZ;
12590 
12591     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12592     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12593 
12594     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12595       FP = DAG.getNode(ISD::FP_ROUND, dl,
12596                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12597       DCI.AddToWorklist(FP.getNode());
12598     }
12599 
12600     return FP;
12601   }
12602 
12603   return SDValue();
12604 }
12605 
12606 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12607 // builtins) into loads with swaps.
12608 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12609                                               DAGCombinerInfo &DCI) const {
12610   SelectionDAG &DAG = DCI.DAG;
12611   SDLoc dl(N);
12612   SDValue Chain;
12613   SDValue Base;
12614   MachineMemOperand *MMO;
12615 
12616   switch (N->getOpcode()) {
12617   default:
12618     llvm_unreachable("Unexpected opcode for little endian VSX load");
12619   case ISD::LOAD: {
12620     LoadSDNode *LD = cast<LoadSDNode>(N);
12621     Chain = LD->getChain();
12622     Base = LD->getBasePtr();
12623     MMO = LD->getMemOperand();
12624     // If the MMO suggests this isn't a load of a full vector, leave
12625     // things alone.  For a built-in, we have to make the change for
12626     // correctness, so if there is a size problem that will be a bug.
12627     if (MMO->getSize() < 16)
12628       return SDValue();
12629     break;
12630   }
12631   case ISD::INTRINSIC_W_CHAIN: {
12632     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12633     Chain = Intrin->getChain();
12634     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12635     // us what we want. Get operand 2 instead.
12636     Base = Intrin->getOperand(2);
12637     MMO = Intrin->getMemOperand();
12638     break;
12639   }
12640   }
12641 
12642   MVT VecTy = N->getValueType(0).getSimpleVT();
12643 
12644   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12645   // aligned and the type is a vector with elements up to 4 bytes
12646   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12647       && VecTy.getScalarSizeInBits() <= 32 ) {
12648     return SDValue();
12649   }
12650 
12651   SDValue LoadOps[] = { Chain, Base };
12652   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12653                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12654                                          LoadOps, MVT::v2f64, MMO);
12655 
12656   DCI.AddToWorklist(Load.getNode());
12657   Chain = Load.getValue(1);
12658   SDValue Swap = DAG.getNode(
12659       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12660   DCI.AddToWorklist(Swap.getNode());
12661 
12662   // Add a bitcast if the resulting load type doesn't match v2f64.
12663   if (VecTy != MVT::v2f64) {
12664     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12665     DCI.AddToWorklist(N.getNode());
12666     // Package {bitcast value, swap's chain} to match Load's shape.
12667     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12668                        N, Swap.getValue(1));
12669   }
12670 
12671   return Swap;
12672 }
12673 
12674 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12675 // builtins) into stores with swaps.
12676 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12677                                                DAGCombinerInfo &DCI) const {
12678   SelectionDAG &DAG = DCI.DAG;
12679   SDLoc dl(N);
12680   SDValue Chain;
12681   SDValue Base;
12682   unsigned SrcOpnd;
12683   MachineMemOperand *MMO;
12684 
12685   switch (N->getOpcode()) {
12686   default:
12687     llvm_unreachable("Unexpected opcode for little endian VSX store");
12688   case ISD::STORE: {
12689     StoreSDNode *ST = cast<StoreSDNode>(N);
12690     Chain = ST->getChain();
12691     Base = ST->getBasePtr();
12692     MMO = ST->getMemOperand();
12693     SrcOpnd = 1;
12694     // If the MMO suggests this isn't a store of a full vector, leave
12695     // things alone.  For a built-in, we have to make the change for
12696     // correctness, so if there is a size problem that will be a bug.
12697     if (MMO->getSize() < 16)
12698       return SDValue();
12699     break;
12700   }
12701   case ISD::INTRINSIC_VOID: {
12702     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12703     Chain = Intrin->getChain();
12704     // Intrin->getBasePtr() oddly does not get what we want.
12705     Base = Intrin->getOperand(3);
12706     MMO = Intrin->getMemOperand();
12707     SrcOpnd = 2;
12708     break;
12709   }
12710   }
12711 
12712   SDValue Src = N->getOperand(SrcOpnd);
12713   MVT VecTy = Src.getValueType().getSimpleVT();
12714 
12715   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12716   // aligned and the type is a vector with elements up to 4 bytes
12717   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12718       && VecTy.getScalarSizeInBits() <= 32 ) {
12719     return SDValue();
12720   }
12721 
12722   // All stores are done as v2f64 and possible bit cast.
12723   if (VecTy != MVT::v2f64) {
12724     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12725     DCI.AddToWorklist(Src.getNode());
12726   }
12727 
12728   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12729                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12730   DCI.AddToWorklist(Swap.getNode());
12731   Chain = Swap.getValue(1);
12732   SDValue StoreOps[] = { Chain, Swap, Base };
12733   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12734                                           DAG.getVTList(MVT::Other),
12735                                           StoreOps, VecTy, MMO);
12736   DCI.AddToWorklist(Store.getNode());
12737   return Store;
12738 }
12739 
12740 // Handle DAG combine for STORE (FP_TO_INT F).
12741 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12742                                                DAGCombinerInfo &DCI) const {
12743 
12744   SelectionDAG &DAG = DCI.DAG;
12745   SDLoc dl(N);
12746   unsigned Opcode = N->getOperand(1).getOpcode();
12747 
12748   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12749          && "Not a FP_TO_INT Instruction!");
12750 
12751   SDValue Val = N->getOperand(1).getOperand(0);
12752   EVT Op1VT = N->getOperand(1).getValueType();
12753   EVT ResVT = Val.getValueType();
12754 
12755   // Floating point types smaller than 32 bits are not legal on Power.
12756   if (ResVT.getScalarSizeInBits() < 32)
12757     return SDValue();
12758 
12759   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12760   bool ValidTypeForStoreFltAsInt =
12761         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12762          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12763 
12764   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12765       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12766     return SDValue();
12767 
12768   // Extend f32 values to f64
12769   if (ResVT.getScalarSizeInBits() == 32) {
12770     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12771     DCI.AddToWorklist(Val.getNode());
12772   }
12773 
12774   // Set signed or unsigned conversion opcode.
12775   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12776                           PPCISD::FP_TO_SINT_IN_VSR :
12777                           PPCISD::FP_TO_UINT_IN_VSR;
12778 
12779   Val = DAG.getNode(ConvOpcode,
12780                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12781   DCI.AddToWorklist(Val.getNode());
12782 
12783   // Set number of bytes being converted.
12784   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12785   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12786                     DAG.getIntPtrConstant(ByteSize, dl, false),
12787                     DAG.getValueType(Op1VT) };
12788 
12789   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12790           DAG.getVTList(MVT::Other), Ops,
12791           cast<StoreSDNode>(N)->getMemoryVT(),
12792           cast<StoreSDNode>(N)->getMemOperand());
12793 
12794   DCI.AddToWorklist(Val.getNode());
12795   return Val;
12796 }
12797 
12798 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12799                                              DAGCombinerInfo &DCI) const {
12800   SelectionDAG &DAG = DCI.DAG;
12801   SDLoc dl(N);
12802   switch (N->getOpcode()) {
12803   default: break;
12804   case ISD::ADD:
12805     return combineADD(N, DCI);
12806   case ISD::SHL:
12807     return combineSHL(N, DCI);
12808   case ISD::SRA:
12809     return combineSRA(N, DCI);
12810   case ISD::SRL:
12811     return combineSRL(N, DCI);
12812   case ISD::MUL:
12813     return combineMUL(N, DCI);
12814   case PPCISD::SHL:
12815     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12816         return N->getOperand(0);
12817     break;
12818   case PPCISD::SRL:
12819     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12820         return N->getOperand(0);
12821     break;
12822   case PPCISD::SRA:
12823     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12824       if (C->isNullValue() ||   //  0 >>s V -> 0.
12825           C->isAllOnesValue())    // -1 >>s V -> -1.
12826         return N->getOperand(0);
12827     }
12828     break;
12829   case ISD::SIGN_EXTEND:
12830   case ISD::ZERO_EXTEND:
12831   case ISD::ANY_EXTEND:
12832     return DAGCombineExtBoolTrunc(N, DCI);
12833   case ISD::TRUNCATE:
12834     return combineTRUNCATE(N, DCI);
12835   case ISD::SETCC:
12836     if (SDValue CSCC = combineSetCC(N, DCI))
12837       return CSCC;
12838     LLVM_FALLTHROUGH;
12839   case ISD::SELECT_CC:
12840     return DAGCombineTruncBoolExt(N, DCI);
12841   case ISD::SINT_TO_FP:
12842   case ISD::UINT_TO_FP:
12843     return combineFPToIntToFP(N, DCI);
12844   case ISD::STORE: {
12845 
12846     EVT Op1VT = N->getOperand(1).getValueType();
12847     unsigned Opcode = N->getOperand(1).getOpcode();
12848 
12849     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12850       SDValue Val= combineStoreFPToInt(N, DCI);
12851       if (Val)
12852         return Val;
12853     }
12854 
12855     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12856     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12857         N->getOperand(1).getNode()->hasOneUse() &&
12858         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12859          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12860 
12861       // STBRX can only handle simple types and it makes no sense to store less
12862       // two bytes in byte-reversed order.
12863       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12864       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
12865         break;
12866 
12867       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12868       // Do an any-extend to 32-bits if this is a half-word input.
12869       if (BSwapOp.getValueType() == MVT::i16)
12870         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12871 
12872       // If the type of BSWAP operand is wider than stored memory width
12873       // it need to be shifted to the right side before STBRX.
12874       if (Op1VT.bitsGT(mVT)) {
12875         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12876         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12877                               DAG.getConstant(Shift, dl, MVT::i32));
12878         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12879         if (Op1VT == MVT::i64)
12880           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12881       }
12882 
12883       SDValue Ops[] = {
12884         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12885       };
12886       return
12887         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12888                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12889                                 cast<StoreSDNode>(N)->getMemOperand());
12890     }
12891 
12892     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12893     // So it can increase the chance of CSE constant construction.
12894     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12895         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12896       // Need to sign-extended to 64-bits to handle negative values.
12897       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12898       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12899                                     MemVT.getSizeInBits());
12900       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12901 
12902       // DAG.getTruncStore() can't be used here because it doesn't accept
12903       // the general (base + offset) addressing mode.
12904       // So we use UpdateNodeOperands and setTruncatingStore instead.
12905       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12906                              N->getOperand(3));
12907       cast<StoreSDNode>(N)->setTruncatingStore(true);
12908       return SDValue(N, 0);
12909     }
12910 
12911     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12912     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12913     if (Op1VT.isSimple()) {
12914       MVT StoreVT = Op1VT.getSimpleVT();
12915       if (Subtarget.needsSwapsForVSXMemOps() &&
12916           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12917            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12918         return expandVSXStoreForLE(N, DCI);
12919     }
12920     break;
12921   }
12922   case ISD::LOAD: {
12923     LoadSDNode *LD = cast<LoadSDNode>(N);
12924     EVT VT = LD->getValueType(0);
12925 
12926     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12927     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12928     if (VT.isSimple()) {
12929       MVT LoadVT = VT.getSimpleVT();
12930       if (Subtarget.needsSwapsForVSXMemOps() &&
12931           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12932            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12933         return expandVSXLoadForLE(N, DCI);
12934     }
12935 
12936     // We sometimes end up with a 64-bit integer load, from which we extract
12937     // two single-precision floating-point numbers. This happens with
12938     // std::complex<float>, and other similar structures, because of the way we
12939     // canonicalize structure copies. However, if we lack direct moves,
12940     // then the final bitcasts from the extracted integer values to the
12941     // floating-point numbers turn into store/load pairs. Even with direct moves,
12942     // just loading the two floating-point numbers is likely better.
12943     auto ReplaceTwoFloatLoad = [&]() {
12944       if (VT != MVT::i64)
12945         return false;
12946 
12947       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12948           LD->isVolatile())
12949         return false;
12950 
12951       //  We're looking for a sequence like this:
12952       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12953       //      t16: i64 = srl t13, Constant:i32<32>
12954       //    t17: i32 = truncate t16
12955       //  t18: f32 = bitcast t17
12956       //    t19: i32 = truncate t13
12957       //  t20: f32 = bitcast t19
12958 
12959       if (!LD->hasNUsesOfValue(2, 0))
12960         return false;
12961 
12962       auto UI = LD->use_begin();
12963       while (UI.getUse().getResNo() != 0) ++UI;
12964       SDNode *Trunc = *UI++;
12965       while (UI.getUse().getResNo() != 0) ++UI;
12966       SDNode *RightShift = *UI;
12967       if (Trunc->getOpcode() != ISD::TRUNCATE)
12968         std::swap(Trunc, RightShift);
12969 
12970       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12971           Trunc->getValueType(0) != MVT::i32 ||
12972           !Trunc->hasOneUse())
12973         return false;
12974       if (RightShift->getOpcode() != ISD::SRL ||
12975           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12976           RightShift->getConstantOperandVal(1) != 32 ||
12977           !RightShift->hasOneUse())
12978         return false;
12979 
12980       SDNode *Trunc2 = *RightShift->use_begin();
12981       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12982           Trunc2->getValueType(0) != MVT::i32 ||
12983           !Trunc2->hasOneUse())
12984         return false;
12985 
12986       SDNode *Bitcast = *Trunc->use_begin();
12987       SDNode *Bitcast2 = *Trunc2->use_begin();
12988 
12989       if (Bitcast->getOpcode() != ISD::BITCAST ||
12990           Bitcast->getValueType(0) != MVT::f32)
12991         return false;
12992       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12993           Bitcast2->getValueType(0) != MVT::f32)
12994         return false;
12995 
12996       if (Subtarget.isLittleEndian())
12997         std::swap(Bitcast, Bitcast2);
12998 
12999       // Bitcast has the second float (in memory-layout order) and Bitcast2
13000       // has the first one.
13001 
13002       SDValue BasePtr = LD->getBasePtr();
13003       if (LD->isIndexed()) {
13004         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13005                "Non-pre-inc AM on PPC?");
13006         BasePtr =
13007           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13008                       LD->getOffset());
13009       }
13010 
13011       auto MMOFlags =
13012           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13013       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13014                                       LD->getPointerInfo(), LD->getAlignment(),
13015                                       MMOFlags, LD->getAAInfo());
13016       SDValue AddPtr =
13017         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13018                     BasePtr, DAG.getIntPtrConstant(4, dl));
13019       SDValue FloatLoad2 = DAG.getLoad(
13020           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13021           LD->getPointerInfo().getWithOffset(4),
13022           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13023 
13024       if (LD->isIndexed()) {
13025         // Note that DAGCombine should re-form any pre-increment load(s) from
13026         // what is produced here if that makes sense.
13027         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13028       }
13029 
13030       DCI.CombineTo(Bitcast2, FloatLoad);
13031       DCI.CombineTo(Bitcast, FloatLoad2);
13032 
13033       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13034                                     SDValue(FloatLoad2.getNode(), 1));
13035       return true;
13036     };
13037 
13038     if (ReplaceTwoFloatLoad())
13039       return SDValue(N, 0);
13040 
13041     EVT MemVT = LD->getMemoryVT();
13042     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13043     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13044     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13045     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13046     if (LD->isUnindexed() && VT.isVector() &&
13047         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13048           // P8 and later hardware should just use LOAD.
13049           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13050                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13051          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13052           LD->getAlignment() >= ScalarABIAlignment)) &&
13053         LD->getAlignment() < ABIAlignment) {
13054       // This is a type-legal unaligned Altivec or QPX load.
13055       SDValue Chain = LD->getChain();
13056       SDValue Ptr = LD->getBasePtr();
13057       bool isLittleEndian = Subtarget.isLittleEndian();
13058 
13059       // This implements the loading of unaligned vectors as described in
13060       // the venerable Apple Velocity Engine overview. Specifically:
13061       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13062       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13063       //
13064       // The general idea is to expand a sequence of one or more unaligned
13065       // loads into an alignment-based permutation-control instruction (lvsl
13066       // or lvsr), a series of regular vector loads (which always truncate
13067       // their input address to an aligned address), and a series of
13068       // permutations.  The results of these permutations are the requested
13069       // loaded values.  The trick is that the last "extra" load is not taken
13070       // from the address you might suspect (sizeof(vector) bytes after the
13071       // last requested load), but rather sizeof(vector) - 1 bytes after the
13072       // last requested vector. The point of this is to avoid a page fault if
13073       // the base address happened to be aligned. This works because if the
13074       // base address is aligned, then adding less than a full vector length
13075       // will cause the last vector in the sequence to be (re)loaded.
13076       // Otherwise, the next vector will be fetched as you might suspect was
13077       // necessary.
13078 
13079       // We might be able to reuse the permutation generation from
13080       // a different base address offset from this one by an aligned amount.
13081       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13082       // optimization later.
13083       Intrinsic::ID Intr, IntrLD, IntrPerm;
13084       MVT PermCntlTy, PermTy, LDTy;
13085       if (Subtarget.hasAltivec()) {
13086         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13087                                  Intrinsic::ppc_altivec_lvsl;
13088         IntrLD = Intrinsic::ppc_altivec_lvx;
13089         IntrPerm = Intrinsic::ppc_altivec_vperm;
13090         PermCntlTy = MVT::v16i8;
13091         PermTy = MVT::v4i32;
13092         LDTy = MVT::v4i32;
13093       } else {
13094         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13095                                        Intrinsic::ppc_qpx_qvlpcls;
13096         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13097                                        Intrinsic::ppc_qpx_qvlfs;
13098         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13099         PermCntlTy = MVT::v4f64;
13100         PermTy = MVT::v4f64;
13101         LDTy = MemVT.getSimpleVT();
13102       }
13103 
13104       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
13105 
13106       // Create the new MMO for the new base load. It is like the original MMO,
13107       // but represents an area in memory almost twice the vector size centered
13108       // on the original address. If the address is unaligned, we might start
13109       // reading up to (sizeof(vector)-1) bytes below the address of the
13110       // original unaligned load.
13111       MachineFunction &MF = DAG.getMachineFunction();
13112       MachineMemOperand *BaseMMO =
13113         MF.getMachineMemOperand(LD->getMemOperand(),
13114                                 -(long)MemVT.getStoreSize()+1,
13115                                 2*MemVT.getStoreSize()-1);
13116 
13117       // Create the new base load.
13118       SDValue LDXIntID =
13119           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
13120       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
13121       SDValue BaseLoad =
13122         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13123                                 DAG.getVTList(PermTy, MVT::Other),
13124                                 BaseLoadOps, LDTy, BaseMMO);
13125 
13126       // Note that the value of IncOffset (which is provided to the next
13127       // load's pointer info offset value, and thus used to calculate the
13128       // alignment), and the value of IncValue (which is actually used to
13129       // increment the pointer value) are different! This is because we
13130       // require the next load to appear to be aligned, even though it
13131       // is actually offset from the base pointer by a lesser amount.
13132       int IncOffset = VT.getSizeInBits() / 8;
13133       int IncValue = IncOffset;
13134 
13135       // Walk (both up and down) the chain looking for another load at the real
13136       // (aligned) offset (the alignment of the other load does not matter in
13137       // this case). If found, then do not use the offset reduction trick, as
13138       // that will prevent the loads from being later combined (as they would
13139       // otherwise be duplicates).
13140       if (!findConsecutiveLoad(LD, DAG))
13141         --IncValue;
13142 
13143       SDValue Increment =
13144           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
13145       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13146 
13147       MachineMemOperand *ExtraMMO =
13148         MF.getMachineMemOperand(LD->getMemOperand(),
13149                                 1, 2*MemVT.getStoreSize()-1);
13150       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13151       SDValue ExtraLoad =
13152         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13153                                 DAG.getVTList(PermTy, MVT::Other),
13154                                 ExtraLoadOps, LDTy, ExtraMMO);
13155 
13156       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13157         BaseLoad.getValue(1), ExtraLoad.getValue(1));
13158 
13159       // Because vperm has a big-endian bias, we must reverse the order
13160       // of the input vectors and complement the permute control vector
13161       // when generating little endian code.  We have already handled the
13162       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13163       // and ExtraLoad here.
13164       SDValue Perm;
13165       if (isLittleEndian)
13166         Perm = BuildIntrinsicOp(IntrPerm,
13167                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
13168       else
13169         Perm = BuildIntrinsicOp(IntrPerm,
13170                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13171 
13172       if (VT != PermTy)
13173         Perm = Subtarget.hasAltivec() ?
13174                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13175                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13176                                DAG.getTargetConstant(1, dl, MVT::i64));
13177                                // second argument is 1 because this rounding
13178                                // is always exact.
13179 
13180       // The output of the permutation is our loaded result, the TokenFactor is
13181       // our new chain.
13182       DCI.CombineTo(N, Perm, TF);
13183       return SDValue(N, 0);
13184     }
13185     }
13186     break;
13187     case ISD::INTRINSIC_WO_CHAIN: {
13188       bool isLittleEndian = Subtarget.isLittleEndian();
13189       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13190       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13191                                            : Intrinsic::ppc_altivec_lvsl);
13192       if ((IID == Intr ||
13193            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13194            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13195         N->getOperand(1)->getOpcode() == ISD::ADD) {
13196         SDValue Add = N->getOperand(1);
13197 
13198         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13199                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13200 
13201         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13202                                   APInt::getAllOnesValue(Bits /* alignment */)
13203                                       .zext(Add.getScalarValueSizeInBits()))) {
13204           SDNode *BasePtr = Add->getOperand(0).getNode();
13205           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13206                                     UE = BasePtr->use_end();
13207                UI != UE; ++UI) {
13208             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13209                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13210               // We've found another LVSL/LVSR, and this address is an aligned
13211               // multiple of that one. The results will be the same, so use the
13212               // one we've just found instead.
13213 
13214               return SDValue(*UI, 0);
13215             }
13216           }
13217         }
13218 
13219         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13220           SDNode *BasePtr = Add->getOperand(0).getNode();
13221           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13222                UE = BasePtr->use_end(); UI != UE; ++UI) {
13223             if (UI->getOpcode() == ISD::ADD &&
13224                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13225                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13226                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13227                 (1ULL << Bits) == 0) {
13228               SDNode *OtherAdd = *UI;
13229               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13230                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
13231                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13232                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13233                   return SDValue(*VI, 0);
13234                 }
13235               }
13236             }
13237           }
13238         }
13239       }
13240 
13241       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13242       // Expose the vabsduw/h/b opportunity for down stream
13243       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13244           (IID == Intrinsic::ppc_altivec_vmaxsw ||
13245            IID == Intrinsic::ppc_altivec_vmaxsh ||
13246            IID == Intrinsic::ppc_altivec_vmaxsb)) {
13247         SDValue V1 = N->getOperand(1);
13248         SDValue V2 = N->getOperand(2);
13249         if ((V1.getSimpleValueType() == MVT::v4i32 ||
13250              V1.getSimpleValueType() == MVT::v8i16 ||
13251              V1.getSimpleValueType() == MVT::v16i8) &&
13252             V1.getSimpleValueType() == V2.getSimpleValueType()) {
13253           // (0-a, a)
13254           if (V1.getOpcode() == ISD::SUB &&
13255               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13256               V1.getOperand(1) == V2) {
13257             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13258           }
13259           // (a, 0-a)
13260           if (V2.getOpcode() == ISD::SUB &&
13261               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13262               V2.getOperand(1) == V1) {
13263             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13264           }
13265           // (x-y, y-x)
13266           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13267               V1.getOperand(0) == V2.getOperand(1) &&
13268               V1.getOperand(1) == V2.getOperand(0)) {
13269             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13270           }
13271         }
13272       }
13273     }
13274 
13275     break;
13276   case ISD::INTRINSIC_W_CHAIN:
13277     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13278     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13279     if (Subtarget.needsSwapsForVSXMemOps()) {
13280       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13281       default:
13282         break;
13283       case Intrinsic::ppc_vsx_lxvw4x:
13284       case Intrinsic::ppc_vsx_lxvd2x:
13285         return expandVSXLoadForLE(N, DCI);
13286       }
13287     }
13288     break;
13289   case ISD::INTRINSIC_VOID:
13290     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13291     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13292     if (Subtarget.needsSwapsForVSXMemOps()) {
13293       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13294       default:
13295         break;
13296       case Intrinsic::ppc_vsx_stxvw4x:
13297       case Intrinsic::ppc_vsx_stxvd2x:
13298         return expandVSXStoreForLE(N, DCI);
13299       }
13300     }
13301     break;
13302   case ISD::BSWAP:
13303     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13304     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13305         N->getOperand(0).hasOneUse() &&
13306         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13307          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13308           N->getValueType(0) == MVT::i64))) {
13309       SDValue Load = N->getOperand(0);
13310       LoadSDNode *LD = cast<LoadSDNode>(Load);
13311       // Create the byte-swapping load.
13312       SDValue Ops[] = {
13313         LD->getChain(),    // Chain
13314         LD->getBasePtr(),  // Ptr
13315         DAG.getValueType(N->getValueType(0)) // VT
13316       };
13317       SDValue BSLoad =
13318         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13319                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13320                                               MVT::i64 : MVT::i32, MVT::Other),
13321                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13322 
13323       // If this is an i16 load, insert the truncate.
13324       SDValue ResVal = BSLoad;
13325       if (N->getValueType(0) == MVT::i16)
13326         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13327 
13328       // First, combine the bswap away.  This makes the value produced by the
13329       // load dead.
13330       DCI.CombineTo(N, ResVal);
13331 
13332       // Next, combine the load away, we give it a bogus result value but a real
13333       // chain result.  The result value is dead because the bswap is dead.
13334       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13335 
13336       // Return N so it doesn't get rechecked!
13337       return SDValue(N, 0);
13338     }
13339     break;
13340   case PPCISD::VCMP:
13341     // If a VCMPo node already exists with exactly the same operands as this
13342     // node, use its result instead of this node (VCMPo computes both a CR6 and
13343     // a normal output).
13344     //
13345     if (!N->getOperand(0).hasOneUse() &&
13346         !N->getOperand(1).hasOneUse() &&
13347         !N->getOperand(2).hasOneUse()) {
13348 
13349       // Scan all of the users of the LHS, looking for VCMPo's that match.
13350       SDNode *VCMPoNode = nullptr;
13351 
13352       SDNode *LHSN = N->getOperand(0).getNode();
13353       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13354            UI != E; ++UI)
13355         if (UI->getOpcode() == PPCISD::VCMPo &&
13356             UI->getOperand(1) == N->getOperand(1) &&
13357             UI->getOperand(2) == N->getOperand(2) &&
13358             UI->getOperand(0) == N->getOperand(0)) {
13359           VCMPoNode = *UI;
13360           break;
13361         }
13362 
13363       // If there is no VCMPo node, or if the flag value has a single use, don't
13364       // transform this.
13365       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13366         break;
13367 
13368       // Look at the (necessarily single) use of the flag value.  If it has a
13369       // chain, this transformation is more complex.  Note that multiple things
13370       // could use the value result, which we should ignore.
13371       SDNode *FlagUser = nullptr;
13372       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13373            FlagUser == nullptr; ++UI) {
13374         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13375         SDNode *User = *UI;
13376         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13377           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13378             FlagUser = User;
13379             break;
13380           }
13381         }
13382       }
13383 
13384       // If the user is a MFOCRF instruction, we know this is safe.
13385       // Otherwise we give up for right now.
13386       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13387         return SDValue(VCMPoNode, 0);
13388     }
13389     break;
13390   case ISD::BRCOND: {
13391     SDValue Cond = N->getOperand(1);
13392     SDValue Target = N->getOperand(2);
13393 
13394     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13395         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13396           Intrinsic::ppc_is_decremented_ctr_nonzero) {
13397 
13398       // We now need to make the intrinsic dead (it cannot be instruction
13399       // selected).
13400       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13401       assert(Cond.getNode()->hasOneUse() &&
13402              "Counter decrement has more than one use");
13403 
13404       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13405                          N->getOperand(0), Target);
13406     }
13407   }
13408   break;
13409   case ISD::BR_CC: {
13410     // If this is a branch on an altivec predicate comparison, lower this so
13411     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13412     // lowering is done pre-legalize, because the legalizer lowers the predicate
13413     // compare down to code that is difficult to reassemble.
13414     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13415     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13416 
13417     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13418     // value. If so, pass-through the AND to get to the intrinsic.
13419     if (LHS.getOpcode() == ISD::AND &&
13420         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13421         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13422           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13423         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13424         !isNullConstant(LHS.getOperand(1)))
13425       LHS = LHS.getOperand(0);
13426 
13427     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13428         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13429           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13430         isa<ConstantSDNode>(RHS)) {
13431       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13432              "Counter decrement comparison is not EQ or NE");
13433 
13434       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13435       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13436                     (CC == ISD::SETNE && !Val);
13437 
13438       // We now need to make the intrinsic dead (it cannot be instruction
13439       // selected).
13440       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13441       assert(LHS.getNode()->hasOneUse() &&
13442              "Counter decrement has more than one use");
13443 
13444       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13445                          N->getOperand(0), N->getOperand(4));
13446     }
13447 
13448     int CompareOpc;
13449     bool isDot;
13450 
13451     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13452         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13453         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13454       assert(isDot && "Can't compare against a vector result!");
13455 
13456       // If this is a comparison against something other than 0/1, then we know
13457       // that the condition is never/always true.
13458       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13459       if (Val != 0 && Val != 1) {
13460         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13461           return N->getOperand(0);
13462         // Always !=, turn it into an unconditional branch.
13463         return DAG.getNode(ISD::BR, dl, MVT::Other,
13464                            N->getOperand(0), N->getOperand(4));
13465       }
13466 
13467       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13468 
13469       // Create the PPCISD altivec 'dot' comparison node.
13470       SDValue Ops[] = {
13471         LHS.getOperand(2),  // LHS of compare
13472         LHS.getOperand(3),  // RHS of compare
13473         DAG.getConstant(CompareOpc, dl, MVT::i32)
13474       };
13475       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13476       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13477 
13478       // Unpack the result based on how the target uses it.
13479       PPC::Predicate CompOpc;
13480       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13481       default:  // Can't happen, don't crash on invalid number though.
13482       case 0:   // Branch on the value of the EQ bit of CR6.
13483         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13484         break;
13485       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13486         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13487         break;
13488       case 2:   // Branch on the value of the LT bit of CR6.
13489         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13490         break;
13491       case 3:   // Branch on the inverted value of the LT bit of CR6.
13492         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13493         break;
13494       }
13495 
13496       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13497                          DAG.getConstant(CompOpc, dl, MVT::i32),
13498                          DAG.getRegister(PPC::CR6, MVT::i32),
13499                          N->getOperand(4), CompNode.getValue(1));
13500     }
13501     break;
13502   }
13503   case ISD::BUILD_VECTOR:
13504     return DAGCombineBuildVector(N, DCI);
13505   case ISD::ABS:
13506     return combineABS(N, DCI);
13507   case ISD::VSELECT:
13508     return combineVSelect(N, DCI);
13509   }
13510 
13511   return SDValue();
13512 }
13513 
13514 SDValue
13515 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13516                                  SelectionDAG &DAG,
13517                                  SmallVectorImpl<SDNode *> &Created) const {
13518   // fold (sdiv X, pow2)
13519   EVT VT = N->getValueType(0);
13520   if (VT == MVT::i64 && !Subtarget.isPPC64())
13521     return SDValue();
13522   if ((VT != MVT::i32 && VT != MVT::i64) ||
13523       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13524     return SDValue();
13525 
13526   SDLoc DL(N);
13527   SDValue N0 = N->getOperand(0);
13528 
13529   bool IsNegPow2 = (-Divisor).isPowerOf2();
13530   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13531   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13532 
13533   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13534   Created.push_back(Op.getNode());
13535 
13536   if (IsNegPow2) {
13537     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13538     Created.push_back(Op.getNode());
13539   }
13540 
13541   return Op;
13542 }
13543 
13544 //===----------------------------------------------------------------------===//
13545 // Inline Assembly Support
13546 //===----------------------------------------------------------------------===//
13547 
13548 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13549                                                       KnownBits &Known,
13550                                                       const APInt &DemandedElts,
13551                                                       const SelectionDAG &DAG,
13552                                                       unsigned Depth) const {
13553   Known.resetAll();
13554   switch (Op.getOpcode()) {
13555   default: break;
13556   case PPCISD::LBRX: {
13557     // lhbrx is known to have the top bits cleared out.
13558     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13559       Known.Zero = 0xFFFF0000;
13560     break;
13561   }
13562   case ISD::INTRINSIC_WO_CHAIN: {
13563     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13564     default: break;
13565     case Intrinsic::ppc_altivec_vcmpbfp_p:
13566     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13567     case Intrinsic::ppc_altivec_vcmpequb_p:
13568     case Intrinsic::ppc_altivec_vcmpequh_p:
13569     case Intrinsic::ppc_altivec_vcmpequw_p:
13570     case Intrinsic::ppc_altivec_vcmpequd_p:
13571     case Intrinsic::ppc_altivec_vcmpgefp_p:
13572     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13573     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13574     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13575     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13576     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13577     case Intrinsic::ppc_altivec_vcmpgtub_p:
13578     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13579     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13580     case Intrinsic::ppc_altivec_vcmpgtud_p:
13581       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13582       break;
13583     }
13584   }
13585   }
13586 }
13587 
13588 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13589   switch (Subtarget.getDarwinDirective()) {
13590   default: break;
13591   case PPC::DIR_970:
13592   case PPC::DIR_PWR4:
13593   case PPC::DIR_PWR5:
13594   case PPC::DIR_PWR5X:
13595   case PPC::DIR_PWR6:
13596   case PPC::DIR_PWR6X:
13597   case PPC::DIR_PWR7:
13598   case PPC::DIR_PWR8:
13599   case PPC::DIR_PWR9: {
13600     if (!ML)
13601       break;
13602 
13603     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13604 
13605     // For small loops (between 5 and 8 instructions), align to a 32-byte
13606     // boundary so that the entire loop fits in one instruction-cache line.
13607     uint64_t LoopSize = 0;
13608     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13609       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13610         LoopSize += TII->getInstSizeInBytes(*J);
13611         if (LoopSize > 32)
13612           break;
13613       }
13614 
13615     if (LoopSize > 16 && LoopSize <= 32)
13616       return 5;
13617 
13618     break;
13619   }
13620   }
13621 
13622   return TargetLowering::getPrefLoopAlignment(ML);
13623 }
13624 
13625 /// getConstraintType - Given a constraint, return the type of
13626 /// constraint it is for this target.
13627 PPCTargetLowering::ConstraintType
13628 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13629   if (Constraint.size() == 1) {
13630     switch (Constraint[0]) {
13631     default: break;
13632     case 'b':
13633     case 'r':
13634     case 'f':
13635     case 'd':
13636     case 'v':
13637     case 'y':
13638       return C_RegisterClass;
13639     case 'Z':
13640       // FIXME: While Z does indicate a memory constraint, it specifically
13641       // indicates an r+r address (used in conjunction with the 'y' modifier
13642       // in the replacement string). Currently, we're forcing the base
13643       // register to be r0 in the asm printer (which is interpreted as zero)
13644       // and forming the complete address in the second register. This is
13645       // suboptimal.
13646       return C_Memory;
13647     }
13648   } else if (Constraint == "wc") { // individual CR bits.
13649     return C_RegisterClass;
13650   } else if (Constraint == "wa" || Constraint == "wd" ||
13651              Constraint == "wf" || Constraint == "ws" ||
13652              Constraint == "wi") {
13653     return C_RegisterClass; // VSX registers.
13654   }
13655   return TargetLowering::getConstraintType(Constraint);
13656 }
13657 
13658 /// Examine constraint type and operand type and determine a weight value.
13659 /// This object must already have been set up with the operand type
13660 /// and the current alternative constraint selected.
13661 TargetLowering::ConstraintWeight
13662 PPCTargetLowering::getSingleConstraintMatchWeight(
13663     AsmOperandInfo &info, const char *constraint) const {
13664   ConstraintWeight weight = CW_Invalid;
13665   Value *CallOperandVal = info.CallOperandVal;
13666     // If we don't have a value, we can't do a match,
13667     // but allow it at the lowest weight.
13668   if (!CallOperandVal)
13669     return CW_Default;
13670   Type *type = CallOperandVal->getType();
13671 
13672   // Look at the constraint type.
13673   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13674     return CW_Register; // an individual CR bit.
13675   else if ((StringRef(constraint) == "wa" ||
13676             StringRef(constraint) == "wd" ||
13677             StringRef(constraint) == "wf") &&
13678            type->isVectorTy())
13679     return CW_Register;
13680   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13681     return CW_Register;
13682   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
13683     return CW_Register; // just hold 64-bit integers data.
13684 
13685   switch (*constraint) {
13686   default:
13687     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13688     break;
13689   case 'b':
13690     if (type->isIntegerTy())
13691       weight = CW_Register;
13692     break;
13693   case 'f':
13694     if (type->isFloatTy())
13695       weight = CW_Register;
13696     break;
13697   case 'd':
13698     if (type->isDoubleTy())
13699       weight = CW_Register;
13700     break;
13701   case 'v':
13702     if (type->isVectorTy())
13703       weight = CW_Register;
13704     break;
13705   case 'y':
13706     weight = CW_Register;
13707     break;
13708   case 'Z':
13709     weight = CW_Memory;
13710     break;
13711   }
13712   return weight;
13713 }
13714 
13715 std::pair<unsigned, const TargetRegisterClass *>
13716 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13717                                                 StringRef Constraint,
13718                                                 MVT VT) const {
13719   if (Constraint.size() == 1) {
13720     // GCC RS6000 Constraint Letters
13721     switch (Constraint[0]) {
13722     case 'b':   // R1-R31
13723       if (VT == MVT::i64 && Subtarget.isPPC64())
13724         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13725       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13726     case 'r':   // R0-R31
13727       if (VT == MVT::i64 && Subtarget.isPPC64())
13728         return std::make_pair(0U, &PPC::G8RCRegClass);
13729       return std::make_pair(0U, &PPC::GPRCRegClass);
13730     // 'd' and 'f' constraints are both defined to be "the floating point
13731     // registers", where one is for 32-bit and the other for 64-bit. We don't
13732     // really care overly much here so just give them all the same reg classes.
13733     case 'd':
13734     case 'f':
13735       if (Subtarget.hasSPE()) {
13736         if (VT == MVT::f32 || VT == MVT::i32)
13737           return std::make_pair(0U, &PPC::SPE4RCRegClass);
13738         if (VT == MVT::f64 || VT == MVT::i64)
13739           return std::make_pair(0U, &PPC::SPERCRegClass);
13740       } else {
13741         if (VT == MVT::f32 || VT == MVT::i32)
13742           return std::make_pair(0U, &PPC::F4RCRegClass);
13743         if (VT == MVT::f64 || VT == MVT::i64)
13744           return std::make_pair(0U, &PPC::F8RCRegClass);
13745         if (VT == MVT::v4f64 && Subtarget.hasQPX())
13746           return std::make_pair(0U, &PPC::QFRCRegClass);
13747         if (VT == MVT::v4f32 && Subtarget.hasQPX())
13748           return std::make_pair(0U, &PPC::QSRCRegClass);
13749       }
13750       break;
13751     case 'v':
13752       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13753         return std::make_pair(0U, &PPC::QFRCRegClass);
13754       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13755         return std::make_pair(0U, &PPC::QSRCRegClass);
13756       if (Subtarget.hasAltivec())
13757         return std::make_pair(0U, &PPC::VRRCRegClass);
13758       break;
13759     case 'y':   // crrc
13760       return std::make_pair(0U, &PPC::CRRCRegClass);
13761     }
13762   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13763     // An individual CR bit.
13764     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13765   } else if ((Constraint == "wa" || Constraint == "wd" ||
13766              Constraint == "wf" || Constraint == "wi") &&
13767              Subtarget.hasVSX()) {
13768     return std::make_pair(0U, &PPC::VSRCRegClass);
13769   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13770     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13771       return std::make_pair(0U, &PPC::VSSRCRegClass);
13772     else
13773       return std::make_pair(0U, &PPC::VSFRCRegClass);
13774   }
13775 
13776   std::pair<unsigned, const TargetRegisterClass *> R =
13777       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13778 
13779   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13780   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13781   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13782   // register.
13783   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13784   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13785   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13786       PPC::GPRCRegClass.contains(R.first))
13787     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13788                             PPC::sub_32, &PPC::G8RCRegClass),
13789                           &PPC::G8RCRegClass);
13790 
13791   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13792   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13793     R.first = PPC::CR0;
13794     R.second = &PPC::CRRCRegClass;
13795   }
13796 
13797   return R;
13798 }
13799 
13800 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13801 /// vector.  If it is invalid, don't add anything to Ops.
13802 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13803                                                      std::string &Constraint,
13804                                                      std::vector<SDValue>&Ops,
13805                                                      SelectionDAG &DAG) const {
13806   SDValue Result;
13807 
13808   // Only support length 1 constraints.
13809   if (Constraint.length() > 1) return;
13810 
13811   char Letter = Constraint[0];
13812   switch (Letter) {
13813   default: break;
13814   case 'I':
13815   case 'J':
13816   case 'K':
13817   case 'L':
13818   case 'M':
13819   case 'N':
13820   case 'O':
13821   case 'P': {
13822     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13823     if (!CST) return; // Must be an immediate to match.
13824     SDLoc dl(Op);
13825     int64_t Value = CST->getSExtValue();
13826     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13827                          // numbers are printed as such.
13828     switch (Letter) {
13829     default: llvm_unreachable("Unknown constraint letter!");
13830     case 'I':  // "I" is a signed 16-bit constant.
13831       if (isInt<16>(Value))
13832         Result = DAG.getTargetConstant(Value, dl, TCVT);
13833       break;
13834     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13835       if (isShiftedUInt<16, 16>(Value))
13836         Result = DAG.getTargetConstant(Value, dl, TCVT);
13837       break;
13838     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13839       if (isShiftedInt<16, 16>(Value))
13840         Result = DAG.getTargetConstant(Value, dl, TCVT);
13841       break;
13842     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13843       if (isUInt<16>(Value))
13844         Result = DAG.getTargetConstant(Value, dl, TCVT);
13845       break;
13846     case 'M':  // "M" is a constant that is greater than 31.
13847       if (Value > 31)
13848         Result = DAG.getTargetConstant(Value, dl, TCVT);
13849       break;
13850     case 'N':  // "N" is a positive constant that is an exact power of two.
13851       if (Value > 0 && isPowerOf2_64(Value))
13852         Result = DAG.getTargetConstant(Value, dl, TCVT);
13853       break;
13854     case 'O':  // "O" is the constant zero.
13855       if (Value == 0)
13856         Result = DAG.getTargetConstant(Value, dl, TCVT);
13857       break;
13858     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13859       if (isInt<16>(-Value))
13860         Result = DAG.getTargetConstant(Value, dl, TCVT);
13861       break;
13862     }
13863     break;
13864   }
13865   }
13866 
13867   if (Result.getNode()) {
13868     Ops.push_back(Result);
13869     return;
13870   }
13871 
13872   // Handle standard constraint letters.
13873   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13874 }
13875 
13876 // isLegalAddressingMode - Return true if the addressing mode represented
13877 // by AM is legal for this target, for a load/store of the specified type.
13878 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13879                                               const AddrMode &AM, Type *Ty,
13880                                               unsigned AS, Instruction *I) const {
13881   // PPC does not allow r+i addressing modes for vectors!
13882   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13883     return false;
13884 
13885   // PPC allows a sign-extended 16-bit immediate field.
13886   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13887     return false;
13888 
13889   // No global is ever allowed as a base.
13890   if (AM.BaseGV)
13891     return false;
13892 
13893   // PPC only support r+r,
13894   switch (AM.Scale) {
13895   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13896     break;
13897   case 1:
13898     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13899       return false;
13900     // Otherwise we have r+r or r+i.
13901     break;
13902   case 2:
13903     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13904       return false;
13905     // Allow 2*r as r+r.
13906     break;
13907   default:
13908     // No other scales are supported.
13909     return false;
13910   }
13911 
13912   return true;
13913 }
13914 
13915 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13916                                            SelectionDAG &DAG) const {
13917   MachineFunction &MF = DAG.getMachineFunction();
13918   MachineFrameInfo &MFI = MF.getFrameInfo();
13919   MFI.setReturnAddressIsTaken(true);
13920 
13921   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13922     return SDValue();
13923 
13924   SDLoc dl(Op);
13925   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13926 
13927   // Make sure the function does not optimize away the store of the RA to
13928   // the stack.
13929   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13930   FuncInfo->setLRStoreRequired();
13931   bool isPPC64 = Subtarget.isPPC64();
13932   auto PtrVT = getPointerTy(MF.getDataLayout());
13933 
13934   if (Depth > 0) {
13935     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13936     SDValue Offset =
13937         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13938                         isPPC64 ? MVT::i64 : MVT::i32);
13939     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13940                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13941                        MachinePointerInfo());
13942   }
13943 
13944   // Just load the return address off the stack.
13945   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13946   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13947                      MachinePointerInfo());
13948 }
13949 
13950 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13951                                           SelectionDAG &DAG) const {
13952   SDLoc dl(Op);
13953   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13954 
13955   MachineFunction &MF = DAG.getMachineFunction();
13956   MachineFrameInfo &MFI = MF.getFrameInfo();
13957   MFI.setFrameAddressIsTaken(true);
13958 
13959   EVT PtrVT = getPointerTy(MF.getDataLayout());
13960   bool isPPC64 = PtrVT == MVT::i64;
13961 
13962   // Naked functions never have a frame pointer, and so we use r1. For all
13963   // other functions, this decision must be delayed until during PEI.
13964   unsigned FrameReg;
13965   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13966     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13967   else
13968     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13969 
13970   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13971                                          PtrVT);
13972   while (Depth--)
13973     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13974                             FrameAddr, MachinePointerInfo());
13975   return FrameAddr;
13976 }
13977 
13978 // FIXME? Maybe this could be a TableGen attribute on some registers and
13979 // this table could be generated automatically from RegInfo.
13980 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13981                                               SelectionDAG &DAG) const {
13982   bool isPPC64 = Subtarget.isPPC64();
13983   bool isDarwinABI = Subtarget.isDarwinABI();
13984 
13985   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13986       (!isPPC64 && VT != MVT::i32))
13987     report_fatal_error("Invalid register global variable type");
13988 
13989   bool is64Bit = isPPC64 && VT == MVT::i64;
13990   unsigned Reg = StringSwitch<unsigned>(RegName)
13991                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13992                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13993                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13994                                   (is64Bit ? PPC::X13 : PPC::R13))
13995                    .Default(0);
13996 
13997   if (Reg)
13998     return Reg;
13999   report_fatal_error("Invalid register name global variable");
14000 }
14001 
14002 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14003   // 32-bit SVR4 ABI access everything as got-indirect.
14004   if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
14005     return true;
14006 
14007   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14008   // If it is small or large code model, module locals are accessed
14009   // indirectly by loading their address from .toc/.got. The difference
14010   // is that for large code model we have ADDISTocHa + LDtocL and for
14011   // small code model we simply have LDtoc.
14012   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14013     return true;
14014 
14015   // JumpTable and BlockAddress are accessed as got-indirect.
14016   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14017     return true;
14018 
14019   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
14020     const GlobalValue *GV = G->getGlobal();
14021     unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
14022     // The NLP flag indicates that a global access has to use an
14023     // extra indirection.
14024     if (GVFlags & PPCII::MO_NLP_FLAG)
14025       return true;
14026   }
14027 
14028   return false;
14029 }
14030 
14031 bool
14032 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14033   // The PowerPC target isn't yet aware of offsets.
14034   return false;
14035 }
14036 
14037 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14038                                            const CallInst &I,
14039                                            MachineFunction &MF,
14040                                            unsigned Intrinsic) const {
14041   switch (Intrinsic) {
14042   case Intrinsic::ppc_qpx_qvlfd:
14043   case Intrinsic::ppc_qpx_qvlfs:
14044   case Intrinsic::ppc_qpx_qvlfcd:
14045   case Intrinsic::ppc_qpx_qvlfcs:
14046   case Intrinsic::ppc_qpx_qvlfiwa:
14047   case Intrinsic::ppc_qpx_qvlfiwz:
14048   case Intrinsic::ppc_altivec_lvx:
14049   case Intrinsic::ppc_altivec_lvxl:
14050   case Intrinsic::ppc_altivec_lvebx:
14051   case Intrinsic::ppc_altivec_lvehx:
14052   case Intrinsic::ppc_altivec_lvewx:
14053   case Intrinsic::ppc_vsx_lxvd2x:
14054   case Intrinsic::ppc_vsx_lxvw4x: {
14055     EVT VT;
14056     switch (Intrinsic) {
14057     case Intrinsic::ppc_altivec_lvebx:
14058       VT = MVT::i8;
14059       break;
14060     case Intrinsic::ppc_altivec_lvehx:
14061       VT = MVT::i16;
14062       break;
14063     case Intrinsic::ppc_altivec_lvewx:
14064       VT = MVT::i32;
14065       break;
14066     case Intrinsic::ppc_vsx_lxvd2x:
14067       VT = MVT::v2f64;
14068       break;
14069     case Intrinsic::ppc_qpx_qvlfd:
14070       VT = MVT::v4f64;
14071       break;
14072     case Intrinsic::ppc_qpx_qvlfs:
14073       VT = MVT::v4f32;
14074       break;
14075     case Intrinsic::ppc_qpx_qvlfcd:
14076       VT = MVT::v2f64;
14077       break;
14078     case Intrinsic::ppc_qpx_qvlfcs:
14079       VT = MVT::v2f32;
14080       break;
14081     default:
14082       VT = MVT::v4i32;
14083       break;
14084     }
14085 
14086     Info.opc = ISD::INTRINSIC_W_CHAIN;
14087     Info.memVT = VT;
14088     Info.ptrVal = I.getArgOperand(0);
14089     Info.offset = -VT.getStoreSize()+1;
14090     Info.size = 2*VT.getStoreSize()-1;
14091     Info.align = 1;
14092     Info.flags = MachineMemOperand::MOLoad;
14093     return true;
14094   }
14095   case Intrinsic::ppc_qpx_qvlfda:
14096   case Intrinsic::ppc_qpx_qvlfsa:
14097   case Intrinsic::ppc_qpx_qvlfcda:
14098   case Intrinsic::ppc_qpx_qvlfcsa:
14099   case Intrinsic::ppc_qpx_qvlfiwaa:
14100   case Intrinsic::ppc_qpx_qvlfiwza: {
14101     EVT VT;
14102     switch (Intrinsic) {
14103     case Intrinsic::ppc_qpx_qvlfda:
14104       VT = MVT::v4f64;
14105       break;
14106     case Intrinsic::ppc_qpx_qvlfsa:
14107       VT = MVT::v4f32;
14108       break;
14109     case Intrinsic::ppc_qpx_qvlfcda:
14110       VT = MVT::v2f64;
14111       break;
14112     case Intrinsic::ppc_qpx_qvlfcsa:
14113       VT = MVT::v2f32;
14114       break;
14115     default:
14116       VT = MVT::v4i32;
14117       break;
14118     }
14119 
14120     Info.opc = ISD::INTRINSIC_W_CHAIN;
14121     Info.memVT = VT;
14122     Info.ptrVal = I.getArgOperand(0);
14123     Info.offset = 0;
14124     Info.size = VT.getStoreSize();
14125     Info.align = 1;
14126     Info.flags = MachineMemOperand::MOLoad;
14127     return true;
14128   }
14129   case Intrinsic::ppc_qpx_qvstfd:
14130   case Intrinsic::ppc_qpx_qvstfs:
14131   case Intrinsic::ppc_qpx_qvstfcd:
14132   case Intrinsic::ppc_qpx_qvstfcs:
14133   case Intrinsic::ppc_qpx_qvstfiw:
14134   case Intrinsic::ppc_altivec_stvx:
14135   case Intrinsic::ppc_altivec_stvxl:
14136   case Intrinsic::ppc_altivec_stvebx:
14137   case Intrinsic::ppc_altivec_stvehx:
14138   case Intrinsic::ppc_altivec_stvewx:
14139   case Intrinsic::ppc_vsx_stxvd2x:
14140   case Intrinsic::ppc_vsx_stxvw4x: {
14141     EVT VT;
14142     switch (Intrinsic) {
14143     case Intrinsic::ppc_altivec_stvebx:
14144       VT = MVT::i8;
14145       break;
14146     case Intrinsic::ppc_altivec_stvehx:
14147       VT = MVT::i16;
14148       break;
14149     case Intrinsic::ppc_altivec_stvewx:
14150       VT = MVT::i32;
14151       break;
14152     case Intrinsic::ppc_vsx_stxvd2x:
14153       VT = MVT::v2f64;
14154       break;
14155     case Intrinsic::ppc_qpx_qvstfd:
14156       VT = MVT::v4f64;
14157       break;
14158     case Intrinsic::ppc_qpx_qvstfs:
14159       VT = MVT::v4f32;
14160       break;
14161     case Intrinsic::ppc_qpx_qvstfcd:
14162       VT = MVT::v2f64;
14163       break;
14164     case Intrinsic::ppc_qpx_qvstfcs:
14165       VT = MVT::v2f32;
14166       break;
14167     default:
14168       VT = MVT::v4i32;
14169       break;
14170     }
14171 
14172     Info.opc = ISD::INTRINSIC_VOID;
14173     Info.memVT = VT;
14174     Info.ptrVal = I.getArgOperand(1);
14175     Info.offset = -VT.getStoreSize()+1;
14176     Info.size = 2*VT.getStoreSize()-1;
14177     Info.align = 1;
14178     Info.flags = MachineMemOperand::MOStore;
14179     return true;
14180   }
14181   case Intrinsic::ppc_qpx_qvstfda:
14182   case Intrinsic::ppc_qpx_qvstfsa:
14183   case Intrinsic::ppc_qpx_qvstfcda:
14184   case Intrinsic::ppc_qpx_qvstfcsa:
14185   case Intrinsic::ppc_qpx_qvstfiwa: {
14186     EVT VT;
14187     switch (Intrinsic) {
14188     case Intrinsic::ppc_qpx_qvstfda:
14189       VT = MVT::v4f64;
14190       break;
14191     case Intrinsic::ppc_qpx_qvstfsa:
14192       VT = MVT::v4f32;
14193       break;
14194     case Intrinsic::ppc_qpx_qvstfcda:
14195       VT = MVT::v2f64;
14196       break;
14197     case Intrinsic::ppc_qpx_qvstfcsa:
14198       VT = MVT::v2f32;
14199       break;
14200     default:
14201       VT = MVT::v4i32;
14202       break;
14203     }
14204 
14205     Info.opc = ISD::INTRINSIC_VOID;
14206     Info.memVT = VT;
14207     Info.ptrVal = I.getArgOperand(1);
14208     Info.offset = 0;
14209     Info.size = VT.getStoreSize();
14210     Info.align = 1;
14211     Info.flags = MachineMemOperand::MOStore;
14212     return true;
14213   }
14214   default:
14215     break;
14216   }
14217 
14218   return false;
14219 }
14220 
14221 /// getOptimalMemOpType - Returns the target specific optimal type for load
14222 /// and store operations as a result of memset, memcpy, and memmove
14223 /// lowering. If DstAlign is zero that means it's safe to destination
14224 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14225 /// means there isn't a need to check it against alignment requirement,
14226 /// probably because the source does not need to be loaded. If 'IsMemset' is
14227 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14228 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14229 /// source is constant so it does not need to be loaded.
14230 /// It returns EVT::Other if the type should be determined using generic
14231 /// target-independent logic.
14232 EVT PPCTargetLowering::getOptimalMemOpType(
14233     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
14234     bool ZeroMemset, bool MemcpyStrSrc,
14235     const AttributeList &FuncAttributes) const {
14236   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14237     // When expanding a memset, require at least two QPX instructions to cover
14238     // the cost of loading the value to be stored from the constant pool.
14239     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14240        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14241         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
14242       return MVT::v4f64;
14243     }
14244 
14245     // We should use Altivec/VSX loads and stores when available. For unaligned
14246     // addresses, unaligned VSX loads are only fast starting with the P8.
14247     if (Subtarget.hasAltivec() && Size >= 16 &&
14248         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14249          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14250       return MVT::v4i32;
14251   }
14252 
14253   if (Subtarget.isPPC64()) {
14254     return MVT::i64;
14255   }
14256 
14257   return MVT::i32;
14258 }
14259 
14260 /// Returns true if it is beneficial to convert a load of a constant
14261 /// to just the constant itself.
14262 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14263                                                           Type *Ty) const {
14264   assert(Ty->isIntegerTy());
14265 
14266   unsigned BitSize = Ty->getPrimitiveSizeInBits();
14267   return !(BitSize == 0 || BitSize > 64);
14268 }
14269 
14270 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14271   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14272     return false;
14273   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14274   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14275   return NumBits1 == 64 && NumBits2 == 32;
14276 }
14277 
14278 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14279   if (!VT1.isInteger() || !VT2.isInteger())
14280     return false;
14281   unsigned NumBits1 = VT1.getSizeInBits();
14282   unsigned NumBits2 = VT2.getSizeInBits();
14283   return NumBits1 == 64 && NumBits2 == 32;
14284 }
14285 
14286 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14287   // Generally speaking, zexts are not free, but they are free when they can be
14288   // folded with other operations.
14289   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14290     EVT MemVT = LD->getMemoryVT();
14291     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14292          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14293         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14294          LD->getExtensionType() == ISD::ZEXTLOAD))
14295       return true;
14296   }
14297 
14298   // FIXME: Add other cases...
14299   //  - 32-bit shifts with a zext to i64
14300   //  - zext after ctlz, bswap, etc.
14301   //  - zext after and by a constant mask
14302 
14303   return TargetLowering::isZExtFree(Val, VT2);
14304 }
14305 
14306 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14307   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14308          "invalid fpext types");
14309   // Extending to float128 is not free.
14310   if (DestVT == MVT::f128)
14311     return false;
14312   return true;
14313 }
14314 
14315 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14316   return isInt<16>(Imm) || isUInt<16>(Imm);
14317 }
14318 
14319 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14320   return isInt<16>(Imm) || isUInt<16>(Imm);
14321 }
14322 
14323 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14324                                                        unsigned,
14325                                                        unsigned,
14326                                                        bool *Fast) const {
14327   if (DisablePPCUnaligned)
14328     return false;
14329 
14330   // PowerPC supports unaligned memory access for simple non-vector types.
14331   // Although accessing unaligned addresses is not as efficient as accessing
14332   // aligned addresses, it is generally more efficient than manual expansion,
14333   // and generally only traps for software emulation when crossing page
14334   // boundaries.
14335 
14336   if (!VT.isSimple())
14337     return false;
14338 
14339   if (VT.getSimpleVT().isVector()) {
14340     if (Subtarget.hasVSX()) {
14341       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14342           VT != MVT::v4f32 && VT != MVT::v4i32)
14343         return false;
14344     } else {
14345       return false;
14346     }
14347   }
14348 
14349   if (VT == MVT::ppcf128)
14350     return false;
14351 
14352   if (Fast)
14353     *Fast = true;
14354 
14355   return true;
14356 }
14357 
14358 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14359   VT = VT.getScalarType();
14360 
14361   if (!VT.isSimple())
14362     return false;
14363 
14364   switch (VT.getSimpleVT().SimpleTy) {
14365   case MVT::f32:
14366   case MVT::f64:
14367     return true;
14368   case MVT::f128:
14369     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14370   default:
14371     break;
14372   }
14373 
14374   return false;
14375 }
14376 
14377 const MCPhysReg *
14378 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14379   // LR is a callee-save register, but we must treat it as clobbered by any call
14380   // site. Hence we include LR in the scratch registers, which are in turn added
14381   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14382   // to CTR, which is used by any indirect call.
14383   static const MCPhysReg ScratchRegs[] = {
14384     PPC::X12, PPC::LR8, PPC::CTR8, 0
14385   };
14386 
14387   return ScratchRegs;
14388 }
14389 
14390 unsigned PPCTargetLowering::getExceptionPointerRegister(
14391     const Constant *PersonalityFn) const {
14392   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14393 }
14394 
14395 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14396     const Constant *PersonalityFn) const {
14397   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14398 }
14399 
14400 bool
14401 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14402                      EVT VT , unsigned DefinedValues) const {
14403   if (VT == MVT::v2i64)
14404     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14405 
14406   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14407     return true;
14408 
14409   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14410 }
14411 
14412 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14413   if (DisableILPPref || Subtarget.enableMachineScheduler())
14414     return TargetLowering::getSchedulingPreference(N);
14415 
14416   return Sched::ILP;
14417 }
14418 
14419 // Create a fast isel object.
14420 FastISel *
14421 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14422                                   const TargetLibraryInfo *LibInfo) const {
14423   return PPC::createFastISel(FuncInfo, LibInfo);
14424 }
14425 
14426 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14427   if (Subtarget.isDarwinABI()) return;
14428   if (!Subtarget.isPPC64()) return;
14429 
14430   // Update IsSplitCSR in PPCFunctionInfo
14431   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14432   PFI->setIsSplitCSR(true);
14433 }
14434 
14435 void PPCTargetLowering::insertCopiesSplitCSR(
14436   MachineBasicBlock *Entry,
14437   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14438   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14439   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14440   if (!IStart)
14441     return;
14442 
14443   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14444   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14445   MachineBasicBlock::iterator MBBI = Entry->begin();
14446   for (const MCPhysReg *I = IStart; *I; ++I) {
14447     const TargetRegisterClass *RC = nullptr;
14448     if (PPC::G8RCRegClass.contains(*I))
14449       RC = &PPC::G8RCRegClass;
14450     else if (PPC::F8RCRegClass.contains(*I))
14451       RC = &PPC::F8RCRegClass;
14452     else if (PPC::CRRCRegClass.contains(*I))
14453       RC = &PPC::CRRCRegClass;
14454     else if (PPC::VRRCRegClass.contains(*I))
14455       RC = &PPC::VRRCRegClass;
14456     else
14457       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14458 
14459     unsigned NewVR = MRI->createVirtualRegister(RC);
14460     // Create copy from CSR to a virtual register.
14461     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14462     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14463     // nounwind. If we want to generalize this later, we may need to emit
14464     // CFI pseudo-instructions.
14465     assert(Entry->getParent()->getFunction().hasFnAttribute(
14466              Attribute::NoUnwind) &&
14467            "Function should be nounwind in insertCopiesSplitCSR!");
14468     Entry->addLiveIn(*I);
14469     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14470       .addReg(*I);
14471 
14472     // Insert the copy-back instructions right before the terminator.
14473     for (auto *Exit : Exits)
14474       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14475               TII->get(TargetOpcode::COPY), *I)
14476         .addReg(NewVR);
14477   }
14478 }
14479 
14480 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14481 bool PPCTargetLowering::useLoadStackGuardNode() const {
14482   if (!Subtarget.isTargetLinux())
14483     return TargetLowering::useLoadStackGuardNode();
14484   return true;
14485 }
14486 
14487 // Override to disable global variable loading on Linux.
14488 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14489   if (!Subtarget.isTargetLinux())
14490     return TargetLowering::insertSSPDeclarations(M);
14491 }
14492 
14493 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
14494                                      bool ForCodeSize) const {
14495   if (!VT.isSimple() || !Subtarget.hasVSX())
14496     return false;
14497 
14498   switch(VT.getSimpleVT().SimpleTy) {
14499   default:
14500     // For FP types that are currently not supported by PPC backend, return
14501     // false. Examples: f16, f80.
14502     return false;
14503   case MVT::f32:
14504   case MVT::f64:
14505   case MVT::ppcf128:
14506     return Imm.isPosZero();
14507   }
14508 }
14509 
14510 // For vector shift operation op, fold
14511 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14512 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14513                                   SelectionDAG &DAG) {
14514   SDValue N0 = N->getOperand(0);
14515   SDValue N1 = N->getOperand(1);
14516   EVT VT = N0.getValueType();
14517   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14518   unsigned Opcode = N->getOpcode();
14519   unsigned TargetOpcode;
14520 
14521   switch (Opcode) {
14522   default:
14523     llvm_unreachable("Unexpected shift operation");
14524   case ISD::SHL:
14525     TargetOpcode = PPCISD::SHL;
14526     break;
14527   case ISD::SRL:
14528     TargetOpcode = PPCISD::SRL;
14529     break;
14530   case ISD::SRA:
14531     TargetOpcode = PPCISD::SRA;
14532     break;
14533   }
14534 
14535   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14536       N1->getOpcode() == ISD::AND)
14537     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14538       if (Mask->getZExtValue() == OpSizeInBits - 1)
14539         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14540 
14541   return SDValue();
14542 }
14543 
14544 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14545   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14546     return Value;
14547 
14548   SDValue N0 = N->getOperand(0);
14549   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14550   if (!Subtarget.isISA3_0() ||
14551       N0.getOpcode() != ISD::SIGN_EXTEND ||
14552       N0.getOperand(0).getValueType() != MVT::i32 ||
14553       CN1 == nullptr || N->getValueType(0) != MVT::i64)
14554     return SDValue();
14555 
14556   // We can't save an operation here if the value is already extended, and
14557   // the existing shift is easier to combine.
14558   SDValue ExtsSrc = N0.getOperand(0);
14559   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14560       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14561     return SDValue();
14562 
14563   SDLoc DL(N0);
14564   SDValue ShiftBy = SDValue(CN1, 0);
14565   // We want the shift amount to be i32 on the extswli, but the shift could
14566   // have an i64.
14567   if (ShiftBy.getValueType() == MVT::i64)
14568     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14569 
14570   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14571                          ShiftBy);
14572 }
14573 
14574 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14575   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14576     return Value;
14577 
14578   return SDValue();
14579 }
14580 
14581 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14582   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14583     return Value;
14584 
14585   return SDValue();
14586 }
14587 
14588 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14589 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14590 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14591 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14592 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14593                                  const PPCSubtarget &Subtarget) {
14594   if (!Subtarget.isPPC64())
14595     return SDValue();
14596 
14597   SDValue LHS = N->getOperand(0);
14598   SDValue RHS = N->getOperand(1);
14599 
14600   auto isZextOfCompareWithConstant = [](SDValue Op) {
14601     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14602         Op.getValueType() != MVT::i64)
14603       return false;
14604 
14605     SDValue Cmp = Op.getOperand(0);
14606     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14607         Cmp.getOperand(0).getValueType() != MVT::i64)
14608       return false;
14609 
14610     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14611       int64_t NegConstant = 0 - Constant->getSExtValue();
14612       // Due to the limitations of the addi instruction,
14613       // -C is required to be [-32768, 32767].
14614       return isInt<16>(NegConstant);
14615     }
14616 
14617     return false;
14618   };
14619 
14620   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14621   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14622 
14623   // If there is a pattern, canonicalize a zext operand to the RHS.
14624   if (LHSHasPattern && !RHSHasPattern)
14625     std::swap(LHS, RHS);
14626   else if (!LHSHasPattern && !RHSHasPattern)
14627     return SDValue();
14628 
14629   SDLoc DL(N);
14630   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
14631   SDValue Cmp = RHS.getOperand(0);
14632   SDValue Z = Cmp.getOperand(0);
14633   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14634 
14635   assert(Constant && "Constant Should not be a null pointer.");
14636   int64_t NegConstant = 0 - Constant->getSExtValue();
14637 
14638   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14639   default: break;
14640   case ISD::SETNE: {
14641     //                                 when C == 0
14642     //                             --> addze X, (addic Z, -1).carry
14643     //                            /
14644     // add X, (zext(setne Z, C))--
14645     //                            \    when -32768 <= -C <= 32767 && C != 0
14646     //                             --> addze X, (addic (addi Z, -C), -1).carry
14647     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14648                               DAG.getConstant(NegConstant, DL, MVT::i64));
14649     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14650     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14651                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14652     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14653                        SDValue(Addc.getNode(), 1));
14654     }
14655   case ISD::SETEQ: {
14656     //                                 when C == 0
14657     //                             --> addze X, (subfic Z, 0).carry
14658     //                            /
14659     // add X, (zext(sete  Z, C))--
14660     //                            \    when -32768 <= -C <= 32767 && C != 0
14661     //                             --> addze X, (subfic (addi Z, -C), 0).carry
14662     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14663                               DAG.getConstant(NegConstant, DL, MVT::i64));
14664     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14665     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14666                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
14667     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14668                        SDValue(Subc.getNode(), 1));
14669     }
14670   }
14671 
14672   return SDValue();
14673 }
14674 
14675 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
14676   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
14677     return Value;
14678 
14679   return SDValue();
14680 }
14681 
14682 // Detect TRUNCATE operations on bitcasts of float128 values.
14683 // What we are looking for here is the situtation where we extract a subset
14684 // of bits from a 128 bit float.
14685 // This can be of two forms:
14686 // 1) BITCAST of f128 feeding TRUNCATE
14687 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14688 // The reason this is required is because we do not have a legal i128 type
14689 // and so we want to prevent having to store the f128 and then reload part
14690 // of it.
14691 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
14692                                            DAGCombinerInfo &DCI) const {
14693   // If we are using CRBits then try that first.
14694   if (Subtarget.useCRBits()) {
14695     // Check if CRBits did anything and return that if it did.
14696     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
14697       return CRTruncValue;
14698   }
14699 
14700   SDLoc dl(N);
14701   SDValue Op0 = N->getOperand(0);
14702 
14703   // Looking for a truncate of i128 to i64.
14704   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
14705     return SDValue();
14706 
14707   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
14708 
14709   // SRL feeding TRUNCATE.
14710   if (Op0.getOpcode() == ISD::SRL) {
14711     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
14712     // The right shift has to be by 64 bits.
14713     if (!ConstNode || ConstNode->getZExtValue() != 64)
14714       return SDValue();
14715 
14716     // Switch the element number to extract.
14717     EltToExtract = EltToExtract ? 0 : 1;
14718     // Update Op0 past the SRL.
14719     Op0 = Op0.getOperand(0);
14720   }
14721 
14722   // BITCAST feeding a TRUNCATE possibly via SRL.
14723   if (Op0.getOpcode() == ISD::BITCAST &&
14724       Op0.getValueType() == MVT::i128 &&
14725       Op0.getOperand(0).getValueType() == MVT::f128) {
14726     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
14727     return DCI.DAG.getNode(
14728         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
14729         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
14730   }
14731   return SDValue();
14732 }
14733 
14734 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
14735   SelectionDAG &DAG = DCI.DAG;
14736 
14737   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
14738   if (!ConstOpOrElement)
14739     return SDValue();
14740 
14741   // An imul is usually smaller than the alternative sequence for legal type.
14742   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
14743       isOperationLegal(ISD::MUL, N->getValueType(0)))
14744     return SDValue();
14745 
14746   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
14747     switch (this->Subtarget.getDarwinDirective()) {
14748     default:
14749       // TODO: enhance the condition for subtarget before pwr8
14750       return false;
14751     case PPC::DIR_PWR8:
14752       //  type        mul     add    shl
14753       // scalar        4       1      1
14754       // vector        7       2      2
14755       return true;
14756     case PPC::DIR_PWR9:
14757       //  type        mul     add    shl
14758       // scalar        5       2      2
14759       // vector        7       2      2
14760 
14761       // The cycle RATIO of related operations are showed as a table above.
14762       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
14763       // scalar and vector type. For 2 instrs patterns, add/sub + shl
14764       // are 4, it is always profitable; but for 3 instrs patterns
14765       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
14766       // So we should only do it for vector type.
14767       return IsAddOne && IsNeg ? VT.isVector() : true;
14768     }
14769   };
14770 
14771   EVT VT = N->getValueType(0);
14772   SDLoc DL(N);
14773 
14774   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
14775   bool IsNeg = MulAmt.isNegative();
14776   APInt MulAmtAbs = MulAmt.abs();
14777 
14778   if ((MulAmtAbs - 1).isPowerOf2()) {
14779     // (mul x, 2^N + 1) => (add (shl x, N), x)
14780     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
14781 
14782     if (!IsProfitable(IsNeg, true, VT))
14783       return SDValue();
14784 
14785     SDValue Op0 = N->getOperand(0);
14786     SDValue Op1 =
14787         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14788                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
14789     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
14790 
14791     if (!IsNeg)
14792       return Res;
14793 
14794     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
14795   } else if ((MulAmtAbs + 1).isPowerOf2()) {
14796     // (mul x, 2^N - 1) => (sub (shl x, N), x)
14797     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
14798 
14799     if (!IsProfitable(IsNeg, false, VT))
14800       return SDValue();
14801 
14802     SDValue Op0 = N->getOperand(0);
14803     SDValue Op1 =
14804         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14805                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
14806 
14807     if (!IsNeg)
14808       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
14809     else
14810       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
14811 
14812   } else {
14813     return SDValue();
14814   }
14815 }
14816 
14817 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14818   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14819   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14820     return false;
14821 
14822   // If not a tail call then no need to proceed.
14823   if (!CI->isTailCall())
14824     return false;
14825 
14826   // If tail calls are disabled for the caller then we are done.
14827   const Function *Caller = CI->getParent()->getParent();
14828   auto Attr = Caller->getFnAttribute("disable-tail-calls");
14829   if (Attr.getValueAsString() == "true")
14830     return false;
14831 
14832   // If sibling calls have been disabled and tail-calls aren't guaranteed
14833   // there is no reason to duplicate.
14834   auto &TM = getTargetMachine();
14835   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14836     return false;
14837 
14838   // Can't tail call a function called indirectly, or if it has variadic args.
14839   const Function *Callee = CI->getCalledFunction();
14840   if (!Callee || Callee->isVarArg())
14841     return false;
14842 
14843   // Make sure the callee and caller calling conventions are eligible for tco.
14844   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14845                                            CI->getCallingConv()))
14846       return false;
14847 
14848   // If the function is local then we have a good chance at tail-calling it
14849   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14850 }
14851 
14852 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
14853   if (!Subtarget.hasVSX())
14854     return false;
14855   if (Subtarget.hasP9Vector() && VT == MVT::f128)
14856     return true;
14857   return VT == MVT::f32 || VT == MVT::f64 ||
14858     VT == MVT::v4f32 || VT == MVT::v2f64;
14859 }
14860 
14861 bool PPCTargetLowering::
14862 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14863   const Value *Mask = AndI.getOperand(1);
14864   // If the mask is suitable for andi. or andis. we should sink the and.
14865   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14866     // Can't handle constants wider than 64-bits.
14867     if (CI->getBitWidth() > 64)
14868       return false;
14869     int64_t ConstVal = CI->getZExtValue();
14870     return isUInt<16>(ConstVal) ||
14871       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14872   }
14873 
14874   // For non-constant masks, we can always use the record-form and.
14875   return true;
14876 }
14877 
14878 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
14879 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
14880 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
14881 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
14882 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
14883 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
14884   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
14885   assert(Subtarget.hasP9Altivec() &&
14886          "Only combine this when P9 altivec supported!");
14887   EVT VT = N->getValueType(0);
14888   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14889     return SDValue();
14890 
14891   SelectionDAG &DAG = DCI.DAG;
14892   SDLoc dl(N);
14893   if (N->getOperand(0).getOpcode() == ISD::SUB) {
14894     // Even for signed integers, if it's known to be positive (as signed
14895     // integer) due to zero-extended inputs.
14896     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
14897     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
14898     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
14899          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
14900         (SubOpcd1 == ISD::ZERO_EXTEND ||
14901          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
14902       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14903                          N->getOperand(0)->getOperand(0),
14904                          N->getOperand(0)->getOperand(1),
14905                          DAG.getTargetConstant(0, dl, MVT::i32));
14906     }
14907 
14908     // For type v4i32, it can be optimized with xvnegsp + vabsduw
14909     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
14910         N->getOperand(0).hasOneUse()) {
14911       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14912                          N->getOperand(0)->getOperand(0),
14913                          N->getOperand(0)->getOperand(1),
14914                          DAG.getTargetConstant(1, dl, MVT::i32));
14915     }
14916   }
14917 
14918   return SDValue();
14919 }
14920 
14921 // For type v4i32/v8ii16/v16i8, transform
14922 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
14923 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
14924 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
14925 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
14926 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
14927                                           DAGCombinerInfo &DCI) const {
14928   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
14929   assert(Subtarget.hasP9Altivec() &&
14930          "Only combine this when P9 altivec supported!");
14931 
14932   SelectionDAG &DAG = DCI.DAG;
14933   SDLoc dl(N);
14934   SDValue Cond = N->getOperand(0);
14935   SDValue TrueOpnd = N->getOperand(1);
14936   SDValue FalseOpnd = N->getOperand(2);
14937   EVT VT = N->getOperand(1).getValueType();
14938 
14939   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
14940       FalseOpnd.getOpcode() != ISD::SUB)
14941     return SDValue();
14942 
14943   // ABSD only available for type v4i32/v8i16/v16i8
14944   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14945     return SDValue();
14946 
14947   // At least to save one more dependent computation
14948   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
14949     return SDValue();
14950 
14951   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14952 
14953   // Can only handle unsigned comparison here
14954   switch (CC) {
14955   default:
14956     return SDValue();
14957   case ISD::SETUGT:
14958   case ISD::SETUGE:
14959     break;
14960   case ISD::SETULT:
14961   case ISD::SETULE:
14962     std::swap(TrueOpnd, FalseOpnd);
14963     break;
14964   }
14965 
14966   SDValue CmpOpnd1 = Cond.getOperand(0);
14967   SDValue CmpOpnd2 = Cond.getOperand(1);
14968 
14969   // SETCC CmpOpnd1 CmpOpnd2 cond
14970   // TrueOpnd = CmpOpnd1 - CmpOpnd2
14971   // FalseOpnd = CmpOpnd2 - CmpOpnd1
14972   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
14973       TrueOpnd.getOperand(1) == CmpOpnd2 &&
14974       FalseOpnd.getOperand(0) == CmpOpnd2 &&
14975       FalseOpnd.getOperand(1) == CmpOpnd1) {
14976     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
14977                        CmpOpnd1, CmpOpnd2,
14978                        DAG.getTargetConstant(0, dl, MVT::i32));
14979   }
14980 
14981   return SDValue();
14982 }
14983