1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCFrameLowering.h" 20 #include "PPCInstrInfo.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCPerfectShuffle.h" 23 #include "PPCRegisterInfo.h" 24 #include "PPCSubtarget.h" 25 #include "PPCTargetMachine.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/None.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/StringSwitch.h" 38 #include "llvm/CodeGen/CallingConvLower.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCExpr.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Support/AtomicOrdering.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CodeGen.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/Format.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <list> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 100 #define DEBUG_TYPE "ppc-lowering" 101 102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 104 105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisableSCO("disable-ppc-sco", 112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 113 114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 115 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 116 117 STATISTIC(NumTailCalls, "Number of tail calls"); 118 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 119 120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 121 122 // FIXME: Remove this once the bug has been fixed! 123 extern cl::opt<bool> ANDIGlueBug; 124 125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 126 const PPCSubtarget &STI) 127 : TargetLowering(TM), Subtarget(STI) { 128 // Use _setjmp/_longjmp instead of setjmp/longjmp. 129 setUseUnderscoreSetJmp(true); 130 setUseUnderscoreLongJmp(true); 131 132 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 133 // arguments are at least 4/8 bytes aligned. 134 bool isPPC64 = Subtarget.isPPC64(); 135 setMinStackArgumentAlignment(isPPC64 ? 8:4); 136 137 // Set up the register classes. 138 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 139 if (!useSoftFloat()) { 140 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 141 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 142 } 143 144 // Match BITREVERSE to customized fast code sequence in the td file. 145 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 146 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 147 148 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 149 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 150 151 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 152 for (MVT VT : MVT::integer_valuetypes()) { 153 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 154 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 155 } 156 157 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 158 159 // PowerPC has pre-inc load and store's. 160 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 161 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 162 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 163 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 164 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 165 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 166 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 167 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 168 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 169 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 170 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 171 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 172 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 173 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 174 175 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 176 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 177 for (MVT VT : ScalarIntVTs) { 178 setOperationAction(ISD::ADDC, VT, Legal); 179 setOperationAction(ISD::ADDE, VT, Legal); 180 setOperationAction(ISD::SUBC, VT, Legal); 181 setOperationAction(ISD::SUBE, VT, Legal); 182 } 183 184 if (Subtarget.useCRBits()) { 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 187 if (isPPC64 || Subtarget.hasFPCVT()) { 188 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 189 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 190 isPPC64 ? MVT::i64 : MVT::i32); 191 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 192 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 193 isPPC64 ? MVT::i64 : MVT::i32); 194 } else { 195 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 196 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 197 } 198 199 // PowerPC does not support direct load/store of condition registers. 200 setOperationAction(ISD::LOAD, MVT::i1, Custom); 201 setOperationAction(ISD::STORE, MVT::i1, Custom); 202 203 // FIXME: Remove this once the ANDI glue bug is fixed: 204 if (ANDIGlueBug) 205 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 206 207 for (MVT VT : MVT::integer_valuetypes()) { 208 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 209 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 210 setTruncStoreAction(VT, MVT::i1, Expand); 211 } 212 213 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 214 } 215 216 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 217 // PPC (the libcall is not available). 218 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 219 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 220 221 // We do not currently implement these libm ops for PowerPC. 222 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 223 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 224 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 225 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 226 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 227 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 228 229 // PowerPC has no SREM/UREM instructions unless we are on P9 230 // On P9 we may use a hardware instruction to compute the remainder. 231 // The instructions are not legalized directly because in the cases where the 232 // result of both the remainder and the division is required it is more 233 // efficient to compute the remainder from the result of the division rather 234 // than use the remainder instruction. 235 if (Subtarget.isISA3_0()) { 236 setOperationAction(ISD::SREM, MVT::i32, Custom); 237 setOperationAction(ISD::UREM, MVT::i32, Custom); 238 setOperationAction(ISD::SREM, MVT::i64, Custom); 239 setOperationAction(ISD::UREM, MVT::i64, Custom); 240 } else { 241 setOperationAction(ISD::SREM, MVT::i32, Expand); 242 setOperationAction(ISD::UREM, MVT::i32, Expand); 243 setOperationAction(ISD::SREM, MVT::i64, Expand); 244 setOperationAction(ISD::UREM, MVT::i64, Expand); 245 } 246 247 if (Subtarget.hasP9Vector()) { 248 setOperationAction(ISD::ABS, MVT::v4i32, Legal); 249 setOperationAction(ISD::ABS, MVT::v8i16, Legal); 250 setOperationAction(ISD::ABS, MVT::v16i8, Legal); 251 } 252 253 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 254 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 255 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 256 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 257 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 258 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 259 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 260 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 261 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 262 263 // We don't support sin/cos/sqrt/fmod/pow 264 setOperationAction(ISD::FSIN , MVT::f64, Expand); 265 setOperationAction(ISD::FCOS , MVT::f64, Expand); 266 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 267 setOperationAction(ISD::FREM , MVT::f64, Expand); 268 setOperationAction(ISD::FPOW , MVT::f64, Expand); 269 setOperationAction(ISD::FMA , MVT::f64, Legal); 270 setOperationAction(ISD::FSIN , MVT::f32, Expand); 271 setOperationAction(ISD::FCOS , MVT::f32, Expand); 272 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 273 setOperationAction(ISD::FREM , MVT::f32, Expand); 274 setOperationAction(ISD::FPOW , MVT::f32, Expand); 275 setOperationAction(ISD::FMA , MVT::f32, Legal); 276 277 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 278 279 // If we're enabling GP optimizations, use hardware square root 280 if (!Subtarget.hasFSQRT() && 281 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 282 Subtarget.hasFRE())) 283 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 284 285 if (!Subtarget.hasFSQRT() && 286 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 287 Subtarget.hasFRES())) 288 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 289 290 if (Subtarget.hasFCPSGN()) { 291 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 292 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 293 } else { 294 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 295 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 296 } 297 298 if (Subtarget.hasFPRND()) { 299 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 300 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 301 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 302 setOperationAction(ISD::FROUND, MVT::f64, Legal); 303 304 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 305 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 306 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 307 setOperationAction(ISD::FROUND, MVT::f32, Legal); 308 } 309 310 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 311 // to speed up scalar BSWAP64. 312 // CTPOP or CTTZ were introduced in P8/P9 respectivelly 313 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 314 if (Subtarget.isISA3_0()) { 315 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 316 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 317 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 318 } else { 319 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 320 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 321 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 322 } 323 324 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 325 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 326 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 327 } else { 328 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 329 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 330 } 331 332 // PowerPC does not have ROTR 333 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 334 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 335 336 if (!Subtarget.useCRBits()) { 337 // PowerPC does not have Select 338 setOperationAction(ISD::SELECT, MVT::i32, Expand); 339 setOperationAction(ISD::SELECT, MVT::i64, Expand); 340 setOperationAction(ISD::SELECT, MVT::f32, Expand); 341 setOperationAction(ISD::SELECT, MVT::f64, Expand); 342 } 343 344 // PowerPC wants to turn select_cc of FP into fsel when possible. 345 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 346 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 347 348 // PowerPC wants to optimize integer setcc a bit 349 if (!Subtarget.useCRBits()) 350 setOperationAction(ISD::SETCC, MVT::i32, Custom); 351 352 // PowerPC does not have BRCOND which requires SetCC 353 if (!Subtarget.useCRBits()) 354 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 355 356 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 357 358 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 359 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 360 361 // PowerPC does not have [U|S]INT_TO_FP 362 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 363 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 364 365 if (Subtarget.hasDirectMove() && isPPC64) { 366 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 367 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 368 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 369 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 370 } else { 371 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 372 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 373 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 374 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 375 } 376 377 // We cannot sextinreg(i1). Expand to shifts. 378 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 379 380 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 381 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 382 // support continuation, user-level threading, and etc.. As a result, no 383 // other SjLj exception interfaces are implemented and please don't build 384 // your own exception handling based on them. 385 // LLVM/Clang supports zero-cost DWARF exception handling. 386 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 387 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 388 389 // We want to legalize GlobalAddress and ConstantPool nodes into the 390 // appropriate instructions to materialize the address. 391 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 392 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 393 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 394 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 395 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 396 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 397 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 398 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 399 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 400 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 401 402 // TRAP is legal. 403 setOperationAction(ISD::TRAP, MVT::Other, Legal); 404 405 // TRAMPOLINE is custom lowered. 406 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 407 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 408 409 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 410 setOperationAction(ISD::VASTART , MVT::Other, Custom); 411 412 if (Subtarget.isSVR4ABI()) { 413 if (isPPC64) { 414 // VAARG always uses double-word chunks, so promote anything smaller. 415 setOperationAction(ISD::VAARG, MVT::i1, Promote); 416 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 417 setOperationAction(ISD::VAARG, MVT::i8, Promote); 418 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 419 setOperationAction(ISD::VAARG, MVT::i16, Promote); 420 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 421 setOperationAction(ISD::VAARG, MVT::i32, Promote); 422 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 423 setOperationAction(ISD::VAARG, MVT::Other, Expand); 424 } else { 425 // VAARG is custom lowered with the 32-bit SVR4 ABI. 426 setOperationAction(ISD::VAARG, MVT::Other, Custom); 427 setOperationAction(ISD::VAARG, MVT::i64, Custom); 428 } 429 } else 430 setOperationAction(ISD::VAARG, MVT::Other, Expand); 431 432 if (Subtarget.isSVR4ABI() && !isPPC64) 433 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 434 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 435 else 436 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 437 438 // Use the default implementation. 439 setOperationAction(ISD::VAEND , MVT::Other, Expand); 440 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 441 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 442 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 443 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 444 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 445 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 446 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 447 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 448 449 // We want to custom lower some of our intrinsics. 450 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 451 452 // To handle counter-based loop conditions. 453 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 454 455 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 456 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 457 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 458 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 459 460 // Comparisons that require checking two conditions. 461 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 462 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 463 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 464 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 465 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 466 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 467 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 468 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 469 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 470 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 471 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 472 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 473 474 if (Subtarget.has64BitSupport()) { 475 // They also have instructions for converting between i64 and fp. 476 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 477 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 478 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 479 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 480 // This is just the low 32 bits of a (signed) fp->i64 conversion. 481 // We cannot do this with Promote because i64 is not a legal type. 482 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 483 484 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 485 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 486 } else { 487 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 488 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 489 } 490 491 // With the instructions enabled under FPCVT, we can do everything. 492 if (Subtarget.hasFPCVT()) { 493 if (Subtarget.has64BitSupport()) { 494 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 495 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 496 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 497 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 498 } 499 500 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 501 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 502 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 503 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 504 } 505 506 if (Subtarget.use64BitRegs()) { 507 // 64-bit PowerPC implementations can support i64 types directly 508 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 509 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 510 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 511 // 64-bit PowerPC wants to expand i128 shifts itself. 512 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 513 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 514 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 515 } else { 516 // 32-bit PowerPC wants to expand i64 shifts itself. 517 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 518 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 519 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 520 } 521 522 if (Subtarget.hasAltivec()) { 523 // First set operation action for all vector types to expand. Then we 524 // will selectively turn on ones that can be effectively codegen'd. 525 for (MVT VT : MVT::vector_valuetypes()) { 526 // add/sub are legal for all supported vector VT's. 527 setOperationAction(ISD::ADD, VT, Legal); 528 setOperationAction(ISD::SUB, VT, Legal); 529 530 // Vector instructions introduced in P8 531 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 532 setOperationAction(ISD::CTPOP, VT, Legal); 533 setOperationAction(ISD::CTLZ, VT, Legal); 534 } 535 else { 536 setOperationAction(ISD::CTPOP, VT, Expand); 537 setOperationAction(ISD::CTLZ, VT, Expand); 538 } 539 540 // Vector instructions introduced in P9 541 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 542 setOperationAction(ISD::CTTZ, VT, Legal); 543 else 544 setOperationAction(ISD::CTTZ, VT, Expand); 545 546 // We promote all shuffles to v16i8. 547 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 548 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 549 550 // We promote all non-typed operations to v4i32. 551 setOperationAction(ISD::AND , VT, Promote); 552 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 553 setOperationAction(ISD::OR , VT, Promote); 554 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 555 setOperationAction(ISD::XOR , VT, Promote); 556 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 557 setOperationAction(ISD::LOAD , VT, Promote); 558 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 559 setOperationAction(ISD::SELECT, VT, Promote); 560 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 561 setOperationAction(ISD::SELECT_CC, VT, Promote); 562 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 563 setOperationAction(ISD::STORE, VT, Promote); 564 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 565 566 // No other operations are legal. 567 setOperationAction(ISD::MUL , VT, Expand); 568 setOperationAction(ISD::SDIV, VT, Expand); 569 setOperationAction(ISD::SREM, VT, Expand); 570 setOperationAction(ISD::UDIV, VT, Expand); 571 setOperationAction(ISD::UREM, VT, Expand); 572 setOperationAction(ISD::FDIV, VT, Expand); 573 setOperationAction(ISD::FREM, VT, Expand); 574 setOperationAction(ISD::FNEG, VT, Expand); 575 setOperationAction(ISD::FSQRT, VT, Expand); 576 setOperationAction(ISD::FLOG, VT, Expand); 577 setOperationAction(ISD::FLOG10, VT, Expand); 578 setOperationAction(ISD::FLOG2, VT, Expand); 579 setOperationAction(ISD::FEXP, VT, Expand); 580 setOperationAction(ISD::FEXP2, VT, Expand); 581 setOperationAction(ISD::FSIN, VT, Expand); 582 setOperationAction(ISD::FCOS, VT, Expand); 583 setOperationAction(ISD::FABS, VT, Expand); 584 setOperationAction(ISD::FFLOOR, VT, Expand); 585 setOperationAction(ISD::FCEIL, VT, Expand); 586 setOperationAction(ISD::FTRUNC, VT, Expand); 587 setOperationAction(ISD::FRINT, VT, Expand); 588 setOperationAction(ISD::FNEARBYINT, VT, Expand); 589 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 590 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 591 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 592 setOperationAction(ISD::MULHU, VT, Expand); 593 setOperationAction(ISD::MULHS, VT, Expand); 594 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 595 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 596 setOperationAction(ISD::UDIVREM, VT, Expand); 597 setOperationAction(ISD::SDIVREM, VT, Expand); 598 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 599 setOperationAction(ISD::FPOW, VT, Expand); 600 setOperationAction(ISD::BSWAP, VT, Expand); 601 setOperationAction(ISD::VSELECT, VT, Expand); 602 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 603 setOperationAction(ISD::ROTL, VT, Expand); 604 setOperationAction(ISD::ROTR, VT, Expand); 605 606 for (MVT InnerVT : MVT::vector_valuetypes()) { 607 setTruncStoreAction(VT, InnerVT, Expand); 608 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 609 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 610 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 611 } 612 } 613 614 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 615 // with merges, splats, etc. 616 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 617 618 setOperationAction(ISD::AND , MVT::v4i32, Legal); 619 setOperationAction(ISD::OR , MVT::v4i32, Legal); 620 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 621 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 622 setOperationAction(ISD::SELECT, MVT::v4i32, 623 Subtarget.useCRBits() ? Legal : Expand); 624 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 625 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 626 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 627 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 628 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 629 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 630 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 631 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 632 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 633 634 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 635 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 636 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 637 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 638 639 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 640 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 641 642 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 643 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 644 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 645 } 646 647 if (Subtarget.hasP8Altivec()) 648 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 649 else 650 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 651 652 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 653 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 654 655 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 656 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 657 658 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 659 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 660 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 661 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 662 663 // Altivec does not contain unordered floating-point compare instructions 664 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 665 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 666 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 667 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 668 669 if (Subtarget.hasVSX()) { 670 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 671 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 672 if (Subtarget.hasP8Vector()) { 673 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 674 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 675 } 676 if (Subtarget.hasDirectMove() && isPPC64) { 677 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 678 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 679 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 680 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 681 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 682 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 683 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 684 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 685 } 686 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 687 688 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 689 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 690 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 691 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 692 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 693 694 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 695 696 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 697 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 698 699 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 700 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 701 702 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 703 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 704 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 705 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 706 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 707 708 // Share the Altivec comparison restrictions. 709 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 710 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 711 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 712 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 713 714 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 715 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 716 717 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 718 719 if (Subtarget.hasP8Vector()) 720 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 721 722 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 723 724 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 725 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 726 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 727 728 if (Subtarget.hasP8Altivec()) { 729 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 730 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 731 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 732 733 // 128 bit shifts can be accomplished via 3 instructions for SHL and 734 // SRL, but not for SRA because of the instructions available: 735 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 736 // doing 737 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 738 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 739 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 740 741 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 742 } 743 else { 744 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 745 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 746 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 747 748 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 749 750 // VSX v2i64 only supports non-arithmetic operations. 751 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 752 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 753 } 754 755 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 756 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 757 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 758 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 759 760 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 761 762 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 763 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 764 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 765 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 766 767 // Vector operation legalization checks the result type of 768 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 769 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 770 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 771 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 772 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 773 774 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 775 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 776 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 777 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 778 779 if (Subtarget.hasDirectMove()) 780 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 781 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 782 783 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 784 } 785 786 if (Subtarget.hasP8Altivec()) { 787 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 788 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 789 } 790 791 if (Subtarget.hasP9Vector()) { 792 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 793 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 794 795 // 128 bit shifts can be accomplished via 3 instructions for SHL and 796 // SRL, but not for SRA because of the instructions available: 797 // VS{RL} and VS{RL}O. 798 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 799 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 800 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 801 802 if (EnableQuadPrecision) { 803 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 804 setOperationAction(ISD::FADD, MVT::f128, Legal); 805 setOperationAction(ISD::FSUB, MVT::f128, Legal); 806 setOperationAction(ISD::FDIV, MVT::f128, Legal); 807 setOperationAction(ISD::FMUL, MVT::f128, Legal); 808 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 809 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 810 setOperationAction(ISD::FMA, MVT::f128, Legal); 811 } 812 813 } 814 815 if (Subtarget.hasP9Altivec()) { 816 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 817 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 818 } 819 } 820 821 if (Subtarget.hasQPX()) { 822 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 823 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 824 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 825 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 826 827 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 828 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 829 830 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 831 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 832 833 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 834 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 835 836 if (!Subtarget.useCRBits()) 837 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 838 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 839 840 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 841 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 842 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 843 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 844 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 845 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 846 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 847 848 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 849 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 850 851 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 852 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 853 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 854 855 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 856 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 857 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 858 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 859 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 860 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 861 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 862 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 863 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 864 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 865 866 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 867 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 868 869 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 870 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 871 872 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 873 874 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 875 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 876 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 877 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 878 879 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 880 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 881 882 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 883 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 884 885 if (!Subtarget.useCRBits()) 886 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 887 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 888 889 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 890 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 891 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 892 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 893 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 894 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 895 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 896 897 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 898 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 899 900 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 901 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 902 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 903 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 904 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 905 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 906 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 907 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 908 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 909 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 910 911 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 912 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 913 914 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 915 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 916 917 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 918 919 setOperationAction(ISD::AND , MVT::v4i1, Legal); 920 setOperationAction(ISD::OR , MVT::v4i1, Legal); 921 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 922 923 if (!Subtarget.useCRBits()) 924 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 925 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 926 927 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 928 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 929 930 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 931 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 932 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 933 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 934 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 935 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 936 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 937 938 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 939 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 940 941 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 942 943 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 944 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 945 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 946 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 947 948 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 949 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 950 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 951 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 952 953 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 954 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 955 956 // These need to set FE_INEXACT, and so cannot be vectorized here. 957 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 958 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 959 960 if (TM.Options.UnsafeFPMath) { 961 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 962 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 963 964 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 965 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 966 } else { 967 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 968 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 969 970 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 971 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 972 } 973 } 974 975 if (Subtarget.has64BitSupport()) 976 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 977 978 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 979 980 if (!isPPC64) { 981 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 982 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 983 } 984 985 setBooleanContents(ZeroOrOneBooleanContent); 986 987 if (Subtarget.hasAltivec()) { 988 // Altivec instructions set fields to all zeros or all ones. 989 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 990 } 991 992 if (!isPPC64) { 993 // These libcalls are not available in 32-bit. 994 setLibcallName(RTLIB::SHL_I128, nullptr); 995 setLibcallName(RTLIB::SRL_I128, nullptr); 996 setLibcallName(RTLIB::SRA_I128, nullptr); 997 } 998 999 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1000 1001 // We have target-specific dag combine patterns for the following nodes: 1002 setTargetDAGCombine(ISD::SHL); 1003 setTargetDAGCombine(ISD::SRA); 1004 setTargetDAGCombine(ISD::SRL); 1005 setTargetDAGCombine(ISD::SINT_TO_FP); 1006 setTargetDAGCombine(ISD::BUILD_VECTOR); 1007 if (Subtarget.hasFPCVT()) 1008 setTargetDAGCombine(ISD::UINT_TO_FP); 1009 setTargetDAGCombine(ISD::LOAD); 1010 setTargetDAGCombine(ISD::STORE); 1011 setTargetDAGCombine(ISD::BR_CC); 1012 if (Subtarget.useCRBits()) 1013 setTargetDAGCombine(ISD::BRCOND); 1014 setTargetDAGCombine(ISD::BSWAP); 1015 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1016 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1017 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1018 1019 setTargetDAGCombine(ISD::SIGN_EXTEND); 1020 setTargetDAGCombine(ISD::ZERO_EXTEND); 1021 setTargetDAGCombine(ISD::ANY_EXTEND); 1022 1023 if (Subtarget.useCRBits()) { 1024 setTargetDAGCombine(ISD::TRUNCATE); 1025 setTargetDAGCombine(ISD::SETCC); 1026 setTargetDAGCombine(ISD::SELECT_CC); 1027 } 1028 1029 // Use reciprocal estimates. 1030 if (TM.Options.UnsafeFPMath) { 1031 setTargetDAGCombine(ISD::FDIV); 1032 setTargetDAGCombine(ISD::FSQRT); 1033 } 1034 1035 // Darwin long double math library functions have $LDBL128 appended. 1036 if (Subtarget.isDarwin()) { 1037 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1038 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1039 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1040 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1041 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1042 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1043 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1044 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1045 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1046 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1047 } 1048 1049 // With 32 condition bits, we don't need to sink (and duplicate) compares 1050 // aggressively in CodeGenPrep. 1051 if (Subtarget.useCRBits()) { 1052 setHasMultipleConditionRegisters(); 1053 setJumpIsExpensive(); 1054 } 1055 1056 setMinFunctionAlignment(2); 1057 if (Subtarget.isDarwin()) 1058 setPrefFunctionAlignment(4); 1059 1060 switch (Subtarget.getDarwinDirective()) { 1061 default: break; 1062 case PPC::DIR_970: 1063 case PPC::DIR_A2: 1064 case PPC::DIR_E500mc: 1065 case PPC::DIR_E5500: 1066 case PPC::DIR_PWR4: 1067 case PPC::DIR_PWR5: 1068 case PPC::DIR_PWR5X: 1069 case PPC::DIR_PWR6: 1070 case PPC::DIR_PWR6X: 1071 case PPC::DIR_PWR7: 1072 case PPC::DIR_PWR8: 1073 case PPC::DIR_PWR9: 1074 setPrefFunctionAlignment(4); 1075 setPrefLoopAlignment(4); 1076 break; 1077 } 1078 1079 if (Subtarget.enableMachineScheduler()) 1080 setSchedulingPreference(Sched::Source); 1081 else 1082 setSchedulingPreference(Sched::Hybrid); 1083 1084 computeRegisterProperties(STI.getRegisterInfo()); 1085 1086 // The Freescale cores do better with aggressive inlining of memcpy and 1087 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1088 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1089 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1090 MaxStoresPerMemset = 32; 1091 MaxStoresPerMemsetOptSize = 16; 1092 MaxStoresPerMemcpy = 32; 1093 MaxStoresPerMemcpyOptSize = 8; 1094 MaxStoresPerMemmove = 32; 1095 MaxStoresPerMemmoveOptSize = 8; 1096 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1097 // The A2 also benefits from (very) aggressive inlining of memcpy and 1098 // friends. The overhead of a the function call, even when warm, can be 1099 // over one hundred cycles. 1100 MaxStoresPerMemset = 128; 1101 MaxStoresPerMemcpy = 128; 1102 MaxStoresPerMemmove = 128; 1103 MaxLoadsPerMemcmp = 128; 1104 } else { 1105 MaxLoadsPerMemcmp = 8; 1106 MaxLoadsPerMemcmpOptSize = 4; 1107 } 1108 } 1109 1110 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1111 /// the desired ByVal argument alignment. 1112 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1113 unsigned MaxMaxAlign) { 1114 if (MaxAlign == MaxMaxAlign) 1115 return; 1116 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1117 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1118 MaxAlign = 32; 1119 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1120 MaxAlign = 16; 1121 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1122 unsigned EltAlign = 0; 1123 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1124 if (EltAlign > MaxAlign) 1125 MaxAlign = EltAlign; 1126 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1127 for (auto *EltTy : STy->elements()) { 1128 unsigned EltAlign = 0; 1129 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1130 if (EltAlign > MaxAlign) 1131 MaxAlign = EltAlign; 1132 if (MaxAlign == MaxMaxAlign) 1133 break; 1134 } 1135 } 1136 } 1137 1138 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1139 /// function arguments in the caller parameter area. 1140 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1141 const DataLayout &DL) const { 1142 // Darwin passes everything on 4 byte boundary. 1143 if (Subtarget.isDarwin()) 1144 return 4; 1145 1146 // 16byte and wider vectors are passed on 16byte boundary. 1147 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1148 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1149 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1150 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1151 return Align; 1152 } 1153 1154 bool PPCTargetLowering::useSoftFloat() const { 1155 return Subtarget.useSoftFloat(); 1156 } 1157 1158 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1159 switch ((PPCISD::NodeType)Opcode) { 1160 case PPCISD::FIRST_NUMBER: break; 1161 case PPCISD::FSEL: return "PPCISD::FSEL"; 1162 case PPCISD::FCFID: return "PPCISD::FCFID"; 1163 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1164 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1165 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1166 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1167 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1168 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1169 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1170 case PPCISD::FP_TO_UINT_IN_VSR: 1171 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1172 case PPCISD::FP_TO_SINT_IN_VSR: 1173 return "PPCISD::FP_TO_SINT_IN_VSR"; 1174 case PPCISD::FRE: return "PPCISD::FRE"; 1175 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1176 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1177 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1178 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1179 case PPCISD::VPERM: return "PPCISD::VPERM"; 1180 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1181 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1182 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1183 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1184 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1185 case PPCISD::CMPB: return "PPCISD::CMPB"; 1186 case PPCISD::Hi: return "PPCISD::Hi"; 1187 case PPCISD::Lo: return "PPCISD::Lo"; 1188 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1189 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1190 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1191 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1192 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1193 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1194 case PPCISD::SRL: return "PPCISD::SRL"; 1195 case PPCISD::SRA: return "PPCISD::SRA"; 1196 case PPCISD::SHL: return "PPCISD::SHL"; 1197 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1198 case PPCISD::CALL: return "PPCISD::CALL"; 1199 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1200 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1201 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1202 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1203 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1204 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1205 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1206 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1207 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1208 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1209 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1210 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1211 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1212 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1213 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1214 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1215 case PPCISD::VCMP: return "PPCISD::VCMP"; 1216 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1217 case PPCISD::LBRX: return "PPCISD::LBRX"; 1218 case PPCISD::STBRX: return "PPCISD::STBRX"; 1219 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1220 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1221 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1222 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1223 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1224 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1225 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1226 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1227 case PPCISD::ST_VSR_SCAL_INT: 1228 return "PPCISD::ST_VSR_SCAL_INT"; 1229 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1230 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1231 case PPCISD::BDZ: return "PPCISD::BDZ"; 1232 case PPCISD::MFFS: return "PPCISD::MFFS"; 1233 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1234 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1235 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1236 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1237 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1238 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1239 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1240 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1241 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1242 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1243 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1244 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1245 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1246 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1247 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1248 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1249 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1250 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1251 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1252 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1253 case PPCISD::SC: return "PPCISD::SC"; 1254 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1255 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1256 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1257 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1258 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1259 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1260 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1261 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1262 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1263 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1264 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1265 } 1266 return nullptr; 1267 } 1268 1269 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1270 EVT VT) const { 1271 if (!VT.isVector()) 1272 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1273 1274 if (Subtarget.hasQPX()) 1275 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1276 1277 return VT.changeVectorElementTypeToInteger(); 1278 } 1279 1280 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1281 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1282 return true; 1283 } 1284 1285 //===----------------------------------------------------------------------===// 1286 // Node matching predicates, for use by the tblgen matching code. 1287 //===----------------------------------------------------------------------===// 1288 1289 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1290 static bool isFloatingPointZero(SDValue Op) { 1291 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1292 return CFP->getValueAPF().isZero(); 1293 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1294 // Maybe this has already been legalized into the constant pool? 1295 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1296 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1297 return CFP->getValueAPF().isZero(); 1298 } 1299 return false; 1300 } 1301 1302 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1303 /// true if Op is undef or if it matches the specified value. 1304 static bool isConstantOrUndef(int Op, int Val) { 1305 return Op < 0 || Op == Val; 1306 } 1307 1308 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1309 /// VPKUHUM instruction. 1310 /// The ShuffleKind distinguishes between big-endian operations with 1311 /// two different inputs (0), either-endian operations with two identical 1312 /// inputs (1), and little-endian operations with two different inputs (2). 1313 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1314 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1315 SelectionDAG &DAG) { 1316 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1317 if (ShuffleKind == 0) { 1318 if (IsLE) 1319 return false; 1320 for (unsigned i = 0; i != 16; ++i) 1321 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1322 return false; 1323 } else if (ShuffleKind == 2) { 1324 if (!IsLE) 1325 return false; 1326 for (unsigned i = 0; i != 16; ++i) 1327 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1328 return false; 1329 } else if (ShuffleKind == 1) { 1330 unsigned j = IsLE ? 0 : 1; 1331 for (unsigned i = 0; i != 8; ++i) 1332 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1333 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1334 return false; 1335 } 1336 return true; 1337 } 1338 1339 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1340 /// VPKUWUM instruction. 1341 /// The ShuffleKind distinguishes between big-endian operations with 1342 /// two different inputs (0), either-endian operations with two identical 1343 /// inputs (1), and little-endian operations with two different inputs (2). 1344 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1345 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1346 SelectionDAG &DAG) { 1347 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1348 if (ShuffleKind == 0) { 1349 if (IsLE) 1350 return false; 1351 for (unsigned i = 0; i != 16; i += 2) 1352 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1353 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1354 return false; 1355 } else if (ShuffleKind == 2) { 1356 if (!IsLE) 1357 return false; 1358 for (unsigned i = 0; i != 16; i += 2) 1359 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1360 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1361 return false; 1362 } else if (ShuffleKind == 1) { 1363 unsigned j = IsLE ? 0 : 2; 1364 for (unsigned i = 0; i != 8; i += 2) 1365 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1366 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1367 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1368 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1369 return false; 1370 } 1371 return true; 1372 } 1373 1374 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1375 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1376 /// current subtarget. 1377 /// 1378 /// The ShuffleKind distinguishes between big-endian operations with 1379 /// two different inputs (0), either-endian operations with two identical 1380 /// inputs (1), and little-endian operations with two different inputs (2). 1381 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1382 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1383 SelectionDAG &DAG) { 1384 const PPCSubtarget& Subtarget = 1385 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1386 if (!Subtarget.hasP8Vector()) 1387 return false; 1388 1389 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1390 if (ShuffleKind == 0) { 1391 if (IsLE) 1392 return false; 1393 for (unsigned i = 0; i != 16; i += 4) 1394 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1395 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1396 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1397 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1398 return false; 1399 } else if (ShuffleKind == 2) { 1400 if (!IsLE) 1401 return false; 1402 for (unsigned i = 0; i != 16; i += 4) 1403 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1404 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1405 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1406 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1407 return false; 1408 } else if (ShuffleKind == 1) { 1409 unsigned j = IsLE ? 0 : 4; 1410 for (unsigned i = 0; i != 8; i += 4) 1411 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1412 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1413 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1414 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1415 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1416 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1417 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1418 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1419 return false; 1420 } 1421 return true; 1422 } 1423 1424 /// isVMerge - Common function, used to match vmrg* shuffles. 1425 /// 1426 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1427 unsigned LHSStart, unsigned RHSStart) { 1428 if (N->getValueType(0) != MVT::v16i8) 1429 return false; 1430 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1431 "Unsupported merge size!"); 1432 1433 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1434 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1435 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1436 LHSStart+j+i*UnitSize) || 1437 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1438 RHSStart+j+i*UnitSize)) 1439 return false; 1440 } 1441 return true; 1442 } 1443 1444 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1445 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1446 /// The ShuffleKind distinguishes between big-endian merges with two 1447 /// different inputs (0), either-endian merges with two identical inputs (1), 1448 /// and little-endian merges with two different inputs (2). For the latter, 1449 /// the input operands are swapped (see PPCInstrAltivec.td). 1450 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1451 unsigned ShuffleKind, SelectionDAG &DAG) { 1452 if (DAG.getDataLayout().isLittleEndian()) { 1453 if (ShuffleKind == 1) // unary 1454 return isVMerge(N, UnitSize, 0, 0); 1455 else if (ShuffleKind == 2) // swapped 1456 return isVMerge(N, UnitSize, 0, 16); 1457 else 1458 return false; 1459 } else { 1460 if (ShuffleKind == 1) // unary 1461 return isVMerge(N, UnitSize, 8, 8); 1462 else if (ShuffleKind == 0) // normal 1463 return isVMerge(N, UnitSize, 8, 24); 1464 else 1465 return false; 1466 } 1467 } 1468 1469 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1470 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1471 /// The ShuffleKind distinguishes between big-endian merges with two 1472 /// different inputs (0), either-endian merges with two identical inputs (1), 1473 /// and little-endian merges with two different inputs (2). For the latter, 1474 /// the input operands are swapped (see PPCInstrAltivec.td). 1475 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1476 unsigned ShuffleKind, SelectionDAG &DAG) { 1477 if (DAG.getDataLayout().isLittleEndian()) { 1478 if (ShuffleKind == 1) // unary 1479 return isVMerge(N, UnitSize, 8, 8); 1480 else if (ShuffleKind == 2) // swapped 1481 return isVMerge(N, UnitSize, 8, 24); 1482 else 1483 return false; 1484 } else { 1485 if (ShuffleKind == 1) // unary 1486 return isVMerge(N, UnitSize, 0, 0); 1487 else if (ShuffleKind == 0) // normal 1488 return isVMerge(N, UnitSize, 0, 16); 1489 else 1490 return false; 1491 } 1492 } 1493 1494 /** 1495 * Common function used to match vmrgew and vmrgow shuffles 1496 * 1497 * The indexOffset determines whether to look for even or odd words in 1498 * the shuffle mask. This is based on the of the endianness of the target 1499 * machine. 1500 * - Little Endian: 1501 * - Use offset of 0 to check for odd elements 1502 * - Use offset of 4 to check for even elements 1503 * - Big Endian: 1504 * - Use offset of 0 to check for even elements 1505 * - Use offset of 4 to check for odd elements 1506 * A detailed description of the vector element ordering for little endian and 1507 * big endian can be found at 1508 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1509 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1510 * compiler differences mean to you 1511 * 1512 * The mask to the shuffle vector instruction specifies the indices of the 1513 * elements from the two input vectors to place in the result. The elements are 1514 * numbered in array-access order, starting with the first vector. These vectors 1515 * are always of type v16i8, thus each vector will contain 16 elements of size 1516 * 8. More info on the shuffle vector can be found in the 1517 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1518 * Language Reference. 1519 * 1520 * The RHSStartValue indicates whether the same input vectors are used (unary) 1521 * or two different input vectors are used, based on the following: 1522 * - If the instruction uses the same vector for both inputs, the range of the 1523 * indices will be 0 to 15. In this case, the RHSStart value passed should 1524 * be 0. 1525 * - If the instruction has two different vectors then the range of the 1526 * indices will be 0 to 31. In this case, the RHSStart value passed should 1527 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1528 * to 31 specify elements in the second vector). 1529 * 1530 * \param[in] N The shuffle vector SD Node to analyze 1531 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1532 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1533 * vector to the shuffle_vector instruction 1534 * \return true iff this shuffle vector represents an even or odd word merge 1535 */ 1536 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1537 unsigned RHSStartValue) { 1538 if (N->getValueType(0) != MVT::v16i8) 1539 return false; 1540 1541 for (unsigned i = 0; i < 2; ++i) 1542 for (unsigned j = 0; j < 4; ++j) 1543 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1544 i*RHSStartValue+j+IndexOffset) || 1545 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1546 i*RHSStartValue+j+IndexOffset+8)) 1547 return false; 1548 return true; 1549 } 1550 1551 /** 1552 * Determine if the specified shuffle mask is suitable for the vmrgew or 1553 * vmrgow instructions. 1554 * 1555 * \param[in] N The shuffle vector SD Node to analyze 1556 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1557 * \param[in] ShuffleKind Identify the type of merge: 1558 * - 0 = big-endian merge with two different inputs; 1559 * - 1 = either-endian merge with two identical inputs; 1560 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1561 * little-endian merges). 1562 * \param[in] DAG The current SelectionDAG 1563 * \return true iff this shuffle mask 1564 */ 1565 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1566 unsigned ShuffleKind, SelectionDAG &DAG) { 1567 if (DAG.getDataLayout().isLittleEndian()) { 1568 unsigned indexOffset = CheckEven ? 4 : 0; 1569 if (ShuffleKind == 1) // Unary 1570 return isVMerge(N, indexOffset, 0); 1571 else if (ShuffleKind == 2) // swapped 1572 return isVMerge(N, indexOffset, 16); 1573 else 1574 return false; 1575 } 1576 else { 1577 unsigned indexOffset = CheckEven ? 0 : 4; 1578 if (ShuffleKind == 1) // Unary 1579 return isVMerge(N, indexOffset, 0); 1580 else if (ShuffleKind == 0) // Normal 1581 return isVMerge(N, indexOffset, 16); 1582 else 1583 return false; 1584 } 1585 return false; 1586 } 1587 1588 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1589 /// amount, otherwise return -1. 1590 /// The ShuffleKind distinguishes between big-endian operations with two 1591 /// different inputs (0), either-endian operations with two identical inputs 1592 /// (1), and little-endian operations with two different inputs (2). For the 1593 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1594 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1595 SelectionDAG &DAG) { 1596 if (N->getValueType(0) != MVT::v16i8) 1597 return -1; 1598 1599 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1600 1601 // Find the first non-undef value in the shuffle mask. 1602 unsigned i; 1603 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1604 /*search*/; 1605 1606 if (i == 16) return -1; // all undef. 1607 1608 // Otherwise, check to see if the rest of the elements are consecutively 1609 // numbered from this value. 1610 unsigned ShiftAmt = SVOp->getMaskElt(i); 1611 if (ShiftAmt < i) return -1; 1612 1613 ShiftAmt -= i; 1614 bool isLE = DAG.getDataLayout().isLittleEndian(); 1615 1616 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1617 // Check the rest of the elements to see if they are consecutive. 1618 for (++i; i != 16; ++i) 1619 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1620 return -1; 1621 } else if (ShuffleKind == 1) { 1622 // Check the rest of the elements to see if they are consecutive. 1623 for (++i; i != 16; ++i) 1624 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1625 return -1; 1626 } else 1627 return -1; 1628 1629 if (isLE) 1630 ShiftAmt = 16 - ShiftAmt; 1631 1632 return ShiftAmt; 1633 } 1634 1635 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1636 /// specifies a splat of a single element that is suitable for input to 1637 /// VSPLTB/VSPLTH/VSPLTW. 1638 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1639 assert(N->getValueType(0) == MVT::v16i8 && 1640 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1641 1642 // The consecutive indices need to specify an element, not part of two 1643 // different elements. So abandon ship early if this isn't the case. 1644 if (N->getMaskElt(0) % EltSize != 0) 1645 return false; 1646 1647 // This is a splat operation if each element of the permute is the same, and 1648 // if the value doesn't reference the second vector. 1649 unsigned ElementBase = N->getMaskElt(0); 1650 1651 // FIXME: Handle UNDEF elements too! 1652 if (ElementBase >= 16) 1653 return false; 1654 1655 // Check that the indices are consecutive, in the case of a multi-byte element 1656 // splatted with a v16i8 mask. 1657 for (unsigned i = 1; i != EltSize; ++i) 1658 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1659 return false; 1660 1661 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1662 if (N->getMaskElt(i) < 0) continue; 1663 for (unsigned j = 0; j != EltSize; ++j) 1664 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1665 return false; 1666 } 1667 return true; 1668 } 1669 1670 /// Check that the mask is shuffling N byte elements. Within each N byte 1671 /// element of the mask, the indices could be either in increasing or 1672 /// decreasing order as long as they are consecutive. 1673 /// \param[in] N the shuffle vector SD Node to analyze 1674 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1675 /// Word/DoubleWord/QuadWord). 1676 /// \param[in] StepLen the delta indices number among the N byte element, if 1677 /// the mask is in increasing/decreasing order then it is 1/-1. 1678 /// \return true iff the mask is shuffling N byte elements. 1679 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1680 int StepLen) { 1681 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1682 "Unexpected element width."); 1683 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1684 1685 unsigned NumOfElem = 16 / Width; 1686 unsigned MaskVal[16]; // Width is never greater than 16 1687 for (unsigned i = 0; i < NumOfElem; ++i) { 1688 MaskVal[0] = N->getMaskElt(i * Width); 1689 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1690 return false; 1691 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1692 return false; 1693 } 1694 1695 for (unsigned int j = 1; j < Width; ++j) { 1696 MaskVal[j] = N->getMaskElt(i * Width + j); 1697 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1698 return false; 1699 } 1700 } 1701 } 1702 1703 return true; 1704 } 1705 1706 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1707 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1708 if (!isNByteElemShuffleMask(N, 4, 1)) 1709 return false; 1710 1711 // Now we look at mask elements 0,4,8,12 1712 unsigned M0 = N->getMaskElt(0) / 4; 1713 unsigned M1 = N->getMaskElt(4) / 4; 1714 unsigned M2 = N->getMaskElt(8) / 4; 1715 unsigned M3 = N->getMaskElt(12) / 4; 1716 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1717 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1718 1719 // Below, let H and L be arbitrary elements of the shuffle mask 1720 // where H is in the range [4,7] and L is in the range [0,3]. 1721 // H, 1, 2, 3 or L, 5, 6, 7 1722 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1723 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1724 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1725 InsertAtByte = IsLE ? 12 : 0; 1726 Swap = M0 < 4; 1727 return true; 1728 } 1729 // 0, H, 2, 3 or 4, L, 6, 7 1730 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1731 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1732 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1733 InsertAtByte = IsLE ? 8 : 4; 1734 Swap = M1 < 4; 1735 return true; 1736 } 1737 // 0, 1, H, 3 or 4, 5, L, 7 1738 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1739 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1740 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1741 InsertAtByte = IsLE ? 4 : 8; 1742 Swap = M2 < 4; 1743 return true; 1744 } 1745 // 0, 1, 2, H or 4, 5, 6, L 1746 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1747 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1748 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1749 InsertAtByte = IsLE ? 0 : 12; 1750 Swap = M3 < 4; 1751 return true; 1752 } 1753 1754 // If both vector operands for the shuffle are the same vector, the mask will 1755 // contain only elements from the first one and the second one will be undef. 1756 if (N->getOperand(1).isUndef()) { 1757 ShiftElts = 0; 1758 Swap = true; 1759 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1760 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1761 InsertAtByte = IsLE ? 12 : 0; 1762 return true; 1763 } 1764 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1765 InsertAtByte = IsLE ? 8 : 4; 1766 return true; 1767 } 1768 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1769 InsertAtByte = IsLE ? 4 : 8; 1770 return true; 1771 } 1772 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1773 InsertAtByte = IsLE ? 0 : 12; 1774 return true; 1775 } 1776 } 1777 1778 return false; 1779 } 1780 1781 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1782 bool &Swap, bool IsLE) { 1783 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1784 // Ensure each byte index of the word is consecutive. 1785 if (!isNByteElemShuffleMask(N, 4, 1)) 1786 return false; 1787 1788 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1789 unsigned M0 = N->getMaskElt(0) / 4; 1790 unsigned M1 = N->getMaskElt(4) / 4; 1791 unsigned M2 = N->getMaskElt(8) / 4; 1792 unsigned M3 = N->getMaskElt(12) / 4; 1793 1794 // If both vector operands for the shuffle are the same vector, the mask will 1795 // contain only elements from the first one and the second one will be undef. 1796 if (N->getOperand(1).isUndef()) { 1797 assert(M0 < 4 && "Indexing into an undef vector?"); 1798 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1799 return false; 1800 1801 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1802 Swap = false; 1803 return true; 1804 } 1805 1806 // Ensure each word index of the ShuffleVector Mask is consecutive. 1807 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1808 return false; 1809 1810 if (IsLE) { 1811 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1812 // Input vectors don't need to be swapped if the leading element 1813 // of the result is one of the 3 left elements of the second vector 1814 // (or if there is no shift to be done at all). 1815 Swap = false; 1816 ShiftElts = (8 - M0) % 8; 1817 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1818 // Input vectors need to be swapped if the leading element 1819 // of the result is one of the 3 left elements of the first vector 1820 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1821 Swap = true; 1822 ShiftElts = (4 - M0) % 4; 1823 } 1824 1825 return true; 1826 } else { // BE 1827 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1828 // Input vectors don't need to be swapped if the leading element 1829 // of the result is one of the 4 elements of the first vector. 1830 Swap = false; 1831 ShiftElts = M0; 1832 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1833 // Input vectors need to be swapped if the leading element 1834 // of the result is one of the 4 elements of the right vector. 1835 Swap = true; 1836 ShiftElts = M0 - 4; 1837 } 1838 1839 return true; 1840 } 1841 } 1842 1843 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1844 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1845 1846 if (!isNByteElemShuffleMask(N, Width, -1)) 1847 return false; 1848 1849 for (int i = 0; i < 16; i += Width) 1850 if (N->getMaskElt(i) != i + Width - 1) 1851 return false; 1852 1853 return true; 1854 } 1855 1856 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1857 return isXXBRShuffleMaskHelper(N, 2); 1858 } 1859 1860 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1861 return isXXBRShuffleMaskHelper(N, 4); 1862 } 1863 1864 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 1865 return isXXBRShuffleMaskHelper(N, 8); 1866 } 1867 1868 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 1869 return isXXBRShuffleMaskHelper(N, 16); 1870 } 1871 1872 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 1873 /// if the inputs to the instruction should be swapped and set \p DM to the 1874 /// value for the immediate. 1875 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 1876 /// AND element 0 of the result comes from the first input (LE) or second input 1877 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 1878 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 1879 /// mask. 1880 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 1881 bool &Swap, bool IsLE) { 1882 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1883 1884 // Ensure each byte index of the double word is consecutive. 1885 if (!isNByteElemShuffleMask(N, 8, 1)) 1886 return false; 1887 1888 unsigned M0 = N->getMaskElt(0) / 8; 1889 unsigned M1 = N->getMaskElt(8) / 8; 1890 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 1891 1892 // If both vector operands for the shuffle are the same vector, the mask will 1893 // contain only elements from the first one and the second one will be undef. 1894 if (N->getOperand(1).isUndef()) { 1895 if ((M0 | M1) < 2) { 1896 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 1897 Swap = false; 1898 return true; 1899 } else 1900 return false; 1901 } 1902 1903 if (IsLE) { 1904 if (M0 > 1 && M1 < 2) { 1905 Swap = false; 1906 } else if (M0 < 2 && M1 > 1) { 1907 M0 = (M0 + 2) % 4; 1908 M1 = (M1 + 2) % 4; 1909 Swap = true; 1910 } else 1911 return false; 1912 1913 // Note: if control flow comes here that means Swap is already set above 1914 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 1915 return true; 1916 } else { // BE 1917 if (M0 < 2 && M1 > 1) { 1918 Swap = false; 1919 } else if (M0 > 1 && M1 < 2) { 1920 M0 = (M0 + 2) % 4; 1921 M1 = (M1 + 2) % 4; 1922 Swap = true; 1923 } else 1924 return false; 1925 1926 // Note: if control flow comes here that means Swap is already set above 1927 DM = (M0 << 1) + (M1 & 1); 1928 return true; 1929 } 1930 } 1931 1932 1933 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1934 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1935 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1936 SelectionDAG &DAG) { 1937 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1938 assert(isSplatShuffleMask(SVOp, EltSize)); 1939 if (DAG.getDataLayout().isLittleEndian()) 1940 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1941 else 1942 return SVOp->getMaskElt(0) / EltSize; 1943 } 1944 1945 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1946 /// by using a vspltis[bhw] instruction of the specified element size, return 1947 /// the constant being splatted. The ByteSize field indicates the number of 1948 /// bytes of each element [124] -> [bhw]. 1949 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1950 SDValue OpVal(nullptr, 0); 1951 1952 // If ByteSize of the splat is bigger than the element size of the 1953 // build_vector, then we have a case where we are checking for a splat where 1954 // multiple elements of the buildvector are folded together into a single 1955 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1956 unsigned EltSize = 16/N->getNumOperands(); 1957 if (EltSize < ByteSize) { 1958 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1959 SDValue UniquedVals[4]; 1960 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1961 1962 // See if all of the elements in the buildvector agree across. 1963 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1964 if (N->getOperand(i).isUndef()) continue; 1965 // If the element isn't a constant, bail fully out. 1966 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1967 1968 if (!UniquedVals[i&(Multiple-1)].getNode()) 1969 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1970 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1971 return SDValue(); // no match. 1972 } 1973 1974 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1975 // either constant or undef values that are identical for each chunk. See 1976 // if these chunks can form into a larger vspltis*. 1977 1978 // Check to see if all of the leading entries are either 0 or -1. If 1979 // neither, then this won't fit into the immediate field. 1980 bool LeadingZero = true; 1981 bool LeadingOnes = true; 1982 for (unsigned i = 0; i != Multiple-1; ++i) { 1983 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1984 1985 LeadingZero &= isNullConstant(UniquedVals[i]); 1986 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1987 } 1988 // Finally, check the least significant entry. 1989 if (LeadingZero) { 1990 if (!UniquedVals[Multiple-1].getNode()) 1991 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1992 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1993 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1994 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1995 } 1996 if (LeadingOnes) { 1997 if (!UniquedVals[Multiple-1].getNode()) 1998 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1999 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2000 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2001 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2002 } 2003 2004 return SDValue(); 2005 } 2006 2007 // Check to see if this buildvec has a single non-undef value in its elements. 2008 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2009 if (N->getOperand(i).isUndef()) continue; 2010 if (!OpVal.getNode()) 2011 OpVal = N->getOperand(i); 2012 else if (OpVal != N->getOperand(i)) 2013 return SDValue(); 2014 } 2015 2016 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2017 2018 unsigned ValSizeInBytes = EltSize; 2019 uint64_t Value = 0; 2020 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2021 Value = CN->getZExtValue(); 2022 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2023 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2024 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2025 } 2026 2027 // If the splat value is larger than the element value, then we can never do 2028 // this splat. The only case that we could fit the replicated bits into our 2029 // immediate field for would be zero, and we prefer to use vxor for it. 2030 if (ValSizeInBytes < ByteSize) return SDValue(); 2031 2032 // If the element value is larger than the splat value, check if it consists 2033 // of a repeated bit pattern of size ByteSize. 2034 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2035 return SDValue(); 2036 2037 // Properly sign extend the value. 2038 int MaskVal = SignExtend32(Value, ByteSize * 8); 2039 2040 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2041 if (MaskVal == 0) return SDValue(); 2042 2043 // Finally, if this value fits in a 5 bit sext field, return it 2044 if (SignExtend32<5>(MaskVal) == MaskVal) 2045 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2046 return SDValue(); 2047 } 2048 2049 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2050 /// amount, otherwise return -1. 2051 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2052 EVT VT = N->getValueType(0); 2053 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2054 return -1; 2055 2056 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2057 2058 // Find the first non-undef value in the shuffle mask. 2059 unsigned i; 2060 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2061 /*search*/; 2062 2063 if (i == 4) return -1; // all undef. 2064 2065 // Otherwise, check to see if the rest of the elements are consecutively 2066 // numbered from this value. 2067 unsigned ShiftAmt = SVOp->getMaskElt(i); 2068 if (ShiftAmt < i) return -1; 2069 ShiftAmt -= i; 2070 2071 // Check the rest of the elements to see if they are consecutive. 2072 for (++i; i != 4; ++i) 2073 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2074 return -1; 2075 2076 return ShiftAmt; 2077 } 2078 2079 //===----------------------------------------------------------------------===// 2080 // Addressing Mode Selection 2081 //===----------------------------------------------------------------------===// 2082 2083 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2084 /// or 64-bit immediate, and if the value can be accurately represented as a 2085 /// sign extension from a 16-bit value. If so, this returns true and the 2086 /// immediate. 2087 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2088 if (!isa<ConstantSDNode>(N)) 2089 return false; 2090 2091 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2092 if (N->getValueType(0) == MVT::i32) 2093 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2094 else 2095 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2096 } 2097 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2098 return isIntS16Immediate(Op.getNode(), Imm); 2099 } 2100 2101 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2102 /// can be represented as an indexed [r+r] operation. Returns false if it 2103 /// can be more efficiently represented with [r+imm]. 2104 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2105 SDValue &Index, 2106 SelectionDAG &DAG) const { 2107 int16_t imm = 0; 2108 if (N.getOpcode() == ISD::ADD) { 2109 if (isIntS16Immediate(N.getOperand(1), imm)) 2110 return false; // r+i 2111 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2112 return false; // r+i 2113 2114 Base = N.getOperand(0); 2115 Index = N.getOperand(1); 2116 return true; 2117 } else if (N.getOpcode() == ISD::OR) { 2118 if (isIntS16Immediate(N.getOperand(1), imm)) 2119 return false; // r+i can fold it if we can. 2120 2121 // If this is an or of disjoint bitfields, we can codegen this as an add 2122 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2123 // disjoint. 2124 KnownBits LHSKnown, RHSKnown; 2125 DAG.computeKnownBits(N.getOperand(0), LHSKnown); 2126 2127 if (LHSKnown.Zero.getBoolValue()) { 2128 DAG.computeKnownBits(N.getOperand(1), RHSKnown); 2129 // If all of the bits are known zero on the LHS or RHS, the add won't 2130 // carry. 2131 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2132 Base = N.getOperand(0); 2133 Index = N.getOperand(1); 2134 return true; 2135 } 2136 } 2137 } 2138 2139 return false; 2140 } 2141 2142 // If we happen to be doing an i64 load or store into a stack slot that has 2143 // less than a 4-byte alignment, then the frame-index elimination may need to 2144 // use an indexed load or store instruction (because the offset may not be a 2145 // multiple of 4). The extra register needed to hold the offset comes from the 2146 // register scavenger, and it is possible that the scavenger will need to use 2147 // an emergency spill slot. As a result, we need to make sure that a spill slot 2148 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2149 // stack slot. 2150 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2151 // FIXME: This does not handle the LWA case. 2152 if (VT != MVT::i64) 2153 return; 2154 2155 // NOTE: We'll exclude negative FIs here, which come from argument 2156 // lowering, because there are no known test cases triggering this problem 2157 // using packed structures (or similar). We can remove this exclusion if 2158 // we find such a test case. The reason why this is so test-case driven is 2159 // because this entire 'fixup' is only to prevent crashes (from the 2160 // register scavenger) on not-really-valid inputs. For example, if we have: 2161 // %a = alloca i1 2162 // %b = bitcast i1* %a to i64* 2163 // store i64* a, i64 b 2164 // then the store should really be marked as 'align 1', but is not. If it 2165 // were marked as 'align 1' then the indexed form would have been 2166 // instruction-selected initially, and the problem this 'fixup' is preventing 2167 // won't happen regardless. 2168 if (FrameIdx < 0) 2169 return; 2170 2171 MachineFunction &MF = DAG.getMachineFunction(); 2172 MachineFrameInfo &MFI = MF.getFrameInfo(); 2173 2174 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2175 if (Align >= 4) 2176 return; 2177 2178 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2179 FuncInfo->setHasNonRISpills(); 2180 } 2181 2182 /// Returns true if the address N can be represented by a base register plus 2183 /// a signed 16-bit displacement [r+imm], and if it is not better 2184 /// represented as reg+reg. If \p Alignment is non-zero, only accept 2185 /// displacements that are multiples of that value. 2186 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2187 SDValue &Base, 2188 SelectionDAG &DAG, 2189 unsigned Alignment) const { 2190 // FIXME dl should come from parent load or store, not from address 2191 SDLoc dl(N); 2192 // If this can be more profitably realized as r+r, fail. 2193 if (SelectAddressRegReg(N, Disp, Base, DAG)) 2194 return false; 2195 2196 if (N.getOpcode() == ISD::ADD) { 2197 int16_t imm = 0; 2198 if (isIntS16Immediate(N.getOperand(1), imm) && 2199 (!Alignment || (imm % Alignment) == 0)) { 2200 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2201 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2202 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2203 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2204 } else { 2205 Base = N.getOperand(0); 2206 } 2207 return true; // [r+i] 2208 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2209 // Match LOAD (ADD (X, Lo(G))). 2210 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2211 && "Cannot handle constant offsets yet!"); 2212 Disp = N.getOperand(1).getOperand(0); // The global address. 2213 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2214 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2215 Disp.getOpcode() == ISD::TargetConstantPool || 2216 Disp.getOpcode() == ISD::TargetJumpTable); 2217 Base = N.getOperand(0); 2218 return true; // [&g+r] 2219 } 2220 } else if (N.getOpcode() == ISD::OR) { 2221 int16_t imm = 0; 2222 if (isIntS16Immediate(N.getOperand(1), imm) && 2223 (!Alignment || (imm % Alignment) == 0)) { 2224 // If this is an or of disjoint bitfields, we can codegen this as an add 2225 // (for better address arithmetic) if the LHS and RHS of the OR are 2226 // provably disjoint. 2227 KnownBits LHSKnown; 2228 DAG.computeKnownBits(N.getOperand(0), LHSKnown); 2229 2230 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2231 // If all of the bits are known zero on the LHS or RHS, the add won't 2232 // carry. 2233 if (FrameIndexSDNode *FI = 2234 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2235 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2236 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2237 } else { 2238 Base = N.getOperand(0); 2239 } 2240 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2241 return true; 2242 } 2243 } 2244 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2245 // Loading from a constant address. 2246 2247 // If this address fits entirely in a 16-bit sext immediate field, codegen 2248 // this as "d, 0" 2249 int16_t Imm; 2250 if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) { 2251 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2252 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2253 CN->getValueType(0)); 2254 return true; 2255 } 2256 2257 // Handle 32-bit sext immediates with LIS + addr mode. 2258 if ((CN->getValueType(0) == MVT::i32 || 2259 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2260 (!Alignment || (CN->getZExtValue() % Alignment) == 0)) { 2261 int Addr = (int)CN->getZExtValue(); 2262 2263 // Otherwise, break this down into an LIS + disp. 2264 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2265 2266 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2267 MVT::i32); 2268 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2269 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2270 return true; 2271 } 2272 } 2273 2274 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2275 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2276 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2277 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2278 } else 2279 Base = N; 2280 return true; // [r+0] 2281 } 2282 2283 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2284 /// represented as an indexed [r+r] operation. 2285 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2286 SDValue &Index, 2287 SelectionDAG &DAG) const { 2288 // Check to see if we can easily represent this as an [r+r] address. This 2289 // will fail if it thinks that the address is more profitably represented as 2290 // reg+imm, e.g. where imm = 0. 2291 if (SelectAddressRegReg(N, Base, Index, DAG)) 2292 return true; 2293 2294 // If the address is the result of an add, we will utilize the fact that the 2295 // address calculation includes an implicit add. However, we can reduce 2296 // register pressure if we do not materialize a constant just for use as the 2297 // index register. We only get rid of the add if it is not an add of a 2298 // value and a 16-bit signed constant and both have a single use. 2299 int16_t imm = 0; 2300 if (N.getOpcode() == ISD::ADD && 2301 (!isIntS16Immediate(N.getOperand(1), imm) || 2302 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2303 Base = N.getOperand(0); 2304 Index = N.getOperand(1); 2305 return true; 2306 } 2307 2308 // Otherwise, do it the hard way, using R0 as the base register. 2309 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2310 N.getValueType()); 2311 Index = N; 2312 return true; 2313 } 2314 2315 /// getPreIndexedAddressParts - returns true by value, base pointer and 2316 /// offset pointer and addressing mode by reference if the node's address 2317 /// can be legally represented as pre-indexed load / store address. 2318 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2319 SDValue &Offset, 2320 ISD::MemIndexedMode &AM, 2321 SelectionDAG &DAG) const { 2322 if (DisablePPCPreinc) return false; 2323 2324 bool isLoad = true; 2325 SDValue Ptr; 2326 EVT VT; 2327 unsigned Alignment; 2328 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2329 Ptr = LD->getBasePtr(); 2330 VT = LD->getMemoryVT(); 2331 Alignment = LD->getAlignment(); 2332 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2333 Ptr = ST->getBasePtr(); 2334 VT = ST->getMemoryVT(); 2335 Alignment = ST->getAlignment(); 2336 isLoad = false; 2337 } else 2338 return false; 2339 2340 // PowerPC doesn't have preinc load/store instructions for vectors (except 2341 // for QPX, which does have preinc r+r forms). 2342 if (VT.isVector()) { 2343 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2344 return false; 2345 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2346 AM = ISD::PRE_INC; 2347 return true; 2348 } 2349 } 2350 2351 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2352 // Common code will reject creating a pre-inc form if the base pointer 2353 // is a frame index, or if N is a store and the base pointer is either 2354 // the same as or a predecessor of the value being stored. Check for 2355 // those situations here, and try with swapped Base/Offset instead. 2356 bool Swap = false; 2357 2358 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2359 Swap = true; 2360 else if (!isLoad) { 2361 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2362 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2363 Swap = true; 2364 } 2365 2366 if (Swap) 2367 std::swap(Base, Offset); 2368 2369 AM = ISD::PRE_INC; 2370 return true; 2371 } 2372 2373 // LDU/STU can only handle immediates that are a multiple of 4. 2374 if (VT != MVT::i64) { 2375 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2376 return false; 2377 } else { 2378 // LDU/STU need an address with at least 4-byte alignment. 2379 if (Alignment < 4) 2380 return false; 2381 2382 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2383 return false; 2384 } 2385 2386 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2387 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2388 // sext i32 to i64 when addr mode is r+i. 2389 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2390 LD->getExtensionType() == ISD::SEXTLOAD && 2391 isa<ConstantSDNode>(Offset)) 2392 return false; 2393 } 2394 2395 AM = ISD::PRE_INC; 2396 return true; 2397 } 2398 2399 //===----------------------------------------------------------------------===// 2400 // LowerOperation implementation 2401 //===----------------------------------------------------------------------===// 2402 2403 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2404 /// and LoOpFlags to the target MO flags. 2405 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2406 unsigned &HiOpFlags, unsigned &LoOpFlags, 2407 const GlobalValue *GV = nullptr) { 2408 HiOpFlags = PPCII::MO_HA; 2409 LoOpFlags = PPCII::MO_LO; 2410 2411 // Don't use the pic base if not in PIC relocation model. 2412 if (IsPIC) { 2413 HiOpFlags |= PPCII::MO_PIC_FLAG; 2414 LoOpFlags |= PPCII::MO_PIC_FLAG; 2415 } 2416 2417 // If this is a reference to a global value that requires a non-lazy-ptr, make 2418 // sure that instruction lowering adds it. 2419 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2420 HiOpFlags |= PPCII::MO_NLP_FLAG; 2421 LoOpFlags |= PPCII::MO_NLP_FLAG; 2422 2423 if (GV->hasHiddenVisibility()) { 2424 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2425 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2426 } 2427 } 2428 } 2429 2430 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2431 SelectionDAG &DAG) { 2432 SDLoc DL(HiPart); 2433 EVT PtrVT = HiPart.getValueType(); 2434 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2435 2436 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2437 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2438 2439 // With PIC, the first instruction is actually "GR+hi(&G)". 2440 if (isPIC) 2441 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2442 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2443 2444 // Generate non-pic code that has direct accesses to the constant pool. 2445 // The address of the global is just (hi(&g)+lo(&g)). 2446 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2447 } 2448 2449 static void setUsesTOCBasePtr(MachineFunction &MF) { 2450 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2451 FuncInfo->setUsesTOCBasePtr(); 2452 } 2453 2454 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2455 setUsesTOCBasePtr(DAG.getMachineFunction()); 2456 } 2457 2458 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2459 SDValue GA) { 2460 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2461 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2462 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2463 2464 SDValue Ops[] = { GA, Reg }; 2465 return DAG.getMemIntrinsicNode( 2466 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2467 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2468 MachineMemOperand::MOLoad); 2469 } 2470 2471 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2472 SelectionDAG &DAG) const { 2473 EVT PtrVT = Op.getValueType(); 2474 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2475 const Constant *C = CP->getConstVal(); 2476 2477 // 64-bit SVR4 ABI code is always position-independent. 2478 // The actual address of the GlobalValue is stored in the TOC. 2479 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2480 setUsesTOCBasePtr(DAG); 2481 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2482 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2483 } 2484 2485 unsigned MOHiFlag, MOLoFlag; 2486 bool IsPIC = isPositionIndependent(); 2487 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2488 2489 if (IsPIC && Subtarget.isSVR4ABI()) { 2490 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2491 PPCII::MO_PIC_FLAG); 2492 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2493 } 2494 2495 SDValue CPIHi = 2496 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2497 SDValue CPILo = 2498 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2499 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2500 } 2501 2502 // For 64-bit PowerPC, prefer the more compact relative encodings. 2503 // This trades 32 bits per jump table entry for one or two instructions 2504 // on the jump site. 2505 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2506 if (isJumpTableRelative()) 2507 return MachineJumpTableInfo::EK_LabelDifference32; 2508 2509 return TargetLowering::getJumpTableEncoding(); 2510 } 2511 2512 bool PPCTargetLowering::isJumpTableRelative() const { 2513 if (Subtarget.isPPC64()) 2514 return true; 2515 return TargetLowering::isJumpTableRelative(); 2516 } 2517 2518 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2519 SelectionDAG &DAG) const { 2520 if (!Subtarget.isPPC64()) 2521 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2522 2523 switch (getTargetMachine().getCodeModel()) { 2524 case CodeModel::Small: 2525 case CodeModel::Medium: 2526 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2527 default: 2528 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2529 getPointerTy(DAG.getDataLayout())); 2530 } 2531 } 2532 2533 const MCExpr * 2534 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2535 unsigned JTI, 2536 MCContext &Ctx) const { 2537 if (!Subtarget.isPPC64()) 2538 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2539 2540 switch (getTargetMachine().getCodeModel()) { 2541 case CodeModel::Small: 2542 case CodeModel::Medium: 2543 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2544 default: 2545 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2546 } 2547 } 2548 2549 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2550 EVT PtrVT = Op.getValueType(); 2551 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2552 2553 // 64-bit SVR4 ABI code is always position-independent. 2554 // The actual address of the GlobalValue is stored in the TOC. 2555 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2556 setUsesTOCBasePtr(DAG); 2557 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2558 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2559 } 2560 2561 unsigned MOHiFlag, MOLoFlag; 2562 bool IsPIC = isPositionIndependent(); 2563 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2564 2565 if (IsPIC && Subtarget.isSVR4ABI()) { 2566 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2567 PPCII::MO_PIC_FLAG); 2568 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2569 } 2570 2571 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2572 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2573 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2574 } 2575 2576 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2577 SelectionDAG &DAG) const { 2578 EVT PtrVT = Op.getValueType(); 2579 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2580 const BlockAddress *BA = BASDN->getBlockAddress(); 2581 2582 // 64-bit SVR4 ABI code is always position-independent. 2583 // The actual BlockAddress is stored in the TOC. 2584 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2585 setUsesTOCBasePtr(DAG); 2586 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2587 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2588 } 2589 2590 unsigned MOHiFlag, MOLoFlag; 2591 bool IsPIC = isPositionIndependent(); 2592 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2593 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2594 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2595 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2596 } 2597 2598 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2599 SelectionDAG &DAG) const { 2600 // FIXME: TLS addresses currently use medium model code sequences, 2601 // which is the most useful form. Eventually support for small and 2602 // large models could be added if users need it, at the cost of 2603 // additional complexity. 2604 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2605 if (DAG.getTarget().useEmulatedTLS()) 2606 return LowerToTLSEmulatedModel(GA, DAG); 2607 2608 SDLoc dl(GA); 2609 const GlobalValue *GV = GA->getGlobal(); 2610 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2611 bool is64bit = Subtarget.isPPC64(); 2612 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2613 PICLevel::Level picLevel = M->getPICLevel(); 2614 2615 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2616 2617 if (Model == TLSModel::LocalExec) { 2618 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2619 PPCII::MO_TPREL_HA); 2620 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2621 PPCII::MO_TPREL_LO); 2622 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2623 : DAG.getRegister(PPC::R2, MVT::i32); 2624 2625 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2626 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2627 } 2628 2629 if (Model == TLSModel::InitialExec) { 2630 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2631 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2632 PPCII::MO_TLS); 2633 SDValue GOTPtr; 2634 if (is64bit) { 2635 setUsesTOCBasePtr(DAG); 2636 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2637 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2638 PtrVT, GOTReg, TGA); 2639 } else 2640 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2641 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2642 PtrVT, TGA, GOTPtr); 2643 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2644 } 2645 2646 if (Model == TLSModel::GeneralDynamic) { 2647 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2648 SDValue GOTPtr; 2649 if (is64bit) { 2650 setUsesTOCBasePtr(DAG); 2651 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2652 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2653 GOTReg, TGA); 2654 } else { 2655 if (picLevel == PICLevel::SmallPIC) 2656 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2657 else 2658 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2659 } 2660 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2661 GOTPtr, TGA, TGA); 2662 } 2663 2664 if (Model == TLSModel::LocalDynamic) { 2665 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2666 SDValue GOTPtr; 2667 if (is64bit) { 2668 setUsesTOCBasePtr(DAG); 2669 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2670 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2671 GOTReg, TGA); 2672 } else { 2673 if (picLevel == PICLevel::SmallPIC) 2674 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2675 else 2676 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2677 } 2678 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2679 PtrVT, GOTPtr, TGA, TGA); 2680 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2681 PtrVT, TLSAddr, TGA); 2682 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2683 } 2684 2685 llvm_unreachable("Unknown TLS model!"); 2686 } 2687 2688 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2689 SelectionDAG &DAG) const { 2690 EVT PtrVT = Op.getValueType(); 2691 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2692 SDLoc DL(GSDN); 2693 const GlobalValue *GV = GSDN->getGlobal(); 2694 2695 // 64-bit SVR4 ABI code is always position-independent. 2696 // The actual address of the GlobalValue is stored in the TOC. 2697 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2698 setUsesTOCBasePtr(DAG); 2699 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2700 return getTOCEntry(DAG, DL, true, GA); 2701 } 2702 2703 unsigned MOHiFlag, MOLoFlag; 2704 bool IsPIC = isPositionIndependent(); 2705 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2706 2707 if (IsPIC && Subtarget.isSVR4ABI()) { 2708 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2709 GSDN->getOffset(), 2710 PPCII::MO_PIC_FLAG); 2711 return getTOCEntry(DAG, DL, false, GA); 2712 } 2713 2714 SDValue GAHi = 2715 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2716 SDValue GALo = 2717 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2718 2719 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2720 2721 // If the global reference is actually to a non-lazy-pointer, we have to do an 2722 // extra load to get the address of the global. 2723 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2724 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2725 return Ptr; 2726 } 2727 2728 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2729 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2730 SDLoc dl(Op); 2731 2732 if (Op.getValueType() == MVT::v2i64) { 2733 // When the operands themselves are v2i64 values, we need to do something 2734 // special because VSX has no underlying comparison operations for these. 2735 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2736 // Equality can be handled by casting to the legal type for Altivec 2737 // comparisons, everything else needs to be expanded. 2738 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2739 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2740 DAG.getSetCC(dl, MVT::v4i32, 2741 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2742 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2743 CC)); 2744 } 2745 2746 return SDValue(); 2747 } 2748 2749 // We handle most of these in the usual way. 2750 return Op; 2751 } 2752 2753 // If we're comparing for equality to zero, expose the fact that this is 2754 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2755 // fold the new nodes. 2756 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2757 return V; 2758 2759 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2760 // Leave comparisons against 0 and -1 alone for now, since they're usually 2761 // optimized. FIXME: revisit this when we can custom lower all setcc 2762 // optimizations. 2763 if (C->isAllOnesValue() || C->isNullValue()) 2764 return SDValue(); 2765 } 2766 2767 // If we have an integer seteq/setne, turn it into a compare against zero 2768 // by xor'ing the rhs with the lhs, which is faster than setting a 2769 // condition register, reading it back out, and masking the correct bit. The 2770 // normal approach here uses sub to do this instead of xor. Using xor exposes 2771 // the result to other bit-twiddling opportunities. 2772 EVT LHSVT = Op.getOperand(0).getValueType(); 2773 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2774 EVT VT = Op.getValueType(); 2775 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2776 Op.getOperand(1)); 2777 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2778 } 2779 return SDValue(); 2780 } 2781 2782 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2783 SDNode *Node = Op.getNode(); 2784 EVT VT = Node->getValueType(0); 2785 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2786 SDValue InChain = Node->getOperand(0); 2787 SDValue VAListPtr = Node->getOperand(1); 2788 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2789 SDLoc dl(Node); 2790 2791 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2792 2793 // gpr_index 2794 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2795 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2796 InChain = GprIndex.getValue(1); 2797 2798 if (VT == MVT::i64) { 2799 // Check if GprIndex is even 2800 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2801 DAG.getConstant(1, dl, MVT::i32)); 2802 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2803 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2804 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2805 DAG.getConstant(1, dl, MVT::i32)); 2806 // Align GprIndex to be even if it isn't 2807 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2808 GprIndex); 2809 } 2810 2811 // fpr index is 1 byte after gpr 2812 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2813 DAG.getConstant(1, dl, MVT::i32)); 2814 2815 // fpr 2816 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2817 FprPtr, MachinePointerInfo(SV), MVT::i8); 2818 InChain = FprIndex.getValue(1); 2819 2820 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2821 DAG.getConstant(8, dl, MVT::i32)); 2822 2823 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2824 DAG.getConstant(4, dl, MVT::i32)); 2825 2826 // areas 2827 SDValue OverflowArea = 2828 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2829 InChain = OverflowArea.getValue(1); 2830 2831 SDValue RegSaveArea = 2832 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2833 InChain = RegSaveArea.getValue(1); 2834 2835 // select overflow_area if index > 8 2836 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2837 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2838 2839 // adjustment constant gpr_index * 4/8 2840 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2841 VT.isInteger() ? GprIndex : FprIndex, 2842 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2843 MVT::i32)); 2844 2845 // OurReg = RegSaveArea + RegConstant 2846 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2847 RegConstant); 2848 2849 // Floating types are 32 bytes into RegSaveArea 2850 if (VT.isFloatingPoint()) 2851 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2852 DAG.getConstant(32, dl, MVT::i32)); 2853 2854 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2855 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2856 VT.isInteger() ? GprIndex : FprIndex, 2857 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2858 MVT::i32)); 2859 2860 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2861 VT.isInteger() ? VAListPtr : FprPtr, 2862 MachinePointerInfo(SV), MVT::i8); 2863 2864 // determine if we should load from reg_save_area or overflow_area 2865 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2866 2867 // increase overflow_area by 4/8 if gpr/fpr > 8 2868 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2869 DAG.getConstant(VT.isInteger() ? 4 : 8, 2870 dl, MVT::i32)); 2871 2872 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2873 OverflowAreaPlusN); 2874 2875 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 2876 MachinePointerInfo(), MVT::i32); 2877 2878 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 2879 } 2880 2881 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 2882 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2883 2884 // We have to copy the entire va_list struct: 2885 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2886 return DAG.getMemcpy(Op.getOperand(0), Op, 2887 Op.getOperand(1), Op.getOperand(2), 2888 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2889 false, MachinePointerInfo(), MachinePointerInfo()); 2890 } 2891 2892 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2893 SelectionDAG &DAG) const { 2894 return Op.getOperand(0); 2895 } 2896 2897 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2898 SelectionDAG &DAG) const { 2899 SDValue Chain = Op.getOperand(0); 2900 SDValue Trmp = Op.getOperand(1); // trampoline 2901 SDValue FPtr = Op.getOperand(2); // nested function 2902 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2903 SDLoc dl(Op); 2904 2905 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2906 bool isPPC64 = (PtrVT == MVT::i64); 2907 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2908 2909 TargetLowering::ArgListTy Args; 2910 TargetLowering::ArgListEntry Entry; 2911 2912 Entry.Ty = IntPtrTy; 2913 Entry.Node = Trmp; Args.push_back(Entry); 2914 2915 // TrampSize == (isPPC64 ? 48 : 40); 2916 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2917 isPPC64 ? MVT::i64 : MVT::i32); 2918 Args.push_back(Entry); 2919 2920 Entry.Node = FPtr; Args.push_back(Entry); 2921 Entry.Node = Nest; Args.push_back(Entry); 2922 2923 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2924 TargetLowering::CallLoweringInfo CLI(DAG); 2925 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 2926 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2927 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 2928 2929 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2930 return CallResult.second; 2931 } 2932 2933 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2934 MachineFunction &MF = DAG.getMachineFunction(); 2935 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2936 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2937 2938 SDLoc dl(Op); 2939 2940 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2941 // vastart just stores the address of the VarArgsFrameIndex slot into the 2942 // memory location argument. 2943 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2944 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2945 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2946 MachinePointerInfo(SV)); 2947 } 2948 2949 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2950 // We suppose the given va_list is already allocated. 2951 // 2952 // typedef struct { 2953 // char gpr; /* index into the array of 8 GPRs 2954 // * stored in the register save area 2955 // * gpr=0 corresponds to r3, 2956 // * gpr=1 to r4, etc. 2957 // */ 2958 // char fpr; /* index into the array of 8 FPRs 2959 // * stored in the register save area 2960 // * fpr=0 corresponds to f1, 2961 // * fpr=1 to f2, etc. 2962 // */ 2963 // char *overflow_arg_area; 2964 // /* location on stack that holds 2965 // * the next overflow argument 2966 // */ 2967 // char *reg_save_area; 2968 // /* where r3:r10 and f1:f8 (if saved) 2969 // * are stored 2970 // */ 2971 // } va_list[1]; 2972 2973 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2974 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2975 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2976 PtrVT); 2977 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2978 PtrVT); 2979 2980 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2981 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2982 2983 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2984 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2985 2986 uint64_t FPROffset = 1; 2987 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2988 2989 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2990 2991 // Store first byte : number of int regs 2992 SDValue firstStore = 2993 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 2994 MachinePointerInfo(SV), MVT::i8); 2995 uint64_t nextOffset = FPROffset; 2996 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2997 ConstFPROffset); 2998 2999 // Store second byte : number of float regs 3000 SDValue secondStore = 3001 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3002 MachinePointerInfo(SV, nextOffset), MVT::i8); 3003 nextOffset += StackOffset; 3004 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3005 3006 // Store second word : arguments given on stack 3007 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3008 MachinePointerInfo(SV, nextOffset)); 3009 nextOffset += FrameOffset; 3010 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3011 3012 // Store third word : arguments given in registers 3013 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3014 MachinePointerInfo(SV, nextOffset)); 3015 } 3016 3017 #include "PPCGenCallingConv.inc" 3018 3019 // Function whose sole purpose is to kill compiler warnings 3020 // stemming from unused functions included from PPCGenCallingConv.inc. 3021 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 3022 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 3023 } 3024 3025 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 3026 CCValAssign::LocInfo &LocInfo, 3027 ISD::ArgFlagsTy &ArgFlags, 3028 CCState &State) { 3029 return true; 3030 } 3031 3032 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 3033 MVT &LocVT, 3034 CCValAssign::LocInfo &LocInfo, 3035 ISD::ArgFlagsTy &ArgFlags, 3036 CCState &State) { 3037 static const MCPhysReg ArgRegs[] = { 3038 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3039 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3040 }; 3041 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3042 3043 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3044 3045 // Skip one register if the first unallocated register has an even register 3046 // number and there are still argument registers available which have not been 3047 // allocated yet. RegNum is actually an index into ArgRegs, which means we 3048 // need to skip a register if RegNum is odd. 3049 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 3050 State.AllocateReg(ArgRegs[RegNum]); 3051 } 3052 3053 // Always return false here, as this function only makes sure that the first 3054 // unallocated register has an odd register number and does not actually 3055 // allocate a register for the current argument. 3056 return false; 3057 } 3058 3059 bool 3060 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 3061 MVT &LocVT, 3062 CCValAssign::LocInfo &LocInfo, 3063 ISD::ArgFlagsTy &ArgFlags, 3064 CCState &State) { 3065 static const MCPhysReg ArgRegs[] = { 3066 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3067 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3068 }; 3069 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3070 3071 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3072 int RegsLeft = NumArgRegs - RegNum; 3073 3074 // Skip if there is not enough registers left for long double type (4 gpr regs 3075 // in soft float mode) and put long double argument on the stack. 3076 if (RegNum != NumArgRegs && RegsLeft < 4) { 3077 for (int i = 0; i < RegsLeft; i++) { 3078 State.AllocateReg(ArgRegs[RegNum + i]); 3079 } 3080 } 3081 3082 return false; 3083 } 3084 3085 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 3086 MVT &LocVT, 3087 CCValAssign::LocInfo &LocInfo, 3088 ISD::ArgFlagsTy &ArgFlags, 3089 CCState &State) { 3090 static const MCPhysReg ArgRegs[] = { 3091 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3092 PPC::F8 3093 }; 3094 3095 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3096 3097 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3098 3099 // If there is only one Floating-point register left we need to put both f64 3100 // values of a split ppc_fp128 value on the stack. 3101 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 3102 State.AllocateReg(ArgRegs[RegNum]); 3103 } 3104 3105 // Always return false here, as this function only makes sure that the two f64 3106 // values a ppc_fp128 value is split into are both passed in registers or both 3107 // passed on the stack and does not actually allocate a register for the 3108 // current argument. 3109 return false; 3110 } 3111 3112 /// FPR - The set of FP registers that should be allocated for arguments, 3113 /// on Darwin. 3114 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3115 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3116 PPC::F11, PPC::F12, PPC::F13}; 3117 3118 /// QFPR - The set of QPX registers that should be allocated for arguments. 3119 static const MCPhysReg QFPR[] = { 3120 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3121 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3122 3123 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3124 /// the stack. 3125 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3126 unsigned PtrByteSize) { 3127 unsigned ArgSize = ArgVT.getStoreSize(); 3128 if (Flags.isByVal()) 3129 ArgSize = Flags.getByValSize(); 3130 3131 // Round up to multiples of the pointer size, except for array members, 3132 // which are always packed. 3133 if (!Flags.isInConsecutiveRegs()) 3134 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3135 3136 return ArgSize; 3137 } 3138 3139 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3140 /// on the stack. 3141 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3142 ISD::ArgFlagsTy Flags, 3143 unsigned PtrByteSize) { 3144 unsigned Align = PtrByteSize; 3145 3146 // Altivec parameters are padded to a 16 byte boundary. 3147 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3148 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3149 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3150 ArgVT == MVT::v1i128) 3151 Align = 16; 3152 // QPX vector types stored in double-precision are padded to a 32 byte 3153 // boundary. 3154 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3155 Align = 32; 3156 3157 // ByVal parameters are aligned as requested. 3158 if (Flags.isByVal()) { 3159 unsigned BVAlign = Flags.getByValAlign(); 3160 if (BVAlign > PtrByteSize) { 3161 if (BVAlign % PtrByteSize != 0) 3162 llvm_unreachable( 3163 "ByVal alignment is not a multiple of the pointer size"); 3164 3165 Align = BVAlign; 3166 } 3167 } 3168 3169 // Array members are always packed to their original alignment. 3170 if (Flags.isInConsecutiveRegs()) { 3171 // If the array member was split into multiple registers, the first 3172 // needs to be aligned to the size of the full type. (Except for 3173 // ppcf128, which is only aligned as its f64 components.) 3174 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3175 Align = OrigVT.getStoreSize(); 3176 else 3177 Align = ArgVT.getStoreSize(); 3178 } 3179 3180 return Align; 3181 } 3182 3183 /// CalculateStackSlotUsed - Return whether this argument will use its 3184 /// stack slot (instead of being passed in registers). ArgOffset, 3185 /// AvailableFPRs, and AvailableVRs must hold the current argument 3186 /// position, and will be updated to account for this argument. 3187 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3188 ISD::ArgFlagsTy Flags, 3189 unsigned PtrByteSize, 3190 unsigned LinkageSize, 3191 unsigned ParamAreaSize, 3192 unsigned &ArgOffset, 3193 unsigned &AvailableFPRs, 3194 unsigned &AvailableVRs, bool HasQPX) { 3195 bool UseMemory = false; 3196 3197 // Respect alignment of argument on the stack. 3198 unsigned Align = 3199 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3200 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3201 // If there's no space left in the argument save area, we must 3202 // use memory (this check also catches zero-sized arguments). 3203 if (ArgOffset >= LinkageSize + ParamAreaSize) 3204 UseMemory = true; 3205 3206 // Allocate argument on the stack. 3207 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3208 if (Flags.isInConsecutiveRegsLast()) 3209 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3210 // If we overran the argument save area, we must use memory 3211 // (this check catches arguments passed partially in memory) 3212 if (ArgOffset > LinkageSize + ParamAreaSize) 3213 UseMemory = true; 3214 3215 // However, if the argument is actually passed in an FPR or a VR, 3216 // we don't use memory after all. 3217 if (!Flags.isByVal()) { 3218 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3219 // QPX registers overlap with the scalar FP registers. 3220 (HasQPX && (ArgVT == MVT::v4f32 || 3221 ArgVT == MVT::v4f64 || 3222 ArgVT == MVT::v4i1))) 3223 if (AvailableFPRs > 0) { 3224 --AvailableFPRs; 3225 return false; 3226 } 3227 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3228 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3229 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3230 ArgVT == MVT::v1i128) 3231 if (AvailableVRs > 0) { 3232 --AvailableVRs; 3233 return false; 3234 } 3235 } 3236 3237 return UseMemory; 3238 } 3239 3240 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3241 /// ensure minimum alignment required for target. 3242 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3243 unsigned NumBytes) { 3244 unsigned TargetAlign = Lowering->getStackAlignment(); 3245 unsigned AlignMask = TargetAlign - 1; 3246 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3247 return NumBytes; 3248 } 3249 3250 SDValue PPCTargetLowering::LowerFormalArguments( 3251 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3252 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3253 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3254 if (Subtarget.isSVR4ABI()) { 3255 if (Subtarget.isPPC64()) 3256 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3257 dl, DAG, InVals); 3258 else 3259 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3260 dl, DAG, InVals); 3261 } else { 3262 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3263 dl, DAG, InVals); 3264 } 3265 } 3266 3267 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3268 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3269 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3270 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3271 3272 // 32-bit SVR4 ABI Stack Frame Layout: 3273 // +-----------------------------------+ 3274 // +--> | Back chain | 3275 // | +-----------------------------------+ 3276 // | | Floating-point register save area | 3277 // | +-----------------------------------+ 3278 // | | General register save area | 3279 // | +-----------------------------------+ 3280 // | | CR save word | 3281 // | +-----------------------------------+ 3282 // | | VRSAVE save word | 3283 // | +-----------------------------------+ 3284 // | | Alignment padding | 3285 // | +-----------------------------------+ 3286 // | | Vector register save area | 3287 // | +-----------------------------------+ 3288 // | | Local variable space | 3289 // | +-----------------------------------+ 3290 // | | Parameter list area | 3291 // | +-----------------------------------+ 3292 // | | LR save word | 3293 // | +-----------------------------------+ 3294 // SP--> +--- | Back chain | 3295 // +-----------------------------------+ 3296 // 3297 // Specifications: 3298 // System V Application Binary Interface PowerPC Processor Supplement 3299 // AltiVec Technology Programming Interface Manual 3300 3301 MachineFunction &MF = DAG.getMachineFunction(); 3302 MachineFrameInfo &MFI = MF.getFrameInfo(); 3303 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3304 3305 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3306 // Potential tail calls could cause overwriting of argument stack slots. 3307 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3308 (CallConv == CallingConv::Fast)); 3309 unsigned PtrByteSize = 4; 3310 3311 // Assign locations to all of the incoming arguments. 3312 SmallVector<CCValAssign, 16> ArgLocs; 3313 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3314 *DAG.getContext()); 3315 3316 // Reserve space for the linkage area on the stack. 3317 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3318 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3319 if (useSoftFloat()) 3320 CCInfo.PreAnalyzeFormalArguments(Ins); 3321 3322 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3323 CCInfo.clearWasPPCF128(); 3324 3325 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3326 CCValAssign &VA = ArgLocs[i]; 3327 3328 // Arguments stored in registers. 3329 if (VA.isRegLoc()) { 3330 const TargetRegisterClass *RC; 3331 EVT ValVT = VA.getValVT(); 3332 3333 switch (ValVT.getSimpleVT().SimpleTy) { 3334 default: 3335 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3336 case MVT::i1: 3337 case MVT::i32: 3338 RC = &PPC::GPRCRegClass; 3339 break; 3340 case MVT::f32: 3341 if (Subtarget.hasP8Vector()) 3342 RC = &PPC::VSSRCRegClass; 3343 else 3344 RC = &PPC::F4RCRegClass; 3345 break; 3346 case MVT::f64: 3347 if (Subtarget.hasVSX()) 3348 RC = &PPC::VSFRCRegClass; 3349 else 3350 RC = &PPC::F8RCRegClass; 3351 break; 3352 case MVT::v16i8: 3353 case MVT::v8i16: 3354 case MVT::v4i32: 3355 RC = &PPC::VRRCRegClass; 3356 break; 3357 case MVT::v4f32: 3358 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3359 break; 3360 case MVT::v2f64: 3361 case MVT::v2i64: 3362 RC = &PPC::VRRCRegClass; 3363 break; 3364 case MVT::v4f64: 3365 RC = &PPC::QFRCRegClass; 3366 break; 3367 case MVT::v4i1: 3368 RC = &PPC::QBRCRegClass; 3369 break; 3370 } 3371 3372 // Transform the arguments stored in physical registers into virtual ones. 3373 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3374 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3375 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3376 3377 if (ValVT == MVT::i1) 3378 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3379 3380 InVals.push_back(ArgValue); 3381 } else { 3382 // Argument stored in memory. 3383 assert(VA.isMemLoc()); 3384 3385 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3386 int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(), 3387 isImmutable); 3388 3389 // Create load nodes to retrieve arguments from the stack. 3390 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3391 InVals.push_back( 3392 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3393 } 3394 } 3395 3396 // Assign locations to all of the incoming aggregate by value arguments. 3397 // Aggregates passed by value are stored in the local variable space of the 3398 // caller's stack frame, right above the parameter list area. 3399 SmallVector<CCValAssign, 16> ByValArgLocs; 3400 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3401 ByValArgLocs, *DAG.getContext()); 3402 3403 // Reserve stack space for the allocations in CCInfo. 3404 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3405 3406 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3407 3408 // Area that is at least reserved in the caller of this function. 3409 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3410 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3411 3412 // Set the size that is at least reserved in caller of this function. Tail 3413 // call optimized function's reserved stack space needs to be aligned so that 3414 // taking the difference between two stack areas will result in an aligned 3415 // stack. 3416 MinReservedArea = 3417 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3418 FuncInfo->setMinReservedArea(MinReservedArea); 3419 3420 SmallVector<SDValue, 8> MemOps; 3421 3422 // If the function takes variable number of arguments, make a frame index for 3423 // the start of the first vararg value... for expansion of llvm.va_start. 3424 if (isVarArg) { 3425 static const MCPhysReg GPArgRegs[] = { 3426 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3427 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3428 }; 3429 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3430 3431 static const MCPhysReg FPArgRegs[] = { 3432 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3433 PPC::F8 3434 }; 3435 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3436 3437 if (useSoftFloat()) 3438 NumFPArgRegs = 0; 3439 3440 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3441 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3442 3443 // Make room for NumGPArgRegs and NumFPArgRegs. 3444 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3445 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3446 3447 FuncInfo->setVarArgsStackOffset( 3448 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3449 CCInfo.getNextStackOffset(), true)); 3450 3451 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3452 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3453 3454 // The fixed integer arguments of a variadic function are stored to the 3455 // VarArgsFrameIndex on the stack so that they may be loaded by 3456 // dereferencing the result of va_next. 3457 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3458 // Get an existing live-in vreg, or add a new one. 3459 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3460 if (!VReg) 3461 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3462 3463 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3464 SDValue Store = 3465 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3466 MemOps.push_back(Store); 3467 // Increment the address by four for the next argument to store 3468 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3469 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3470 } 3471 3472 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3473 // is set. 3474 // The double arguments are stored to the VarArgsFrameIndex 3475 // on the stack. 3476 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3477 // Get an existing live-in vreg, or add a new one. 3478 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3479 if (!VReg) 3480 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3481 3482 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3483 SDValue Store = 3484 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3485 MemOps.push_back(Store); 3486 // Increment the address by eight for the next argument to store 3487 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3488 PtrVT); 3489 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3490 } 3491 } 3492 3493 if (!MemOps.empty()) 3494 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3495 3496 return Chain; 3497 } 3498 3499 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3500 // value to MVT::i64 and then truncate to the correct register size. 3501 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3502 EVT ObjectVT, SelectionDAG &DAG, 3503 SDValue ArgVal, 3504 const SDLoc &dl) const { 3505 if (Flags.isSExt()) 3506 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3507 DAG.getValueType(ObjectVT)); 3508 else if (Flags.isZExt()) 3509 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3510 DAG.getValueType(ObjectVT)); 3511 3512 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3513 } 3514 3515 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3516 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3517 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3518 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3519 // TODO: add description of PPC stack frame format, or at least some docs. 3520 // 3521 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3522 bool isLittleEndian = Subtarget.isLittleEndian(); 3523 MachineFunction &MF = DAG.getMachineFunction(); 3524 MachineFrameInfo &MFI = MF.getFrameInfo(); 3525 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3526 3527 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3528 "fastcc not supported on varargs functions"); 3529 3530 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3531 // Potential tail calls could cause overwriting of argument stack slots. 3532 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3533 (CallConv == CallingConv::Fast)); 3534 unsigned PtrByteSize = 8; 3535 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3536 3537 static const MCPhysReg GPR[] = { 3538 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3539 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3540 }; 3541 static const MCPhysReg VR[] = { 3542 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3543 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3544 }; 3545 3546 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3547 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3548 const unsigned Num_VR_Regs = array_lengthof(VR); 3549 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3550 3551 // Do a first pass over the arguments to determine whether the ABI 3552 // guarantees that our caller has allocated the parameter save area 3553 // on its stack frame. In the ELFv1 ABI, this is always the case; 3554 // in the ELFv2 ABI, it is true if this is a vararg function or if 3555 // any parameter is located in a stack slot. 3556 3557 bool HasParameterArea = !isELFv2ABI || isVarArg; 3558 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3559 unsigned NumBytes = LinkageSize; 3560 unsigned AvailableFPRs = Num_FPR_Regs; 3561 unsigned AvailableVRs = Num_VR_Regs; 3562 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3563 if (Ins[i].Flags.isNest()) 3564 continue; 3565 3566 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3567 PtrByteSize, LinkageSize, ParamAreaSize, 3568 NumBytes, AvailableFPRs, AvailableVRs, 3569 Subtarget.hasQPX())) 3570 HasParameterArea = true; 3571 } 3572 3573 // Add DAG nodes to load the arguments or copy them out of registers. On 3574 // entry to a function on PPC, the arguments start after the linkage area, 3575 // although the first ones are often in registers. 3576 3577 unsigned ArgOffset = LinkageSize; 3578 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3579 unsigned &QFPR_idx = FPR_idx; 3580 SmallVector<SDValue, 8> MemOps; 3581 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3582 unsigned CurArgIdx = 0; 3583 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3584 SDValue ArgVal; 3585 bool needsLoad = false; 3586 EVT ObjectVT = Ins[ArgNo].VT; 3587 EVT OrigVT = Ins[ArgNo].ArgVT; 3588 unsigned ObjSize = ObjectVT.getStoreSize(); 3589 unsigned ArgSize = ObjSize; 3590 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3591 if (Ins[ArgNo].isOrigArg()) { 3592 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3593 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3594 } 3595 // We re-align the argument offset for each argument, except when using the 3596 // fast calling convention, when we need to make sure we do that only when 3597 // we'll actually use a stack slot. 3598 unsigned CurArgOffset, Align; 3599 auto ComputeArgOffset = [&]() { 3600 /* Respect alignment of argument on the stack. */ 3601 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3602 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3603 CurArgOffset = ArgOffset; 3604 }; 3605 3606 if (CallConv != CallingConv::Fast) { 3607 ComputeArgOffset(); 3608 3609 /* Compute GPR index associated with argument offset. */ 3610 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3611 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3612 } 3613 3614 // FIXME the codegen can be much improved in some cases. 3615 // We do not have to keep everything in memory. 3616 if (Flags.isByVal()) { 3617 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3618 3619 if (CallConv == CallingConv::Fast) 3620 ComputeArgOffset(); 3621 3622 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3623 ObjSize = Flags.getByValSize(); 3624 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3625 // Empty aggregate parameters do not take up registers. Examples: 3626 // struct { } a; 3627 // union { } b; 3628 // int c[0]; 3629 // etc. However, we have to provide a place-holder in InVals, so 3630 // pretend we have an 8-byte item at the current address for that 3631 // purpose. 3632 if (!ObjSize) { 3633 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3634 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3635 InVals.push_back(FIN); 3636 continue; 3637 } 3638 3639 // Create a stack object covering all stack doublewords occupied 3640 // by the argument. If the argument is (fully or partially) on 3641 // the stack, or if the argument is fully in registers but the 3642 // caller has allocated the parameter save anyway, we can refer 3643 // directly to the caller's stack frame. Otherwise, create a 3644 // local copy in our own frame. 3645 int FI; 3646 if (HasParameterArea || 3647 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3648 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3649 else 3650 FI = MFI.CreateStackObject(ArgSize, Align, false); 3651 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3652 3653 // Handle aggregates smaller than 8 bytes. 3654 if (ObjSize < PtrByteSize) { 3655 // The value of the object is its address, which differs from the 3656 // address of the enclosing doubleword on big-endian systems. 3657 SDValue Arg = FIN; 3658 if (!isLittleEndian) { 3659 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3660 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3661 } 3662 InVals.push_back(Arg); 3663 3664 if (GPR_idx != Num_GPR_Regs) { 3665 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3666 FuncInfo->addLiveInAttr(VReg, Flags); 3667 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3668 SDValue Store; 3669 3670 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3671 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3672 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3673 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3674 MachinePointerInfo(&*FuncArg), ObjType); 3675 } else { 3676 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3677 // store the whole register as-is to the parameter save area 3678 // slot. 3679 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3680 MachinePointerInfo(&*FuncArg)); 3681 } 3682 3683 MemOps.push_back(Store); 3684 } 3685 // Whether we copied from a register or not, advance the offset 3686 // into the parameter save area by a full doubleword. 3687 ArgOffset += PtrByteSize; 3688 continue; 3689 } 3690 3691 // The value of the object is its address, which is the address of 3692 // its first stack doubleword. 3693 InVals.push_back(FIN); 3694 3695 // Store whatever pieces of the object are in registers to memory. 3696 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3697 if (GPR_idx == Num_GPR_Regs) 3698 break; 3699 3700 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3701 FuncInfo->addLiveInAttr(VReg, Flags); 3702 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3703 SDValue Addr = FIN; 3704 if (j) { 3705 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3706 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3707 } 3708 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3709 MachinePointerInfo(&*FuncArg, j)); 3710 MemOps.push_back(Store); 3711 ++GPR_idx; 3712 } 3713 ArgOffset += ArgSize; 3714 continue; 3715 } 3716 3717 switch (ObjectVT.getSimpleVT().SimpleTy) { 3718 default: llvm_unreachable("Unhandled argument type!"); 3719 case MVT::i1: 3720 case MVT::i32: 3721 case MVT::i64: 3722 if (Flags.isNest()) { 3723 // The 'nest' parameter, if any, is passed in R11. 3724 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3725 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3726 3727 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3728 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3729 3730 break; 3731 } 3732 3733 // These can be scalar arguments or elements of an integer array type 3734 // passed directly. Clang may use those instead of "byval" aggregate 3735 // types to avoid forcing arguments to memory unnecessarily. 3736 if (GPR_idx != Num_GPR_Regs) { 3737 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3738 FuncInfo->addLiveInAttr(VReg, Flags); 3739 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3740 3741 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3742 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3743 // value to MVT::i64 and then truncate to the correct register size. 3744 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3745 } else { 3746 if (CallConv == CallingConv::Fast) 3747 ComputeArgOffset(); 3748 3749 needsLoad = true; 3750 ArgSize = PtrByteSize; 3751 } 3752 if (CallConv != CallingConv::Fast || needsLoad) 3753 ArgOffset += 8; 3754 break; 3755 3756 case MVT::f32: 3757 case MVT::f64: 3758 // These can be scalar arguments or elements of a float array type 3759 // passed directly. The latter are used to implement ELFv2 homogenous 3760 // float aggregates. 3761 if (FPR_idx != Num_FPR_Regs) { 3762 unsigned VReg; 3763 3764 if (ObjectVT == MVT::f32) 3765 VReg = MF.addLiveIn(FPR[FPR_idx], 3766 Subtarget.hasP8Vector() 3767 ? &PPC::VSSRCRegClass 3768 : &PPC::F4RCRegClass); 3769 else 3770 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3771 ? &PPC::VSFRCRegClass 3772 : &PPC::F8RCRegClass); 3773 3774 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3775 ++FPR_idx; 3776 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3777 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3778 // once we support fp <-> gpr moves. 3779 3780 // This can only ever happen in the presence of f32 array types, 3781 // since otherwise we never run out of FPRs before running out 3782 // of GPRs. 3783 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3784 FuncInfo->addLiveInAttr(VReg, Flags); 3785 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3786 3787 if (ObjectVT == MVT::f32) { 3788 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3789 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3790 DAG.getConstant(32, dl, MVT::i32)); 3791 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3792 } 3793 3794 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3795 } else { 3796 if (CallConv == CallingConv::Fast) 3797 ComputeArgOffset(); 3798 3799 needsLoad = true; 3800 } 3801 3802 // When passing an array of floats, the array occupies consecutive 3803 // space in the argument area; only round up to the next doubleword 3804 // at the end of the array. Otherwise, each float takes 8 bytes. 3805 if (CallConv != CallingConv::Fast || needsLoad) { 3806 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3807 ArgOffset += ArgSize; 3808 if (Flags.isInConsecutiveRegsLast()) 3809 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3810 } 3811 break; 3812 case MVT::v4f32: 3813 case MVT::v4i32: 3814 case MVT::v8i16: 3815 case MVT::v16i8: 3816 case MVT::v2f64: 3817 case MVT::v2i64: 3818 case MVT::v1i128: 3819 if (!Subtarget.hasQPX()) { 3820 // These can be scalar arguments or elements of a vector array type 3821 // passed directly. The latter are used to implement ELFv2 homogenous 3822 // vector aggregates. 3823 if (VR_idx != Num_VR_Regs) { 3824 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3825 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3826 ++VR_idx; 3827 } else { 3828 if (CallConv == CallingConv::Fast) 3829 ComputeArgOffset(); 3830 needsLoad = true; 3831 } 3832 if (CallConv != CallingConv::Fast || needsLoad) 3833 ArgOffset += 16; 3834 break; 3835 } // not QPX 3836 3837 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3838 "Invalid QPX parameter type"); 3839 /* fall through */ 3840 3841 case MVT::v4f64: 3842 case MVT::v4i1: 3843 // QPX vectors are treated like their scalar floating-point subregisters 3844 // (except that they're larger). 3845 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3846 if (QFPR_idx != Num_QFPR_Regs) { 3847 const TargetRegisterClass *RC; 3848 switch (ObjectVT.getSimpleVT().SimpleTy) { 3849 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3850 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3851 default: RC = &PPC::QBRCRegClass; break; 3852 } 3853 3854 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3855 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3856 ++QFPR_idx; 3857 } else { 3858 if (CallConv == CallingConv::Fast) 3859 ComputeArgOffset(); 3860 needsLoad = true; 3861 } 3862 if (CallConv != CallingConv::Fast || needsLoad) 3863 ArgOffset += Sz; 3864 break; 3865 } 3866 3867 // We need to load the argument to a virtual register if we determined 3868 // above that we ran out of physical registers of the appropriate type. 3869 if (needsLoad) { 3870 if (ObjSize < ArgSize && !isLittleEndian) 3871 CurArgOffset += ArgSize - ObjSize; 3872 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3873 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3874 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3875 } 3876 3877 InVals.push_back(ArgVal); 3878 } 3879 3880 // Area that is at least reserved in the caller of this function. 3881 unsigned MinReservedArea; 3882 if (HasParameterArea) 3883 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3884 else 3885 MinReservedArea = LinkageSize; 3886 3887 // Set the size that is at least reserved in caller of this function. Tail 3888 // call optimized functions' reserved stack space needs to be aligned so that 3889 // taking the difference between two stack areas will result in an aligned 3890 // stack. 3891 MinReservedArea = 3892 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3893 FuncInfo->setMinReservedArea(MinReservedArea); 3894 3895 // If the function takes variable number of arguments, make a frame index for 3896 // the start of the first vararg value... for expansion of llvm.va_start. 3897 if (isVarArg) { 3898 int Depth = ArgOffset; 3899 3900 FuncInfo->setVarArgsFrameIndex( 3901 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 3902 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3903 3904 // If this function is vararg, store any remaining integer argument regs 3905 // to their spots on the stack so that they may be loaded by dereferencing 3906 // the result of va_next. 3907 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3908 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3909 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3910 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3911 SDValue Store = 3912 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3913 MemOps.push_back(Store); 3914 // Increment the address by four for the next argument to store 3915 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3916 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3917 } 3918 } 3919 3920 if (!MemOps.empty()) 3921 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3922 3923 return Chain; 3924 } 3925 3926 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3927 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3928 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3929 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3930 // TODO: add description of PPC stack frame format, or at least some docs. 3931 // 3932 MachineFunction &MF = DAG.getMachineFunction(); 3933 MachineFrameInfo &MFI = MF.getFrameInfo(); 3934 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3935 3936 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3937 bool isPPC64 = PtrVT == MVT::i64; 3938 // Potential tail calls could cause overwriting of argument stack slots. 3939 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3940 (CallConv == CallingConv::Fast)); 3941 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3942 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3943 unsigned ArgOffset = LinkageSize; 3944 // Area that is at least reserved in caller of this function. 3945 unsigned MinReservedArea = ArgOffset; 3946 3947 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3948 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3949 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3950 }; 3951 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3952 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3953 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3954 }; 3955 static const MCPhysReg VR[] = { 3956 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3957 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3958 }; 3959 3960 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3961 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3962 const unsigned Num_VR_Regs = array_lengthof( VR); 3963 3964 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3965 3966 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3967 3968 // In 32-bit non-varargs functions, the stack space for vectors is after the 3969 // stack space for non-vectors. We do not use this space unless we have 3970 // too many vectors to fit in registers, something that only occurs in 3971 // constructed examples:), but we have to walk the arglist to figure 3972 // that out...for the pathological case, compute VecArgOffset as the 3973 // start of the vector parameter area. Computing VecArgOffset is the 3974 // entire point of the following loop. 3975 unsigned VecArgOffset = ArgOffset; 3976 if (!isVarArg && !isPPC64) { 3977 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3978 ++ArgNo) { 3979 EVT ObjectVT = Ins[ArgNo].VT; 3980 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3981 3982 if (Flags.isByVal()) { 3983 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3984 unsigned ObjSize = Flags.getByValSize(); 3985 unsigned ArgSize = 3986 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3987 VecArgOffset += ArgSize; 3988 continue; 3989 } 3990 3991 switch(ObjectVT.getSimpleVT().SimpleTy) { 3992 default: llvm_unreachable("Unhandled argument type!"); 3993 case MVT::i1: 3994 case MVT::i32: 3995 case MVT::f32: 3996 VecArgOffset += 4; 3997 break; 3998 case MVT::i64: // PPC64 3999 case MVT::f64: 4000 // FIXME: We are guaranteed to be !isPPC64 at this point. 4001 // Does MVT::i64 apply? 4002 VecArgOffset += 8; 4003 break; 4004 case MVT::v4f32: 4005 case MVT::v4i32: 4006 case MVT::v8i16: 4007 case MVT::v16i8: 4008 // Nothing to do, we're only looking at Nonvector args here. 4009 break; 4010 } 4011 } 4012 } 4013 // We've found where the vector parameter area in memory is. Skip the 4014 // first 12 parameters; these don't use that memory. 4015 VecArgOffset = ((VecArgOffset+15)/16)*16; 4016 VecArgOffset += 12*16; 4017 4018 // Add DAG nodes to load the arguments or copy them out of registers. On 4019 // entry to a function on PPC, the arguments start after the linkage area, 4020 // although the first ones are often in registers. 4021 4022 SmallVector<SDValue, 8> MemOps; 4023 unsigned nAltivecParamsAtEnd = 0; 4024 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4025 unsigned CurArgIdx = 0; 4026 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4027 SDValue ArgVal; 4028 bool needsLoad = false; 4029 EVT ObjectVT = Ins[ArgNo].VT; 4030 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4031 unsigned ArgSize = ObjSize; 4032 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4033 if (Ins[ArgNo].isOrigArg()) { 4034 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4035 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4036 } 4037 unsigned CurArgOffset = ArgOffset; 4038 4039 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4040 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4041 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4042 if (isVarArg || isPPC64) { 4043 MinReservedArea = ((MinReservedArea+15)/16)*16; 4044 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4045 Flags, 4046 PtrByteSize); 4047 } else nAltivecParamsAtEnd++; 4048 } else 4049 // Calculate min reserved area. 4050 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4051 Flags, 4052 PtrByteSize); 4053 4054 // FIXME the codegen can be much improved in some cases. 4055 // We do not have to keep everything in memory. 4056 if (Flags.isByVal()) { 4057 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4058 4059 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4060 ObjSize = Flags.getByValSize(); 4061 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4062 // Objects of size 1 and 2 are right justified, everything else is 4063 // left justified. This means the memory address is adjusted forwards. 4064 if (ObjSize==1 || ObjSize==2) { 4065 CurArgOffset = CurArgOffset + (4 - ObjSize); 4066 } 4067 // The value of the object is its address. 4068 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4069 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4070 InVals.push_back(FIN); 4071 if (ObjSize==1 || ObjSize==2) { 4072 if (GPR_idx != Num_GPR_Regs) { 4073 unsigned VReg; 4074 if (isPPC64) 4075 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4076 else 4077 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4078 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4079 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4080 SDValue Store = 4081 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4082 MachinePointerInfo(&*FuncArg), ObjType); 4083 MemOps.push_back(Store); 4084 ++GPR_idx; 4085 } 4086 4087 ArgOffset += PtrByteSize; 4088 4089 continue; 4090 } 4091 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4092 // Store whatever pieces of the object are in registers 4093 // to memory. ArgOffset will be the address of the beginning 4094 // of the object. 4095 if (GPR_idx != Num_GPR_Regs) { 4096 unsigned VReg; 4097 if (isPPC64) 4098 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4099 else 4100 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4101 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4102 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4103 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4104 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4105 MachinePointerInfo(&*FuncArg, j)); 4106 MemOps.push_back(Store); 4107 ++GPR_idx; 4108 ArgOffset += PtrByteSize; 4109 } else { 4110 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4111 break; 4112 } 4113 } 4114 continue; 4115 } 4116 4117 switch (ObjectVT.getSimpleVT().SimpleTy) { 4118 default: llvm_unreachable("Unhandled argument type!"); 4119 case MVT::i1: 4120 case MVT::i32: 4121 if (!isPPC64) { 4122 if (GPR_idx != Num_GPR_Regs) { 4123 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4124 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4125 4126 if (ObjectVT == MVT::i1) 4127 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4128 4129 ++GPR_idx; 4130 } else { 4131 needsLoad = true; 4132 ArgSize = PtrByteSize; 4133 } 4134 // All int arguments reserve stack space in the Darwin ABI. 4135 ArgOffset += PtrByteSize; 4136 break; 4137 } 4138 LLVM_FALLTHROUGH; 4139 case MVT::i64: // PPC64 4140 if (GPR_idx != Num_GPR_Regs) { 4141 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4142 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4143 4144 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4145 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4146 // value to MVT::i64 and then truncate to the correct register size. 4147 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4148 4149 ++GPR_idx; 4150 } else { 4151 needsLoad = true; 4152 ArgSize = PtrByteSize; 4153 } 4154 // All int arguments reserve stack space in the Darwin ABI. 4155 ArgOffset += 8; 4156 break; 4157 4158 case MVT::f32: 4159 case MVT::f64: 4160 // Every 4 bytes of argument space consumes one of the GPRs available for 4161 // argument passing. 4162 if (GPR_idx != Num_GPR_Regs) { 4163 ++GPR_idx; 4164 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4165 ++GPR_idx; 4166 } 4167 if (FPR_idx != Num_FPR_Regs) { 4168 unsigned VReg; 4169 4170 if (ObjectVT == MVT::f32) 4171 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4172 else 4173 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4174 4175 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4176 ++FPR_idx; 4177 } else { 4178 needsLoad = true; 4179 } 4180 4181 // All FP arguments reserve stack space in the Darwin ABI. 4182 ArgOffset += isPPC64 ? 8 : ObjSize; 4183 break; 4184 case MVT::v4f32: 4185 case MVT::v4i32: 4186 case MVT::v8i16: 4187 case MVT::v16i8: 4188 // Note that vector arguments in registers don't reserve stack space, 4189 // except in varargs functions. 4190 if (VR_idx != Num_VR_Regs) { 4191 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4192 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4193 if (isVarArg) { 4194 while ((ArgOffset % 16) != 0) { 4195 ArgOffset += PtrByteSize; 4196 if (GPR_idx != Num_GPR_Regs) 4197 GPR_idx++; 4198 } 4199 ArgOffset += 16; 4200 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4201 } 4202 ++VR_idx; 4203 } else { 4204 if (!isVarArg && !isPPC64) { 4205 // Vectors go after all the nonvectors. 4206 CurArgOffset = VecArgOffset; 4207 VecArgOffset += 16; 4208 } else { 4209 // Vectors are aligned. 4210 ArgOffset = ((ArgOffset+15)/16)*16; 4211 CurArgOffset = ArgOffset; 4212 ArgOffset += 16; 4213 } 4214 needsLoad = true; 4215 } 4216 break; 4217 } 4218 4219 // We need to load the argument to a virtual register if we determined above 4220 // that we ran out of physical registers of the appropriate type. 4221 if (needsLoad) { 4222 int FI = MFI.CreateFixedObject(ObjSize, 4223 CurArgOffset + (ArgSize - ObjSize), 4224 isImmutable); 4225 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4226 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4227 } 4228 4229 InVals.push_back(ArgVal); 4230 } 4231 4232 // Allow for Altivec parameters at the end, if needed. 4233 if (nAltivecParamsAtEnd) { 4234 MinReservedArea = ((MinReservedArea+15)/16)*16; 4235 MinReservedArea += 16*nAltivecParamsAtEnd; 4236 } 4237 4238 // Area that is at least reserved in the caller of this function. 4239 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4240 4241 // Set the size that is at least reserved in caller of this function. Tail 4242 // call optimized functions' reserved stack space needs to be aligned so that 4243 // taking the difference between two stack areas will result in an aligned 4244 // stack. 4245 MinReservedArea = 4246 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4247 FuncInfo->setMinReservedArea(MinReservedArea); 4248 4249 // If the function takes variable number of arguments, make a frame index for 4250 // the start of the first vararg value... for expansion of llvm.va_start. 4251 if (isVarArg) { 4252 int Depth = ArgOffset; 4253 4254 FuncInfo->setVarArgsFrameIndex( 4255 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4256 Depth, true)); 4257 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4258 4259 // If this function is vararg, store any remaining integer argument regs 4260 // to their spots on the stack so that they may be loaded by dereferencing 4261 // the result of va_next. 4262 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4263 unsigned VReg; 4264 4265 if (isPPC64) 4266 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4267 else 4268 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4269 4270 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4271 SDValue Store = 4272 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4273 MemOps.push_back(Store); 4274 // Increment the address by four for the next argument to store 4275 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4276 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4277 } 4278 } 4279 4280 if (!MemOps.empty()) 4281 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4282 4283 return Chain; 4284 } 4285 4286 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4287 /// adjusted to accommodate the arguments for the tailcall. 4288 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4289 unsigned ParamSize) { 4290 4291 if (!isTailCall) return 0; 4292 4293 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4294 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4295 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4296 // Remember only if the new adjustement is bigger. 4297 if (SPDiff < FI->getTailCallSPDelta()) 4298 FI->setTailCallSPDelta(SPDiff); 4299 4300 return SPDiff; 4301 } 4302 4303 static bool isFunctionGlobalAddress(SDValue Callee); 4304 4305 static bool 4306 callsShareTOCBase(const Function *Caller, SDValue Callee, 4307 const TargetMachine &TM) { 4308 // If !G, Callee can be an external symbol. 4309 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4310 if (!G) 4311 return false; 4312 4313 // The medium and large code models are expected to provide a sufficiently 4314 // large TOC to provide all data addressing needs of a module with a 4315 // single TOC. Since each module will be addressed with a single TOC then we 4316 // only need to check that caller and callee don't cross dso boundaries. 4317 if (CodeModel::Medium == TM.getCodeModel() || 4318 CodeModel::Large == TM.getCodeModel()) 4319 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal()); 4320 4321 // Otherwise we need to ensure callee and caller are in the same section, 4322 // since the linker may allocate multiple TOCs, and we don't know which 4323 // sections will belong to the same TOC base. 4324 4325 const GlobalValue *GV = G->getGlobal(); 4326 if (!GV->isStrongDefinitionForLinker()) 4327 return false; 4328 4329 // Any explicitly-specified sections and section prefixes must also match. 4330 // Also, if we're using -ffunction-sections, then each function is always in 4331 // a different section (the same is true for COMDAT functions). 4332 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4333 GV->getSection() != Caller->getSection()) 4334 return false; 4335 if (const auto *F = dyn_cast<Function>(GV)) { 4336 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4337 return false; 4338 } 4339 4340 // If the callee might be interposed, then we can't assume the ultimate call 4341 // target will be in the same section. Even in cases where we can assume that 4342 // interposition won't happen, in any case where the linker might insert a 4343 // stub to allow for interposition, we must generate code as though 4344 // interposition might occur. To understand why this matters, consider a 4345 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4346 // in the same section, but a is in a different module (i.e. has a different 4347 // TOC base pointer). If the linker allows for interposition between b and c, 4348 // then it will generate a stub for the call edge between b and c which will 4349 // save the TOC pointer into the designated stack slot allocated by b. If we 4350 // return true here, and therefore allow a tail call between b and c, that 4351 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4352 // pointer into the stack slot allocated by a (where the a -> b stub saved 4353 // a's TOC base pointer). If we're not considering a tail call, but rather, 4354 // whether a nop is needed after the call instruction in b, because the linker 4355 // will insert a stub, it might complain about a missing nop if we omit it 4356 // (although many don't complain in this case). 4357 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4358 return false; 4359 4360 return true; 4361 } 4362 4363 static bool 4364 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4365 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4366 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4367 4368 const unsigned PtrByteSize = 8; 4369 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4370 4371 static const MCPhysReg GPR[] = { 4372 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4373 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4374 }; 4375 static const MCPhysReg VR[] = { 4376 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4377 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4378 }; 4379 4380 const unsigned NumGPRs = array_lengthof(GPR); 4381 const unsigned NumFPRs = 13; 4382 const unsigned NumVRs = array_lengthof(VR); 4383 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4384 4385 unsigned NumBytes = LinkageSize; 4386 unsigned AvailableFPRs = NumFPRs; 4387 unsigned AvailableVRs = NumVRs; 4388 4389 for (const ISD::OutputArg& Param : Outs) { 4390 if (Param.Flags.isNest()) continue; 4391 4392 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4393 PtrByteSize, LinkageSize, ParamAreaSize, 4394 NumBytes, AvailableFPRs, AvailableVRs, 4395 Subtarget.hasQPX())) 4396 return true; 4397 } 4398 return false; 4399 } 4400 4401 static bool 4402 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4403 if (CS.arg_size() != CallerFn->arg_size()) 4404 return false; 4405 4406 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4407 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4408 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4409 4410 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4411 const Value* CalleeArg = *CalleeArgIter; 4412 const Value* CallerArg = &(*CallerArgIter); 4413 if (CalleeArg == CallerArg) 4414 continue; 4415 4416 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4417 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4418 // } 4419 // 1st argument of callee is undef and has the same type as caller. 4420 if (CalleeArg->getType() == CallerArg->getType() && 4421 isa<UndefValue>(CalleeArg)) 4422 continue; 4423 4424 return false; 4425 } 4426 4427 return true; 4428 } 4429 4430 // Returns true if TCO is possible between the callers and callees 4431 // calling conventions. 4432 static bool 4433 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4434 CallingConv::ID CalleeCC) { 4435 // Tail calls are possible with fastcc and ccc. 4436 auto isTailCallableCC = [] (CallingConv::ID CC){ 4437 return CC == CallingConv::C || CC == CallingConv::Fast; 4438 }; 4439 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4440 return false; 4441 4442 // We can safely tail call both fastcc and ccc callees from a c calling 4443 // convention caller. If the caller is fastcc, we may have less stack space 4444 // than a non-fastcc caller with the same signature so disable tail-calls in 4445 // that case. 4446 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4447 } 4448 4449 bool 4450 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4451 SDValue Callee, 4452 CallingConv::ID CalleeCC, 4453 ImmutableCallSite CS, 4454 bool isVarArg, 4455 const SmallVectorImpl<ISD::OutputArg> &Outs, 4456 const SmallVectorImpl<ISD::InputArg> &Ins, 4457 SelectionDAG& DAG) const { 4458 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4459 4460 if (DisableSCO && !TailCallOpt) return false; 4461 4462 // Variadic argument functions are not supported. 4463 if (isVarArg) return false; 4464 4465 auto &Caller = DAG.getMachineFunction().getFunction(); 4466 // Check that the calling conventions are compatible for tco. 4467 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4468 return false; 4469 4470 // Caller contains any byval parameter is not supported. 4471 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4472 return false; 4473 4474 // Callee contains any byval parameter is not supported, too. 4475 // Note: This is a quick work around, because in some cases, e.g. 4476 // caller's stack size > callee's stack size, we are still able to apply 4477 // sibling call optimization. For example, gcc is able to do SCO for caller1 4478 // in the following example, but not for caller2. 4479 // struct test { 4480 // long int a; 4481 // char ary[56]; 4482 // } gTest; 4483 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4484 // b->a = v.a; 4485 // return 0; 4486 // } 4487 // void caller1(struct test a, struct test c, struct test *b) { 4488 // callee(gTest, b); } 4489 // void caller2(struct test *b) { callee(gTest, b); } 4490 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4491 return false; 4492 4493 // If callee and caller use different calling conventions, we cannot pass 4494 // parameters on stack since offsets for the parameter area may be different. 4495 if (Caller.getCallingConv() != CalleeCC && 4496 needStackSlotPassParameters(Subtarget, Outs)) 4497 return false; 4498 4499 // No TCO/SCO on indirect call because Caller have to restore its TOC 4500 if (!isFunctionGlobalAddress(Callee) && 4501 !isa<ExternalSymbolSDNode>(Callee)) 4502 return false; 4503 4504 // If the caller and callee potentially have different TOC bases then we 4505 // cannot tail call since we need to restore the TOC pointer after the call. 4506 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4507 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4508 return false; 4509 4510 // TCO allows altering callee ABI, so we don't have to check further. 4511 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4512 return true; 4513 4514 if (DisableSCO) return false; 4515 4516 // If callee use the same argument list that caller is using, then we can 4517 // apply SCO on this case. If it is not, then we need to check if callee needs 4518 // stack for passing arguments. 4519 if (!hasSameArgumentList(&Caller, CS) && 4520 needStackSlotPassParameters(Subtarget, Outs)) { 4521 return false; 4522 } 4523 4524 return true; 4525 } 4526 4527 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4528 /// for tail call optimization. Targets which want to do tail call 4529 /// optimization should implement this function. 4530 bool 4531 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4532 CallingConv::ID CalleeCC, 4533 bool isVarArg, 4534 const SmallVectorImpl<ISD::InputArg> &Ins, 4535 SelectionDAG& DAG) const { 4536 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4537 return false; 4538 4539 // Variable argument functions are not supported. 4540 if (isVarArg) 4541 return false; 4542 4543 MachineFunction &MF = DAG.getMachineFunction(); 4544 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4545 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4546 // Functions containing by val parameters are not supported. 4547 for (unsigned i = 0; i != Ins.size(); i++) { 4548 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4549 if (Flags.isByVal()) return false; 4550 } 4551 4552 // Non-PIC/GOT tail calls are supported. 4553 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4554 return true; 4555 4556 // At the moment we can only do local tail calls (in same module, hidden 4557 // or protected) if we are generating PIC. 4558 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4559 return G->getGlobal()->hasHiddenVisibility() 4560 || G->getGlobal()->hasProtectedVisibility(); 4561 } 4562 4563 return false; 4564 } 4565 4566 /// isCallCompatibleAddress - Return the immediate to use if the specified 4567 /// 32-bit value is representable in the immediate field of a BxA instruction. 4568 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4569 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4570 if (!C) return nullptr; 4571 4572 int Addr = C->getZExtValue(); 4573 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4574 SignExtend32<26>(Addr) != Addr) 4575 return nullptr; // Top 6 bits have to be sext of immediate. 4576 4577 return DAG 4578 .getConstant( 4579 (int)C->getZExtValue() >> 2, SDLoc(Op), 4580 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4581 .getNode(); 4582 } 4583 4584 namespace { 4585 4586 struct TailCallArgumentInfo { 4587 SDValue Arg; 4588 SDValue FrameIdxOp; 4589 int FrameIdx = 0; 4590 4591 TailCallArgumentInfo() = default; 4592 }; 4593 4594 } // end anonymous namespace 4595 4596 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4597 static void StoreTailCallArgumentsToStackSlot( 4598 SelectionDAG &DAG, SDValue Chain, 4599 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4600 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4601 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4602 SDValue Arg = TailCallArgs[i].Arg; 4603 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4604 int FI = TailCallArgs[i].FrameIdx; 4605 // Store relative to framepointer. 4606 MemOpChains.push_back(DAG.getStore( 4607 Chain, dl, Arg, FIN, 4608 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4609 } 4610 } 4611 4612 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4613 /// the appropriate stack slot for the tail call optimized function call. 4614 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4615 SDValue OldRetAddr, SDValue OldFP, 4616 int SPDiff, const SDLoc &dl) { 4617 if (SPDiff) { 4618 // Calculate the new stack slot for the return address. 4619 MachineFunction &MF = DAG.getMachineFunction(); 4620 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4621 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4622 bool isPPC64 = Subtarget.isPPC64(); 4623 int SlotSize = isPPC64 ? 8 : 4; 4624 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4625 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4626 NewRetAddrLoc, true); 4627 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4628 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4629 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4630 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4631 4632 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4633 // slot as the FP is never overwritten. 4634 if (Subtarget.isDarwinABI()) { 4635 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4636 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4637 true); 4638 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4639 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4640 MachinePointerInfo::getFixedStack( 4641 DAG.getMachineFunction(), NewFPIdx)); 4642 } 4643 } 4644 return Chain; 4645 } 4646 4647 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4648 /// the position of the argument. 4649 static void 4650 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4651 SDValue Arg, int SPDiff, unsigned ArgOffset, 4652 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4653 int Offset = ArgOffset + SPDiff; 4654 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4655 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4656 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4657 SDValue FIN = DAG.getFrameIndex(FI, VT); 4658 TailCallArgumentInfo Info; 4659 Info.Arg = Arg; 4660 Info.FrameIdxOp = FIN; 4661 Info.FrameIdx = FI; 4662 TailCallArguments.push_back(Info); 4663 } 4664 4665 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4666 /// stack slot. Returns the chain as result and the loaded frame pointers in 4667 /// LROpOut/FPOpout. Used when tail calling. 4668 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4669 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4670 SDValue &FPOpOut, const SDLoc &dl) const { 4671 if (SPDiff) { 4672 // Load the LR and FP stack slot for later adjusting. 4673 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4674 LROpOut = getReturnAddrFrameIndex(DAG); 4675 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4676 Chain = SDValue(LROpOut.getNode(), 1); 4677 4678 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4679 // slot as the FP is never overwritten. 4680 if (Subtarget.isDarwinABI()) { 4681 FPOpOut = getFramePointerFrameIndex(DAG); 4682 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4683 Chain = SDValue(FPOpOut.getNode(), 1); 4684 } 4685 } 4686 return Chain; 4687 } 4688 4689 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4690 /// by "Src" to address "Dst" of size "Size". Alignment information is 4691 /// specified by the specific parameter attribute. The copy will be passed as 4692 /// a byval function parameter. 4693 /// Sometimes what we are copying is the end of a larger object, the part that 4694 /// does not fit in registers. 4695 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4696 SDValue Chain, ISD::ArgFlagsTy Flags, 4697 SelectionDAG &DAG, const SDLoc &dl) { 4698 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4699 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4700 false, false, false, MachinePointerInfo(), 4701 MachinePointerInfo()); 4702 } 4703 4704 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4705 /// tail calls. 4706 static void LowerMemOpCallTo( 4707 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4708 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4709 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4710 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4711 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4712 if (!isTailCall) { 4713 if (isVector) { 4714 SDValue StackPtr; 4715 if (isPPC64) 4716 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4717 else 4718 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4719 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4720 DAG.getConstant(ArgOffset, dl, PtrVT)); 4721 } 4722 MemOpChains.push_back( 4723 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4724 // Calculate and remember argument location. 4725 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4726 TailCallArguments); 4727 } 4728 4729 static void 4730 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4731 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4732 SDValue FPOp, 4733 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4734 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4735 // might overwrite each other in case of tail call optimization. 4736 SmallVector<SDValue, 8> MemOpChains2; 4737 // Do not flag preceding copytoreg stuff together with the following stuff. 4738 InFlag = SDValue(); 4739 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4740 MemOpChains2, dl); 4741 if (!MemOpChains2.empty()) 4742 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4743 4744 // Store the return address to the appropriate stack slot. 4745 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4746 4747 // Emit callseq_end just before tailcall node. 4748 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4749 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4750 InFlag = Chain.getValue(1); 4751 } 4752 4753 // Is this global address that of a function that can be called by name? (as 4754 // opposed to something that must hold a descriptor for an indirect call). 4755 static bool isFunctionGlobalAddress(SDValue Callee) { 4756 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4757 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4758 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4759 return false; 4760 4761 return G->getGlobal()->getValueType()->isFunctionTy(); 4762 } 4763 4764 return false; 4765 } 4766 4767 static unsigned 4768 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4769 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4770 bool isPatchPoint, bool hasNest, 4771 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4772 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4773 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4774 bool isPPC64 = Subtarget.isPPC64(); 4775 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4776 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4777 4778 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4779 NodeTys.push_back(MVT::Other); // Returns a chain 4780 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4781 4782 unsigned CallOpc = PPCISD::CALL; 4783 4784 bool needIndirectCall = true; 4785 if (!isSVR4ABI || !isPPC64) 4786 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4787 // If this is an absolute destination address, use the munged value. 4788 Callee = SDValue(Dest, 0); 4789 needIndirectCall = false; 4790 } 4791 4792 // PC-relative references to external symbols should go through $stub, unless 4793 // we're building with the leopard linker or later, which automatically 4794 // synthesizes these stubs. 4795 const TargetMachine &TM = DAG.getTarget(); 4796 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4797 const GlobalValue *GV = nullptr; 4798 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4799 GV = G->getGlobal(); 4800 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4801 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4802 4803 if (isFunctionGlobalAddress(Callee)) { 4804 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4805 // A call to a TLS address is actually an indirect call to a 4806 // thread-specific pointer. 4807 unsigned OpFlags = 0; 4808 if (UsePlt) 4809 OpFlags = PPCII::MO_PLT; 4810 4811 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4812 // every direct call is) turn it into a TargetGlobalAddress / 4813 // TargetExternalSymbol node so that legalize doesn't hack it. 4814 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4815 Callee.getValueType(), 0, OpFlags); 4816 needIndirectCall = false; 4817 } 4818 4819 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4820 unsigned char OpFlags = 0; 4821 4822 if (UsePlt) 4823 OpFlags = PPCII::MO_PLT; 4824 4825 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4826 OpFlags); 4827 needIndirectCall = false; 4828 } 4829 4830 if (isPatchPoint) { 4831 // We'll form an invalid direct call when lowering a patchpoint; the full 4832 // sequence for an indirect call is complicated, and many of the 4833 // instructions introduced might have side effects (and, thus, can't be 4834 // removed later). The call itself will be removed as soon as the 4835 // argument/return lowering is complete, so the fact that it has the wrong 4836 // kind of operands should not really matter. 4837 needIndirectCall = false; 4838 } 4839 4840 if (needIndirectCall) { 4841 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4842 // to do the call, we can't use PPCISD::CALL. 4843 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4844 4845 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4846 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4847 // entry point, but to the function descriptor (the function entry point 4848 // address is part of the function descriptor though). 4849 // The function descriptor is a three doubleword structure with the 4850 // following fields: function entry point, TOC base address and 4851 // environment pointer. 4852 // Thus for a call through a function pointer, the following actions need 4853 // to be performed: 4854 // 1. Save the TOC of the caller in the TOC save area of its stack 4855 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4856 // 2. Load the address of the function entry point from the function 4857 // descriptor. 4858 // 3. Load the TOC of the callee from the function descriptor into r2. 4859 // 4. Load the environment pointer from the function descriptor into 4860 // r11. 4861 // 5. Branch to the function entry point address. 4862 // 6. On return of the callee, the TOC of the caller needs to be 4863 // restored (this is done in FinishCall()). 4864 // 4865 // The loads are scheduled at the beginning of the call sequence, and the 4866 // register copies are flagged together to ensure that no other 4867 // operations can be scheduled in between. E.g. without flagging the 4868 // copies together, a TOC access in the caller could be scheduled between 4869 // the assignment of the callee TOC and the branch to the callee, which 4870 // results in the TOC access going through the TOC of the callee instead 4871 // of going through the TOC of the caller, which leads to incorrect code. 4872 4873 // Load the address of the function entry point from the function 4874 // descriptor. 4875 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4876 if (LDChain.getValueType() == MVT::Glue) 4877 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4878 4879 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 4880 ? (MachineMemOperand::MODereferenceable | 4881 MachineMemOperand::MOInvariant) 4882 : MachineMemOperand::MONone; 4883 4884 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 4885 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4886 /* Alignment = */ 8, MMOFlags); 4887 4888 // Load environment pointer into r11. 4889 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4890 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4891 SDValue LoadEnvPtr = 4892 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 4893 /* Alignment = */ 8, MMOFlags); 4894 4895 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4896 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4897 SDValue TOCPtr = 4898 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 4899 /* Alignment = */ 8, MMOFlags); 4900 4901 setUsesTOCBasePtr(DAG); 4902 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4903 InFlag); 4904 Chain = TOCVal.getValue(0); 4905 InFlag = TOCVal.getValue(1); 4906 4907 // If the function call has an explicit 'nest' parameter, it takes the 4908 // place of the environment pointer. 4909 if (!hasNest) { 4910 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4911 InFlag); 4912 4913 Chain = EnvVal.getValue(0); 4914 InFlag = EnvVal.getValue(1); 4915 } 4916 4917 MTCTROps[0] = Chain; 4918 MTCTROps[1] = LoadFuncPtr; 4919 MTCTROps[2] = InFlag; 4920 } 4921 4922 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4923 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4924 InFlag = Chain.getValue(1); 4925 4926 NodeTys.clear(); 4927 NodeTys.push_back(MVT::Other); 4928 NodeTys.push_back(MVT::Glue); 4929 Ops.push_back(Chain); 4930 CallOpc = PPCISD::BCTRL; 4931 Callee.setNode(nullptr); 4932 // Add use of X11 (holding environment pointer) 4933 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4934 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4935 // Add CTR register as callee so a bctr can be emitted later. 4936 if (isTailCall) 4937 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4938 } 4939 4940 // If this is a direct call, pass the chain and the callee. 4941 if (Callee.getNode()) { 4942 Ops.push_back(Chain); 4943 Ops.push_back(Callee); 4944 } 4945 // If this is a tail call add stack pointer delta. 4946 if (isTailCall) 4947 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4948 4949 // Add argument registers to the end of the list so that they are known live 4950 // into the call. 4951 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4952 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4953 RegsToPass[i].second.getValueType())); 4954 4955 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4956 // into the call. 4957 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 4958 setUsesTOCBasePtr(DAG); 4959 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4960 } 4961 4962 return CallOpc; 4963 } 4964 4965 SDValue PPCTargetLowering::LowerCallResult( 4966 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4967 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4968 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4969 SmallVector<CCValAssign, 16> RVLocs; 4970 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4971 *DAG.getContext()); 4972 4973 CCRetInfo.AnalyzeCallResult( 4974 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4975 ? RetCC_PPC_Cold 4976 : RetCC_PPC); 4977 4978 // Copy all of the result registers out of their specified physreg. 4979 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4980 CCValAssign &VA = RVLocs[i]; 4981 assert(VA.isRegLoc() && "Can only return in registers!"); 4982 4983 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4984 VA.getLocReg(), VA.getLocVT(), InFlag); 4985 Chain = Val.getValue(1); 4986 InFlag = Val.getValue(2); 4987 4988 switch (VA.getLocInfo()) { 4989 default: llvm_unreachable("Unknown loc info!"); 4990 case CCValAssign::Full: break; 4991 case CCValAssign::AExt: 4992 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4993 break; 4994 case CCValAssign::ZExt: 4995 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4996 DAG.getValueType(VA.getValVT())); 4997 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4998 break; 4999 case CCValAssign::SExt: 5000 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5001 DAG.getValueType(VA.getValVT())); 5002 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5003 break; 5004 } 5005 5006 InVals.push_back(Val); 5007 } 5008 5009 return Chain; 5010 } 5011 5012 SDValue PPCTargetLowering::FinishCall( 5013 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5014 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5015 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5016 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5017 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5018 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5019 std::vector<EVT> NodeTys; 5020 SmallVector<SDValue, 8> Ops; 5021 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5022 SPDiff, isTailCall, isPatchPoint, hasNest, 5023 RegsToPass, Ops, NodeTys, CS, Subtarget); 5024 5025 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5026 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5027 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5028 5029 // When performing tail call optimization the callee pops its arguments off 5030 // the stack. Account for this here so these bytes can be pushed back on in 5031 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5032 int BytesCalleePops = 5033 (CallConv == CallingConv::Fast && 5034 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5035 5036 // Add a register mask operand representing the call-preserved registers. 5037 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5038 const uint32_t *Mask = 5039 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5040 assert(Mask && "Missing call preserved mask for calling convention"); 5041 Ops.push_back(DAG.getRegisterMask(Mask)); 5042 5043 if (InFlag.getNode()) 5044 Ops.push_back(InFlag); 5045 5046 // Emit tail call. 5047 if (isTailCall) { 5048 assert(((Callee.getOpcode() == ISD::Register && 5049 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5050 Callee.getOpcode() == ISD::TargetExternalSymbol || 5051 Callee.getOpcode() == ISD::TargetGlobalAddress || 5052 isa<ConstantSDNode>(Callee)) && 5053 "Expecting an global address, external symbol, absolute value or register"); 5054 5055 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5056 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5057 } 5058 5059 // Add a NOP immediately after the branch instruction when using the 64-bit 5060 // SVR4 ABI. At link time, if caller and callee are in a different module and 5061 // thus have a different TOC, the call will be replaced with a call to a stub 5062 // function which saves the current TOC, loads the TOC of the callee and 5063 // branches to the callee. The NOP will be replaced with a load instruction 5064 // which restores the TOC of the caller from the TOC save slot of the current 5065 // stack frame. If caller and callee belong to the same module (and have the 5066 // same TOC), the NOP will remain unchanged. 5067 5068 MachineFunction &MF = DAG.getMachineFunction(); 5069 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 5070 !isPatchPoint) { 5071 if (CallOpc == PPCISD::BCTRL) { 5072 // This is a call through a function pointer. 5073 // Restore the caller TOC from the save area into R2. 5074 // See PrepareCall() for more information about calls through function 5075 // pointers in the 64-bit SVR4 ABI. 5076 // We are using a target-specific load with r2 hard coded, because the 5077 // result of a target-independent load would never go directly into r2, 5078 // since r2 is a reserved register (which prevents the register allocator 5079 // from allocating it), resulting in an additional register being 5080 // allocated and an unnecessary move instruction being generated. 5081 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5082 5083 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5084 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5085 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5086 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5087 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5088 5089 // The address needs to go after the chain input but before the flag (or 5090 // any other variadic arguments). 5091 Ops.insert(std::next(Ops.begin()), AddTOC); 5092 } else if (CallOpc == PPCISD::CALL && 5093 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5094 // Otherwise insert NOP for non-local calls. 5095 CallOpc = PPCISD::CALL_NOP; 5096 } 5097 } 5098 5099 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5100 InFlag = Chain.getValue(1); 5101 5102 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5103 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5104 InFlag, dl); 5105 if (!Ins.empty()) 5106 InFlag = Chain.getValue(1); 5107 5108 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5109 Ins, dl, DAG, InVals); 5110 } 5111 5112 SDValue 5113 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5114 SmallVectorImpl<SDValue> &InVals) const { 5115 SelectionDAG &DAG = CLI.DAG; 5116 SDLoc &dl = CLI.DL; 5117 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5118 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5119 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5120 SDValue Chain = CLI.Chain; 5121 SDValue Callee = CLI.Callee; 5122 bool &isTailCall = CLI.IsTailCall; 5123 CallingConv::ID CallConv = CLI.CallConv; 5124 bool isVarArg = CLI.IsVarArg; 5125 bool isPatchPoint = CLI.IsPatchPoint; 5126 ImmutableCallSite CS = CLI.CS; 5127 5128 if (isTailCall) { 5129 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5130 isTailCall = false; 5131 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5132 isTailCall = 5133 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5134 isVarArg, Outs, Ins, DAG); 5135 else 5136 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5137 Ins, DAG); 5138 if (isTailCall) { 5139 ++NumTailCalls; 5140 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5141 ++NumSiblingCalls; 5142 5143 assert(isa<GlobalAddressSDNode>(Callee) && 5144 "Callee should be an llvm::Function object."); 5145 LLVM_DEBUG( 5146 const GlobalValue *GV = 5147 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5148 const unsigned Width = 5149 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5150 dbgs() << "TCO caller: " 5151 << left_justify(DAG.getMachineFunction().getName(), Width) 5152 << ", callee linkage: " << GV->getVisibility() << ", " 5153 << GV->getLinkage() << "\n"); 5154 } 5155 } 5156 5157 if (!isTailCall && CS && CS.isMustTailCall()) 5158 report_fatal_error("failed to perform tail call elimination on a call " 5159 "site marked musttail"); 5160 5161 // When long calls (i.e. indirect calls) are always used, calls are always 5162 // made via function pointer. If we have a function name, first translate it 5163 // into a pointer. 5164 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5165 !isTailCall) 5166 Callee = LowerGlobalAddress(Callee, DAG); 5167 5168 if (Subtarget.isSVR4ABI()) { 5169 if (Subtarget.isPPC64()) 5170 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5171 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5172 dl, DAG, InVals, CS); 5173 else 5174 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5175 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5176 dl, DAG, InVals, CS); 5177 } 5178 5179 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5180 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5181 dl, DAG, InVals, CS); 5182 } 5183 5184 SDValue PPCTargetLowering::LowerCall_32SVR4( 5185 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5186 bool isTailCall, bool isPatchPoint, 5187 const SmallVectorImpl<ISD::OutputArg> &Outs, 5188 const SmallVectorImpl<SDValue> &OutVals, 5189 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5190 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5191 ImmutableCallSite CS) const { 5192 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5193 // of the 32-bit SVR4 ABI stack frame layout. 5194 5195 assert((CallConv == CallingConv::C || 5196 CallConv == CallingConv::Cold || 5197 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5198 5199 unsigned PtrByteSize = 4; 5200 5201 MachineFunction &MF = DAG.getMachineFunction(); 5202 5203 // Mark this function as potentially containing a function that contains a 5204 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5205 // and restoring the callers stack pointer in this functions epilog. This is 5206 // done because by tail calling the called function might overwrite the value 5207 // in this function's (MF) stack pointer stack slot 0(SP). 5208 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5209 CallConv == CallingConv::Fast) 5210 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5211 5212 // Count how many bytes are to be pushed on the stack, including the linkage 5213 // area, parameter list area and the part of the local variable space which 5214 // contains copies of aggregates which are passed by value. 5215 5216 // Assign locations to all of the outgoing arguments. 5217 SmallVector<CCValAssign, 16> ArgLocs; 5218 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5219 5220 // Reserve space for the linkage area on the stack. 5221 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5222 PtrByteSize); 5223 if (useSoftFloat()) 5224 CCInfo.PreAnalyzeCallOperands(Outs); 5225 5226 if (isVarArg) { 5227 // Handle fixed and variable vector arguments differently. 5228 // Fixed vector arguments go into registers as long as registers are 5229 // available. Variable vector arguments always go into memory. 5230 unsigned NumArgs = Outs.size(); 5231 5232 for (unsigned i = 0; i != NumArgs; ++i) { 5233 MVT ArgVT = Outs[i].VT; 5234 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5235 bool Result; 5236 5237 if (Outs[i].IsFixed) { 5238 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5239 CCInfo); 5240 } else { 5241 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5242 ArgFlags, CCInfo); 5243 } 5244 5245 if (Result) { 5246 #ifndef NDEBUG 5247 errs() << "Call operand #" << i << " has unhandled type " 5248 << EVT(ArgVT).getEVTString() << "\n"; 5249 #endif 5250 llvm_unreachable(nullptr); 5251 } 5252 } 5253 } else { 5254 // All arguments are treated the same. 5255 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5256 } 5257 CCInfo.clearWasPPCF128(); 5258 5259 // Assign locations to all of the outgoing aggregate by value arguments. 5260 SmallVector<CCValAssign, 16> ByValArgLocs; 5261 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5262 5263 // Reserve stack space for the allocations in CCInfo. 5264 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5265 5266 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5267 5268 // Size of the linkage area, parameter list area and the part of the local 5269 // space variable where copies of aggregates which are passed by value are 5270 // stored. 5271 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5272 5273 // Calculate by how many bytes the stack has to be adjusted in case of tail 5274 // call optimization. 5275 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5276 5277 // Adjust the stack pointer for the new arguments... 5278 // These operations are automatically eliminated by the prolog/epilog pass 5279 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5280 SDValue CallSeqStart = Chain; 5281 5282 // Load the return address and frame pointer so it can be moved somewhere else 5283 // later. 5284 SDValue LROp, FPOp; 5285 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5286 5287 // Set up a copy of the stack pointer for use loading and storing any 5288 // arguments that may not fit in the registers available for argument 5289 // passing. 5290 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5291 5292 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5293 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5294 SmallVector<SDValue, 8> MemOpChains; 5295 5296 bool seenFloatArg = false; 5297 // Walk the register/memloc assignments, inserting copies/loads. 5298 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 5299 i != e; 5300 ++i) { 5301 CCValAssign &VA = ArgLocs[i]; 5302 SDValue Arg = OutVals[i]; 5303 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5304 5305 if (Flags.isByVal()) { 5306 // Argument is an aggregate which is passed by value, thus we need to 5307 // create a copy of it in the local variable space of the current stack 5308 // frame (which is the stack frame of the caller) and pass the address of 5309 // this copy to the callee. 5310 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5311 CCValAssign &ByValVA = ByValArgLocs[j++]; 5312 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5313 5314 // Memory reserved in the local variable space of the callers stack frame. 5315 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5316 5317 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5318 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5319 StackPtr, PtrOff); 5320 5321 // Create a copy of the argument in the local area of the current 5322 // stack frame. 5323 SDValue MemcpyCall = 5324 CreateCopyOfByValArgument(Arg, PtrOff, 5325 CallSeqStart.getNode()->getOperand(0), 5326 Flags, DAG, dl); 5327 5328 // This must go outside the CALLSEQ_START..END. 5329 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5330 SDLoc(MemcpyCall)); 5331 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5332 NewCallSeqStart.getNode()); 5333 Chain = CallSeqStart = NewCallSeqStart; 5334 5335 // Pass the address of the aggregate copy on the stack either in a 5336 // physical register or in the parameter list area of the current stack 5337 // frame to the callee. 5338 Arg = PtrOff; 5339 } 5340 5341 if (VA.isRegLoc()) { 5342 if (Arg.getValueType() == MVT::i1) 5343 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 5344 5345 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5346 // Put argument in a physical register. 5347 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5348 } else { 5349 // Put argument in the parameter list area of the current stack frame. 5350 assert(VA.isMemLoc()); 5351 unsigned LocMemOffset = VA.getLocMemOffset(); 5352 5353 if (!isTailCall) { 5354 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5355 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5356 StackPtr, PtrOff); 5357 5358 MemOpChains.push_back( 5359 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5360 } else { 5361 // Calculate and remember argument location. 5362 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5363 TailCallArguments); 5364 } 5365 } 5366 } 5367 5368 if (!MemOpChains.empty()) 5369 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5370 5371 // Build a sequence of copy-to-reg nodes chained together with token chain 5372 // and flag operands which copy the outgoing args into the appropriate regs. 5373 SDValue InFlag; 5374 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5375 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5376 RegsToPass[i].second, InFlag); 5377 InFlag = Chain.getValue(1); 5378 } 5379 5380 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5381 // registers. 5382 if (isVarArg) { 5383 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5384 SDValue Ops[] = { Chain, InFlag }; 5385 5386 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5387 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5388 5389 InFlag = Chain.getValue(1); 5390 } 5391 5392 if (isTailCall) 5393 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5394 TailCallArguments); 5395 5396 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5397 /* unused except on PPC64 ELFv1 */ false, DAG, 5398 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5399 NumBytes, Ins, InVals, CS); 5400 } 5401 5402 // Copy an argument into memory, being careful to do this outside the 5403 // call sequence for the call to which the argument belongs. 5404 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5405 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5406 SelectionDAG &DAG, const SDLoc &dl) const { 5407 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5408 CallSeqStart.getNode()->getOperand(0), 5409 Flags, DAG, dl); 5410 // The MEMCPY must go outside the CALLSEQ_START..END. 5411 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5412 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5413 SDLoc(MemcpyCall)); 5414 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5415 NewCallSeqStart.getNode()); 5416 return NewCallSeqStart; 5417 } 5418 5419 SDValue PPCTargetLowering::LowerCall_64SVR4( 5420 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5421 bool isTailCall, bool isPatchPoint, 5422 const SmallVectorImpl<ISD::OutputArg> &Outs, 5423 const SmallVectorImpl<SDValue> &OutVals, 5424 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5425 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5426 ImmutableCallSite CS) const { 5427 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5428 bool isLittleEndian = Subtarget.isLittleEndian(); 5429 unsigned NumOps = Outs.size(); 5430 bool hasNest = false; 5431 bool IsSibCall = false; 5432 5433 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5434 unsigned PtrByteSize = 8; 5435 5436 MachineFunction &MF = DAG.getMachineFunction(); 5437 5438 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5439 IsSibCall = true; 5440 5441 // Mark this function as potentially containing a function that contains a 5442 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5443 // and restoring the callers stack pointer in this functions epilog. This is 5444 // done because by tail calling the called function might overwrite the value 5445 // in this function's (MF) stack pointer stack slot 0(SP). 5446 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5447 CallConv == CallingConv::Fast) 5448 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5449 5450 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5451 "fastcc not supported on varargs functions"); 5452 5453 // Count how many bytes are to be pushed on the stack, including the linkage 5454 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5455 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5456 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5457 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5458 unsigned NumBytes = LinkageSize; 5459 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5460 unsigned &QFPR_idx = FPR_idx; 5461 5462 static const MCPhysReg GPR[] = { 5463 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5464 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5465 }; 5466 static const MCPhysReg VR[] = { 5467 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5468 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5469 }; 5470 5471 const unsigned NumGPRs = array_lengthof(GPR); 5472 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5473 const unsigned NumVRs = array_lengthof(VR); 5474 const unsigned NumQFPRs = NumFPRs; 5475 5476 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5477 // can be passed to the callee in registers. 5478 // For the fast calling convention, there is another check below. 5479 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5480 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5481 if (!HasParameterArea) { 5482 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5483 unsigned AvailableFPRs = NumFPRs; 5484 unsigned AvailableVRs = NumVRs; 5485 unsigned NumBytesTmp = NumBytes; 5486 for (unsigned i = 0; i != NumOps; ++i) { 5487 if (Outs[i].Flags.isNest()) continue; 5488 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5489 PtrByteSize, LinkageSize, ParamAreaSize, 5490 NumBytesTmp, AvailableFPRs, AvailableVRs, 5491 Subtarget.hasQPX())) 5492 HasParameterArea = true; 5493 } 5494 } 5495 5496 // When using the fast calling convention, we don't provide backing for 5497 // arguments that will be in registers. 5498 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5499 5500 // Avoid allocating parameter area for fastcc functions if all the arguments 5501 // can be passed in the registers. 5502 if (CallConv == CallingConv::Fast) 5503 HasParameterArea = false; 5504 5505 // Add up all the space actually used. 5506 for (unsigned i = 0; i != NumOps; ++i) { 5507 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5508 EVT ArgVT = Outs[i].VT; 5509 EVT OrigVT = Outs[i].ArgVT; 5510 5511 if (Flags.isNest()) 5512 continue; 5513 5514 if (CallConv == CallingConv::Fast) { 5515 if (Flags.isByVal()) { 5516 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5517 if (NumGPRsUsed > NumGPRs) 5518 HasParameterArea = true; 5519 } else { 5520 switch (ArgVT.getSimpleVT().SimpleTy) { 5521 default: llvm_unreachable("Unexpected ValueType for argument!"); 5522 case MVT::i1: 5523 case MVT::i32: 5524 case MVT::i64: 5525 if (++NumGPRsUsed <= NumGPRs) 5526 continue; 5527 break; 5528 case MVT::v4i32: 5529 case MVT::v8i16: 5530 case MVT::v16i8: 5531 case MVT::v2f64: 5532 case MVT::v2i64: 5533 case MVT::v1i128: 5534 if (++NumVRsUsed <= NumVRs) 5535 continue; 5536 break; 5537 case MVT::v4f32: 5538 // When using QPX, this is handled like a FP register, otherwise, it 5539 // is an Altivec register. 5540 if (Subtarget.hasQPX()) { 5541 if (++NumFPRsUsed <= NumFPRs) 5542 continue; 5543 } else { 5544 if (++NumVRsUsed <= NumVRs) 5545 continue; 5546 } 5547 break; 5548 case MVT::f32: 5549 case MVT::f64: 5550 case MVT::v4f64: // QPX 5551 case MVT::v4i1: // QPX 5552 if (++NumFPRsUsed <= NumFPRs) 5553 continue; 5554 break; 5555 } 5556 HasParameterArea = true; 5557 } 5558 } 5559 5560 /* Respect alignment of argument on the stack. */ 5561 unsigned Align = 5562 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5563 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5564 5565 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5566 if (Flags.isInConsecutiveRegsLast()) 5567 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5568 } 5569 5570 unsigned NumBytesActuallyUsed = NumBytes; 5571 5572 // In the old ELFv1 ABI, 5573 // the prolog code of the callee may store up to 8 GPR argument registers to 5574 // the stack, allowing va_start to index over them in memory if its varargs. 5575 // Because we cannot tell if this is needed on the caller side, we have to 5576 // conservatively assume that it is needed. As such, make sure we have at 5577 // least enough stack space for the caller to store the 8 GPRs. 5578 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5579 // really requires memory operands, e.g. a vararg function. 5580 if (HasParameterArea) 5581 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5582 else 5583 NumBytes = LinkageSize; 5584 5585 // Tail call needs the stack to be aligned. 5586 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5587 CallConv == CallingConv::Fast) 5588 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5589 5590 int SPDiff = 0; 5591 5592 // Calculate by how many bytes the stack has to be adjusted in case of tail 5593 // call optimization. 5594 if (!IsSibCall) 5595 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5596 5597 // To protect arguments on the stack from being clobbered in a tail call, 5598 // force all the loads to happen before doing any other lowering. 5599 if (isTailCall) 5600 Chain = DAG.getStackArgumentTokenFactor(Chain); 5601 5602 // Adjust the stack pointer for the new arguments... 5603 // These operations are automatically eliminated by the prolog/epilog pass 5604 if (!IsSibCall) 5605 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5606 SDValue CallSeqStart = Chain; 5607 5608 // Load the return address and frame pointer so it can be move somewhere else 5609 // later. 5610 SDValue LROp, FPOp; 5611 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5612 5613 // Set up a copy of the stack pointer for use loading and storing any 5614 // arguments that may not fit in the registers available for argument 5615 // passing. 5616 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5617 5618 // Figure out which arguments are going to go in registers, and which in 5619 // memory. Also, if this is a vararg function, floating point operations 5620 // must be stored to our stack, and loaded into integer regs as well, if 5621 // any integer regs are available for argument passing. 5622 unsigned ArgOffset = LinkageSize; 5623 5624 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5625 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5626 5627 SmallVector<SDValue, 8> MemOpChains; 5628 for (unsigned i = 0; i != NumOps; ++i) { 5629 SDValue Arg = OutVals[i]; 5630 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5631 EVT ArgVT = Outs[i].VT; 5632 EVT OrigVT = Outs[i].ArgVT; 5633 5634 // PtrOff will be used to store the current argument to the stack if a 5635 // register cannot be found for it. 5636 SDValue PtrOff; 5637 5638 // We re-align the argument offset for each argument, except when using the 5639 // fast calling convention, when we need to make sure we do that only when 5640 // we'll actually use a stack slot. 5641 auto ComputePtrOff = [&]() { 5642 /* Respect alignment of argument on the stack. */ 5643 unsigned Align = 5644 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5645 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5646 5647 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5648 5649 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5650 }; 5651 5652 if (CallConv != CallingConv::Fast) { 5653 ComputePtrOff(); 5654 5655 /* Compute GPR index associated with argument offset. */ 5656 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5657 GPR_idx = std::min(GPR_idx, NumGPRs); 5658 } 5659 5660 // Promote integers to 64-bit values. 5661 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5662 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5663 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5664 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5665 } 5666 5667 // FIXME memcpy is used way more than necessary. Correctness first. 5668 // Note: "by value" is code for passing a structure by value, not 5669 // basic types. 5670 if (Flags.isByVal()) { 5671 // Note: Size includes alignment padding, so 5672 // struct x { short a; char b; } 5673 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5674 // These are the proper values we need for right-justifying the 5675 // aggregate in a parameter register. 5676 unsigned Size = Flags.getByValSize(); 5677 5678 // An empty aggregate parameter takes up no storage and no 5679 // registers. 5680 if (Size == 0) 5681 continue; 5682 5683 if (CallConv == CallingConv::Fast) 5684 ComputePtrOff(); 5685 5686 // All aggregates smaller than 8 bytes must be passed right-justified. 5687 if (Size==1 || Size==2 || Size==4) { 5688 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5689 if (GPR_idx != NumGPRs) { 5690 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5691 MachinePointerInfo(), VT); 5692 MemOpChains.push_back(Load.getValue(1)); 5693 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5694 5695 ArgOffset += PtrByteSize; 5696 continue; 5697 } 5698 } 5699 5700 if (GPR_idx == NumGPRs && Size < 8) { 5701 SDValue AddPtr = PtrOff; 5702 if (!isLittleEndian) { 5703 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5704 PtrOff.getValueType()); 5705 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5706 } 5707 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5708 CallSeqStart, 5709 Flags, DAG, dl); 5710 ArgOffset += PtrByteSize; 5711 continue; 5712 } 5713 // Copy entire object into memory. There are cases where gcc-generated 5714 // code assumes it is there, even if it could be put entirely into 5715 // registers. (This is not what the doc says.) 5716 5717 // FIXME: The above statement is likely due to a misunderstanding of the 5718 // documents. All arguments must be copied into the parameter area BY 5719 // THE CALLEE in the event that the callee takes the address of any 5720 // formal argument. That has not yet been implemented. However, it is 5721 // reasonable to use the stack area as a staging area for the register 5722 // load. 5723 5724 // Skip this for small aggregates, as we will use the same slot for a 5725 // right-justified copy, below. 5726 if (Size >= 8) 5727 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5728 CallSeqStart, 5729 Flags, DAG, dl); 5730 5731 // When a register is available, pass a small aggregate right-justified. 5732 if (Size < 8 && GPR_idx != NumGPRs) { 5733 // The easiest way to get this right-justified in a register 5734 // is to copy the structure into the rightmost portion of a 5735 // local variable slot, then load the whole slot into the 5736 // register. 5737 // FIXME: The memcpy seems to produce pretty awful code for 5738 // small aggregates, particularly for packed ones. 5739 // FIXME: It would be preferable to use the slot in the 5740 // parameter save area instead of a new local variable. 5741 SDValue AddPtr = PtrOff; 5742 if (!isLittleEndian) { 5743 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5744 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5745 } 5746 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5747 CallSeqStart, 5748 Flags, DAG, dl); 5749 5750 // Load the slot into the register. 5751 SDValue Load = 5752 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5753 MemOpChains.push_back(Load.getValue(1)); 5754 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5755 5756 // Done with this argument. 5757 ArgOffset += PtrByteSize; 5758 continue; 5759 } 5760 5761 // For aggregates larger than PtrByteSize, copy the pieces of the 5762 // object that fit into registers from the parameter save area. 5763 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5764 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5765 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5766 if (GPR_idx != NumGPRs) { 5767 SDValue Load = 5768 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5769 MemOpChains.push_back(Load.getValue(1)); 5770 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5771 ArgOffset += PtrByteSize; 5772 } else { 5773 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5774 break; 5775 } 5776 } 5777 continue; 5778 } 5779 5780 switch (Arg.getSimpleValueType().SimpleTy) { 5781 default: llvm_unreachable("Unexpected ValueType for argument!"); 5782 case MVT::i1: 5783 case MVT::i32: 5784 case MVT::i64: 5785 if (Flags.isNest()) { 5786 // The 'nest' parameter, if any, is passed in R11. 5787 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5788 hasNest = true; 5789 break; 5790 } 5791 5792 // These can be scalar arguments or elements of an integer array type 5793 // passed directly. Clang may use those instead of "byval" aggregate 5794 // types to avoid forcing arguments to memory unnecessarily. 5795 if (GPR_idx != NumGPRs) { 5796 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5797 } else { 5798 if (CallConv == CallingConv::Fast) 5799 ComputePtrOff(); 5800 5801 assert(HasParameterArea && 5802 "Parameter area must exist to pass an argument in memory."); 5803 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5804 true, isTailCall, false, MemOpChains, 5805 TailCallArguments, dl); 5806 if (CallConv == CallingConv::Fast) 5807 ArgOffset += PtrByteSize; 5808 } 5809 if (CallConv != CallingConv::Fast) 5810 ArgOffset += PtrByteSize; 5811 break; 5812 case MVT::f32: 5813 case MVT::f64: { 5814 // These can be scalar arguments or elements of a float array type 5815 // passed directly. The latter are used to implement ELFv2 homogenous 5816 // float aggregates. 5817 5818 // Named arguments go into FPRs first, and once they overflow, the 5819 // remaining arguments go into GPRs and then the parameter save area. 5820 // Unnamed arguments for vararg functions always go to GPRs and 5821 // then the parameter save area. For now, put all arguments to vararg 5822 // routines always in both locations (FPR *and* GPR or stack slot). 5823 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5824 bool NeededLoad = false; 5825 5826 // First load the argument into the next available FPR. 5827 if (FPR_idx != NumFPRs) 5828 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5829 5830 // Next, load the argument into GPR or stack slot if needed. 5831 if (!NeedGPROrStack) 5832 ; 5833 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5834 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5835 // once we support fp <-> gpr moves. 5836 5837 // In the non-vararg case, this can only ever happen in the 5838 // presence of f32 array types, since otherwise we never run 5839 // out of FPRs before running out of GPRs. 5840 SDValue ArgVal; 5841 5842 // Double values are always passed in a single GPR. 5843 if (Arg.getValueType() != MVT::f32) { 5844 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5845 5846 // Non-array float values are extended and passed in a GPR. 5847 } else if (!Flags.isInConsecutiveRegs()) { 5848 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5849 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5850 5851 // If we have an array of floats, we collect every odd element 5852 // together with its predecessor into one GPR. 5853 } else if (ArgOffset % PtrByteSize != 0) { 5854 SDValue Lo, Hi; 5855 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5856 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5857 if (!isLittleEndian) 5858 std::swap(Lo, Hi); 5859 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5860 5861 // The final element, if even, goes into the first half of a GPR. 5862 } else if (Flags.isInConsecutiveRegsLast()) { 5863 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5864 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5865 if (!isLittleEndian) 5866 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5867 DAG.getConstant(32, dl, MVT::i32)); 5868 5869 // Non-final even elements are skipped; they will be handled 5870 // together the with subsequent argument on the next go-around. 5871 } else 5872 ArgVal = SDValue(); 5873 5874 if (ArgVal.getNode()) 5875 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5876 } else { 5877 if (CallConv == CallingConv::Fast) 5878 ComputePtrOff(); 5879 5880 // Single-precision floating-point values are mapped to the 5881 // second (rightmost) word of the stack doubleword. 5882 if (Arg.getValueType() == MVT::f32 && 5883 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5884 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5885 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5886 } 5887 5888 assert(HasParameterArea && 5889 "Parameter area must exist to pass an argument in memory."); 5890 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5891 true, isTailCall, false, MemOpChains, 5892 TailCallArguments, dl); 5893 5894 NeededLoad = true; 5895 } 5896 // When passing an array of floats, the array occupies consecutive 5897 // space in the argument area; only round up to the next doubleword 5898 // at the end of the array. Otherwise, each float takes 8 bytes. 5899 if (CallConv != CallingConv::Fast || NeededLoad) { 5900 ArgOffset += (Arg.getValueType() == MVT::f32 && 5901 Flags.isInConsecutiveRegs()) ? 4 : 8; 5902 if (Flags.isInConsecutiveRegsLast()) 5903 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5904 } 5905 break; 5906 } 5907 case MVT::v4f32: 5908 case MVT::v4i32: 5909 case MVT::v8i16: 5910 case MVT::v16i8: 5911 case MVT::v2f64: 5912 case MVT::v2i64: 5913 case MVT::v1i128: 5914 if (!Subtarget.hasQPX()) { 5915 // These can be scalar arguments or elements of a vector array type 5916 // passed directly. The latter are used to implement ELFv2 homogenous 5917 // vector aggregates. 5918 5919 // For a varargs call, named arguments go into VRs or on the stack as 5920 // usual; unnamed arguments always go to the stack or the corresponding 5921 // GPRs when within range. For now, we always put the value in both 5922 // locations (or even all three). 5923 if (isVarArg) { 5924 assert(HasParameterArea && 5925 "Parameter area must exist if we have a varargs call."); 5926 // We could elide this store in the case where the object fits 5927 // entirely in R registers. Maybe later. 5928 SDValue Store = 5929 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5930 MemOpChains.push_back(Store); 5931 if (VR_idx != NumVRs) { 5932 SDValue Load = 5933 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 5934 MemOpChains.push_back(Load.getValue(1)); 5935 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5936 } 5937 ArgOffset += 16; 5938 for (unsigned i=0; i<16; i+=PtrByteSize) { 5939 if (GPR_idx == NumGPRs) 5940 break; 5941 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5942 DAG.getConstant(i, dl, PtrVT)); 5943 SDValue Load = 5944 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5945 MemOpChains.push_back(Load.getValue(1)); 5946 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5947 } 5948 break; 5949 } 5950 5951 // Non-varargs Altivec params go into VRs or on the stack. 5952 if (VR_idx != NumVRs) { 5953 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5954 } else { 5955 if (CallConv == CallingConv::Fast) 5956 ComputePtrOff(); 5957 5958 assert(HasParameterArea && 5959 "Parameter area must exist to pass an argument in memory."); 5960 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5961 true, isTailCall, true, MemOpChains, 5962 TailCallArguments, dl); 5963 if (CallConv == CallingConv::Fast) 5964 ArgOffset += 16; 5965 } 5966 5967 if (CallConv != CallingConv::Fast) 5968 ArgOffset += 16; 5969 break; 5970 } // not QPX 5971 5972 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5973 "Invalid QPX parameter type"); 5974 5975 /* fall through */ 5976 case MVT::v4f64: 5977 case MVT::v4i1: { 5978 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5979 if (isVarArg) { 5980 assert(HasParameterArea && 5981 "Parameter area must exist if we have a varargs call."); 5982 // We could elide this store in the case where the object fits 5983 // entirely in R registers. Maybe later. 5984 SDValue Store = 5985 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5986 MemOpChains.push_back(Store); 5987 if (QFPR_idx != NumQFPRs) { 5988 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 5989 PtrOff, MachinePointerInfo()); 5990 MemOpChains.push_back(Load.getValue(1)); 5991 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5992 } 5993 ArgOffset += (IsF32 ? 16 : 32); 5994 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5995 if (GPR_idx == NumGPRs) 5996 break; 5997 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5998 DAG.getConstant(i, dl, PtrVT)); 5999 SDValue Load = 6000 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6001 MemOpChains.push_back(Load.getValue(1)); 6002 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6003 } 6004 break; 6005 } 6006 6007 // Non-varargs QPX params go into registers or on the stack. 6008 if (QFPR_idx != NumQFPRs) { 6009 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6010 } else { 6011 if (CallConv == CallingConv::Fast) 6012 ComputePtrOff(); 6013 6014 assert(HasParameterArea && 6015 "Parameter area must exist to pass an argument in memory."); 6016 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6017 true, isTailCall, true, MemOpChains, 6018 TailCallArguments, dl); 6019 if (CallConv == CallingConv::Fast) 6020 ArgOffset += (IsF32 ? 16 : 32); 6021 } 6022 6023 if (CallConv != CallingConv::Fast) 6024 ArgOffset += (IsF32 ? 16 : 32); 6025 break; 6026 } 6027 } 6028 } 6029 6030 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6031 "mismatch in size of parameter area"); 6032 (void)NumBytesActuallyUsed; 6033 6034 if (!MemOpChains.empty()) 6035 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6036 6037 // Check if this is an indirect call (MTCTR/BCTRL). 6038 // See PrepareCall() for more information about calls through function 6039 // pointers in the 64-bit SVR4 ABI. 6040 if (!isTailCall && !isPatchPoint && 6041 !isFunctionGlobalAddress(Callee) && 6042 !isa<ExternalSymbolSDNode>(Callee)) { 6043 // Load r2 into a virtual register and store it to the TOC save area. 6044 setUsesTOCBasePtr(DAG); 6045 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6046 // TOC save area offset. 6047 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6048 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6049 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6050 Chain = DAG.getStore( 6051 Val.getValue(1), dl, Val, AddPtr, 6052 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6053 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6054 // This does not mean the MTCTR instruction must use R12; it's easier 6055 // to model this as an extra parameter, so do that. 6056 if (isELFv2ABI && !isPatchPoint) 6057 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6058 } 6059 6060 // Build a sequence of copy-to-reg nodes chained together with token chain 6061 // and flag operands which copy the outgoing args into the appropriate regs. 6062 SDValue InFlag; 6063 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6064 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6065 RegsToPass[i].second, InFlag); 6066 InFlag = Chain.getValue(1); 6067 } 6068 6069 if (isTailCall && !IsSibCall) 6070 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6071 TailCallArguments); 6072 6073 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6074 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6075 SPDiff, NumBytes, Ins, InVals, CS); 6076 } 6077 6078 SDValue PPCTargetLowering::LowerCall_Darwin( 6079 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6080 bool isTailCall, bool isPatchPoint, 6081 const SmallVectorImpl<ISD::OutputArg> &Outs, 6082 const SmallVectorImpl<SDValue> &OutVals, 6083 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6084 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6085 ImmutableCallSite CS) const { 6086 unsigned NumOps = Outs.size(); 6087 6088 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6089 bool isPPC64 = PtrVT == MVT::i64; 6090 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6091 6092 MachineFunction &MF = DAG.getMachineFunction(); 6093 6094 // Mark this function as potentially containing a function that contains a 6095 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6096 // and restoring the callers stack pointer in this functions epilog. This is 6097 // done because by tail calling the called function might overwrite the value 6098 // in this function's (MF) stack pointer stack slot 0(SP). 6099 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6100 CallConv == CallingConv::Fast) 6101 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6102 6103 // Count how many bytes are to be pushed on the stack, including the linkage 6104 // area, and parameter passing area. We start with 24/48 bytes, which is 6105 // prereserved space for [SP][CR][LR][3 x unused]. 6106 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6107 unsigned NumBytes = LinkageSize; 6108 6109 // Add up all the space actually used. 6110 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6111 // they all go in registers, but we must reserve stack space for them for 6112 // possible use by the caller. In varargs or 64-bit calls, parameters are 6113 // assigned stack space in order, with padding so Altivec parameters are 6114 // 16-byte aligned. 6115 unsigned nAltivecParamsAtEnd = 0; 6116 for (unsigned i = 0; i != NumOps; ++i) { 6117 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6118 EVT ArgVT = Outs[i].VT; 6119 // Varargs Altivec parameters are padded to a 16 byte boundary. 6120 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6121 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6122 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6123 if (!isVarArg && !isPPC64) { 6124 // Non-varargs Altivec parameters go after all the non-Altivec 6125 // parameters; handle those later so we know how much padding we need. 6126 nAltivecParamsAtEnd++; 6127 continue; 6128 } 6129 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6130 NumBytes = ((NumBytes+15)/16)*16; 6131 } 6132 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6133 } 6134 6135 // Allow for Altivec parameters at the end, if needed. 6136 if (nAltivecParamsAtEnd) { 6137 NumBytes = ((NumBytes+15)/16)*16; 6138 NumBytes += 16*nAltivecParamsAtEnd; 6139 } 6140 6141 // The prolog code of the callee may store up to 8 GPR argument registers to 6142 // the stack, allowing va_start to index over them in memory if its varargs. 6143 // Because we cannot tell if this is needed on the caller side, we have to 6144 // conservatively assume that it is needed. As such, make sure we have at 6145 // least enough stack space for the caller to store the 8 GPRs. 6146 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6147 6148 // Tail call needs the stack to be aligned. 6149 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6150 CallConv == CallingConv::Fast) 6151 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6152 6153 // Calculate by how many bytes the stack has to be adjusted in case of tail 6154 // call optimization. 6155 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6156 6157 // To protect arguments on the stack from being clobbered in a tail call, 6158 // force all the loads to happen before doing any other lowering. 6159 if (isTailCall) 6160 Chain = DAG.getStackArgumentTokenFactor(Chain); 6161 6162 // Adjust the stack pointer for the new arguments... 6163 // These operations are automatically eliminated by the prolog/epilog pass 6164 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6165 SDValue CallSeqStart = Chain; 6166 6167 // Load the return address and frame pointer so it can be move somewhere else 6168 // later. 6169 SDValue LROp, FPOp; 6170 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6171 6172 // Set up a copy of the stack pointer for use loading and storing any 6173 // arguments that may not fit in the registers available for argument 6174 // passing. 6175 SDValue StackPtr; 6176 if (isPPC64) 6177 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6178 else 6179 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6180 6181 // Figure out which arguments are going to go in registers, and which in 6182 // memory. Also, if this is a vararg function, floating point operations 6183 // must be stored to our stack, and loaded into integer regs as well, if 6184 // any integer regs are available for argument passing. 6185 unsigned ArgOffset = LinkageSize; 6186 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6187 6188 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6189 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6190 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6191 }; 6192 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6193 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6194 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6195 }; 6196 static const MCPhysReg VR[] = { 6197 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6198 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6199 }; 6200 const unsigned NumGPRs = array_lengthof(GPR_32); 6201 const unsigned NumFPRs = 13; 6202 const unsigned NumVRs = array_lengthof(VR); 6203 6204 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6205 6206 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6207 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6208 6209 SmallVector<SDValue, 8> MemOpChains; 6210 for (unsigned i = 0; i != NumOps; ++i) { 6211 SDValue Arg = OutVals[i]; 6212 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6213 6214 // PtrOff will be used to store the current argument to the stack if a 6215 // register cannot be found for it. 6216 SDValue PtrOff; 6217 6218 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6219 6220 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6221 6222 // On PPC64, promote integers to 64-bit values. 6223 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6224 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6225 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6226 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6227 } 6228 6229 // FIXME memcpy is used way more than necessary. Correctness first. 6230 // Note: "by value" is code for passing a structure by value, not 6231 // basic types. 6232 if (Flags.isByVal()) { 6233 unsigned Size = Flags.getByValSize(); 6234 // Very small objects are passed right-justified. Everything else is 6235 // passed left-justified. 6236 if (Size==1 || Size==2) { 6237 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6238 if (GPR_idx != NumGPRs) { 6239 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6240 MachinePointerInfo(), VT); 6241 MemOpChains.push_back(Load.getValue(1)); 6242 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6243 6244 ArgOffset += PtrByteSize; 6245 } else { 6246 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6247 PtrOff.getValueType()); 6248 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6249 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6250 CallSeqStart, 6251 Flags, DAG, dl); 6252 ArgOffset += PtrByteSize; 6253 } 6254 continue; 6255 } 6256 // Copy entire object into memory. There are cases where gcc-generated 6257 // code assumes it is there, even if it could be put entirely into 6258 // registers. (This is not what the doc says.) 6259 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6260 CallSeqStart, 6261 Flags, DAG, dl); 6262 6263 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6264 // copy the pieces of the object that fit into registers from the 6265 // parameter save area. 6266 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6267 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6268 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6269 if (GPR_idx != NumGPRs) { 6270 SDValue Load = 6271 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6272 MemOpChains.push_back(Load.getValue(1)); 6273 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6274 ArgOffset += PtrByteSize; 6275 } else { 6276 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6277 break; 6278 } 6279 } 6280 continue; 6281 } 6282 6283 switch (Arg.getSimpleValueType().SimpleTy) { 6284 default: llvm_unreachable("Unexpected ValueType for argument!"); 6285 case MVT::i1: 6286 case MVT::i32: 6287 case MVT::i64: 6288 if (GPR_idx != NumGPRs) { 6289 if (Arg.getValueType() == MVT::i1) 6290 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6291 6292 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6293 } else { 6294 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6295 isPPC64, isTailCall, false, MemOpChains, 6296 TailCallArguments, dl); 6297 } 6298 ArgOffset += PtrByteSize; 6299 break; 6300 case MVT::f32: 6301 case MVT::f64: 6302 if (FPR_idx != NumFPRs) { 6303 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6304 6305 if (isVarArg) { 6306 SDValue Store = 6307 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6308 MemOpChains.push_back(Store); 6309 6310 // Float varargs are always shadowed in available integer registers 6311 if (GPR_idx != NumGPRs) { 6312 SDValue Load = 6313 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6314 MemOpChains.push_back(Load.getValue(1)); 6315 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6316 } 6317 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6318 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6319 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6320 SDValue Load = 6321 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6322 MemOpChains.push_back(Load.getValue(1)); 6323 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6324 } 6325 } else { 6326 // If we have any FPRs remaining, we may also have GPRs remaining. 6327 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6328 // GPRs. 6329 if (GPR_idx != NumGPRs) 6330 ++GPR_idx; 6331 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6332 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6333 ++GPR_idx; 6334 } 6335 } else 6336 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6337 isPPC64, isTailCall, false, MemOpChains, 6338 TailCallArguments, dl); 6339 if (isPPC64) 6340 ArgOffset += 8; 6341 else 6342 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6343 break; 6344 case MVT::v4f32: 6345 case MVT::v4i32: 6346 case MVT::v8i16: 6347 case MVT::v16i8: 6348 if (isVarArg) { 6349 // These go aligned on the stack, or in the corresponding R registers 6350 // when within range. The Darwin PPC ABI doc claims they also go in 6351 // V registers; in fact gcc does this only for arguments that are 6352 // prototyped, not for those that match the ... We do it for all 6353 // arguments, seems to work. 6354 while (ArgOffset % 16 !=0) { 6355 ArgOffset += PtrByteSize; 6356 if (GPR_idx != NumGPRs) 6357 GPR_idx++; 6358 } 6359 // We could elide this store in the case where the object fits 6360 // entirely in R registers. Maybe later. 6361 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6362 DAG.getConstant(ArgOffset, dl, PtrVT)); 6363 SDValue Store = 6364 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6365 MemOpChains.push_back(Store); 6366 if (VR_idx != NumVRs) { 6367 SDValue Load = 6368 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6369 MemOpChains.push_back(Load.getValue(1)); 6370 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6371 } 6372 ArgOffset += 16; 6373 for (unsigned i=0; i<16; i+=PtrByteSize) { 6374 if (GPR_idx == NumGPRs) 6375 break; 6376 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6377 DAG.getConstant(i, dl, PtrVT)); 6378 SDValue Load = 6379 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6380 MemOpChains.push_back(Load.getValue(1)); 6381 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6382 } 6383 break; 6384 } 6385 6386 // Non-varargs Altivec params generally go in registers, but have 6387 // stack space allocated at the end. 6388 if (VR_idx != NumVRs) { 6389 // Doesn't have GPR space allocated. 6390 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6391 } else if (nAltivecParamsAtEnd==0) { 6392 // We are emitting Altivec params in order. 6393 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6394 isPPC64, isTailCall, true, MemOpChains, 6395 TailCallArguments, dl); 6396 ArgOffset += 16; 6397 } 6398 break; 6399 } 6400 } 6401 // If all Altivec parameters fit in registers, as they usually do, 6402 // they get stack space following the non-Altivec parameters. We 6403 // don't track this here because nobody below needs it. 6404 // If there are more Altivec parameters than fit in registers emit 6405 // the stores here. 6406 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6407 unsigned j = 0; 6408 // Offset is aligned; skip 1st 12 params which go in V registers. 6409 ArgOffset = ((ArgOffset+15)/16)*16; 6410 ArgOffset += 12*16; 6411 for (unsigned i = 0; i != NumOps; ++i) { 6412 SDValue Arg = OutVals[i]; 6413 EVT ArgType = Outs[i].VT; 6414 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6415 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6416 if (++j > NumVRs) { 6417 SDValue PtrOff; 6418 // We are emitting Altivec params in order. 6419 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6420 isPPC64, isTailCall, true, MemOpChains, 6421 TailCallArguments, dl); 6422 ArgOffset += 16; 6423 } 6424 } 6425 } 6426 } 6427 6428 if (!MemOpChains.empty()) 6429 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6430 6431 // On Darwin, R12 must contain the address of an indirect callee. This does 6432 // not mean the MTCTR instruction must use R12; it's easier to model this as 6433 // an extra parameter, so do that. 6434 if (!isTailCall && 6435 !isFunctionGlobalAddress(Callee) && 6436 !isa<ExternalSymbolSDNode>(Callee) && 6437 !isBLACompatibleAddress(Callee, DAG)) 6438 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6439 PPC::R12), Callee)); 6440 6441 // Build a sequence of copy-to-reg nodes chained together with token chain 6442 // and flag operands which copy the outgoing args into the appropriate regs. 6443 SDValue InFlag; 6444 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6445 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6446 RegsToPass[i].second, InFlag); 6447 InFlag = Chain.getValue(1); 6448 } 6449 6450 if (isTailCall) 6451 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6452 TailCallArguments); 6453 6454 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6455 /* unused except on PPC64 ELFv1 */ false, DAG, 6456 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6457 NumBytes, Ins, InVals, CS); 6458 } 6459 6460 bool 6461 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6462 MachineFunction &MF, bool isVarArg, 6463 const SmallVectorImpl<ISD::OutputArg> &Outs, 6464 LLVMContext &Context) const { 6465 SmallVector<CCValAssign, 16> RVLocs; 6466 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6467 return CCInfo.CheckReturn( 6468 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6469 ? RetCC_PPC_Cold 6470 : RetCC_PPC); 6471 } 6472 6473 SDValue 6474 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6475 bool isVarArg, 6476 const SmallVectorImpl<ISD::OutputArg> &Outs, 6477 const SmallVectorImpl<SDValue> &OutVals, 6478 const SDLoc &dl, SelectionDAG &DAG) const { 6479 SmallVector<CCValAssign, 16> RVLocs; 6480 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6481 *DAG.getContext()); 6482 CCInfo.AnalyzeReturn(Outs, 6483 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6484 ? RetCC_PPC_Cold 6485 : RetCC_PPC); 6486 6487 SDValue Flag; 6488 SmallVector<SDValue, 4> RetOps(1, Chain); 6489 6490 // Copy the result values into the output registers. 6491 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6492 CCValAssign &VA = RVLocs[i]; 6493 assert(VA.isRegLoc() && "Can only return in registers!"); 6494 6495 SDValue Arg = OutVals[i]; 6496 6497 switch (VA.getLocInfo()) { 6498 default: llvm_unreachable("Unknown loc info!"); 6499 case CCValAssign::Full: break; 6500 case CCValAssign::AExt: 6501 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6502 break; 6503 case CCValAssign::ZExt: 6504 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6505 break; 6506 case CCValAssign::SExt: 6507 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6508 break; 6509 } 6510 6511 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6512 Flag = Chain.getValue(1); 6513 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6514 } 6515 6516 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6517 const MCPhysReg *I = 6518 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6519 if (I) { 6520 for (; *I; ++I) { 6521 6522 if (PPC::G8RCRegClass.contains(*I)) 6523 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6524 else if (PPC::F8RCRegClass.contains(*I)) 6525 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6526 else if (PPC::CRRCRegClass.contains(*I)) 6527 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6528 else if (PPC::VRRCRegClass.contains(*I)) 6529 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6530 else 6531 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6532 } 6533 } 6534 6535 RetOps[0] = Chain; // Update chain. 6536 6537 // Add the flag if we have it. 6538 if (Flag.getNode()) 6539 RetOps.push_back(Flag); 6540 6541 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6542 } 6543 6544 SDValue 6545 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6546 SelectionDAG &DAG) const { 6547 SDLoc dl(Op); 6548 6549 // Get the correct type for integers. 6550 EVT IntVT = Op.getValueType(); 6551 6552 // Get the inputs. 6553 SDValue Chain = Op.getOperand(0); 6554 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6555 // Build a DYNAREAOFFSET node. 6556 SDValue Ops[2] = {Chain, FPSIdx}; 6557 SDVTList VTs = DAG.getVTList(IntVT); 6558 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6559 } 6560 6561 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6562 SelectionDAG &DAG) const { 6563 // When we pop the dynamic allocation we need to restore the SP link. 6564 SDLoc dl(Op); 6565 6566 // Get the correct type for pointers. 6567 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6568 6569 // Construct the stack pointer operand. 6570 bool isPPC64 = Subtarget.isPPC64(); 6571 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6572 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6573 6574 // Get the operands for the STACKRESTORE. 6575 SDValue Chain = Op.getOperand(0); 6576 SDValue SaveSP = Op.getOperand(1); 6577 6578 // Load the old link SP. 6579 SDValue LoadLinkSP = 6580 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6581 6582 // Restore the stack pointer. 6583 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6584 6585 // Store the old link SP. 6586 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6587 } 6588 6589 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6590 MachineFunction &MF = DAG.getMachineFunction(); 6591 bool isPPC64 = Subtarget.isPPC64(); 6592 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6593 6594 // Get current frame pointer save index. The users of this index will be 6595 // primarily DYNALLOC instructions. 6596 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6597 int RASI = FI->getReturnAddrSaveIndex(); 6598 6599 // If the frame pointer save index hasn't been defined yet. 6600 if (!RASI) { 6601 // Find out what the fix offset of the frame pointer save area. 6602 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6603 // Allocate the frame index for frame pointer save area. 6604 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6605 // Save the result. 6606 FI->setReturnAddrSaveIndex(RASI); 6607 } 6608 return DAG.getFrameIndex(RASI, PtrVT); 6609 } 6610 6611 SDValue 6612 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6613 MachineFunction &MF = DAG.getMachineFunction(); 6614 bool isPPC64 = Subtarget.isPPC64(); 6615 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6616 6617 // Get current frame pointer save index. The users of this index will be 6618 // primarily DYNALLOC instructions. 6619 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6620 int FPSI = FI->getFramePointerSaveIndex(); 6621 6622 // If the frame pointer save index hasn't been defined yet. 6623 if (!FPSI) { 6624 // Find out what the fix offset of the frame pointer save area. 6625 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6626 // Allocate the frame index for frame pointer save area. 6627 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6628 // Save the result. 6629 FI->setFramePointerSaveIndex(FPSI); 6630 } 6631 return DAG.getFrameIndex(FPSI, PtrVT); 6632 } 6633 6634 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6635 SelectionDAG &DAG) const { 6636 // Get the inputs. 6637 SDValue Chain = Op.getOperand(0); 6638 SDValue Size = Op.getOperand(1); 6639 SDLoc dl(Op); 6640 6641 // Get the correct type for pointers. 6642 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6643 // Negate the size. 6644 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6645 DAG.getConstant(0, dl, PtrVT), Size); 6646 // Construct a node for the frame pointer save index. 6647 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6648 // Build a DYNALLOC node. 6649 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6650 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6651 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6652 } 6653 6654 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6655 SelectionDAG &DAG) const { 6656 MachineFunction &MF = DAG.getMachineFunction(); 6657 6658 bool isPPC64 = Subtarget.isPPC64(); 6659 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6660 6661 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6662 return DAG.getFrameIndex(FI, PtrVT); 6663 } 6664 6665 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6666 SelectionDAG &DAG) const { 6667 SDLoc DL(Op); 6668 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6669 DAG.getVTList(MVT::i32, MVT::Other), 6670 Op.getOperand(0), Op.getOperand(1)); 6671 } 6672 6673 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6674 SelectionDAG &DAG) const { 6675 SDLoc DL(Op); 6676 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6677 Op.getOperand(0), Op.getOperand(1)); 6678 } 6679 6680 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6681 if (Op.getValueType().isVector()) 6682 return LowerVectorLoad(Op, DAG); 6683 6684 assert(Op.getValueType() == MVT::i1 && 6685 "Custom lowering only for i1 loads"); 6686 6687 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6688 6689 SDLoc dl(Op); 6690 LoadSDNode *LD = cast<LoadSDNode>(Op); 6691 6692 SDValue Chain = LD->getChain(); 6693 SDValue BasePtr = LD->getBasePtr(); 6694 MachineMemOperand *MMO = LD->getMemOperand(); 6695 6696 SDValue NewLD = 6697 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6698 BasePtr, MVT::i8, MMO); 6699 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6700 6701 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6702 return DAG.getMergeValues(Ops, dl); 6703 } 6704 6705 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6706 if (Op.getOperand(1).getValueType().isVector()) 6707 return LowerVectorStore(Op, DAG); 6708 6709 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6710 "Custom lowering only for i1 stores"); 6711 6712 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6713 6714 SDLoc dl(Op); 6715 StoreSDNode *ST = cast<StoreSDNode>(Op); 6716 6717 SDValue Chain = ST->getChain(); 6718 SDValue BasePtr = ST->getBasePtr(); 6719 SDValue Value = ST->getValue(); 6720 MachineMemOperand *MMO = ST->getMemOperand(); 6721 6722 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6723 Value); 6724 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6725 } 6726 6727 // FIXME: Remove this once the ANDI glue bug is fixed: 6728 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6729 assert(Op.getValueType() == MVT::i1 && 6730 "Custom lowering only for i1 results"); 6731 6732 SDLoc DL(Op); 6733 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6734 Op.getOperand(0)); 6735 } 6736 6737 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6738 /// possible. 6739 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6740 // Not FP? Not a fsel. 6741 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6742 !Op.getOperand(2).getValueType().isFloatingPoint()) 6743 return Op; 6744 6745 // We might be able to do better than this under some circumstances, but in 6746 // general, fsel-based lowering of select is a finite-math-only optimization. 6747 // For more information, see section F.3 of the 2.06 ISA specification. 6748 if (!DAG.getTarget().Options.NoInfsFPMath || 6749 !DAG.getTarget().Options.NoNaNsFPMath) 6750 return Op; 6751 // TODO: Propagate flags from the select rather than global settings. 6752 SDNodeFlags Flags; 6753 Flags.setNoInfs(true); 6754 Flags.setNoNaNs(true); 6755 6756 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6757 6758 EVT ResVT = Op.getValueType(); 6759 EVT CmpVT = Op.getOperand(0).getValueType(); 6760 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6761 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6762 SDLoc dl(Op); 6763 6764 // If the RHS of the comparison is a 0.0, we don't need to do the 6765 // subtraction at all. 6766 SDValue Sel1; 6767 if (isFloatingPointZero(RHS)) 6768 switch (CC) { 6769 default: break; // SETUO etc aren't handled by fsel. 6770 case ISD::SETNE: 6771 std::swap(TV, FV); 6772 LLVM_FALLTHROUGH; 6773 case ISD::SETEQ: 6774 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6775 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6776 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6777 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6778 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6779 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6780 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6781 case ISD::SETULT: 6782 case ISD::SETLT: 6783 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6784 LLVM_FALLTHROUGH; 6785 case ISD::SETOGE: 6786 case ISD::SETGE: 6787 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6788 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6789 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6790 case ISD::SETUGT: 6791 case ISD::SETGT: 6792 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6793 LLVM_FALLTHROUGH; 6794 case ISD::SETOLE: 6795 case ISD::SETLE: 6796 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6797 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6798 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6799 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6800 } 6801 6802 SDValue Cmp; 6803 switch (CC) { 6804 default: break; // SETUO etc aren't handled by fsel. 6805 case ISD::SETNE: 6806 std::swap(TV, FV); 6807 LLVM_FALLTHROUGH; 6808 case ISD::SETEQ: 6809 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6810 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6811 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6812 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6813 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6814 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6815 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6816 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6817 case ISD::SETULT: 6818 case ISD::SETLT: 6819 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6820 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6821 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6822 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6823 case ISD::SETOGE: 6824 case ISD::SETGE: 6825 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6826 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6827 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6828 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6829 case ISD::SETUGT: 6830 case ISD::SETGT: 6831 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6832 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6833 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6834 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6835 case ISD::SETOLE: 6836 case ISD::SETLE: 6837 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6838 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6839 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6840 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6841 } 6842 return Op; 6843 } 6844 6845 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6846 SelectionDAG &DAG, 6847 const SDLoc &dl) const { 6848 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6849 SDValue Src = Op.getOperand(0); 6850 if (Src.getValueType() == MVT::f32) 6851 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6852 6853 SDValue Tmp; 6854 switch (Op.getSimpleValueType().SimpleTy) { 6855 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6856 case MVT::i32: 6857 Tmp = DAG.getNode( 6858 Op.getOpcode() == ISD::FP_TO_SINT 6859 ? PPCISD::FCTIWZ 6860 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6861 dl, MVT::f64, Src); 6862 break; 6863 case MVT::i64: 6864 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6865 "i64 FP_TO_UINT is supported only with FPCVT"); 6866 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6867 PPCISD::FCTIDUZ, 6868 dl, MVT::f64, Src); 6869 break; 6870 } 6871 6872 // Convert the FP value to an int value through memory. 6873 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6874 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6875 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6876 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6877 MachinePointerInfo MPI = 6878 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6879 6880 // Emit a store to the stack slot. 6881 SDValue Chain; 6882 if (i32Stack) { 6883 MachineFunction &MF = DAG.getMachineFunction(); 6884 MachineMemOperand *MMO = 6885 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6886 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6887 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6888 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6889 } else 6890 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 6891 6892 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6893 // add in a bias on big endian. 6894 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6895 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6896 DAG.getConstant(4, dl, FIPtr.getValueType())); 6897 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6898 } 6899 6900 RLI.Chain = Chain; 6901 RLI.Ptr = FIPtr; 6902 RLI.MPI = MPI; 6903 } 6904 6905 /// Custom lowers floating point to integer conversions to use 6906 /// the direct move instructions available in ISA 2.07 to avoid the 6907 /// need for load/store combinations. 6908 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6909 SelectionDAG &DAG, 6910 const SDLoc &dl) const { 6911 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6912 SDValue Src = Op.getOperand(0); 6913 6914 if (Src.getValueType() == MVT::f32) 6915 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6916 6917 SDValue Tmp; 6918 switch (Op.getSimpleValueType().SimpleTy) { 6919 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6920 case MVT::i32: 6921 Tmp = DAG.getNode( 6922 Op.getOpcode() == ISD::FP_TO_SINT 6923 ? PPCISD::FCTIWZ 6924 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6925 dl, MVT::f64, Src); 6926 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6927 break; 6928 case MVT::i64: 6929 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6930 "i64 FP_TO_UINT is supported only with FPCVT"); 6931 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6932 PPCISD::FCTIDUZ, 6933 dl, MVT::f64, Src); 6934 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6935 break; 6936 } 6937 return Tmp; 6938 } 6939 6940 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6941 const SDLoc &dl) const { 6942 6943 // FP to INT conversions are legal for f128. 6944 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 6945 return Op; 6946 6947 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 6948 // PPC (the libcall is not available). 6949 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 6950 if (Op.getValueType() == MVT::i32) { 6951 if (Op.getOpcode() == ISD::FP_TO_SINT) { 6952 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 6953 MVT::f64, Op.getOperand(0), 6954 DAG.getIntPtrConstant(0, dl)); 6955 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 6956 MVT::f64, Op.getOperand(0), 6957 DAG.getIntPtrConstant(1, dl)); 6958 6959 // Add the two halves of the long double in round-to-zero mode. 6960 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 6961 6962 // Now use a smaller FP_TO_SINT. 6963 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 6964 } 6965 if (Op.getOpcode() == ISD::FP_TO_UINT) { 6966 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 6967 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 6968 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 6969 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 6970 // FIXME: generated code sucks. 6971 // TODO: Are there fast-math-flags to propagate to this FSUB? 6972 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 6973 Op.getOperand(0), Tmp); 6974 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 6975 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 6976 DAG.getConstant(0x80000000, dl, MVT::i32)); 6977 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 6978 Op.getOperand(0)); 6979 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 6980 ISD::SETGE); 6981 } 6982 } 6983 6984 return SDValue(); 6985 } 6986 6987 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6988 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6989 6990 ReuseLoadInfo RLI; 6991 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6992 6993 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6994 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6995 } 6996 6997 // We're trying to insert a regular store, S, and then a load, L. If the 6998 // incoming value, O, is a load, we might just be able to have our load use the 6999 // address used by O. However, we don't know if anything else will store to 7000 // that address before we can load from it. To prevent this situation, we need 7001 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7002 // the same chain operand as O, we create a token factor from the chain results 7003 // of O and L, and we replace all uses of O's chain result with that token 7004 // factor (see spliceIntoChain below for this last part). 7005 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7006 ReuseLoadInfo &RLI, 7007 SelectionDAG &DAG, 7008 ISD::LoadExtType ET) const { 7009 SDLoc dl(Op); 7010 if (ET == ISD::NON_EXTLOAD && 7011 (Op.getOpcode() == ISD::FP_TO_UINT || 7012 Op.getOpcode() == ISD::FP_TO_SINT) && 7013 isOperationLegalOrCustom(Op.getOpcode(), 7014 Op.getOperand(0).getValueType())) { 7015 7016 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7017 return true; 7018 } 7019 7020 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7021 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7022 LD->isNonTemporal()) 7023 return false; 7024 if (LD->getMemoryVT() != MemVT) 7025 return false; 7026 7027 RLI.Ptr = LD->getBasePtr(); 7028 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7029 assert(LD->getAddressingMode() == ISD::PRE_INC && 7030 "Non-pre-inc AM on PPC?"); 7031 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7032 LD->getOffset()); 7033 } 7034 7035 RLI.Chain = LD->getChain(); 7036 RLI.MPI = LD->getPointerInfo(); 7037 RLI.IsDereferenceable = LD->isDereferenceable(); 7038 RLI.IsInvariant = LD->isInvariant(); 7039 RLI.Alignment = LD->getAlignment(); 7040 RLI.AAInfo = LD->getAAInfo(); 7041 RLI.Ranges = LD->getRanges(); 7042 7043 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7044 return true; 7045 } 7046 7047 // Given the head of the old chain, ResChain, insert a token factor containing 7048 // it and NewResChain, and make users of ResChain now be users of that token 7049 // factor. 7050 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7051 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7052 SDValue NewResChain, 7053 SelectionDAG &DAG) const { 7054 if (!ResChain) 7055 return; 7056 7057 SDLoc dl(NewResChain); 7058 7059 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7060 NewResChain, DAG.getUNDEF(MVT::Other)); 7061 assert(TF.getNode() != NewResChain.getNode() && 7062 "A new TF really is required here"); 7063 7064 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7065 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7066 } 7067 7068 /// Analyze profitability of direct move 7069 /// prefer float load to int load plus direct move 7070 /// when there is no integer use of int load 7071 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7072 SDNode *Origin = Op.getOperand(0).getNode(); 7073 if (Origin->getOpcode() != ISD::LOAD) 7074 return true; 7075 7076 // If there is no LXSIBZX/LXSIHZX, like Power8, 7077 // prefer direct move if the memory size is 1 or 2 bytes. 7078 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7079 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7080 return true; 7081 7082 for (SDNode::use_iterator UI = Origin->use_begin(), 7083 UE = Origin->use_end(); 7084 UI != UE; ++UI) { 7085 7086 // Only look at the users of the loaded value. 7087 if (UI.getUse().get().getResNo() != 0) 7088 continue; 7089 7090 if (UI->getOpcode() != ISD::SINT_TO_FP && 7091 UI->getOpcode() != ISD::UINT_TO_FP) 7092 return true; 7093 } 7094 7095 return false; 7096 } 7097 7098 /// Custom lowers integer to floating point conversions to use 7099 /// the direct move instructions available in ISA 2.07 to avoid the 7100 /// need for load/store combinations. 7101 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7102 SelectionDAG &DAG, 7103 const SDLoc &dl) const { 7104 assert((Op.getValueType() == MVT::f32 || 7105 Op.getValueType() == MVT::f64) && 7106 "Invalid floating point type as target of conversion"); 7107 assert(Subtarget.hasFPCVT() && 7108 "Int to FP conversions with direct moves require FPCVT"); 7109 SDValue FP; 7110 SDValue Src = Op.getOperand(0); 7111 bool SinglePrec = Op.getValueType() == MVT::f32; 7112 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7113 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7114 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7115 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7116 7117 if (WordInt) { 7118 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7119 dl, MVT::f64, Src); 7120 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7121 } 7122 else { 7123 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7124 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7125 } 7126 7127 return FP; 7128 } 7129 7130 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7131 SelectionDAG &DAG) const { 7132 SDLoc dl(Op); 7133 7134 // Conversions to f128 are legal. 7135 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7136 return Op; 7137 7138 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7139 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7140 return SDValue(); 7141 7142 SDValue Value = Op.getOperand(0); 7143 // The values are now known to be -1 (false) or 1 (true). To convert this 7144 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7145 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7146 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7147 7148 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7149 7150 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7151 7152 if (Op.getValueType() != MVT::v4f64) 7153 Value = DAG.getNode(ISD::FP_ROUND, dl, 7154 Op.getValueType(), Value, 7155 DAG.getIntPtrConstant(1, dl)); 7156 return Value; 7157 } 7158 7159 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7160 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7161 return SDValue(); 7162 7163 if (Op.getOperand(0).getValueType() == MVT::i1) 7164 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7165 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7166 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7167 7168 // If we have direct moves, we can do all the conversion, skip the store/load 7169 // however, without FPCVT we can't do most conversions. 7170 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7171 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7172 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7173 7174 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7175 "UINT_TO_FP is supported only with FPCVT"); 7176 7177 // If we have FCFIDS, then use it when converting to single-precision. 7178 // Otherwise, convert to double-precision and then round. 7179 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7180 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7181 : PPCISD::FCFIDS) 7182 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7183 : PPCISD::FCFID); 7184 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7185 ? MVT::f32 7186 : MVT::f64; 7187 7188 if (Op.getOperand(0).getValueType() == MVT::i64) { 7189 SDValue SINT = Op.getOperand(0); 7190 // When converting to single-precision, we actually need to convert 7191 // to double-precision first and then round to single-precision. 7192 // To avoid double-rounding effects during that operation, we have 7193 // to prepare the input operand. Bits that might be truncated when 7194 // converting to double-precision are replaced by a bit that won't 7195 // be lost at this stage, but is below the single-precision rounding 7196 // position. 7197 // 7198 // However, if -enable-unsafe-fp-math is in effect, accept double 7199 // rounding to avoid the extra overhead. 7200 if (Op.getValueType() == MVT::f32 && 7201 !Subtarget.hasFPCVT() && 7202 !DAG.getTarget().Options.UnsafeFPMath) { 7203 7204 // Twiddle input to make sure the low 11 bits are zero. (If this 7205 // is the case, we are guaranteed the value will fit into the 53 bit 7206 // mantissa of an IEEE double-precision value without rounding.) 7207 // If any of those low 11 bits were not zero originally, make sure 7208 // bit 12 (value 2048) is set instead, so that the final rounding 7209 // to single-precision gets the correct result. 7210 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7211 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7212 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7213 Round, DAG.getConstant(2047, dl, MVT::i64)); 7214 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7215 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7216 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7217 7218 // However, we cannot use that value unconditionally: if the magnitude 7219 // of the input value is small, the bit-twiddling we did above might 7220 // end up visibly changing the output. Fortunately, in that case, we 7221 // don't need to twiddle bits since the original input will convert 7222 // exactly to double-precision floating-point already. Therefore, 7223 // construct a conditional to use the original value if the top 11 7224 // bits are all sign-bit copies, and use the rounded value computed 7225 // above otherwise. 7226 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7227 SINT, DAG.getConstant(53, dl, MVT::i32)); 7228 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7229 Cond, DAG.getConstant(1, dl, MVT::i64)); 7230 Cond = DAG.getSetCC(dl, MVT::i32, 7231 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7232 7233 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7234 } 7235 7236 ReuseLoadInfo RLI; 7237 SDValue Bits; 7238 7239 MachineFunction &MF = DAG.getMachineFunction(); 7240 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7241 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7242 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7243 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7244 } else if (Subtarget.hasLFIWAX() && 7245 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7246 MachineMemOperand *MMO = 7247 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7248 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7249 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7250 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7251 DAG.getVTList(MVT::f64, MVT::Other), 7252 Ops, MVT::i32, MMO); 7253 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7254 } else if (Subtarget.hasFPCVT() && 7255 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7256 MachineMemOperand *MMO = 7257 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7258 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7259 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7260 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7261 DAG.getVTList(MVT::f64, MVT::Other), 7262 Ops, MVT::i32, MMO); 7263 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7264 } else if (((Subtarget.hasLFIWAX() && 7265 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7266 (Subtarget.hasFPCVT() && 7267 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7268 SINT.getOperand(0).getValueType() == MVT::i32) { 7269 MachineFrameInfo &MFI = MF.getFrameInfo(); 7270 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7271 7272 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7273 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7274 7275 SDValue Store = 7276 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7277 MachinePointerInfo::getFixedStack( 7278 DAG.getMachineFunction(), FrameIdx)); 7279 7280 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7281 "Expected an i32 store"); 7282 7283 RLI.Ptr = FIdx; 7284 RLI.Chain = Store; 7285 RLI.MPI = 7286 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7287 RLI.Alignment = 4; 7288 7289 MachineMemOperand *MMO = 7290 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7291 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7292 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7293 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7294 PPCISD::LFIWZX : PPCISD::LFIWAX, 7295 dl, DAG.getVTList(MVT::f64, MVT::Other), 7296 Ops, MVT::i32, MMO); 7297 } else 7298 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7299 7300 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7301 7302 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7303 FP = DAG.getNode(ISD::FP_ROUND, dl, 7304 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7305 return FP; 7306 } 7307 7308 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7309 "Unhandled INT_TO_FP type in custom expander!"); 7310 // Since we only generate this in 64-bit mode, we can take advantage of 7311 // 64-bit registers. In particular, sign extend the input value into the 7312 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7313 // then lfd it and fcfid it. 7314 MachineFunction &MF = DAG.getMachineFunction(); 7315 MachineFrameInfo &MFI = MF.getFrameInfo(); 7316 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7317 7318 SDValue Ld; 7319 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7320 ReuseLoadInfo RLI; 7321 bool ReusingLoad; 7322 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7323 DAG))) { 7324 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7325 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7326 7327 SDValue Store = 7328 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7329 MachinePointerInfo::getFixedStack( 7330 DAG.getMachineFunction(), FrameIdx)); 7331 7332 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7333 "Expected an i32 store"); 7334 7335 RLI.Ptr = FIdx; 7336 RLI.Chain = Store; 7337 RLI.MPI = 7338 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7339 RLI.Alignment = 4; 7340 } 7341 7342 MachineMemOperand *MMO = 7343 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7344 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7345 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7346 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7347 PPCISD::LFIWZX : PPCISD::LFIWAX, 7348 dl, DAG.getVTList(MVT::f64, MVT::Other), 7349 Ops, MVT::i32, MMO); 7350 if (ReusingLoad) 7351 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7352 } else { 7353 assert(Subtarget.isPPC64() && 7354 "i32->FP without LFIWAX supported only on PPC64"); 7355 7356 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7357 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7358 7359 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7360 Op.getOperand(0)); 7361 7362 // STD the extended value into the stack slot. 7363 SDValue Store = DAG.getStore( 7364 DAG.getEntryNode(), dl, Ext64, FIdx, 7365 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7366 7367 // Load the value as a double. 7368 Ld = DAG.getLoad( 7369 MVT::f64, dl, Store, FIdx, 7370 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7371 } 7372 7373 // FCFID it and return it. 7374 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7375 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7376 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7377 DAG.getIntPtrConstant(0, dl)); 7378 return FP; 7379 } 7380 7381 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7382 SelectionDAG &DAG) const { 7383 SDLoc dl(Op); 7384 /* 7385 The rounding mode is in bits 30:31 of FPSR, and has the following 7386 settings: 7387 00 Round to nearest 7388 01 Round to 0 7389 10 Round to +inf 7390 11 Round to -inf 7391 7392 FLT_ROUNDS, on the other hand, expects the following: 7393 -1 Undefined 7394 0 Round to 0 7395 1 Round to nearest 7396 2 Round to +inf 7397 3 Round to -inf 7398 7399 To perform the conversion, we do: 7400 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7401 */ 7402 7403 MachineFunction &MF = DAG.getMachineFunction(); 7404 EVT VT = Op.getValueType(); 7405 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7406 7407 // Save FP Control Word to register 7408 EVT NodeTys[] = { 7409 MVT::f64, // return register 7410 MVT::Glue // unused in this context 7411 }; 7412 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7413 7414 // Save FP register to stack slot 7415 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7416 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7417 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7418 MachinePointerInfo()); 7419 7420 // Load FP Control Word from low 32 bits of stack slot. 7421 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7422 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7423 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7424 7425 // Transform as necessary 7426 SDValue CWD1 = 7427 DAG.getNode(ISD::AND, dl, MVT::i32, 7428 CWD, DAG.getConstant(3, dl, MVT::i32)); 7429 SDValue CWD2 = 7430 DAG.getNode(ISD::SRL, dl, MVT::i32, 7431 DAG.getNode(ISD::AND, dl, MVT::i32, 7432 DAG.getNode(ISD::XOR, dl, MVT::i32, 7433 CWD, DAG.getConstant(3, dl, MVT::i32)), 7434 DAG.getConstant(3, dl, MVT::i32)), 7435 DAG.getConstant(1, dl, MVT::i32)); 7436 7437 SDValue RetVal = 7438 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7439 7440 return DAG.getNode((VT.getSizeInBits() < 16 ? 7441 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7442 } 7443 7444 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7445 EVT VT = Op.getValueType(); 7446 unsigned BitWidth = VT.getSizeInBits(); 7447 SDLoc dl(Op); 7448 assert(Op.getNumOperands() == 3 && 7449 VT == Op.getOperand(1).getValueType() && 7450 "Unexpected SHL!"); 7451 7452 // Expand into a bunch of logical ops. Note that these ops 7453 // depend on the PPC behavior for oversized shift amounts. 7454 SDValue Lo = Op.getOperand(0); 7455 SDValue Hi = Op.getOperand(1); 7456 SDValue Amt = Op.getOperand(2); 7457 EVT AmtVT = Amt.getValueType(); 7458 7459 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7460 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7461 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7462 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7463 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7464 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7465 DAG.getConstant(-BitWidth, dl, AmtVT)); 7466 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7467 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7468 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7469 SDValue OutOps[] = { OutLo, OutHi }; 7470 return DAG.getMergeValues(OutOps, dl); 7471 } 7472 7473 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7474 EVT VT = Op.getValueType(); 7475 SDLoc dl(Op); 7476 unsigned BitWidth = VT.getSizeInBits(); 7477 assert(Op.getNumOperands() == 3 && 7478 VT == Op.getOperand(1).getValueType() && 7479 "Unexpected SRL!"); 7480 7481 // Expand into a bunch of logical ops. Note that these ops 7482 // depend on the PPC behavior for oversized shift amounts. 7483 SDValue Lo = Op.getOperand(0); 7484 SDValue Hi = Op.getOperand(1); 7485 SDValue Amt = Op.getOperand(2); 7486 EVT AmtVT = Amt.getValueType(); 7487 7488 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7489 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7490 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7491 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7492 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7493 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7494 DAG.getConstant(-BitWidth, dl, AmtVT)); 7495 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7496 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7497 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7498 SDValue OutOps[] = { OutLo, OutHi }; 7499 return DAG.getMergeValues(OutOps, dl); 7500 } 7501 7502 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7503 SDLoc dl(Op); 7504 EVT VT = Op.getValueType(); 7505 unsigned BitWidth = VT.getSizeInBits(); 7506 assert(Op.getNumOperands() == 3 && 7507 VT == Op.getOperand(1).getValueType() && 7508 "Unexpected SRA!"); 7509 7510 // Expand into a bunch of logical ops, followed by a select_cc. 7511 SDValue Lo = Op.getOperand(0); 7512 SDValue Hi = Op.getOperand(1); 7513 SDValue Amt = Op.getOperand(2); 7514 EVT AmtVT = Amt.getValueType(); 7515 7516 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7517 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7518 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7519 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7520 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7521 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7522 DAG.getConstant(-BitWidth, dl, AmtVT)); 7523 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7524 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7525 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7526 Tmp4, Tmp6, ISD::SETLE); 7527 SDValue OutOps[] = { OutLo, OutHi }; 7528 return DAG.getMergeValues(OutOps, dl); 7529 } 7530 7531 //===----------------------------------------------------------------------===// 7532 // Vector related lowering. 7533 // 7534 7535 /// BuildSplatI - Build a canonical splati of Val with an element size of 7536 /// SplatSize. Cast the result to VT. 7537 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7538 SelectionDAG &DAG, const SDLoc &dl) { 7539 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7540 7541 static const MVT VTys[] = { // canonical VT to use for each size. 7542 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7543 }; 7544 7545 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7546 7547 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7548 if (Val == -1) 7549 SplatSize = 1; 7550 7551 EVT CanonicalVT = VTys[SplatSize-1]; 7552 7553 // Build a canonical splat for this value. 7554 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7555 } 7556 7557 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7558 /// specified intrinsic ID. 7559 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7560 const SDLoc &dl, EVT DestVT = MVT::Other) { 7561 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7562 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7563 DAG.getConstant(IID, dl, MVT::i32), Op); 7564 } 7565 7566 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7567 /// specified intrinsic ID. 7568 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7569 SelectionDAG &DAG, const SDLoc &dl, 7570 EVT DestVT = MVT::Other) { 7571 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7572 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7573 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7574 } 7575 7576 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7577 /// specified intrinsic ID. 7578 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7579 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7580 EVT DestVT = MVT::Other) { 7581 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7582 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7583 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7584 } 7585 7586 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7587 /// amount. The result has the specified value type. 7588 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7589 SelectionDAG &DAG, const SDLoc &dl) { 7590 // Force LHS/RHS to be the right type. 7591 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7592 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7593 7594 int Ops[16]; 7595 for (unsigned i = 0; i != 16; ++i) 7596 Ops[i] = i + Amt; 7597 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7598 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7599 } 7600 7601 /// Do we have an efficient pattern in a .td file for this node? 7602 /// 7603 /// \param V - pointer to the BuildVectorSDNode being matched 7604 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7605 /// 7606 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7607 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7608 /// the opposite is true (expansion is beneficial) are: 7609 /// - The node builds a vector out of integers that are not 32 or 64-bits 7610 /// - The node builds a vector out of constants 7611 /// - The node is a "load-and-splat" 7612 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7613 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7614 bool HasDirectMove, 7615 bool HasP8Vector) { 7616 EVT VecVT = V->getValueType(0); 7617 bool RightType = VecVT == MVT::v2f64 || 7618 (HasP8Vector && VecVT == MVT::v4f32) || 7619 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7620 if (!RightType) 7621 return false; 7622 7623 bool IsSplat = true; 7624 bool IsLoad = false; 7625 SDValue Op0 = V->getOperand(0); 7626 7627 // This function is called in a block that confirms the node is not a constant 7628 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7629 // different constants. 7630 if (V->isConstant()) 7631 return false; 7632 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7633 if (V->getOperand(i).isUndef()) 7634 return false; 7635 // We want to expand nodes that represent load-and-splat even if the 7636 // loaded value is a floating point truncation or conversion to int. 7637 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7638 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7639 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7640 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7641 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7642 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7643 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7644 IsLoad = true; 7645 // If the operands are different or the input is not a load and has more 7646 // uses than just this BV node, then it isn't a splat. 7647 if (V->getOperand(i) != Op0 || 7648 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7649 IsSplat = false; 7650 } 7651 return !(IsSplat && IsLoad); 7652 } 7653 7654 // If this is a case we can't handle, return null and let the default 7655 // expansion code take care of it. If we CAN select this case, and if it 7656 // selects to a single instruction, return Op. Otherwise, if we can codegen 7657 // this case more efficiently than a constant pool load, lower it to the 7658 // sequence of ops that should be used. 7659 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7660 SelectionDAG &DAG) const { 7661 SDLoc dl(Op); 7662 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7663 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7664 7665 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7666 // We first build an i32 vector, load it into a QPX register, 7667 // then convert it to a floating-point vector and compare it 7668 // to a zero vector to get the boolean result. 7669 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7670 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7671 MachinePointerInfo PtrInfo = 7672 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7673 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7674 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7675 7676 assert(BVN->getNumOperands() == 4 && 7677 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7678 7679 bool IsConst = true; 7680 for (unsigned i = 0; i < 4; ++i) { 7681 if (BVN->getOperand(i).isUndef()) continue; 7682 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7683 IsConst = false; 7684 break; 7685 } 7686 } 7687 7688 if (IsConst) { 7689 Constant *One = 7690 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7691 Constant *NegOne = 7692 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7693 7694 Constant *CV[4]; 7695 for (unsigned i = 0; i < 4; ++i) { 7696 if (BVN->getOperand(i).isUndef()) 7697 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7698 else if (isNullConstant(BVN->getOperand(i))) 7699 CV[i] = NegOne; 7700 else 7701 CV[i] = One; 7702 } 7703 7704 Constant *CP = ConstantVector::get(CV); 7705 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7706 16 /* alignment */); 7707 7708 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7709 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7710 return DAG.getMemIntrinsicNode( 7711 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7712 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7713 } 7714 7715 SmallVector<SDValue, 4> Stores; 7716 for (unsigned i = 0; i < 4; ++i) { 7717 if (BVN->getOperand(i).isUndef()) continue; 7718 7719 unsigned Offset = 4*i; 7720 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7721 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7722 7723 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7724 if (StoreSize > 4) { 7725 Stores.push_back( 7726 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7727 PtrInfo.getWithOffset(Offset), MVT::i32)); 7728 } else { 7729 SDValue StoreValue = BVN->getOperand(i); 7730 if (StoreSize < 4) 7731 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7732 7733 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7734 PtrInfo.getWithOffset(Offset))); 7735 } 7736 } 7737 7738 SDValue StoreChain; 7739 if (!Stores.empty()) 7740 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7741 else 7742 StoreChain = DAG.getEntryNode(); 7743 7744 // Now load from v4i32 into the QPX register; this will extend it to 7745 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7746 // is typed as v4f64 because the QPX register integer states are not 7747 // explicitly represented. 7748 7749 SDValue Ops[] = {StoreChain, 7750 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7751 FIdx}; 7752 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7753 7754 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7755 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7756 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7757 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7758 LoadedVect); 7759 7760 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7761 7762 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7763 } 7764 7765 // All other QPX vectors are handled by generic code. 7766 if (Subtarget.hasQPX()) 7767 return SDValue(); 7768 7769 // Check if this is a splat of a constant value. 7770 APInt APSplatBits, APSplatUndef; 7771 unsigned SplatBitSize; 7772 bool HasAnyUndefs; 7773 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7774 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7775 SplatBitSize > 32) { 7776 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 7777 // lowered to VSX instructions under certain conditions. 7778 // Without VSX, there is no pattern more efficient than expanding the node. 7779 if (Subtarget.hasVSX() && 7780 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 7781 Subtarget.hasP8Vector())) 7782 return Op; 7783 return SDValue(); 7784 } 7785 7786 unsigned SplatBits = APSplatBits.getZExtValue(); 7787 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7788 unsigned SplatSize = SplatBitSize / 8; 7789 7790 // First, handle single instruction cases. 7791 7792 // All zeros? 7793 if (SplatBits == 0) { 7794 // Canonicalize all zero vectors to be v4i32. 7795 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7796 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7797 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7798 } 7799 return Op; 7800 } 7801 7802 // We have XXSPLTIB for constant splats one byte wide 7803 if (Subtarget.hasP9Vector() && SplatSize == 1) { 7804 // This is a splat of 1-byte elements with some elements potentially undef. 7805 // Rather than trying to match undef in the SDAG patterns, ensure that all 7806 // elements are the same constant. 7807 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 7808 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 7809 dl, MVT::i32)); 7810 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 7811 if (Op.getValueType() != MVT::v16i8) 7812 return DAG.getBitcast(Op.getValueType(), NewBV); 7813 return NewBV; 7814 } 7815 7816 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 7817 // detect that constant splats like v8i16: 0xABAB are really just splats 7818 // of a 1-byte constant. In this case, we need to convert the node to a 7819 // splat of v16i8 and a bitcast. 7820 if (Op.getValueType() != MVT::v16i8) 7821 return DAG.getBitcast(Op.getValueType(), 7822 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 7823 7824 return Op; 7825 } 7826 7827 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7828 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7829 (32-SplatBitSize)); 7830 if (SextVal >= -16 && SextVal <= 15) 7831 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7832 7833 // Two instruction sequences. 7834 7835 // If this value is in the range [-32,30] and is even, use: 7836 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7837 // If this value is in the range [17,31] and is odd, use: 7838 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7839 // If this value is in the range [-31,-17] and is odd, use: 7840 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7841 // Note the last two are three-instruction sequences. 7842 if (SextVal >= -32 && SextVal <= 31) { 7843 // To avoid having these optimizations undone by constant folding, 7844 // we convert to a pseudo that will be expanded later into one of 7845 // the above forms. 7846 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7847 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7848 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7849 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7850 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7851 if (VT == Op.getValueType()) 7852 return RetVal; 7853 else 7854 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7855 } 7856 7857 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7858 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7859 // for fneg/fabs. 7860 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7861 // Make -1 and vspltisw -1: 7862 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7863 7864 // Make the VSLW intrinsic, computing 0x8000_0000. 7865 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7866 OnesV, DAG, dl); 7867 7868 // xor by OnesV to invert it. 7869 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7870 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7871 } 7872 7873 // Check to see if this is a wide variety of vsplti*, binop self cases. 7874 static const signed char SplatCsts[] = { 7875 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7876 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7877 }; 7878 7879 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7880 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7881 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7882 int i = SplatCsts[idx]; 7883 7884 // Figure out what shift amount will be used by altivec if shifted by i in 7885 // this splat size. 7886 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7887 7888 // vsplti + shl self. 7889 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7890 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7891 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7892 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7893 Intrinsic::ppc_altivec_vslw 7894 }; 7895 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7896 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7897 } 7898 7899 // vsplti + srl self. 7900 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7901 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7902 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7903 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7904 Intrinsic::ppc_altivec_vsrw 7905 }; 7906 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7907 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7908 } 7909 7910 // vsplti + sra self. 7911 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7912 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7913 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7914 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7915 Intrinsic::ppc_altivec_vsraw 7916 }; 7917 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7918 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7919 } 7920 7921 // vsplti + rol self. 7922 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7923 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7924 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7925 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7926 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7927 Intrinsic::ppc_altivec_vrlw 7928 }; 7929 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7930 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7931 } 7932 7933 // t = vsplti c, result = vsldoi t, t, 1 7934 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7935 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7936 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7937 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7938 } 7939 // t = vsplti c, result = vsldoi t, t, 2 7940 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7941 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7942 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7943 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7944 } 7945 // t = vsplti c, result = vsldoi t, t, 3 7946 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7947 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7948 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7949 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7950 } 7951 } 7952 7953 return SDValue(); 7954 } 7955 7956 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7957 /// the specified operations to build the shuffle. 7958 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7959 SDValue RHS, SelectionDAG &DAG, 7960 const SDLoc &dl) { 7961 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7962 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7963 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7964 7965 enum { 7966 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7967 OP_VMRGHW, 7968 OP_VMRGLW, 7969 OP_VSPLTISW0, 7970 OP_VSPLTISW1, 7971 OP_VSPLTISW2, 7972 OP_VSPLTISW3, 7973 OP_VSLDOI4, 7974 OP_VSLDOI8, 7975 OP_VSLDOI12 7976 }; 7977 7978 if (OpNum == OP_COPY) { 7979 if (LHSID == (1*9+2)*9+3) return LHS; 7980 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7981 return RHS; 7982 } 7983 7984 SDValue OpLHS, OpRHS; 7985 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7986 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7987 7988 int ShufIdxs[16]; 7989 switch (OpNum) { 7990 default: llvm_unreachable("Unknown i32 permute!"); 7991 case OP_VMRGHW: 7992 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7993 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7994 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7995 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7996 break; 7997 case OP_VMRGLW: 7998 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7999 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8000 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8001 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8002 break; 8003 case OP_VSPLTISW0: 8004 for (unsigned i = 0; i != 16; ++i) 8005 ShufIdxs[i] = (i&3)+0; 8006 break; 8007 case OP_VSPLTISW1: 8008 for (unsigned i = 0; i != 16; ++i) 8009 ShufIdxs[i] = (i&3)+4; 8010 break; 8011 case OP_VSPLTISW2: 8012 for (unsigned i = 0; i != 16; ++i) 8013 ShufIdxs[i] = (i&3)+8; 8014 break; 8015 case OP_VSPLTISW3: 8016 for (unsigned i = 0; i != 16; ++i) 8017 ShufIdxs[i] = (i&3)+12; 8018 break; 8019 case OP_VSLDOI4: 8020 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8021 case OP_VSLDOI8: 8022 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8023 case OP_VSLDOI12: 8024 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8025 } 8026 EVT VT = OpLHS.getValueType(); 8027 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8028 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8029 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8030 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8031 } 8032 8033 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8034 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8035 /// SDValue. 8036 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8037 SelectionDAG &DAG) const { 8038 const unsigned BytesInVector = 16; 8039 bool IsLE = Subtarget.isLittleEndian(); 8040 SDLoc dl(N); 8041 SDValue V1 = N->getOperand(0); 8042 SDValue V2 = N->getOperand(1); 8043 unsigned ShiftElts = 0, InsertAtByte = 0; 8044 bool Swap = false; 8045 8046 // Shifts required to get the byte we want at element 7. 8047 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8048 0, 15, 14, 13, 12, 11, 10, 9}; 8049 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8050 1, 2, 3, 4, 5, 6, 7, 8}; 8051 8052 ArrayRef<int> Mask = N->getMask(); 8053 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8054 8055 // For each mask element, find out if we're just inserting something 8056 // from V2 into V1 or vice versa. 8057 // Possible permutations inserting an element from V2 into V1: 8058 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8059 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8060 // ... 8061 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8062 // Inserting from V1 into V2 will be similar, except mask range will be 8063 // [16,31]. 8064 8065 bool FoundCandidate = false; 8066 // If both vector operands for the shuffle are the same vector, the mask 8067 // will contain only elements from the first one and the second one will be 8068 // undef. 8069 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8070 // Go through the mask of half-words to find an element that's being moved 8071 // from one vector to the other. 8072 for (unsigned i = 0; i < BytesInVector; ++i) { 8073 unsigned CurrentElement = Mask[i]; 8074 // If 2nd operand is undefined, we should only look for element 7 in the 8075 // Mask. 8076 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8077 continue; 8078 8079 bool OtherElementsInOrder = true; 8080 // Examine the other elements in the Mask to see if they're in original 8081 // order. 8082 for (unsigned j = 0; j < BytesInVector; ++j) { 8083 if (j == i) 8084 continue; 8085 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8086 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8087 // in which we always assume we're always picking from the 1st operand. 8088 int MaskOffset = 8089 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8090 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8091 OtherElementsInOrder = false; 8092 break; 8093 } 8094 } 8095 // If other elements are in original order, we record the number of shifts 8096 // we need to get the element we want into element 7. Also record which byte 8097 // in the vector we should insert into. 8098 if (OtherElementsInOrder) { 8099 // If 2nd operand is undefined, we assume no shifts and no swapping. 8100 if (V2.isUndef()) { 8101 ShiftElts = 0; 8102 Swap = false; 8103 } else { 8104 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8105 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8106 : BigEndianShifts[CurrentElement & 0xF]; 8107 Swap = CurrentElement < BytesInVector; 8108 } 8109 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8110 FoundCandidate = true; 8111 break; 8112 } 8113 } 8114 8115 if (!FoundCandidate) 8116 return SDValue(); 8117 8118 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8119 // optionally with VECSHL if shift is required. 8120 if (Swap) 8121 std::swap(V1, V2); 8122 if (V2.isUndef()) 8123 V2 = V1; 8124 if (ShiftElts) { 8125 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8126 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8127 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8128 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8129 } 8130 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8131 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8132 } 8133 8134 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8135 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8136 /// SDValue. 8137 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8138 SelectionDAG &DAG) const { 8139 const unsigned NumHalfWords = 8; 8140 const unsigned BytesInVector = NumHalfWords * 2; 8141 // Check that the shuffle is on half-words. 8142 if (!isNByteElemShuffleMask(N, 2, 1)) 8143 return SDValue(); 8144 8145 bool IsLE = Subtarget.isLittleEndian(); 8146 SDLoc dl(N); 8147 SDValue V1 = N->getOperand(0); 8148 SDValue V2 = N->getOperand(1); 8149 unsigned ShiftElts = 0, InsertAtByte = 0; 8150 bool Swap = false; 8151 8152 // Shifts required to get the half-word we want at element 3. 8153 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8154 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8155 8156 uint32_t Mask = 0; 8157 uint32_t OriginalOrderLow = 0x1234567; 8158 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8159 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8160 // 32-bit space, only need 4-bit nibbles per element. 8161 for (unsigned i = 0; i < NumHalfWords; ++i) { 8162 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8163 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8164 } 8165 8166 // For each mask element, find out if we're just inserting something 8167 // from V2 into V1 or vice versa. Possible permutations inserting an element 8168 // from V2 into V1: 8169 // X, 1, 2, 3, 4, 5, 6, 7 8170 // 0, X, 2, 3, 4, 5, 6, 7 8171 // 0, 1, X, 3, 4, 5, 6, 7 8172 // 0, 1, 2, X, 4, 5, 6, 7 8173 // 0, 1, 2, 3, X, 5, 6, 7 8174 // 0, 1, 2, 3, 4, X, 6, 7 8175 // 0, 1, 2, 3, 4, 5, X, 7 8176 // 0, 1, 2, 3, 4, 5, 6, X 8177 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8178 8179 bool FoundCandidate = false; 8180 // Go through the mask of half-words to find an element that's being moved 8181 // from one vector to the other. 8182 for (unsigned i = 0; i < NumHalfWords; ++i) { 8183 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8184 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8185 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8186 uint32_t TargetOrder = 0x0; 8187 8188 // If both vector operands for the shuffle are the same vector, the mask 8189 // will contain only elements from the first one and the second one will be 8190 // undef. 8191 if (V2.isUndef()) { 8192 ShiftElts = 0; 8193 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8194 TargetOrder = OriginalOrderLow; 8195 Swap = false; 8196 // Skip if not the correct element or mask of other elements don't equal 8197 // to our expected order. 8198 if (MaskOneElt == VINSERTHSrcElem && 8199 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8200 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8201 FoundCandidate = true; 8202 break; 8203 } 8204 } else { // If both operands are defined. 8205 // Target order is [8,15] if the current mask is between [0,7]. 8206 TargetOrder = 8207 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8208 // Skip if mask of other elements don't equal our expected order. 8209 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8210 // We only need the last 3 bits for the number of shifts. 8211 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8212 : BigEndianShifts[MaskOneElt & 0x7]; 8213 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8214 Swap = MaskOneElt < NumHalfWords; 8215 FoundCandidate = true; 8216 break; 8217 } 8218 } 8219 } 8220 8221 if (!FoundCandidate) 8222 return SDValue(); 8223 8224 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8225 // optionally with VECSHL if shift is required. 8226 if (Swap) 8227 std::swap(V1, V2); 8228 if (V2.isUndef()) 8229 V2 = V1; 8230 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8231 if (ShiftElts) { 8232 // Double ShiftElts because we're left shifting on v16i8 type. 8233 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8234 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8235 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8236 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8237 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8238 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8239 } 8240 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8241 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8242 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8243 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8244 } 8245 8246 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8247 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8248 /// return the code it can be lowered into. Worst case, it can always be 8249 /// lowered into a vperm. 8250 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8251 SelectionDAG &DAG) const { 8252 SDLoc dl(Op); 8253 SDValue V1 = Op.getOperand(0); 8254 SDValue V2 = Op.getOperand(1); 8255 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8256 EVT VT = Op.getValueType(); 8257 bool isLittleEndian = Subtarget.isLittleEndian(); 8258 8259 unsigned ShiftElts, InsertAtByte; 8260 bool Swap = false; 8261 if (Subtarget.hasP9Vector() && 8262 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8263 isLittleEndian)) { 8264 if (Swap) 8265 std::swap(V1, V2); 8266 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8267 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8268 if (ShiftElts) { 8269 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8270 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8271 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8272 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8273 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8274 } 8275 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8276 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8277 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8278 } 8279 8280 if (Subtarget.hasP9Altivec()) { 8281 SDValue NewISDNode; 8282 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8283 return NewISDNode; 8284 8285 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8286 return NewISDNode; 8287 } 8288 8289 if (Subtarget.hasVSX() && 8290 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8291 if (Swap) 8292 std::swap(V1, V2); 8293 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8294 SDValue Conv2 = 8295 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8296 8297 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8298 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8299 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8300 } 8301 8302 if (Subtarget.hasVSX() && 8303 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8304 if (Swap) 8305 std::swap(V1, V2); 8306 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8307 SDValue Conv2 = 8308 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8309 8310 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8311 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8312 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8313 } 8314 8315 if (Subtarget.hasP9Vector()) { 8316 if (PPC::isXXBRHShuffleMask(SVOp)) { 8317 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8318 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8319 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8320 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8321 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8322 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8323 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8324 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8325 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8326 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8327 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8328 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8329 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8330 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8331 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8332 } 8333 } 8334 8335 if (Subtarget.hasVSX()) { 8336 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8337 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8338 8339 // If the source for the shuffle is a scalar_to_vector that came from a 8340 // 32-bit load, it will have used LXVWSX so we don't need to splat again. 8341 if (Subtarget.hasP9Vector() && 8342 ((isLittleEndian && SplatIdx == 3) || 8343 (!isLittleEndian && SplatIdx == 0))) { 8344 SDValue Src = V1.getOperand(0); 8345 if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR && 8346 Src.getOperand(0).getOpcode() == ISD::LOAD && 8347 Src.getOperand(0).hasOneUse()) 8348 return V1; 8349 } 8350 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8351 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8352 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8353 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8354 } 8355 8356 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8357 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8358 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8359 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8360 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8361 } 8362 } 8363 8364 if (Subtarget.hasQPX()) { 8365 if (VT.getVectorNumElements() != 4) 8366 return SDValue(); 8367 8368 if (V2.isUndef()) V2 = V1; 8369 8370 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8371 if (AlignIdx != -1) { 8372 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8373 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8374 } else if (SVOp->isSplat()) { 8375 int SplatIdx = SVOp->getSplatIndex(); 8376 if (SplatIdx >= 4) { 8377 std::swap(V1, V2); 8378 SplatIdx -= 4; 8379 } 8380 8381 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8382 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8383 } 8384 8385 // Lower this into a qvgpci/qvfperm pair. 8386 8387 // Compute the qvgpci literal 8388 unsigned idx = 0; 8389 for (unsigned i = 0; i < 4; ++i) { 8390 int m = SVOp->getMaskElt(i); 8391 unsigned mm = m >= 0 ? (unsigned) m : i; 8392 idx |= mm << (3-i)*3; 8393 } 8394 8395 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8396 DAG.getConstant(idx, dl, MVT::i32)); 8397 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8398 } 8399 8400 // Cases that are handled by instructions that take permute immediates 8401 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8402 // selected by the instruction selector. 8403 if (V2.isUndef()) { 8404 if (PPC::isSplatShuffleMask(SVOp, 1) || 8405 PPC::isSplatShuffleMask(SVOp, 2) || 8406 PPC::isSplatShuffleMask(SVOp, 4) || 8407 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8408 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8409 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8410 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8411 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8412 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8413 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8414 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8415 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8416 (Subtarget.hasP8Altivec() && ( 8417 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8418 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8419 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8420 return Op; 8421 } 8422 } 8423 8424 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8425 // and produce a fixed permutation. If any of these match, do not lower to 8426 // VPERM. 8427 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8428 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8429 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8430 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8431 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8432 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8433 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8434 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8435 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8436 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8437 (Subtarget.hasP8Altivec() && ( 8438 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8439 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8440 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8441 return Op; 8442 8443 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8444 // perfect shuffle table to emit an optimal matching sequence. 8445 ArrayRef<int> PermMask = SVOp->getMask(); 8446 8447 unsigned PFIndexes[4]; 8448 bool isFourElementShuffle = true; 8449 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8450 unsigned EltNo = 8; // Start out undef. 8451 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8452 if (PermMask[i*4+j] < 0) 8453 continue; // Undef, ignore it. 8454 8455 unsigned ByteSource = PermMask[i*4+j]; 8456 if ((ByteSource & 3) != j) { 8457 isFourElementShuffle = false; 8458 break; 8459 } 8460 8461 if (EltNo == 8) { 8462 EltNo = ByteSource/4; 8463 } else if (EltNo != ByteSource/4) { 8464 isFourElementShuffle = false; 8465 break; 8466 } 8467 } 8468 PFIndexes[i] = EltNo; 8469 } 8470 8471 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8472 // perfect shuffle vector to determine if it is cost effective to do this as 8473 // discrete instructions, or whether we should use a vperm. 8474 // For now, we skip this for little endian until such time as we have a 8475 // little-endian perfect shuffle table. 8476 if (isFourElementShuffle && !isLittleEndian) { 8477 // Compute the index in the perfect shuffle table. 8478 unsigned PFTableIndex = 8479 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8480 8481 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8482 unsigned Cost = (PFEntry >> 30); 8483 8484 // Determining when to avoid vperm is tricky. Many things affect the cost 8485 // of vperm, particularly how many times the perm mask needs to be computed. 8486 // For example, if the perm mask can be hoisted out of a loop or is already 8487 // used (perhaps because there are multiple permutes with the same shuffle 8488 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8489 // the loop requires an extra register. 8490 // 8491 // As a compromise, we only emit discrete instructions if the shuffle can be 8492 // generated in 3 or fewer operations. When we have loop information 8493 // available, if this block is within a loop, we should avoid using vperm 8494 // for 3-operation perms and use a constant pool load instead. 8495 if (Cost < 3) 8496 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8497 } 8498 8499 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8500 // vector that will get spilled to the constant pool. 8501 if (V2.isUndef()) V2 = V1; 8502 8503 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8504 // that it is in input element units, not in bytes. Convert now. 8505 8506 // For little endian, the order of the input vectors is reversed, and 8507 // the permutation mask is complemented with respect to 31. This is 8508 // necessary to produce proper semantics with the big-endian-biased vperm 8509 // instruction. 8510 EVT EltVT = V1.getValueType().getVectorElementType(); 8511 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 8512 8513 SmallVector<SDValue, 16> ResultMask; 8514 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 8515 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 8516 8517 for (unsigned j = 0; j != BytesPerElement; ++j) 8518 if (isLittleEndian) 8519 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 8520 dl, MVT::i32)); 8521 else 8522 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 8523 MVT::i32)); 8524 } 8525 8526 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 8527 if (isLittleEndian) 8528 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8529 V2, V1, VPermMask); 8530 else 8531 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8532 V1, V2, VPermMask); 8533 } 8534 8535 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 8536 /// vector comparison. If it is, return true and fill in Opc/isDot with 8537 /// information about the intrinsic. 8538 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 8539 bool &isDot, const PPCSubtarget &Subtarget) { 8540 unsigned IntrinsicID = 8541 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 8542 CompareOpc = -1; 8543 isDot = false; 8544 switch (IntrinsicID) { 8545 default: 8546 return false; 8547 // Comparison predicates. 8548 case Intrinsic::ppc_altivec_vcmpbfp_p: 8549 CompareOpc = 966; 8550 isDot = true; 8551 break; 8552 case Intrinsic::ppc_altivec_vcmpeqfp_p: 8553 CompareOpc = 198; 8554 isDot = true; 8555 break; 8556 case Intrinsic::ppc_altivec_vcmpequb_p: 8557 CompareOpc = 6; 8558 isDot = true; 8559 break; 8560 case Intrinsic::ppc_altivec_vcmpequh_p: 8561 CompareOpc = 70; 8562 isDot = true; 8563 break; 8564 case Intrinsic::ppc_altivec_vcmpequw_p: 8565 CompareOpc = 134; 8566 isDot = true; 8567 break; 8568 case Intrinsic::ppc_altivec_vcmpequd_p: 8569 if (Subtarget.hasP8Altivec()) { 8570 CompareOpc = 199; 8571 isDot = true; 8572 } else 8573 return false; 8574 break; 8575 case Intrinsic::ppc_altivec_vcmpneb_p: 8576 case Intrinsic::ppc_altivec_vcmpneh_p: 8577 case Intrinsic::ppc_altivec_vcmpnew_p: 8578 case Intrinsic::ppc_altivec_vcmpnezb_p: 8579 case Intrinsic::ppc_altivec_vcmpnezh_p: 8580 case Intrinsic::ppc_altivec_vcmpnezw_p: 8581 if (Subtarget.hasP9Altivec()) { 8582 switch (IntrinsicID) { 8583 default: 8584 llvm_unreachable("Unknown comparison intrinsic."); 8585 case Intrinsic::ppc_altivec_vcmpneb_p: 8586 CompareOpc = 7; 8587 break; 8588 case Intrinsic::ppc_altivec_vcmpneh_p: 8589 CompareOpc = 71; 8590 break; 8591 case Intrinsic::ppc_altivec_vcmpnew_p: 8592 CompareOpc = 135; 8593 break; 8594 case Intrinsic::ppc_altivec_vcmpnezb_p: 8595 CompareOpc = 263; 8596 break; 8597 case Intrinsic::ppc_altivec_vcmpnezh_p: 8598 CompareOpc = 327; 8599 break; 8600 case Intrinsic::ppc_altivec_vcmpnezw_p: 8601 CompareOpc = 391; 8602 break; 8603 } 8604 isDot = true; 8605 } else 8606 return false; 8607 break; 8608 case Intrinsic::ppc_altivec_vcmpgefp_p: 8609 CompareOpc = 454; 8610 isDot = true; 8611 break; 8612 case Intrinsic::ppc_altivec_vcmpgtfp_p: 8613 CompareOpc = 710; 8614 isDot = true; 8615 break; 8616 case Intrinsic::ppc_altivec_vcmpgtsb_p: 8617 CompareOpc = 774; 8618 isDot = true; 8619 break; 8620 case Intrinsic::ppc_altivec_vcmpgtsh_p: 8621 CompareOpc = 838; 8622 isDot = true; 8623 break; 8624 case Intrinsic::ppc_altivec_vcmpgtsw_p: 8625 CompareOpc = 902; 8626 isDot = true; 8627 break; 8628 case Intrinsic::ppc_altivec_vcmpgtsd_p: 8629 if (Subtarget.hasP8Altivec()) { 8630 CompareOpc = 967; 8631 isDot = true; 8632 } else 8633 return false; 8634 break; 8635 case Intrinsic::ppc_altivec_vcmpgtub_p: 8636 CompareOpc = 518; 8637 isDot = true; 8638 break; 8639 case Intrinsic::ppc_altivec_vcmpgtuh_p: 8640 CompareOpc = 582; 8641 isDot = true; 8642 break; 8643 case Intrinsic::ppc_altivec_vcmpgtuw_p: 8644 CompareOpc = 646; 8645 isDot = true; 8646 break; 8647 case Intrinsic::ppc_altivec_vcmpgtud_p: 8648 if (Subtarget.hasP8Altivec()) { 8649 CompareOpc = 711; 8650 isDot = true; 8651 } else 8652 return false; 8653 break; 8654 8655 // VSX predicate comparisons use the same infrastructure 8656 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8657 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8658 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8659 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8660 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8661 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8662 if (Subtarget.hasVSX()) { 8663 switch (IntrinsicID) { 8664 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8665 CompareOpc = 99; 8666 break; 8667 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8668 CompareOpc = 115; 8669 break; 8670 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8671 CompareOpc = 107; 8672 break; 8673 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8674 CompareOpc = 67; 8675 break; 8676 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8677 CompareOpc = 83; 8678 break; 8679 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8680 CompareOpc = 75; 8681 break; 8682 } 8683 isDot = true; 8684 } else 8685 return false; 8686 break; 8687 8688 // Normal Comparisons. 8689 case Intrinsic::ppc_altivec_vcmpbfp: 8690 CompareOpc = 966; 8691 break; 8692 case Intrinsic::ppc_altivec_vcmpeqfp: 8693 CompareOpc = 198; 8694 break; 8695 case Intrinsic::ppc_altivec_vcmpequb: 8696 CompareOpc = 6; 8697 break; 8698 case Intrinsic::ppc_altivec_vcmpequh: 8699 CompareOpc = 70; 8700 break; 8701 case Intrinsic::ppc_altivec_vcmpequw: 8702 CompareOpc = 134; 8703 break; 8704 case Intrinsic::ppc_altivec_vcmpequd: 8705 if (Subtarget.hasP8Altivec()) 8706 CompareOpc = 199; 8707 else 8708 return false; 8709 break; 8710 case Intrinsic::ppc_altivec_vcmpneb: 8711 case Intrinsic::ppc_altivec_vcmpneh: 8712 case Intrinsic::ppc_altivec_vcmpnew: 8713 case Intrinsic::ppc_altivec_vcmpnezb: 8714 case Intrinsic::ppc_altivec_vcmpnezh: 8715 case Intrinsic::ppc_altivec_vcmpnezw: 8716 if (Subtarget.hasP9Altivec()) 8717 switch (IntrinsicID) { 8718 default: 8719 llvm_unreachable("Unknown comparison intrinsic."); 8720 case Intrinsic::ppc_altivec_vcmpneb: 8721 CompareOpc = 7; 8722 break; 8723 case Intrinsic::ppc_altivec_vcmpneh: 8724 CompareOpc = 71; 8725 break; 8726 case Intrinsic::ppc_altivec_vcmpnew: 8727 CompareOpc = 135; 8728 break; 8729 case Intrinsic::ppc_altivec_vcmpnezb: 8730 CompareOpc = 263; 8731 break; 8732 case Intrinsic::ppc_altivec_vcmpnezh: 8733 CompareOpc = 327; 8734 break; 8735 case Intrinsic::ppc_altivec_vcmpnezw: 8736 CompareOpc = 391; 8737 break; 8738 } 8739 else 8740 return false; 8741 break; 8742 case Intrinsic::ppc_altivec_vcmpgefp: 8743 CompareOpc = 454; 8744 break; 8745 case Intrinsic::ppc_altivec_vcmpgtfp: 8746 CompareOpc = 710; 8747 break; 8748 case Intrinsic::ppc_altivec_vcmpgtsb: 8749 CompareOpc = 774; 8750 break; 8751 case Intrinsic::ppc_altivec_vcmpgtsh: 8752 CompareOpc = 838; 8753 break; 8754 case Intrinsic::ppc_altivec_vcmpgtsw: 8755 CompareOpc = 902; 8756 break; 8757 case Intrinsic::ppc_altivec_vcmpgtsd: 8758 if (Subtarget.hasP8Altivec()) 8759 CompareOpc = 967; 8760 else 8761 return false; 8762 break; 8763 case Intrinsic::ppc_altivec_vcmpgtub: 8764 CompareOpc = 518; 8765 break; 8766 case Intrinsic::ppc_altivec_vcmpgtuh: 8767 CompareOpc = 582; 8768 break; 8769 case Intrinsic::ppc_altivec_vcmpgtuw: 8770 CompareOpc = 646; 8771 break; 8772 case Intrinsic::ppc_altivec_vcmpgtud: 8773 if (Subtarget.hasP8Altivec()) 8774 CompareOpc = 711; 8775 else 8776 return false; 8777 break; 8778 } 8779 return true; 8780 } 8781 8782 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 8783 /// lower, do it, otherwise return null. 8784 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 8785 SelectionDAG &DAG) const { 8786 unsigned IntrinsicID = 8787 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8788 8789 SDLoc dl(Op); 8790 8791 if (IntrinsicID == Intrinsic::thread_pointer) { 8792 // Reads the thread pointer register, used for __builtin_thread_pointer. 8793 if (Subtarget.isPPC64()) 8794 return DAG.getRegister(PPC::X13, MVT::i64); 8795 return DAG.getRegister(PPC::R2, MVT::i32); 8796 } 8797 8798 // We are looking for absolute values here. 8799 // The idea is to try to fit one of two patterns: 8800 // max (a, (0-a)) OR max ((0-a), a) 8801 if (Subtarget.hasP9Vector() && 8802 (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw || 8803 IntrinsicID == Intrinsic::ppc_altivec_vmaxsh || 8804 IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) { 8805 SDValue V1 = Op.getOperand(1); 8806 SDValue V2 = Op.getOperand(2); 8807 if (V1.getSimpleValueType() == V2.getSimpleValueType() && 8808 (V1.getSimpleValueType() == MVT::v4i32 || 8809 V1.getSimpleValueType() == MVT::v8i16 || 8810 V1.getSimpleValueType() == MVT::v16i8)) { 8811 if ( V1.getOpcode() == ISD::SUB && 8812 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 8813 V1.getOperand(1) == V2 ) { 8814 // Generate the abs instruction with the operands 8815 return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2); 8816 } 8817 8818 if ( V2.getOpcode() == ISD::SUB && 8819 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 8820 V2.getOperand(1) == V1 ) { 8821 // Generate the abs instruction with the operands 8822 return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1); 8823 } 8824 } 8825 } 8826 8827 // If this is a lowered altivec predicate compare, CompareOpc is set to the 8828 // opcode number of the comparison. 8829 int CompareOpc; 8830 bool isDot; 8831 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 8832 return SDValue(); // Don't custom lower most intrinsics. 8833 8834 // If this is a non-dot comparison, make the VCMP node and we are done. 8835 if (!isDot) { 8836 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 8837 Op.getOperand(1), Op.getOperand(2), 8838 DAG.getConstant(CompareOpc, dl, MVT::i32)); 8839 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 8840 } 8841 8842 // Create the PPCISD altivec 'dot' comparison node. 8843 SDValue Ops[] = { 8844 Op.getOperand(2), // LHS 8845 Op.getOperand(3), // RHS 8846 DAG.getConstant(CompareOpc, dl, MVT::i32) 8847 }; 8848 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 8849 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 8850 8851 // Now that we have the comparison, emit a copy from the CR to a GPR. 8852 // This is flagged to the above dot comparison. 8853 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 8854 DAG.getRegister(PPC::CR6, MVT::i32), 8855 CompNode.getValue(1)); 8856 8857 // Unpack the result based on how the target uses it. 8858 unsigned BitNo; // Bit # of CR6. 8859 bool InvertBit; // Invert result? 8860 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 8861 default: // Can't happen, don't crash on invalid number though. 8862 case 0: // Return the value of the EQ bit of CR6. 8863 BitNo = 0; InvertBit = false; 8864 break; 8865 case 1: // Return the inverted value of the EQ bit of CR6. 8866 BitNo = 0; InvertBit = true; 8867 break; 8868 case 2: // Return the value of the LT bit of CR6. 8869 BitNo = 2; InvertBit = false; 8870 break; 8871 case 3: // Return the inverted value of the LT bit of CR6. 8872 BitNo = 2; InvertBit = true; 8873 break; 8874 } 8875 8876 // Shift the bit into the low position. 8877 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 8878 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 8879 // Isolate the bit. 8880 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 8881 DAG.getConstant(1, dl, MVT::i32)); 8882 8883 // If we are supposed to, toggle the bit. 8884 if (InvertBit) 8885 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 8886 DAG.getConstant(1, dl, MVT::i32)); 8887 return Flags; 8888 } 8889 8890 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 8891 SelectionDAG &DAG) const { 8892 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 8893 // the beginning of the argument list. 8894 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 8895 SDLoc DL(Op); 8896 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 8897 case Intrinsic::ppc_cfence: { 8898 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 8899 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 8900 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 8901 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 8902 Op.getOperand(ArgStart + 1)), 8903 Op.getOperand(0)), 8904 0); 8905 } 8906 default: 8907 break; 8908 } 8909 return SDValue(); 8910 } 8911 8912 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 8913 // Check for a DIV with the same operands as this REM. 8914 for (auto UI : Op.getOperand(1)->uses()) { 8915 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 8916 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 8917 if (UI->getOperand(0) == Op.getOperand(0) && 8918 UI->getOperand(1) == Op.getOperand(1)) 8919 return SDValue(); 8920 } 8921 return Op; 8922 } 8923 8924 // Lower scalar BSWAP64 to xxbrd. 8925 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 8926 SDLoc dl(Op); 8927 // MTVSRDD 8928 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 8929 Op.getOperand(0)); 8930 // XXBRD 8931 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 8932 // MFVSRD 8933 int VectorIndex = 0; 8934 if (Subtarget.isLittleEndian()) 8935 VectorIndex = 1; 8936 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 8937 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 8938 return Op; 8939 } 8940 8941 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 8942 // compared to a value that is atomically loaded (atomic loads zero-extend). 8943 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 8944 SelectionDAG &DAG) const { 8945 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 8946 "Expecting an atomic compare-and-swap here."); 8947 SDLoc dl(Op); 8948 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 8949 EVT MemVT = AtomicNode->getMemoryVT(); 8950 if (MemVT.getSizeInBits() >= 32) 8951 return Op; 8952 8953 SDValue CmpOp = Op.getOperand(2); 8954 // If this is already correctly zero-extended, leave it alone. 8955 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 8956 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 8957 return Op; 8958 8959 // Clear the high bits of the compare operand. 8960 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 8961 SDValue NewCmpOp = 8962 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 8963 DAG.getConstant(MaskVal, dl, MVT::i32)); 8964 8965 // Replace the existing compare operand with the properly zero-extended one. 8966 SmallVector<SDValue, 4> Ops; 8967 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 8968 Ops.push_back(AtomicNode->getOperand(i)); 8969 Ops[2] = NewCmpOp; 8970 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 8971 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 8972 auto NodeTy = 8973 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 8974 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 8975 } 8976 8977 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 8978 SelectionDAG &DAG) const { 8979 SDLoc dl(Op); 8980 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 8981 // instructions), but for smaller types, we need to first extend up to v2i32 8982 // before doing going farther. 8983 if (Op.getValueType() == MVT::v2i64) { 8984 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 8985 if (ExtVT != MVT::v2i32) { 8986 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 8987 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 8988 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 8989 ExtVT.getVectorElementType(), 4))); 8990 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 8991 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 8992 DAG.getValueType(MVT::v2i32)); 8993 } 8994 8995 return Op; 8996 } 8997 8998 return SDValue(); 8999 } 9000 9001 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9002 SelectionDAG &DAG) const { 9003 SDLoc dl(Op); 9004 // Create a stack slot that is 16-byte aligned. 9005 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9006 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9007 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9008 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9009 9010 // Store the input value into Value#0 of the stack slot. 9011 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9012 MachinePointerInfo()); 9013 // Load it out. 9014 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9015 } 9016 9017 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9018 SelectionDAG &DAG) const { 9019 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9020 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9021 9022 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9023 // We have legal lowering for constant indices but not for variable ones. 9024 if (!C) 9025 return SDValue(); 9026 9027 EVT VT = Op.getValueType(); 9028 SDLoc dl(Op); 9029 SDValue V1 = Op.getOperand(0); 9030 SDValue V2 = Op.getOperand(1); 9031 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9032 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9033 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9034 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9035 unsigned InsertAtElement = C->getZExtValue(); 9036 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9037 if (Subtarget.isLittleEndian()) { 9038 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9039 } 9040 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9041 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9042 } 9043 return Op; 9044 } 9045 9046 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9047 SelectionDAG &DAG) const { 9048 SDLoc dl(Op); 9049 SDNode *N = Op.getNode(); 9050 9051 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9052 "Unknown extract_vector_elt type"); 9053 9054 SDValue Value = N->getOperand(0); 9055 9056 // The first part of this is like the store lowering except that we don't 9057 // need to track the chain. 9058 9059 // The values are now known to be -1 (false) or 1 (true). To convert this 9060 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9061 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9062 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9063 9064 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9065 // understand how to form the extending load. 9066 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9067 9068 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9069 9070 // Now convert to an integer and store. 9071 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9072 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9073 Value); 9074 9075 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9076 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9077 MachinePointerInfo PtrInfo = 9078 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9079 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9080 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9081 9082 SDValue StoreChain = DAG.getEntryNode(); 9083 SDValue Ops[] = {StoreChain, 9084 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9085 Value, FIdx}; 9086 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9087 9088 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9089 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9090 9091 // Extract the value requested. 9092 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9093 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9094 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9095 9096 SDValue IntVal = 9097 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9098 9099 if (!Subtarget.useCRBits()) 9100 return IntVal; 9101 9102 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9103 } 9104 9105 /// Lowering for QPX v4i1 loads 9106 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9107 SelectionDAG &DAG) const { 9108 SDLoc dl(Op); 9109 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9110 SDValue LoadChain = LN->getChain(); 9111 SDValue BasePtr = LN->getBasePtr(); 9112 9113 if (Op.getValueType() == MVT::v4f64 || 9114 Op.getValueType() == MVT::v4f32) { 9115 EVT MemVT = LN->getMemoryVT(); 9116 unsigned Alignment = LN->getAlignment(); 9117 9118 // If this load is properly aligned, then it is legal. 9119 if (Alignment >= MemVT.getStoreSize()) 9120 return Op; 9121 9122 EVT ScalarVT = Op.getValueType().getScalarType(), 9123 ScalarMemVT = MemVT.getScalarType(); 9124 unsigned Stride = ScalarMemVT.getStoreSize(); 9125 9126 SDValue Vals[4], LoadChains[4]; 9127 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9128 SDValue Load; 9129 if (ScalarVT != ScalarMemVT) 9130 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9131 BasePtr, 9132 LN->getPointerInfo().getWithOffset(Idx * Stride), 9133 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9134 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9135 else 9136 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9137 LN->getPointerInfo().getWithOffset(Idx * Stride), 9138 MinAlign(Alignment, Idx * Stride), 9139 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9140 9141 if (Idx == 0 && LN->isIndexed()) { 9142 assert(LN->getAddressingMode() == ISD::PRE_INC && 9143 "Unknown addressing mode on vector load"); 9144 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9145 LN->getAddressingMode()); 9146 } 9147 9148 Vals[Idx] = Load; 9149 LoadChains[Idx] = Load.getValue(1); 9150 9151 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9152 DAG.getConstant(Stride, dl, 9153 BasePtr.getValueType())); 9154 } 9155 9156 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9157 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9158 9159 if (LN->isIndexed()) { 9160 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9161 return DAG.getMergeValues(RetOps, dl); 9162 } 9163 9164 SDValue RetOps[] = { Value, TF }; 9165 return DAG.getMergeValues(RetOps, dl); 9166 } 9167 9168 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9169 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9170 9171 // To lower v4i1 from a byte array, we load the byte elements of the 9172 // vector and then reuse the BUILD_VECTOR logic. 9173 9174 SDValue VectElmts[4], VectElmtChains[4]; 9175 for (unsigned i = 0; i < 4; ++i) { 9176 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9177 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9178 9179 VectElmts[i] = DAG.getExtLoad( 9180 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9181 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9182 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9183 VectElmtChains[i] = VectElmts[i].getValue(1); 9184 } 9185 9186 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9187 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9188 9189 SDValue RVals[] = { Value, LoadChain }; 9190 return DAG.getMergeValues(RVals, dl); 9191 } 9192 9193 /// Lowering for QPX v4i1 stores 9194 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9195 SelectionDAG &DAG) const { 9196 SDLoc dl(Op); 9197 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9198 SDValue StoreChain = SN->getChain(); 9199 SDValue BasePtr = SN->getBasePtr(); 9200 SDValue Value = SN->getValue(); 9201 9202 if (Value.getValueType() == MVT::v4f64 || 9203 Value.getValueType() == MVT::v4f32) { 9204 EVT MemVT = SN->getMemoryVT(); 9205 unsigned Alignment = SN->getAlignment(); 9206 9207 // If this store is properly aligned, then it is legal. 9208 if (Alignment >= MemVT.getStoreSize()) 9209 return Op; 9210 9211 EVT ScalarVT = Value.getValueType().getScalarType(), 9212 ScalarMemVT = MemVT.getScalarType(); 9213 unsigned Stride = ScalarMemVT.getStoreSize(); 9214 9215 SDValue Stores[4]; 9216 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9217 SDValue Ex = DAG.getNode( 9218 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9219 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9220 SDValue Store; 9221 if (ScalarVT != ScalarMemVT) 9222 Store = 9223 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9224 SN->getPointerInfo().getWithOffset(Idx * Stride), 9225 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9226 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9227 else 9228 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9229 SN->getPointerInfo().getWithOffset(Idx * Stride), 9230 MinAlign(Alignment, Idx * Stride), 9231 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9232 9233 if (Idx == 0 && SN->isIndexed()) { 9234 assert(SN->getAddressingMode() == ISD::PRE_INC && 9235 "Unknown addressing mode on vector store"); 9236 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9237 SN->getAddressingMode()); 9238 } 9239 9240 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9241 DAG.getConstant(Stride, dl, 9242 BasePtr.getValueType())); 9243 Stores[Idx] = Store; 9244 } 9245 9246 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9247 9248 if (SN->isIndexed()) { 9249 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9250 return DAG.getMergeValues(RetOps, dl); 9251 } 9252 9253 return TF; 9254 } 9255 9256 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9257 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9258 9259 // The values are now known to be -1 (false) or 1 (true). To convert this 9260 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9261 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9262 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9263 9264 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9265 // understand how to form the extending load. 9266 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9267 9268 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9269 9270 // Now convert to an integer and store. 9271 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9272 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9273 Value); 9274 9275 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9276 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9277 MachinePointerInfo PtrInfo = 9278 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9279 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9280 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9281 9282 SDValue Ops[] = {StoreChain, 9283 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9284 Value, FIdx}; 9285 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9286 9287 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9288 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9289 9290 // Move data into the byte array. 9291 SDValue Loads[4], LoadChains[4]; 9292 for (unsigned i = 0; i < 4; ++i) { 9293 unsigned Offset = 4*i; 9294 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9295 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9296 9297 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9298 PtrInfo.getWithOffset(Offset)); 9299 LoadChains[i] = Loads[i].getValue(1); 9300 } 9301 9302 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9303 9304 SDValue Stores[4]; 9305 for (unsigned i = 0; i < 4; ++i) { 9306 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9307 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9308 9309 Stores[i] = DAG.getTruncStore( 9310 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9311 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9312 SN->getAAInfo()); 9313 } 9314 9315 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9316 9317 return StoreChain; 9318 } 9319 9320 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9321 SDLoc dl(Op); 9322 if (Op.getValueType() == MVT::v4i32) { 9323 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9324 9325 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9326 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9327 9328 SDValue RHSSwap = // = vrlw RHS, 16 9329 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9330 9331 // Shrinkify inputs to v8i16. 9332 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9333 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9334 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9335 9336 // Low parts multiplied together, generating 32-bit results (we ignore the 9337 // top parts). 9338 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9339 LHS, RHS, DAG, dl, MVT::v4i32); 9340 9341 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9342 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9343 // Shift the high parts up 16 bits. 9344 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9345 Neg16, DAG, dl); 9346 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9347 } else if (Op.getValueType() == MVT::v8i16) { 9348 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9349 9350 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9351 9352 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9353 LHS, RHS, Zero, DAG, dl); 9354 } else if (Op.getValueType() == MVT::v16i8) { 9355 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9356 bool isLittleEndian = Subtarget.isLittleEndian(); 9357 9358 // Multiply the even 8-bit parts, producing 16-bit sums. 9359 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9360 LHS, RHS, DAG, dl, MVT::v8i16); 9361 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9362 9363 // Multiply the odd 8-bit parts, producing 16-bit sums. 9364 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9365 LHS, RHS, DAG, dl, MVT::v8i16); 9366 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9367 9368 // Merge the results together. Because vmuleub and vmuloub are 9369 // instructions with a big-endian bias, we must reverse the 9370 // element numbering and reverse the meaning of "odd" and "even" 9371 // when generating little endian code. 9372 int Ops[16]; 9373 for (unsigned i = 0; i != 8; ++i) { 9374 if (isLittleEndian) { 9375 Ops[i*2 ] = 2*i; 9376 Ops[i*2+1] = 2*i+16; 9377 } else { 9378 Ops[i*2 ] = 2*i+1; 9379 Ops[i*2+1] = 2*i+1+16; 9380 } 9381 } 9382 if (isLittleEndian) 9383 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9384 else 9385 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9386 } else { 9387 llvm_unreachable("Unknown mul to lower!"); 9388 } 9389 } 9390 9391 /// LowerOperation - Provide custom lowering hooks for some operations. 9392 /// 9393 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9394 switch (Op.getOpcode()) { 9395 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9396 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9397 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9398 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9399 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9400 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9401 case ISD::SETCC: return LowerSETCC(Op, DAG); 9402 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9403 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9404 9405 // Variable argument lowering. 9406 case ISD::VASTART: return LowerVASTART(Op, DAG); 9407 case ISD::VAARG: return LowerVAARG(Op, DAG); 9408 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9409 9410 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9411 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9412 case ISD::GET_DYNAMIC_AREA_OFFSET: 9413 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9414 9415 // Exception handling lowering. 9416 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9417 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9418 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9419 9420 case ISD::LOAD: return LowerLOAD(Op, DAG); 9421 case ISD::STORE: return LowerSTORE(Op, DAG); 9422 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9423 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9424 case ISD::FP_TO_UINT: 9425 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9426 case ISD::UINT_TO_FP: 9427 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9428 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9429 9430 // Lower 64-bit shifts. 9431 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9432 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9433 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9434 9435 // Vector-related lowering. 9436 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9437 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9438 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9439 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9440 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 9441 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9442 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9443 case ISD::MUL: return LowerMUL(Op, DAG); 9444 9445 // For counter-based loop handling. 9446 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9447 9448 // Frame & Return address. 9449 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9450 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9451 9452 case ISD::INTRINSIC_VOID: 9453 return LowerINTRINSIC_VOID(Op, DAG); 9454 case ISD::SREM: 9455 case ISD::UREM: 9456 return LowerREM(Op, DAG); 9457 case ISD::BSWAP: 9458 return LowerBSWAP(Op, DAG); 9459 case ISD::ATOMIC_CMP_SWAP: 9460 return LowerATOMIC_CMP_SWAP(Op, DAG); 9461 } 9462 } 9463 9464 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9465 SmallVectorImpl<SDValue>&Results, 9466 SelectionDAG &DAG) const { 9467 SDLoc dl(N); 9468 switch (N->getOpcode()) { 9469 default: 9470 llvm_unreachable("Do not know how to custom type legalize this operation!"); 9471 case ISD::READCYCLECOUNTER: { 9472 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 9473 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 9474 9475 Results.push_back(RTB); 9476 Results.push_back(RTB.getValue(1)); 9477 Results.push_back(RTB.getValue(2)); 9478 break; 9479 } 9480 case ISD::INTRINSIC_W_CHAIN: { 9481 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 9482 Intrinsic::ppc_is_decremented_ctr_nonzero) 9483 break; 9484 9485 assert(N->getValueType(0) == MVT::i1 && 9486 "Unexpected result type for CTR decrement intrinsic"); 9487 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 9488 N->getValueType(0)); 9489 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 9490 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 9491 N->getOperand(1)); 9492 9493 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 9494 Results.push_back(NewInt.getValue(1)); 9495 break; 9496 } 9497 case ISD::VAARG: { 9498 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 9499 return; 9500 9501 EVT VT = N->getValueType(0); 9502 9503 if (VT == MVT::i64) { 9504 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 9505 9506 Results.push_back(NewNode); 9507 Results.push_back(NewNode.getValue(1)); 9508 } 9509 return; 9510 } 9511 case ISD::FP_TO_SINT: 9512 case ISD::FP_TO_UINT: 9513 // LowerFP_TO_INT() can only handle f32 and f64. 9514 if (N->getOperand(0).getValueType() == MVT::ppcf128) 9515 return; 9516 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 9517 return; 9518 } 9519 } 9520 9521 //===----------------------------------------------------------------------===// 9522 // Other Lowering Code 9523 //===----------------------------------------------------------------------===// 9524 9525 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 9526 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 9527 Function *Func = Intrinsic::getDeclaration(M, Id); 9528 return Builder.CreateCall(Func, {}); 9529 } 9530 9531 // The mappings for emitLeading/TrailingFence is taken from 9532 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 9533 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 9534 Instruction *Inst, 9535 AtomicOrdering Ord) const { 9536 if (Ord == AtomicOrdering::SequentiallyConsistent) 9537 return callIntrinsic(Builder, Intrinsic::ppc_sync); 9538 if (isReleaseOrStronger(Ord)) 9539 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9540 return nullptr; 9541 } 9542 9543 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 9544 Instruction *Inst, 9545 AtomicOrdering Ord) const { 9546 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 9547 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 9548 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 9549 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 9550 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 9551 return Builder.CreateCall( 9552 Intrinsic::getDeclaration( 9553 Builder.GetInsertBlock()->getParent()->getParent(), 9554 Intrinsic::ppc_cfence, {Inst->getType()}), 9555 {Inst}); 9556 // FIXME: Can use isync for rmw operation. 9557 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9558 } 9559 return nullptr; 9560 } 9561 9562 MachineBasicBlock * 9563 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 9564 unsigned AtomicSize, 9565 unsigned BinOpcode, 9566 unsigned CmpOpcode, 9567 unsigned CmpPred) const { 9568 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9569 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9570 9571 auto LoadMnemonic = PPC::LDARX; 9572 auto StoreMnemonic = PPC::STDCX; 9573 switch (AtomicSize) { 9574 default: 9575 llvm_unreachable("Unexpected size of atomic entity"); 9576 case 1: 9577 LoadMnemonic = PPC::LBARX; 9578 StoreMnemonic = PPC::STBCX; 9579 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9580 break; 9581 case 2: 9582 LoadMnemonic = PPC::LHARX; 9583 StoreMnemonic = PPC::STHCX; 9584 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9585 break; 9586 case 4: 9587 LoadMnemonic = PPC::LWARX; 9588 StoreMnemonic = PPC::STWCX; 9589 break; 9590 case 8: 9591 LoadMnemonic = PPC::LDARX; 9592 StoreMnemonic = PPC::STDCX; 9593 break; 9594 } 9595 9596 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9597 MachineFunction *F = BB->getParent(); 9598 MachineFunction::iterator It = ++BB->getIterator(); 9599 9600 unsigned dest = MI.getOperand(0).getReg(); 9601 unsigned ptrA = MI.getOperand(1).getReg(); 9602 unsigned ptrB = MI.getOperand(2).getReg(); 9603 unsigned incr = MI.getOperand(3).getReg(); 9604 DebugLoc dl = MI.getDebugLoc(); 9605 9606 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9607 MachineBasicBlock *loop2MBB = 9608 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9609 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9610 F->insert(It, loopMBB); 9611 if (CmpOpcode) 9612 F->insert(It, loop2MBB); 9613 F->insert(It, exitMBB); 9614 exitMBB->splice(exitMBB->begin(), BB, 9615 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9616 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9617 9618 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9619 unsigned TmpReg = (!BinOpcode) ? incr : 9620 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 9621 : &PPC::GPRCRegClass); 9622 9623 // thisMBB: 9624 // ... 9625 // fallthrough --> loopMBB 9626 BB->addSuccessor(loopMBB); 9627 9628 // loopMBB: 9629 // l[wd]arx dest, ptr 9630 // add r0, dest, incr 9631 // st[wd]cx. r0, ptr 9632 // bne- loopMBB 9633 // fallthrough --> exitMBB 9634 9635 // For max/min... 9636 // loopMBB: 9637 // l[wd]arx dest, ptr 9638 // cmpl?[wd] incr, dest 9639 // bgt exitMBB 9640 // loop2MBB: 9641 // st[wd]cx. dest, ptr 9642 // bne- loopMBB 9643 // fallthrough --> exitMBB 9644 9645 BB = loopMBB; 9646 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9647 .addReg(ptrA).addReg(ptrB); 9648 if (BinOpcode) 9649 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 9650 if (CmpOpcode) { 9651 // Signed comparisons of byte or halfword values must be sign-extended. 9652 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 9653 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9654 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 9655 ExtReg).addReg(dest); 9656 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9657 .addReg(incr).addReg(ExtReg); 9658 } else 9659 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9660 .addReg(incr).addReg(dest); 9661 9662 BuildMI(BB, dl, TII->get(PPC::BCC)) 9663 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9664 BB->addSuccessor(loop2MBB); 9665 BB->addSuccessor(exitMBB); 9666 BB = loop2MBB; 9667 } 9668 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9669 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 9670 BuildMI(BB, dl, TII->get(PPC::BCC)) 9671 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9672 BB->addSuccessor(loopMBB); 9673 BB->addSuccessor(exitMBB); 9674 9675 // exitMBB: 9676 // ... 9677 BB = exitMBB; 9678 return BB; 9679 } 9680 9681 MachineBasicBlock * 9682 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 9683 MachineBasicBlock *BB, 9684 bool is8bit, // operation 9685 unsigned BinOpcode, 9686 unsigned CmpOpcode, 9687 unsigned CmpPred) const { 9688 // If we support part-word atomic mnemonics, just use them 9689 if (Subtarget.hasPartwordAtomics()) 9690 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, 9691 CmpOpcode, CmpPred); 9692 9693 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9694 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9695 // In 64 bit mode we have to use 64 bits for addresses, even though the 9696 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 9697 // registers without caring whether they're 32 or 64, but here we're 9698 // doing actual arithmetic on the addresses. 9699 bool is64bit = Subtarget.isPPC64(); 9700 bool isLittleEndian = Subtarget.isLittleEndian(); 9701 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9702 9703 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9704 MachineFunction *F = BB->getParent(); 9705 MachineFunction::iterator It = ++BB->getIterator(); 9706 9707 unsigned dest = MI.getOperand(0).getReg(); 9708 unsigned ptrA = MI.getOperand(1).getReg(); 9709 unsigned ptrB = MI.getOperand(2).getReg(); 9710 unsigned incr = MI.getOperand(3).getReg(); 9711 DebugLoc dl = MI.getDebugLoc(); 9712 9713 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9714 MachineBasicBlock *loop2MBB = 9715 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9716 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9717 F->insert(It, loopMBB); 9718 if (CmpOpcode) 9719 F->insert(It, loop2MBB); 9720 F->insert(It, exitMBB); 9721 exitMBB->splice(exitMBB->begin(), BB, 9722 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9723 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9724 9725 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9726 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9727 : &PPC::GPRCRegClass; 9728 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9729 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9730 unsigned ShiftReg = 9731 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 9732 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 9733 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9734 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9735 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9736 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9737 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 9738 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9739 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9740 unsigned Ptr1Reg; 9741 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 9742 9743 // thisMBB: 9744 // ... 9745 // fallthrough --> loopMBB 9746 BB->addSuccessor(loopMBB); 9747 9748 // The 4-byte load must be aligned, while a char or short may be 9749 // anywhere in the word. Hence all this nasty bookkeeping code. 9750 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9751 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9752 // xori shift, shift1, 24 [16] 9753 // rlwinm ptr, ptr1, 0, 0, 29 9754 // slw incr2, incr, shift 9755 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9756 // slw mask, mask2, shift 9757 // loopMBB: 9758 // lwarx tmpDest, ptr 9759 // add tmp, tmpDest, incr2 9760 // andc tmp2, tmpDest, mask 9761 // and tmp3, tmp, mask 9762 // or tmp4, tmp3, tmp2 9763 // stwcx. tmp4, ptr 9764 // bne- loopMBB 9765 // fallthrough --> exitMBB 9766 // srw dest, tmpDest, shift 9767 if (ptrA != ZeroReg) { 9768 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9769 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9770 .addReg(ptrA).addReg(ptrB); 9771 } else { 9772 Ptr1Reg = ptrB; 9773 } 9774 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9775 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9776 if (!isLittleEndian) 9777 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9778 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9779 if (is64bit) 9780 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9781 .addReg(Ptr1Reg).addImm(0).addImm(61); 9782 else 9783 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9784 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9785 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 9786 .addReg(incr).addReg(ShiftReg); 9787 if (is8bit) 9788 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9789 else { 9790 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9791 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 9792 } 9793 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9794 .addReg(Mask2Reg).addReg(ShiftReg); 9795 9796 BB = loopMBB; 9797 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9798 .addReg(ZeroReg).addReg(PtrReg); 9799 if (BinOpcode) 9800 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 9801 .addReg(Incr2Reg).addReg(TmpDestReg); 9802 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 9803 .addReg(TmpDestReg).addReg(MaskReg); 9804 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 9805 .addReg(TmpReg).addReg(MaskReg); 9806 if (CmpOpcode) { 9807 // For unsigned comparisons, we can directly compare the shifted values. 9808 // For signed comparisons we shift and sign extend. 9809 unsigned SReg = RegInfo.createVirtualRegister(RC); 9810 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg) 9811 .addReg(TmpDestReg).addReg(MaskReg); 9812 unsigned ValueReg = SReg; 9813 unsigned CmpReg = Incr2Reg; 9814 if (CmpOpcode == PPC::CMPW) { 9815 ValueReg = RegInfo.createVirtualRegister(RC); 9816 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 9817 .addReg(SReg).addReg(ShiftReg); 9818 unsigned ValueSReg = RegInfo.createVirtualRegister(RC); 9819 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 9820 .addReg(ValueReg); 9821 ValueReg = ValueSReg; 9822 CmpReg = incr; 9823 } 9824 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9825 .addReg(CmpReg).addReg(ValueReg); 9826 BuildMI(BB, dl, TII->get(PPC::BCC)) 9827 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9828 BB->addSuccessor(loop2MBB); 9829 BB->addSuccessor(exitMBB); 9830 BB = loop2MBB; 9831 } 9832 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 9833 .addReg(Tmp3Reg).addReg(Tmp2Reg); 9834 BuildMI(BB, dl, TII->get(PPC::STWCX)) 9835 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 9836 BuildMI(BB, dl, TII->get(PPC::BCC)) 9837 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9838 BB->addSuccessor(loopMBB); 9839 BB->addSuccessor(exitMBB); 9840 9841 // exitMBB: 9842 // ... 9843 BB = exitMBB; 9844 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 9845 .addReg(ShiftReg); 9846 return BB; 9847 } 9848 9849 llvm::MachineBasicBlock * 9850 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 9851 MachineBasicBlock *MBB) const { 9852 DebugLoc DL = MI.getDebugLoc(); 9853 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9854 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9855 9856 MachineFunction *MF = MBB->getParent(); 9857 MachineRegisterInfo &MRI = MF->getRegInfo(); 9858 9859 const BasicBlock *BB = MBB->getBasicBlock(); 9860 MachineFunction::iterator I = ++MBB->getIterator(); 9861 9862 // Memory Reference 9863 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 9864 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 9865 9866 unsigned DstReg = MI.getOperand(0).getReg(); 9867 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 9868 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 9869 unsigned mainDstReg = MRI.createVirtualRegister(RC); 9870 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 9871 9872 MVT PVT = getPointerTy(MF->getDataLayout()); 9873 assert((PVT == MVT::i64 || PVT == MVT::i32) && 9874 "Invalid Pointer Size!"); 9875 // For v = setjmp(buf), we generate 9876 // 9877 // thisMBB: 9878 // SjLjSetup mainMBB 9879 // bl mainMBB 9880 // v_restore = 1 9881 // b sinkMBB 9882 // 9883 // mainMBB: 9884 // buf[LabelOffset] = LR 9885 // v_main = 0 9886 // 9887 // sinkMBB: 9888 // v = phi(main, restore) 9889 // 9890 9891 MachineBasicBlock *thisMBB = MBB; 9892 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 9893 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 9894 MF->insert(I, mainMBB); 9895 MF->insert(I, sinkMBB); 9896 9897 MachineInstrBuilder MIB; 9898 9899 // Transfer the remainder of BB and its successor edges to sinkMBB. 9900 sinkMBB->splice(sinkMBB->begin(), MBB, 9901 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 9902 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 9903 9904 // Note that the structure of the jmp_buf used here is not compatible 9905 // with that used by libc, and is not designed to be. Specifically, it 9906 // stores only those 'reserved' registers that LLVM does not otherwise 9907 // understand how to spill. Also, by convention, by the time this 9908 // intrinsic is called, Clang has already stored the frame address in the 9909 // first slot of the buffer and stack address in the third. Following the 9910 // X86 target code, we'll store the jump address in the second slot. We also 9911 // need to save the TOC pointer (R2) to handle jumps between shared 9912 // libraries, and that will be stored in the fourth slot. The thread 9913 // identifier (R13) is not affected. 9914 9915 // thisMBB: 9916 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 9917 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 9918 const int64_t BPOffset = 4 * PVT.getStoreSize(); 9919 9920 // Prepare IP either in reg. 9921 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 9922 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 9923 unsigned BufReg = MI.getOperand(1).getReg(); 9924 9925 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 9926 setUsesTOCBasePtr(*MBB->getParent()); 9927 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 9928 .addReg(PPC::X2) 9929 .addImm(TOCOffset) 9930 .addReg(BufReg); 9931 MIB.setMemRefs(MMOBegin, MMOEnd); 9932 } 9933 9934 // Naked functions never have a base pointer, and so we use r1. For all 9935 // other functions, this decision must be delayed until during PEI. 9936 unsigned BaseReg; 9937 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 9938 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 9939 else 9940 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 9941 9942 MIB = BuildMI(*thisMBB, MI, DL, 9943 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 9944 .addReg(BaseReg) 9945 .addImm(BPOffset) 9946 .addReg(BufReg); 9947 MIB.setMemRefs(MMOBegin, MMOEnd); 9948 9949 // Setup 9950 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 9951 MIB.addRegMask(TRI->getNoPreservedMask()); 9952 9953 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 9954 9955 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 9956 .addMBB(mainMBB); 9957 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 9958 9959 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 9960 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 9961 9962 // mainMBB: 9963 // mainDstReg = 0 9964 MIB = 9965 BuildMI(mainMBB, DL, 9966 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 9967 9968 // Store IP 9969 if (Subtarget.isPPC64()) { 9970 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 9971 .addReg(LabelReg) 9972 .addImm(LabelOffset) 9973 .addReg(BufReg); 9974 } else { 9975 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 9976 .addReg(LabelReg) 9977 .addImm(LabelOffset) 9978 .addReg(BufReg); 9979 } 9980 9981 MIB.setMemRefs(MMOBegin, MMOEnd); 9982 9983 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 9984 mainMBB->addSuccessor(sinkMBB); 9985 9986 // sinkMBB: 9987 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 9988 TII->get(PPC::PHI), DstReg) 9989 .addReg(mainDstReg).addMBB(mainMBB) 9990 .addReg(restoreDstReg).addMBB(thisMBB); 9991 9992 MI.eraseFromParent(); 9993 return sinkMBB; 9994 } 9995 9996 MachineBasicBlock * 9997 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 9998 MachineBasicBlock *MBB) const { 9999 DebugLoc DL = MI.getDebugLoc(); 10000 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10001 10002 MachineFunction *MF = MBB->getParent(); 10003 MachineRegisterInfo &MRI = MF->getRegInfo(); 10004 10005 // Memory Reference 10006 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 10007 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 10008 10009 MVT PVT = getPointerTy(MF->getDataLayout()); 10010 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10011 "Invalid Pointer Size!"); 10012 10013 const TargetRegisterClass *RC = 10014 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10015 unsigned Tmp = MRI.createVirtualRegister(RC); 10016 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10017 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10018 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10019 unsigned BP = 10020 (PVT == MVT::i64) 10021 ? PPC::X30 10022 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10023 : PPC::R30); 10024 10025 MachineInstrBuilder MIB; 10026 10027 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10028 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10029 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10030 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10031 10032 unsigned BufReg = MI.getOperand(0).getReg(); 10033 10034 // Reload FP (the jumped-to function may not have had a 10035 // frame pointer, and if so, then its r31 will be restored 10036 // as necessary). 10037 if (PVT == MVT::i64) { 10038 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10039 .addImm(0) 10040 .addReg(BufReg); 10041 } else { 10042 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10043 .addImm(0) 10044 .addReg(BufReg); 10045 } 10046 MIB.setMemRefs(MMOBegin, MMOEnd); 10047 10048 // Reload IP 10049 if (PVT == MVT::i64) { 10050 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10051 .addImm(LabelOffset) 10052 .addReg(BufReg); 10053 } else { 10054 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10055 .addImm(LabelOffset) 10056 .addReg(BufReg); 10057 } 10058 MIB.setMemRefs(MMOBegin, MMOEnd); 10059 10060 // Reload SP 10061 if (PVT == MVT::i64) { 10062 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10063 .addImm(SPOffset) 10064 .addReg(BufReg); 10065 } else { 10066 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10067 .addImm(SPOffset) 10068 .addReg(BufReg); 10069 } 10070 MIB.setMemRefs(MMOBegin, MMOEnd); 10071 10072 // Reload BP 10073 if (PVT == MVT::i64) { 10074 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10075 .addImm(BPOffset) 10076 .addReg(BufReg); 10077 } else { 10078 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10079 .addImm(BPOffset) 10080 .addReg(BufReg); 10081 } 10082 MIB.setMemRefs(MMOBegin, MMOEnd); 10083 10084 // Reload TOC 10085 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10086 setUsesTOCBasePtr(*MBB->getParent()); 10087 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10088 .addImm(TOCOffset) 10089 .addReg(BufReg); 10090 10091 MIB.setMemRefs(MMOBegin, MMOEnd); 10092 } 10093 10094 // Jump 10095 BuildMI(*MBB, MI, DL, 10096 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10097 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10098 10099 MI.eraseFromParent(); 10100 return MBB; 10101 } 10102 10103 MachineBasicBlock * 10104 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10105 MachineBasicBlock *BB) const { 10106 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10107 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10108 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10109 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10110 // Call lowering should have added an r2 operand to indicate a dependence 10111 // on the TOC base pointer value. It can't however, because there is no 10112 // way to mark the dependence as implicit there, and so the stackmap code 10113 // will confuse it with a regular operand. Instead, add the dependence 10114 // here. 10115 setUsesTOCBasePtr(*BB->getParent()); 10116 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10117 } 10118 10119 return emitPatchPoint(MI, BB); 10120 } 10121 10122 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10123 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10124 return emitEHSjLjSetJmp(MI, BB); 10125 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10126 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10127 return emitEHSjLjLongJmp(MI, BB); 10128 } 10129 10130 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10131 10132 // To "insert" these instructions we actually have to insert their 10133 // control-flow patterns. 10134 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10135 MachineFunction::iterator It = ++BB->getIterator(); 10136 10137 MachineFunction *F = BB->getParent(); 10138 10139 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10140 MI.getOpcode() == PPC::SELECT_CC_I8 || 10141 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) { 10142 SmallVector<MachineOperand, 2> Cond; 10143 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10144 MI.getOpcode() == PPC::SELECT_CC_I8) 10145 Cond.push_back(MI.getOperand(4)); 10146 else 10147 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10148 Cond.push_back(MI.getOperand(1)); 10149 10150 DebugLoc dl = MI.getDebugLoc(); 10151 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10152 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10153 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10154 MI.getOpcode() == PPC::SELECT_CC_I8 || 10155 MI.getOpcode() == PPC::SELECT_CC_F4 || 10156 MI.getOpcode() == PPC::SELECT_CC_F8 || 10157 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10158 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10159 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10160 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10161 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10162 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10163 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10164 MI.getOpcode() == PPC::SELECT_I4 || 10165 MI.getOpcode() == PPC::SELECT_I8 || 10166 MI.getOpcode() == PPC::SELECT_F4 || 10167 MI.getOpcode() == PPC::SELECT_F8 || 10168 MI.getOpcode() == PPC::SELECT_QFRC || 10169 MI.getOpcode() == PPC::SELECT_QSRC || 10170 MI.getOpcode() == PPC::SELECT_QBRC || 10171 MI.getOpcode() == PPC::SELECT_VRRC || 10172 MI.getOpcode() == PPC::SELECT_VSFRC || 10173 MI.getOpcode() == PPC::SELECT_VSSRC || 10174 MI.getOpcode() == PPC::SELECT_VSRC) { 10175 // The incoming instruction knows the destination vreg to set, the 10176 // condition code register to branch on, the true/false values to 10177 // select between, and a branch opcode to use. 10178 10179 // thisMBB: 10180 // ... 10181 // TrueVal = ... 10182 // cmpTY ccX, r1, r2 10183 // bCC copy1MBB 10184 // fallthrough --> copy0MBB 10185 MachineBasicBlock *thisMBB = BB; 10186 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10187 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10188 DebugLoc dl = MI.getDebugLoc(); 10189 F->insert(It, copy0MBB); 10190 F->insert(It, sinkMBB); 10191 10192 // Transfer the remainder of BB and its successor edges to sinkMBB. 10193 sinkMBB->splice(sinkMBB->begin(), BB, 10194 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10195 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10196 10197 // Next, add the true and fallthrough blocks as its successors. 10198 BB->addSuccessor(copy0MBB); 10199 BB->addSuccessor(sinkMBB); 10200 10201 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10202 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10203 MI.getOpcode() == PPC::SELECT_QFRC || 10204 MI.getOpcode() == PPC::SELECT_QSRC || 10205 MI.getOpcode() == PPC::SELECT_QBRC || 10206 MI.getOpcode() == PPC::SELECT_VRRC || 10207 MI.getOpcode() == PPC::SELECT_VSFRC || 10208 MI.getOpcode() == PPC::SELECT_VSSRC || 10209 MI.getOpcode() == PPC::SELECT_VSRC) { 10210 BuildMI(BB, dl, TII->get(PPC::BC)) 10211 .addReg(MI.getOperand(1).getReg()) 10212 .addMBB(sinkMBB); 10213 } else { 10214 unsigned SelectPred = MI.getOperand(4).getImm(); 10215 BuildMI(BB, dl, TII->get(PPC::BCC)) 10216 .addImm(SelectPred) 10217 .addReg(MI.getOperand(1).getReg()) 10218 .addMBB(sinkMBB); 10219 } 10220 10221 // copy0MBB: 10222 // %FalseValue = ... 10223 // # fallthrough to sinkMBB 10224 BB = copy0MBB; 10225 10226 // Update machine-CFG edges 10227 BB->addSuccessor(sinkMBB); 10228 10229 // sinkMBB: 10230 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10231 // ... 10232 BB = sinkMBB; 10233 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10234 .addReg(MI.getOperand(3).getReg()) 10235 .addMBB(copy0MBB) 10236 .addReg(MI.getOperand(2).getReg()) 10237 .addMBB(thisMBB); 10238 } else if (MI.getOpcode() == PPC::ReadTB) { 10239 // To read the 64-bit time-base register on a 32-bit target, we read the 10240 // two halves. Should the counter have wrapped while it was being read, we 10241 // need to try again. 10242 // ... 10243 // readLoop: 10244 // mfspr Rx,TBU # load from TBU 10245 // mfspr Ry,TB # load from TB 10246 // mfspr Rz,TBU # load from TBU 10247 // cmpw crX,Rx,Rz # check if 'old'='new' 10248 // bne readLoop # branch if they're not equal 10249 // ... 10250 10251 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10252 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10253 DebugLoc dl = MI.getDebugLoc(); 10254 F->insert(It, readMBB); 10255 F->insert(It, sinkMBB); 10256 10257 // Transfer the remainder of BB and its successor edges to sinkMBB. 10258 sinkMBB->splice(sinkMBB->begin(), BB, 10259 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10260 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10261 10262 BB->addSuccessor(readMBB); 10263 BB = readMBB; 10264 10265 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10266 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10267 unsigned LoReg = MI.getOperand(0).getReg(); 10268 unsigned HiReg = MI.getOperand(1).getReg(); 10269 10270 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10271 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10272 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10273 10274 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10275 10276 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10277 .addReg(HiReg).addReg(ReadAgainReg); 10278 BuildMI(BB, dl, TII->get(PPC::BCC)) 10279 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 10280 10281 BB->addSuccessor(readMBB); 10282 BB->addSuccessor(sinkMBB); 10283 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10284 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10285 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10286 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10287 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10288 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10290 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10291 10292 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10293 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10294 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10295 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10296 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10297 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10299 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10300 10301 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10302 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10303 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10304 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10305 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10306 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10307 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10308 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10309 10310 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10311 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10312 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10313 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10314 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10315 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10316 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10317 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10318 10319 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10320 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10321 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10322 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10323 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10324 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10325 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10326 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10327 10328 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10329 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10330 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10331 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10332 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10333 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10334 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10335 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10336 10337 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10338 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10339 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10340 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10341 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10342 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10343 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10344 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10345 10346 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10347 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10348 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10349 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10350 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10351 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10352 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10353 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10354 10355 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10356 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10357 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10358 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10359 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10360 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10361 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10362 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10363 10364 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10365 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10366 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10367 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10368 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10369 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10370 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10371 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10372 10373 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10374 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10375 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10376 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10377 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10378 BB = EmitAtomicBinary(MI, BB, 4, 0); 10379 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10380 BB = EmitAtomicBinary(MI, BB, 8, 0); 10381 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10382 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10383 (Subtarget.hasPartwordAtomics() && 10384 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10385 (Subtarget.hasPartwordAtomics() && 10386 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10387 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10388 10389 auto LoadMnemonic = PPC::LDARX; 10390 auto StoreMnemonic = PPC::STDCX; 10391 switch (MI.getOpcode()) { 10392 default: 10393 llvm_unreachable("Compare and swap of unknown size"); 10394 case PPC::ATOMIC_CMP_SWAP_I8: 10395 LoadMnemonic = PPC::LBARX; 10396 StoreMnemonic = PPC::STBCX; 10397 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10398 break; 10399 case PPC::ATOMIC_CMP_SWAP_I16: 10400 LoadMnemonic = PPC::LHARX; 10401 StoreMnemonic = PPC::STHCX; 10402 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10403 break; 10404 case PPC::ATOMIC_CMP_SWAP_I32: 10405 LoadMnemonic = PPC::LWARX; 10406 StoreMnemonic = PPC::STWCX; 10407 break; 10408 case PPC::ATOMIC_CMP_SWAP_I64: 10409 LoadMnemonic = PPC::LDARX; 10410 StoreMnemonic = PPC::STDCX; 10411 break; 10412 } 10413 unsigned dest = MI.getOperand(0).getReg(); 10414 unsigned ptrA = MI.getOperand(1).getReg(); 10415 unsigned ptrB = MI.getOperand(2).getReg(); 10416 unsigned oldval = MI.getOperand(3).getReg(); 10417 unsigned newval = MI.getOperand(4).getReg(); 10418 DebugLoc dl = MI.getDebugLoc(); 10419 10420 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10421 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10422 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10423 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10424 F->insert(It, loop1MBB); 10425 F->insert(It, loop2MBB); 10426 F->insert(It, midMBB); 10427 F->insert(It, exitMBB); 10428 exitMBB->splice(exitMBB->begin(), BB, 10429 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10430 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10431 10432 // thisMBB: 10433 // ... 10434 // fallthrough --> loopMBB 10435 BB->addSuccessor(loop1MBB); 10436 10437 // loop1MBB: 10438 // l[bhwd]arx dest, ptr 10439 // cmp[wd] dest, oldval 10440 // bne- midMBB 10441 // loop2MBB: 10442 // st[bhwd]cx. newval, ptr 10443 // bne- loopMBB 10444 // b exitBB 10445 // midMBB: 10446 // st[bhwd]cx. dest, ptr 10447 // exitBB: 10448 BB = loop1MBB; 10449 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10450 .addReg(ptrA).addReg(ptrB); 10451 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 10452 .addReg(oldval).addReg(dest); 10453 BuildMI(BB, dl, TII->get(PPC::BCC)) 10454 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 10455 BB->addSuccessor(loop2MBB); 10456 BB->addSuccessor(midMBB); 10457 10458 BB = loop2MBB; 10459 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10460 .addReg(newval).addReg(ptrA).addReg(ptrB); 10461 BuildMI(BB, dl, TII->get(PPC::BCC)) 10462 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 10463 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10464 BB->addSuccessor(loop1MBB); 10465 BB->addSuccessor(exitMBB); 10466 10467 BB = midMBB; 10468 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10469 .addReg(dest).addReg(ptrA).addReg(ptrB); 10470 BB->addSuccessor(exitMBB); 10471 10472 // exitMBB: 10473 // ... 10474 BB = exitMBB; 10475 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 10476 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 10477 // We must use 64-bit registers for addresses when targeting 64-bit, 10478 // since we're actually doing arithmetic on them. Other registers 10479 // can be 32-bit. 10480 bool is64bit = Subtarget.isPPC64(); 10481 bool isLittleEndian = Subtarget.isLittleEndian(); 10482 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 10483 10484 unsigned dest = MI.getOperand(0).getReg(); 10485 unsigned ptrA = MI.getOperand(1).getReg(); 10486 unsigned ptrB = MI.getOperand(2).getReg(); 10487 unsigned oldval = MI.getOperand(3).getReg(); 10488 unsigned newval = MI.getOperand(4).getReg(); 10489 DebugLoc dl = MI.getDebugLoc(); 10490 10491 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10492 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10493 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10494 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10495 F->insert(It, loop1MBB); 10496 F->insert(It, loop2MBB); 10497 F->insert(It, midMBB); 10498 F->insert(It, exitMBB); 10499 exitMBB->splice(exitMBB->begin(), BB, 10500 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10501 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10502 10503 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10504 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 10505 : &PPC::GPRCRegClass; 10506 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10507 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 10508 unsigned ShiftReg = 10509 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 10510 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 10511 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 10512 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 10513 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 10514 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 10515 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 10516 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 10517 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 10518 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 10519 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 10520 unsigned Ptr1Reg; 10521 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 10522 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10523 // thisMBB: 10524 // ... 10525 // fallthrough --> loopMBB 10526 BB->addSuccessor(loop1MBB); 10527 10528 // The 4-byte load must be aligned, while a char or short may be 10529 // anywhere in the word. Hence all this nasty bookkeeping code. 10530 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10531 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10532 // xori shift, shift1, 24 [16] 10533 // rlwinm ptr, ptr1, 0, 0, 29 10534 // slw newval2, newval, shift 10535 // slw oldval2, oldval,shift 10536 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10537 // slw mask, mask2, shift 10538 // and newval3, newval2, mask 10539 // and oldval3, oldval2, mask 10540 // loop1MBB: 10541 // lwarx tmpDest, ptr 10542 // and tmp, tmpDest, mask 10543 // cmpw tmp, oldval3 10544 // bne- midMBB 10545 // loop2MBB: 10546 // andc tmp2, tmpDest, mask 10547 // or tmp4, tmp2, newval3 10548 // stwcx. tmp4, ptr 10549 // bne- loop1MBB 10550 // b exitBB 10551 // midMBB: 10552 // stwcx. tmpDest, ptr 10553 // exitBB: 10554 // srw dest, tmpDest, shift 10555 if (ptrA != ZeroReg) { 10556 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10557 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10558 .addReg(ptrA).addReg(ptrB); 10559 } else { 10560 Ptr1Reg = ptrB; 10561 } 10562 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 10563 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 10564 if (!isLittleEndian) 10565 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 10566 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 10567 if (is64bit) 10568 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10569 .addReg(Ptr1Reg).addImm(0).addImm(61); 10570 else 10571 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10572 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 10573 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 10574 .addReg(newval).addReg(ShiftReg); 10575 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 10576 .addReg(oldval).addReg(ShiftReg); 10577 if (is8bit) 10578 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10579 else { 10580 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10581 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10582 .addReg(Mask3Reg).addImm(65535); 10583 } 10584 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10585 .addReg(Mask2Reg).addReg(ShiftReg); 10586 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 10587 .addReg(NewVal2Reg).addReg(MaskReg); 10588 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 10589 .addReg(OldVal2Reg).addReg(MaskReg); 10590 10591 BB = loop1MBB; 10592 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10593 .addReg(ZeroReg).addReg(PtrReg); 10594 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 10595 .addReg(TmpDestReg).addReg(MaskReg); 10596 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 10597 .addReg(TmpReg).addReg(OldVal3Reg); 10598 BuildMI(BB, dl, TII->get(PPC::BCC)) 10599 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 10600 BB->addSuccessor(loop2MBB); 10601 BB->addSuccessor(midMBB); 10602 10603 BB = loop2MBB; 10604 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 10605 .addReg(TmpDestReg).addReg(MaskReg); 10606 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 10607 .addReg(Tmp2Reg).addReg(NewVal3Reg); 10608 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 10609 .addReg(ZeroReg).addReg(PtrReg); 10610 BuildMI(BB, dl, TII->get(PPC::BCC)) 10611 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 10612 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10613 BB->addSuccessor(loop1MBB); 10614 BB->addSuccessor(exitMBB); 10615 10616 BB = midMBB; 10617 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 10618 .addReg(ZeroReg).addReg(PtrReg); 10619 BB->addSuccessor(exitMBB); 10620 10621 // exitMBB: 10622 // ... 10623 BB = exitMBB; 10624 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 10625 .addReg(ShiftReg); 10626 } else if (MI.getOpcode() == PPC::FADDrtz) { 10627 // This pseudo performs an FADD with rounding mode temporarily forced 10628 // to round-to-zero. We emit this via custom inserter since the FPSCR 10629 // is not modeled at the SelectionDAG level. 10630 unsigned Dest = MI.getOperand(0).getReg(); 10631 unsigned Src1 = MI.getOperand(1).getReg(); 10632 unsigned Src2 = MI.getOperand(2).getReg(); 10633 DebugLoc dl = MI.getDebugLoc(); 10634 10635 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10636 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 10637 10638 // Save FPSCR value. 10639 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 10640 10641 // Set rounding mode to round-to-zero. 10642 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 10643 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 10644 10645 // Perform addition. 10646 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 10647 10648 // Restore FPSCR value. 10649 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 10650 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10651 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 10652 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10653 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 10654 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10655 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 10656 ? PPC::ANDIo8 10657 : PPC::ANDIo; 10658 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10659 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 10660 10661 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10662 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 10663 &PPC::GPRCRegClass : 10664 &PPC::G8RCRegClass); 10665 10666 DebugLoc dl = MI.getDebugLoc(); 10667 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 10668 .addReg(MI.getOperand(1).getReg()) 10669 .addImm(1); 10670 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 10671 MI.getOperand(0).getReg()) 10672 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 10673 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 10674 DebugLoc Dl = MI.getDebugLoc(); 10675 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10676 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10677 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 10678 return BB; 10679 } else { 10680 llvm_unreachable("Unexpected instr type to insert"); 10681 } 10682 10683 MI.eraseFromParent(); // The pseudo instruction is gone now. 10684 return BB; 10685 } 10686 10687 //===----------------------------------------------------------------------===// 10688 // Target Optimization Hooks 10689 //===----------------------------------------------------------------------===// 10690 10691 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 10692 // For the estimates, convergence is quadratic, so we essentially double the 10693 // number of digits correct after every iteration. For both FRE and FRSQRTE, 10694 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 10695 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 10696 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 10697 if (VT.getScalarType() == MVT::f64) 10698 RefinementSteps++; 10699 return RefinementSteps; 10700 } 10701 10702 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 10703 int Enabled, int &RefinementSteps, 10704 bool &UseOneConstNR, 10705 bool Reciprocal) const { 10706 EVT VT = Operand.getValueType(); 10707 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 10708 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 10709 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 10710 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 10711 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 10712 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 10713 if (RefinementSteps == ReciprocalEstimate::Unspecified) 10714 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 10715 10716 UseOneConstNR = true; 10717 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 10718 } 10719 return SDValue(); 10720 } 10721 10722 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 10723 int Enabled, 10724 int &RefinementSteps) const { 10725 EVT VT = Operand.getValueType(); 10726 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 10727 (VT == MVT::f64 && Subtarget.hasFRE()) || 10728 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 10729 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 10730 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 10731 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 10732 if (RefinementSteps == ReciprocalEstimate::Unspecified) 10733 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 10734 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 10735 } 10736 return SDValue(); 10737 } 10738 10739 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 10740 // Note: This functionality is used only when unsafe-fp-math is enabled, and 10741 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 10742 // enabled for division), this functionality is redundant with the default 10743 // combiner logic (once the division -> reciprocal/multiply transformation 10744 // has taken place). As a result, this matters more for older cores than for 10745 // newer ones. 10746 10747 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 10748 // reciprocal if there are two or more FDIVs (for embedded cores with only 10749 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 10750 switch (Subtarget.getDarwinDirective()) { 10751 default: 10752 return 3; 10753 case PPC::DIR_440: 10754 case PPC::DIR_A2: 10755 case PPC::DIR_E500mc: 10756 case PPC::DIR_E5500: 10757 return 2; 10758 } 10759 } 10760 10761 // isConsecutiveLSLoc needs to work even if all adds have not yet been 10762 // collapsed, and so we need to look through chains of them. 10763 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 10764 int64_t& Offset, SelectionDAG &DAG) { 10765 if (DAG.isBaseWithConstantOffset(Loc)) { 10766 Base = Loc.getOperand(0); 10767 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 10768 10769 // The base might itself be a base plus an offset, and if so, accumulate 10770 // that as well. 10771 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 10772 } 10773 } 10774 10775 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 10776 unsigned Bytes, int Dist, 10777 SelectionDAG &DAG) { 10778 if (VT.getSizeInBits() / 8 != Bytes) 10779 return false; 10780 10781 SDValue BaseLoc = Base->getBasePtr(); 10782 if (Loc.getOpcode() == ISD::FrameIndex) { 10783 if (BaseLoc.getOpcode() != ISD::FrameIndex) 10784 return false; 10785 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10786 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 10787 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 10788 int FS = MFI.getObjectSize(FI); 10789 int BFS = MFI.getObjectSize(BFI); 10790 if (FS != BFS || FS != (int)Bytes) return false; 10791 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 10792 } 10793 10794 SDValue Base1 = Loc, Base2 = BaseLoc; 10795 int64_t Offset1 = 0, Offset2 = 0; 10796 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 10797 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 10798 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 10799 return true; 10800 10801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10802 const GlobalValue *GV1 = nullptr; 10803 const GlobalValue *GV2 = nullptr; 10804 Offset1 = 0; 10805 Offset2 = 0; 10806 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 10807 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 10808 if (isGA1 && isGA2 && GV1 == GV2) 10809 return Offset1 == (Offset2 + Dist*Bytes); 10810 return false; 10811 } 10812 10813 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 10814 // not enforce equality of the chain operands. 10815 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 10816 unsigned Bytes, int Dist, 10817 SelectionDAG &DAG) { 10818 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 10819 EVT VT = LS->getMemoryVT(); 10820 SDValue Loc = LS->getBasePtr(); 10821 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 10822 } 10823 10824 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 10825 EVT VT; 10826 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10827 default: return false; 10828 case Intrinsic::ppc_qpx_qvlfd: 10829 case Intrinsic::ppc_qpx_qvlfda: 10830 VT = MVT::v4f64; 10831 break; 10832 case Intrinsic::ppc_qpx_qvlfs: 10833 case Intrinsic::ppc_qpx_qvlfsa: 10834 VT = MVT::v4f32; 10835 break; 10836 case Intrinsic::ppc_qpx_qvlfcd: 10837 case Intrinsic::ppc_qpx_qvlfcda: 10838 VT = MVT::v2f64; 10839 break; 10840 case Intrinsic::ppc_qpx_qvlfcs: 10841 case Intrinsic::ppc_qpx_qvlfcsa: 10842 VT = MVT::v2f32; 10843 break; 10844 case Intrinsic::ppc_qpx_qvlfiwa: 10845 case Intrinsic::ppc_qpx_qvlfiwz: 10846 case Intrinsic::ppc_altivec_lvx: 10847 case Intrinsic::ppc_altivec_lvxl: 10848 case Intrinsic::ppc_vsx_lxvw4x: 10849 case Intrinsic::ppc_vsx_lxvw4x_be: 10850 VT = MVT::v4i32; 10851 break; 10852 case Intrinsic::ppc_vsx_lxvd2x: 10853 case Intrinsic::ppc_vsx_lxvd2x_be: 10854 VT = MVT::v2f64; 10855 break; 10856 case Intrinsic::ppc_altivec_lvebx: 10857 VT = MVT::i8; 10858 break; 10859 case Intrinsic::ppc_altivec_lvehx: 10860 VT = MVT::i16; 10861 break; 10862 case Intrinsic::ppc_altivec_lvewx: 10863 VT = MVT::i32; 10864 break; 10865 } 10866 10867 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 10868 } 10869 10870 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 10871 EVT VT; 10872 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10873 default: return false; 10874 case Intrinsic::ppc_qpx_qvstfd: 10875 case Intrinsic::ppc_qpx_qvstfda: 10876 VT = MVT::v4f64; 10877 break; 10878 case Intrinsic::ppc_qpx_qvstfs: 10879 case Intrinsic::ppc_qpx_qvstfsa: 10880 VT = MVT::v4f32; 10881 break; 10882 case Intrinsic::ppc_qpx_qvstfcd: 10883 case Intrinsic::ppc_qpx_qvstfcda: 10884 VT = MVT::v2f64; 10885 break; 10886 case Intrinsic::ppc_qpx_qvstfcs: 10887 case Intrinsic::ppc_qpx_qvstfcsa: 10888 VT = MVT::v2f32; 10889 break; 10890 case Intrinsic::ppc_qpx_qvstfiw: 10891 case Intrinsic::ppc_qpx_qvstfiwa: 10892 case Intrinsic::ppc_altivec_stvx: 10893 case Intrinsic::ppc_altivec_stvxl: 10894 case Intrinsic::ppc_vsx_stxvw4x: 10895 VT = MVT::v4i32; 10896 break; 10897 case Intrinsic::ppc_vsx_stxvd2x: 10898 VT = MVT::v2f64; 10899 break; 10900 case Intrinsic::ppc_vsx_stxvw4x_be: 10901 VT = MVT::v4i32; 10902 break; 10903 case Intrinsic::ppc_vsx_stxvd2x_be: 10904 VT = MVT::v2f64; 10905 break; 10906 case Intrinsic::ppc_altivec_stvebx: 10907 VT = MVT::i8; 10908 break; 10909 case Intrinsic::ppc_altivec_stvehx: 10910 VT = MVT::i16; 10911 break; 10912 case Intrinsic::ppc_altivec_stvewx: 10913 VT = MVT::i32; 10914 break; 10915 } 10916 10917 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 10918 } 10919 10920 return false; 10921 } 10922 10923 // Return true is there is a nearyby consecutive load to the one provided 10924 // (regardless of alignment). We search up and down the chain, looking though 10925 // token factors and other loads (but nothing else). As a result, a true result 10926 // indicates that it is safe to create a new consecutive load adjacent to the 10927 // load provided. 10928 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 10929 SDValue Chain = LD->getChain(); 10930 EVT VT = LD->getMemoryVT(); 10931 10932 SmallSet<SDNode *, 16> LoadRoots; 10933 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 10934 SmallSet<SDNode *, 16> Visited; 10935 10936 // First, search up the chain, branching to follow all token-factor operands. 10937 // If we find a consecutive load, then we're done, otherwise, record all 10938 // nodes just above the top-level loads and token factors. 10939 while (!Queue.empty()) { 10940 SDNode *ChainNext = Queue.pop_back_val(); 10941 if (!Visited.insert(ChainNext).second) 10942 continue; 10943 10944 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 10945 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 10946 return true; 10947 10948 if (!Visited.count(ChainLD->getChain().getNode())) 10949 Queue.push_back(ChainLD->getChain().getNode()); 10950 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 10951 for (const SDUse &O : ChainNext->ops()) 10952 if (!Visited.count(O.getNode())) 10953 Queue.push_back(O.getNode()); 10954 } else 10955 LoadRoots.insert(ChainNext); 10956 } 10957 10958 // Second, search down the chain, starting from the top-level nodes recorded 10959 // in the first phase. These top-level nodes are the nodes just above all 10960 // loads and token factors. Starting with their uses, recursively look though 10961 // all loads (just the chain uses) and token factors to find a consecutive 10962 // load. 10963 Visited.clear(); 10964 Queue.clear(); 10965 10966 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 10967 IE = LoadRoots.end(); I != IE; ++I) { 10968 Queue.push_back(*I); 10969 10970 while (!Queue.empty()) { 10971 SDNode *LoadRoot = Queue.pop_back_val(); 10972 if (!Visited.insert(LoadRoot).second) 10973 continue; 10974 10975 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 10976 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 10977 return true; 10978 10979 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 10980 UE = LoadRoot->use_end(); UI != UE; ++UI) 10981 if (((isa<MemSDNode>(*UI) && 10982 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 10983 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 10984 Queue.push_back(*UI); 10985 } 10986 } 10987 10988 return false; 10989 } 10990 10991 /// This function is called when we have proved that a SETCC node can be replaced 10992 /// by subtraction (and other supporting instructions) so that the result of 10993 /// comparison is kept in a GPR instead of CR. This function is purely for 10994 /// codegen purposes and has some flags to guide the codegen process. 10995 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 10996 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 10997 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 10998 10999 // Zero extend the operands to the largest legal integer. Originally, they 11000 // must be of a strictly smaller size. 11001 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 11002 DAG.getConstant(Size, DL, MVT::i32)); 11003 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 11004 DAG.getConstant(Size, DL, MVT::i32)); 11005 11006 // Swap if needed. Depends on the condition code. 11007 if (Swap) 11008 std::swap(Op0, Op1); 11009 11010 // Subtract extended integers. 11011 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11012 11013 // Move the sign bit to the least significant position and zero out the rest. 11014 // Now the least significant bit carries the result of original comparison. 11015 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11016 DAG.getConstant(Size - 1, DL, MVT::i32)); 11017 auto Final = Shifted; 11018 11019 // Complement the result if needed. Based on the condition code. 11020 if (Complement) 11021 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11022 DAG.getConstant(1, DL, MVT::i64)); 11023 11024 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11025 } 11026 11027 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11028 DAGCombinerInfo &DCI) const { 11029 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11030 11031 SelectionDAG &DAG = DCI.DAG; 11032 SDLoc DL(N); 11033 11034 // Size of integers being compared has a critical role in the following 11035 // analysis, so we prefer to do this when all types are legal. 11036 if (!DCI.isAfterLegalizeDAG()) 11037 return SDValue(); 11038 11039 // If all users of SETCC extend its value to a legal integer type 11040 // then we replace SETCC with a subtraction 11041 for (SDNode::use_iterator UI = N->use_begin(), 11042 UE = N->use_end(); UI != UE; ++UI) { 11043 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11044 return SDValue(); 11045 } 11046 11047 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11048 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11049 11050 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11051 11052 if (OpSize < Size) { 11053 switch (CC) { 11054 default: break; 11055 case ISD::SETULT: 11056 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11057 case ISD::SETULE: 11058 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11059 case ISD::SETUGT: 11060 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11061 case ISD::SETUGE: 11062 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11063 } 11064 } 11065 11066 return SDValue(); 11067 } 11068 11069 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11070 DAGCombinerInfo &DCI) const { 11071 SelectionDAG &DAG = DCI.DAG; 11072 SDLoc dl(N); 11073 11074 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11075 // If we're tracking CR bits, we need to be careful that we don't have: 11076 // trunc(binary-ops(zext(x), zext(y))) 11077 // or 11078 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11079 // such that we're unnecessarily moving things into GPRs when it would be 11080 // better to keep them in CR bits. 11081 11082 // Note that trunc here can be an actual i1 trunc, or can be the effective 11083 // truncation that comes from a setcc or select_cc. 11084 if (N->getOpcode() == ISD::TRUNCATE && 11085 N->getValueType(0) != MVT::i1) 11086 return SDValue(); 11087 11088 if (N->getOperand(0).getValueType() != MVT::i32 && 11089 N->getOperand(0).getValueType() != MVT::i64) 11090 return SDValue(); 11091 11092 if (N->getOpcode() == ISD::SETCC || 11093 N->getOpcode() == ISD::SELECT_CC) { 11094 // If we're looking at a comparison, then we need to make sure that the 11095 // high bits (all except for the first) don't matter the result. 11096 ISD::CondCode CC = 11097 cast<CondCodeSDNode>(N->getOperand( 11098 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11099 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11100 11101 if (ISD::isSignedIntSetCC(CC)) { 11102 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11103 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11104 return SDValue(); 11105 } else if (ISD::isUnsignedIntSetCC(CC)) { 11106 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11107 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11108 !DAG.MaskedValueIsZero(N->getOperand(1), 11109 APInt::getHighBitsSet(OpBits, OpBits-1))) 11110 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11111 : SDValue()); 11112 } else { 11113 // This is neither a signed nor an unsigned comparison, just make sure 11114 // that the high bits are equal. 11115 KnownBits Op1Known, Op2Known; 11116 DAG.computeKnownBits(N->getOperand(0), Op1Known); 11117 DAG.computeKnownBits(N->getOperand(1), Op2Known); 11118 11119 // We don't really care about what is known about the first bit (if 11120 // anything), so clear it in all masks prior to comparing them. 11121 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11122 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11123 11124 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11125 return SDValue(); 11126 } 11127 } 11128 11129 // We now know that the higher-order bits are irrelevant, we just need to 11130 // make sure that all of the intermediate operations are bit operations, and 11131 // all inputs are extensions. 11132 if (N->getOperand(0).getOpcode() != ISD::AND && 11133 N->getOperand(0).getOpcode() != ISD::OR && 11134 N->getOperand(0).getOpcode() != ISD::XOR && 11135 N->getOperand(0).getOpcode() != ISD::SELECT && 11136 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11137 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11138 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11139 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11140 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11141 return SDValue(); 11142 11143 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11144 N->getOperand(1).getOpcode() != ISD::AND && 11145 N->getOperand(1).getOpcode() != ISD::OR && 11146 N->getOperand(1).getOpcode() != ISD::XOR && 11147 N->getOperand(1).getOpcode() != ISD::SELECT && 11148 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11149 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11150 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11151 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11152 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11153 return SDValue(); 11154 11155 SmallVector<SDValue, 4> Inputs; 11156 SmallVector<SDValue, 8> BinOps, PromOps; 11157 SmallPtrSet<SDNode *, 16> Visited; 11158 11159 for (unsigned i = 0; i < 2; ++i) { 11160 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11161 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11162 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11163 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11164 isa<ConstantSDNode>(N->getOperand(i))) 11165 Inputs.push_back(N->getOperand(i)); 11166 else 11167 BinOps.push_back(N->getOperand(i)); 11168 11169 if (N->getOpcode() == ISD::TRUNCATE) 11170 break; 11171 } 11172 11173 // Visit all inputs, collect all binary operations (and, or, xor and 11174 // select) that are all fed by extensions. 11175 while (!BinOps.empty()) { 11176 SDValue BinOp = BinOps.back(); 11177 BinOps.pop_back(); 11178 11179 if (!Visited.insert(BinOp.getNode()).second) 11180 continue; 11181 11182 PromOps.push_back(BinOp); 11183 11184 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11185 // The condition of the select is not promoted. 11186 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11187 continue; 11188 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11189 continue; 11190 11191 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11192 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11193 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11194 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11195 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11196 Inputs.push_back(BinOp.getOperand(i)); 11197 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11198 BinOp.getOperand(i).getOpcode() == ISD::OR || 11199 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11200 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11201 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11202 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11203 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11204 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11205 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11206 BinOps.push_back(BinOp.getOperand(i)); 11207 } else { 11208 // We have an input that is not an extension or another binary 11209 // operation; we'll abort this transformation. 11210 return SDValue(); 11211 } 11212 } 11213 } 11214 11215 // Make sure that this is a self-contained cluster of operations (which 11216 // is not quite the same thing as saying that everything has only one 11217 // use). 11218 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11219 if (isa<ConstantSDNode>(Inputs[i])) 11220 continue; 11221 11222 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11223 UE = Inputs[i].getNode()->use_end(); 11224 UI != UE; ++UI) { 11225 SDNode *User = *UI; 11226 if (User != N && !Visited.count(User)) 11227 return SDValue(); 11228 11229 // Make sure that we're not going to promote the non-output-value 11230 // operand(s) or SELECT or SELECT_CC. 11231 // FIXME: Although we could sometimes handle this, and it does occur in 11232 // practice that one of the condition inputs to the select is also one of 11233 // the outputs, we currently can't deal with this. 11234 if (User->getOpcode() == ISD::SELECT) { 11235 if (User->getOperand(0) == Inputs[i]) 11236 return SDValue(); 11237 } else if (User->getOpcode() == ISD::SELECT_CC) { 11238 if (User->getOperand(0) == Inputs[i] || 11239 User->getOperand(1) == Inputs[i]) 11240 return SDValue(); 11241 } 11242 } 11243 } 11244 11245 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11246 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11247 UE = PromOps[i].getNode()->use_end(); 11248 UI != UE; ++UI) { 11249 SDNode *User = *UI; 11250 if (User != N && !Visited.count(User)) 11251 return SDValue(); 11252 11253 // Make sure that we're not going to promote the non-output-value 11254 // operand(s) or SELECT or SELECT_CC. 11255 // FIXME: Although we could sometimes handle this, and it does occur in 11256 // practice that one of the condition inputs to the select is also one of 11257 // the outputs, we currently can't deal with this. 11258 if (User->getOpcode() == ISD::SELECT) { 11259 if (User->getOperand(0) == PromOps[i]) 11260 return SDValue(); 11261 } else if (User->getOpcode() == ISD::SELECT_CC) { 11262 if (User->getOperand(0) == PromOps[i] || 11263 User->getOperand(1) == PromOps[i]) 11264 return SDValue(); 11265 } 11266 } 11267 } 11268 11269 // Replace all inputs with the extension operand. 11270 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11271 // Constants may have users outside the cluster of to-be-promoted nodes, 11272 // and so we need to replace those as we do the promotions. 11273 if (isa<ConstantSDNode>(Inputs[i])) 11274 continue; 11275 else 11276 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 11277 } 11278 11279 std::list<HandleSDNode> PromOpHandles; 11280 for (auto &PromOp : PromOps) 11281 PromOpHandles.emplace_back(PromOp); 11282 11283 // Replace all operations (these are all the same, but have a different 11284 // (i1) return type). DAG.getNode will validate that the types of 11285 // a binary operator match, so go through the list in reverse so that 11286 // we've likely promoted both operands first. Any intermediate truncations or 11287 // extensions disappear. 11288 while (!PromOpHandles.empty()) { 11289 SDValue PromOp = PromOpHandles.back().getValue(); 11290 PromOpHandles.pop_back(); 11291 11292 if (PromOp.getOpcode() == ISD::TRUNCATE || 11293 PromOp.getOpcode() == ISD::SIGN_EXTEND || 11294 PromOp.getOpcode() == ISD::ZERO_EXTEND || 11295 PromOp.getOpcode() == ISD::ANY_EXTEND) { 11296 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 11297 PromOp.getOperand(0).getValueType() != MVT::i1) { 11298 // The operand is not yet ready (see comment below). 11299 PromOpHandles.emplace_front(PromOp); 11300 continue; 11301 } 11302 11303 SDValue RepValue = PromOp.getOperand(0); 11304 if (isa<ConstantSDNode>(RepValue)) 11305 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 11306 11307 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 11308 continue; 11309 } 11310 11311 unsigned C; 11312 switch (PromOp.getOpcode()) { 11313 default: C = 0; break; 11314 case ISD::SELECT: C = 1; break; 11315 case ISD::SELECT_CC: C = 2; break; 11316 } 11317 11318 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11319 PromOp.getOperand(C).getValueType() != MVT::i1) || 11320 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11321 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 11322 // The to-be-promoted operands of this node have not yet been 11323 // promoted (this should be rare because we're going through the 11324 // list backward, but if one of the operands has several users in 11325 // this cluster of to-be-promoted nodes, it is possible). 11326 PromOpHandles.emplace_front(PromOp); 11327 continue; 11328 } 11329 11330 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11331 PromOp.getNode()->op_end()); 11332 11333 // If there are any constant inputs, make sure they're replaced now. 11334 for (unsigned i = 0; i < 2; ++i) 11335 if (isa<ConstantSDNode>(Ops[C+i])) 11336 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 11337 11338 DAG.ReplaceAllUsesOfValueWith(PromOp, 11339 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 11340 } 11341 11342 // Now we're left with the initial truncation itself. 11343 if (N->getOpcode() == ISD::TRUNCATE) 11344 return N->getOperand(0); 11345 11346 // Otherwise, this is a comparison. The operands to be compared have just 11347 // changed type (to i1), but everything else is the same. 11348 return SDValue(N, 0); 11349 } 11350 11351 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 11352 DAGCombinerInfo &DCI) const { 11353 SelectionDAG &DAG = DCI.DAG; 11354 SDLoc dl(N); 11355 11356 // If we're tracking CR bits, we need to be careful that we don't have: 11357 // zext(binary-ops(trunc(x), trunc(y))) 11358 // or 11359 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 11360 // such that we're unnecessarily moving things into CR bits that can more 11361 // efficiently stay in GPRs. Note that if we're not certain that the high 11362 // bits are set as required by the final extension, we still may need to do 11363 // some masking to get the proper behavior. 11364 11365 // This same functionality is important on PPC64 when dealing with 11366 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 11367 // the return values of functions. Because it is so similar, it is handled 11368 // here as well. 11369 11370 if (N->getValueType(0) != MVT::i32 && 11371 N->getValueType(0) != MVT::i64) 11372 return SDValue(); 11373 11374 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 11375 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 11376 return SDValue(); 11377 11378 if (N->getOperand(0).getOpcode() != ISD::AND && 11379 N->getOperand(0).getOpcode() != ISD::OR && 11380 N->getOperand(0).getOpcode() != ISD::XOR && 11381 N->getOperand(0).getOpcode() != ISD::SELECT && 11382 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 11383 return SDValue(); 11384 11385 SmallVector<SDValue, 4> Inputs; 11386 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 11387 SmallPtrSet<SDNode *, 16> Visited; 11388 11389 // Visit all inputs, collect all binary operations (and, or, xor and 11390 // select) that are all fed by truncations. 11391 while (!BinOps.empty()) { 11392 SDValue BinOp = BinOps.back(); 11393 BinOps.pop_back(); 11394 11395 if (!Visited.insert(BinOp.getNode()).second) 11396 continue; 11397 11398 PromOps.push_back(BinOp); 11399 11400 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11401 // The condition of the select is not promoted. 11402 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11403 continue; 11404 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11405 continue; 11406 11407 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11408 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11409 Inputs.push_back(BinOp.getOperand(i)); 11410 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11411 BinOp.getOperand(i).getOpcode() == ISD::OR || 11412 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11413 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11414 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 11415 BinOps.push_back(BinOp.getOperand(i)); 11416 } else { 11417 // We have an input that is not a truncation or another binary 11418 // operation; we'll abort this transformation. 11419 return SDValue(); 11420 } 11421 } 11422 } 11423 11424 // The operands of a select that must be truncated when the select is 11425 // promoted because the operand is actually part of the to-be-promoted set. 11426 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 11427 11428 // Make sure that this is a self-contained cluster of operations (which 11429 // is not quite the same thing as saying that everything has only one 11430 // use). 11431 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11432 if (isa<ConstantSDNode>(Inputs[i])) 11433 continue; 11434 11435 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11436 UE = Inputs[i].getNode()->use_end(); 11437 UI != UE; ++UI) { 11438 SDNode *User = *UI; 11439 if (User != N && !Visited.count(User)) 11440 return SDValue(); 11441 11442 // If we're going to promote the non-output-value operand(s) or SELECT or 11443 // SELECT_CC, record them for truncation. 11444 if (User->getOpcode() == ISD::SELECT) { 11445 if (User->getOperand(0) == Inputs[i]) 11446 SelectTruncOp[0].insert(std::make_pair(User, 11447 User->getOperand(0).getValueType())); 11448 } else if (User->getOpcode() == ISD::SELECT_CC) { 11449 if (User->getOperand(0) == Inputs[i]) 11450 SelectTruncOp[0].insert(std::make_pair(User, 11451 User->getOperand(0).getValueType())); 11452 if (User->getOperand(1) == Inputs[i]) 11453 SelectTruncOp[1].insert(std::make_pair(User, 11454 User->getOperand(1).getValueType())); 11455 } 11456 } 11457 } 11458 11459 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11460 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11461 UE = PromOps[i].getNode()->use_end(); 11462 UI != UE; ++UI) { 11463 SDNode *User = *UI; 11464 if (User != N && !Visited.count(User)) 11465 return SDValue(); 11466 11467 // If we're going to promote the non-output-value operand(s) or SELECT or 11468 // SELECT_CC, record them for truncation. 11469 if (User->getOpcode() == ISD::SELECT) { 11470 if (User->getOperand(0) == PromOps[i]) 11471 SelectTruncOp[0].insert(std::make_pair(User, 11472 User->getOperand(0).getValueType())); 11473 } else if (User->getOpcode() == ISD::SELECT_CC) { 11474 if (User->getOperand(0) == PromOps[i]) 11475 SelectTruncOp[0].insert(std::make_pair(User, 11476 User->getOperand(0).getValueType())); 11477 if (User->getOperand(1) == PromOps[i]) 11478 SelectTruncOp[1].insert(std::make_pair(User, 11479 User->getOperand(1).getValueType())); 11480 } 11481 } 11482 } 11483 11484 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 11485 bool ReallyNeedsExt = false; 11486 if (N->getOpcode() != ISD::ANY_EXTEND) { 11487 // If all of the inputs are not already sign/zero extended, then 11488 // we'll still need to do that at the end. 11489 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11490 if (isa<ConstantSDNode>(Inputs[i])) 11491 continue; 11492 11493 unsigned OpBits = 11494 Inputs[i].getOperand(0).getValueSizeInBits(); 11495 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 11496 11497 if ((N->getOpcode() == ISD::ZERO_EXTEND && 11498 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 11499 APInt::getHighBitsSet(OpBits, 11500 OpBits-PromBits))) || 11501 (N->getOpcode() == ISD::SIGN_EXTEND && 11502 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 11503 (OpBits-(PromBits-1)))) { 11504 ReallyNeedsExt = true; 11505 break; 11506 } 11507 } 11508 } 11509 11510 // Replace all inputs, either with the truncation operand, or a 11511 // truncation or extension to the final output type. 11512 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11513 // Constant inputs need to be replaced with the to-be-promoted nodes that 11514 // use them because they might have users outside of the cluster of 11515 // promoted nodes. 11516 if (isa<ConstantSDNode>(Inputs[i])) 11517 continue; 11518 11519 SDValue InSrc = Inputs[i].getOperand(0); 11520 if (Inputs[i].getValueType() == N->getValueType(0)) 11521 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 11522 else if (N->getOpcode() == ISD::SIGN_EXTEND) 11523 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11524 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 11525 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11526 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11527 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 11528 else 11529 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11530 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 11531 } 11532 11533 std::list<HandleSDNode> PromOpHandles; 11534 for (auto &PromOp : PromOps) 11535 PromOpHandles.emplace_back(PromOp); 11536 11537 // Replace all operations (these are all the same, but have a different 11538 // (promoted) return type). DAG.getNode will validate that the types of 11539 // a binary operator match, so go through the list in reverse so that 11540 // we've likely promoted both operands first. 11541 while (!PromOpHandles.empty()) { 11542 SDValue PromOp = PromOpHandles.back().getValue(); 11543 PromOpHandles.pop_back(); 11544 11545 unsigned C; 11546 switch (PromOp.getOpcode()) { 11547 default: C = 0; break; 11548 case ISD::SELECT: C = 1; break; 11549 case ISD::SELECT_CC: C = 2; break; 11550 } 11551 11552 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11553 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 11554 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11555 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 11556 // The to-be-promoted operands of this node have not yet been 11557 // promoted (this should be rare because we're going through the 11558 // list backward, but if one of the operands has several users in 11559 // this cluster of to-be-promoted nodes, it is possible). 11560 PromOpHandles.emplace_front(PromOp); 11561 continue; 11562 } 11563 11564 // For SELECT and SELECT_CC nodes, we do a similar check for any 11565 // to-be-promoted comparison inputs. 11566 if (PromOp.getOpcode() == ISD::SELECT || 11567 PromOp.getOpcode() == ISD::SELECT_CC) { 11568 if ((SelectTruncOp[0].count(PromOp.getNode()) && 11569 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 11570 (SelectTruncOp[1].count(PromOp.getNode()) && 11571 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 11572 PromOpHandles.emplace_front(PromOp); 11573 continue; 11574 } 11575 } 11576 11577 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11578 PromOp.getNode()->op_end()); 11579 11580 // If this node has constant inputs, then they'll need to be promoted here. 11581 for (unsigned i = 0; i < 2; ++i) { 11582 if (!isa<ConstantSDNode>(Ops[C+i])) 11583 continue; 11584 if (Ops[C+i].getValueType() == N->getValueType(0)) 11585 continue; 11586 11587 if (N->getOpcode() == ISD::SIGN_EXTEND) 11588 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11589 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11590 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11591 else 11592 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11593 } 11594 11595 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 11596 // truncate them again to the original value type. 11597 if (PromOp.getOpcode() == ISD::SELECT || 11598 PromOp.getOpcode() == ISD::SELECT_CC) { 11599 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 11600 if (SI0 != SelectTruncOp[0].end()) 11601 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 11602 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 11603 if (SI1 != SelectTruncOp[1].end()) 11604 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 11605 } 11606 11607 DAG.ReplaceAllUsesOfValueWith(PromOp, 11608 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 11609 } 11610 11611 // Now we're left with the initial extension itself. 11612 if (!ReallyNeedsExt) 11613 return N->getOperand(0); 11614 11615 // To zero extend, just mask off everything except for the first bit (in the 11616 // i1 case). 11617 if (N->getOpcode() == ISD::ZERO_EXTEND) 11618 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 11619 DAG.getConstant(APInt::getLowBitsSet( 11620 N->getValueSizeInBits(0), PromBits), 11621 dl, N->getValueType(0))); 11622 11623 assert(N->getOpcode() == ISD::SIGN_EXTEND && 11624 "Invalid extension type"); 11625 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 11626 SDValue ShiftCst = 11627 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 11628 return DAG.getNode( 11629 ISD::SRA, dl, N->getValueType(0), 11630 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 11631 ShiftCst); 11632 } 11633 11634 /// Reduces the number of fp-to-int conversion when building a vector. 11635 /// 11636 /// If this vector is built out of floating to integer conversions, 11637 /// transform it to a vector built out of floating point values followed by a 11638 /// single floating to integer conversion of the vector. 11639 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 11640 /// becomes (fptosi (build_vector ($A, $B, ...))) 11641 SDValue PPCTargetLowering:: 11642 combineElementTruncationToVectorTruncation(SDNode *N, 11643 DAGCombinerInfo &DCI) const { 11644 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11645 "Should be called with a BUILD_VECTOR node"); 11646 11647 SelectionDAG &DAG = DCI.DAG; 11648 SDLoc dl(N); 11649 11650 SDValue FirstInput = N->getOperand(0); 11651 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 11652 "The input operand must be an fp-to-int conversion."); 11653 11654 // This combine happens after legalization so the fp_to_[su]i nodes are 11655 // already converted to PPCSISD nodes. 11656 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 11657 if (FirstConversion == PPCISD::FCTIDZ || 11658 FirstConversion == PPCISD::FCTIDUZ || 11659 FirstConversion == PPCISD::FCTIWZ || 11660 FirstConversion == PPCISD::FCTIWUZ) { 11661 bool IsSplat = true; 11662 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 11663 FirstConversion == PPCISD::FCTIWUZ; 11664 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 11665 SmallVector<SDValue, 4> Ops; 11666 EVT TargetVT = N->getValueType(0); 11667 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 11668 if (N->getOperand(i).getOpcode() != PPCISD::MFVSR) 11669 return SDValue(); 11670 unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode(); 11671 if (NextConversion != FirstConversion) 11672 return SDValue(); 11673 if (N->getOperand(i) != FirstInput) 11674 IsSplat = false; 11675 } 11676 11677 // If this is a splat, we leave it as-is since there will be only a single 11678 // fp-to-int conversion followed by a splat of the integer. This is better 11679 // for 32-bit and smaller ints and neutral for 64-bit ints. 11680 if (IsSplat) 11681 return SDValue(); 11682 11683 // Now that we know we have the right type of node, get its operands 11684 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 11685 SDValue In = N->getOperand(i).getOperand(0); 11686 // For 32-bit values, we need to add an FP_ROUND node. 11687 if (Is32Bit) { 11688 if (In.isUndef()) 11689 Ops.push_back(DAG.getUNDEF(SrcVT)); 11690 else { 11691 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 11692 MVT::f32, In.getOperand(0), 11693 DAG.getIntPtrConstant(1, dl)); 11694 Ops.push_back(Trunc); 11695 } 11696 } else 11697 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 11698 } 11699 11700 unsigned Opcode; 11701 if (FirstConversion == PPCISD::FCTIDZ || 11702 FirstConversion == PPCISD::FCTIWZ) 11703 Opcode = ISD::FP_TO_SINT; 11704 else 11705 Opcode = ISD::FP_TO_UINT; 11706 11707 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 11708 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 11709 return DAG.getNode(Opcode, dl, TargetVT, BV); 11710 } 11711 return SDValue(); 11712 } 11713 11714 /// Reduce the number of loads when building a vector. 11715 /// 11716 /// Building a vector out of multiple loads can be converted to a load 11717 /// of the vector type if the loads are consecutive. If the loads are 11718 /// consecutive but in descending order, a shuffle is added at the end 11719 /// to reorder the vector. 11720 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 11721 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11722 "Should be called with a BUILD_VECTOR node"); 11723 11724 SDLoc dl(N); 11725 bool InputsAreConsecutiveLoads = true; 11726 bool InputsAreReverseConsecutive = true; 11727 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8; 11728 SDValue FirstInput = N->getOperand(0); 11729 bool IsRoundOfExtLoad = false; 11730 11731 if (FirstInput.getOpcode() == ISD::FP_ROUND && 11732 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 11733 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 11734 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 11735 } 11736 // Not a build vector of (possibly fp_rounded) loads. 11737 if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) 11738 return SDValue(); 11739 11740 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 11741 // If any inputs are fp_round(extload), they all must be. 11742 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 11743 return SDValue(); 11744 11745 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 11746 N->getOperand(i); 11747 if (NextInput.getOpcode() != ISD::LOAD) 11748 return SDValue(); 11749 11750 SDValue PreviousInput = 11751 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 11752 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 11753 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 11754 11755 // If any inputs are fp_round(extload), they all must be. 11756 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 11757 return SDValue(); 11758 11759 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 11760 InputsAreConsecutiveLoads = false; 11761 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 11762 InputsAreReverseConsecutive = false; 11763 11764 // Exit early if the loads are neither consecutive nor reverse consecutive. 11765 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 11766 return SDValue(); 11767 } 11768 11769 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 11770 "The loads cannot be both consecutive and reverse consecutive."); 11771 11772 SDValue FirstLoadOp = 11773 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 11774 SDValue LastLoadOp = 11775 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 11776 N->getOperand(N->getNumOperands()-1); 11777 11778 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 11779 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 11780 if (InputsAreConsecutiveLoads) { 11781 assert(LD1 && "Input needs to be a LoadSDNode."); 11782 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 11783 LD1->getBasePtr(), LD1->getPointerInfo(), 11784 LD1->getAlignment()); 11785 } 11786 if (InputsAreReverseConsecutive) { 11787 assert(LDL && "Input needs to be a LoadSDNode."); 11788 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 11789 LDL->getBasePtr(), LDL->getPointerInfo(), 11790 LDL->getAlignment()); 11791 SmallVector<int, 16> Ops; 11792 for (int i = N->getNumOperands() - 1; i >= 0; i--) 11793 Ops.push_back(i); 11794 11795 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 11796 DAG.getUNDEF(N->getValueType(0)), Ops); 11797 } 11798 return SDValue(); 11799 } 11800 11801 // This function adds the required vector_shuffle needed to get 11802 // the elements of the vector extract in the correct position 11803 // as specified by the CorrectElems encoding. 11804 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 11805 SDValue Input, uint64_t Elems, 11806 uint64_t CorrectElems) { 11807 SDLoc dl(N); 11808 11809 unsigned NumElems = Input.getValueType().getVectorNumElements(); 11810 SmallVector<int, 16> ShuffleMask(NumElems, -1); 11811 11812 // Knowing the element indices being extracted from the original 11813 // vector and the order in which they're being inserted, just put 11814 // them at element indices required for the instruction. 11815 for (unsigned i = 0; i < N->getNumOperands(); i++) { 11816 if (DAG.getDataLayout().isLittleEndian()) 11817 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 11818 else 11819 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 11820 CorrectElems = CorrectElems >> 8; 11821 Elems = Elems >> 8; 11822 } 11823 11824 SDValue Shuffle = 11825 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 11826 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 11827 11828 EVT Ty = N->getValueType(0); 11829 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 11830 return BV; 11831 } 11832 11833 // Look for build vector patterns where input operands come from sign 11834 // extended vector_extract elements of specific indices. If the correct indices 11835 // aren't used, add a vector shuffle to fix up the indices and create a new 11836 // PPCISD:SExtVElems node which selects the vector sign extend instructions 11837 // during instruction selection. 11838 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 11839 // This array encodes the indices that the vector sign extend instructions 11840 // extract from when extending from one type to another for both BE and LE. 11841 // The right nibble of each byte corresponds to the LE incides. 11842 // and the left nibble of each byte corresponds to the BE incides. 11843 // For example: 0x3074B8FC byte->word 11844 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 11845 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 11846 // For example: 0x000070F8 byte->double word 11847 // For LE: the allowed indices are: 0x0,0x8 11848 // For BE: the allowed indices are: 0x7,0xF 11849 uint64_t TargetElems[] = { 11850 0x3074B8FC, // b->w 11851 0x000070F8, // b->d 11852 0x10325476, // h->w 11853 0x00003074, // h->d 11854 0x00001032, // w->d 11855 }; 11856 11857 uint64_t Elems = 0; 11858 int Index; 11859 SDValue Input; 11860 11861 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 11862 if (!Op) 11863 return false; 11864 if (Op.getOpcode() != ISD::SIGN_EXTEND) 11865 return false; 11866 11867 SDValue Extract = Op.getOperand(0); 11868 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11869 return false; 11870 11871 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 11872 if (!ExtOp) 11873 return false; 11874 11875 Index = ExtOp->getZExtValue(); 11876 if (Input && Input != Extract.getOperand(0)) 11877 return false; 11878 11879 if (!Input) 11880 Input = Extract.getOperand(0); 11881 11882 Elems = Elems << 8; 11883 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 11884 Elems |= Index; 11885 11886 return true; 11887 }; 11888 11889 // If the build vector operands aren't sign extended vector extracts, 11890 // of the same input vector, then return. 11891 for (unsigned i = 0; i < N->getNumOperands(); i++) { 11892 if (!isSExtOfVecExtract(N->getOperand(i))) { 11893 return SDValue(); 11894 } 11895 } 11896 11897 // If the vector extract indicies are not correct, add the appropriate 11898 // vector_shuffle. 11899 int TgtElemArrayIdx; 11900 int InputSize = Input.getValueType().getScalarSizeInBits(); 11901 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 11902 if (InputSize + OutputSize == 40) 11903 TgtElemArrayIdx = 0; 11904 else if (InputSize + OutputSize == 72) 11905 TgtElemArrayIdx = 1; 11906 else if (InputSize + OutputSize == 48) 11907 TgtElemArrayIdx = 2; 11908 else if (InputSize + OutputSize == 80) 11909 TgtElemArrayIdx = 3; 11910 else if (InputSize + OutputSize == 96) 11911 TgtElemArrayIdx = 4; 11912 else 11913 return SDValue(); 11914 11915 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 11916 CorrectElems = DAG.getDataLayout().isLittleEndian() 11917 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 11918 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 11919 if (Elems != CorrectElems) { 11920 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 11921 } 11922 11923 // Regular lowering will catch cases where a shuffle is not needed. 11924 return SDValue(); 11925 } 11926 11927 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 11928 DAGCombinerInfo &DCI) const { 11929 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11930 "Should be called with a BUILD_VECTOR node"); 11931 11932 SelectionDAG &DAG = DCI.DAG; 11933 SDLoc dl(N); 11934 11935 if (!Subtarget.hasVSX()) 11936 return SDValue(); 11937 11938 // The target independent DAG combiner will leave a build_vector of 11939 // float-to-int conversions intact. We can generate MUCH better code for 11940 // a float-to-int conversion of a vector of floats. 11941 SDValue FirstInput = N->getOperand(0); 11942 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 11943 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 11944 if (Reduced) 11945 return Reduced; 11946 } 11947 11948 // If we're building a vector out of consecutive loads, just load that 11949 // vector type. 11950 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 11951 if (Reduced) 11952 return Reduced; 11953 11954 // If we're building a vector out of extended elements from another vector 11955 // we have P9 vector integer extend instructions. 11956 if (Subtarget.hasP9Altivec()) { 11957 Reduced = combineBVOfVecSExt(N, DAG); 11958 if (Reduced) 11959 return Reduced; 11960 } 11961 11962 11963 if (N->getValueType(0) != MVT::v2f64) 11964 return SDValue(); 11965 11966 // Looking for: 11967 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 11968 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 11969 FirstInput.getOpcode() != ISD::UINT_TO_FP) 11970 return SDValue(); 11971 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 11972 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 11973 return SDValue(); 11974 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 11975 return SDValue(); 11976 11977 SDValue Ext1 = FirstInput.getOperand(0); 11978 SDValue Ext2 = N->getOperand(1).getOperand(0); 11979 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11980 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11981 return SDValue(); 11982 11983 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 11984 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 11985 if (!Ext1Op || !Ext2Op) 11986 return SDValue(); 11987 if (Ext1.getValueType() != MVT::i32 || 11988 Ext2.getValueType() != MVT::i32) 11989 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 11990 return SDValue(); 11991 11992 int FirstElem = Ext1Op->getZExtValue(); 11993 int SecondElem = Ext2Op->getZExtValue(); 11994 int SubvecIdx; 11995 if (FirstElem == 0 && SecondElem == 1) 11996 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 11997 else if (FirstElem == 2 && SecondElem == 3) 11998 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 11999 else 12000 return SDValue(); 12001 12002 SDValue SrcVec = Ext1.getOperand(0); 12003 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 12004 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 12005 return DAG.getNode(NodeType, dl, MVT::v2f64, 12006 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 12007 } 12008 12009 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12010 DAGCombinerInfo &DCI) const { 12011 assert((N->getOpcode() == ISD::SINT_TO_FP || 12012 N->getOpcode() == ISD::UINT_TO_FP) && 12013 "Need an int -> FP conversion node here"); 12014 12015 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12016 return SDValue(); 12017 12018 SelectionDAG &DAG = DCI.DAG; 12019 SDLoc dl(N); 12020 SDValue Op(N, 0); 12021 12022 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12023 // from the hardware. 12024 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12025 return SDValue(); 12026 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12027 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12028 return SDValue(); 12029 12030 SDValue FirstOperand(Op.getOperand(0)); 12031 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12032 (FirstOperand.getValueType() == MVT::i8 || 12033 FirstOperand.getValueType() == MVT::i16); 12034 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12035 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12036 bool DstDouble = Op.getValueType() == MVT::f64; 12037 unsigned ConvOp = Signed ? 12038 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12039 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12040 SDValue WidthConst = 12041 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12042 dl, false); 12043 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12044 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12045 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12046 DAG.getVTList(MVT::f64, MVT::Other), 12047 Ops, MVT::i8, LDN->getMemOperand()); 12048 12049 // For signed conversion, we need to sign-extend the value in the VSR 12050 if (Signed) { 12051 SDValue ExtOps[] = { Ld, WidthConst }; 12052 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12053 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12054 } else 12055 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12056 } 12057 12058 12059 // For i32 intermediate values, unfortunately, the conversion functions 12060 // leave the upper 32 bits of the value are undefined. Within the set of 12061 // scalar instructions, we have no method for zero- or sign-extending the 12062 // value. Thus, we cannot handle i32 intermediate values here. 12063 if (Op.getOperand(0).getValueType() == MVT::i32) 12064 return SDValue(); 12065 12066 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12067 "UINT_TO_FP is supported only with FPCVT"); 12068 12069 // If we have FCFIDS, then use it when converting to single-precision. 12070 // Otherwise, convert to double-precision and then round. 12071 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12072 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12073 : PPCISD::FCFIDS) 12074 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12075 : PPCISD::FCFID); 12076 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12077 ? MVT::f32 12078 : MVT::f64; 12079 12080 // If we're converting from a float, to an int, and back to a float again, 12081 // then we don't need the store/load pair at all. 12082 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12083 Subtarget.hasFPCVT()) || 12084 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12085 SDValue Src = Op.getOperand(0).getOperand(0); 12086 if (Src.getValueType() == MVT::f32) { 12087 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12088 DCI.AddToWorklist(Src.getNode()); 12089 } else if (Src.getValueType() != MVT::f64) { 12090 // Make sure that we don't pick up a ppc_fp128 source value. 12091 return SDValue(); 12092 } 12093 12094 unsigned FCTOp = 12095 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12096 PPCISD::FCTIDUZ; 12097 12098 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12099 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12100 12101 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12102 FP = DAG.getNode(ISD::FP_ROUND, dl, 12103 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12104 DCI.AddToWorklist(FP.getNode()); 12105 } 12106 12107 return FP; 12108 } 12109 12110 return SDValue(); 12111 } 12112 12113 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12114 // builtins) into loads with swaps. 12115 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12116 DAGCombinerInfo &DCI) const { 12117 SelectionDAG &DAG = DCI.DAG; 12118 SDLoc dl(N); 12119 SDValue Chain; 12120 SDValue Base; 12121 MachineMemOperand *MMO; 12122 12123 switch (N->getOpcode()) { 12124 default: 12125 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12126 case ISD::LOAD: { 12127 LoadSDNode *LD = cast<LoadSDNode>(N); 12128 Chain = LD->getChain(); 12129 Base = LD->getBasePtr(); 12130 MMO = LD->getMemOperand(); 12131 // If the MMO suggests this isn't a load of a full vector, leave 12132 // things alone. For a built-in, we have to make the change for 12133 // correctness, so if there is a size problem that will be a bug. 12134 if (MMO->getSize() < 16) 12135 return SDValue(); 12136 break; 12137 } 12138 case ISD::INTRINSIC_W_CHAIN: { 12139 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12140 Chain = Intrin->getChain(); 12141 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12142 // us what we want. Get operand 2 instead. 12143 Base = Intrin->getOperand(2); 12144 MMO = Intrin->getMemOperand(); 12145 break; 12146 } 12147 } 12148 12149 MVT VecTy = N->getValueType(0).getSimpleVT(); 12150 12151 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12152 // aligned and the type is a vector with elements up to 4 bytes 12153 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12154 && VecTy.getScalarSizeInBits() <= 32 ) { 12155 return SDValue(); 12156 } 12157 12158 SDValue LoadOps[] = { Chain, Base }; 12159 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12160 DAG.getVTList(MVT::v2f64, MVT::Other), 12161 LoadOps, MVT::v2f64, MMO); 12162 12163 DCI.AddToWorklist(Load.getNode()); 12164 Chain = Load.getValue(1); 12165 SDValue Swap = DAG.getNode( 12166 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12167 DCI.AddToWorklist(Swap.getNode()); 12168 12169 // Add a bitcast if the resulting load type doesn't match v2f64. 12170 if (VecTy != MVT::v2f64) { 12171 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12172 DCI.AddToWorklist(N.getNode()); 12173 // Package {bitcast value, swap's chain} to match Load's shape. 12174 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12175 N, Swap.getValue(1)); 12176 } 12177 12178 return Swap; 12179 } 12180 12181 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12182 // builtins) into stores with swaps. 12183 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12184 DAGCombinerInfo &DCI) const { 12185 SelectionDAG &DAG = DCI.DAG; 12186 SDLoc dl(N); 12187 SDValue Chain; 12188 SDValue Base; 12189 unsigned SrcOpnd; 12190 MachineMemOperand *MMO; 12191 12192 switch (N->getOpcode()) { 12193 default: 12194 llvm_unreachable("Unexpected opcode for little endian VSX store"); 12195 case ISD::STORE: { 12196 StoreSDNode *ST = cast<StoreSDNode>(N); 12197 Chain = ST->getChain(); 12198 Base = ST->getBasePtr(); 12199 MMO = ST->getMemOperand(); 12200 SrcOpnd = 1; 12201 // If the MMO suggests this isn't a store of a full vector, leave 12202 // things alone. For a built-in, we have to make the change for 12203 // correctness, so if there is a size problem that will be a bug. 12204 if (MMO->getSize() < 16) 12205 return SDValue(); 12206 break; 12207 } 12208 case ISD::INTRINSIC_VOID: { 12209 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12210 Chain = Intrin->getChain(); 12211 // Intrin->getBasePtr() oddly does not get what we want. 12212 Base = Intrin->getOperand(3); 12213 MMO = Intrin->getMemOperand(); 12214 SrcOpnd = 2; 12215 break; 12216 } 12217 } 12218 12219 SDValue Src = N->getOperand(SrcOpnd); 12220 MVT VecTy = Src.getValueType().getSimpleVT(); 12221 12222 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 12223 // aligned and the type is a vector with elements up to 4 bytes 12224 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12225 && VecTy.getScalarSizeInBits() <= 32 ) { 12226 return SDValue(); 12227 } 12228 12229 // All stores are done as v2f64 and possible bit cast. 12230 if (VecTy != MVT::v2f64) { 12231 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 12232 DCI.AddToWorklist(Src.getNode()); 12233 } 12234 12235 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 12236 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 12237 DCI.AddToWorklist(Swap.getNode()); 12238 Chain = Swap.getValue(1); 12239 SDValue StoreOps[] = { Chain, Swap, Base }; 12240 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 12241 DAG.getVTList(MVT::Other), 12242 StoreOps, VecTy, MMO); 12243 DCI.AddToWorklist(Store.getNode()); 12244 return Store; 12245 } 12246 12247 // Handle DAG combine for STORE (FP_TO_INT F). 12248 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 12249 DAGCombinerInfo &DCI) const { 12250 12251 SelectionDAG &DAG = DCI.DAG; 12252 SDLoc dl(N); 12253 unsigned Opcode = N->getOperand(1).getOpcode(); 12254 12255 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 12256 && "Not a FP_TO_INT Instruction!"); 12257 12258 SDValue Val = N->getOperand(1).getOperand(0); 12259 EVT Op1VT = N->getOperand(1).getValueType(); 12260 EVT ResVT = Val.getValueType(); 12261 12262 // Floating point types smaller than 32 bits are not legal on Power. 12263 if (ResVT.getScalarSizeInBits() < 32) 12264 return SDValue(); 12265 12266 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 12267 bool ValidTypeForStoreFltAsInt = 12268 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 12269 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 12270 12271 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 12272 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 12273 return SDValue(); 12274 12275 // Extend f32 values to f64 12276 if (ResVT.getScalarSizeInBits() == 32) { 12277 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 12278 DCI.AddToWorklist(Val.getNode()); 12279 } 12280 12281 // Set signed or unsigned conversion opcode. 12282 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 12283 PPCISD::FP_TO_SINT_IN_VSR : 12284 PPCISD::FP_TO_UINT_IN_VSR; 12285 12286 Val = DAG.getNode(ConvOpcode, 12287 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 12288 DCI.AddToWorklist(Val.getNode()); 12289 12290 // Set number of bytes being converted. 12291 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 12292 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 12293 DAG.getIntPtrConstant(ByteSize, dl, false), 12294 DAG.getValueType(Op1VT) }; 12295 12296 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 12297 DAG.getVTList(MVT::Other), Ops, 12298 cast<StoreSDNode>(N)->getMemoryVT(), 12299 cast<StoreSDNode>(N)->getMemOperand()); 12300 12301 DCI.AddToWorklist(Val.getNode()); 12302 return Val; 12303 } 12304 12305 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 12306 DAGCombinerInfo &DCI) const { 12307 SelectionDAG &DAG = DCI.DAG; 12308 SDLoc dl(N); 12309 switch (N->getOpcode()) { 12310 default: break; 12311 case ISD::SHL: 12312 return combineSHL(N, DCI); 12313 case ISD::SRA: 12314 return combineSRA(N, DCI); 12315 case ISD::SRL: 12316 return combineSRL(N, DCI); 12317 case PPCISD::SHL: 12318 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 12319 return N->getOperand(0); 12320 break; 12321 case PPCISD::SRL: 12322 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 12323 return N->getOperand(0); 12324 break; 12325 case PPCISD::SRA: 12326 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 12327 if (C->isNullValue() || // 0 >>s V -> 0. 12328 C->isAllOnesValue()) // -1 >>s V -> -1. 12329 return N->getOperand(0); 12330 } 12331 break; 12332 case ISD::SIGN_EXTEND: 12333 case ISD::ZERO_EXTEND: 12334 case ISD::ANY_EXTEND: 12335 return DAGCombineExtBoolTrunc(N, DCI); 12336 case ISD::TRUNCATE: 12337 case ISD::SETCC: 12338 case ISD::SELECT_CC: 12339 return DAGCombineTruncBoolExt(N, DCI); 12340 case ISD::SINT_TO_FP: 12341 case ISD::UINT_TO_FP: 12342 return combineFPToIntToFP(N, DCI); 12343 case ISD::STORE: { 12344 12345 EVT Op1VT = N->getOperand(1).getValueType(); 12346 unsigned Opcode = N->getOperand(1).getOpcode(); 12347 12348 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 12349 SDValue Val= combineStoreFPToInt(N, DCI); 12350 if (Val) 12351 return Val; 12352 } 12353 12354 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 12355 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 12356 N->getOperand(1).getNode()->hasOneUse() && 12357 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 12358 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 12359 12360 // STBRX can only handle simple types. 12361 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 12362 if (mVT.isExtended()) 12363 break; 12364 12365 SDValue BSwapOp = N->getOperand(1).getOperand(0); 12366 // Do an any-extend to 32-bits if this is a half-word input. 12367 if (BSwapOp.getValueType() == MVT::i16) 12368 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 12369 12370 // If the type of BSWAP operand is wider than stored memory width 12371 // it need to be shifted to the right side before STBRX. 12372 if (Op1VT.bitsGT(mVT)) { 12373 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 12374 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 12375 DAG.getConstant(Shift, dl, MVT::i32)); 12376 // Need to truncate if this is a bswap of i64 stored as i32/i16. 12377 if (Op1VT == MVT::i64) 12378 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 12379 } 12380 12381 SDValue Ops[] = { 12382 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 12383 }; 12384 return 12385 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 12386 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 12387 cast<StoreSDNode>(N)->getMemOperand()); 12388 } 12389 12390 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 12391 // So it can increase the chance of CSE constant construction. 12392 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 12393 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 12394 // Need to sign-extended to 64-bits to handle negative values. 12395 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 12396 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 12397 MemVT.getSizeInBits()); 12398 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 12399 12400 // DAG.getTruncStore() can't be used here because it doesn't accept 12401 // the general (base + offset) addressing mode. 12402 // So we use UpdateNodeOperands and setTruncatingStore instead. 12403 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 12404 N->getOperand(3)); 12405 cast<StoreSDNode>(N)->setTruncatingStore(true); 12406 return SDValue(N, 0); 12407 } 12408 12409 // For little endian, VSX stores require generating xxswapd/lxvd2x. 12410 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12411 if (Op1VT.isSimple()) { 12412 MVT StoreVT = Op1VT.getSimpleVT(); 12413 if (Subtarget.needsSwapsForVSXMemOps() && 12414 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 12415 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 12416 return expandVSXStoreForLE(N, DCI); 12417 } 12418 break; 12419 } 12420 case ISD::LOAD: { 12421 LoadSDNode *LD = cast<LoadSDNode>(N); 12422 EVT VT = LD->getValueType(0); 12423 12424 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12425 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12426 if (VT.isSimple()) { 12427 MVT LoadVT = VT.getSimpleVT(); 12428 if (Subtarget.needsSwapsForVSXMemOps() && 12429 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 12430 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 12431 return expandVSXLoadForLE(N, DCI); 12432 } 12433 12434 // We sometimes end up with a 64-bit integer load, from which we extract 12435 // two single-precision floating-point numbers. This happens with 12436 // std::complex<float>, and other similar structures, because of the way we 12437 // canonicalize structure copies. However, if we lack direct moves, 12438 // then the final bitcasts from the extracted integer values to the 12439 // floating-point numbers turn into store/load pairs. Even with direct moves, 12440 // just loading the two floating-point numbers is likely better. 12441 auto ReplaceTwoFloatLoad = [&]() { 12442 if (VT != MVT::i64) 12443 return false; 12444 12445 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 12446 LD->isVolatile()) 12447 return false; 12448 12449 // We're looking for a sequence like this: 12450 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 12451 // t16: i64 = srl t13, Constant:i32<32> 12452 // t17: i32 = truncate t16 12453 // t18: f32 = bitcast t17 12454 // t19: i32 = truncate t13 12455 // t20: f32 = bitcast t19 12456 12457 if (!LD->hasNUsesOfValue(2, 0)) 12458 return false; 12459 12460 auto UI = LD->use_begin(); 12461 while (UI.getUse().getResNo() != 0) ++UI; 12462 SDNode *Trunc = *UI++; 12463 while (UI.getUse().getResNo() != 0) ++UI; 12464 SDNode *RightShift = *UI; 12465 if (Trunc->getOpcode() != ISD::TRUNCATE) 12466 std::swap(Trunc, RightShift); 12467 12468 if (Trunc->getOpcode() != ISD::TRUNCATE || 12469 Trunc->getValueType(0) != MVT::i32 || 12470 !Trunc->hasOneUse()) 12471 return false; 12472 if (RightShift->getOpcode() != ISD::SRL || 12473 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 12474 RightShift->getConstantOperandVal(1) != 32 || 12475 !RightShift->hasOneUse()) 12476 return false; 12477 12478 SDNode *Trunc2 = *RightShift->use_begin(); 12479 if (Trunc2->getOpcode() != ISD::TRUNCATE || 12480 Trunc2->getValueType(0) != MVT::i32 || 12481 !Trunc2->hasOneUse()) 12482 return false; 12483 12484 SDNode *Bitcast = *Trunc->use_begin(); 12485 SDNode *Bitcast2 = *Trunc2->use_begin(); 12486 12487 if (Bitcast->getOpcode() != ISD::BITCAST || 12488 Bitcast->getValueType(0) != MVT::f32) 12489 return false; 12490 if (Bitcast2->getOpcode() != ISD::BITCAST || 12491 Bitcast2->getValueType(0) != MVT::f32) 12492 return false; 12493 12494 if (Subtarget.isLittleEndian()) 12495 std::swap(Bitcast, Bitcast2); 12496 12497 // Bitcast has the second float (in memory-layout order) and Bitcast2 12498 // has the first one. 12499 12500 SDValue BasePtr = LD->getBasePtr(); 12501 if (LD->isIndexed()) { 12502 assert(LD->getAddressingMode() == ISD::PRE_INC && 12503 "Non-pre-inc AM on PPC?"); 12504 BasePtr = 12505 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 12506 LD->getOffset()); 12507 } 12508 12509 auto MMOFlags = 12510 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 12511 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 12512 LD->getPointerInfo(), LD->getAlignment(), 12513 MMOFlags, LD->getAAInfo()); 12514 SDValue AddPtr = 12515 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 12516 BasePtr, DAG.getIntPtrConstant(4, dl)); 12517 SDValue FloatLoad2 = DAG.getLoad( 12518 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 12519 LD->getPointerInfo().getWithOffset(4), 12520 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 12521 12522 if (LD->isIndexed()) { 12523 // Note that DAGCombine should re-form any pre-increment load(s) from 12524 // what is produced here if that makes sense. 12525 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 12526 } 12527 12528 DCI.CombineTo(Bitcast2, FloatLoad); 12529 DCI.CombineTo(Bitcast, FloatLoad2); 12530 12531 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 12532 SDValue(FloatLoad2.getNode(), 1)); 12533 return true; 12534 }; 12535 12536 if (ReplaceTwoFloatLoad()) 12537 return SDValue(N, 0); 12538 12539 EVT MemVT = LD->getMemoryVT(); 12540 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 12541 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 12542 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 12543 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 12544 if (LD->isUnindexed() && VT.isVector() && 12545 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 12546 // P8 and later hardware should just use LOAD. 12547 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 12548 VT == MVT::v4i32 || VT == MVT::v4f32)) || 12549 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 12550 LD->getAlignment() >= ScalarABIAlignment)) && 12551 LD->getAlignment() < ABIAlignment) { 12552 // This is a type-legal unaligned Altivec or QPX load. 12553 SDValue Chain = LD->getChain(); 12554 SDValue Ptr = LD->getBasePtr(); 12555 bool isLittleEndian = Subtarget.isLittleEndian(); 12556 12557 // This implements the loading of unaligned vectors as described in 12558 // the venerable Apple Velocity Engine overview. Specifically: 12559 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 12560 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 12561 // 12562 // The general idea is to expand a sequence of one or more unaligned 12563 // loads into an alignment-based permutation-control instruction (lvsl 12564 // or lvsr), a series of regular vector loads (which always truncate 12565 // their input address to an aligned address), and a series of 12566 // permutations. The results of these permutations are the requested 12567 // loaded values. The trick is that the last "extra" load is not taken 12568 // from the address you might suspect (sizeof(vector) bytes after the 12569 // last requested load), but rather sizeof(vector) - 1 bytes after the 12570 // last requested vector. The point of this is to avoid a page fault if 12571 // the base address happened to be aligned. This works because if the 12572 // base address is aligned, then adding less than a full vector length 12573 // will cause the last vector in the sequence to be (re)loaded. 12574 // Otherwise, the next vector will be fetched as you might suspect was 12575 // necessary. 12576 12577 // We might be able to reuse the permutation generation from 12578 // a different base address offset from this one by an aligned amount. 12579 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 12580 // optimization later. 12581 Intrinsic::ID Intr, IntrLD, IntrPerm; 12582 MVT PermCntlTy, PermTy, LDTy; 12583 if (Subtarget.hasAltivec()) { 12584 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 12585 Intrinsic::ppc_altivec_lvsl; 12586 IntrLD = Intrinsic::ppc_altivec_lvx; 12587 IntrPerm = Intrinsic::ppc_altivec_vperm; 12588 PermCntlTy = MVT::v16i8; 12589 PermTy = MVT::v4i32; 12590 LDTy = MVT::v4i32; 12591 } else { 12592 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 12593 Intrinsic::ppc_qpx_qvlpcls; 12594 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 12595 Intrinsic::ppc_qpx_qvlfs; 12596 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 12597 PermCntlTy = MVT::v4f64; 12598 PermTy = MVT::v4f64; 12599 LDTy = MemVT.getSimpleVT(); 12600 } 12601 12602 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 12603 12604 // Create the new MMO for the new base load. It is like the original MMO, 12605 // but represents an area in memory almost twice the vector size centered 12606 // on the original address. If the address is unaligned, we might start 12607 // reading up to (sizeof(vector)-1) bytes below the address of the 12608 // original unaligned load. 12609 MachineFunction &MF = DAG.getMachineFunction(); 12610 MachineMemOperand *BaseMMO = 12611 MF.getMachineMemOperand(LD->getMemOperand(), 12612 -(long)MemVT.getStoreSize()+1, 12613 2*MemVT.getStoreSize()-1); 12614 12615 // Create the new base load. 12616 SDValue LDXIntID = 12617 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 12618 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 12619 SDValue BaseLoad = 12620 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12621 DAG.getVTList(PermTy, MVT::Other), 12622 BaseLoadOps, LDTy, BaseMMO); 12623 12624 // Note that the value of IncOffset (which is provided to the next 12625 // load's pointer info offset value, and thus used to calculate the 12626 // alignment), and the value of IncValue (which is actually used to 12627 // increment the pointer value) are different! This is because we 12628 // require the next load to appear to be aligned, even though it 12629 // is actually offset from the base pointer by a lesser amount. 12630 int IncOffset = VT.getSizeInBits() / 8; 12631 int IncValue = IncOffset; 12632 12633 // Walk (both up and down) the chain looking for another load at the real 12634 // (aligned) offset (the alignment of the other load does not matter in 12635 // this case). If found, then do not use the offset reduction trick, as 12636 // that will prevent the loads from being later combined (as they would 12637 // otherwise be duplicates). 12638 if (!findConsecutiveLoad(LD, DAG)) 12639 --IncValue; 12640 12641 SDValue Increment = 12642 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 12643 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 12644 12645 MachineMemOperand *ExtraMMO = 12646 MF.getMachineMemOperand(LD->getMemOperand(), 12647 1, 2*MemVT.getStoreSize()-1); 12648 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 12649 SDValue ExtraLoad = 12650 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12651 DAG.getVTList(PermTy, MVT::Other), 12652 ExtraLoadOps, LDTy, ExtraMMO); 12653 12654 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 12655 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 12656 12657 // Because vperm has a big-endian bias, we must reverse the order 12658 // of the input vectors and complement the permute control vector 12659 // when generating little endian code. We have already handled the 12660 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 12661 // and ExtraLoad here. 12662 SDValue Perm; 12663 if (isLittleEndian) 12664 Perm = BuildIntrinsicOp(IntrPerm, 12665 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 12666 else 12667 Perm = BuildIntrinsicOp(IntrPerm, 12668 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 12669 12670 if (VT != PermTy) 12671 Perm = Subtarget.hasAltivec() ? 12672 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 12673 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 12674 DAG.getTargetConstant(1, dl, MVT::i64)); 12675 // second argument is 1 because this rounding 12676 // is always exact. 12677 12678 // The output of the permutation is our loaded result, the TokenFactor is 12679 // our new chain. 12680 DCI.CombineTo(N, Perm, TF); 12681 return SDValue(N, 0); 12682 } 12683 } 12684 break; 12685 case ISD::INTRINSIC_WO_CHAIN: { 12686 bool isLittleEndian = Subtarget.isLittleEndian(); 12687 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 12688 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 12689 : Intrinsic::ppc_altivec_lvsl); 12690 if ((IID == Intr || 12691 IID == Intrinsic::ppc_qpx_qvlpcld || 12692 IID == Intrinsic::ppc_qpx_qvlpcls) && 12693 N->getOperand(1)->getOpcode() == ISD::ADD) { 12694 SDValue Add = N->getOperand(1); 12695 12696 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 12697 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 12698 12699 if (DAG.MaskedValueIsZero(Add->getOperand(1), 12700 APInt::getAllOnesValue(Bits /* alignment */) 12701 .zext(Add.getScalarValueSizeInBits()))) { 12702 SDNode *BasePtr = Add->getOperand(0).getNode(); 12703 for (SDNode::use_iterator UI = BasePtr->use_begin(), 12704 UE = BasePtr->use_end(); 12705 UI != UE; ++UI) { 12706 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12707 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 12708 // We've found another LVSL/LVSR, and this address is an aligned 12709 // multiple of that one. The results will be the same, so use the 12710 // one we've just found instead. 12711 12712 return SDValue(*UI, 0); 12713 } 12714 } 12715 } 12716 12717 if (isa<ConstantSDNode>(Add->getOperand(1))) { 12718 SDNode *BasePtr = Add->getOperand(0).getNode(); 12719 for (SDNode::use_iterator UI = BasePtr->use_begin(), 12720 UE = BasePtr->use_end(); UI != UE; ++UI) { 12721 if (UI->getOpcode() == ISD::ADD && 12722 isa<ConstantSDNode>(UI->getOperand(1)) && 12723 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 12724 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 12725 (1ULL << Bits) == 0) { 12726 SDNode *OtherAdd = *UI; 12727 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 12728 VE = OtherAdd->use_end(); VI != VE; ++VI) { 12729 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12730 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 12731 return SDValue(*VI, 0); 12732 } 12733 } 12734 } 12735 } 12736 } 12737 } 12738 } 12739 12740 break; 12741 case ISD::INTRINSIC_W_CHAIN: 12742 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12743 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12744 if (Subtarget.needsSwapsForVSXMemOps()) { 12745 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12746 default: 12747 break; 12748 case Intrinsic::ppc_vsx_lxvw4x: 12749 case Intrinsic::ppc_vsx_lxvd2x: 12750 return expandVSXLoadForLE(N, DCI); 12751 } 12752 } 12753 break; 12754 case ISD::INTRINSIC_VOID: 12755 // For little endian, VSX stores require generating xxswapd/stxvd2x. 12756 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12757 if (Subtarget.needsSwapsForVSXMemOps()) { 12758 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12759 default: 12760 break; 12761 case Intrinsic::ppc_vsx_stxvw4x: 12762 case Intrinsic::ppc_vsx_stxvd2x: 12763 return expandVSXStoreForLE(N, DCI); 12764 } 12765 } 12766 break; 12767 case ISD::BSWAP: 12768 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 12769 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 12770 N->getOperand(0).hasOneUse() && 12771 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 12772 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 12773 N->getValueType(0) == MVT::i64))) { 12774 SDValue Load = N->getOperand(0); 12775 LoadSDNode *LD = cast<LoadSDNode>(Load); 12776 // Create the byte-swapping load. 12777 SDValue Ops[] = { 12778 LD->getChain(), // Chain 12779 LD->getBasePtr(), // Ptr 12780 DAG.getValueType(N->getValueType(0)) // VT 12781 }; 12782 SDValue BSLoad = 12783 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 12784 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 12785 MVT::i64 : MVT::i32, MVT::Other), 12786 Ops, LD->getMemoryVT(), LD->getMemOperand()); 12787 12788 // If this is an i16 load, insert the truncate. 12789 SDValue ResVal = BSLoad; 12790 if (N->getValueType(0) == MVT::i16) 12791 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 12792 12793 // First, combine the bswap away. This makes the value produced by the 12794 // load dead. 12795 DCI.CombineTo(N, ResVal); 12796 12797 // Next, combine the load away, we give it a bogus result value but a real 12798 // chain result. The result value is dead because the bswap is dead. 12799 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 12800 12801 // Return N so it doesn't get rechecked! 12802 return SDValue(N, 0); 12803 } 12804 break; 12805 case PPCISD::VCMP: 12806 // If a VCMPo node already exists with exactly the same operands as this 12807 // node, use its result instead of this node (VCMPo computes both a CR6 and 12808 // a normal output). 12809 // 12810 if (!N->getOperand(0).hasOneUse() && 12811 !N->getOperand(1).hasOneUse() && 12812 !N->getOperand(2).hasOneUse()) { 12813 12814 // Scan all of the users of the LHS, looking for VCMPo's that match. 12815 SDNode *VCMPoNode = nullptr; 12816 12817 SDNode *LHSN = N->getOperand(0).getNode(); 12818 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 12819 UI != E; ++UI) 12820 if (UI->getOpcode() == PPCISD::VCMPo && 12821 UI->getOperand(1) == N->getOperand(1) && 12822 UI->getOperand(2) == N->getOperand(2) && 12823 UI->getOperand(0) == N->getOperand(0)) { 12824 VCMPoNode = *UI; 12825 break; 12826 } 12827 12828 // If there is no VCMPo node, or if the flag value has a single use, don't 12829 // transform this. 12830 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 12831 break; 12832 12833 // Look at the (necessarily single) use of the flag value. If it has a 12834 // chain, this transformation is more complex. Note that multiple things 12835 // could use the value result, which we should ignore. 12836 SDNode *FlagUser = nullptr; 12837 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 12838 FlagUser == nullptr; ++UI) { 12839 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 12840 SDNode *User = *UI; 12841 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 12842 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 12843 FlagUser = User; 12844 break; 12845 } 12846 } 12847 } 12848 12849 // If the user is a MFOCRF instruction, we know this is safe. 12850 // Otherwise we give up for right now. 12851 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 12852 return SDValue(VCMPoNode, 0); 12853 } 12854 break; 12855 case ISD::BRCOND: { 12856 SDValue Cond = N->getOperand(1); 12857 SDValue Target = N->getOperand(2); 12858 12859 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 12860 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 12861 Intrinsic::ppc_is_decremented_ctr_nonzero) { 12862 12863 // We now need to make the intrinsic dead (it cannot be instruction 12864 // selected). 12865 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 12866 assert(Cond.getNode()->hasOneUse() && 12867 "Counter decrement has more than one use"); 12868 12869 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 12870 N->getOperand(0), Target); 12871 } 12872 } 12873 break; 12874 case ISD::BR_CC: { 12875 // If this is a branch on an altivec predicate comparison, lower this so 12876 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 12877 // lowering is done pre-legalize, because the legalizer lowers the predicate 12878 // compare down to code that is difficult to reassemble. 12879 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 12880 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 12881 12882 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 12883 // value. If so, pass-through the AND to get to the intrinsic. 12884 if (LHS.getOpcode() == ISD::AND && 12885 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 12886 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 12887 Intrinsic::ppc_is_decremented_ctr_nonzero && 12888 isa<ConstantSDNode>(LHS.getOperand(1)) && 12889 !isNullConstant(LHS.getOperand(1))) 12890 LHS = LHS.getOperand(0); 12891 12892 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 12893 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 12894 Intrinsic::ppc_is_decremented_ctr_nonzero && 12895 isa<ConstantSDNode>(RHS)) { 12896 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 12897 "Counter decrement comparison is not EQ or NE"); 12898 12899 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 12900 bool isBDNZ = (CC == ISD::SETEQ && Val) || 12901 (CC == ISD::SETNE && !Val); 12902 12903 // We now need to make the intrinsic dead (it cannot be instruction 12904 // selected). 12905 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 12906 assert(LHS.getNode()->hasOneUse() && 12907 "Counter decrement has more than one use"); 12908 12909 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 12910 N->getOperand(0), N->getOperand(4)); 12911 } 12912 12913 int CompareOpc; 12914 bool isDot; 12915 12916 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12917 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 12918 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 12919 assert(isDot && "Can't compare against a vector result!"); 12920 12921 // If this is a comparison against something other than 0/1, then we know 12922 // that the condition is never/always true. 12923 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 12924 if (Val != 0 && Val != 1) { 12925 if (CC == ISD::SETEQ) // Cond never true, remove branch. 12926 return N->getOperand(0); 12927 // Always !=, turn it into an unconditional branch. 12928 return DAG.getNode(ISD::BR, dl, MVT::Other, 12929 N->getOperand(0), N->getOperand(4)); 12930 } 12931 12932 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 12933 12934 // Create the PPCISD altivec 'dot' comparison node. 12935 SDValue Ops[] = { 12936 LHS.getOperand(2), // LHS of compare 12937 LHS.getOperand(3), // RHS of compare 12938 DAG.getConstant(CompareOpc, dl, MVT::i32) 12939 }; 12940 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 12941 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 12942 12943 // Unpack the result based on how the target uses it. 12944 PPC::Predicate CompOpc; 12945 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 12946 default: // Can't happen, don't crash on invalid number though. 12947 case 0: // Branch on the value of the EQ bit of CR6. 12948 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 12949 break; 12950 case 1: // Branch on the inverted value of the EQ bit of CR6. 12951 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 12952 break; 12953 case 2: // Branch on the value of the LT bit of CR6. 12954 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 12955 break; 12956 case 3: // Branch on the inverted value of the LT bit of CR6. 12957 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 12958 break; 12959 } 12960 12961 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 12962 DAG.getConstant(CompOpc, dl, MVT::i32), 12963 DAG.getRegister(PPC::CR6, MVT::i32), 12964 N->getOperand(4), CompNode.getValue(1)); 12965 } 12966 break; 12967 } 12968 case ISD::BUILD_VECTOR: 12969 return DAGCombineBuildVector(N, DCI); 12970 } 12971 12972 return SDValue(); 12973 } 12974 12975 SDValue 12976 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 12977 SelectionDAG &DAG, 12978 std::vector<SDNode *> *Created) const { 12979 // fold (sdiv X, pow2) 12980 EVT VT = N->getValueType(0); 12981 if (VT == MVT::i64 && !Subtarget.isPPC64()) 12982 return SDValue(); 12983 if ((VT != MVT::i32 && VT != MVT::i64) || 12984 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 12985 return SDValue(); 12986 12987 SDLoc DL(N); 12988 SDValue N0 = N->getOperand(0); 12989 12990 bool IsNegPow2 = (-Divisor).isPowerOf2(); 12991 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 12992 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 12993 12994 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 12995 if (Created) 12996 Created->push_back(Op.getNode()); 12997 12998 if (IsNegPow2) { 12999 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 13000 if (Created) 13001 Created->push_back(Op.getNode()); 13002 } 13003 13004 return Op; 13005 } 13006 13007 //===----------------------------------------------------------------------===// 13008 // Inline Assembly Support 13009 //===----------------------------------------------------------------------===// 13010 13011 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13012 KnownBits &Known, 13013 const APInt &DemandedElts, 13014 const SelectionDAG &DAG, 13015 unsigned Depth) const { 13016 Known.resetAll(); 13017 switch (Op.getOpcode()) { 13018 default: break; 13019 case PPCISD::LBRX: { 13020 // lhbrx is known to have the top bits cleared out. 13021 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13022 Known.Zero = 0xFFFF0000; 13023 break; 13024 } 13025 case ISD::INTRINSIC_WO_CHAIN: { 13026 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13027 default: break; 13028 case Intrinsic::ppc_altivec_vcmpbfp_p: 13029 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13030 case Intrinsic::ppc_altivec_vcmpequb_p: 13031 case Intrinsic::ppc_altivec_vcmpequh_p: 13032 case Intrinsic::ppc_altivec_vcmpequw_p: 13033 case Intrinsic::ppc_altivec_vcmpequd_p: 13034 case Intrinsic::ppc_altivec_vcmpgefp_p: 13035 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13036 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13037 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13038 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13039 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13040 case Intrinsic::ppc_altivec_vcmpgtub_p: 13041 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13042 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13043 case Intrinsic::ppc_altivec_vcmpgtud_p: 13044 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13045 break; 13046 } 13047 } 13048 } 13049 } 13050 13051 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13052 switch (Subtarget.getDarwinDirective()) { 13053 default: break; 13054 case PPC::DIR_970: 13055 case PPC::DIR_PWR4: 13056 case PPC::DIR_PWR5: 13057 case PPC::DIR_PWR5X: 13058 case PPC::DIR_PWR6: 13059 case PPC::DIR_PWR6X: 13060 case PPC::DIR_PWR7: 13061 case PPC::DIR_PWR8: 13062 case PPC::DIR_PWR9: { 13063 if (!ML) 13064 break; 13065 13066 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13067 13068 // For small loops (between 5 and 8 instructions), align to a 32-byte 13069 // boundary so that the entire loop fits in one instruction-cache line. 13070 uint64_t LoopSize = 0; 13071 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13072 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13073 LoopSize += TII->getInstSizeInBytes(*J); 13074 if (LoopSize > 32) 13075 break; 13076 } 13077 13078 if (LoopSize > 16 && LoopSize <= 32) 13079 return 5; 13080 13081 break; 13082 } 13083 } 13084 13085 return TargetLowering::getPrefLoopAlignment(ML); 13086 } 13087 13088 /// getConstraintType - Given a constraint, return the type of 13089 /// constraint it is for this target. 13090 PPCTargetLowering::ConstraintType 13091 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13092 if (Constraint.size() == 1) { 13093 switch (Constraint[0]) { 13094 default: break; 13095 case 'b': 13096 case 'r': 13097 case 'f': 13098 case 'd': 13099 case 'v': 13100 case 'y': 13101 return C_RegisterClass; 13102 case 'Z': 13103 // FIXME: While Z does indicate a memory constraint, it specifically 13104 // indicates an r+r address (used in conjunction with the 'y' modifier 13105 // in the replacement string). Currently, we're forcing the base 13106 // register to be r0 in the asm printer (which is interpreted as zero) 13107 // and forming the complete address in the second register. This is 13108 // suboptimal. 13109 return C_Memory; 13110 } 13111 } else if (Constraint == "wc") { // individual CR bits. 13112 return C_RegisterClass; 13113 } else if (Constraint == "wa" || Constraint == "wd" || 13114 Constraint == "wf" || Constraint == "ws") { 13115 return C_RegisterClass; // VSX registers. 13116 } 13117 return TargetLowering::getConstraintType(Constraint); 13118 } 13119 13120 /// Examine constraint type and operand type and determine a weight value. 13121 /// This object must already have been set up with the operand type 13122 /// and the current alternative constraint selected. 13123 TargetLowering::ConstraintWeight 13124 PPCTargetLowering::getSingleConstraintMatchWeight( 13125 AsmOperandInfo &info, const char *constraint) const { 13126 ConstraintWeight weight = CW_Invalid; 13127 Value *CallOperandVal = info.CallOperandVal; 13128 // If we don't have a value, we can't do a match, 13129 // but allow it at the lowest weight. 13130 if (!CallOperandVal) 13131 return CW_Default; 13132 Type *type = CallOperandVal->getType(); 13133 13134 // Look at the constraint type. 13135 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 13136 return CW_Register; // an individual CR bit. 13137 else if ((StringRef(constraint) == "wa" || 13138 StringRef(constraint) == "wd" || 13139 StringRef(constraint) == "wf") && 13140 type->isVectorTy()) 13141 return CW_Register; 13142 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 13143 return CW_Register; 13144 13145 switch (*constraint) { 13146 default: 13147 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 13148 break; 13149 case 'b': 13150 if (type->isIntegerTy()) 13151 weight = CW_Register; 13152 break; 13153 case 'f': 13154 if (type->isFloatTy()) 13155 weight = CW_Register; 13156 break; 13157 case 'd': 13158 if (type->isDoubleTy()) 13159 weight = CW_Register; 13160 break; 13161 case 'v': 13162 if (type->isVectorTy()) 13163 weight = CW_Register; 13164 break; 13165 case 'y': 13166 weight = CW_Register; 13167 break; 13168 case 'Z': 13169 weight = CW_Memory; 13170 break; 13171 } 13172 return weight; 13173 } 13174 13175 std::pair<unsigned, const TargetRegisterClass *> 13176 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 13177 StringRef Constraint, 13178 MVT VT) const { 13179 if (Constraint.size() == 1) { 13180 // GCC RS6000 Constraint Letters 13181 switch (Constraint[0]) { 13182 case 'b': // R1-R31 13183 if (VT == MVT::i64 && Subtarget.isPPC64()) 13184 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 13185 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 13186 case 'r': // R0-R31 13187 if (VT == MVT::i64 && Subtarget.isPPC64()) 13188 return std::make_pair(0U, &PPC::G8RCRegClass); 13189 return std::make_pair(0U, &PPC::GPRCRegClass); 13190 // 'd' and 'f' constraints are both defined to be "the floating point 13191 // registers", where one is for 32-bit and the other for 64-bit. We don't 13192 // really care overly much here so just give them all the same reg classes. 13193 case 'd': 13194 case 'f': 13195 if (VT == MVT::f32 || VT == MVT::i32) 13196 return std::make_pair(0U, &PPC::F4RCRegClass); 13197 if (VT == MVT::f64 || VT == MVT::i64) 13198 return std::make_pair(0U, &PPC::F8RCRegClass); 13199 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13200 return std::make_pair(0U, &PPC::QFRCRegClass); 13201 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13202 return std::make_pair(0U, &PPC::QSRCRegClass); 13203 break; 13204 case 'v': 13205 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13206 return std::make_pair(0U, &PPC::QFRCRegClass); 13207 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13208 return std::make_pair(0U, &PPC::QSRCRegClass); 13209 if (Subtarget.hasAltivec()) 13210 return std::make_pair(0U, &PPC::VRRCRegClass); 13211 break; 13212 case 'y': // crrc 13213 return std::make_pair(0U, &PPC::CRRCRegClass); 13214 } 13215 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 13216 // An individual CR bit. 13217 return std::make_pair(0U, &PPC::CRBITRCRegClass); 13218 } else if ((Constraint == "wa" || Constraint == "wd" || 13219 Constraint == "wf") && Subtarget.hasVSX()) { 13220 return std::make_pair(0U, &PPC::VSRCRegClass); 13221 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 13222 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 13223 return std::make_pair(0U, &PPC::VSSRCRegClass); 13224 else 13225 return std::make_pair(0U, &PPC::VSFRCRegClass); 13226 } 13227 13228 std::pair<unsigned, const TargetRegisterClass *> R = 13229 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13230 13231 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 13232 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 13233 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 13234 // register. 13235 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 13236 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 13237 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 13238 PPC::GPRCRegClass.contains(R.first)) 13239 return std::make_pair(TRI->getMatchingSuperReg(R.first, 13240 PPC::sub_32, &PPC::G8RCRegClass), 13241 &PPC::G8RCRegClass); 13242 13243 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 13244 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 13245 R.first = PPC::CR0; 13246 R.second = &PPC::CRRCRegClass; 13247 } 13248 13249 return R; 13250 } 13251 13252 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 13253 /// vector. If it is invalid, don't add anything to Ops. 13254 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 13255 std::string &Constraint, 13256 std::vector<SDValue>&Ops, 13257 SelectionDAG &DAG) const { 13258 SDValue Result; 13259 13260 // Only support length 1 constraints. 13261 if (Constraint.length() > 1) return; 13262 13263 char Letter = Constraint[0]; 13264 switch (Letter) { 13265 default: break; 13266 case 'I': 13267 case 'J': 13268 case 'K': 13269 case 'L': 13270 case 'M': 13271 case 'N': 13272 case 'O': 13273 case 'P': { 13274 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 13275 if (!CST) return; // Must be an immediate to match. 13276 SDLoc dl(Op); 13277 int64_t Value = CST->getSExtValue(); 13278 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 13279 // numbers are printed as such. 13280 switch (Letter) { 13281 default: llvm_unreachable("Unknown constraint letter!"); 13282 case 'I': // "I" is a signed 16-bit constant. 13283 if (isInt<16>(Value)) 13284 Result = DAG.getTargetConstant(Value, dl, TCVT); 13285 break; 13286 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 13287 if (isShiftedUInt<16, 16>(Value)) 13288 Result = DAG.getTargetConstant(Value, dl, TCVT); 13289 break; 13290 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 13291 if (isShiftedInt<16, 16>(Value)) 13292 Result = DAG.getTargetConstant(Value, dl, TCVT); 13293 break; 13294 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 13295 if (isUInt<16>(Value)) 13296 Result = DAG.getTargetConstant(Value, dl, TCVT); 13297 break; 13298 case 'M': // "M" is a constant that is greater than 31. 13299 if (Value > 31) 13300 Result = DAG.getTargetConstant(Value, dl, TCVT); 13301 break; 13302 case 'N': // "N" is a positive constant that is an exact power of two. 13303 if (Value > 0 && isPowerOf2_64(Value)) 13304 Result = DAG.getTargetConstant(Value, dl, TCVT); 13305 break; 13306 case 'O': // "O" is the constant zero. 13307 if (Value == 0) 13308 Result = DAG.getTargetConstant(Value, dl, TCVT); 13309 break; 13310 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 13311 if (isInt<16>(-Value)) 13312 Result = DAG.getTargetConstant(Value, dl, TCVT); 13313 break; 13314 } 13315 break; 13316 } 13317 } 13318 13319 if (Result.getNode()) { 13320 Ops.push_back(Result); 13321 return; 13322 } 13323 13324 // Handle standard constraint letters. 13325 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 13326 } 13327 13328 // isLegalAddressingMode - Return true if the addressing mode represented 13329 // by AM is legal for this target, for a load/store of the specified type. 13330 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 13331 const AddrMode &AM, Type *Ty, 13332 unsigned AS, Instruction *I) const { 13333 // PPC does not allow r+i addressing modes for vectors! 13334 if (Ty->isVectorTy() && AM.BaseOffs != 0) 13335 return false; 13336 13337 // PPC allows a sign-extended 16-bit immediate field. 13338 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 13339 return false; 13340 13341 // No global is ever allowed as a base. 13342 if (AM.BaseGV) 13343 return false; 13344 13345 // PPC only support r+r, 13346 switch (AM.Scale) { 13347 case 0: // "r+i" or just "i", depending on HasBaseReg. 13348 break; 13349 case 1: 13350 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 13351 return false; 13352 // Otherwise we have r+r or r+i. 13353 break; 13354 case 2: 13355 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 13356 return false; 13357 // Allow 2*r as r+r. 13358 break; 13359 default: 13360 // No other scales are supported. 13361 return false; 13362 } 13363 13364 return true; 13365 } 13366 13367 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 13368 SelectionDAG &DAG) const { 13369 MachineFunction &MF = DAG.getMachineFunction(); 13370 MachineFrameInfo &MFI = MF.getFrameInfo(); 13371 MFI.setReturnAddressIsTaken(true); 13372 13373 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 13374 return SDValue(); 13375 13376 SDLoc dl(Op); 13377 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13378 13379 // Make sure the function does not optimize away the store of the RA to 13380 // the stack. 13381 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 13382 FuncInfo->setLRStoreRequired(); 13383 bool isPPC64 = Subtarget.isPPC64(); 13384 auto PtrVT = getPointerTy(MF.getDataLayout()); 13385 13386 if (Depth > 0) { 13387 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 13388 SDValue Offset = 13389 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 13390 isPPC64 ? MVT::i64 : MVT::i32); 13391 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 13392 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 13393 MachinePointerInfo()); 13394 } 13395 13396 // Just load the return address off the stack. 13397 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 13398 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 13399 MachinePointerInfo()); 13400 } 13401 13402 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 13403 SelectionDAG &DAG) const { 13404 SDLoc dl(Op); 13405 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13406 13407 MachineFunction &MF = DAG.getMachineFunction(); 13408 MachineFrameInfo &MFI = MF.getFrameInfo(); 13409 MFI.setFrameAddressIsTaken(true); 13410 13411 EVT PtrVT = getPointerTy(MF.getDataLayout()); 13412 bool isPPC64 = PtrVT == MVT::i64; 13413 13414 // Naked functions never have a frame pointer, and so we use r1. For all 13415 // other functions, this decision must be delayed until during PEI. 13416 unsigned FrameReg; 13417 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 13418 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 13419 else 13420 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 13421 13422 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 13423 PtrVT); 13424 while (Depth--) 13425 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 13426 FrameAddr, MachinePointerInfo()); 13427 return FrameAddr; 13428 } 13429 13430 // FIXME? Maybe this could be a TableGen attribute on some registers and 13431 // this table could be generated automatically from RegInfo. 13432 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 13433 SelectionDAG &DAG) const { 13434 bool isPPC64 = Subtarget.isPPC64(); 13435 bool isDarwinABI = Subtarget.isDarwinABI(); 13436 13437 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 13438 (!isPPC64 && VT != MVT::i32)) 13439 report_fatal_error("Invalid register global variable type"); 13440 13441 bool is64Bit = isPPC64 && VT == MVT::i64; 13442 unsigned Reg = StringSwitch<unsigned>(RegName) 13443 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 13444 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 13445 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 13446 (is64Bit ? PPC::X13 : PPC::R13)) 13447 .Default(0); 13448 13449 if (Reg) 13450 return Reg; 13451 report_fatal_error("Invalid register name global variable"); 13452 } 13453 13454 bool 13455 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 13456 // The PowerPC target isn't yet aware of offsets. 13457 return false; 13458 } 13459 13460 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 13461 const CallInst &I, 13462 MachineFunction &MF, 13463 unsigned Intrinsic) const { 13464 switch (Intrinsic) { 13465 case Intrinsic::ppc_qpx_qvlfd: 13466 case Intrinsic::ppc_qpx_qvlfs: 13467 case Intrinsic::ppc_qpx_qvlfcd: 13468 case Intrinsic::ppc_qpx_qvlfcs: 13469 case Intrinsic::ppc_qpx_qvlfiwa: 13470 case Intrinsic::ppc_qpx_qvlfiwz: 13471 case Intrinsic::ppc_altivec_lvx: 13472 case Intrinsic::ppc_altivec_lvxl: 13473 case Intrinsic::ppc_altivec_lvebx: 13474 case Intrinsic::ppc_altivec_lvehx: 13475 case Intrinsic::ppc_altivec_lvewx: 13476 case Intrinsic::ppc_vsx_lxvd2x: 13477 case Intrinsic::ppc_vsx_lxvw4x: { 13478 EVT VT; 13479 switch (Intrinsic) { 13480 case Intrinsic::ppc_altivec_lvebx: 13481 VT = MVT::i8; 13482 break; 13483 case Intrinsic::ppc_altivec_lvehx: 13484 VT = MVT::i16; 13485 break; 13486 case Intrinsic::ppc_altivec_lvewx: 13487 VT = MVT::i32; 13488 break; 13489 case Intrinsic::ppc_vsx_lxvd2x: 13490 VT = MVT::v2f64; 13491 break; 13492 case Intrinsic::ppc_qpx_qvlfd: 13493 VT = MVT::v4f64; 13494 break; 13495 case Intrinsic::ppc_qpx_qvlfs: 13496 VT = MVT::v4f32; 13497 break; 13498 case Intrinsic::ppc_qpx_qvlfcd: 13499 VT = MVT::v2f64; 13500 break; 13501 case Intrinsic::ppc_qpx_qvlfcs: 13502 VT = MVT::v2f32; 13503 break; 13504 default: 13505 VT = MVT::v4i32; 13506 break; 13507 } 13508 13509 Info.opc = ISD::INTRINSIC_W_CHAIN; 13510 Info.memVT = VT; 13511 Info.ptrVal = I.getArgOperand(0); 13512 Info.offset = -VT.getStoreSize()+1; 13513 Info.size = 2*VT.getStoreSize()-1; 13514 Info.align = 1; 13515 Info.flags = MachineMemOperand::MOLoad; 13516 return true; 13517 } 13518 case Intrinsic::ppc_qpx_qvlfda: 13519 case Intrinsic::ppc_qpx_qvlfsa: 13520 case Intrinsic::ppc_qpx_qvlfcda: 13521 case Intrinsic::ppc_qpx_qvlfcsa: 13522 case Intrinsic::ppc_qpx_qvlfiwaa: 13523 case Intrinsic::ppc_qpx_qvlfiwza: { 13524 EVT VT; 13525 switch (Intrinsic) { 13526 case Intrinsic::ppc_qpx_qvlfda: 13527 VT = MVT::v4f64; 13528 break; 13529 case Intrinsic::ppc_qpx_qvlfsa: 13530 VT = MVT::v4f32; 13531 break; 13532 case Intrinsic::ppc_qpx_qvlfcda: 13533 VT = MVT::v2f64; 13534 break; 13535 case Intrinsic::ppc_qpx_qvlfcsa: 13536 VT = MVT::v2f32; 13537 break; 13538 default: 13539 VT = MVT::v4i32; 13540 break; 13541 } 13542 13543 Info.opc = ISD::INTRINSIC_W_CHAIN; 13544 Info.memVT = VT; 13545 Info.ptrVal = I.getArgOperand(0); 13546 Info.offset = 0; 13547 Info.size = VT.getStoreSize(); 13548 Info.align = 1; 13549 Info.flags = MachineMemOperand::MOLoad; 13550 return true; 13551 } 13552 case Intrinsic::ppc_qpx_qvstfd: 13553 case Intrinsic::ppc_qpx_qvstfs: 13554 case Intrinsic::ppc_qpx_qvstfcd: 13555 case Intrinsic::ppc_qpx_qvstfcs: 13556 case Intrinsic::ppc_qpx_qvstfiw: 13557 case Intrinsic::ppc_altivec_stvx: 13558 case Intrinsic::ppc_altivec_stvxl: 13559 case Intrinsic::ppc_altivec_stvebx: 13560 case Intrinsic::ppc_altivec_stvehx: 13561 case Intrinsic::ppc_altivec_stvewx: 13562 case Intrinsic::ppc_vsx_stxvd2x: 13563 case Intrinsic::ppc_vsx_stxvw4x: { 13564 EVT VT; 13565 switch (Intrinsic) { 13566 case Intrinsic::ppc_altivec_stvebx: 13567 VT = MVT::i8; 13568 break; 13569 case Intrinsic::ppc_altivec_stvehx: 13570 VT = MVT::i16; 13571 break; 13572 case Intrinsic::ppc_altivec_stvewx: 13573 VT = MVT::i32; 13574 break; 13575 case Intrinsic::ppc_vsx_stxvd2x: 13576 VT = MVT::v2f64; 13577 break; 13578 case Intrinsic::ppc_qpx_qvstfd: 13579 VT = MVT::v4f64; 13580 break; 13581 case Intrinsic::ppc_qpx_qvstfs: 13582 VT = MVT::v4f32; 13583 break; 13584 case Intrinsic::ppc_qpx_qvstfcd: 13585 VT = MVT::v2f64; 13586 break; 13587 case Intrinsic::ppc_qpx_qvstfcs: 13588 VT = MVT::v2f32; 13589 break; 13590 default: 13591 VT = MVT::v4i32; 13592 break; 13593 } 13594 13595 Info.opc = ISD::INTRINSIC_VOID; 13596 Info.memVT = VT; 13597 Info.ptrVal = I.getArgOperand(1); 13598 Info.offset = -VT.getStoreSize()+1; 13599 Info.size = 2*VT.getStoreSize()-1; 13600 Info.align = 1; 13601 Info.flags = MachineMemOperand::MOStore; 13602 return true; 13603 } 13604 case Intrinsic::ppc_qpx_qvstfda: 13605 case Intrinsic::ppc_qpx_qvstfsa: 13606 case Intrinsic::ppc_qpx_qvstfcda: 13607 case Intrinsic::ppc_qpx_qvstfcsa: 13608 case Intrinsic::ppc_qpx_qvstfiwa: { 13609 EVT VT; 13610 switch (Intrinsic) { 13611 case Intrinsic::ppc_qpx_qvstfda: 13612 VT = MVT::v4f64; 13613 break; 13614 case Intrinsic::ppc_qpx_qvstfsa: 13615 VT = MVT::v4f32; 13616 break; 13617 case Intrinsic::ppc_qpx_qvstfcda: 13618 VT = MVT::v2f64; 13619 break; 13620 case Intrinsic::ppc_qpx_qvstfcsa: 13621 VT = MVT::v2f32; 13622 break; 13623 default: 13624 VT = MVT::v4i32; 13625 break; 13626 } 13627 13628 Info.opc = ISD::INTRINSIC_VOID; 13629 Info.memVT = VT; 13630 Info.ptrVal = I.getArgOperand(1); 13631 Info.offset = 0; 13632 Info.size = VT.getStoreSize(); 13633 Info.align = 1; 13634 Info.flags = MachineMemOperand::MOStore; 13635 return true; 13636 } 13637 default: 13638 break; 13639 } 13640 13641 return false; 13642 } 13643 13644 /// getOptimalMemOpType - Returns the target specific optimal type for load 13645 /// and store operations as a result of memset, memcpy, and memmove 13646 /// lowering. If DstAlign is zero that means it's safe to destination 13647 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 13648 /// means there isn't a need to check it against alignment requirement, 13649 /// probably because the source does not need to be loaded. If 'IsMemset' is 13650 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 13651 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 13652 /// source is constant so it does not need to be loaded. 13653 /// It returns EVT::Other if the type should be determined using generic 13654 /// target-independent logic. 13655 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 13656 unsigned DstAlign, unsigned SrcAlign, 13657 bool IsMemset, bool ZeroMemset, 13658 bool MemcpyStrSrc, 13659 MachineFunction &MF) const { 13660 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 13661 const Function &F = MF.getFunction(); 13662 // When expanding a memset, require at least two QPX instructions to cover 13663 // the cost of loading the value to be stored from the constant pool. 13664 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 13665 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 13666 !F.hasFnAttribute(Attribute::NoImplicitFloat)) { 13667 return MVT::v4f64; 13668 } 13669 13670 // We should use Altivec/VSX loads and stores when available. For unaligned 13671 // addresses, unaligned VSX loads are only fast starting with the P8. 13672 if (Subtarget.hasAltivec() && Size >= 16 && 13673 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 13674 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 13675 return MVT::v4i32; 13676 } 13677 13678 if (Subtarget.isPPC64()) { 13679 return MVT::i64; 13680 } 13681 13682 return MVT::i32; 13683 } 13684 13685 /// Returns true if it is beneficial to convert a load of a constant 13686 /// to just the constant itself. 13687 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 13688 Type *Ty) const { 13689 assert(Ty->isIntegerTy()); 13690 13691 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 13692 return !(BitSize == 0 || BitSize > 64); 13693 } 13694 13695 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 13696 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 13697 return false; 13698 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 13699 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 13700 return NumBits1 == 64 && NumBits2 == 32; 13701 } 13702 13703 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 13704 if (!VT1.isInteger() || !VT2.isInteger()) 13705 return false; 13706 unsigned NumBits1 = VT1.getSizeInBits(); 13707 unsigned NumBits2 = VT2.getSizeInBits(); 13708 return NumBits1 == 64 && NumBits2 == 32; 13709 } 13710 13711 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 13712 // Generally speaking, zexts are not free, but they are free when they can be 13713 // folded with other operations. 13714 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 13715 EVT MemVT = LD->getMemoryVT(); 13716 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 13717 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 13718 (LD->getExtensionType() == ISD::NON_EXTLOAD || 13719 LD->getExtensionType() == ISD::ZEXTLOAD)) 13720 return true; 13721 } 13722 13723 // FIXME: Add other cases... 13724 // - 32-bit shifts with a zext to i64 13725 // - zext after ctlz, bswap, etc. 13726 // - zext after and by a constant mask 13727 13728 return TargetLowering::isZExtFree(Val, VT2); 13729 } 13730 13731 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 13732 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 13733 "invalid fpext types"); 13734 return true; 13735 } 13736 13737 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 13738 return isInt<16>(Imm) || isUInt<16>(Imm); 13739 } 13740 13741 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 13742 return isInt<16>(Imm) || isUInt<16>(Imm); 13743 } 13744 13745 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 13746 unsigned, 13747 unsigned, 13748 bool *Fast) const { 13749 if (DisablePPCUnaligned) 13750 return false; 13751 13752 // PowerPC supports unaligned memory access for simple non-vector types. 13753 // Although accessing unaligned addresses is not as efficient as accessing 13754 // aligned addresses, it is generally more efficient than manual expansion, 13755 // and generally only traps for software emulation when crossing page 13756 // boundaries. 13757 13758 if (!VT.isSimple()) 13759 return false; 13760 13761 if (VT.getSimpleVT().isVector()) { 13762 if (Subtarget.hasVSX()) { 13763 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 13764 VT != MVT::v4f32 && VT != MVT::v4i32) 13765 return false; 13766 } else { 13767 return false; 13768 } 13769 } 13770 13771 if (VT == MVT::ppcf128) 13772 return false; 13773 13774 if (Fast) 13775 *Fast = true; 13776 13777 return true; 13778 } 13779 13780 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 13781 VT = VT.getScalarType(); 13782 13783 if (!VT.isSimple()) 13784 return false; 13785 13786 switch (VT.getSimpleVT().SimpleTy) { 13787 case MVT::f32: 13788 case MVT::f64: 13789 return true; 13790 case MVT::f128: 13791 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 13792 default: 13793 break; 13794 } 13795 13796 return false; 13797 } 13798 13799 const MCPhysReg * 13800 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 13801 // LR is a callee-save register, but we must treat it as clobbered by any call 13802 // site. Hence we include LR in the scratch registers, which are in turn added 13803 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 13804 // to CTR, which is used by any indirect call. 13805 static const MCPhysReg ScratchRegs[] = { 13806 PPC::X12, PPC::LR8, PPC::CTR8, 0 13807 }; 13808 13809 return ScratchRegs; 13810 } 13811 13812 unsigned PPCTargetLowering::getExceptionPointerRegister( 13813 const Constant *PersonalityFn) const { 13814 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 13815 } 13816 13817 unsigned PPCTargetLowering::getExceptionSelectorRegister( 13818 const Constant *PersonalityFn) const { 13819 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 13820 } 13821 13822 bool 13823 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 13824 EVT VT , unsigned DefinedValues) const { 13825 if (VT == MVT::v2i64) 13826 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 13827 13828 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 13829 return true; 13830 13831 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 13832 } 13833 13834 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 13835 if (DisableILPPref || Subtarget.enableMachineScheduler()) 13836 return TargetLowering::getSchedulingPreference(N); 13837 13838 return Sched::ILP; 13839 } 13840 13841 // Create a fast isel object. 13842 FastISel * 13843 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 13844 const TargetLibraryInfo *LibInfo) const { 13845 return PPC::createFastISel(FuncInfo, LibInfo); 13846 } 13847 13848 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 13849 if (Subtarget.isDarwinABI()) return; 13850 if (!Subtarget.isPPC64()) return; 13851 13852 // Update IsSplitCSR in PPCFunctionInfo 13853 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 13854 PFI->setIsSplitCSR(true); 13855 } 13856 13857 void PPCTargetLowering::insertCopiesSplitCSR( 13858 MachineBasicBlock *Entry, 13859 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 13860 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 13861 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 13862 if (!IStart) 13863 return; 13864 13865 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 13866 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 13867 MachineBasicBlock::iterator MBBI = Entry->begin(); 13868 for (const MCPhysReg *I = IStart; *I; ++I) { 13869 const TargetRegisterClass *RC = nullptr; 13870 if (PPC::G8RCRegClass.contains(*I)) 13871 RC = &PPC::G8RCRegClass; 13872 else if (PPC::F8RCRegClass.contains(*I)) 13873 RC = &PPC::F8RCRegClass; 13874 else if (PPC::CRRCRegClass.contains(*I)) 13875 RC = &PPC::CRRCRegClass; 13876 else if (PPC::VRRCRegClass.contains(*I)) 13877 RC = &PPC::VRRCRegClass; 13878 else 13879 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 13880 13881 unsigned NewVR = MRI->createVirtualRegister(RC); 13882 // Create copy from CSR to a virtual register. 13883 // FIXME: this currently does not emit CFI pseudo-instructions, it works 13884 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 13885 // nounwind. If we want to generalize this later, we may need to emit 13886 // CFI pseudo-instructions. 13887 assert(Entry->getParent()->getFunction().hasFnAttribute( 13888 Attribute::NoUnwind) && 13889 "Function should be nounwind in insertCopiesSplitCSR!"); 13890 Entry->addLiveIn(*I); 13891 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 13892 .addReg(*I); 13893 13894 // Insert the copy-back instructions right before the terminator 13895 for (auto *Exit : Exits) 13896 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 13897 TII->get(TargetOpcode::COPY), *I) 13898 .addReg(NewVR); 13899 } 13900 } 13901 13902 // Override to enable LOAD_STACK_GUARD lowering on Linux. 13903 bool PPCTargetLowering::useLoadStackGuardNode() const { 13904 if (!Subtarget.isTargetLinux()) 13905 return TargetLowering::useLoadStackGuardNode(); 13906 return true; 13907 } 13908 13909 // Override to disable global variable loading on Linux. 13910 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 13911 if (!Subtarget.isTargetLinux()) 13912 return TargetLowering::insertSSPDeclarations(M); 13913 } 13914 13915 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 13916 if (!VT.isSimple() || !Subtarget.hasVSX()) 13917 return false; 13918 13919 switch(VT.getSimpleVT().SimpleTy) { 13920 default: 13921 // For FP types that are currently not supported by PPC backend, return 13922 // false. Examples: f16, f80. 13923 return false; 13924 case MVT::f32: 13925 case MVT::f64: 13926 case MVT::ppcf128: 13927 return Imm.isPosZero(); 13928 } 13929 } 13930 13931 // For vector shift operation op, fold 13932 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 13933 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 13934 SelectionDAG &DAG) { 13935 SDValue N0 = N->getOperand(0); 13936 SDValue N1 = N->getOperand(1); 13937 EVT VT = N0.getValueType(); 13938 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 13939 unsigned Opcode = N->getOpcode(); 13940 unsigned TargetOpcode; 13941 13942 switch (Opcode) { 13943 default: 13944 llvm_unreachable("Unexpected shift operation"); 13945 case ISD::SHL: 13946 TargetOpcode = PPCISD::SHL; 13947 break; 13948 case ISD::SRL: 13949 TargetOpcode = PPCISD::SRL; 13950 break; 13951 case ISD::SRA: 13952 TargetOpcode = PPCISD::SRA; 13953 break; 13954 } 13955 13956 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 13957 N1->getOpcode() == ISD::AND) 13958 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 13959 if (Mask->getZExtValue() == OpSizeInBits - 1) 13960 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 13961 13962 return SDValue(); 13963 } 13964 13965 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 13966 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 13967 return Value; 13968 13969 return SDValue(); 13970 } 13971 13972 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 13973 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 13974 return Value; 13975 13976 return SDValue(); 13977 } 13978 13979 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 13980 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 13981 return Value; 13982 13983 return SDValue(); 13984 } 13985 13986 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 13987 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 13988 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 13989 return false; 13990 13991 // If not a tail call then no need to proceed. 13992 if (!CI->isTailCall()) 13993 return false; 13994 13995 // If tail calls are disabled for the caller then we are done. 13996 const Function *Caller = CI->getParent()->getParent(); 13997 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 13998 if (Attr.getValueAsString() == "true") 13999 return false; 14000 14001 // If sibling calls have been disabled and tail-calls aren't guaranteed 14002 // there is no reason to duplicate. 14003 auto &TM = getTargetMachine(); 14004 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 14005 return false; 14006 14007 // Can't tail call a function called indirectly, or if it has variadic args. 14008 const Function *Callee = CI->getCalledFunction(); 14009 if (!Callee || Callee->isVarArg()) 14010 return false; 14011 14012 // Make sure the callee and caller calling conventions are eligible for tco. 14013 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 14014 CI->getCallingConv())) 14015 return false; 14016 14017 // If the function is local then we have a good chance at tail-calling it 14018 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 14019 } 14020 14021 bool PPCTargetLowering:: 14022 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 14023 const Value *Mask = AndI.getOperand(1); 14024 // If the mask is suitable for andi. or andis. we should sink the and. 14025 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 14026 // Can't handle constants wider than 64-bits. 14027 if (CI->getBitWidth() > 64) 14028 return false; 14029 int64_t ConstVal = CI->getZExtValue(); 14030 return isUInt<16>(ConstVal) || 14031 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 14032 } 14033 14034 // For non-constant masks, we can always use the record-form and. 14035 return true; 14036 } 14037