1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 // FIXME: Remove this once soft-float is supported. 46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 48 49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 51 52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 57 58 // FIXME: Remove this once the bug has been fixed! 59 extern cl::opt<bool> ANDIGlueBug; 60 61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 62 const PPCSubtarget &STI) 63 : TargetLowering(TM), Subtarget(STI) { 64 // Use _setjmp/_longjmp instead of setjmp/longjmp. 65 setUseUnderscoreSetJmp(true); 66 setUseUnderscoreLongJmp(true); 67 68 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 69 // arguments are at least 4/8 bytes aligned. 70 bool isPPC64 = Subtarget.isPPC64(); 71 setMinStackArgumentAlignment(isPPC64 ? 8:4); 72 73 // Set up the register classes. 74 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 75 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 76 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 77 78 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 79 for (MVT VT : MVT::integer_valuetypes()) { 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 81 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 82 } 83 84 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 85 86 // PowerPC has pre-inc load and store's. 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 101 102 if (Subtarget.useCRBits()) { 103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 104 105 if (isPPC64 || Subtarget.hasFPCVT()) { 106 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 107 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 108 isPPC64 ? MVT::i64 : MVT::i32); 109 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 110 AddPromotedToType (ISD::UINT_TO_FP, MVT::i1, 111 isPPC64 ? MVT::i64 : MVT::i32); 112 } else { 113 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 114 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 115 } 116 117 // PowerPC does not support direct load / store of condition registers 118 setOperationAction(ISD::LOAD, MVT::i1, Custom); 119 setOperationAction(ISD::STORE, MVT::i1, Custom); 120 121 // FIXME: Remove this once the ANDI glue bug is fixed: 122 if (ANDIGlueBug) 123 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 124 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 128 setTruncStoreAction(VT, MVT::i1, Expand); 129 } 130 131 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 132 } 133 134 // This is used in the ppcf128->int sequence. Note it has different semantics 135 // from FP_ROUND: that rounds to nearest, this rounds to zero. 136 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 137 138 // We do not currently implement these libm ops for PowerPC. 139 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 144 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 145 146 // PowerPC has no SREM/UREM instructions 147 setOperationAction(ISD::SREM, MVT::i32, Expand); 148 setOperationAction(ISD::UREM, MVT::i32, Expand); 149 setOperationAction(ISD::SREM, MVT::i64, Expand); 150 setOperationAction(ISD::UREM, MVT::i64, Expand); 151 152 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 153 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 155 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 159 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 161 162 // We don't support sin/cos/sqrt/fmod/pow 163 setOperationAction(ISD::FSIN , MVT::f64, Expand); 164 setOperationAction(ISD::FCOS , MVT::f64, Expand); 165 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 166 setOperationAction(ISD::FREM , MVT::f64, Expand); 167 setOperationAction(ISD::FPOW , MVT::f64, Expand); 168 setOperationAction(ISD::FMA , MVT::f64, Legal); 169 setOperationAction(ISD::FSIN , MVT::f32, Expand); 170 setOperationAction(ISD::FCOS , MVT::f32, Expand); 171 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 172 setOperationAction(ISD::FREM , MVT::f32, Expand); 173 setOperationAction(ISD::FPOW , MVT::f32, Expand); 174 setOperationAction(ISD::FMA , MVT::f32, Legal); 175 176 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 177 178 // If we're enabling GP optimizations, use hardware square root 179 if (!Subtarget.hasFSQRT() && 180 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 181 Subtarget.hasFRE())) 182 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 183 184 if (!Subtarget.hasFSQRT() && 185 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 186 Subtarget.hasFRES())) 187 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 188 189 if (Subtarget.hasFCPSGN()) { 190 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 191 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 192 } else { 193 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 194 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 195 } 196 197 if (Subtarget.hasFPRND()) { 198 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 199 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 200 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 201 setOperationAction(ISD::FROUND, MVT::f64, Legal); 202 203 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 204 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 205 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 206 setOperationAction(ISD::FROUND, MVT::f32, Legal); 207 } 208 209 // PowerPC does not have BSWAP, CTPOP or CTTZ 210 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 212 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 214 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 216 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 217 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 218 219 if (Subtarget.hasPOPCNTD()) { 220 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 221 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 222 } else { 223 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 224 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 225 } 226 227 // PowerPC does not have ROTR 228 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 229 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 230 231 if (!Subtarget.useCRBits()) { 232 // PowerPC does not have Select 233 setOperationAction(ISD::SELECT, MVT::i32, Expand); 234 setOperationAction(ISD::SELECT, MVT::i64, Expand); 235 setOperationAction(ISD::SELECT, MVT::f32, Expand); 236 setOperationAction(ISD::SELECT, MVT::f64, Expand); 237 } 238 239 // PowerPC wants to turn select_cc of FP into fsel when possible. 240 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 242 243 // PowerPC wants to optimize integer setcc a bit 244 if (!Subtarget.useCRBits()) 245 setOperationAction(ISD::SETCC, MVT::i32, Custom); 246 247 // PowerPC does not have BRCOND which requires SetCC 248 if (!Subtarget.useCRBits()) 249 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 250 251 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 252 253 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 255 256 // PowerPC does not have [U|S]INT_TO_FP 257 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 259 260 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 262 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 263 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 264 265 // We cannot sextinreg(i1). Expand to shifts. 266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 267 268 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 269 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 270 // support continuation, user-level threading, and etc.. As a result, no 271 // other SjLj exception interfaces are implemented and please don't build 272 // your own exception handling based on them. 273 // LLVM/Clang supports zero-cost DWARF exception handling. 274 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 275 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 276 277 // We want to legalize GlobalAddress and ConstantPool nodes into the 278 // appropriate instructions to materialize the address. 279 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 280 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 281 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 282 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 283 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 284 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 289 290 // TRAP is legal. 291 setOperationAction(ISD::TRAP, MVT::Other, Legal); 292 293 // TRAMPOLINE is custom lowered. 294 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 295 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 296 297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 298 setOperationAction(ISD::VASTART , MVT::Other, Custom); 299 300 if (Subtarget.isSVR4ABI()) { 301 if (isPPC64) { 302 // VAARG always uses double-word chunks, so promote anything smaller. 303 setOperationAction(ISD::VAARG, MVT::i1, Promote); 304 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 305 setOperationAction(ISD::VAARG, MVT::i8, Promote); 306 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 307 setOperationAction(ISD::VAARG, MVT::i16, Promote); 308 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 309 setOperationAction(ISD::VAARG, MVT::i32, Promote); 310 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 311 setOperationAction(ISD::VAARG, MVT::Other, Expand); 312 } else { 313 // VAARG is custom lowered with the 32-bit SVR4 ABI. 314 setOperationAction(ISD::VAARG, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::i64, Custom); 316 } 317 } else 318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 319 320 if (Subtarget.isSVR4ABI() && !isPPC64) 321 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 322 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 323 else 324 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 325 326 // Use the default implementation. 327 setOperationAction(ISD::VAEND , MVT::Other, Expand); 328 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 329 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 332 333 // We want to custom lower some of our intrinsics. 334 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 335 336 // To handle counter-based loop conditions. 337 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 338 339 // Comparisons that require checking two conditions. 340 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 341 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 342 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 343 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 344 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 345 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 347 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 348 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 349 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 350 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 351 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 352 353 if (Subtarget.has64BitSupport()) { 354 // They also have instructions for converting between i64 and fp. 355 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 356 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 357 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 358 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 359 // This is just the low 32 bits of a (signed) fp->i64 conversion. 360 // We cannot do this with Promote because i64 is not a legal type. 361 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 362 363 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 364 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 365 } else { 366 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 367 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 368 } 369 370 // With the instructions enabled under FPCVT, we can do everything. 371 if (Subtarget.hasFPCVT()) { 372 if (Subtarget.has64BitSupport()) { 373 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 374 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 375 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 376 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 377 } 378 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 383 } 384 385 if (Subtarget.use64BitRegs()) { 386 // 64-bit PowerPC implementations can support i64 types directly 387 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 388 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 389 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 390 // 64-bit PowerPC wants to expand i128 shifts itself. 391 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 392 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 393 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 394 } else { 395 // 32-bit PowerPC wants to expand i64 shifts itself. 396 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 397 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 398 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 399 } 400 401 if (Subtarget.hasAltivec()) { 402 // First set operation action for all vector types to expand. Then we 403 // will selectively turn on ones that can be effectively codegen'd. 404 for (MVT VT : MVT::vector_valuetypes()) { 405 // add/sub are legal for all supported vector VT's. 406 setOperationAction(ISD::ADD , VT, Legal); 407 setOperationAction(ISD::SUB , VT, Legal); 408 409 // Vector instructions introduced in P8 410 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 411 setOperationAction(ISD::CTPOP, VT, Legal); 412 setOperationAction(ISD::CTLZ, VT, Legal); 413 } 414 else { 415 setOperationAction(ISD::CTPOP, VT, Expand); 416 setOperationAction(ISD::CTLZ, VT, Expand); 417 } 418 419 // We promote all shuffles to v16i8. 420 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 421 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 422 423 // We promote all non-typed operations to v4i32. 424 setOperationAction(ISD::AND , VT, Promote); 425 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 426 setOperationAction(ISD::OR , VT, Promote); 427 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 428 setOperationAction(ISD::XOR , VT, Promote); 429 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 430 setOperationAction(ISD::LOAD , VT, Promote); 431 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 432 setOperationAction(ISD::SELECT, VT, Promote); 433 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 434 setOperationAction(ISD::STORE, VT, Promote); 435 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 436 437 // No other operations are legal. 438 setOperationAction(ISD::MUL , VT, Expand); 439 setOperationAction(ISD::SDIV, VT, Expand); 440 setOperationAction(ISD::SREM, VT, Expand); 441 setOperationAction(ISD::UDIV, VT, Expand); 442 setOperationAction(ISD::UREM, VT, Expand); 443 setOperationAction(ISD::FDIV, VT, Expand); 444 setOperationAction(ISD::FREM, VT, Expand); 445 setOperationAction(ISD::FNEG, VT, Expand); 446 setOperationAction(ISD::FSQRT, VT, Expand); 447 setOperationAction(ISD::FLOG, VT, Expand); 448 setOperationAction(ISD::FLOG10, VT, Expand); 449 setOperationAction(ISD::FLOG2, VT, Expand); 450 setOperationAction(ISD::FEXP, VT, Expand); 451 setOperationAction(ISD::FEXP2, VT, Expand); 452 setOperationAction(ISD::FSIN, VT, Expand); 453 setOperationAction(ISD::FCOS, VT, Expand); 454 setOperationAction(ISD::FABS, VT, Expand); 455 setOperationAction(ISD::FPOWI, VT, Expand); 456 setOperationAction(ISD::FFLOOR, VT, Expand); 457 setOperationAction(ISD::FCEIL, VT, Expand); 458 setOperationAction(ISD::FTRUNC, VT, Expand); 459 setOperationAction(ISD::FRINT, VT, Expand); 460 setOperationAction(ISD::FNEARBYINT, VT, Expand); 461 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 462 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 463 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 464 setOperationAction(ISD::MULHU, VT, Expand); 465 setOperationAction(ISD::MULHS, VT, Expand); 466 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 467 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 468 setOperationAction(ISD::UDIVREM, VT, Expand); 469 setOperationAction(ISD::SDIVREM, VT, Expand); 470 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 471 setOperationAction(ISD::FPOW, VT, Expand); 472 setOperationAction(ISD::BSWAP, VT, Expand); 473 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 474 setOperationAction(ISD::CTTZ, VT, Expand); 475 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 476 setOperationAction(ISD::VSELECT, VT, Expand); 477 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 478 479 for (MVT InnerVT : MVT::vector_valuetypes()) { 480 setTruncStoreAction(VT, InnerVT, Expand); 481 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 482 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 483 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 484 } 485 } 486 487 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 488 // with merges, splats, etc. 489 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 490 491 setOperationAction(ISD::AND , MVT::v4i32, Legal); 492 setOperationAction(ISD::OR , MVT::v4i32, Legal); 493 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 494 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 495 setOperationAction(ISD::SELECT, MVT::v4i32, 496 Subtarget.useCRBits() ? Legal : Expand); 497 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 498 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 499 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 500 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 501 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 502 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 503 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 504 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 505 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 506 507 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 508 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 509 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 510 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 511 512 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 513 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 514 515 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 516 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 517 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 518 } 519 520 521 if (Subtarget.hasP8Altivec()) 522 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 523 else 524 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 525 526 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 527 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 528 529 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 530 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 531 532 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 533 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 534 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 535 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 536 537 // Altivec does not contain unordered floating-point compare instructions 538 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 539 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 540 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 541 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 542 543 if (Subtarget.hasVSX()) { 544 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 545 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 546 547 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 548 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 549 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 550 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 551 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 552 553 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 554 555 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 556 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 557 558 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 559 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 560 561 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 562 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 563 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 564 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 565 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 566 567 // Share the Altivec comparison restrictions. 568 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 569 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 570 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 571 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 572 573 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 574 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 575 576 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 577 578 if (Subtarget.hasP8Vector()) 579 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 580 581 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 582 583 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 584 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 585 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 586 587 if (Subtarget.hasP8Altivec()) { 588 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 589 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 590 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 591 592 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 593 } 594 else { 595 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 596 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 597 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 598 599 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 600 601 // VSX v2i64 only supports non-arithmetic operations. 602 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 603 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 604 } 605 606 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 607 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 608 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 609 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 610 611 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 612 613 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 614 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 615 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 616 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 617 618 // Vector operation legalization checks the result type of 619 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 620 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 621 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 622 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 623 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 624 625 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 626 } 627 628 if (Subtarget.hasP8Altivec()) { 629 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 630 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 631 } 632 } 633 634 if (Subtarget.hasQPX()) { 635 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 636 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 637 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 638 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 639 640 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 641 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 642 643 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 644 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 645 646 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 647 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 648 649 if (!Subtarget.useCRBits()) 650 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 651 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 652 653 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 654 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 655 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 656 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 657 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 658 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 659 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 660 661 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 662 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 663 664 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 665 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 666 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 667 668 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 669 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 670 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 671 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 672 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 673 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 674 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 675 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 676 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 677 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 678 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 679 680 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 681 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 682 683 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 684 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 685 686 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 687 688 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 689 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 690 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 691 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 692 693 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 694 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 695 696 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 697 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 698 699 if (!Subtarget.useCRBits()) 700 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 701 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 702 703 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 704 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 705 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 706 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 707 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 708 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 709 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 710 711 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 712 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 713 714 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 715 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 716 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 717 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 718 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 719 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 720 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 721 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 722 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 723 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 724 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 725 726 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 727 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 728 729 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 730 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 731 732 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 733 734 setOperationAction(ISD::AND , MVT::v4i1, Legal); 735 setOperationAction(ISD::OR , MVT::v4i1, Legal); 736 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 737 738 if (!Subtarget.useCRBits()) 739 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 740 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 741 742 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 743 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 744 745 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 746 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 747 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 748 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 749 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 750 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 751 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 752 753 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 754 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 755 756 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 757 758 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 759 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 760 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 761 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 762 763 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 764 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 765 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 766 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 767 768 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 769 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 770 771 // These need to set FE_INEXACT, and so cannot be vectorized here. 772 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 773 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 774 775 if (TM.Options.UnsafeFPMath) { 776 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 777 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 778 779 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 780 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 781 } else { 782 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 783 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 784 785 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 786 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 787 } 788 } 789 790 if (Subtarget.has64BitSupport()) 791 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 792 793 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 794 795 if (!isPPC64) { 796 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 797 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 798 } 799 800 setBooleanContents(ZeroOrOneBooleanContent); 801 802 if (Subtarget.hasAltivec()) { 803 // Altivec instructions set fields to all zeros or all ones. 804 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 805 } 806 807 if (!isPPC64) { 808 // These libcalls are not available in 32-bit. 809 setLibcallName(RTLIB::SHL_I128, nullptr); 810 setLibcallName(RTLIB::SRL_I128, nullptr); 811 setLibcallName(RTLIB::SRA_I128, nullptr); 812 } 813 814 if (isPPC64) { 815 setStackPointerRegisterToSaveRestore(PPC::X1); 816 setExceptionPointerRegister(PPC::X3); 817 setExceptionSelectorRegister(PPC::X4); 818 } else { 819 setStackPointerRegisterToSaveRestore(PPC::R1); 820 setExceptionPointerRegister(PPC::R3); 821 setExceptionSelectorRegister(PPC::R4); 822 } 823 824 // We have target-specific dag combine patterns for the following nodes: 825 setTargetDAGCombine(ISD::SINT_TO_FP); 826 if (Subtarget.hasFPCVT()) 827 setTargetDAGCombine(ISD::UINT_TO_FP); 828 setTargetDAGCombine(ISD::LOAD); 829 setTargetDAGCombine(ISD::STORE); 830 setTargetDAGCombine(ISD::BR_CC); 831 if (Subtarget.useCRBits()) 832 setTargetDAGCombine(ISD::BRCOND); 833 setTargetDAGCombine(ISD::BSWAP); 834 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 835 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 836 setTargetDAGCombine(ISD::INTRINSIC_VOID); 837 838 setTargetDAGCombine(ISD::SIGN_EXTEND); 839 setTargetDAGCombine(ISD::ZERO_EXTEND); 840 setTargetDAGCombine(ISD::ANY_EXTEND); 841 842 if (Subtarget.useCRBits()) { 843 setTargetDAGCombine(ISD::TRUNCATE); 844 setTargetDAGCombine(ISD::SETCC); 845 setTargetDAGCombine(ISD::SELECT_CC); 846 } 847 848 // Use reciprocal estimates. 849 if (TM.Options.UnsafeFPMath) { 850 setTargetDAGCombine(ISD::FDIV); 851 setTargetDAGCombine(ISD::FSQRT); 852 } 853 854 // Darwin long double math library functions have $LDBL128 appended. 855 if (Subtarget.isDarwin()) { 856 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 857 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 858 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 859 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 860 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 861 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 862 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 863 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 864 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 865 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 866 } 867 868 // With 32 condition bits, we don't need to sink (and duplicate) compares 869 // aggressively in CodeGenPrep. 870 if (Subtarget.useCRBits()) { 871 setHasMultipleConditionRegisters(); 872 setJumpIsExpensive(); 873 } 874 875 setMinFunctionAlignment(2); 876 if (Subtarget.isDarwin()) 877 setPrefFunctionAlignment(4); 878 879 switch (Subtarget.getDarwinDirective()) { 880 default: break; 881 case PPC::DIR_970: 882 case PPC::DIR_A2: 883 case PPC::DIR_E500mc: 884 case PPC::DIR_E5500: 885 case PPC::DIR_PWR4: 886 case PPC::DIR_PWR5: 887 case PPC::DIR_PWR5X: 888 case PPC::DIR_PWR6: 889 case PPC::DIR_PWR6X: 890 case PPC::DIR_PWR7: 891 case PPC::DIR_PWR8: 892 setPrefFunctionAlignment(4); 893 setPrefLoopAlignment(4); 894 break; 895 } 896 897 setInsertFencesForAtomic(true); 898 899 if (Subtarget.enableMachineScheduler()) 900 setSchedulingPreference(Sched::Source); 901 else 902 setSchedulingPreference(Sched::Hybrid); 903 904 computeRegisterProperties(STI.getRegisterInfo()); 905 906 // The Freescale cores do better with aggressive inlining of memcpy and 907 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 908 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 909 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 910 MaxStoresPerMemset = 32; 911 MaxStoresPerMemsetOptSize = 16; 912 MaxStoresPerMemcpy = 32; 913 MaxStoresPerMemcpyOptSize = 8; 914 MaxStoresPerMemmove = 32; 915 MaxStoresPerMemmoveOptSize = 8; 916 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 917 // The A2 also benefits from (very) aggressive inlining of memcpy and 918 // friends. The overhead of a the function call, even when warm, can be 919 // over one hundred cycles. 920 MaxStoresPerMemset = 128; 921 MaxStoresPerMemcpy = 128; 922 MaxStoresPerMemmove = 128; 923 } 924 } 925 926 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 927 /// the desired ByVal argument alignment. 928 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 929 unsigned MaxMaxAlign) { 930 if (MaxAlign == MaxMaxAlign) 931 return; 932 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 933 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 934 MaxAlign = 32; 935 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 936 MaxAlign = 16; 937 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 938 unsigned EltAlign = 0; 939 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 940 if (EltAlign > MaxAlign) 941 MaxAlign = EltAlign; 942 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 943 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 944 unsigned EltAlign = 0; 945 getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign); 946 if (EltAlign > MaxAlign) 947 MaxAlign = EltAlign; 948 if (MaxAlign == MaxMaxAlign) 949 break; 950 } 951 } 952 } 953 954 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 955 /// function arguments in the caller parameter area. 956 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 957 const DataLayout &DL) const { 958 // Darwin passes everything on 4 byte boundary. 959 if (Subtarget.isDarwin()) 960 return 4; 961 962 // 16byte and wider vectors are passed on 16byte boundary. 963 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 964 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 965 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 966 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 967 return Align; 968 } 969 970 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 971 switch ((PPCISD::NodeType)Opcode) { 972 case PPCISD::FIRST_NUMBER: break; 973 case PPCISD::FSEL: return "PPCISD::FSEL"; 974 case PPCISD::FCFID: return "PPCISD::FCFID"; 975 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 976 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 977 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 978 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 979 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 980 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 981 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 982 case PPCISD::FRE: return "PPCISD::FRE"; 983 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 984 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 985 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 986 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 987 case PPCISD::VPERM: return "PPCISD::VPERM"; 988 case PPCISD::CMPB: return "PPCISD::CMPB"; 989 case PPCISD::Hi: return "PPCISD::Hi"; 990 case PPCISD::Lo: return "PPCISD::Lo"; 991 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 992 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 993 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 994 case PPCISD::SRL: return "PPCISD::SRL"; 995 case PPCISD::SRA: return "PPCISD::SRA"; 996 case PPCISD::SHL: return "PPCISD::SHL"; 997 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 998 case PPCISD::CALL: return "PPCISD::CALL"; 999 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1000 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1001 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1002 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1003 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1004 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1005 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1006 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1007 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1008 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1009 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1010 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1011 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1012 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1013 case PPCISD::VCMP: return "PPCISD::VCMP"; 1014 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1015 case PPCISD::LBRX: return "PPCISD::LBRX"; 1016 case PPCISD::STBRX: return "PPCISD::STBRX"; 1017 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1018 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1019 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1020 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1021 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1022 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1023 case PPCISD::BDZ: return "PPCISD::BDZ"; 1024 case PPCISD::MFFS: return "PPCISD::MFFS"; 1025 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1026 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1027 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1028 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1029 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1030 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1031 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1032 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1033 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1034 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1035 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1036 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1037 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1038 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1039 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1040 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1041 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1042 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1043 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1044 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1045 case PPCISD::SC: return "PPCISD::SC"; 1046 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1047 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1048 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1049 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1050 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1051 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1052 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1053 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1054 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1055 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1056 } 1057 return nullptr; 1058 } 1059 1060 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1061 EVT VT) const { 1062 if (!VT.isVector()) 1063 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1064 1065 if (Subtarget.hasQPX()) 1066 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1067 1068 return VT.changeVectorElementTypeToInteger(); 1069 } 1070 1071 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1072 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1073 return true; 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // Node matching predicates, for use by the tblgen matching code. 1078 //===----------------------------------------------------------------------===// 1079 1080 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1081 static bool isFloatingPointZero(SDValue Op) { 1082 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1083 return CFP->getValueAPF().isZero(); 1084 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1085 // Maybe this has already been legalized into the constant pool? 1086 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1087 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1088 return CFP->getValueAPF().isZero(); 1089 } 1090 return false; 1091 } 1092 1093 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1094 /// true if Op is undef or if it matches the specified value. 1095 static bool isConstantOrUndef(int Op, int Val) { 1096 return Op < 0 || Op == Val; 1097 } 1098 1099 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1100 /// VPKUHUM instruction. 1101 /// The ShuffleKind distinguishes between big-endian operations with 1102 /// two different inputs (0), either-endian operations with two identical 1103 /// inputs (1), and little-endian operations with two different inputs (2). 1104 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1105 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1106 SelectionDAG &DAG) { 1107 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1108 if (ShuffleKind == 0) { 1109 if (IsLE) 1110 return false; 1111 for (unsigned i = 0; i != 16; ++i) 1112 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1113 return false; 1114 } else if (ShuffleKind == 2) { 1115 if (!IsLE) 1116 return false; 1117 for (unsigned i = 0; i != 16; ++i) 1118 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1119 return false; 1120 } else if (ShuffleKind == 1) { 1121 unsigned j = IsLE ? 0 : 1; 1122 for (unsigned i = 0; i != 8; ++i) 1123 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1124 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1125 return false; 1126 } 1127 return true; 1128 } 1129 1130 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1131 /// VPKUWUM instruction. 1132 /// The ShuffleKind distinguishes between big-endian operations with 1133 /// two different inputs (0), either-endian operations with two identical 1134 /// inputs (1), and little-endian operations with two different inputs (2). 1135 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1136 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1137 SelectionDAG &DAG) { 1138 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1139 if (ShuffleKind == 0) { 1140 if (IsLE) 1141 return false; 1142 for (unsigned i = 0; i != 16; i += 2) 1143 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1144 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1145 return false; 1146 } else if (ShuffleKind == 2) { 1147 if (!IsLE) 1148 return false; 1149 for (unsigned i = 0; i != 16; i += 2) 1150 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1151 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1152 return false; 1153 } else if (ShuffleKind == 1) { 1154 unsigned j = IsLE ? 0 : 2; 1155 for (unsigned i = 0; i != 8; i += 2) 1156 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1157 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1158 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1159 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1160 return false; 1161 } 1162 return true; 1163 } 1164 1165 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1166 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1167 /// current subtarget. 1168 /// 1169 /// The ShuffleKind distinguishes between big-endian operations with 1170 /// two different inputs (0), either-endian operations with two identical 1171 /// inputs (1), and little-endian operations with two different inputs (2). 1172 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1173 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1174 SelectionDAG &DAG) { 1175 const PPCSubtarget& Subtarget = 1176 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1177 if (!Subtarget.hasP8Vector()) 1178 return false; 1179 1180 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1181 if (ShuffleKind == 0) { 1182 if (IsLE) 1183 return false; 1184 for (unsigned i = 0; i != 16; i += 4) 1185 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1186 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1187 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1188 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1189 return false; 1190 } else if (ShuffleKind == 2) { 1191 if (!IsLE) 1192 return false; 1193 for (unsigned i = 0; i != 16; i += 4) 1194 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1195 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1196 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1197 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1198 return false; 1199 } else if (ShuffleKind == 1) { 1200 unsigned j = IsLE ? 0 : 4; 1201 for (unsigned i = 0; i != 8; i += 4) 1202 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1203 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1204 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1205 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1206 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1207 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1208 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1209 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1210 return false; 1211 } 1212 return true; 1213 } 1214 1215 /// isVMerge - Common function, used to match vmrg* shuffles. 1216 /// 1217 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1218 unsigned LHSStart, unsigned RHSStart) { 1219 if (N->getValueType(0) != MVT::v16i8) 1220 return false; 1221 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1222 "Unsupported merge size!"); 1223 1224 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1225 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1226 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1227 LHSStart+j+i*UnitSize) || 1228 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1229 RHSStart+j+i*UnitSize)) 1230 return false; 1231 } 1232 return true; 1233 } 1234 1235 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1236 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1237 /// The ShuffleKind distinguishes between big-endian merges with two 1238 /// different inputs (0), either-endian merges with two identical inputs (1), 1239 /// and little-endian merges with two different inputs (2). For the latter, 1240 /// the input operands are swapped (see PPCInstrAltivec.td). 1241 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1242 unsigned ShuffleKind, SelectionDAG &DAG) { 1243 if (DAG.getDataLayout().isLittleEndian()) { 1244 if (ShuffleKind == 1) // unary 1245 return isVMerge(N, UnitSize, 0, 0); 1246 else if (ShuffleKind == 2) // swapped 1247 return isVMerge(N, UnitSize, 0, 16); 1248 else 1249 return false; 1250 } else { 1251 if (ShuffleKind == 1) // unary 1252 return isVMerge(N, UnitSize, 8, 8); 1253 else if (ShuffleKind == 0) // normal 1254 return isVMerge(N, UnitSize, 8, 24); 1255 else 1256 return false; 1257 } 1258 } 1259 1260 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1261 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1262 /// The ShuffleKind distinguishes between big-endian merges with two 1263 /// different inputs (0), either-endian merges with two identical inputs (1), 1264 /// and little-endian merges with two different inputs (2). For the latter, 1265 /// the input operands are swapped (see PPCInstrAltivec.td). 1266 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1267 unsigned ShuffleKind, SelectionDAG &DAG) { 1268 if (DAG.getDataLayout().isLittleEndian()) { 1269 if (ShuffleKind == 1) // unary 1270 return isVMerge(N, UnitSize, 8, 8); 1271 else if (ShuffleKind == 2) // swapped 1272 return isVMerge(N, UnitSize, 8, 24); 1273 else 1274 return false; 1275 } else { 1276 if (ShuffleKind == 1) // unary 1277 return isVMerge(N, UnitSize, 0, 0); 1278 else if (ShuffleKind == 0) // normal 1279 return isVMerge(N, UnitSize, 0, 16); 1280 else 1281 return false; 1282 } 1283 } 1284 1285 /** 1286 * \brief Common function used to match vmrgew and vmrgow shuffles 1287 * 1288 * The indexOffset determines whether to look for even or odd words in 1289 * the shuffle mask. This is based on the of the endianness of the target 1290 * machine. 1291 * - Little Endian: 1292 * - Use offset of 0 to check for odd elements 1293 * - Use offset of 4 to check for even elements 1294 * - Big Endian: 1295 * - Use offset of 0 to check for even elements 1296 * - Use offset of 4 to check for odd elements 1297 * A detailed description of the vector element ordering for little endian and 1298 * big endian can be found at 1299 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1300 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1301 * compiler differences mean to you 1302 * 1303 * The mask to the shuffle vector instruction specifies the indices of the 1304 * elements from the two input vectors to place in the result. The elements are 1305 * numbered in array-access order, starting with the first vector. These vectors 1306 * are always of type v16i8, thus each vector will contain 16 elements of size 1307 * 8. More info on the shuffle vector can be found in the 1308 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1309 * Language Reference. 1310 * 1311 * The RHSStartValue indicates whether the same input vectors are used (unary) 1312 * or two different input vectors are used, based on the following: 1313 * - If the instruction uses the same vector for both inputs, the range of the 1314 * indices will be 0 to 15. In this case, the RHSStart value passed should 1315 * be 0. 1316 * - If the instruction has two different vectors then the range of the 1317 * indices will be 0 to 31. In this case, the RHSStart value passed should 1318 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1319 * to 31 specify elements in the second vector). 1320 * 1321 * \param[in] N The shuffle vector SD Node to analyze 1322 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1323 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1324 * vector to the shuffle_vector instruction 1325 * \return true iff this shuffle vector represents an even or odd word merge 1326 */ 1327 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1328 unsigned RHSStartValue) { 1329 if (N->getValueType(0) != MVT::v16i8) 1330 return false; 1331 1332 for (unsigned i = 0; i < 2; ++i) 1333 for (unsigned j = 0; j < 4; ++j) 1334 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1335 i*RHSStartValue+j+IndexOffset) || 1336 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1337 i*RHSStartValue+j+IndexOffset+8)) 1338 return false; 1339 return true; 1340 } 1341 1342 /** 1343 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1344 * vmrgow instructions. 1345 * 1346 * \param[in] N The shuffle vector SD Node to analyze 1347 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1348 * \param[in] ShuffleKind Identify the type of merge: 1349 * - 0 = big-endian merge with two different inputs; 1350 * - 1 = either-endian merge with two identical inputs; 1351 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1352 * little-endian merges). 1353 * \param[in] DAG The current SelectionDAG 1354 * \return true iff this shuffle mask 1355 */ 1356 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1357 unsigned ShuffleKind, SelectionDAG &DAG) { 1358 if (DAG.getDataLayout().isLittleEndian()) { 1359 unsigned indexOffset = CheckEven ? 4 : 0; 1360 if (ShuffleKind == 1) // Unary 1361 return isVMerge(N, indexOffset, 0); 1362 else if (ShuffleKind == 2) // swapped 1363 return isVMerge(N, indexOffset, 16); 1364 else 1365 return false; 1366 } 1367 else { 1368 unsigned indexOffset = CheckEven ? 0 : 4; 1369 if (ShuffleKind == 1) // Unary 1370 return isVMerge(N, indexOffset, 0); 1371 else if (ShuffleKind == 0) // Normal 1372 return isVMerge(N, indexOffset, 16); 1373 else 1374 return false; 1375 } 1376 return false; 1377 } 1378 1379 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1380 /// amount, otherwise return -1. 1381 /// The ShuffleKind distinguishes between big-endian operations with two 1382 /// different inputs (0), either-endian operations with two identical inputs 1383 /// (1), and little-endian operations with two different inputs (2). For the 1384 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1385 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1386 SelectionDAG &DAG) { 1387 if (N->getValueType(0) != MVT::v16i8) 1388 return -1; 1389 1390 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1391 1392 // Find the first non-undef value in the shuffle mask. 1393 unsigned i; 1394 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1395 /*search*/; 1396 1397 if (i == 16) return -1; // all undef. 1398 1399 // Otherwise, check to see if the rest of the elements are consecutively 1400 // numbered from this value. 1401 unsigned ShiftAmt = SVOp->getMaskElt(i); 1402 if (ShiftAmt < i) return -1; 1403 1404 ShiftAmt -= i; 1405 bool isLE = DAG.getDataLayout().isLittleEndian(); 1406 1407 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1408 // Check the rest of the elements to see if they are consecutive. 1409 for (++i; i != 16; ++i) 1410 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1411 return -1; 1412 } else if (ShuffleKind == 1) { 1413 // Check the rest of the elements to see if they are consecutive. 1414 for (++i; i != 16; ++i) 1415 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1416 return -1; 1417 } else 1418 return -1; 1419 1420 if (isLE) 1421 ShiftAmt = 16 - ShiftAmt; 1422 1423 return ShiftAmt; 1424 } 1425 1426 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1427 /// specifies a splat of a single element that is suitable for input to 1428 /// VSPLTB/VSPLTH/VSPLTW. 1429 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1430 assert(N->getValueType(0) == MVT::v16i8 && 1431 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1432 1433 // This is a splat operation if each element of the permute is the same, and 1434 // if the value doesn't reference the second vector. 1435 unsigned ElementBase = N->getMaskElt(0); 1436 1437 // FIXME: Handle UNDEF elements too! 1438 if (ElementBase >= 16) 1439 return false; 1440 1441 // Check that the indices are consecutive, in the case of a multi-byte element 1442 // splatted with a v16i8 mask. 1443 for (unsigned i = 1; i != EltSize; ++i) 1444 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1445 return false; 1446 1447 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1448 if (N->getMaskElt(i) < 0) continue; 1449 for (unsigned j = 0; j != EltSize; ++j) 1450 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1451 return false; 1452 } 1453 return true; 1454 } 1455 1456 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1457 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1458 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1459 SelectionDAG &DAG) { 1460 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1461 assert(isSplatShuffleMask(SVOp, EltSize)); 1462 if (DAG.getDataLayout().isLittleEndian()) 1463 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1464 else 1465 return SVOp->getMaskElt(0) / EltSize; 1466 } 1467 1468 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1469 /// by using a vspltis[bhw] instruction of the specified element size, return 1470 /// the constant being splatted. The ByteSize field indicates the number of 1471 /// bytes of each element [124] -> [bhw]. 1472 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1473 SDValue OpVal(nullptr, 0); 1474 1475 // If ByteSize of the splat is bigger than the element size of the 1476 // build_vector, then we have a case where we are checking for a splat where 1477 // multiple elements of the buildvector are folded together into a single 1478 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1479 unsigned EltSize = 16/N->getNumOperands(); 1480 if (EltSize < ByteSize) { 1481 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1482 SDValue UniquedVals[4]; 1483 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1484 1485 // See if all of the elements in the buildvector agree across. 1486 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1487 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1488 // If the element isn't a constant, bail fully out. 1489 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1490 1491 1492 if (!UniquedVals[i&(Multiple-1)].getNode()) 1493 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1494 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1495 return SDValue(); // no match. 1496 } 1497 1498 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1499 // either constant or undef values that are identical for each chunk. See 1500 // if these chunks can form into a larger vspltis*. 1501 1502 // Check to see if all of the leading entries are either 0 or -1. If 1503 // neither, then this won't fit into the immediate field. 1504 bool LeadingZero = true; 1505 bool LeadingOnes = true; 1506 for (unsigned i = 0; i != Multiple-1; ++i) { 1507 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1508 1509 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 1510 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 1511 } 1512 // Finally, check the least significant entry. 1513 if (LeadingZero) { 1514 if (!UniquedVals[Multiple-1].getNode()) 1515 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1516 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1517 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1518 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1519 } 1520 if (LeadingOnes) { 1521 if (!UniquedVals[Multiple-1].getNode()) 1522 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1523 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1524 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1525 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1526 } 1527 1528 return SDValue(); 1529 } 1530 1531 // Check to see if this buildvec has a single non-undef value in its elements. 1532 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1533 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1534 if (!OpVal.getNode()) 1535 OpVal = N->getOperand(i); 1536 else if (OpVal != N->getOperand(i)) 1537 return SDValue(); 1538 } 1539 1540 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1541 1542 unsigned ValSizeInBytes = EltSize; 1543 uint64_t Value = 0; 1544 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1545 Value = CN->getZExtValue(); 1546 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1547 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1548 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1549 } 1550 1551 // If the splat value is larger than the element value, then we can never do 1552 // this splat. The only case that we could fit the replicated bits into our 1553 // immediate field for would be zero, and we prefer to use vxor for it. 1554 if (ValSizeInBytes < ByteSize) return SDValue(); 1555 1556 // If the element value is larger than the splat value, check if it consists 1557 // of a repeated bit pattern of size ByteSize. 1558 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1559 return SDValue(); 1560 1561 // Properly sign extend the value. 1562 int MaskVal = SignExtend32(Value, ByteSize * 8); 1563 1564 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1565 if (MaskVal == 0) return SDValue(); 1566 1567 // Finally, if this value fits in a 5 bit sext field, return it 1568 if (SignExtend32<5>(MaskVal) == MaskVal) 1569 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1570 return SDValue(); 1571 } 1572 1573 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1574 /// amount, otherwise return -1. 1575 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1576 EVT VT = N->getValueType(0); 1577 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1578 return -1; 1579 1580 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1581 1582 // Find the first non-undef value in the shuffle mask. 1583 unsigned i; 1584 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1585 /*search*/; 1586 1587 if (i == 4) return -1; // all undef. 1588 1589 // Otherwise, check to see if the rest of the elements are consecutively 1590 // numbered from this value. 1591 unsigned ShiftAmt = SVOp->getMaskElt(i); 1592 if (ShiftAmt < i) return -1; 1593 ShiftAmt -= i; 1594 1595 // Check the rest of the elements to see if they are consecutive. 1596 for (++i; i != 4; ++i) 1597 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1598 return -1; 1599 1600 return ShiftAmt; 1601 } 1602 1603 //===----------------------------------------------------------------------===// 1604 // Addressing Mode Selection 1605 //===----------------------------------------------------------------------===// 1606 1607 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1608 /// or 64-bit immediate, and if the value can be accurately represented as a 1609 /// sign extension from a 16-bit value. If so, this returns true and the 1610 /// immediate. 1611 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1612 if (!isa<ConstantSDNode>(N)) 1613 return false; 1614 1615 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1616 if (N->getValueType(0) == MVT::i32) 1617 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1618 else 1619 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1620 } 1621 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1622 return isIntS16Immediate(Op.getNode(), Imm); 1623 } 1624 1625 1626 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1627 /// can be represented as an indexed [r+r] operation. Returns false if it 1628 /// can be more efficiently represented with [r+imm]. 1629 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1630 SDValue &Index, 1631 SelectionDAG &DAG) const { 1632 short imm = 0; 1633 if (N.getOpcode() == ISD::ADD) { 1634 if (isIntS16Immediate(N.getOperand(1), imm)) 1635 return false; // r+i 1636 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1637 return false; // r+i 1638 1639 Base = N.getOperand(0); 1640 Index = N.getOperand(1); 1641 return true; 1642 } else if (N.getOpcode() == ISD::OR) { 1643 if (isIntS16Immediate(N.getOperand(1), imm)) 1644 return false; // r+i can fold it if we can. 1645 1646 // If this is an or of disjoint bitfields, we can codegen this as an add 1647 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1648 // disjoint. 1649 APInt LHSKnownZero, LHSKnownOne; 1650 APInt RHSKnownZero, RHSKnownOne; 1651 DAG.computeKnownBits(N.getOperand(0), 1652 LHSKnownZero, LHSKnownOne); 1653 1654 if (LHSKnownZero.getBoolValue()) { 1655 DAG.computeKnownBits(N.getOperand(1), 1656 RHSKnownZero, RHSKnownOne); 1657 // If all of the bits are known zero on the LHS or RHS, the add won't 1658 // carry. 1659 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1660 Base = N.getOperand(0); 1661 Index = N.getOperand(1); 1662 return true; 1663 } 1664 } 1665 } 1666 1667 return false; 1668 } 1669 1670 // If we happen to be doing an i64 load or store into a stack slot that has 1671 // less than a 4-byte alignment, then the frame-index elimination may need to 1672 // use an indexed load or store instruction (because the offset may not be a 1673 // multiple of 4). The extra register needed to hold the offset comes from the 1674 // register scavenger, and it is possible that the scavenger will need to use 1675 // an emergency spill slot. As a result, we need to make sure that a spill slot 1676 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1677 // stack slot. 1678 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1679 // FIXME: This does not handle the LWA case. 1680 if (VT != MVT::i64) 1681 return; 1682 1683 // NOTE: We'll exclude negative FIs here, which come from argument 1684 // lowering, because there are no known test cases triggering this problem 1685 // using packed structures (or similar). We can remove this exclusion if 1686 // we find such a test case. The reason why this is so test-case driven is 1687 // because this entire 'fixup' is only to prevent crashes (from the 1688 // register scavenger) on not-really-valid inputs. For example, if we have: 1689 // %a = alloca i1 1690 // %b = bitcast i1* %a to i64* 1691 // store i64* a, i64 b 1692 // then the store should really be marked as 'align 1', but is not. If it 1693 // were marked as 'align 1' then the indexed form would have been 1694 // instruction-selected initially, and the problem this 'fixup' is preventing 1695 // won't happen regardless. 1696 if (FrameIdx < 0) 1697 return; 1698 1699 MachineFunction &MF = DAG.getMachineFunction(); 1700 MachineFrameInfo *MFI = MF.getFrameInfo(); 1701 1702 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1703 if (Align >= 4) 1704 return; 1705 1706 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1707 FuncInfo->setHasNonRISpills(); 1708 } 1709 1710 /// Returns true if the address N can be represented by a base register plus 1711 /// a signed 16-bit displacement [r+imm], and if it is not better 1712 /// represented as reg+reg. If Aligned is true, only accept displacements 1713 /// suitable for STD and friends, i.e. multiples of 4. 1714 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1715 SDValue &Base, 1716 SelectionDAG &DAG, 1717 bool Aligned) const { 1718 // FIXME dl should come from parent load or store, not from address 1719 SDLoc dl(N); 1720 // If this can be more profitably realized as r+r, fail. 1721 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1722 return false; 1723 1724 if (N.getOpcode() == ISD::ADD) { 1725 short imm = 0; 1726 if (isIntS16Immediate(N.getOperand(1), imm) && 1727 (!Aligned || (imm & 3) == 0)) { 1728 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1729 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1730 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1731 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1732 } else { 1733 Base = N.getOperand(0); 1734 } 1735 return true; // [r+i] 1736 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1737 // Match LOAD (ADD (X, Lo(G))). 1738 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1739 && "Cannot handle constant offsets yet!"); 1740 Disp = N.getOperand(1).getOperand(0); // The global address. 1741 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1742 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1743 Disp.getOpcode() == ISD::TargetConstantPool || 1744 Disp.getOpcode() == ISD::TargetJumpTable); 1745 Base = N.getOperand(0); 1746 return true; // [&g+r] 1747 } 1748 } else if (N.getOpcode() == ISD::OR) { 1749 short imm = 0; 1750 if (isIntS16Immediate(N.getOperand(1), imm) && 1751 (!Aligned || (imm & 3) == 0)) { 1752 // If this is an or of disjoint bitfields, we can codegen this as an add 1753 // (for better address arithmetic) if the LHS and RHS of the OR are 1754 // provably disjoint. 1755 APInt LHSKnownZero, LHSKnownOne; 1756 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1757 1758 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1759 // If all of the bits are known zero on the LHS or RHS, the add won't 1760 // carry. 1761 if (FrameIndexSDNode *FI = 1762 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1763 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1764 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1765 } else { 1766 Base = N.getOperand(0); 1767 } 1768 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1769 return true; 1770 } 1771 } 1772 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1773 // Loading from a constant address. 1774 1775 // If this address fits entirely in a 16-bit sext immediate field, codegen 1776 // this as "d, 0" 1777 short Imm; 1778 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1779 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1780 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1781 CN->getValueType(0)); 1782 return true; 1783 } 1784 1785 // Handle 32-bit sext immediates with LIS + addr mode. 1786 if ((CN->getValueType(0) == MVT::i32 || 1787 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1788 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1789 int Addr = (int)CN->getZExtValue(); 1790 1791 // Otherwise, break this down into an LIS + disp. 1792 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1793 1794 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1795 MVT::i32); 1796 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1797 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1798 return true; 1799 } 1800 } 1801 1802 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1803 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1804 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1805 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1806 } else 1807 Base = N; 1808 return true; // [r+0] 1809 } 1810 1811 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1812 /// represented as an indexed [r+r] operation. 1813 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1814 SDValue &Index, 1815 SelectionDAG &DAG) const { 1816 // Check to see if we can easily represent this as an [r+r] address. This 1817 // will fail if it thinks that the address is more profitably represented as 1818 // reg+imm, e.g. where imm = 0. 1819 if (SelectAddressRegReg(N, Base, Index, DAG)) 1820 return true; 1821 1822 // If the operand is an addition, always emit this as [r+r], since this is 1823 // better (for code size, and execution, as the memop does the add for free) 1824 // than emitting an explicit add. 1825 if (N.getOpcode() == ISD::ADD) { 1826 Base = N.getOperand(0); 1827 Index = N.getOperand(1); 1828 return true; 1829 } 1830 1831 // Otherwise, do it the hard way, using R0 as the base register. 1832 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1833 N.getValueType()); 1834 Index = N; 1835 return true; 1836 } 1837 1838 /// getPreIndexedAddressParts - returns true by value, base pointer and 1839 /// offset pointer and addressing mode by reference if the node's address 1840 /// can be legally represented as pre-indexed load / store address. 1841 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1842 SDValue &Offset, 1843 ISD::MemIndexedMode &AM, 1844 SelectionDAG &DAG) const { 1845 if (DisablePPCPreinc) return false; 1846 1847 bool isLoad = true; 1848 SDValue Ptr; 1849 EVT VT; 1850 unsigned Alignment; 1851 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1852 Ptr = LD->getBasePtr(); 1853 VT = LD->getMemoryVT(); 1854 Alignment = LD->getAlignment(); 1855 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1856 Ptr = ST->getBasePtr(); 1857 VT = ST->getMemoryVT(); 1858 Alignment = ST->getAlignment(); 1859 isLoad = false; 1860 } else 1861 return false; 1862 1863 // PowerPC doesn't have preinc load/store instructions for vectors (except 1864 // for QPX, which does have preinc r+r forms). 1865 if (VT.isVector()) { 1866 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1867 return false; 1868 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1869 AM = ISD::PRE_INC; 1870 return true; 1871 } 1872 } 1873 1874 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1875 1876 // Common code will reject creating a pre-inc form if the base pointer 1877 // is a frame index, or if N is a store and the base pointer is either 1878 // the same as or a predecessor of the value being stored. Check for 1879 // those situations here, and try with swapped Base/Offset instead. 1880 bool Swap = false; 1881 1882 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1883 Swap = true; 1884 else if (!isLoad) { 1885 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1886 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1887 Swap = true; 1888 } 1889 1890 if (Swap) 1891 std::swap(Base, Offset); 1892 1893 AM = ISD::PRE_INC; 1894 return true; 1895 } 1896 1897 // LDU/STU can only handle immediates that are a multiple of 4. 1898 if (VT != MVT::i64) { 1899 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1900 return false; 1901 } else { 1902 // LDU/STU need an address with at least 4-byte alignment. 1903 if (Alignment < 4) 1904 return false; 1905 1906 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1907 return false; 1908 } 1909 1910 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1911 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1912 // sext i32 to i64 when addr mode is r+i. 1913 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1914 LD->getExtensionType() == ISD::SEXTLOAD && 1915 isa<ConstantSDNode>(Offset)) 1916 return false; 1917 } 1918 1919 AM = ISD::PRE_INC; 1920 return true; 1921 } 1922 1923 //===----------------------------------------------------------------------===// 1924 // LowerOperation implementation 1925 //===----------------------------------------------------------------------===// 1926 1927 /// GetLabelAccessInfo - Return true if we should reference labels using a 1928 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1929 static bool GetLabelAccessInfo(const TargetMachine &TM, 1930 const PPCSubtarget &Subtarget, 1931 unsigned &HiOpFlags, unsigned &LoOpFlags, 1932 const GlobalValue *GV = nullptr) { 1933 HiOpFlags = PPCII::MO_HA; 1934 LoOpFlags = PPCII::MO_LO; 1935 1936 // Don't use the pic base if not in PIC relocation model. 1937 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1938 1939 if (isPIC) { 1940 HiOpFlags |= PPCII::MO_PIC_FLAG; 1941 LoOpFlags |= PPCII::MO_PIC_FLAG; 1942 } 1943 1944 // If this is a reference to a global value that requires a non-lazy-ptr, make 1945 // sure that instruction lowering adds it. 1946 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1947 HiOpFlags |= PPCII::MO_NLP_FLAG; 1948 LoOpFlags |= PPCII::MO_NLP_FLAG; 1949 1950 if (GV->hasHiddenVisibility()) { 1951 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1952 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1953 } 1954 } 1955 1956 return isPIC; 1957 } 1958 1959 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1960 SelectionDAG &DAG) { 1961 SDLoc DL(HiPart); 1962 EVT PtrVT = HiPart.getValueType(); 1963 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1964 1965 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1966 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1967 1968 // With PIC, the first instruction is actually "GR+hi(&G)". 1969 if (isPIC) 1970 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1971 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1972 1973 // Generate non-pic code that has direct accesses to the constant pool. 1974 // The address of the global is just (hi(&g)+lo(&g)). 1975 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1976 } 1977 1978 static void setUsesTOCBasePtr(MachineFunction &MF) { 1979 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1980 FuncInfo->setUsesTOCBasePtr(); 1981 } 1982 1983 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 1984 setUsesTOCBasePtr(DAG.getMachineFunction()); 1985 } 1986 1987 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 1988 SDValue GA) { 1989 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 1990 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 1991 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 1992 1993 SDValue Ops[] = { GA, Reg }; 1994 return DAG.getMemIntrinsicNode(PPCISD::TOC_ENTRY, dl, 1995 DAG.getVTList(VT, MVT::Other), Ops, VT, 1996 MachinePointerInfo::getGOT(), 0, false, true, 1997 false, 0); 1998 } 1999 2000 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2001 SelectionDAG &DAG) const { 2002 EVT PtrVT = Op.getValueType(); 2003 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2004 const Constant *C = CP->getConstVal(); 2005 2006 // 64-bit SVR4 ABI code is always position-independent. 2007 // The actual address of the GlobalValue is stored in the TOC. 2008 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2009 setUsesTOCBasePtr(DAG); 2010 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2011 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2012 } 2013 2014 unsigned MOHiFlag, MOLoFlag; 2015 bool isPIC = 2016 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2017 2018 if (isPIC && Subtarget.isSVR4ABI()) { 2019 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2020 PPCII::MO_PIC_FLAG); 2021 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2022 } 2023 2024 SDValue CPIHi = 2025 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2026 SDValue CPILo = 2027 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2028 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2029 } 2030 2031 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2032 EVT PtrVT = Op.getValueType(); 2033 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2034 2035 // 64-bit SVR4 ABI code is always position-independent. 2036 // The actual address of the GlobalValue is stored in the TOC. 2037 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2038 setUsesTOCBasePtr(DAG); 2039 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2040 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2041 } 2042 2043 unsigned MOHiFlag, MOLoFlag; 2044 bool isPIC = 2045 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2046 2047 if (isPIC && Subtarget.isSVR4ABI()) { 2048 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2049 PPCII::MO_PIC_FLAG); 2050 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2051 } 2052 2053 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2054 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2055 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2056 } 2057 2058 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2059 SelectionDAG &DAG) const { 2060 EVT PtrVT = Op.getValueType(); 2061 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2062 const BlockAddress *BA = BASDN->getBlockAddress(); 2063 2064 // 64-bit SVR4 ABI code is always position-independent. 2065 // The actual BlockAddress is stored in the TOC. 2066 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2067 setUsesTOCBasePtr(DAG); 2068 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2069 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2070 } 2071 2072 unsigned MOHiFlag, MOLoFlag; 2073 bool isPIC = 2074 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2075 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2076 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2077 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2078 } 2079 2080 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2081 SelectionDAG &DAG) const { 2082 2083 // FIXME: TLS addresses currently use medium model code sequences, 2084 // which is the most useful form. Eventually support for small and 2085 // large models could be added if users need it, at the cost of 2086 // additional complexity. 2087 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2088 SDLoc dl(GA); 2089 const GlobalValue *GV = GA->getGlobal(); 2090 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2091 bool is64bit = Subtarget.isPPC64(); 2092 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2093 PICLevel::Level picLevel = M->getPICLevel(); 2094 2095 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2096 2097 if (Model == TLSModel::LocalExec) { 2098 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2099 PPCII::MO_TPREL_HA); 2100 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2101 PPCII::MO_TPREL_LO); 2102 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2103 is64bit ? MVT::i64 : MVT::i32); 2104 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2105 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2106 } 2107 2108 if (Model == TLSModel::InitialExec) { 2109 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2110 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2111 PPCII::MO_TLS); 2112 SDValue GOTPtr; 2113 if (is64bit) { 2114 setUsesTOCBasePtr(DAG); 2115 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2116 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2117 PtrVT, GOTReg, TGA); 2118 } else 2119 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2120 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2121 PtrVT, TGA, GOTPtr); 2122 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2123 } 2124 2125 if (Model == TLSModel::GeneralDynamic) { 2126 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2127 SDValue GOTPtr; 2128 if (is64bit) { 2129 setUsesTOCBasePtr(DAG); 2130 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2131 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2132 GOTReg, TGA); 2133 } else { 2134 if (picLevel == PICLevel::Small) 2135 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2136 else 2137 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2138 } 2139 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2140 GOTPtr, TGA, TGA); 2141 } 2142 2143 if (Model == TLSModel::LocalDynamic) { 2144 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2145 SDValue GOTPtr; 2146 if (is64bit) { 2147 setUsesTOCBasePtr(DAG); 2148 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2149 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2150 GOTReg, TGA); 2151 } else { 2152 if (picLevel == PICLevel::Small) 2153 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2154 else 2155 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2156 } 2157 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2158 PtrVT, GOTPtr, TGA, TGA); 2159 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2160 PtrVT, TLSAddr, TGA); 2161 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2162 } 2163 2164 llvm_unreachable("Unknown TLS model!"); 2165 } 2166 2167 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2168 SelectionDAG &DAG) const { 2169 EVT PtrVT = Op.getValueType(); 2170 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2171 SDLoc DL(GSDN); 2172 const GlobalValue *GV = GSDN->getGlobal(); 2173 2174 // 64-bit SVR4 ABI code is always position-independent. 2175 // The actual address of the GlobalValue is stored in the TOC. 2176 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2177 setUsesTOCBasePtr(DAG); 2178 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2179 return getTOCEntry(DAG, DL, true, GA); 2180 } 2181 2182 unsigned MOHiFlag, MOLoFlag; 2183 bool isPIC = 2184 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2185 2186 if (isPIC && Subtarget.isSVR4ABI()) { 2187 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2188 GSDN->getOffset(), 2189 PPCII::MO_PIC_FLAG); 2190 return getTOCEntry(DAG, DL, false, GA); 2191 } 2192 2193 SDValue GAHi = 2194 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2195 SDValue GALo = 2196 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2197 2198 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2199 2200 // If the global reference is actually to a non-lazy-pointer, we have to do an 2201 // extra load to get the address of the global. 2202 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2203 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2204 false, false, false, 0); 2205 return Ptr; 2206 } 2207 2208 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2209 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2210 SDLoc dl(Op); 2211 2212 if (Op.getValueType() == MVT::v2i64) { 2213 // When the operands themselves are v2i64 values, we need to do something 2214 // special because VSX has no underlying comparison operations for these. 2215 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2216 // Equality can be handled by casting to the legal type for Altivec 2217 // comparisons, everything else needs to be expanded. 2218 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2219 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2220 DAG.getSetCC(dl, MVT::v4i32, 2221 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2222 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2223 CC)); 2224 } 2225 2226 return SDValue(); 2227 } 2228 2229 // We handle most of these in the usual way. 2230 return Op; 2231 } 2232 2233 // If we're comparing for equality to zero, expose the fact that this is 2234 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2235 // fold the new nodes. 2236 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2237 if (C->isNullValue() && CC == ISD::SETEQ) { 2238 EVT VT = Op.getOperand(0).getValueType(); 2239 SDValue Zext = Op.getOperand(0); 2240 if (VT.bitsLT(MVT::i32)) { 2241 VT = MVT::i32; 2242 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2243 } 2244 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2245 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2246 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2247 DAG.getConstant(Log2b, dl, MVT::i32)); 2248 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2249 } 2250 // Leave comparisons against 0 and -1 alone for now, since they're usually 2251 // optimized. FIXME: revisit this when we can custom lower all setcc 2252 // optimizations. 2253 if (C->isAllOnesValue() || C->isNullValue()) 2254 return SDValue(); 2255 } 2256 2257 // If we have an integer seteq/setne, turn it into a compare against zero 2258 // by xor'ing the rhs with the lhs, which is faster than setting a 2259 // condition register, reading it back out, and masking the correct bit. The 2260 // normal approach here uses sub to do this instead of xor. Using xor exposes 2261 // the result to other bit-twiddling opportunities. 2262 EVT LHSVT = Op.getOperand(0).getValueType(); 2263 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2264 EVT VT = Op.getValueType(); 2265 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2266 Op.getOperand(1)); 2267 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2268 } 2269 return SDValue(); 2270 } 2271 2272 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2273 const PPCSubtarget &Subtarget) const { 2274 SDNode *Node = Op.getNode(); 2275 EVT VT = Node->getValueType(0); 2276 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2277 SDValue InChain = Node->getOperand(0); 2278 SDValue VAListPtr = Node->getOperand(1); 2279 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2280 SDLoc dl(Node); 2281 2282 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2283 2284 // gpr_index 2285 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2286 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2287 false, false, false, 0); 2288 InChain = GprIndex.getValue(1); 2289 2290 if (VT == MVT::i64) { 2291 // Check if GprIndex is even 2292 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2293 DAG.getConstant(1, dl, MVT::i32)); 2294 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2295 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2296 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2297 DAG.getConstant(1, dl, MVT::i32)); 2298 // Align GprIndex to be even if it isn't 2299 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2300 GprIndex); 2301 } 2302 2303 // fpr index is 1 byte after gpr 2304 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2305 DAG.getConstant(1, dl, MVT::i32)); 2306 2307 // fpr 2308 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2309 FprPtr, MachinePointerInfo(SV), MVT::i8, 2310 false, false, false, 0); 2311 InChain = FprIndex.getValue(1); 2312 2313 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2314 DAG.getConstant(8, dl, MVT::i32)); 2315 2316 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2317 DAG.getConstant(4, dl, MVT::i32)); 2318 2319 // areas 2320 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2321 MachinePointerInfo(), false, false, 2322 false, 0); 2323 InChain = OverflowArea.getValue(1); 2324 2325 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2326 MachinePointerInfo(), false, false, 2327 false, 0); 2328 InChain = RegSaveArea.getValue(1); 2329 2330 // select overflow_area if index > 8 2331 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2332 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2333 2334 // adjustment constant gpr_index * 4/8 2335 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2336 VT.isInteger() ? GprIndex : FprIndex, 2337 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2338 MVT::i32)); 2339 2340 // OurReg = RegSaveArea + RegConstant 2341 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2342 RegConstant); 2343 2344 // Floating types are 32 bytes into RegSaveArea 2345 if (VT.isFloatingPoint()) 2346 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2347 DAG.getConstant(32, dl, MVT::i32)); 2348 2349 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2350 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2351 VT.isInteger() ? GprIndex : FprIndex, 2352 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2353 MVT::i32)); 2354 2355 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2356 VT.isInteger() ? VAListPtr : FprPtr, 2357 MachinePointerInfo(SV), 2358 MVT::i8, false, false, 0); 2359 2360 // determine if we should load from reg_save_area or overflow_area 2361 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2362 2363 // increase overflow_area by 4/8 if gpr/fpr > 8 2364 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2365 DAG.getConstant(VT.isInteger() ? 4 : 8, 2366 dl, MVT::i32)); 2367 2368 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2369 OverflowAreaPlusN); 2370 2371 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2372 OverflowAreaPtr, 2373 MachinePointerInfo(), 2374 MVT::i32, false, false, 0); 2375 2376 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2377 false, false, false, 0); 2378 } 2379 2380 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2381 const PPCSubtarget &Subtarget) const { 2382 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2383 2384 // We have to copy the entire va_list struct: 2385 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2386 return DAG.getMemcpy(Op.getOperand(0), Op, 2387 Op.getOperand(1), Op.getOperand(2), 2388 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2389 false, MachinePointerInfo(), MachinePointerInfo()); 2390 } 2391 2392 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2393 SelectionDAG &DAG) const { 2394 return Op.getOperand(0); 2395 } 2396 2397 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2398 SelectionDAG &DAG) const { 2399 SDValue Chain = Op.getOperand(0); 2400 SDValue Trmp = Op.getOperand(1); // trampoline 2401 SDValue FPtr = Op.getOperand(2); // nested function 2402 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2403 SDLoc dl(Op); 2404 2405 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2406 bool isPPC64 = (PtrVT == MVT::i64); 2407 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2408 2409 TargetLowering::ArgListTy Args; 2410 TargetLowering::ArgListEntry Entry; 2411 2412 Entry.Ty = IntPtrTy; 2413 Entry.Node = Trmp; Args.push_back(Entry); 2414 2415 // TrampSize == (isPPC64 ? 48 : 40); 2416 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2417 isPPC64 ? MVT::i64 : MVT::i32); 2418 Args.push_back(Entry); 2419 2420 Entry.Node = FPtr; Args.push_back(Entry); 2421 Entry.Node = Nest; Args.push_back(Entry); 2422 2423 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2424 TargetLowering::CallLoweringInfo CLI(DAG); 2425 CLI.setDebugLoc(dl).setChain(Chain) 2426 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2427 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2428 std::move(Args), 0); 2429 2430 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2431 return CallResult.second; 2432 } 2433 2434 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2435 const PPCSubtarget &Subtarget) const { 2436 MachineFunction &MF = DAG.getMachineFunction(); 2437 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2438 2439 SDLoc dl(Op); 2440 2441 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2442 // vastart just stores the address of the VarArgsFrameIndex slot into the 2443 // memory location argument. 2444 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2445 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2446 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2447 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2448 MachinePointerInfo(SV), 2449 false, false, 0); 2450 } 2451 2452 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2453 // We suppose the given va_list is already allocated. 2454 // 2455 // typedef struct { 2456 // char gpr; /* index into the array of 8 GPRs 2457 // * stored in the register save area 2458 // * gpr=0 corresponds to r3, 2459 // * gpr=1 to r4, etc. 2460 // */ 2461 // char fpr; /* index into the array of 8 FPRs 2462 // * stored in the register save area 2463 // * fpr=0 corresponds to f1, 2464 // * fpr=1 to f2, etc. 2465 // */ 2466 // char *overflow_arg_area; 2467 // /* location on stack that holds 2468 // * the next overflow argument 2469 // */ 2470 // char *reg_save_area; 2471 // /* where r3:r10 and f1:f8 (if saved) 2472 // * are stored 2473 // */ 2474 // } va_list[1]; 2475 2476 2477 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2478 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2479 2480 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2481 2482 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2483 PtrVT); 2484 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2485 PtrVT); 2486 2487 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2488 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2489 2490 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2491 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2492 2493 uint64_t FPROffset = 1; 2494 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2495 2496 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2497 2498 // Store first byte : number of int regs 2499 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2500 Op.getOperand(1), 2501 MachinePointerInfo(SV), 2502 MVT::i8, false, false, 0); 2503 uint64_t nextOffset = FPROffset; 2504 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2505 ConstFPROffset); 2506 2507 // Store second byte : number of float regs 2508 SDValue secondStore = 2509 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2510 MachinePointerInfo(SV, nextOffset), MVT::i8, 2511 false, false, 0); 2512 nextOffset += StackOffset; 2513 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2514 2515 // Store second word : arguments given on stack 2516 SDValue thirdStore = 2517 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2518 MachinePointerInfo(SV, nextOffset), 2519 false, false, 0); 2520 nextOffset += FrameOffset; 2521 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2522 2523 // Store third word : arguments given in registers 2524 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2525 MachinePointerInfo(SV, nextOffset), 2526 false, false, 0); 2527 2528 } 2529 2530 #include "PPCGenCallingConv.inc" 2531 2532 // Function whose sole purpose is to kill compiler warnings 2533 // stemming from unused functions included from PPCGenCallingConv.inc. 2534 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2535 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2536 } 2537 2538 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2539 CCValAssign::LocInfo &LocInfo, 2540 ISD::ArgFlagsTy &ArgFlags, 2541 CCState &State) { 2542 return true; 2543 } 2544 2545 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2546 MVT &LocVT, 2547 CCValAssign::LocInfo &LocInfo, 2548 ISD::ArgFlagsTy &ArgFlags, 2549 CCState &State) { 2550 static const MCPhysReg ArgRegs[] = { 2551 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2552 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2553 }; 2554 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2555 2556 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2557 2558 // Skip one register if the first unallocated register has an even register 2559 // number and there are still argument registers available which have not been 2560 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2561 // need to skip a register if RegNum is odd. 2562 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2563 State.AllocateReg(ArgRegs[RegNum]); 2564 } 2565 2566 // Always return false here, as this function only makes sure that the first 2567 // unallocated register has an odd register number and does not actually 2568 // allocate a register for the current argument. 2569 return false; 2570 } 2571 2572 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2573 MVT &LocVT, 2574 CCValAssign::LocInfo &LocInfo, 2575 ISD::ArgFlagsTy &ArgFlags, 2576 CCState &State) { 2577 static const MCPhysReg ArgRegs[] = { 2578 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2579 PPC::F8 2580 }; 2581 2582 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2583 2584 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2585 2586 // If there is only one Floating-point register left we need to put both f64 2587 // values of a split ppc_fp128 value on the stack. 2588 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2589 State.AllocateReg(ArgRegs[RegNum]); 2590 } 2591 2592 // Always return false here, as this function only makes sure that the two f64 2593 // values a ppc_fp128 value is split into are both passed in registers or both 2594 // passed on the stack and does not actually allocate a register for the 2595 // current argument. 2596 return false; 2597 } 2598 2599 /// FPR - The set of FP registers that should be allocated for arguments, 2600 /// on Darwin. 2601 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2602 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2603 PPC::F11, PPC::F12, PPC::F13}; 2604 2605 /// QFPR - The set of QPX registers that should be allocated for arguments. 2606 static const MCPhysReg QFPR[] = { 2607 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2608 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2609 2610 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2611 /// the stack. 2612 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2613 unsigned PtrByteSize) { 2614 unsigned ArgSize = ArgVT.getStoreSize(); 2615 if (Flags.isByVal()) 2616 ArgSize = Flags.getByValSize(); 2617 2618 // Round up to multiples of the pointer size, except for array members, 2619 // which are always packed. 2620 if (!Flags.isInConsecutiveRegs()) 2621 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2622 2623 return ArgSize; 2624 } 2625 2626 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2627 /// on the stack. 2628 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2629 ISD::ArgFlagsTy Flags, 2630 unsigned PtrByteSize) { 2631 unsigned Align = PtrByteSize; 2632 2633 // Altivec parameters are padded to a 16 byte boundary. 2634 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2635 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2636 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2637 ArgVT == MVT::v1i128) 2638 Align = 16; 2639 // QPX vector types stored in double-precision are padded to a 32 byte 2640 // boundary. 2641 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2642 Align = 32; 2643 2644 // ByVal parameters are aligned as requested. 2645 if (Flags.isByVal()) { 2646 unsigned BVAlign = Flags.getByValAlign(); 2647 if (BVAlign > PtrByteSize) { 2648 if (BVAlign % PtrByteSize != 0) 2649 llvm_unreachable( 2650 "ByVal alignment is not a multiple of the pointer size"); 2651 2652 Align = BVAlign; 2653 } 2654 } 2655 2656 // Array members are always packed to their original alignment. 2657 if (Flags.isInConsecutiveRegs()) { 2658 // If the array member was split into multiple registers, the first 2659 // needs to be aligned to the size of the full type. (Except for 2660 // ppcf128, which is only aligned as its f64 components.) 2661 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2662 Align = OrigVT.getStoreSize(); 2663 else 2664 Align = ArgVT.getStoreSize(); 2665 } 2666 2667 return Align; 2668 } 2669 2670 /// CalculateStackSlotUsed - Return whether this argument will use its 2671 /// stack slot (instead of being passed in registers). ArgOffset, 2672 /// AvailableFPRs, and AvailableVRs must hold the current argument 2673 /// position, and will be updated to account for this argument. 2674 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2675 ISD::ArgFlagsTy Flags, 2676 unsigned PtrByteSize, 2677 unsigned LinkageSize, 2678 unsigned ParamAreaSize, 2679 unsigned &ArgOffset, 2680 unsigned &AvailableFPRs, 2681 unsigned &AvailableVRs, bool HasQPX) { 2682 bool UseMemory = false; 2683 2684 // Respect alignment of argument on the stack. 2685 unsigned Align = 2686 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2687 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2688 // If there's no space left in the argument save area, we must 2689 // use memory (this check also catches zero-sized arguments). 2690 if (ArgOffset >= LinkageSize + ParamAreaSize) 2691 UseMemory = true; 2692 2693 // Allocate argument on the stack. 2694 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2695 if (Flags.isInConsecutiveRegsLast()) 2696 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2697 // If we overran the argument save area, we must use memory 2698 // (this check catches arguments passed partially in memory) 2699 if (ArgOffset > LinkageSize + ParamAreaSize) 2700 UseMemory = true; 2701 2702 // However, if the argument is actually passed in an FPR or a VR, 2703 // we don't use memory after all. 2704 if (!Flags.isByVal()) { 2705 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2706 // QPX registers overlap with the scalar FP registers. 2707 (HasQPX && (ArgVT == MVT::v4f32 || 2708 ArgVT == MVT::v4f64 || 2709 ArgVT == MVT::v4i1))) 2710 if (AvailableFPRs > 0) { 2711 --AvailableFPRs; 2712 return false; 2713 } 2714 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2715 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2716 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2717 ArgVT == MVT::v1i128) 2718 if (AvailableVRs > 0) { 2719 --AvailableVRs; 2720 return false; 2721 } 2722 } 2723 2724 return UseMemory; 2725 } 2726 2727 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2728 /// ensure minimum alignment required for target. 2729 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2730 unsigned NumBytes) { 2731 unsigned TargetAlign = Lowering->getStackAlignment(); 2732 unsigned AlignMask = TargetAlign - 1; 2733 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2734 return NumBytes; 2735 } 2736 2737 SDValue 2738 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2739 CallingConv::ID CallConv, bool isVarArg, 2740 const SmallVectorImpl<ISD::InputArg> 2741 &Ins, 2742 SDLoc dl, SelectionDAG &DAG, 2743 SmallVectorImpl<SDValue> &InVals) 2744 const { 2745 if (Subtarget.isSVR4ABI()) { 2746 if (Subtarget.isPPC64()) 2747 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2748 dl, DAG, InVals); 2749 else 2750 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2751 dl, DAG, InVals); 2752 } else { 2753 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2754 dl, DAG, InVals); 2755 } 2756 } 2757 2758 SDValue 2759 PPCTargetLowering::LowerFormalArguments_32SVR4( 2760 SDValue Chain, 2761 CallingConv::ID CallConv, bool isVarArg, 2762 const SmallVectorImpl<ISD::InputArg> 2763 &Ins, 2764 SDLoc dl, SelectionDAG &DAG, 2765 SmallVectorImpl<SDValue> &InVals) const { 2766 2767 // 32-bit SVR4 ABI Stack Frame Layout: 2768 // +-----------------------------------+ 2769 // +--> | Back chain | 2770 // | +-----------------------------------+ 2771 // | | Floating-point register save area | 2772 // | +-----------------------------------+ 2773 // | | General register save area | 2774 // | +-----------------------------------+ 2775 // | | CR save word | 2776 // | +-----------------------------------+ 2777 // | | VRSAVE save word | 2778 // | +-----------------------------------+ 2779 // | | Alignment padding | 2780 // | +-----------------------------------+ 2781 // | | Vector register save area | 2782 // | +-----------------------------------+ 2783 // | | Local variable space | 2784 // | +-----------------------------------+ 2785 // | | Parameter list area | 2786 // | +-----------------------------------+ 2787 // | | LR save word | 2788 // | +-----------------------------------+ 2789 // SP--> +--- | Back chain | 2790 // +-----------------------------------+ 2791 // 2792 // Specifications: 2793 // System V Application Binary Interface PowerPC Processor Supplement 2794 // AltiVec Technology Programming Interface Manual 2795 2796 MachineFunction &MF = DAG.getMachineFunction(); 2797 MachineFrameInfo *MFI = MF.getFrameInfo(); 2798 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2799 2800 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2801 // Potential tail calls could cause overwriting of argument stack slots. 2802 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2803 (CallConv == CallingConv::Fast)); 2804 unsigned PtrByteSize = 4; 2805 2806 // Assign locations to all of the incoming arguments. 2807 SmallVector<CCValAssign, 16> ArgLocs; 2808 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2809 *DAG.getContext()); 2810 2811 // Reserve space for the linkage area on the stack. 2812 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2813 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2814 2815 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2816 2817 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2818 CCValAssign &VA = ArgLocs[i]; 2819 2820 // Arguments stored in registers. 2821 if (VA.isRegLoc()) { 2822 const TargetRegisterClass *RC; 2823 EVT ValVT = VA.getValVT(); 2824 2825 switch (ValVT.getSimpleVT().SimpleTy) { 2826 default: 2827 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2828 case MVT::i1: 2829 case MVT::i32: 2830 RC = &PPC::GPRCRegClass; 2831 break; 2832 case MVT::f32: 2833 if (Subtarget.hasP8Vector()) 2834 RC = &PPC::VSSRCRegClass; 2835 else 2836 RC = &PPC::F4RCRegClass; 2837 break; 2838 case MVT::f64: 2839 if (Subtarget.hasVSX()) 2840 RC = &PPC::VSFRCRegClass; 2841 else 2842 RC = &PPC::F8RCRegClass; 2843 break; 2844 case MVT::v16i8: 2845 case MVT::v8i16: 2846 case MVT::v4i32: 2847 RC = &PPC::VRRCRegClass; 2848 break; 2849 case MVT::v4f32: 2850 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2851 break; 2852 case MVT::v2f64: 2853 case MVT::v2i64: 2854 RC = &PPC::VSHRCRegClass; 2855 break; 2856 case MVT::v4f64: 2857 RC = &PPC::QFRCRegClass; 2858 break; 2859 case MVT::v4i1: 2860 RC = &PPC::QBRCRegClass; 2861 break; 2862 } 2863 2864 // Transform the arguments stored in physical registers into virtual ones. 2865 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2866 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2867 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2868 2869 if (ValVT == MVT::i1) 2870 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2871 2872 InVals.push_back(ArgValue); 2873 } else { 2874 // Argument stored in memory. 2875 assert(VA.isMemLoc()); 2876 2877 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2878 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2879 isImmutable); 2880 2881 // Create load nodes to retrieve arguments from the stack. 2882 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2883 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2884 MachinePointerInfo(), 2885 false, false, false, 0)); 2886 } 2887 } 2888 2889 // Assign locations to all of the incoming aggregate by value arguments. 2890 // Aggregates passed by value are stored in the local variable space of the 2891 // caller's stack frame, right above the parameter list area. 2892 SmallVector<CCValAssign, 16> ByValArgLocs; 2893 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2894 ByValArgLocs, *DAG.getContext()); 2895 2896 // Reserve stack space for the allocations in CCInfo. 2897 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2898 2899 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2900 2901 // Area that is at least reserved in the caller of this function. 2902 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2903 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2904 2905 // Set the size that is at least reserved in caller of this function. Tail 2906 // call optimized function's reserved stack space needs to be aligned so that 2907 // taking the difference between two stack areas will result in an aligned 2908 // stack. 2909 MinReservedArea = 2910 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2911 FuncInfo->setMinReservedArea(MinReservedArea); 2912 2913 SmallVector<SDValue, 8> MemOps; 2914 2915 // If the function takes variable number of arguments, make a frame index for 2916 // the start of the first vararg value... for expansion of llvm.va_start. 2917 if (isVarArg) { 2918 static const MCPhysReg GPArgRegs[] = { 2919 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2920 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2921 }; 2922 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2923 2924 static const MCPhysReg FPArgRegs[] = { 2925 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2926 PPC::F8 2927 }; 2928 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2929 if (DisablePPCFloatInVariadic) 2930 NumFPArgRegs = 0; 2931 2932 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2933 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2934 2935 // Make room for NumGPArgRegs and NumFPArgRegs. 2936 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2937 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2938 2939 FuncInfo->setVarArgsStackOffset( 2940 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2941 CCInfo.getNextStackOffset(), true)); 2942 2943 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2944 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2945 2946 // The fixed integer arguments of a variadic function are stored to the 2947 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2948 // the result of va_next. 2949 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2950 // Get an existing live-in vreg, or add a new one. 2951 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2952 if (!VReg) 2953 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2954 2955 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2956 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2957 MachinePointerInfo(), false, false, 0); 2958 MemOps.push_back(Store); 2959 // Increment the address by four for the next argument to store 2960 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2961 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2962 } 2963 2964 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2965 // is set. 2966 // The double arguments are stored to the VarArgsFrameIndex 2967 // on the stack. 2968 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2969 // Get an existing live-in vreg, or add a new one. 2970 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2971 if (!VReg) 2972 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2973 2974 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2975 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2976 MachinePointerInfo(), false, false, 0); 2977 MemOps.push_back(Store); 2978 // Increment the address by eight for the next argument to store 2979 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 2980 PtrVT); 2981 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2982 } 2983 } 2984 2985 if (!MemOps.empty()) 2986 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 2987 2988 return Chain; 2989 } 2990 2991 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2992 // value to MVT::i64 and then truncate to the correct register size. 2993 SDValue 2994 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 2995 SelectionDAG &DAG, SDValue ArgVal, 2996 SDLoc dl) const { 2997 if (Flags.isSExt()) 2998 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2999 DAG.getValueType(ObjectVT)); 3000 else if (Flags.isZExt()) 3001 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3002 DAG.getValueType(ObjectVT)); 3003 3004 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3005 } 3006 3007 SDValue 3008 PPCTargetLowering::LowerFormalArguments_64SVR4( 3009 SDValue Chain, 3010 CallingConv::ID CallConv, bool isVarArg, 3011 const SmallVectorImpl<ISD::InputArg> 3012 &Ins, 3013 SDLoc dl, SelectionDAG &DAG, 3014 SmallVectorImpl<SDValue> &InVals) const { 3015 // TODO: add description of PPC stack frame format, or at least some docs. 3016 // 3017 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3018 bool isLittleEndian = Subtarget.isLittleEndian(); 3019 MachineFunction &MF = DAG.getMachineFunction(); 3020 MachineFrameInfo *MFI = MF.getFrameInfo(); 3021 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3022 3023 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3024 "fastcc not supported on varargs functions"); 3025 3026 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3027 // Potential tail calls could cause overwriting of argument stack slots. 3028 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3029 (CallConv == CallingConv::Fast)); 3030 unsigned PtrByteSize = 8; 3031 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3032 3033 static const MCPhysReg GPR[] = { 3034 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3035 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3036 }; 3037 static const MCPhysReg VR[] = { 3038 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3039 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3040 }; 3041 static const MCPhysReg VSRH[] = { 3042 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3043 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3044 }; 3045 3046 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3047 const unsigned Num_FPR_Regs = 13; 3048 const unsigned Num_VR_Regs = array_lengthof(VR); 3049 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3050 3051 // Do a first pass over the arguments to determine whether the ABI 3052 // guarantees that our caller has allocated the parameter save area 3053 // on its stack frame. In the ELFv1 ABI, this is always the case; 3054 // in the ELFv2 ABI, it is true if this is a vararg function or if 3055 // any parameter is located in a stack slot. 3056 3057 bool HasParameterArea = !isELFv2ABI || isVarArg; 3058 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3059 unsigned NumBytes = LinkageSize; 3060 unsigned AvailableFPRs = Num_FPR_Regs; 3061 unsigned AvailableVRs = Num_VR_Regs; 3062 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3063 if (Ins[i].Flags.isNest()) 3064 continue; 3065 3066 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3067 PtrByteSize, LinkageSize, ParamAreaSize, 3068 NumBytes, AvailableFPRs, AvailableVRs, 3069 Subtarget.hasQPX())) 3070 HasParameterArea = true; 3071 } 3072 3073 // Add DAG nodes to load the arguments or copy them out of registers. On 3074 // entry to a function on PPC, the arguments start after the linkage area, 3075 // although the first ones are often in registers. 3076 3077 unsigned ArgOffset = LinkageSize; 3078 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3079 unsigned &QFPR_idx = FPR_idx; 3080 SmallVector<SDValue, 8> MemOps; 3081 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3082 unsigned CurArgIdx = 0; 3083 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3084 SDValue ArgVal; 3085 bool needsLoad = false; 3086 EVT ObjectVT = Ins[ArgNo].VT; 3087 EVT OrigVT = Ins[ArgNo].ArgVT; 3088 unsigned ObjSize = ObjectVT.getStoreSize(); 3089 unsigned ArgSize = ObjSize; 3090 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3091 if (Ins[ArgNo].isOrigArg()) { 3092 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3093 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3094 } 3095 // We re-align the argument offset for each argument, except when using the 3096 // fast calling convention, when we need to make sure we do that only when 3097 // we'll actually use a stack slot. 3098 unsigned CurArgOffset, Align; 3099 auto ComputeArgOffset = [&]() { 3100 /* Respect alignment of argument on the stack. */ 3101 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3102 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3103 CurArgOffset = ArgOffset; 3104 }; 3105 3106 if (CallConv != CallingConv::Fast) { 3107 ComputeArgOffset(); 3108 3109 /* Compute GPR index associated with argument offset. */ 3110 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3111 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3112 } 3113 3114 // FIXME the codegen can be much improved in some cases. 3115 // We do not have to keep everything in memory. 3116 if (Flags.isByVal()) { 3117 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3118 3119 if (CallConv == CallingConv::Fast) 3120 ComputeArgOffset(); 3121 3122 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3123 ObjSize = Flags.getByValSize(); 3124 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3125 // Empty aggregate parameters do not take up registers. Examples: 3126 // struct { } a; 3127 // union { } b; 3128 // int c[0]; 3129 // etc. However, we have to provide a place-holder in InVals, so 3130 // pretend we have an 8-byte item at the current address for that 3131 // purpose. 3132 if (!ObjSize) { 3133 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3134 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3135 InVals.push_back(FIN); 3136 continue; 3137 } 3138 3139 // Create a stack object covering all stack doublewords occupied 3140 // by the argument. If the argument is (fully or partially) on 3141 // the stack, or if the argument is fully in registers but the 3142 // caller has allocated the parameter save anyway, we can refer 3143 // directly to the caller's stack frame. Otherwise, create a 3144 // local copy in our own frame. 3145 int FI; 3146 if (HasParameterArea || 3147 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3148 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3149 else 3150 FI = MFI->CreateStackObject(ArgSize, Align, false); 3151 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3152 3153 // Handle aggregates smaller than 8 bytes. 3154 if (ObjSize < PtrByteSize) { 3155 // The value of the object is its address, which differs from the 3156 // address of the enclosing doubleword on big-endian systems. 3157 SDValue Arg = FIN; 3158 if (!isLittleEndian) { 3159 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3160 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3161 } 3162 InVals.push_back(Arg); 3163 3164 if (GPR_idx != Num_GPR_Regs) { 3165 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3166 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3167 SDValue Store; 3168 3169 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3170 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3171 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3172 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3173 MachinePointerInfo(FuncArg), 3174 ObjType, false, false, 0); 3175 } else { 3176 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3177 // store the whole register as-is to the parameter save area 3178 // slot. 3179 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3180 MachinePointerInfo(FuncArg), 3181 false, false, 0); 3182 } 3183 3184 MemOps.push_back(Store); 3185 } 3186 // Whether we copied from a register or not, advance the offset 3187 // into the parameter save area by a full doubleword. 3188 ArgOffset += PtrByteSize; 3189 continue; 3190 } 3191 3192 // The value of the object is its address, which is the address of 3193 // its first stack doubleword. 3194 InVals.push_back(FIN); 3195 3196 // Store whatever pieces of the object are in registers to memory. 3197 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3198 if (GPR_idx == Num_GPR_Regs) 3199 break; 3200 3201 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3202 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3203 SDValue Addr = FIN; 3204 if (j) { 3205 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3206 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3207 } 3208 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3209 MachinePointerInfo(FuncArg, j), 3210 false, false, 0); 3211 MemOps.push_back(Store); 3212 ++GPR_idx; 3213 } 3214 ArgOffset += ArgSize; 3215 continue; 3216 } 3217 3218 switch (ObjectVT.getSimpleVT().SimpleTy) { 3219 default: llvm_unreachable("Unhandled argument type!"); 3220 case MVT::i1: 3221 case MVT::i32: 3222 case MVT::i64: 3223 if (Flags.isNest()) { 3224 // The 'nest' parameter, if any, is passed in R11. 3225 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3226 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3227 3228 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3229 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3230 3231 break; 3232 } 3233 3234 // These can be scalar arguments or elements of an integer array type 3235 // passed directly. Clang may use those instead of "byval" aggregate 3236 // types to avoid forcing arguments to memory unnecessarily. 3237 if (GPR_idx != Num_GPR_Regs) { 3238 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3239 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3240 3241 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3242 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3243 // value to MVT::i64 and then truncate to the correct register size. 3244 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3245 } else { 3246 if (CallConv == CallingConv::Fast) 3247 ComputeArgOffset(); 3248 3249 needsLoad = true; 3250 ArgSize = PtrByteSize; 3251 } 3252 if (CallConv != CallingConv::Fast || needsLoad) 3253 ArgOffset += 8; 3254 break; 3255 3256 case MVT::f32: 3257 case MVT::f64: 3258 // These can be scalar arguments or elements of a float array type 3259 // passed directly. The latter are used to implement ELFv2 homogenous 3260 // float aggregates. 3261 if (FPR_idx != Num_FPR_Regs) { 3262 unsigned VReg; 3263 3264 if (ObjectVT == MVT::f32) 3265 VReg = MF.addLiveIn(FPR[FPR_idx], 3266 Subtarget.hasP8Vector() 3267 ? &PPC::VSSRCRegClass 3268 : &PPC::F4RCRegClass); 3269 else 3270 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3271 ? &PPC::VSFRCRegClass 3272 : &PPC::F8RCRegClass); 3273 3274 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3275 ++FPR_idx; 3276 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3277 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3278 // once we support fp <-> gpr moves. 3279 3280 // This can only ever happen in the presence of f32 array types, 3281 // since otherwise we never run out of FPRs before running out 3282 // of GPRs. 3283 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3284 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3285 3286 if (ObjectVT == MVT::f32) { 3287 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3288 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3289 DAG.getConstant(32, dl, MVT::i32)); 3290 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3291 } 3292 3293 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3294 } else { 3295 if (CallConv == CallingConv::Fast) 3296 ComputeArgOffset(); 3297 3298 needsLoad = true; 3299 } 3300 3301 // When passing an array of floats, the array occupies consecutive 3302 // space in the argument area; only round up to the next doubleword 3303 // at the end of the array. Otherwise, each float takes 8 bytes. 3304 if (CallConv != CallingConv::Fast || needsLoad) { 3305 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3306 ArgOffset += ArgSize; 3307 if (Flags.isInConsecutiveRegsLast()) 3308 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3309 } 3310 break; 3311 case MVT::v4f32: 3312 case MVT::v4i32: 3313 case MVT::v8i16: 3314 case MVT::v16i8: 3315 case MVT::v2f64: 3316 case MVT::v2i64: 3317 case MVT::v1i128: 3318 if (!Subtarget.hasQPX()) { 3319 // These can be scalar arguments or elements of a vector array type 3320 // passed directly. The latter are used to implement ELFv2 homogenous 3321 // vector aggregates. 3322 if (VR_idx != Num_VR_Regs) { 3323 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3324 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3325 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3326 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3327 ++VR_idx; 3328 } else { 3329 if (CallConv == CallingConv::Fast) 3330 ComputeArgOffset(); 3331 3332 needsLoad = true; 3333 } 3334 if (CallConv != CallingConv::Fast || needsLoad) 3335 ArgOffset += 16; 3336 break; 3337 } // not QPX 3338 3339 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3340 "Invalid QPX parameter type"); 3341 /* fall through */ 3342 3343 case MVT::v4f64: 3344 case MVT::v4i1: 3345 // QPX vectors are treated like their scalar floating-point subregisters 3346 // (except that they're larger). 3347 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3348 if (QFPR_idx != Num_QFPR_Regs) { 3349 const TargetRegisterClass *RC; 3350 switch (ObjectVT.getSimpleVT().SimpleTy) { 3351 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3352 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3353 default: RC = &PPC::QBRCRegClass; break; 3354 } 3355 3356 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3357 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3358 ++QFPR_idx; 3359 } else { 3360 if (CallConv == CallingConv::Fast) 3361 ComputeArgOffset(); 3362 needsLoad = true; 3363 } 3364 if (CallConv != CallingConv::Fast || needsLoad) 3365 ArgOffset += Sz; 3366 break; 3367 } 3368 3369 // We need to load the argument to a virtual register if we determined 3370 // above that we ran out of physical registers of the appropriate type. 3371 if (needsLoad) { 3372 if (ObjSize < ArgSize && !isLittleEndian) 3373 CurArgOffset += ArgSize - ObjSize; 3374 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3375 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3376 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3377 false, false, false, 0); 3378 } 3379 3380 InVals.push_back(ArgVal); 3381 } 3382 3383 // Area that is at least reserved in the caller of this function. 3384 unsigned MinReservedArea; 3385 if (HasParameterArea) 3386 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3387 else 3388 MinReservedArea = LinkageSize; 3389 3390 // Set the size that is at least reserved in caller of this function. Tail 3391 // call optimized functions' reserved stack space needs to be aligned so that 3392 // taking the difference between two stack areas will result in an aligned 3393 // stack. 3394 MinReservedArea = 3395 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3396 FuncInfo->setMinReservedArea(MinReservedArea); 3397 3398 // If the function takes variable number of arguments, make a frame index for 3399 // the start of the first vararg value... for expansion of llvm.va_start. 3400 if (isVarArg) { 3401 int Depth = ArgOffset; 3402 3403 FuncInfo->setVarArgsFrameIndex( 3404 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3405 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3406 3407 // If this function is vararg, store any remaining integer argument regs 3408 // to their spots on the stack so that they may be loaded by deferencing the 3409 // result of va_next. 3410 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3411 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3412 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3413 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3414 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3415 MachinePointerInfo(), false, false, 0); 3416 MemOps.push_back(Store); 3417 // Increment the address by four for the next argument to store 3418 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3419 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3420 } 3421 } 3422 3423 if (!MemOps.empty()) 3424 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3425 3426 return Chain; 3427 } 3428 3429 SDValue 3430 PPCTargetLowering::LowerFormalArguments_Darwin( 3431 SDValue Chain, 3432 CallingConv::ID CallConv, bool isVarArg, 3433 const SmallVectorImpl<ISD::InputArg> 3434 &Ins, 3435 SDLoc dl, SelectionDAG &DAG, 3436 SmallVectorImpl<SDValue> &InVals) const { 3437 // TODO: add description of PPC stack frame format, or at least some docs. 3438 // 3439 MachineFunction &MF = DAG.getMachineFunction(); 3440 MachineFrameInfo *MFI = MF.getFrameInfo(); 3441 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3442 3443 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3444 bool isPPC64 = PtrVT == MVT::i64; 3445 // Potential tail calls could cause overwriting of argument stack slots. 3446 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3447 (CallConv == CallingConv::Fast)); 3448 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3449 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3450 unsigned ArgOffset = LinkageSize; 3451 // Area that is at least reserved in caller of this function. 3452 unsigned MinReservedArea = ArgOffset; 3453 3454 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3455 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3456 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3457 }; 3458 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3459 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3460 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3461 }; 3462 static const MCPhysReg VR[] = { 3463 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3464 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3465 }; 3466 3467 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3468 const unsigned Num_FPR_Regs = 13; 3469 const unsigned Num_VR_Regs = array_lengthof( VR); 3470 3471 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3472 3473 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3474 3475 // In 32-bit non-varargs functions, the stack space for vectors is after the 3476 // stack space for non-vectors. We do not use this space unless we have 3477 // too many vectors to fit in registers, something that only occurs in 3478 // constructed examples:), but we have to walk the arglist to figure 3479 // that out...for the pathological case, compute VecArgOffset as the 3480 // start of the vector parameter area. Computing VecArgOffset is the 3481 // entire point of the following loop. 3482 unsigned VecArgOffset = ArgOffset; 3483 if (!isVarArg && !isPPC64) { 3484 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3485 ++ArgNo) { 3486 EVT ObjectVT = Ins[ArgNo].VT; 3487 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3488 3489 if (Flags.isByVal()) { 3490 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3491 unsigned ObjSize = Flags.getByValSize(); 3492 unsigned ArgSize = 3493 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3494 VecArgOffset += ArgSize; 3495 continue; 3496 } 3497 3498 switch(ObjectVT.getSimpleVT().SimpleTy) { 3499 default: llvm_unreachable("Unhandled argument type!"); 3500 case MVT::i1: 3501 case MVT::i32: 3502 case MVT::f32: 3503 VecArgOffset += 4; 3504 break; 3505 case MVT::i64: // PPC64 3506 case MVT::f64: 3507 // FIXME: We are guaranteed to be !isPPC64 at this point. 3508 // Does MVT::i64 apply? 3509 VecArgOffset += 8; 3510 break; 3511 case MVT::v4f32: 3512 case MVT::v4i32: 3513 case MVT::v8i16: 3514 case MVT::v16i8: 3515 // Nothing to do, we're only looking at Nonvector args here. 3516 break; 3517 } 3518 } 3519 } 3520 // We've found where the vector parameter area in memory is. Skip the 3521 // first 12 parameters; these don't use that memory. 3522 VecArgOffset = ((VecArgOffset+15)/16)*16; 3523 VecArgOffset += 12*16; 3524 3525 // Add DAG nodes to load the arguments or copy them out of registers. On 3526 // entry to a function on PPC, the arguments start after the linkage area, 3527 // although the first ones are often in registers. 3528 3529 SmallVector<SDValue, 8> MemOps; 3530 unsigned nAltivecParamsAtEnd = 0; 3531 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3532 unsigned CurArgIdx = 0; 3533 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3534 SDValue ArgVal; 3535 bool needsLoad = false; 3536 EVT ObjectVT = Ins[ArgNo].VT; 3537 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3538 unsigned ArgSize = ObjSize; 3539 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3540 if (Ins[ArgNo].isOrigArg()) { 3541 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3542 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3543 } 3544 unsigned CurArgOffset = ArgOffset; 3545 3546 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3547 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3548 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3549 if (isVarArg || isPPC64) { 3550 MinReservedArea = ((MinReservedArea+15)/16)*16; 3551 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3552 Flags, 3553 PtrByteSize); 3554 } else nAltivecParamsAtEnd++; 3555 } else 3556 // Calculate min reserved area. 3557 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3558 Flags, 3559 PtrByteSize); 3560 3561 // FIXME the codegen can be much improved in some cases. 3562 // We do not have to keep everything in memory. 3563 if (Flags.isByVal()) { 3564 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3565 3566 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3567 ObjSize = Flags.getByValSize(); 3568 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3569 // Objects of size 1 and 2 are right justified, everything else is 3570 // left justified. This means the memory address is adjusted forwards. 3571 if (ObjSize==1 || ObjSize==2) { 3572 CurArgOffset = CurArgOffset + (4 - ObjSize); 3573 } 3574 // The value of the object is its address. 3575 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3576 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3577 InVals.push_back(FIN); 3578 if (ObjSize==1 || ObjSize==2) { 3579 if (GPR_idx != Num_GPR_Regs) { 3580 unsigned VReg; 3581 if (isPPC64) 3582 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3583 else 3584 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3585 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3586 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3587 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3588 MachinePointerInfo(FuncArg), 3589 ObjType, false, false, 0); 3590 MemOps.push_back(Store); 3591 ++GPR_idx; 3592 } 3593 3594 ArgOffset += PtrByteSize; 3595 3596 continue; 3597 } 3598 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3599 // Store whatever pieces of the object are in registers 3600 // to memory. ArgOffset will be the address of the beginning 3601 // of the object. 3602 if (GPR_idx != Num_GPR_Regs) { 3603 unsigned VReg; 3604 if (isPPC64) 3605 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3606 else 3607 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3608 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3609 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3610 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3611 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3612 MachinePointerInfo(FuncArg, j), 3613 false, false, 0); 3614 MemOps.push_back(Store); 3615 ++GPR_idx; 3616 ArgOffset += PtrByteSize; 3617 } else { 3618 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3619 break; 3620 } 3621 } 3622 continue; 3623 } 3624 3625 switch (ObjectVT.getSimpleVT().SimpleTy) { 3626 default: llvm_unreachable("Unhandled argument type!"); 3627 case MVT::i1: 3628 case MVT::i32: 3629 if (!isPPC64) { 3630 if (GPR_idx != Num_GPR_Regs) { 3631 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3632 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3633 3634 if (ObjectVT == MVT::i1) 3635 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3636 3637 ++GPR_idx; 3638 } else { 3639 needsLoad = true; 3640 ArgSize = PtrByteSize; 3641 } 3642 // All int arguments reserve stack space in the Darwin ABI. 3643 ArgOffset += PtrByteSize; 3644 break; 3645 } 3646 // FALLTHROUGH 3647 case MVT::i64: // PPC64 3648 if (GPR_idx != Num_GPR_Regs) { 3649 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3650 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3651 3652 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3653 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3654 // value to MVT::i64 and then truncate to the correct register size. 3655 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3656 3657 ++GPR_idx; 3658 } else { 3659 needsLoad = true; 3660 ArgSize = PtrByteSize; 3661 } 3662 // All int arguments reserve stack space in the Darwin ABI. 3663 ArgOffset += 8; 3664 break; 3665 3666 case MVT::f32: 3667 case MVT::f64: 3668 // Every 4 bytes of argument space consumes one of the GPRs available for 3669 // argument passing. 3670 if (GPR_idx != Num_GPR_Regs) { 3671 ++GPR_idx; 3672 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3673 ++GPR_idx; 3674 } 3675 if (FPR_idx != Num_FPR_Regs) { 3676 unsigned VReg; 3677 3678 if (ObjectVT == MVT::f32) 3679 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3680 else 3681 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3682 3683 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3684 ++FPR_idx; 3685 } else { 3686 needsLoad = true; 3687 } 3688 3689 // All FP arguments reserve stack space in the Darwin ABI. 3690 ArgOffset += isPPC64 ? 8 : ObjSize; 3691 break; 3692 case MVT::v4f32: 3693 case MVT::v4i32: 3694 case MVT::v8i16: 3695 case MVT::v16i8: 3696 // Note that vector arguments in registers don't reserve stack space, 3697 // except in varargs functions. 3698 if (VR_idx != Num_VR_Regs) { 3699 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3700 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3701 if (isVarArg) { 3702 while ((ArgOffset % 16) != 0) { 3703 ArgOffset += PtrByteSize; 3704 if (GPR_idx != Num_GPR_Regs) 3705 GPR_idx++; 3706 } 3707 ArgOffset += 16; 3708 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3709 } 3710 ++VR_idx; 3711 } else { 3712 if (!isVarArg && !isPPC64) { 3713 // Vectors go after all the nonvectors. 3714 CurArgOffset = VecArgOffset; 3715 VecArgOffset += 16; 3716 } else { 3717 // Vectors are aligned. 3718 ArgOffset = ((ArgOffset+15)/16)*16; 3719 CurArgOffset = ArgOffset; 3720 ArgOffset += 16; 3721 } 3722 needsLoad = true; 3723 } 3724 break; 3725 } 3726 3727 // We need to load the argument to a virtual register if we determined above 3728 // that we ran out of physical registers of the appropriate type. 3729 if (needsLoad) { 3730 int FI = MFI->CreateFixedObject(ObjSize, 3731 CurArgOffset + (ArgSize - ObjSize), 3732 isImmutable); 3733 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3734 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3735 false, false, false, 0); 3736 } 3737 3738 InVals.push_back(ArgVal); 3739 } 3740 3741 // Allow for Altivec parameters at the end, if needed. 3742 if (nAltivecParamsAtEnd) { 3743 MinReservedArea = ((MinReservedArea+15)/16)*16; 3744 MinReservedArea += 16*nAltivecParamsAtEnd; 3745 } 3746 3747 // Area that is at least reserved in the caller of this function. 3748 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3749 3750 // Set the size that is at least reserved in caller of this function. Tail 3751 // call optimized functions' reserved stack space needs to be aligned so that 3752 // taking the difference between two stack areas will result in an aligned 3753 // stack. 3754 MinReservedArea = 3755 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3756 FuncInfo->setMinReservedArea(MinReservedArea); 3757 3758 // If the function takes variable number of arguments, make a frame index for 3759 // the start of the first vararg value... for expansion of llvm.va_start. 3760 if (isVarArg) { 3761 int Depth = ArgOffset; 3762 3763 FuncInfo->setVarArgsFrameIndex( 3764 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3765 Depth, true)); 3766 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3767 3768 // If this function is vararg, store any remaining integer argument regs 3769 // to their spots on the stack so that they may be loaded by deferencing the 3770 // result of va_next. 3771 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3772 unsigned VReg; 3773 3774 if (isPPC64) 3775 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3776 else 3777 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3778 3779 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3780 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3781 MachinePointerInfo(), false, false, 0); 3782 MemOps.push_back(Store); 3783 // Increment the address by four for the next argument to store 3784 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3785 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3786 } 3787 } 3788 3789 if (!MemOps.empty()) 3790 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3791 3792 return Chain; 3793 } 3794 3795 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3796 /// adjusted to accommodate the arguments for the tailcall. 3797 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3798 unsigned ParamSize) { 3799 3800 if (!isTailCall) return 0; 3801 3802 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3803 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3804 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3805 // Remember only if the new adjustement is bigger. 3806 if (SPDiff < FI->getTailCallSPDelta()) 3807 FI->setTailCallSPDelta(SPDiff); 3808 3809 return SPDiff; 3810 } 3811 3812 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3813 /// for tail call optimization. Targets which want to do tail call 3814 /// optimization should implement this function. 3815 bool 3816 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3817 CallingConv::ID CalleeCC, 3818 bool isVarArg, 3819 const SmallVectorImpl<ISD::InputArg> &Ins, 3820 SelectionDAG& DAG) const { 3821 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3822 return false; 3823 3824 // Variable argument functions are not supported. 3825 if (isVarArg) 3826 return false; 3827 3828 MachineFunction &MF = DAG.getMachineFunction(); 3829 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3830 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3831 // Functions containing by val parameters are not supported. 3832 for (unsigned i = 0; i != Ins.size(); i++) { 3833 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3834 if (Flags.isByVal()) return false; 3835 } 3836 3837 // Non-PIC/GOT tail calls are supported. 3838 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3839 return true; 3840 3841 // At the moment we can only do local tail calls (in same module, hidden 3842 // or protected) if we are generating PIC. 3843 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3844 return G->getGlobal()->hasHiddenVisibility() 3845 || G->getGlobal()->hasProtectedVisibility(); 3846 } 3847 3848 return false; 3849 } 3850 3851 /// isCallCompatibleAddress - Return the immediate to use if the specified 3852 /// 32-bit value is representable in the immediate field of a BxA instruction. 3853 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3854 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3855 if (!C) return nullptr; 3856 3857 int Addr = C->getZExtValue(); 3858 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3859 SignExtend32<26>(Addr) != Addr) 3860 return nullptr; // Top 6 bits have to be sext of immediate. 3861 3862 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3863 DAG.getTargetLoweringInfo().getPointerTy( 3864 DAG.getDataLayout())).getNode(); 3865 } 3866 3867 namespace { 3868 3869 struct TailCallArgumentInfo { 3870 SDValue Arg; 3871 SDValue FrameIdxOp; 3872 int FrameIdx; 3873 3874 TailCallArgumentInfo() : FrameIdx(0) {} 3875 }; 3876 3877 } 3878 3879 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3880 static void 3881 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3882 SDValue Chain, 3883 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3884 SmallVectorImpl<SDValue> &MemOpChains, 3885 SDLoc dl) { 3886 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3887 SDValue Arg = TailCallArgs[i].Arg; 3888 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3889 int FI = TailCallArgs[i].FrameIdx; 3890 // Store relative to framepointer. 3891 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 3892 MachinePointerInfo::getFixedStack(FI), 3893 false, false, 0)); 3894 } 3895 } 3896 3897 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3898 /// the appropriate stack slot for the tail call optimized function call. 3899 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3900 MachineFunction &MF, 3901 SDValue Chain, 3902 SDValue OldRetAddr, 3903 SDValue OldFP, 3904 int SPDiff, 3905 bool isPPC64, 3906 bool isDarwinABI, 3907 SDLoc dl) { 3908 if (SPDiff) { 3909 // Calculate the new stack slot for the return address. 3910 int SlotSize = isPPC64 ? 8 : 4; 3911 const PPCFrameLowering *FL = 3912 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3913 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3914 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3915 NewRetAddrLoc, true); 3916 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3917 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3918 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3919 MachinePointerInfo::getFixedStack(NewRetAddr), 3920 false, false, 0); 3921 3922 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3923 // slot as the FP is never overwritten. 3924 if (isDarwinABI) { 3925 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3926 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3927 true); 3928 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3929 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 3930 MachinePointerInfo::getFixedStack(NewFPIdx), 3931 false, false, 0); 3932 } 3933 } 3934 return Chain; 3935 } 3936 3937 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3938 /// the position of the argument. 3939 static void 3940 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3941 SDValue Arg, int SPDiff, unsigned ArgOffset, 3942 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3943 int Offset = ArgOffset + SPDiff; 3944 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3945 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3946 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3947 SDValue FIN = DAG.getFrameIndex(FI, VT); 3948 TailCallArgumentInfo Info; 3949 Info.Arg = Arg; 3950 Info.FrameIdxOp = FIN; 3951 Info.FrameIdx = FI; 3952 TailCallArguments.push_back(Info); 3953 } 3954 3955 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3956 /// stack slot. Returns the chain as result and the loaded frame pointers in 3957 /// LROpOut/FPOpout. Used when tail calling. 3958 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3959 int SPDiff, 3960 SDValue Chain, 3961 SDValue &LROpOut, 3962 SDValue &FPOpOut, 3963 bool isDarwinABI, 3964 SDLoc dl) const { 3965 if (SPDiff) { 3966 // Load the LR and FP stack slot for later adjusting. 3967 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3968 LROpOut = getReturnAddrFrameIndex(DAG); 3969 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3970 false, false, false, 0); 3971 Chain = SDValue(LROpOut.getNode(), 1); 3972 3973 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3974 // slot as the FP is never overwritten. 3975 if (isDarwinABI) { 3976 FPOpOut = getFramePointerFrameIndex(DAG); 3977 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 3978 false, false, false, 0); 3979 Chain = SDValue(FPOpOut.getNode(), 1); 3980 } 3981 } 3982 return Chain; 3983 } 3984 3985 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 3986 /// by "Src" to address "Dst" of size "Size". Alignment information is 3987 /// specified by the specific parameter attribute. The copy will be passed as 3988 /// a byval function parameter. 3989 /// Sometimes what we are copying is the end of a larger object, the part that 3990 /// does not fit in registers. 3991 static SDValue 3992 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 3993 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 3994 SDLoc dl) { 3995 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 3996 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 3997 false, false, false, MachinePointerInfo(), 3998 MachinePointerInfo()); 3999 } 4000 4001 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4002 /// tail calls. 4003 static void 4004 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4005 SDValue Arg, SDValue PtrOff, int SPDiff, 4006 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4007 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4008 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4009 SDLoc dl) { 4010 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4011 if (!isTailCall) { 4012 if (isVector) { 4013 SDValue StackPtr; 4014 if (isPPC64) 4015 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4016 else 4017 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4018 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4019 DAG.getConstant(ArgOffset, dl, PtrVT)); 4020 } 4021 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4022 MachinePointerInfo(), false, false, 0)); 4023 // Calculate and remember argument location. 4024 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4025 TailCallArguments); 4026 } 4027 4028 static 4029 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4030 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4031 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4032 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4033 MachineFunction &MF = DAG.getMachineFunction(); 4034 4035 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4036 // might overwrite each other in case of tail call optimization. 4037 SmallVector<SDValue, 8> MemOpChains2; 4038 // Do not flag preceding copytoreg stuff together with the following stuff. 4039 InFlag = SDValue(); 4040 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4041 MemOpChains2, dl); 4042 if (!MemOpChains2.empty()) 4043 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4044 4045 // Store the return address to the appropriate stack slot. 4046 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4047 isPPC64, isDarwinABI, dl); 4048 4049 // Emit callseq_end just before tailcall node. 4050 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4051 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4052 InFlag = Chain.getValue(1); 4053 } 4054 4055 // Is this global address that of a function that can be called by name? (as 4056 // opposed to something that must hold a descriptor for an indirect call). 4057 static bool isFunctionGlobalAddress(SDValue Callee) { 4058 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4059 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4060 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4061 return false; 4062 4063 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 4064 } 4065 4066 return false; 4067 } 4068 4069 static 4070 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4071 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4072 bool isTailCall, bool IsPatchPoint, bool hasNest, 4073 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4074 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4075 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4076 4077 bool isPPC64 = Subtarget.isPPC64(); 4078 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4079 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4080 4081 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4082 NodeTys.push_back(MVT::Other); // Returns a chain 4083 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4084 4085 unsigned CallOpc = PPCISD::CALL; 4086 4087 bool needIndirectCall = true; 4088 if (!isSVR4ABI || !isPPC64) 4089 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4090 // If this is an absolute destination address, use the munged value. 4091 Callee = SDValue(Dest, 0); 4092 needIndirectCall = false; 4093 } 4094 4095 if (isFunctionGlobalAddress(Callee)) { 4096 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4097 // A call to a TLS address is actually an indirect call to a 4098 // thread-specific pointer. 4099 unsigned OpFlags = 0; 4100 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4101 (Subtarget.getTargetTriple().isMacOSX() && 4102 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4103 !G->getGlobal()->isStrongDefinitionForLinker()) || 4104 (Subtarget.isTargetELF() && !isPPC64 && 4105 !G->getGlobal()->hasLocalLinkage() && 4106 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4107 // PC-relative references to external symbols should go through $stub, 4108 // unless we're building with the leopard linker or later, which 4109 // automatically synthesizes these stubs. 4110 OpFlags = PPCII::MO_PLT_OR_STUB; 4111 } 4112 4113 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4114 // every direct call is) turn it into a TargetGlobalAddress / 4115 // TargetExternalSymbol node so that legalize doesn't hack it. 4116 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4117 Callee.getValueType(), 0, OpFlags); 4118 needIndirectCall = false; 4119 } 4120 4121 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4122 unsigned char OpFlags = 0; 4123 4124 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4125 (Subtarget.getTargetTriple().isMacOSX() && 4126 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4127 (Subtarget.isTargetELF() && !isPPC64 && 4128 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4129 // PC-relative references to external symbols should go through $stub, 4130 // unless we're building with the leopard linker or later, which 4131 // automatically synthesizes these stubs. 4132 OpFlags = PPCII::MO_PLT_OR_STUB; 4133 } 4134 4135 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4136 OpFlags); 4137 needIndirectCall = false; 4138 } 4139 4140 if (IsPatchPoint) { 4141 // We'll form an invalid direct call when lowering a patchpoint; the full 4142 // sequence for an indirect call is complicated, and many of the 4143 // instructions introduced might have side effects (and, thus, can't be 4144 // removed later). The call itself will be removed as soon as the 4145 // argument/return lowering is complete, so the fact that it has the wrong 4146 // kind of operands should not really matter. 4147 needIndirectCall = false; 4148 } 4149 4150 if (needIndirectCall) { 4151 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4152 // to do the call, we can't use PPCISD::CALL. 4153 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4154 4155 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4156 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4157 // entry point, but to the function descriptor (the function entry point 4158 // address is part of the function descriptor though). 4159 // The function descriptor is a three doubleword structure with the 4160 // following fields: function entry point, TOC base address and 4161 // environment pointer. 4162 // Thus for a call through a function pointer, the following actions need 4163 // to be performed: 4164 // 1. Save the TOC of the caller in the TOC save area of its stack 4165 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4166 // 2. Load the address of the function entry point from the function 4167 // descriptor. 4168 // 3. Load the TOC of the callee from the function descriptor into r2. 4169 // 4. Load the environment pointer from the function descriptor into 4170 // r11. 4171 // 5. Branch to the function entry point address. 4172 // 6. On return of the callee, the TOC of the caller needs to be 4173 // restored (this is done in FinishCall()). 4174 // 4175 // The loads are scheduled at the beginning of the call sequence, and the 4176 // register copies are flagged together to ensure that no other 4177 // operations can be scheduled in between. E.g. without flagging the 4178 // copies together, a TOC access in the caller could be scheduled between 4179 // the assignment of the callee TOC and the branch to the callee, which 4180 // results in the TOC access going through the TOC of the callee instead 4181 // of going through the TOC of the caller, which leads to incorrect code. 4182 4183 // Load the address of the function entry point from the function 4184 // descriptor. 4185 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4186 if (LDChain.getValueType() == MVT::Glue) 4187 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4188 4189 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4190 4191 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4192 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4193 false, false, LoadsInv, 8); 4194 4195 // Load environment pointer into r11. 4196 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4197 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4198 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4199 MPI.getWithOffset(16), false, false, 4200 LoadsInv, 8); 4201 4202 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4203 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4204 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4205 MPI.getWithOffset(8), false, false, 4206 LoadsInv, 8); 4207 4208 setUsesTOCBasePtr(DAG); 4209 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4210 InFlag); 4211 Chain = TOCVal.getValue(0); 4212 InFlag = TOCVal.getValue(1); 4213 4214 // If the function call has an explicit 'nest' parameter, it takes the 4215 // place of the environment pointer. 4216 if (!hasNest) { 4217 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4218 InFlag); 4219 4220 Chain = EnvVal.getValue(0); 4221 InFlag = EnvVal.getValue(1); 4222 } 4223 4224 MTCTROps[0] = Chain; 4225 MTCTROps[1] = LoadFuncPtr; 4226 MTCTROps[2] = InFlag; 4227 } 4228 4229 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4230 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4231 InFlag = Chain.getValue(1); 4232 4233 NodeTys.clear(); 4234 NodeTys.push_back(MVT::Other); 4235 NodeTys.push_back(MVT::Glue); 4236 Ops.push_back(Chain); 4237 CallOpc = PPCISD::BCTRL; 4238 Callee.setNode(nullptr); 4239 // Add use of X11 (holding environment pointer) 4240 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4241 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4242 // Add CTR register as callee so a bctr can be emitted later. 4243 if (isTailCall) 4244 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4245 } 4246 4247 // If this is a direct call, pass the chain and the callee. 4248 if (Callee.getNode()) { 4249 Ops.push_back(Chain); 4250 Ops.push_back(Callee); 4251 } 4252 // If this is a tail call add stack pointer delta. 4253 if (isTailCall) 4254 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4255 4256 // Add argument registers to the end of the list so that they are known live 4257 // into the call. 4258 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4259 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4260 RegsToPass[i].second.getValueType())); 4261 4262 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4263 // into the call. 4264 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4265 setUsesTOCBasePtr(DAG); 4266 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4267 } 4268 4269 return CallOpc; 4270 } 4271 4272 static 4273 bool isLocalCall(const SDValue &Callee) 4274 { 4275 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4276 return G->getGlobal()->isStrongDefinitionForLinker(); 4277 return false; 4278 } 4279 4280 SDValue 4281 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4282 CallingConv::ID CallConv, bool isVarArg, 4283 const SmallVectorImpl<ISD::InputArg> &Ins, 4284 SDLoc dl, SelectionDAG &DAG, 4285 SmallVectorImpl<SDValue> &InVals) const { 4286 4287 SmallVector<CCValAssign, 16> RVLocs; 4288 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4289 *DAG.getContext()); 4290 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4291 4292 // Copy all of the result registers out of their specified physreg. 4293 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4294 CCValAssign &VA = RVLocs[i]; 4295 assert(VA.isRegLoc() && "Can only return in registers!"); 4296 4297 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4298 VA.getLocReg(), VA.getLocVT(), InFlag); 4299 Chain = Val.getValue(1); 4300 InFlag = Val.getValue(2); 4301 4302 switch (VA.getLocInfo()) { 4303 default: llvm_unreachable("Unknown loc info!"); 4304 case CCValAssign::Full: break; 4305 case CCValAssign::AExt: 4306 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4307 break; 4308 case CCValAssign::ZExt: 4309 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4310 DAG.getValueType(VA.getValVT())); 4311 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4312 break; 4313 case CCValAssign::SExt: 4314 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4315 DAG.getValueType(VA.getValVT())); 4316 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4317 break; 4318 } 4319 4320 InVals.push_back(Val); 4321 } 4322 4323 return Chain; 4324 } 4325 4326 SDValue 4327 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4328 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4329 bool hasNest, SelectionDAG &DAG, 4330 SmallVector<std::pair<unsigned, SDValue>, 8> 4331 &RegsToPass, 4332 SDValue InFlag, SDValue Chain, 4333 SDValue CallSeqStart, SDValue &Callee, 4334 int SPDiff, unsigned NumBytes, 4335 const SmallVectorImpl<ISD::InputArg> &Ins, 4336 SmallVectorImpl<SDValue> &InVals, 4337 ImmutableCallSite *CS) const { 4338 4339 std::vector<EVT> NodeTys; 4340 SmallVector<SDValue, 8> Ops; 4341 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4342 SPDiff, isTailCall, IsPatchPoint, hasNest, 4343 RegsToPass, Ops, NodeTys, CS, Subtarget); 4344 4345 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4346 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4347 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4348 4349 // When performing tail call optimization the callee pops its arguments off 4350 // the stack. Account for this here so these bytes can be pushed back on in 4351 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4352 int BytesCalleePops = 4353 (CallConv == CallingConv::Fast && 4354 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4355 4356 // Add a register mask operand representing the call-preserved registers. 4357 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4358 const uint32_t *Mask = 4359 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4360 assert(Mask && "Missing call preserved mask for calling convention"); 4361 Ops.push_back(DAG.getRegisterMask(Mask)); 4362 4363 if (InFlag.getNode()) 4364 Ops.push_back(InFlag); 4365 4366 // Emit tail call. 4367 if (isTailCall) { 4368 assert(((Callee.getOpcode() == ISD::Register && 4369 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4370 Callee.getOpcode() == ISD::TargetExternalSymbol || 4371 Callee.getOpcode() == ISD::TargetGlobalAddress || 4372 isa<ConstantSDNode>(Callee)) && 4373 "Expecting an global address, external symbol, absolute value or register"); 4374 4375 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4376 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4377 } 4378 4379 // Add a NOP immediately after the branch instruction when using the 64-bit 4380 // SVR4 ABI. At link time, if caller and callee are in a different module and 4381 // thus have a different TOC, the call will be replaced with a call to a stub 4382 // function which saves the current TOC, loads the TOC of the callee and 4383 // branches to the callee. The NOP will be replaced with a load instruction 4384 // which restores the TOC of the caller from the TOC save slot of the current 4385 // stack frame. If caller and callee belong to the same module (and have the 4386 // same TOC), the NOP will remain unchanged. 4387 4388 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4389 !IsPatchPoint) { 4390 if (CallOpc == PPCISD::BCTRL) { 4391 // This is a call through a function pointer. 4392 // Restore the caller TOC from the save area into R2. 4393 // See PrepareCall() for more information about calls through function 4394 // pointers in the 64-bit SVR4 ABI. 4395 // We are using a target-specific load with r2 hard coded, because the 4396 // result of a target-independent load would never go directly into r2, 4397 // since r2 is a reserved register (which prevents the register allocator 4398 // from allocating it), resulting in an additional register being 4399 // allocated and an unnecessary move instruction being generated. 4400 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4401 4402 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4403 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4404 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4405 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4406 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4407 4408 // The address needs to go after the chain input but before the flag (or 4409 // any other variadic arguments). 4410 Ops.insert(std::next(Ops.begin()), AddTOC); 4411 } else if ((CallOpc == PPCISD::CALL) && 4412 (!isLocalCall(Callee) || 4413 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4414 // Otherwise insert NOP for non-local calls. 4415 CallOpc = PPCISD::CALL_NOP; 4416 } 4417 4418 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4419 InFlag = Chain.getValue(1); 4420 4421 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4422 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4423 InFlag, dl); 4424 if (!Ins.empty()) 4425 InFlag = Chain.getValue(1); 4426 4427 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4428 Ins, dl, DAG, InVals); 4429 } 4430 4431 SDValue 4432 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4433 SmallVectorImpl<SDValue> &InVals) const { 4434 SelectionDAG &DAG = CLI.DAG; 4435 SDLoc &dl = CLI.DL; 4436 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4437 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4438 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4439 SDValue Chain = CLI.Chain; 4440 SDValue Callee = CLI.Callee; 4441 bool &isTailCall = CLI.IsTailCall; 4442 CallingConv::ID CallConv = CLI.CallConv; 4443 bool isVarArg = CLI.IsVarArg; 4444 bool IsPatchPoint = CLI.IsPatchPoint; 4445 ImmutableCallSite *CS = CLI.CS; 4446 4447 if (isTailCall) 4448 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4449 Ins, DAG); 4450 4451 if (!isTailCall && CS && CS->isMustTailCall()) 4452 report_fatal_error("failed to perform tail call elimination on a call " 4453 "site marked musttail"); 4454 4455 if (Subtarget.isSVR4ABI()) { 4456 if (Subtarget.isPPC64()) 4457 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4458 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4459 dl, DAG, InVals, CS); 4460 else 4461 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4462 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4463 dl, DAG, InVals, CS); 4464 } 4465 4466 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4467 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4468 dl, DAG, InVals, CS); 4469 } 4470 4471 SDValue 4472 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4473 CallingConv::ID CallConv, bool isVarArg, 4474 bool isTailCall, bool IsPatchPoint, 4475 const SmallVectorImpl<ISD::OutputArg> &Outs, 4476 const SmallVectorImpl<SDValue> &OutVals, 4477 const SmallVectorImpl<ISD::InputArg> &Ins, 4478 SDLoc dl, SelectionDAG &DAG, 4479 SmallVectorImpl<SDValue> &InVals, 4480 ImmutableCallSite *CS) const { 4481 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4482 // of the 32-bit SVR4 ABI stack frame layout. 4483 4484 assert((CallConv == CallingConv::C || 4485 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4486 4487 unsigned PtrByteSize = 4; 4488 4489 MachineFunction &MF = DAG.getMachineFunction(); 4490 4491 // Mark this function as potentially containing a function that contains a 4492 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4493 // and restoring the callers stack pointer in this functions epilog. This is 4494 // done because by tail calling the called function might overwrite the value 4495 // in this function's (MF) stack pointer stack slot 0(SP). 4496 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4497 CallConv == CallingConv::Fast) 4498 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4499 4500 // Count how many bytes are to be pushed on the stack, including the linkage 4501 // area, parameter list area and the part of the local variable space which 4502 // contains copies of aggregates which are passed by value. 4503 4504 // Assign locations to all of the outgoing arguments. 4505 SmallVector<CCValAssign, 16> ArgLocs; 4506 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4507 *DAG.getContext()); 4508 4509 // Reserve space for the linkage area on the stack. 4510 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4511 PtrByteSize); 4512 4513 if (isVarArg) { 4514 // Handle fixed and variable vector arguments differently. 4515 // Fixed vector arguments go into registers as long as registers are 4516 // available. Variable vector arguments always go into memory. 4517 unsigned NumArgs = Outs.size(); 4518 4519 for (unsigned i = 0; i != NumArgs; ++i) { 4520 MVT ArgVT = Outs[i].VT; 4521 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4522 bool Result; 4523 4524 if (Outs[i].IsFixed) { 4525 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4526 CCInfo); 4527 } else { 4528 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4529 ArgFlags, CCInfo); 4530 } 4531 4532 if (Result) { 4533 #ifndef NDEBUG 4534 errs() << "Call operand #" << i << " has unhandled type " 4535 << EVT(ArgVT).getEVTString() << "\n"; 4536 #endif 4537 llvm_unreachable(nullptr); 4538 } 4539 } 4540 } else { 4541 // All arguments are treated the same. 4542 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4543 } 4544 4545 // Assign locations to all of the outgoing aggregate by value arguments. 4546 SmallVector<CCValAssign, 16> ByValArgLocs; 4547 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4548 ByValArgLocs, *DAG.getContext()); 4549 4550 // Reserve stack space for the allocations in CCInfo. 4551 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4552 4553 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4554 4555 // Size of the linkage area, parameter list area and the part of the local 4556 // space variable where copies of aggregates which are passed by value are 4557 // stored. 4558 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4559 4560 // Calculate by how many bytes the stack has to be adjusted in case of tail 4561 // call optimization. 4562 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4563 4564 // Adjust the stack pointer for the new arguments... 4565 // These operations are automatically eliminated by the prolog/epilog pass 4566 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4567 dl); 4568 SDValue CallSeqStart = Chain; 4569 4570 // Load the return address and frame pointer so it can be moved somewhere else 4571 // later. 4572 SDValue LROp, FPOp; 4573 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4574 dl); 4575 4576 // Set up a copy of the stack pointer for use loading and storing any 4577 // arguments that may not fit in the registers available for argument 4578 // passing. 4579 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4580 4581 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4582 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4583 SmallVector<SDValue, 8> MemOpChains; 4584 4585 bool seenFloatArg = false; 4586 // Walk the register/memloc assignments, inserting copies/loads. 4587 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4588 i != e; 4589 ++i) { 4590 CCValAssign &VA = ArgLocs[i]; 4591 SDValue Arg = OutVals[i]; 4592 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4593 4594 if (Flags.isByVal()) { 4595 // Argument is an aggregate which is passed by value, thus we need to 4596 // create a copy of it in the local variable space of the current stack 4597 // frame (which is the stack frame of the caller) and pass the address of 4598 // this copy to the callee. 4599 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4600 CCValAssign &ByValVA = ByValArgLocs[j++]; 4601 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4602 4603 // Memory reserved in the local variable space of the callers stack frame. 4604 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4605 4606 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4607 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4608 StackPtr, PtrOff); 4609 4610 // Create a copy of the argument in the local area of the current 4611 // stack frame. 4612 SDValue MemcpyCall = 4613 CreateCopyOfByValArgument(Arg, PtrOff, 4614 CallSeqStart.getNode()->getOperand(0), 4615 Flags, DAG, dl); 4616 4617 // This must go outside the CALLSEQ_START..END. 4618 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4619 CallSeqStart.getNode()->getOperand(1), 4620 SDLoc(MemcpyCall)); 4621 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4622 NewCallSeqStart.getNode()); 4623 Chain = CallSeqStart = NewCallSeqStart; 4624 4625 // Pass the address of the aggregate copy on the stack either in a 4626 // physical register or in the parameter list area of the current stack 4627 // frame to the callee. 4628 Arg = PtrOff; 4629 } 4630 4631 if (VA.isRegLoc()) { 4632 if (Arg.getValueType() == MVT::i1) 4633 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4634 4635 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4636 // Put argument in a physical register. 4637 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4638 } else { 4639 // Put argument in the parameter list area of the current stack frame. 4640 assert(VA.isMemLoc()); 4641 unsigned LocMemOffset = VA.getLocMemOffset(); 4642 4643 if (!isTailCall) { 4644 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4645 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4646 StackPtr, PtrOff); 4647 4648 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4649 MachinePointerInfo(), 4650 false, false, 0)); 4651 } else { 4652 // Calculate and remember argument location. 4653 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4654 TailCallArguments); 4655 } 4656 } 4657 } 4658 4659 if (!MemOpChains.empty()) 4660 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4661 4662 // Build a sequence of copy-to-reg nodes chained together with token chain 4663 // and flag operands which copy the outgoing args into the appropriate regs. 4664 SDValue InFlag; 4665 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4666 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4667 RegsToPass[i].second, InFlag); 4668 InFlag = Chain.getValue(1); 4669 } 4670 4671 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4672 // registers. 4673 if (isVarArg) { 4674 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4675 SDValue Ops[] = { Chain, InFlag }; 4676 4677 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4678 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4679 4680 InFlag = Chain.getValue(1); 4681 } 4682 4683 if (isTailCall) 4684 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4685 false, TailCallArguments); 4686 4687 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4688 /* unused except on PPC64 ELFv1 */ false, DAG, 4689 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4690 NumBytes, Ins, InVals, CS); 4691 } 4692 4693 // Copy an argument into memory, being careful to do this outside the 4694 // call sequence for the call to which the argument belongs. 4695 SDValue 4696 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4697 SDValue CallSeqStart, 4698 ISD::ArgFlagsTy Flags, 4699 SelectionDAG &DAG, 4700 SDLoc dl) const { 4701 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4702 CallSeqStart.getNode()->getOperand(0), 4703 Flags, DAG, dl); 4704 // The MEMCPY must go outside the CALLSEQ_START..END. 4705 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4706 CallSeqStart.getNode()->getOperand(1), 4707 SDLoc(MemcpyCall)); 4708 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4709 NewCallSeqStart.getNode()); 4710 return NewCallSeqStart; 4711 } 4712 4713 SDValue 4714 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4715 CallingConv::ID CallConv, bool isVarArg, 4716 bool isTailCall, bool IsPatchPoint, 4717 const SmallVectorImpl<ISD::OutputArg> &Outs, 4718 const SmallVectorImpl<SDValue> &OutVals, 4719 const SmallVectorImpl<ISD::InputArg> &Ins, 4720 SDLoc dl, SelectionDAG &DAG, 4721 SmallVectorImpl<SDValue> &InVals, 4722 ImmutableCallSite *CS) const { 4723 4724 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4725 bool isLittleEndian = Subtarget.isLittleEndian(); 4726 unsigned NumOps = Outs.size(); 4727 bool hasNest = false; 4728 4729 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4730 unsigned PtrByteSize = 8; 4731 4732 MachineFunction &MF = DAG.getMachineFunction(); 4733 4734 // Mark this function as potentially containing a function that contains a 4735 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4736 // and restoring the callers stack pointer in this functions epilog. This is 4737 // done because by tail calling the called function might overwrite the value 4738 // in this function's (MF) stack pointer stack slot 0(SP). 4739 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4740 CallConv == CallingConv::Fast) 4741 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4742 4743 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4744 "fastcc not supported on varargs functions"); 4745 4746 // Count how many bytes are to be pushed on the stack, including the linkage 4747 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4748 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4749 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4750 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4751 unsigned NumBytes = LinkageSize; 4752 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4753 unsigned &QFPR_idx = FPR_idx; 4754 4755 static const MCPhysReg GPR[] = { 4756 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4757 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4758 }; 4759 static const MCPhysReg VR[] = { 4760 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4761 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4762 }; 4763 static const MCPhysReg VSRH[] = { 4764 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4765 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4766 }; 4767 4768 const unsigned NumGPRs = array_lengthof(GPR); 4769 const unsigned NumFPRs = 13; 4770 const unsigned NumVRs = array_lengthof(VR); 4771 const unsigned NumQFPRs = NumFPRs; 4772 4773 // When using the fast calling convention, we don't provide backing for 4774 // arguments that will be in registers. 4775 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4776 4777 // Add up all the space actually used. 4778 for (unsigned i = 0; i != NumOps; ++i) { 4779 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4780 EVT ArgVT = Outs[i].VT; 4781 EVT OrigVT = Outs[i].ArgVT; 4782 4783 if (Flags.isNest()) 4784 continue; 4785 4786 if (CallConv == CallingConv::Fast) { 4787 if (Flags.isByVal()) 4788 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4789 else 4790 switch (ArgVT.getSimpleVT().SimpleTy) { 4791 default: llvm_unreachable("Unexpected ValueType for argument!"); 4792 case MVT::i1: 4793 case MVT::i32: 4794 case MVT::i64: 4795 if (++NumGPRsUsed <= NumGPRs) 4796 continue; 4797 break; 4798 case MVT::v4i32: 4799 case MVT::v8i16: 4800 case MVT::v16i8: 4801 case MVT::v2f64: 4802 case MVT::v2i64: 4803 case MVT::v1i128: 4804 if (++NumVRsUsed <= NumVRs) 4805 continue; 4806 break; 4807 case MVT::v4f32: 4808 // When using QPX, this is handled like a FP register, otherwise, it 4809 // is an Altivec register. 4810 if (Subtarget.hasQPX()) { 4811 if (++NumFPRsUsed <= NumFPRs) 4812 continue; 4813 } else { 4814 if (++NumVRsUsed <= NumVRs) 4815 continue; 4816 } 4817 break; 4818 case MVT::f32: 4819 case MVT::f64: 4820 case MVT::v4f64: // QPX 4821 case MVT::v4i1: // QPX 4822 if (++NumFPRsUsed <= NumFPRs) 4823 continue; 4824 break; 4825 } 4826 } 4827 4828 /* Respect alignment of argument on the stack. */ 4829 unsigned Align = 4830 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4831 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4832 4833 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4834 if (Flags.isInConsecutiveRegsLast()) 4835 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4836 } 4837 4838 unsigned NumBytesActuallyUsed = NumBytes; 4839 4840 // The prolog code of the callee may store up to 8 GPR argument registers to 4841 // the stack, allowing va_start to index over them in memory if its varargs. 4842 // Because we cannot tell if this is needed on the caller side, we have to 4843 // conservatively assume that it is needed. As such, make sure we have at 4844 // least enough stack space for the caller to store the 8 GPRs. 4845 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4846 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4847 4848 // Tail call needs the stack to be aligned. 4849 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4850 CallConv == CallingConv::Fast) 4851 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4852 4853 // Calculate by how many bytes the stack has to be adjusted in case of tail 4854 // call optimization. 4855 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4856 4857 // To protect arguments on the stack from being clobbered in a tail call, 4858 // force all the loads to happen before doing any other lowering. 4859 if (isTailCall) 4860 Chain = DAG.getStackArgumentTokenFactor(Chain); 4861 4862 // Adjust the stack pointer for the new arguments... 4863 // These operations are automatically eliminated by the prolog/epilog pass 4864 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4865 dl); 4866 SDValue CallSeqStart = Chain; 4867 4868 // Load the return address and frame pointer so it can be move somewhere else 4869 // later. 4870 SDValue LROp, FPOp; 4871 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4872 dl); 4873 4874 // Set up a copy of the stack pointer for use loading and storing any 4875 // arguments that may not fit in the registers available for argument 4876 // passing. 4877 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4878 4879 // Figure out which arguments are going to go in registers, and which in 4880 // memory. Also, if this is a vararg function, floating point operations 4881 // must be stored to our stack, and loaded into integer regs as well, if 4882 // any integer regs are available for argument passing. 4883 unsigned ArgOffset = LinkageSize; 4884 4885 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4886 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4887 4888 SmallVector<SDValue, 8> MemOpChains; 4889 for (unsigned i = 0; i != NumOps; ++i) { 4890 SDValue Arg = OutVals[i]; 4891 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4892 EVT ArgVT = Outs[i].VT; 4893 EVT OrigVT = Outs[i].ArgVT; 4894 4895 // PtrOff will be used to store the current argument to the stack if a 4896 // register cannot be found for it. 4897 SDValue PtrOff; 4898 4899 // We re-align the argument offset for each argument, except when using the 4900 // fast calling convention, when we need to make sure we do that only when 4901 // we'll actually use a stack slot. 4902 auto ComputePtrOff = [&]() { 4903 /* Respect alignment of argument on the stack. */ 4904 unsigned Align = 4905 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4906 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4907 4908 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4909 4910 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4911 }; 4912 4913 if (CallConv != CallingConv::Fast) { 4914 ComputePtrOff(); 4915 4916 /* Compute GPR index associated with argument offset. */ 4917 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4918 GPR_idx = std::min(GPR_idx, NumGPRs); 4919 } 4920 4921 // Promote integers to 64-bit values. 4922 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4923 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4924 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4925 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4926 } 4927 4928 // FIXME memcpy is used way more than necessary. Correctness first. 4929 // Note: "by value" is code for passing a structure by value, not 4930 // basic types. 4931 if (Flags.isByVal()) { 4932 // Note: Size includes alignment padding, so 4933 // struct x { short a; char b; } 4934 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4935 // These are the proper values we need for right-justifying the 4936 // aggregate in a parameter register. 4937 unsigned Size = Flags.getByValSize(); 4938 4939 // An empty aggregate parameter takes up no storage and no 4940 // registers. 4941 if (Size == 0) 4942 continue; 4943 4944 if (CallConv == CallingConv::Fast) 4945 ComputePtrOff(); 4946 4947 // All aggregates smaller than 8 bytes must be passed right-justified. 4948 if (Size==1 || Size==2 || Size==4) { 4949 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4950 if (GPR_idx != NumGPRs) { 4951 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4952 MachinePointerInfo(), VT, 4953 false, false, false, 0); 4954 MemOpChains.push_back(Load.getValue(1)); 4955 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4956 4957 ArgOffset += PtrByteSize; 4958 continue; 4959 } 4960 } 4961 4962 if (GPR_idx == NumGPRs && Size < 8) { 4963 SDValue AddPtr = PtrOff; 4964 if (!isLittleEndian) { 4965 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 4966 PtrOff.getValueType()); 4967 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4968 } 4969 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4970 CallSeqStart, 4971 Flags, DAG, dl); 4972 ArgOffset += PtrByteSize; 4973 continue; 4974 } 4975 // Copy entire object into memory. There are cases where gcc-generated 4976 // code assumes it is there, even if it could be put entirely into 4977 // registers. (This is not what the doc says.) 4978 4979 // FIXME: The above statement is likely due to a misunderstanding of the 4980 // documents. All arguments must be copied into the parameter area BY 4981 // THE CALLEE in the event that the callee takes the address of any 4982 // formal argument. That has not yet been implemented. However, it is 4983 // reasonable to use the stack area as a staging area for the register 4984 // load. 4985 4986 // Skip this for small aggregates, as we will use the same slot for a 4987 // right-justified copy, below. 4988 if (Size >= 8) 4989 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 4990 CallSeqStart, 4991 Flags, DAG, dl); 4992 4993 // When a register is available, pass a small aggregate right-justified. 4994 if (Size < 8 && GPR_idx != NumGPRs) { 4995 // The easiest way to get this right-justified in a register 4996 // is to copy the structure into the rightmost portion of a 4997 // local variable slot, then load the whole slot into the 4998 // register. 4999 // FIXME: The memcpy seems to produce pretty awful code for 5000 // small aggregates, particularly for packed ones. 5001 // FIXME: It would be preferable to use the slot in the 5002 // parameter save area instead of a new local variable. 5003 SDValue AddPtr = PtrOff; 5004 if (!isLittleEndian) { 5005 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5006 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5007 } 5008 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5009 CallSeqStart, 5010 Flags, DAG, dl); 5011 5012 // Load the slot into the register. 5013 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5014 MachinePointerInfo(), 5015 false, false, false, 0); 5016 MemOpChains.push_back(Load.getValue(1)); 5017 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5018 5019 // Done with this argument. 5020 ArgOffset += PtrByteSize; 5021 continue; 5022 } 5023 5024 // For aggregates larger than PtrByteSize, copy the pieces of the 5025 // object that fit into registers from the parameter save area. 5026 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5027 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5028 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5029 if (GPR_idx != NumGPRs) { 5030 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5031 MachinePointerInfo(), 5032 false, false, false, 0); 5033 MemOpChains.push_back(Load.getValue(1)); 5034 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5035 ArgOffset += PtrByteSize; 5036 } else { 5037 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5038 break; 5039 } 5040 } 5041 continue; 5042 } 5043 5044 switch (Arg.getSimpleValueType().SimpleTy) { 5045 default: llvm_unreachable("Unexpected ValueType for argument!"); 5046 case MVT::i1: 5047 case MVT::i32: 5048 case MVT::i64: 5049 if (Flags.isNest()) { 5050 // The 'nest' parameter, if any, is passed in R11. 5051 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5052 hasNest = true; 5053 break; 5054 } 5055 5056 // These can be scalar arguments or elements of an integer array type 5057 // passed directly. Clang may use those instead of "byval" aggregate 5058 // types to avoid forcing arguments to memory unnecessarily. 5059 if (GPR_idx != NumGPRs) { 5060 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5061 } else { 5062 if (CallConv == CallingConv::Fast) 5063 ComputePtrOff(); 5064 5065 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5066 true, isTailCall, false, MemOpChains, 5067 TailCallArguments, dl); 5068 if (CallConv == CallingConv::Fast) 5069 ArgOffset += PtrByteSize; 5070 } 5071 if (CallConv != CallingConv::Fast) 5072 ArgOffset += PtrByteSize; 5073 break; 5074 case MVT::f32: 5075 case MVT::f64: { 5076 // These can be scalar arguments or elements of a float array type 5077 // passed directly. The latter are used to implement ELFv2 homogenous 5078 // float aggregates. 5079 5080 // Named arguments go into FPRs first, and once they overflow, the 5081 // remaining arguments go into GPRs and then the parameter save area. 5082 // Unnamed arguments for vararg functions always go to GPRs and 5083 // then the parameter save area. For now, put all arguments to vararg 5084 // routines always in both locations (FPR *and* GPR or stack slot). 5085 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5086 bool NeededLoad = false; 5087 5088 // First load the argument into the next available FPR. 5089 if (FPR_idx != NumFPRs) 5090 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5091 5092 // Next, load the argument into GPR or stack slot if needed. 5093 if (!NeedGPROrStack) 5094 ; 5095 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5096 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5097 // once we support fp <-> gpr moves. 5098 5099 // In the non-vararg case, this can only ever happen in the 5100 // presence of f32 array types, since otherwise we never run 5101 // out of FPRs before running out of GPRs. 5102 SDValue ArgVal; 5103 5104 // Double values are always passed in a single GPR. 5105 if (Arg.getValueType() != MVT::f32) { 5106 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5107 5108 // Non-array float values are extended and passed in a GPR. 5109 } else if (!Flags.isInConsecutiveRegs()) { 5110 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5111 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5112 5113 // If we have an array of floats, we collect every odd element 5114 // together with its predecessor into one GPR. 5115 } else if (ArgOffset % PtrByteSize != 0) { 5116 SDValue Lo, Hi; 5117 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5118 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5119 if (!isLittleEndian) 5120 std::swap(Lo, Hi); 5121 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5122 5123 // The final element, if even, goes into the first half of a GPR. 5124 } else if (Flags.isInConsecutiveRegsLast()) { 5125 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5126 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5127 if (!isLittleEndian) 5128 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5129 DAG.getConstant(32, dl, MVT::i32)); 5130 5131 // Non-final even elements are skipped; they will be handled 5132 // together the with subsequent argument on the next go-around. 5133 } else 5134 ArgVal = SDValue(); 5135 5136 if (ArgVal.getNode()) 5137 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5138 } else { 5139 if (CallConv == CallingConv::Fast) 5140 ComputePtrOff(); 5141 5142 // Single-precision floating-point values are mapped to the 5143 // second (rightmost) word of the stack doubleword. 5144 if (Arg.getValueType() == MVT::f32 && 5145 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5146 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5147 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5148 } 5149 5150 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5151 true, isTailCall, false, MemOpChains, 5152 TailCallArguments, dl); 5153 5154 NeededLoad = true; 5155 } 5156 // When passing an array of floats, the array occupies consecutive 5157 // space in the argument area; only round up to the next doubleword 5158 // at the end of the array. Otherwise, each float takes 8 bytes. 5159 if (CallConv != CallingConv::Fast || NeededLoad) { 5160 ArgOffset += (Arg.getValueType() == MVT::f32 && 5161 Flags.isInConsecutiveRegs()) ? 4 : 8; 5162 if (Flags.isInConsecutiveRegsLast()) 5163 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5164 } 5165 break; 5166 } 5167 case MVT::v4f32: 5168 case MVT::v4i32: 5169 case MVT::v8i16: 5170 case MVT::v16i8: 5171 case MVT::v2f64: 5172 case MVT::v2i64: 5173 case MVT::v1i128: 5174 if (!Subtarget.hasQPX()) { 5175 // These can be scalar arguments or elements of a vector array type 5176 // passed directly. The latter are used to implement ELFv2 homogenous 5177 // vector aggregates. 5178 5179 // For a varargs call, named arguments go into VRs or on the stack as 5180 // usual; unnamed arguments always go to the stack or the corresponding 5181 // GPRs when within range. For now, we always put the value in both 5182 // locations (or even all three). 5183 if (isVarArg) { 5184 // We could elide this store in the case where the object fits 5185 // entirely in R registers. Maybe later. 5186 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5187 MachinePointerInfo(), false, false, 0); 5188 MemOpChains.push_back(Store); 5189 if (VR_idx != NumVRs) { 5190 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5191 MachinePointerInfo(), 5192 false, false, false, 0); 5193 MemOpChains.push_back(Load.getValue(1)); 5194 5195 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5196 Arg.getSimpleValueType() == MVT::v2i64) ? 5197 VSRH[VR_idx] : VR[VR_idx]; 5198 ++VR_idx; 5199 5200 RegsToPass.push_back(std::make_pair(VReg, Load)); 5201 } 5202 ArgOffset += 16; 5203 for (unsigned i=0; i<16; i+=PtrByteSize) { 5204 if (GPR_idx == NumGPRs) 5205 break; 5206 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5207 DAG.getConstant(i, dl, PtrVT)); 5208 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5209 false, false, false, 0); 5210 MemOpChains.push_back(Load.getValue(1)); 5211 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5212 } 5213 break; 5214 } 5215 5216 // Non-varargs Altivec params go into VRs or on the stack. 5217 if (VR_idx != NumVRs) { 5218 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5219 Arg.getSimpleValueType() == MVT::v2i64) ? 5220 VSRH[VR_idx] : VR[VR_idx]; 5221 ++VR_idx; 5222 5223 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5224 } else { 5225 if (CallConv == CallingConv::Fast) 5226 ComputePtrOff(); 5227 5228 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5229 true, isTailCall, true, MemOpChains, 5230 TailCallArguments, dl); 5231 if (CallConv == CallingConv::Fast) 5232 ArgOffset += 16; 5233 } 5234 5235 if (CallConv != CallingConv::Fast) 5236 ArgOffset += 16; 5237 break; 5238 } // not QPX 5239 5240 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5241 "Invalid QPX parameter type"); 5242 5243 /* fall through */ 5244 case MVT::v4f64: 5245 case MVT::v4i1: { 5246 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5247 if (isVarArg) { 5248 // We could elide this store in the case where the object fits 5249 // entirely in R registers. Maybe later. 5250 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5251 MachinePointerInfo(), false, false, 0); 5252 MemOpChains.push_back(Store); 5253 if (QFPR_idx != NumQFPRs) { 5254 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5255 Store, PtrOff, MachinePointerInfo(), 5256 false, false, false, 0); 5257 MemOpChains.push_back(Load.getValue(1)); 5258 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5259 } 5260 ArgOffset += (IsF32 ? 16 : 32); 5261 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5262 if (GPR_idx == NumGPRs) 5263 break; 5264 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5265 DAG.getConstant(i, dl, PtrVT)); 5266 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5267 false, false, false, 0); 5268 MemOpChains.push_back(Load.getValue(1)); 5269 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5270 } 5271 break; 5272 } 5273 5274 // Non-varargs QPX params go into registers or on the stack. 5275 if (QFPR_idx != NumQFPRs) { 5276 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5277 } else { 5278 if (CallConv == CallingConv::Fast) 5279 ComputePtrOff(); 5280 5281 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5282 true, isTailCall, true, MemOpChains, 5283 TailCallArguments, dl); 5284 if (CallConv == CallingConv::Fast) 5285 ArgOffset += (IsF32 ? 16 : 32); 5286 } 5287 5288 if (CallConv != CallingConv::Fast) 5289 ArgOffset += (IsF32 ? 16 : 32); 5290 break; 5291 } 5292 } 5293 } 5294 5295 assert(NumBytesActuallyUsed == ArgOffset); 5296 (void)NumBytesActuallyUsed; 5297 5298 if (!MemOpChains.empty()) 5299 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5300 5301 // Check if this is an indirect call (MTCTR/BCTRL). 5302 // See PrepareCall() for more information about calls through function 5303 // pointers in the 64-bit SVR4 ABI. 5304 if (!isTailCall && !IsPatchPoint && 5305 !isFunctionGlobalAddress(Callee) && 5306 !isa<ExternalSymbolSDNode>(Callee)) { 5307 // Load r2 into a virtual register and store it to the TOC save area. 5308 setUsesTOCBasePtr(DAG); 5309 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5310 // TOC save area offset. 5311 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5312 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5313 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5314 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 5315 MachinePointerInfo::getStack(TOCSaveOffset), 5316 false, false, 0); 5317 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5318 // This does not mean the MTCTR instruction must use R12; it's easier 5319 // to model this as an extra parameter, so do that. 5320 if (isELFv2ABI && !IsPatchPoint) 5321 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5322 } 5323 5324 // Build a sequence of copy-to-reg nodes chained together with token chain 5325 // and flag operands which copy the outgoing args into the appropriate regs. 5326 SDValue InFlag; 5327 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5328 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5329 RegsToPass[i].second, InFlag); 5330 InFlag = Chain.getValue(1); 5331 } 5332 5333 if (isTailCall) 5334 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5335 FPOp, true, TailCallArguments); 5336 5337 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5338 hasNest, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5339 Callee, SPDiff, NumBytes, Ins, InVals, CS); 5340 } 5341 5342 SDValue 5343 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5344 CallingConv::ID CallConv, bool isVarArg, 5345 bool isTailCall, bool IsPatchPoint, 5346 const SmallVectorImpl<ISD::OutputArg> &Outs, 5347 const SmallVectorImpl<SDValue> &OutVals, 5348 const SmallVectorImpl<ISD::InputArg> &Ins, 5349 SDLoc dl, SelectionDAG &DAG, 5350 SmallVectorImpl<SDValue> &InVals, 5351 ImmutableCallSite *CS) const { 5352 5353 unsigned NumOps = Outs.size(); 5354 5355 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5356 bool isPPC64 = PtrVT == MVT::i64; 5357 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5358 5359 MachineFunction &MF = DAG.getMachineFunction(); 5360 5361 // Mark this function as potentially containing a function that contains a 5362 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5363 // and restoring the callers stack pointer in this functions epilog. This is 5364 // done because by tail calling the called function might overwrite the value 5365 // in this function's (MF) stack pointer stack slot 0(SP). 5366 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5367 CallConv == CallingConv::Fast) 5368 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5369 5370 // Count how many bytes are to be pushed on the stack, including the linkage 5371 // area, and parameter passing area. We start with 24/48 bytes, which is 5372 // prereserved space for [SP][CR][LR][3 x unused]. 5373 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5374 unsigned NumBytes = LinkageSize; 5375 5376 // Add up all the space actually used. 5377 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5378 // they all go in registers, but we must reserve stack space for them for 5379 // possible use by the caller. In varargs or 64-bit calls, parameters are 5380 // assigned stack space in order, with padding so Altivec parameters are 5381 // 16-byte aligned. 5382 unsigned nAltivecParamsAtEnd = 0; 5383 for (unsigned i = 0; i != NumOps; ++i) { 5384 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5385 EVT ArgVT = Outs[i].VT; 5386 // Varargs Altivec parameters are padded to a 16 byte boundary. 5387 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5388 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5389 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5390 if (!isVarArg && !isPPC64) { 5391 // Non-varargs Altivec parameters go after all the non-Altivec 5392 // parameters; handle those later so we know how much padding we need. 5393 nAltivecParamsAtEnd++; 5394 continue; 5395 } 5396 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5397 NumBytes = ((NumBytes+15)/16)*16; 5398 } 5399 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5400 } 5401 5402 // Allow for Altivec parameters at the end, if needed. 5403 if (nAltivecParamsAtEnd) { 5404 NumBytes = ((NumBytes+15)/16)*16; 5405 NumBytes += 16*nAltivecParamsAtEnd; 5406 } 5407 5408 // The prolog code of the callee may store up to 8 GPR argument registers to 5409 // the stack, allowing va_start to index over them in memory if its varargs. 5410 // Because we cannot tell if this is needed on the caller side, we have to 5411 // conservatively assume that it is needed. As such, make sure we have at 5412 // least enough stack space for the caller to store the 8 GPRs. 5413 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5414 5415 // Tail call needs the stack to be aligned. 5416 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5417 CallConv == CallingConv::Fast) 5418 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5419 5420 // Calculate by how many bytes the stack has to be adjusted in case of tail 5421 // call optimization. 5422 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5423 5424 // To protect arguments on the stack from being clobbered in a tail call, 5425 // force all the loads to happen before doing any other lowering. 5426 if (isTailCall) 5427 Chain = DAG.getStackArgumentTokenFactor(Chain); 5428 5429 // Adjust the stack pointer for the new arguments... 5430 // These operations are automatically eliminated by the prolog/epilog pass 5431 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5432 dl); 5433 SDValue CallSeqStart = Chain; 5434 5435 // Load the return address and frame pointer so it can be move somewhere else 5436 // later. 5437 SDValue LROp, FPOp; 5438 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5439 dl); 5440 5441 // Set up a copy of the stack pointer for use loading and storing any 5442 // arguments that may not fit in the registers available for argument 5443 // passing. 5444 SDValue StackPtr; 5445 if (isPPC64) 5446 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5447 else 5448 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5449 5450 // Figure out which arguments are going to go in registers, and which in 5451 // memory. Also, if this is a vararg function, floating point operations 5452 // must be stored to our stack, and loaded into integer regs as well, if 5453 // any integer regs are available for argument passing. 5454 unsigned ArgOffset = LinkageSize; 5455 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5456 5457 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5458 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5459 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5460 }; 5461 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5462 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5463 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5464 }; 5465 static const MCPhysReg VR[] = { 5466 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5467 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5468 }; 5469 const unsigned NumGPRs = array_lengthof(GPR_32); 5470 const unsigned NumFPRs = 13; 5471 const unsigned NumVRs = array_lengthof(VR); 5472 5473 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5474 5475 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5476 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5477 5478 SmallVector<SDValue, 8> MemOpChains; 5479 for (unsigned i = 0; i != NumOps; ++i) { 5480 SDValue Arg = OutVals[i]; 5481 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5482 5483 // PtrOff will be used to store the current argument to the stack if a 5484 // register cannot be found for it. 5485 SDValue PtrOff; 5486 5487 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5488 5489 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5490 5491 // On PPC64, promote integers to 64-bit values. 5492 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5493 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5494 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5495 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5496 } 5497 5498 // FIXME memcpy is used way more than necessary. Correctness first. 5499 // Note: "by value" is code for passing a structure by value, not 5500 // basic types. 5501 if (Flags.isByVal()) { 5502 unsigned Size = Flags.getByValSize(); 5503 // Very small objects are passed right-justified. Everything else is 5504 // passed left-justified. 5505 if (Size==1 || Size==2) { 5506 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5507 if (GPR_idx != NumGPRs) { 5508 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5509 MachinePointerInfo(), VT, 5510 false, false, false, 0); 5511 MemOpChains.push_back(Load.getValue(1)); 5512 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5513 5514 ArgOffset += PtrByteSize; 5515 } else { 5516 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5517 PtrOff.getValueType()); 5518 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5519 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5520 CallSeqStart, 5521 Flags, DAG, dl); 5522 ArgOffset += PtrByteSize; 5523 } 5524 continue; 5525 } 5526 // Copy entire object into memory. There are cases where gcc-generated 5527 // code assumes it is there, even if it could be put entirely into 5528 // registers. (This is not what the doc says.) 5529 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5530 CallSeqStart, 5531 Flags, DAG, dl); 5532 5533 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5534 // copy the pieces of the object that fit into registers from the 5535 // parameter save area. 5536 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5537 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5538 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5539 if (GPR_idx != NumGPRs) { 5540 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5541 MachinePointerInfo(), 5542 false, false, false, 0); 5543 MemOpChains.push_back(Load.getValue(1)); 5544 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5545 ArgOffset += PtrByteSize; 5546 } else { 5547 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5548 break; 5549 } 5550 } 5551 continue; 5552 } 5553 5554 switch (Arg.getSimpleValueType().SimpleTy) { 5555 default: llvm_unreachable("Unexpected ValueType for argument!"); 5556 case MVT::i1: 5557 case MVT::i32: 5558 case MVT::i64: 5559 if (GPR_idx != NumGPRs) { 5560 if (Arg.getValueType() == MVT::i1) 5561 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5562 5563 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5564 } else { 5565 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5566 isPPC64, isTailCall, false, MemOpChains, 5567 TailCallArguments, dl); 5568 } 5569 ArgOffset += PtrByteSize; 5570 break; 5571 case MVT::f32: 5572 case MVT::f64: 5573 if (FPR_idx != NumFPRs) { 5574 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5575 5576 if (isVarArg) { 5577 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5578 MachinePointerInfo(), false, false, 0); 5579 MemOpChains.push_back(Store); 5580 5581 // Float varargs are always shadowed in available integer registers 5582 if (GPR_idx != NumGPRs) { 5583 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5584 MachinePointerInfo(), false, false, 5585 false, 0); 5586 MemOpChains.push_back(Load.getValue(1)); 5587 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5588 } 5589 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5590 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5591 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5592 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5593 MachinePointerInfo(), 5594 false, false, false, 0); 5595 MemOpChains.push_back(Load.getValue(1)); 5596 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5597 } 5598 } else { 5599 // If we have any FPRs remaining, we may also have GPRs remaining. 5600 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5601 // GPRs. 5602 if (GPR_idx != NumGPRs) 5603 ++GPR_idx; 5604 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5605 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5606 ++GPR_idx; 5607 } 5608 } else 5609 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5610 isPPC64, isTailCall, false, MemOpChains, 5611 TailCallArguments, dl); 5612 if (isPPC64) 5613 ArgOffset += 8; 5614 else 5615 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5616 break; 5617 case MVT::v4f32: 5618 case MVT::v4i32: 5619 case MVT::v8i16: 5620 case MVT::v16i8: 5621 if (isVarArg) { 5622 // These go aligned on the stack, or in the corresponding R registers 5623 // when within range. The Darwin PPC ABI doc claims they also go in 5624 // V registers; in fact gcc does this only for arguments that are 5625 // prototyped, not for those that match the ... We do it for all 5626 // arguments, seems to work. 5627 while (ArgOffset % 16 !=0) { 5628 ArgOffset += PtrByteSize; 5629 if (GPR_idx != NumGPRs) 5630 GPR_idx++; 5631 } 5632 // We could elide this store in the case where the object fits 5633 // entirely in R registers. Maybe later. 5634 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5635 DAG.getConstant(ArgOffset, dl, PtrVT)); 5636 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5637 MachinePointerInfo(), false, false, 0); 5638 MemOpChains.push_back(Store); 5639 if (VR_idx != NumVRs) { 5640 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5641 MachinePointerInfo(), 5642 false, false, false, 0); 5643 MemOpChains.push_back(Load.getValue(1)); 5644 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5645 } 5646 ArgOffset += 16; 5647 for (unsigned i=0; i<16; i+=PtrByteSize) { 5648 if (GPR_idx == NumGPRs) 5649 break; 5650 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5651 DAG.getConstant(i, dl, PtrVT)); 5652 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5653 false, false, false, 0); 5654 MemOpChains.push_back(Load.getValue(1)); 5655 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5656 } 5657 break; 5658 } 5659 5660 // Non-varargs Altivec params generally go in registers, but have 5661 // stack space allocated at the end. 5662 if (VR_idx != NumVRs) { 5663 // Doesn't have GPR space allocated. 5664 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5665 } else if (nAltivecParamsAtEnd==0) { 5666 // We are emitting Altivec params in order. 5667 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5668 isPPC64, isTailCall, true, MemOpChains, 5669 TailCallArguments, dl); 5670 ArgOffset += 16; 5671 } 5672 break; 5673 } 5674 } 5675 // If all Altivec parameters fit in registers, as they usually do, 5676 // they get stack space following the non-Altivec parameters. We 5677 // don't track this here because nobody below needs it. 5678 // If there are more Altivec parameters than fit in registers emit 5679 // the stores here. 5680 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5681 unsigned j = 0; 5682 // Offset is aligned; skip 1st 12 params which go in V registers. 5683 ArgOffset = ((ArgOffset+15)/16)*16; 5684 ArgOffset += 12*16; 5685 for (unsigned i = 0; i != NumOps; ++i) { 5686 SDValue Arg = OutVals[i]; 5687 EVT ArgType = Outs[i].VT; 5688 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5689 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5690 if (++j > NumVRs) { 5691 SDValue PtrOff; 5692 // We are emitting Altivec params in order. 5693 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5694 isPPC64, isTailCall, true, MemOpChains, 5695 TailCallArguments, dl); 5696 ArgOffset += 16; 5697 } 5698 } 5699 } 5700 } 5701 5702 if (!MemOpChains.empty()) 5703 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5704 5705 // On Darwin, R12 must contain the address of an indirect callee. This does 5706 // not mean the MTCTR instruction must use R12; it's easier to model this as 5707 // an extra parameter, so do that. 5708 if (!isTailCall && 5709 !isFunctionGlobalAddress(Callee) && 5710 !isa<ExternalSymbolSDNode>(Callee) && 5711 !isBLACompatibleAddress(Callee, DAG)) 5712 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5713 PPC::R12), Callee)); 5714 5715 // Build a sequence of copy-to-reg nodes chained together with token chain 5716 // and flag operands which copy the outgoing args into the appropriate regs. 5717 SDValue InFlag; 5718 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5719 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5720 RegsToPass[i].second, InFlag); 5721 InFlag = Chain.getValue(1); 5722 } 5723 5724 if (isTailCall) 5725 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5726 FPOp, true, TailCallArguments); 5727 5728 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5729 /* unused except on PPC64 ELFv1 */ false, DAG, 5730 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5731 NumBytes, Ins, InVals, CS); 5732 } 5733 5734 bool 5735 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5736 MachineFunction &MF, bool isVarArg, 5737 const SmallVectorImpl<ISD::OutputArg> &Outs, 5738 LLVMContext &Context) const { 5739 SmallVector<CCValAssign, 16> RVLocs; 5740 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5741 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5742 } 5743 5744 SDValue 5745 PPCTargetLowering::LowerReturn(SDValue Chain, 5746 CallingConv::ID CallConv, bool isVarArg, 5747 const SmallVectorImpl<ISD::OutputArg> &Outs, 5748 const SmallVectorImpl<SDValue> &OutVals, 5749 SDLoc dl, SelectionDAG &DAG) const { 5750 5751 SmallVector<CCValAssign, 16> RVLocs; 5752 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5753 *DAG.getContext()); 5754 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5755 5756 SDValue Flag; 5757 SmallVector<SDValue, 4> RetOps(1, Chain); 5758 5759 // Copy the result values into the output registers. 5760 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5761 CCValAssign &VA = RVLocs[i]; 5762 assert(VA.isRegLoc() && "Can only return in registers!"); 5763 5764 SDValue Arg = OutVals[i]; 5765 5766 switch (VA.getLocInfo()) { 5767 default: llvm_unreachable("Unknown loc info!"); 5768 case CCValAssign::Full: break; 5769 case CCValAssign::AExt: 5770 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5771 break; 5772 case CCValAssign::ZExt: 5773 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5774 break; 5775 case CCValAssign::SExt: 5776 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5777 break; 5778 } 5779 5780 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5781 Flag = Chain.getValue(1); 5782 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5783 } 5784 5785 RetOps[0] = Chain; // Update chain. 5786 5787 // Add the flag if we have it. 5788 if (Flag.getNode()) 5789 RetOps.push_back(Flag); 5790 5791 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5792 } 5793 5794 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5795 const PPCSubtarget &Subtarget) const { 5796 // When we pop the dynamic allocation we need to restore the SP link. 5797 SDLoc dl(Op); 5798 5799 // Get the corect type for pointers. 5800 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5801 5802 // Construct the stack pointer operand. 5803 bool isPPC64 = Subtarget.isPPC64(); 5804 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5805 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5806 5807 // Get the operands for the STACKRESTORE. 5808 SDValue Chain = Op.getOperand(0); 5809 SDValue SaveSP = Op.getOperand(1); 5810 5811 // Load the old link SP. 5812 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5813 MachinePointerInfo(), 5814 false, false, false, 0); 5815 5816 // Restore the stack pointer. 5817 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5818 5819 // Store the old link SP. 5820 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5821 false, false, 0); 5822 } 5823 5824 5825 5826 SDValue 5827 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 5828 MachineFunction &MF = DAG.getMachineFunction(); 5829 bool isPPC64 = Subtarget.isPPC64(); 5830 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5831 5832 // Get current frame pointer save index. The users of this index will be 5833 // primarily DYNALLOC instructions. 5834 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5835 int RASI = FI->getReturnAddrSaveIndex(); 5836 5837 // If the frame pointer save index hasn't been defined yet. 5838 if (!RASI) { 5839 // Find out what the fix offset of the frame pointer save area. 5840 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5841 // Allocate the frame index for frame pointer save area. 5842 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5843 // Save the result. 5844 FI->setReturnAddrSaveIndex(RASI); 5845 } 5846 return DAG.getFrameIndex(RASI, PtrVT); 5847 } 5848 5849 SDValue 5850 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5851 MachineFunction &MF = DAG.getMachineFunction(); 5852 bool isPPC64 = Subtarget.isPPC64(); 5853 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5854 5855 // Get current frame pointer save index. The users of this index will be 5856 // primarily DYNALLOC instructions. 5857 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5858 int FPSI = FI->getFramePointerSaveIndex(); 5859 5860 // If the frame pointer save index hasn't been defined yet. 5861 if (!FPSI) { 5862 // Find out what the fix offset of the frame pointer save area. 5863 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5864 // Allocate the frame index for frame pointer save area. 5865 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5866 // Save the result. 5867 FI->setFramePointerSaveIndex(FPSI); 5868 } 5869 return DAG.getFrameIndex(FPSI, PtrVT); 5870 } 5871 5872 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5873 SelectionDAG &DAG, 5874 const PPCSubtarget &Subtarget) const { 5875 // Get the inputs. 5876 SDValue Chain = Op.getOperand(0); 5877 SDValue Size = Op.getOperand(1); 5878 SDLoc dl(Op); 5879 5880 // Get the corect type for pointers. 5881 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5882 // Negate the size. 5883 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5884 DAG.getConstant(0, dl, PtrVT), Size); 5885 // Construct a node for the frame pointer save index. 5886 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5887 // Build a DYNALLOC node. 5888 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5889 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5890 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5891 } 5892 5893 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5894 SelectionDAG &DAG) const { 5895 SDLoc DL(Op); 5896 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5897 DAG.getVTList(MVT::i32, MVT::Other), 5898 Op.getOperand(0), Op.getOperand(1)); 5899 } 5900 5901 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5902 SelectionDAG &DAG) const { 5903 SDLoc DL(Op); 5904 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5905 Op.getOperand(0), Op.getOperand(1)); 5906 } 5907 5908 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5909 if (Op.getValueType().isVector()) 5910 return LowerVectorLoad(Op, DAG); 5911 5912 assert(Op.getValueType() == MVT::i1 && 5913 "Custom lowering only for i1 loads"); 5914 5915 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5916 5917 SDLoc dl(Op); 5918 LoadSDNode *LD = cast<LoadSDNode>(Op); 5919 5920 SDValue Chain = LD->getChain(); 5921 SDValue BasePtr = LD->getBasePtr(); 5922 MachineMemOperand *MMO = LD->getMemOperand(); 5923 5924 SDValue NewLD = 5925 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 5926 BasePtr, MVT::i8, MMO); 5927 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5928 5929 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5930 return DAG.getMergeValues(Ops, dl); 5931 } 5932 5933 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5934 if (Op.getOperand(1).getValueType().isVector()) 5935 return LowerVectorStore(Op, DAG); 5936 5937 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5938 "Custom lowering only for i1 stores"); 5939 5940 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5941 5942 SDLoc dl(Op); 5943 StoreSDNode *ST = cast<StoreSDNode>(Op); 5944 5945 SDValue Chain = ST->getChain(); 5946 SDValue BasePtr = ST->getBasePtr(); 5947 SDValue Value = ST->getValue(); 5948 MachineMemOperand *MMO = ST->getMemOperand(); 5949 5950 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 5951 Value); 5952 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5953 } 5954 5955 // FIXME: Remove this once the ANDI glue bug is fixed: 5956 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5957 assert(Op.getValueType() == MVT::i1 && 5958 "Custom lowering only for i1 results"); 5959 5960 SDLoc DL(Op); 5961 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5962 Op.getOperand(0)); 5963 } 5964 5965 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 5966 /// possible. 5967 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5968 // Not FP? Not a fsel. 5969 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 5970 !Op.getOperand(2).getValueType().isFloatingPoint()) 5971 return Op; 5972 5973 // We might be able to do better than this under some circumstances, but in 5974 // general, fsel-based lowering of select is a finite-math-only optimization. 5975 // For more information, see section F.3 of the 2.06 ISA specification. 5976 if (!DAG.getTarget().Options.NoInfsFPMath || 5977 !DAG.getTarget().Options.NoNaNsFPMath) 5978 return Op; 5979 5980 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5981 5982 EVT ResVT = Op.getValueType(); 5983 EVT CmpVT = Op.getOperand(0).getValueType(); 5984 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5985 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 5986 SDLoc dl(Op); 5987 5988 // If the RHS of the comparison is a 0.0, we don't need to do the 5989 // subtraction at all. 5990 SDValue Sel1; 5991 if (isFloatingPointZero(RHS)) 5992 switch (CC) { 5993 default: break; // SETUO etc aren't handled by fsel. 5994 case ISD::SETNE: 5995 std::swap(TV, FV); 5996 case ISD::SETEQ: 5997 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 5998 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 5999 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6000 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6001 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6002 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6003 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6004 case ISD::SETULT: 6005 case ISD::SETLT: 6006 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6007 case ISD::SETOGE: 6008 case ISD::SETGE: 6009 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6010 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6011 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6012 case ISD::SETUGT: 6013 case ISD::SETGT: 6014 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6015 case ISD::SETOLE: 6016 case ISD::SETLE: 6017 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6018 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6019 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6020 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6021 } 6022 6023 SDValue Cmp; 6024 switch (CC) { 6025 default: break; // SETUO etc aren't handled by fsel. 6026 case ISD::SETNE: 6027 std::swap(TV, FV); 6028 case ISD::SETEQ: 6029 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 6030 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6031 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6032 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6033 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6034 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6035 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6036 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6037 case ISD::SETULT: 6038 case ISD::SETLT: 6039 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 6040 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6041 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6042 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6043 case ISD::SETOGE: 6044 case ISD::SETGE: 6045 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 6046 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6047 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6048 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6049 case ISD::SETUGT: 6050 case ISD::SETGT: 6051 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 6052 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6053 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6054 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6055 case ISD::SETOLE: 6056 case ISD::SETLE: 6057 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 6058 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6059 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6060 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6061 } 6062 return Op; 6063 } 6064 6065 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6066 SelectionDAG &DAG, 6067 SDLoc dl) const { 6068 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6069 SDValue Src = Op.getOperand(0); 6070 if (Src.getValueType() == MVT::f32) 6071 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6072 6073 SDValue Tmp; 6074 switch (Op.getSimpleValueType().SimpleTy) { 6075 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6076 case MVT::i32: 6077 Tmp = DAG.getNode( 6078 Op.getOpcode() == ISD::FP_TO_SINT 6079 ? PPCISD::FCTIWZ 6080 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6081 dl, MVT::f64, Src); 6082 break; 6083 case MVT::i64: 6084 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6085 "i64 FP_TO_UINT is supported only with FPCVT"); 6086 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6087 PPCISD::FCTIDUZ, 6088 dl, MVT::f64, Src); 6089 break; 6090 } 6091 6092 // Convert the FP value to an int value through memory. 6093 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6094 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6095 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6096 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6097 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI); 6098 6099 // Emit a store to the stack slot. 6100 SDValue Chain; 6101 if (i32Stack) { 6102 MachineFunction &MF = DAG.getMachineFunction(); 6103 MachineMemOperand *MMO = 6104 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6105 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6106 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6107 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6108 } else 6109 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6110 MPI, false, false, 0); 6111 6112 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6113 // add in a bias. 6114 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6115 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6116 DAG.getConstant(4, dl, FIPtr.getValueType())); 6117 MPI = MPI.getWithOffset(4); 6118 } 6119 6120 RLI.Chain = Chain; 6121 RLI.Ptr = FIPtr; 6122 RLI.MPI = MPI; 6123 } 6124 6125 /// \brief Custom lowers floating point to integer conversions to use 6126 /// the direct move instructions available in ISA 2.07 to avoid the 6127 /// need for load/store combinations. 6128 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6129 SelectionDAG &DAG, 6130 SDLoc dl) const { 6131 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6132 SDValue Src = Op.getOperand(0); 6133 6134 if (Src.getValueType() == MVT::f32) 6135 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6136 6137 SDValue Tmp; 6138 switch (Op.getSimpleValueType().SimpleTy) { 6139 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6140 case MVT::i32: 6141 Tmp = DAG.getNode( 6142 Op.getOpcode() == ISD::FP_TO_SINT 6143 ? PPCISD::FCTIWZ 6144 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6145 dl, MVT::f64, Src); 6146 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6147 break; 6148 case MVT::i64: 6149 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6150 "i64 FP_TO_UINT is supported only with FPCVT"); 6151 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6152 PPCISD::FCTIDUZ, 6153 dl, MVT::f64, Src); 6154 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6155 break; 6156 } 6157 return Tmp; 6158 } 6159 6160 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6161 SDLoc dl) const { 6162 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6163 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6164 6165 ReuseLoadInfo RLI; 6166 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6167 6168 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6169 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6170 RLI.Ranges); 6171 } 6172 6173 // We're trying to insert a regular store, S, and then a load, L. If the 6174 // incoming value, O, is a load, we might just be able to have our load use the 6175 // address used by O. However, we don't know if anything else will store to 6176 // that address before we can load from it. To prevent this situation, we need 6177 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6178 // the same chain operand as O, we create a token factor from the chain results 6179 // of O and L, and we replace all uses of O's chain result with that token 6180 // factor (see spliceIntoChain below for this last part). 6181 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6182 ReuseLoadInfo &RLI, 6183 SelectionDAG &DAG, 6184 ISD::LoadExtType ET) const { 6185 SDLoc dl(Op); 6186 if (ET == ISD::NON_EXTLOAD && 6187 (Op.getOpcode() == ISD::FP_TO_UINT || 6188 Op.getOpcode() == ISD::FP_TO_SINT) && 6189 isOperationLegalOrCustom(Op.getOpcode(), 6190 Op.getOperand(0).getValueType())) { 6191 6192 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6193 return true; 6194 } 6195 6196 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6197 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6198 LD->isNonTemporal()) 6199 return false; 6200 if (LD->getMemoryVT() != MemVT) 6201 return false; 6202 6203 RLI.Ptr = LD->getBasePtr(); 6204 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6205 assert(LD->getAddressingMode() == ISD::PRE_INC && 6206 "Non-pre-inc AM on PPC?"); 6207 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6208 LD->getOffset()); 6209 } 6210 6211 RLI.Chain = LD->getChain(); 6212 RLI.MPI = LD->getPointerInfo(); 6213 RLI.IsInvariant = LD->isInvariant(); 6214 RLI.Alignment = LD->getAlignment(); 6215 RLI.AAInfo = LD->getAAInfo(); 6216 RLI.Ranges = LD->getRanges(); 6217 6218 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6219 return true; 6220 } 6221 6222 // Given the head of the old chain, ResChain, insert a token factor containing 6223 // it and NewResChain, and make users of ResChain now be users of that token 6224 // factor. 6225 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6226 SDValue NewResChain, 6227 SelectionDAG &DAG) const { 6228 if (!ResChain) 6229 return; 6230 6231 SDLoc dl(NewResChain); 6232 6233 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6234 NewResChain, DAG.getUNDEF(MVT::Other)); 6235 assert(TF.getNode() != NewResChain.getNode() && 6236 "A new TF really is required here"); 6237 6238 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6239 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6240 } 6241 6242 /// \brief Custom lowers integer to floating point conversions to use 6243 /// the direct move instructions available in ISA 2.07 to avoid the 6244 /// need for load/store combinations. 6245 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6246 SelectionDAG &DAG, 6247 SDLoc dl) const { 6248 assert((Op.getValueType() == MVT::f32 || 6249 Op.getValueType() == MVT::f64) && 6250 "Invalid floating point type as target of conversion"); 6251 assert(Subtarget.hasFPCVT() && 6252 "Int to FP conversions with direct moves require FPCVT"); 6253 SDValue FP; 6254 SDValue Src = Op.getOperand(0); 6255 bool SinglePrec = Op.getValueType() == MVT::f32; 6256 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6257 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6258 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6259 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6260 6261 if (WordInt) { 6262 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6263 dl, MVT::f64, Src); 6264 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6265 } 6266 else { 6267 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6268 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6269 } 6270 6271 return FP; 6272 } 6273 6274 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6275 SelectionDAG &DAG) const { 6276 SDLoc dl(Op); 6277 6278 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6279 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6280 return SDValue(); 6281 6282 SDValue Value = Op.getOperand(0); 6283 // The values are now known to be -1 (false) or 1 (true). To convert this 6284 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6285 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6286 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6287 6288 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 6289 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6290 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 6291 6292 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6293 6294 if (Op.getValueType() != MVT::v4f64) 6295 Value = DAG.getNode(ISD::FP_ROUND, dl, 6296 Op.getValueType(), Value, 6297 DAG.getIntPtrConstant(1, dl)); 6298 return Value; 6299 } 6300 6301 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6302 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6303 return SDValue(); 6304 6305 if (Op.getOperand(0).getValueType() == MVT::i1) 6306 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6307 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6308 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6309 6310 // If we have direct moves, we can do all the conversion, skip the store/load 6311 // however, without FPCVT we can't do most conversions. 6312 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6313 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6314 6315 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6316 "UINT_TO_FP is supported only with FPCVT"); 6317 6318 // If we have FCFIDS, then use it when converting to single-precision. 6319 // Otherwise, convert to double-precision and then round. 6320 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6321 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6322 : PPCISD::FCFIDS) 6323 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6324 : PPCISD::FCFID); 6325 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6326 ? MVT::f32 6327 : MVT::f64; 6328 6329 if (Op.getOperand(0).getValueType() == MVT::i64) { 6330 SDValue SINT = Op.getOperand(0); 6331 // When converting to single-precision, we actually need to convert 6332 // to double-precision first and then round to single-precision. 6333 // To avoid double-rounding effects during that operation, we have 6334 // to prepare the input operand. Bits that might be truncated when 6335 // converting to double-precision are replaced by a bit that won't 6336 // be lost at this stage, but is below the single-precision rounding 6337 // position. 6338 // 6339 // However, if -enable-unsafe-fp-math is in effect, accept double 6340 // rounding to avoid the extra overhead. 6341 if (Op.getValueType() == MVT::f32 && 6342 !Subtarget.hasFPCVT() && 6343 !DAG.getTarget().Options.UnsafeFPMath) { 6344 6345 // Twiddle input to make sure the low 11 bits are zero. (If this 6346 // is the case, we are guaranteed the value will fit into the 53 bit 6347 // mantissa of an IEEE double-precision value without rounding.) 6348 // If any of those low 11 bits were not zero originally, make sure 6349 // bit 12 (value 2048) is set instead, so that the final rounding 6350 // to single-precision gets the correct result. 6351 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6352 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6353 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6354 Round, DAG.getConstant(2047, dl, MVT::i64)); 6355 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6356 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6357 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6358 6359 // However, we cannot use that value unconditionally: if the magnitude 6360 // of the input value is small, the bit-twiddling we did above might 6361 // end up visibly changing the output. Fortunately, in that case, we 6362 // don't need to twiddle bits since the original input will convert 6363 // exactly to double-precision floating-point already. Therefore, 6364 // construct a conditional to use the original value if the top 11 6365 // bits are all sign-bit copies, and use the rounded value computed 6366 // above otherwise. 6367 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6368 SINT, DAG.getConstant(53, dl, MVT::i32)); 6369 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6370 Cond, DAG.getConstant(1, dl, MVT::i64)); 6371 Cond = DAG.getSetCC(dl, MVT::i32, 6372 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6373 6374 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6375 } 6376 6377 ReuseLoadInfo RLI; 6378 SDValue Bits; 6379 6380 MachineFunction &MF = DAG.getMachineFunction(); 6381 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6382 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6383 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6384 RLI.Ranges); 6385 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6386 } else if (Subtarget.hasLFIWAX() && 6387 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6388 MachineMemOperand *MMO = 6389 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6390 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6391 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6392 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6393 DAG.getVTList(MVT::f64, MVT::Other), 6394 Ops, MVT::i32, MMO); 6395 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6396 } else if (Subtarget.hasFPCVT() && 6397 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6398 MachineMemOperand *MMO = 6399 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6400 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6401 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6402 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6403 DAG.getVTList(MVT::f64, MVT::Other), 6404 Ops, MVT::i32, MMO); 6405 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6406 } else if (((Subtarget.hasLFIWAX() && 6407 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6408 (Subtarget.hasFPCVT() && 6409 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6410 SINT.getOperand(0).getValueType() == MVT::i32) { 6411 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6412 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6413 6414 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6415 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6416 6417 SDValue Store = 6418 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6419 MachinePointerInfo::getFixedStack(FrameIdx), 6420 false, false, 0); 6421 6422 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6423 "Expected an i32 store"); 6424 6425 RLI.Ptr = FIdx; 6426 RLI.Chain = Store; 6427 RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx); 6428 RLI.Alignment = 4; 6429 6430 MachineMemOperand *MMO = 6431 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6432 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6433 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6434 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6435 PPCISD::LFIWZX : PPCISD::LFIWAX, 6436 dl, DAG.getVTList(MVT::f64, MVT::Other), 6437 Ops, MVT::i32, MMO); 6438 } else 6439 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6440 6441 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6442 6443 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6444 FP = DAG.getNode(ISD::FP_ROUND, dl, 6445 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6446 return FP; 6447 } 6448 6449 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6450 "Unhandled INT_TO_FP type in custom expander!"); 6451 // Since we only generate this in 64-bit mode, we can take advantage of 6452 // 64-bit registers. In particular, sign extend the input value into the 6453 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6454 // then lfd it and fcfid it. 6455 MachineFunction &MF = DAG.getMachineFunction(); 6456 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6457 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6458 6459 SDValue Ld; 6460 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6461 ReuseLoadInfo RLI; 6462 bool ReusingLoad; 6463 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6464 DAG))) { 6465 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6466 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6467 6468 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6469 MachinePointerInfo::getFixedStack(FrameIdx), 6470 false, false, 0); 6471 6472 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6473 "Expected an i32 store"); 6474 6475 RLI.Ptr = FIdx; 6476 RLI.Chain = Store; 6477 RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx); 6478 RLI.Alignment = 4; 6479 } 6480 6481 MachineMemOperand *MMO = 6482 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6483 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6484 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6485 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6486 PPCISD::LFIWZX : PPCISD::LFIWAX, 6487 dl, DAG.getVTList(MVT::f64, MVT::Other), 6488 Ops, MVT::i32, MMO); 6489 if (ReusingLoad) 6490 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6491 } else { 6492 assert(Subtarget.isPPC64() && 6493 "i32->FP without LFIWAX supported only on PPC64"); 6494 6495 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6496 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6497 6498 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6499 Op.getOperand(0)); 6500 6501 // STD the extended value into the stack slot. 6502 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx, 6503 MachinePointerInfo::getFixedStack(FrameIdx), 6504 false, false, 0); 6505 6506 // Load the value as a double. 6507 Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, 6508 MachinePointerInfo::getFixedStack(FrameIdx), 6509 false, false, false, 0); 6510 } 6511 6512 // FCFID it and return it. 6513 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6514 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6515 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6516 DAG.getIntPtrConstant(0, dl)); 6517 return FP; 6518 } 6519 6520 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6521 SelectionDAG &DAG) const { 6522 SDLoc dl(Op); 6523 /* 6524 The rounding mode is in bits 30:31 of FPSR, and has the following 6525 settings: 6526 00 Round to nearest 6527 01 Round to 0 6528 10 Round to +inf 6529 11 Round to -inf 6530 6531 FLT_ROUNDS, on the other hand, expects the following: 6532 -1 Undefined 6533 0 Round to 0 6534 1 Round to nearest 6535 2 Round to +inf 6536 3 Round to -inf 6537 6538 To perform the conversion, we do: 6539 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6540 */ 6541 6542 MachineFunction &MF = DAG.getMachineFunction(); 6543 EVT VT = Op.getValueType(); 6544 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6545 6546 // Save FP Control Word to register 6547 EVT NodeTys[] = { 6548 MVT::f64, // return register 6549 MVT::Glue // unused in this context 6550 }; 6551 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6552 6553 // Save FP register to stack slot 6554 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6555 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6556 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6557 StackSlot, MachinePointerInfo(), false, false,0); 6558 6559 // Load FP Control Word from low 32 bits of stack slot. 6560 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6561 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6562 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6563 false, false, false, 0); 6564 6565 // Transform as necessary 6566 SDValue CWD1 = 6567 DAG.getNode(ISD::AND, dl, MVT::i32, 6568 CWD, DAG.getConstant(3, dl, MVT::i32)); 6569 SDValue CWD2 = 6570 DAG.getNode(ISD::SRL, dl, MVT::i32, 6571 DAG.getNode(ISD::AND, dl, MVT::i32, 6572 DAG.getNode(ISD::XOR, dl, MVT::i32, 6573 CWD, DAG.getConstant(3, dl, MVT::i32)), 6574 DAG.getConstant(3, dl, MVT::i32)), 6575 DAG.getConstant(1, dl, MVT::i32)); 6576 6577 SDValue RetVal = 6578 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6579 6580 return DAG.getNode((VT.getSizeInBits() < 16 ? 6581 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6582 } 6583 6584 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6585 EVT VT = Op.getValueType(); 6586 unsigned BitWidth = VT.getSizeInBits(); 6587 SDLoc dl(Op); 6588 assert(Op.getNumOperands() == 3 && 6589 VT == Op.getOperand(1).getValueType() && 6590 "Unexpected SHL!"); 6591 6592 // Expand into a bunch of logical ops. Note that these ops 6593 // depend on the PPC behavior for oversized shift amounts. 6594 SDValue Lo = Op.getOperand(0); 6595 SDValue Hi = Op.getOperand(1); 6596 SDValue Amt = Op.getOperand(2); 6597 EVT AmtVT = Amt.getValueType(); 6598 6599 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6600 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6601 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6602 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6603 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6604 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6605 DAG.getConstant(-BitWidth, dl, AmtVT)); 6606 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6607 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6608 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6609 SDValue OutOps[] = { OutLo, OutHi }; 6610 return DAG.getMergeValues(OutOps, dl); 6611 } 6612 6613 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6614 EVT VT = Op.getValueType(); 6615 SDLoc dl(Op); 6616 unsigned BitWidth = VT.getSizeInBits(); 6617 assert(Op.getNumOperands() == 3 && 6618 VT == Op.getOperand(1).getValueType() && 6619 "Unexpected SRL!"); 6620 6621 // Expand into a bunch of logical ops. Note that these ops 6622 // depend on the PPC behavior for oversized shift amounts. 6623 SDValue Lo = Op.getOperand(0); 6624 SDValue Hi = Op.getOperand(1); 6625 SDValue Amt = Op.getOperand(2); 6626 EVT AmtVT = Amt.getValueType(); 6627 6628 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6629 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6630 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6631 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6632 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6633 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6634 DAG.getConstant(-BitWidth, dl, AmtVT)); 6635 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6636 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6637 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6638 SDValue OutOps[] = { OutLo, OutHi }; 6639 return DAG.getMergeValues(OutOps, dl); 6640 } 6641 6642 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6643 SDLoc dl(Op); 6644 EVT VT = Op.getValueType(); 6645 unsigned BitWidth = VT.getSizeInBits(); 6646 assert(Op.getNumOperands() == 3 && 6647 VT == Op.getOperand(1).getValueType() && 6648 "Unexpected SRA!"); 6649 6650 // Expand into a bunch of logical ops, followed by a select_cc. 6651 SDValue Lo = Op.getOperand(0); 6652 SDValue Hi = Op.getOperand(1); 6653 SDValue Amt = Op.getOperand(2); 6654 EVT AmtVT = Amt.getValueType(); 6655 6656 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6657 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6658 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6659 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6660 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6661 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6662 DAG.getConstant(-BitWidth, dl, AmtVT)); 6663 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6664 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6665 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6666 Tmp4, Tmp6, ISD::SETLE); 6667 SDValue OutOps[] = { OutLo, OutHi }; 6668 return DAG.getMergeValues(OutOps, dl); 6669 } 6670 6671 //===----------------------------------------------------------------------===// 6672 // Vector related lowering. 6673 // 6674 6675 /// BuildSplatI - Build a canonical splati of Val with an element size of 6676 /// SplatSize. Cast the result to VT. 6677 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6678 SelectionDAG &DAG, SDLoc dl) { 6679 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6680 6681 static const MVT VTys[] = { // canonical VT to use for each size. 6682 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6683 }; 6684 6685 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6686 6687 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6688 if (Val == -1) 6689 SplatSize = 1; 6690 6691 EVT CanonicalVT = VTys[SplatSize-1]; 6692 6693 // Build a canonical splat for this value. 6694 SDValue Elt = DAG.getConstant(Val, dl, MVT::i32); 6695 SmallVector<SDValue, 8> Ops; 6696 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6697 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6698 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6699 } 6700 6701 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6702 /// specified intrinsic ID. 6703 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6704 SelectionDAG &DAG, SDLoc dl, 6705 EVT DestVT = MVT::Other) { 6706 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6707 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6708 DAG.getConstant(IID, dl, MVT::i32), Op); 6709 } 6710 6711 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6712 /// specified intrinsic ID. 6713 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6714 SelectionDAG &DAG, SDLoc dl, 6715 EVT DestVT = MVT::Other) { 6716 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6717 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6718 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6719 } 6720 6721 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6722 /// specified intrinsic ID. 6723 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6724 SDValue Op2, SelectionDAG &DAG, 6725 SDLoc dl, EVT DestVT = MVT::Other) { 6726 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6727 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6728 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6729 } 6730 6731 6732 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6733 /// amount. The result has the specified value type. 6734 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6735 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6736 // Force LHS/RHS to be the right type. 6737 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6738 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6739 6740 int Ops[16]; 6741 for (unsigned i = 0; i != 16; ++i) 6742 Ops[i] = i + Amt; 6743 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6744 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6745 } 6746 6747 // If this is a case we can't handle, return null and let the default 6748 // expansion code take care of it. If we CAN select this case, and if it 6749 // selects to a single instruction, return Op. Otherwise, if we can codegen 6750 // this case more efficiently than a constant pool load, lower it to the 6751 // sequence of ops that should be used. 6752 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6753 SelectionDAG &DAG) const { 6754 SDLoc dl(Op); 6755 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6756 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6757 6758 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6759 // We first build an i32 vector, load it into a QPX register, 6760 // then convert it to a floating-point vector and compare it 6761 // to a zero vector to get the boolean result. 6762 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6763 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6764 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 6765 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6766 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6767 6768 assert(BVN->getNumOperands() == 4 && 6769 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6770 6771 bool IsConst = true; 6772 for (unsigned i = 0; i < 4; ++i) { 6773 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6774 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6775 IsConst = false; 6776 break; 6777 } 6778 } 6779 6780 if (IsConst) { 6781 Constant *One = 6782 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6783 Constant *NegOne = 6784 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6785 6786 SmallVector<Constant*, 4> CV(4, NegOne); 6787 for (unsigned i = 0; i < 4; ++i) { 6788 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6789 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6790 else if (cast<ConstantSDNode>(BVN->getOperand(i))-> 6791 getConstantIntValue()->isZero()) 6792 continue; 6793 else 6794 CV[i] = One; 6795 } 6796 6797 Constant *CP = ConstantVector::get(CV); 6798 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 6799 16 /* alignment */); 6800 6801 SmallVector<SDValue, 2> Ops; 6802 Ops.push_back(DAG.getEntryNode()); 6803 Ops.push_back(CPIdx); 6804 6805 SmallVector<EVT, 2> ValueVTs; 6806 ValueVTs.push_back(MVT::v4i1); 6807 ValueVTs.push_back(MVT::Other); // chain 6808 SDVTList VTs = DAG.getVTList(ValueVTs); 6809 6810 return DAG.getMemIntrinsicNode(PPCISD::QVLFSb, 6811 dl, VTs, Ops, MVT::v4f32, 6812 MachinePointerInfo::getConstantPool()); 6813 } 6814 6815 SmallVector<SDValue, 4> Stores; 6816 for (unsigned i = 0; i < 4; ++i) { 6817 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6818 6819 unsigned Offset = 4*i; 6820 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6821 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6822 6823 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6824 if (StoreSize > 4) { 6825 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6826 BVN->getOperand(i), Idx, 6827 PtrInfo.getWithOffset(Offset), 6828 MVT::i32, false, false, 0)); 6829 } else { 6830 SDValue StoreValue = BVN->getOperand(i); 6831 if (StoreSize < 4) 6832 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6833 6834 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6835 StoreValue, Idx, 6836 PtrInfo.getWithOffset(Offset), 6837 false, false, 0)); 6838 } 6839 } 6840 6841 SDValue StoreChain; 6842 if (!Stores.empty()) 6843 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6844 else 6845 StoreChain = DAG.getEntryNode(); 6846 6847 // Now load from v4i32 into the QPX register; this will extend it to 6848 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6849 // is typed as v4f64 because the QPX register integer states are not 6850 // explicitly represented. 6851 6852 SmallVector<SDValue, 2> Ops; 6853 Ops.push_back(StoreChain); 6854 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6855 Ops.push_back(FIdx); 6856 6857 SmallVector<EVT, 2> ValueVTs; 6858 ValueVTs.push_back(MVT::v4f64); 6859 ValueVTs.push_back(MVT::Other); // chain 6860 SDVTList VTs = DAG.getVTList(ValueVTs); 6861 6862 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6863 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6864 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6865 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6866 LoadedVect); 6867 6868 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64); 6869 FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6870 FPZeros, FPZeros, FPZeros, FPZeros); 6871 6872 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6873 } 6874 6875 // All other QPX vectors are handled by generic code. 6876 if (Subtarget.hasQPX()) 6877 return SDValue(); 6878 6879 // Check if this is a splat of a constant value. 6880 APInt APSplatBits, APSplatUndef; 6881 unsigned SplatBitSize; 6882 bool HasAnyUndefs; 6883 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6884 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6885 SplatBitSize > 32) 6886 return SDValue(); 6887 6888 unsigned SplatBits = APSplatBits.getZExtValue(); 6889 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6890 unsigned SplatSize = SplatBitSize / 8; 6891 6892 // First, handle single instruction cases. 6893 6894 // All zeros? 6895 if (SplatBits == 0) { 6896 // Canonicalize all zero vectors to be v4i32. 6897 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6898 SDValue Z = DAG.getConstant(0, dl, MVT::i32); 6899 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6900 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6901 } 6902 return Op; 6903 } 6904 6905 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6906 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6907 (32-SplatBitSize)); 6908 if (SextVal >= -16 && SextVal <= 15) 6909 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6910 6911 6912 // Two instruction sequences. 6913 6914 // If this value is in the range [-32,30] and is even, use: 6915 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6916 // If this value is in the range [17,31] and is odd, use: 6917 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6918 // If this value is in the range [-31,-17] and is odd, use: 6919 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6920 // Note the last two are three-instruction sequences. 6921 if (SextVal >= -32 && SextVal <= 31) { 6922 // To avoid having these optimizations undone by constant folding, 6923 // we convert to a pseudo that will be expanded later into one of 6924 // the above forms. 6925 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6926 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6927 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6928 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6929 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6930 if (VT == Op.getValueType()) 6931 return RetVal; 6932 else 6933 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6934 } 6935 6936 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6937 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6938 // for fneg/fabs. 6939 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6940 // Make -1 and vspltisw -1: 6941 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6942 6943 // Make the VSLW intrinsic, computing 0x8000_0000. 6944 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6945 OnesV, DAG, dl); 6946 6947 // xor by OnesV to invert it. 6948 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6949 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6950 } 6951 6952 // Check to see if this is a wide variety of vsplti*, binop self cases. 6953 static const signed char SplatCsts[] = { 6954 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6955 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6956 }; 6957 6958 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 6959 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 6960 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 6961 int i = SplatCsts[idx]; 6962 6963 // Figure out what shift amount will be used by altivec if shifted by i in 6964 // this splat size. 6965 unsigned TypeShiftAmt = i & (SplatBitSize-1); 6966 6967 // vsplti + shl self. 6968 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 6969 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6970 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6971 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 6972 Intrinsic::ppc_altivec_vslw 6973 }; 6974 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6975 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6976 } 6977 6978 // vsplti + srl self. 6979 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 6980 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6981 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6982 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 6983 Intrinsic::ppc_altivec_vsrw 6984 }; 6985 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6986 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6987 } 6988 6989 // vsplti + sra self. 6990 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 6991 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6992 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6993 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 6994 Intrinsic::ppc_altivec_vsraw 6995 }; 6996 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6997 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6998 } 6999 7000 // vsplti + rol self. 7001 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7002 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7003 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7004 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7005 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7006 Intrinsic::ppc_altivec_vrlw 7007 }; 7008 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7009 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7010 } 7011 7012 // t = vsplti c, result = vsldoi t, t, 1 7013 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7014 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7015 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7016 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7017 } 7018 // t = vsplti c, result = vsldoi t, t, 2 7019 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7020 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7021 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7022 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7023 } 7024 // t = vsplti c, result = vsldoi t, t, 3 7025 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7026 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7027 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7028 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7029 } 7030 } 7031 7032 return SDValue(); 7033 } 7034 7035 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7036 /// the specified operations to build the shuffle. 7037 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7038 SDValue RHS, SelectionDAG &DAG, 7039 SDLoc dl) { 7040 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7041 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7042 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7043 7044 enum { 7045 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7046 OP_VMRGHW, 7047 OP_VMRGLW, 7048 OP_VSPLTISW0, 7049 OP_VSPLTISW1, 7050 OP_VSPLTISW2, 7051 OP_VSPLTISW3, 7052 OP_VSLDOI4, 7053 OP_VSLDOI8, 7054 OP_VSLDOI12 7055 }; 7056 7057 if (OpNum == OP_COPY) { 7058 if (LHSID == (1*9+2)*9+3) return LHS; 7059 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7060 return RHS; 7061 } 7062 7063 SDValue OpLHS, OpRHS; 7064 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7065 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7066 7067 int ShufIdxs[16]; 7068 switch (OpNum) { 7069 default: llvm_unreachable("Unknown i32 permute!"); 7070 case OP_VMRGHW: 7071 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7072 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7073 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7074 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7075 break; 7076 case OP_VMRGLW: 7077 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7078 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7079 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7080 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7081 break; 7082 case OP_VSPLTISW0: 7083 for (unsigned i = 0; i != 16; ++i) 7084 ShufIdxs[i] = (i&3)+0; 7085 break; 7086 case OP_VSPLTISW1: 7087 for (unsigned i = 0; i != 16; ++i) 7088 ShufIdxs[i] = (i&3)+4; 7089 break; 7090 case OP_VSPLTISW2: 7091 for (unsigned i = 0; i != 16; ++i) 7092 ShufIdxs[i] = (i&3)+8; 7093 break; 7094 case OP_VSPLTISW3: 7095 for (unsigned i = 0; i != 16; ++i) 7096 ShufIdxs[i] = (i&3)+12; 7097 break; 7098 case OP_VSLDOI4: 7099 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7100 case OP_VSLDOI8: 7101 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7102 case OP_VSLDOI12: 7103 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7104 } 7105 EVT VT = OpLHS.getValueType(); 7106 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7107 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7108 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7109 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7110 } 7111 7112 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7113 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7114 /// return the code it can be lowered into. Worst case, it can always be 7115 /// lowered into a vperm. 7116 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7117 SelectionDAG &DAG) const { 7118 SDLoc dl(Op); 7119 SDValue V1 = Op.getOperand(0); 7120 SDValue V2 = Op.getOperand(1); 7121 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7122 EVT VT = Op.getValueType(); 7123 bool isLittleEndian = Subtarget.isLittleEndian(); 7124 7125 if (Subtarget.hasQPX()) { 7126 if (VT.getVectorNumElements() != 4) 7127 return SDValue(); 7128 7129 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7130 7131 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7132 if (AlignIdx != -1) { 7133 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7134 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7135 } else if (SVOp->isSplat()) { 7136 int SplatIdx = SVOp->getSplatIndex(); 7137 if (SplatIdx >= 4) { 7138 std::swap(V1, V2); 7139 SplatIdx -= 4; 7140 } 7141 7142 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7143 // nothing to do. 7144 7145 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7146 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7147 } 7148 7149 // Lower this into a qvgpci/qvfperm pair. 7150 7151 // Compute the qvgpci literal 7152 unsigned idx = 0; 7153 for (unsigned i = 0; i < 4; ++i) { 7154 int m = SVOp->getMaskElt(i); 7155 unsigned mm = m >= 0 ? (unsigned) m : i; 7156 idx |= mm << (3-i)*3; 7157 } 7158 7159 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7160 DAG.getConstant(idx, dl, MVT::i32)); 7161 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7162 } 7163 7164 // Cases that are handled by instructions that take permute immediates 7165 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7166 // selected by the instruction selector. 7167 if (V2.getOpcode() == ISD::UNDEF) { 7168 if (PPC::isSplatShuffleMask(SVOp, 1) || 7169 PPC::isSplatShuffleMask(SVOp, 2) || 7170 PPC::isSplatShuffleMask(SVOp, 4) || 7171 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7172 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7173 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7174 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7175 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7176 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7177 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7178 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7179 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7180 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7181 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7182 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)) { 7183 return Op; 7184 } 7185 } 7186 7187 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7188 // and produce a fixed permutation. If any of these match, do not lower to 7189 // VPERM. 7190 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7191 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7192 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7193 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7194 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7195 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7196 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7197 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7198 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7199 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7200 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7201 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7202 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)) 7203 return Op; 7204 7205 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7206 // perfect shuffle table to emit an optimal matching sequence. 7207 ArrayRef<int> PermMask = SVOp->getMask(); 7208 7209 unsigned PFIndexes[4]; 7210 bool isFourElementShuffle = true; 7211 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7212 unsigned EltNo = 8; // Start out undef. 7213 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7214 if (PermMask[i*4+j] < 0) 7215 continue; // Undef, ignore it. 7216 7217 unsigned ByteSource = PermMask[i*4+j]; 7218 if ((ByteSource & 3) != j) { 7219 isFourElementShuffle = false; 7220 break; 7221 } 7222 7223 if (EltNo == 8) { 7224 EltNo = ByteSource/4; 7225 } else if (EltNo != ByteSource/4) { 7226 isFourElementShuffle = false; 7227 break; 7228 } 7229 } 7230 PFIndexes[i] = EltNo; 7231 } 7232 7233 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7234 // perfect shuffle vector to determine if it is cost effective to do this as 7235 // discrete instructions, or whether we should use a vperm. 7236 // For now, we skip this for little endian until such time as we have a 7237 // little-endian perfect shuffle table. 7238 if (isFourElementShuffle && !isLittleEndian) { 7239 // Compute the index in the perfect shuffle table. 7240 unsigned PFTableIndex = 7241 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7242 7243 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7244 unsigned Cost = (PFEntry >> 30); 7245 7246 // Determining when to avoid vperm is tricky. Many things affect the cost 7247 // of vperm, particularly how many times the perm mask needs to be computed. 7248 // For example, if the perm mask can be hoisted out of a loop or is already 7249 // used (perhaps because there are multiple permutes with the same shuffle 7250 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7251 // the loop requires an extra register. 7252 // 7253 // As a compromise, we only emit discrete instructions if the shuffle can be 7254 // generated in 3 or fewer operations. When we have loop information 7255 // available, if this block is within a loop, we should avoid using vperm 7256 // for 3-operation perms and use a constant pool load instead. 7257 if (Cost < 3) 7258 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7259 } 7260 7261 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7262 // vector that will get spilled to the constant pool. 7263 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7264 7265 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7266 // that it is in input element units, not in bytes. Convert now. 7267 7268 // For little endian, the order of the input vectors is reversed, and 7269 // the permutation mask is complemented with respect to 31. This is 7270 // necessary to produce proper semantics with the big-endian-biased vperm 7271 // instruction. 7272 EVT EltVT = V1.getValueType().getVectorElementType(); 7273 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7274 7275 SmallVector<SDValue, 16> ResultMask; 7276 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7277 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7278 7279 for (unsigned j = 0; j != BytesPerElement; ++j) 7280 if (isLittleEndian) 7281 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7282 dl, MVT::i32)); 7283 else 7284 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7285 MVT::i32)); 7286 } 7287 7288 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7289 ResultMask); 7290 if (isLittleEndian) 7291 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7292 V2, V1, VPermMask); 7293 else 7294 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7295 V1, V2, VPermMask); 7296 } 7297 7298 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 7299 /// altivec comparison. If it is, return true and fill in Opc/isDot with 7300 /// information about the intrinsic. 7301 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 7302 bool &isDot, const PPCSubtarget &Subtarget) { 7303 unsigned IntrinsicID = 7304 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7305 CompareOpc = -1; 7306 isDot = false; 7307 switch (IntrinsicID) { 7308 default: return false; 7309 // Comparison predicates. 7310 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7311 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7312 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7313 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7314 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7315 case Intrinsic::ppc_altivec_vcmpequd_p: 7316 if (Subtarget.hasP8Altivec()) { 7317 CompareOpc = 199; 7318 isDot = 1; 7319 } 7320 else 7321 return false; 7322 7323 break; 7324 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7325 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7326 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7327 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7328 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7329 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7330 if (Subtarget.hasP8Altivec()) { 7331 CompareOpc = 967; 7332 isDot = 1; 7333 } 7334 else 7335 return false; 7336 7337 break; 7338 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7339 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7340 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7341 case Intrinsic::ppc_altivec_vcmpgtud_p: 7342 if (Subtarget.hasP8Altivec()) { 7343 CompareOpc = 711; 7344 isDot = 1; 7345 } 7346 else 7347 return false; 7348 7349 break; 7350 7351 // Normal Comparisons. 7352 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7353 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7354 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7355 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7356 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7357 case Intrinsic::ppc_altivec_vcmpequd: 7358 if (Subtarget.hasP8Altivec()) { 7359 CompareOpc = 199; 7360 isDot = 0; 7361 } 7362 else 7363 return false; 7364 7365 break; 7366 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7367 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7368 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7369 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7370 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7371 case Intrinsic::ppc_altivec_vcmpgtsd: 7372 if (Subtarget.hasP8Altivec()) { 7373 CompareOpc = 967; 7374 isDot = 0; 7375 } 7376 else 7377 return false; 7378 7379 break; 7380 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7381 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7382 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7383 case Intrinsic::ppc_altivec_vcmpgtud: 7384 if (Subtarget.hasP8Altivec()) { 7385 CompareOpc = 711; 7386 isDot = 0; 7387 } 7388 else 7389 return false; 7390 7391 break; 7392 } 7393 return true; 7394 } 7395 7396 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7397 /// lower, do it, otherwise return null. 7398 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7399 SelectionDAG &DAG) const { 7400 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7401 // opcode number of the comparison. 7402 SDLoc dl(Op); 7403 int CompareOpc; 7404 bool isDot; 7405 if (!getAltivecCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7406 return SDValue(); // Don't custom lower most intrinsics. 7407 7408 // If this is a non-dot comparison, make the VCMP node and we are done. 7409 if (!isDot) { 7410 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7411 Op.getOperand(1), Op.getOperand(2), 7412 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7413 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7414 } 7415 7416 // Create the PPCISD altivec 'dot' comparison node. 7417 SDValue Ops[] = { 7418 Op.getOperand(2), // LHS 7419 Op.getOperand(3), // RHS 7420 DAG.getConstant(CompareOpc, dl, MVT::i32) 7421 }; 7422 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7423 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7424 7425 // Now that we have the comparison, emit a copy from the CR to a GPR. 7426 // This is flagged to the above dot comparison. 7427 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7428 DAG.getRegister(PPC::CR6, MVT::i32), 7429 CompNode.getValue(1)); 7430 7431 // Unpack the result based on how the target uses it. 7432 unsigned BitNo; // Bit # of CR6. 7433 bool InvertBit; // Invert result? 7434 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7435 default: // Can't happen, don't crash on invalid number though. 7436 case 0: // Return the value of the EQ bit of CR6. 7437 BitNo = 0; InvertBit = false; 7438 break; 7439 case 1: // Return the inverted value of the EQ bit of CR6. 7440 BitNo = 0; InvertBit = true; 7441 break; 7442 case 2: // Return the value of the LT bit of CR6. 7443 BitNo = 2; InvertBit = false; 7444 break; 7445 case 3: // Return the inverted value of the LT bit of CR6. 7446 BitNo = 2; InvertBit = true; 7447 break; 7448 } 7449 7450 // Shift the bit into the low position. 7451 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7452 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7453 // Isolate the bit. 7454 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7455 DAG.getConstant(1, dl, MVT::i32)); 7456 7457 // If we are supposed to, toggle the bit. 7458 if (InvertBit) 7459 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7460 DAG.getConstant(1, dl, MVT::i32)); 7461 return Flags; 7462 } 7463 7464 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7465 SelectionDAG &DAG) const { 7466 SDLoc dl(Op); 7467 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7468 // instructions), but for smaller types, we need to first extend up to v2i32 7469 // before doing going farther. 7470 if (Op.getValueType() == MVT::v2i64) { 7471 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7472 if (ExtVT != MVT::v2i32) { 7473 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7474 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7475 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7476 ExtVT.getVectorElementType(), 4))); 7477 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7478 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7479 DAG.getValueType(MVT::v2i32)); 7480 } 7481 7482 return Op; 7483 } 7484 7485 return SDValue(); 7486 } 7487 7488 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7489 SelectionDAG &DAG) const { 7490 SDLoc dl(Op); 7491 // Create a stack slot that is 16-byte aligned. 7492 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7493 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7494 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7495 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7496 7497 // Store the input value into Value#0 of the stack slot. 7498 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7499 Op.getOperand(0), FIdx, MachinePointerInfo(), 7500 false, false, 0); 7501 // Load it out. 7502 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7503 false, false, false, 0); 7504 } 7505 7506 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7507 SelectionDAG &DAG) const { 7508 SDLoc dl(Op); 7509 SDNode *N = Op.getNode(); 7510 7511 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7512 "Unknown extract_vector_elt type"); 7513 7514 SDValue Value = N->getOperand(0); 7515 7516 // The first part of this is like the store lowering except that we don't 7517 // need to track the chain. 7518 7519 // The values are now known to be -1 (false) or 1 (true). To convert this 7520 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7521 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7522 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7523 7524 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7525 // understand how to form the extending load. 7526 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7527 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7528 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7529 7530 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7531 7532 // Now convert to an integer and store. 7533 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7534 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7535 Value); 7536 7537 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7538 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7539 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 7540 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7541 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7542 7543 SDValue StoreChain = DAG.getEntryNode(); 7544 SmallVector<SDValue, 2> Ops; 7545 Ops.push_back(StoreChain); 7546 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7547 Ops.push_back(Value); 7548 Ops.push_back(FIdx); 7549 7550 SmallVector<EVT, 2> ValueVTs; 7551 ValueVTs.push_back(MVT::Other); // chain 7552 SDVTList VTs = DAG.getVTList(ValueVTs); 7553 7554 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7555 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7556 7557 // Extract the value requested. 7558 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7559 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7560 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7561 7562 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7563 PtrInfo.getWithOffset(Offset), 7564 false, false, false, 0); 7565 7566 if (!Subtarget.useCRBits()) 7567 return IntVal; 7568 7569 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7570 } 7571 7572 /// Lowering for QPX v4i1 loads 7573 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7574 SelectionDAG &DAG) const { 7575 SDLoc dl(Op); 7576 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7577 SDValue LoadChain = LN->getChain(); 7578 SDValue BasePtr = LN->getBasePtr(); 7579 7580 if (Op.getValueType() == MVT::v4f64 || 7581 Op.getValueType() == MVT::v4f32) { 7582 EVT MemVT = LN->getMemoryVT(); 7583 unsigned Alignment = LN->getAlignment(); 7584 7585 // If this load is properly aligned, then it is legal. 7586 if (Alignment >= MemVT.getStoreSize()) 7587 return Op; 7588 7589 EVT ScalarVT = Op.getValueType().getScalarType(), 7590 ScalarMemVT = MemVT.getScalarType(); 7591 unsigned Stride = ScalarMemVT.getStoreSize(); 7592 7593 SmallVector<SDValue, 8> Vals, LoadChains; 7594 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7595 SDValue Load; 7596 if (ScalarVT != ScalarMemVT) 7597 Load = 7598 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7599 BasePtr, 7600 LN->getPointerInfo().getWithOffset(Idx*Stride), 7601 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7602 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7603 LN->getAAInfo()); 7604 else 7605 Load = 7606 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7607 LN->getPointerInfo().getWithOffset(Idx*Stride), 7608 LN->isVolatile(), LN->isNonTemporal(), 7609 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7610 LN->getAAInfo()); 7611 7612 if (Idx == 0 && LN->isIndexed()) { 7613 assert(LN->getAddressingMode() == ISD::PRE_INC && 7614 "Unknown addressing mode on vector load"); 7615 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7616 LN->getAddressingMode()); 7617 } 7618 7619 Vals.push_back(Load); 7620 LoadChains.push_back(Load.getValue(1)); 7621 7622 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7623 DAG.getConstant(Stride, dl, 7624 BasePtr.getValueType())); 7625 } 7626 7627 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7628 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7629 Op.getValueType(), Vals); 7630 7631 if (LN->isIndexed()) { 7632 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7633 return DAG.getMergeValues(RetOps, dl); 7634 } 7635 7636 SDValue RetOps[] = { Value, TF }; 7637 return DAG.getMergeValues(RetOps, dl); 7638 } 7639 7640 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7641 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7642 7643 // To lower v4i1 from a byte array, we load the byte elements of the 7644 // vector and then reuse the BUILD_VECTOR logic. 7645 7646 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7647 for (unsigned i = 0; i < 4; ++i) { 7648 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7649 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7650 7651 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7652 dl, MVT::i32, LoadChain, Idx, 7653 LN->getPointerInfo().getWithOffset(i), 7654 MVT::i8 /* memory type */, 7655 LN->isVolatile(), LN->isNonTemporal(), 7656 LN->isInvariant(), 7657 1 /* alignment */, LN->getAAInfo())); 7658 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7659 } 7660 7661 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7662 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7663 7664 SDValue RVals[] = { Value, LoadChain }; 7665 return DAG.getMergeValues(RVals, dl); 7666 } 7667 7668 /// Lowering for QPX v4i1 stores 7669 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7670 SelectionDAG &DAG) const { 7671 SDLoc dl(Op); 7672 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7673 SDValue StoreChain = SN->getChain(); 7674 SDValue BasePtr = SN->getBasePtr(); 7675 SDValue Value = SN->getValue(); 7676 7677 if (Value.getValueType() == MVT::v4f64 || 7678 Value.getValueType() == MVT::v4f32) { 7679 EVT MemVT = SN->getMemoryVT(); 7680 unsigned Alignment = SN->getAlignment(); 7681 7682 // If this store is properly aligned, then it is legal. 7683 if (Alignment >= MemVT.getStoreSize()) 7684 return Op; 7685 7686 EVT ScalarVT = Value.getValueType().getScalarType(), 7687 ScalarMemVT = MemVT.getScalarType(); 7688 unsigned Stride = ScalarMemVT.getStoreSize(); 7689 7690 SmallVector<SDValue, 8> Stores; 7691 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7692 SDValue Ex = DAG.getNode( 7693 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7694 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7695 SDValue Store; 7696 if (ScalarVT != ScalarMemVT) 7697 Store = 7698 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7699 SN->getPointerInfo().getWithOffset(Idx*Stride), 7700 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7701 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7702 else 7703 Store = 7704 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7705 SN->getPointerInfo().getWithOffset(Idx*Stride), 7706 SN->isVolatile(), SN->isNonTemporal(), 7707 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7708 7709 if (Idx == 0 && SN->isIndexed()) { 7710 assert(SN->getAddressingMode() == ISD::PRE_INC && 7711 "Unknown addressing mode on vector store"); 7712 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7713 SN->getAddressingMode()); 7714 } 7715 7716 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7717 DAG.getConstant(Stride, dl, 7718 BasePtr.getValueType())); 7719 Stores.push_back(Store); 7720 } 7721 7722 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7723 7724 if (SN->isIndexed()) { 7725 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7726 return DAG.getMergeValues(RetOps, dl); 7727 } 7728 7729 return TF; 7730 } 7731 7732 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7733 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7734 7735 // The values are now known to be -1 (false) or 1 (true). To convert this 7736 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7737 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7738 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7739 7740 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7741 // understand how to form the extending load. 7742 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7743 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7744 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7745 7746 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7747 7748 // Now convert to an integer and store. 7749 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7750 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7751 Value); 7752 7753 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7754 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7755 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 7756 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7757 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7758 7759 SmallVector<SDValue, 2> Ops; 7760 Ops.push_back(StoreChain); 7761 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7762 Ops.push_back(Value); 7763 Ops.push_back(FIdx); 7764 7765 SmallVector<EVT, 2> ValueVTs; 7766 ValueVTs.push_back(MVT::Other); // chain 7767 SDVTList VTs = DAG.getVTList(ValueVTs); 7768 7769 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7770 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7771 7772 // Move data into the byte array. 7773 SmallVector<SDValue, 4> Loads, LoadChains; 7774 for (unsigned i = 0; i < 4; ++i) { 7775 unsigned Offset = 4*i; 7776 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7777 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7778 7779 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7780 PtrInfo.getWithOffset(Offset), 7781 false, false, false, 0)); 7782 LoadChains.push_back(Loads[i].getValue(1)); 7783 } 7784 7785 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7786 7787 SmallVector<SDValue, 4> Stores; 7788 for (unsigned i = 0; i < 4; ++i) { 7789 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7790 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7791 7792 Stores.push_back(DAG.getTruncStore(StoreChain, dl, Loads[i], Idx, 7793 SN->getPointerInfo().getWithOffset(i), 7794 MVT::i8 /* memory type */, 7795 SN->isNonTemporal(), SN->isVolatile(), 7796 1 /* alignment */, SN->getAAInfo())); 7797 } 7798 7799 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7800 7801 return StoreChain; 7802 } 7803 7804 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7805 SDLoc dl(Op); 7806 if (Op.getValueType() == MVT::v4i32) { 7807 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7808 7809 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7810 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7811 7812 SDValue RHSSwap = // = vrlw RHS, 16 7813 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7814 7815 // Shrinkify inputs to v8i16. 7816 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7817 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7818 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7819 7820 // Low parts multiplied together, generating 32-bit results (we ignore the 7821 // top parts). 7822 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7823 LHS, RHS, DAG, dl, MVT::v4i32); 7824 7825 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7826 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7827 // Shift the high parts up 16 bits. 7828 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7829 Neg16, DAG, dl); 7830 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7831 } else if (Op.getValueType() == MVT::v8i16) { 7832 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7833 7834 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7835 7836 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7837 LHS, RHS, Zero, DAG, dl); 7838 } else if (Op.getValueType() == MVT::v16i8) { 7839 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7840 bool isLittleEndian = Subtarget.isLittleEndian(); 7841 7842 // Multiply the even 8-bit parts, producing 16-bit sums. 7843 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7844 LHS, RHS, DAG, dl, MVT::v8i16); 7845 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7846 7847 // Multiply the odd 8-bit parts, producing 16-bit sums. 7848 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7849 LHS, RHS, DAG, dl, MVT::v8i16); 7850 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7851 7852 // Merge the results together. Because vmuleub and vmuloub are 7853 // instructions with a big-endian bias, we must reverse the 7854 // element numbering and reverse the meaning of "odd" and "even" 7855 // when generating little endian code. 7856 int Ops[16]; 7857 for (unsigned i = 0; i != 8; ++i) { 7858 if (isLittleEndian) { 7859 Ops[i*2 ] = 2*i; 7860 Ops[i*2+1] = 2*i+16; 7861 } else { 7862 Ops[i*2 ] = 2*i+1; 7863 Ops[i*2+1] = 2*i+1+16; 7864 } 7865 } 7866 if (isLittleEndian) 7867 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7868 else 7869 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7870 } else { 7871 llvm_unreachable("Unknown mul to lower!"); 7872 } 7873 } 7874 7875 /// LowerOperation - Provide custom lowering hooks for some operations. 7876 /// 7877 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7878 switch (Op.getOpcode()) { 7879 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7880 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7881 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7882 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7883 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7884 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7885 case ISD::SETCC: return LowerSETCC(Op, DAG); 7886 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7887 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7888 case ISD::VASTART: 7889 return LowerVASTART(Op, DAG, Subtarget); 7890 7891 case ISD::VAARG: 7892 return LowerVAARG(Op, DAG, Subtarget); 7893 7894 case ISD::VACOPY: 7895 return LowerVACOPY(Op, DAG, Subtarget); 7896 7897 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7898 case ISD::DYNAMIC_STACKALLOC: 7899 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7900 7901 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7902 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7903 7904 case ISD::LOAD: return LowerLOAD(Op, DAG); 7905 case ISD::STORE: return LowerSTORE(Op, DAG); 7906 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7907 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7908 case ISD::FP_TO_UINT: 7909 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7910 SDLoc(Op)); 7911 case ISD::UINT_TO_FP: 7912 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7913 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7914 7915 // Lower 64-bit shifts. 7916 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7917 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7918 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7919 7920 // Vector-related lowering. 7921 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7922 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7923 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7924 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7925 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7926 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7927 case ISD::MUL: return LowerMUL(Op, DAG); 7928 7929 // For counter-based loop handling. 7930 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7931 7932 // Frame & Return address. 7933 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7934 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7935 } 7936 } 7937 7938 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 7939 SmallVectorImpl<SDValue>&Results, 7940 SelectionDAG &DAG) const { 7941 SDLoc dl(N); 7942 switch (N->getOpcode()) { 7943 default: 7944 llvm_unreachable("Do not know how to custom type legalize this operation!"); 7945 case ISD::READCYCLECOUNTER: { 7946 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 7947 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 7948 7949 Results.push_back(RTB); 7950 Results.push_back(RTB.getValue(1)); 7951 Results.push_back(RTB.getValue(2)); 7952 break; 7953 } 7954 case ISD::INTRINSIC_W_CHAIN: { 7955 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 7956 Intrinsic::ppc_is_decremented_ctr_nonzero) 7957 break; 7958 7959 assert(N->getValueType(0) == MVT::i1 && 7960 "Unexpected result type for CTR decrement intrinsic"); 7961 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 7962 N->getValueType(0)); 7963 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 7964 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 7965 N->getOperand(1)); 7966 7967 Results.push_back(NewInt); 7968 Results.push_back(NewInt.getValue(1)); 7969 break; 7970 } 7971 case ISD::VAARG: { 7972 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 7973 return; 7974 7975 EVT VT = N->getValueType(0); 7976 7977 if (VT == MVT::i64) { 7978 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 7979 7980 Results.push_back(NewNode); 7981 Results.push_back(NewNode.getValue(1)); 7982 } 7983 return; 7984 } 7985 case ISD::FP_ROUND_INREG: { 7986 assert(N->getValueType(0) == MVT::ppcf128); 7987 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 7988 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7989 MVT::f64, N->getOperand(0), 7990 DAG.getIntPtrConstant(0, dl)); 7991 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7992 MVT::f64, N->getOperand(0), 7993 DAG.getIntPtrConstant(1, dl)); 7994 7995 // Add the two halves of the long double in round-to-zero mode. 7996 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7997 7998 // We know the low half is about to be thrown away, so just use something 7999 // convenient. 8000 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8001 FPreg, FPreg)); 8002 return; 8003 } 8004 case ISD::FP_TO_SINT: 8005 case ISD::FP_TO_UINT: 8006 // LowerFP_TO_INT() can only handle f32 and f64. 8007 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8008 return; 8009 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8010 return; 8011 } 8012 } 8013 8014 8015 //===----------------------------------------------------------------------===// 8016 // Other Lowering Code 8017 //===----------------------------------------------------------------------===// 8018 8019 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8020 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8021 Function *Func = Intrinsic::getDeclaration(M, Id); 8022 return Builder.CreateCall(Func, {}); 8023 } 8024 8025 // The mappings for emitLeading/TrailingFence is taken from 8026 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8027 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8028 AtomicOrdering Ord, bool IsStore, 8029 bool IsLoad) const { 8030 if (Ord == SequentiallyConsistent) 8031 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8032 if (isAtLeastRelease(Ord)) 8033 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8034 return nullptr; 8035 } 8036 8037 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8038 AtomicOrdering Ord, bool IsStore, 8039 bool IsLoad) const { 8040 if (IsLoad && isAtLeastAcquire(Ord)) 8041 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8042 // FIXME: this is too conservative, a dependent branch + isync is enough. 8043 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8044 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8045 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8046 return nullptr; 8047 } 8048 8049 MachineBasicBlock * 8050 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8051 unsigned AtomicSize, 8052 unsigned BinOpcode) const { 8053 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8054 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8055 8056 auto LoadMnemonic = PPC::LDARX; 8057 auto StoreMnemonic = PPC::STDCX; 8058 switch (AtomicSize) { 8059 default: 8060 llvm_unreachable("Unexpected size of atomic entity"); 8061 case 1: 8062 LoadMnemonic = PPC::LBARX; 8063 StoreMnemonic = PPC::STBCX; 8064 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8065 break; 8066 case 2: 8067 LoadMnemonic = PPC::LHARX; 8068 StoreMnemonic = PPC::STHCX; 8069 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8070 break; 8071 case 4: 8072 LoadMnemonic = PPC::LWARX; 8073 StoreMnemonic = PPC::STWCX; 8074 break; 8075 case 8: 8076 LoadMnemonic = PPC::LDARX; 8077 StoreMnemonic = PPC::STDCX; 8078 break; 8079 } 8080 8081 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8082 MachineFunction *F = BB->getParent(); 8083 MachineFunction::iterator It = BB; 8084 ++It; 8085 8086 unsigned dest = MI->getOperand(0).getReg(); 8087 unsigned ptrA = MI->getOperand(1).getReg(); 8088 unsigned ptrB = MI->getOperand(2).getReg(); 8089 unsigned incr = MI->getOperand(3).getReg(); 8090 DebugLoc dl = MI->getDebugLoc(); 8091 8092 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8093 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8094 F->insert(It, loopMBB); 8095 F->insert(It, exitMBB); 8096 exitMBB->splice(exitMBB->begin(), BB, 8097 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8098 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8099 8100 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8101 unsigned TmpReg = (!BinOpcode) ? incr : 8102 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8103 : &PPC::GPRCRegClass); 8104 8105 // thisMBB: 8106 // ... 8107 // fallthrough --> loopMBB 8108 BB->addSuccessor(loopMBB); 8109 8110 // loopMBB: 8111 // l[wd]arx dest, ptr 8112 // add r0, dest, incr 8113 // st[wd]cx. r0, ptr 8114 // bne- loopMBB 8115 // fallthrough --> exitMBB 8116 BB = loopMBB; 8117 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8118 .addReg(ptrA).addReg(ptrB); 8119 if (BinOpcode) 8120 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8121 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8122 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8123 BuildMI(BB, dl, TII->get(PPC::BCC)) 8124 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8125 BB->addSuccessor(loopMBB); 8126 BB->addSuccessor(exitMBB); 8127 8128 // exitMBB: 8129 // ... 8130 BB = exitMBB; 8131 return BB; 8132 } 8133 8134 MachineBasicBlock * 8135 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8136 MachineBasicBlock *BB, 8137 bool is8bit, // operation 8138 unsigned BinOpcode) const { 8139 // If we support part-word atomic mnemonics, just use them 8140 if (Subtarget.hasPartwordAtomics()) 8141 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8142 8143 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8144 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8145 // In 64 bit mode we have to use 64 bits for addresses, even though the 8146 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8147 // registers without caring whether they're 32 or 64, but here we're 8148 // doing actual arithmetic on the addresses. 8149 bool is64bit = Subtarget.isPPC64(); 8150 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8151 8152 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8153 MachineFunction *F = BB->getParent(); 8154 MachineFunction::iterator It = BB; 8155 ++It; 8156 8157 unsigned dest = MI->getOperand(0).getReg(); 8158 unsigned ptrA = MI->getOperand(1).getReg(); 8159 unsigned ptrB = MI->getOperand(2).getReg(); 8160 unsigned incr = MI->getOperand(3).getReg(); 8161 DebugLoc dl = MI->getDebugLoc(); 8162 8163 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8164 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8165 F->insert(It, loopMBB); 8166 F->insert(It, exitMBB); 8167 exitMBB->splice(exitMBB->begin(), BB, 8168 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8169 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8170 8171 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8172 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8173 : &PPC::GPRCRegClass; 8174 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8175 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8176 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8177 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8178 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8179 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8180 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8181 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8182 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8183 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8184 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8185 unsigned Ptr1Reg; 8186 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8187 8188 // thisMBB: 8189 // ... 8190 // fallthrough --> loopMBB 8191 BB->addSuccessor(loopMBB); 8192 8193 // The 4-byte load must be aligned, while a char or short may be 8194 // anywhere in the word. Hence all this nasty bookkeeping code. 8195 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8196 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8197 // xori shift, shift1, 24 [16] 8198 // rlwinm ptr, ptr1, 0, 0, 29 8199 // slw incr2, incr, shift 8200 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8201 // slw mask, mask2, shift 8202 // loopMBB: 8203 // lwarx tmpDest, ptr 8204 // add tmp, tmpDest, incr2 8205 // andc tmp2, tmpDest, mask 8206 // and tmp3, tmp, mask 8207 // or tmp4, tmp3, tmp2 8208 // stwcx. tmp4, ptr 8209 // bne- loopMBB 8210 // fallthrough --> exitMBB 8211 // srw dest, tmpDest, shift 8212 if (ptrA != ZeroReg) { 8213 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8214 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8215 .addReg(ptrA).addReg(ptrB); 8216 } else { 8217 Ptr1Reg = ptrB; 8218 } 8219 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8220 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8221 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8222 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8223 if (is64bit) 8224 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8225 .addReg(Ptr1Reg).addImm(0).addImm(61); 8226 else 8227 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8228 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8229 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8230 .addReg(incr).addReg(ShiftReg); 8231 if (is8bit) 8232 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8233 else { 8234 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8235 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8236 } 8237 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8238 .addReg(Mask2Reg).addReg(ShiftReg); 8239 8240 BB = loopMBB; 8241 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8242 .addReg(ZeroReg).addReg(PtrReg); 8243 if (BinOpcode) 8244 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8245 .addReg(Incr2Reg).addReg(TmpDestReg); 8246 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8247 .addReg(TmpDestReg).addReg(MaskReg); 8248 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8249 .addReg(TmpReg).addReg(MaskReg); 8250 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8251 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8252 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8253 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8254 BuildMI(BB, dl, TII->get(PPC::BCC)) 8255 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8256 BB->addSuccessor(loopMBB); 8257 BB->addSuccessor(exitMBB); 8258 8259 // exitMBB: 8260 // ... 8261 BB = exitMBB; 8262 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8263 .addReg(ShiftReg); 8264 return BB; 8265 } 8266 8267 llvm::MachineBasicBlock* 8268 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8269 MachineBasicBlock *MBB) const { 8270 DebugLoc DL = MI->getDebugLoc(); 8271 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8272 8273 MachineFunction *MF = MBB->getParent(); 8274 MachineRegisterInfo &MRI = MF->getRegInfo(); 8275 8276 const BasicBlock *BB = MBB->getBasicBlock(); 8277 MachineFunction::iterator I = MBB; 8278 ++I; 8279 8280 // Memory Reference 8281 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8282 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8283 8284 unsigned DstReg = MI->getOperand(0).getReg(); 8285 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8286 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8287 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8288 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8289 8290 MVT PVT = getPointerTy(MF->getDataLayout()); 8291 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8292 "Invalid Pointer Size!"); 8293 // For v = setjmp(buf), we generate 8294 // 8295 // thisMBB: 8296 // SjLjSetup mainMBB 8297 // bl mainMBB 8298 // v_restore = 1 8299 // b sinkMBB 8300 // 8301 // mainMBB: 8302 // buf[LabelOffset] = LR 8303 // v_main = 0 8304 // 8305 // sinkMBB: 8306 // v = phi(main, restore) 8307 // 8308 8309 MachineBasicBlock *thisMBB = MBB; 8310 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8311 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8312 MF->insert(I, mainMBB); 8313 MF->insert(I, sinkMBB); 8314 8315 MachineInstrBuilder MIB; 8316 8317 // Transfer the remainder of BB and its successor edges to sinkMBB. 8318 sinkMBB->splice(sinkMBB->begin(), MBB, 8319 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8320 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8321 8322 // Note that the structure of the jmp_buf used here is not compatible 8323 // with that used by libc, and is not designed to be. Specifically, it 8324 // stores only those 'reserved' registers that LLVM does not otherwise 8325 // understand how to spill. Also, by convention, by the time this 8326 // intrinsic is called, Clang has already stored the frame address in the 8327 // first slot of the buffer and stack address in the third. Following the 8328 // X86 target code, we'll store the jump address in the second slot. We also 8329 // need to save the TOC pointer (R2) to handle jumps between shared 8330 // libraries, and that will be stored in the fourth slot. The thread 8331 // identifier (R13) is not affected. 8332 8333 // thisMBB: 8334 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8335 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8336 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8337 8338 // Prepare IP either in reg. 8339 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8340 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8341 unsigned BufReg = MI->getOperand(1).getReg(); 8342 8343 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8344 setUsesTOCBasePtr(*MBB->getParent()); 8345 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8346 .addReg(PPC::X2) 8347 .addImm(TOCOffset) 8348 .addReg(BufReg); 8349 MIB.setMemRefs(MMOBegin, MMOEnd); 8350 } 8351 8352 // Naked functions never have a base pointer, and so we use r1. For all 8353 // other functions, this decision must be delayed until during PEI. 8354 unsigned BaseReg; 8355 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8356 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8357 else 8358 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8359 8360 MIB = BuildMI(*thisMBB, MI, DL, 8361 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8362 .addReg(BaseReg) 8363 .addImm(BPOffset) 8364 .addReg(BufReg); 8365 MIB.setMemRefs(MMOBegin, MMOEnd); 8366 8367 // Setup 8368 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8369 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8370 MIB.addRegMask(TRI->getNoPreservedMask()); 8371 8372 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8373 8374 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8375 .addMBB(mainMBB); 8376 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8377 8378 thisMBB->addSuccessor(mainMBB, /* weight */ 0); 8379 thisMBB->addSuccessor(sinkMBB, /* weight */ 1); 8380 8381 // mainMBB: 8382 // mainDstReg = 0 8383 MIB = 8384 BuildMI(mainMBB, DL, 8385 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8386 8387 // Store IP 8388 if (Subtarget.isPPC64()) { 8389 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8390 .addReg(LabelReg) 8391 .addImm(LabelOffset) 8392 .addReg(BufReg); 8393 } else { 8394 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8395 .addReg(LabelReg) 8396 .addImm(LabelOffset) 8397 .addReg(BufReg); 8398 } 8399 8400 MIB.setMemRefs(MMOBegin, MMOEnd); 8401 8402 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8403 mainMBB->addSuccessor(sinkMBB); 8404 8405 // sinkMBB: 8406 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8407 TII->get(PPC::PHI), DstReg) 8408 .addReg(mainDstReg).addMBB(mainMBB) 8409 .addReg(restoreDstReg).addMBB(thisMBB); 8410 8411 MI->eraseFromParent(); 8412 return sinkMBB; 8413 } 8414 8415 MachineBasicBlock * 8416 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8417 MachineBasicBlock *MBB) const { 8418 DebugLoc DL = MI->getDebugLoc(); 8419 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8420 8421 MachineFunction *MF = MBB->getParent(); 8422 MachineRegisterInfo &MRI = MF->getRegInfo(); 8423 8424 // Memory Reference 8425 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8426 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8427 8428 MVT PVT = getPointerTy(MF->getDataLayout()); 8429 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8430 "Invalid Pointer Size!"); 8431 8432 const TargetRegisterClass *RC = 8433 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8434 unsigned Tmp = MRI.createVirtualRegister(RC); 8435 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8436 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8437 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8438 unsigned BP = 8439 (PVT == MVT::i64) 8440 ? PPC::X30 8441 : (Subtarget.isSVR4ABI() && 8442 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8443 ? PPC::R29 8444 : PPC::R30); 8445 8446 MachineInstrBuilder MIB; 8447 8448 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8449 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8450 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8451 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8452 8453 unsigned BufReg = MI->getOperand(0).getReg(); 8454 8455 // Reload FP (the jumped-to function may not have had a 8456 // frame pointer, and if so, then its r31 will be restored 8457 // as necessary). 8458 if (PVT == MVT::i64) { 8459 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8460 .addImm(0) 8461 .addReg(BufReg); 8462 } else { 8463 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8464 .addImm(0) 8465 .addReg(BufReg); 8466 } 8467 MIB.setMemRefs(MMOBegin, MMOEnd); 8468 8469 // Reload IP 8470 if (PVT == MVT::i64) { 8471 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8472 .addImm(LabelOffset) 8473 .addReg(BufReg); 8474 } else { 8475 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8476 .addImm(LabelOffset) 8477 .addReg(BufReg); 8478 } 8479 MIB.setMemRefs(MMOBegin, MMOEnd); 8480 8481 // Reload SP 8482 if (PVT == MVT::i64) { 8483 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8484 .addImm(SPOffset) 8485 .addReg(BufReg); 8486 } else { 8487 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8488 .addImm(SPOffset) 8489 .addReg(BufReg); 8490 } 8491 MIB.setMemRefs(MMOBegin, MMOEnd); 8492 8493 // Reload BP 8494 if (PVT == MVT::i64) { 8495 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8496 .addImm(BPOffset) 8497 .addReg(BufReg); 8498 } else { 8499 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8500 .addImm(BPOffset) 8501 .addReg(BufReg); 8502 } 8503 MIB.setMemRefs(MMOBegin, MMOEnd); 8504 8505 // Reload TOC 8506 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8507 setUsesTOCBasePtr(*MBB->getParent()); 8508 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8509 .addImm(TOCOffset) 8510 .addReg(BufReg); 8511 8512 MIB.setMemRefs(MMOBegin, MMOEnd); 8513 } 8514 8515 // Jump 8516 BuildMI(*MBB, MI, DL, 8517 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8518 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8519 8520 MI->eraseFromParent(); 8521 return MBB; 8522 } 8523 8524 MachineBasicBlock * 8525 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8526 MachineBasicBlock *BB) const { 8527 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8528 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8529 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8530 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8531 // Call lowering should have added an r2 operand to indicate a dependence 8532 // on the TOC base pointer value. It can't however, because there is no 8533 // way to mark the dependence as implicit there, and so the stackmap code 8534 // will confuse it with a regular operand. Instead, add the dependence 8535 // here. 8536 setUsesTOCBasePtr(*BB->getParent()); 8537 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8538 } 8539 8540 return emitPatchPoint(MI, BB); 8541 } 8542 8543 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8544 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8545 return emitEHSjLjSetJmp(MI, BB); 8546 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8547 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8548 return emitEHSjLjLongJmp(MI, BB); 8549 } 8550 8551 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8552 8553 // To "insert" these instructions we actually have to insert their 8554 // control-flow patterns. 8555 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8556 MachineFunction::iterator It = BB; 8557 ++It; 8558 8559 MachineFunction *F = BB->getParent(); 8560 8561 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8562 MI->getOpcode() == PPC::SELECT_CC_I8 || 8563 MI->getOpcode() == PPC::SELECT_I4 || 8564 MI->getOpcode() == PPC::SELECT_I8)) { 8565 SmallVector<MachineOperand, 2> Cond; 8566 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8567 MI->getOpcode() == PPC::SELECT_CC_I8) 8568 Cond.push_back(MI->getOperand(4)); 8569 else 8570 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8571 Cond.push_back(MI->getOperand(1)); 8572 8573 DebugLoc dl = MI->getDebugLoc(); 8574 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8575 Cond, MI->getOperand(2).getReg(), 8576 MI->getOperand(3).getReg()); 8577 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8578 MI->getOpcode() == PPC::SELECT_CC_I8 || 8579 MI->getOpcode() == PPC::SELECT_CC_F4 || 8580 MI->getOpcode() == PPC::SELECT_CC_F8 || 8581 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8582 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8583 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8584 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8585 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8586 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8587 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8588 MI->getOpcode() == PPC::SELECT_I4 || 8589 MI->getOpcode() == PPC::SELECT_I8 || 8590 MI->getOpcode() == PPC::SELECT_F4 || 8591 MI->getOpcode() == PPC::SELECT_F8 || 8592 MI->getOpcode() == PPC::SELECT_QFRC || 8593 MI->getOpcode() == PPC::SELECT_QSRC || 8594 MI->getOpcode() == PPC::SELECT_QBRC || 8595 MI->getOpcode() == PPC::SELECT_VRRC || 8596 MI->getOpcode() == PPC::SELECT_VSFRC || 8597 MI->getOpcode() == PPC::SELECT_VSSRC || 8598 MI->getOpcode() == PPC::SELECT_VSRC) { 8599 // The incoming instruction knows the destination vreg to set, the 8600 // condition code register to branch on, the true/false values to 8601 // select between, and a branch opcode to use. 8602 8603 // thisMBB: 8604 // ... 8605 // TrueVal = ... 8606 // cmpTY ccX, r1, r2 8607 // bCC copy1MBB 8608 // fallthrough --> copy0MBB 8609 MachineBasicBlock *thisMBB = BB; 8610 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8611 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8612 DebugLoc dl = MI->getDebugLoc(); 8613 F->insert(It, copy0MBB); 8614 F->insert(It, sinkMBB); 8615 8616 // Transfer the remainder of BB and its successor edges to sinkMBB. 8617 sinkMBB->splice(sinkMBB->begin(), BB, 8618 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8619 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8620 8621 // Next, add the true and fallthrough blocks as its successors. 8622 BB->addSuccessor(copy0MBB); 8623 BB->addSuccessor(sinkMBB); 8624 8625 if (MI->getOpcode() == PPC::SELECT_I4 || 8626 MI->getOpcode() == PPC::SELECT_I8 || 8627 MI->getOpcode() == PPC::SELECT_F4 || 8628 MI->getOpcode() == PPC::SELECT_F8 || 8629 MI->getOpcode() == PPC::SELECT_QFRC || 8630 MI->getOpcode() == PPC::SELECT_QSRC || 8631 MI->getOpcode() == PPC::SELECT_QBRC || 8632 MI->getOpcode() == PPC::SELECT_VRRC || 8633 MI->getOpcode() == PPC::SELECT_VSFRC || 8634 MI->getOpcode() == PPC::SELECT_VSSRC || 8635 MI->getOpcode() == PPC::SELECT_VSRC) { 8636 BuildMI(BB, dl, TII->get(PPC::BC)) 8637 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8638 } else { 8639 unsigned SelectPred = MI->getOperand(4).getImm(); 8640 BuildMI(BB, dl, TII->get(PPC::BCC)) 8641 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8642 } 8643 8644 // copy0MBB: 8645 // %FalseValue = ... 8646 // # fallthrough to sinkMBB 8647 BB = copy0MBB; 8648 8649 // Update machine-CFG edges 8650 BB->addSuccessor(sinkMBB); 8651 8652 // sinkMBB: 8653 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8654 // ... 8655 BB = sinkMBB; 8656 BuildMI(*BB, BB->begin(), dl, 8657 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8658 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8659 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8660 } else if (MI->getOpcode() == PPC::ReadTB) { 8661 // To read the 64-bit time-base register on a 32-bit target, we read the 8662 // two halves. Should the counter have wrapped while it was being read, we 8663 // need to try again. 8664 // ... 8665 // readLoop: 8666 // mfspr Rx,TBU # load from TBU 8667 // mfspr Ry,TB # load from TB 8668 // mfspr Rz,TBU # load from TBU 8669 // cmpw crX,Rx,Rz # check if ‘old’=’new’ 8670 // bne readLoop # branch if they're not equal 8671 // ... 8672 8673 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8674 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8675 DebugLoc dl = MI->getDebugLoc(); 8676 F->insert(It, readMBB); 8677 F->insert(It, sinkMBB); 8678 8679 // Transfer the remainder of BB and its successor edges to sinkMBB. 8680 sinkMBB->splice(sinkMBB->begin(), BB, 8681 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8682 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8683 8684 BB->addSuccessor(readMBB); 8685 BB = readMBB; 8686 8687 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8688 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8689 unsigned LoReg = MI->getOperand(0).getReg(); 8690 unsigned HiReg = MI->getOperand(1).getReg(); 8691 8692 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8693 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8694 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8695 8696 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8697 8698 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8699 .addReg(HiReg).addReg(ReadAgainReg); 8700 BuildMI(BB, dl, TII->get(PPC::BCC)) 8701 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8702 8703 BB->addSuccessor(readMBB); 8704 BB->addSuccessor(sinkMBB); 8705 } 8706 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8707 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8708 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8709 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8710 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8711 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8712 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8713 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8714 8715 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8716 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8717 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8718 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8719 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8720 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8721 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8722 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8723 8724 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8725 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8726 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8727 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8728 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8729 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8730 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8731 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8732 8733 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8734 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8735 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8736 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8737 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8738 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8739 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8740 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8741 8742 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8743 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8744 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8745 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8746 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8747 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8748 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8749 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8750 8751 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8752 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8753 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8754 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8755 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8756 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8757 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8758 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8759 8760 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8761 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8762 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8763 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8764 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8765 BB = EmitAtomicBinary(MI, BB, 4, 0); 8766 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8767 BB = EmitAtomicBinary(MI, BB, 8, 0); 8768 8769 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8770 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8771 (Subtarget.hasPartwordAtomics() && 8772 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8773 (Subtarget.hasPartwordAtomics() && 8774 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8775 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8776 8777 auto LoadMnemonic = PPC::LDARX; 8778 auto StoreMnemonic = PPC::STDCX; 8779 switch(MI->getOpcode()) { 8780 default: 8781 llvm_unreachable("Compare and swap of unknown size"); 8782 case PPC::ATOMIC_CMP_SWAP_I8: 8783 LoadMnemonic = PPC::LBARX; 8784 StoreMnemonic = PPC::STBCX; 8785 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8786 break; 8787 case PPC::ATOMIC_CMP_SWAP_I16: 8788 LoadMnemonic = PPC::LHARX; 8789 StoreMnemonic = PPC::STHCX; 8790 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8791 break; 8792 case PPC::ATOMIC_CMP_SWAP_I32: 8793 LoadMnemonic = PPC::LWARX; 8794 StoreMnemonic = PPC::STWCX; 8795 break; 8796 case PPC::ATOMIC_CMP_SWAP_I64: 8797 LoadMnemonic = PPC::LDARX; 8798 StoreMnemonic = PPC::STDCX; 8799 break; 8800 } 8801 unsigned dest = MI->getOperand(0).getReg(); 8802 unsigned ptrA = MI->getOperand(1).getReg(); 8803 unsigned ptrB = MI->getOperand(2).getReg(); 8804 unsigned oldval = MI->getOperand(3).getReg(); 8805 unsigned newval = MI->getOperand(4).getReg(); 8806 DebugLoc dl = MI->getDebugLoc(); 8807 8808 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8809 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8810 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8811 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8812 F->insert(It, loop1MBB); 8813 F->insert(It, loop2MBB); 8814 F->insert(It, midMBB); 8815 F->insert(It, exitMBB); 8816 exitMBB->splice(exitMBB->begin(), BB, 8817 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8818 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8819 8820 // thisMBB: 8821 // ... 8822 // fallthrough --> loopMBB 8823 BB->addSuccessor(loop1MBB); 8824 8825 // loop1MBB: 8826 // l[bhwd]arx dest, ptr 8827 // cmp[wd] dest, oldval 8828 // bne- midMBB 8829 // loop2MBB: 8830 // st[bhwd]cx. newval, ptr 8831 // bne- loopMBB 8832 // b exitBB 8833 // midMBB: 8834 // st[bhwd]cx. dest, ptr 8835 // exitBB: 8836 BB = loop1MBB; 8837 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8838 .addReg(ptrA).addReg(ptrB); 8839 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8840 .addReg(oldval).addReg(dest); 8841 BuildMI(BB, dl, TII->get(PPC::BCC)) 8842 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8843 BB->addSuccessor(loop2MBB); 8844 BB->addSuccessor(midMBB); 8845 8846 BB = loop2MBB; 8847 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8848 .addReg(newval).addReg(ptrA).addReg(ptrB); 8849 BuildMI(BB, dl, TII->get(PPC::BCC)) 8850 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8851 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8852 BB->addSuccessor(loop1MBB); 8853 BB->addSuccessor(exitMBB); 8854 8855 BB = midMBB; 8856 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8857 .addReg(dest).addReg(ptrA).addReg(ptrB); 8858 BB->addSuccessor(exitMBB); 8859 8860 // exitMBB: 8861 // ... 8862 BB = exitMBB; 8863 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8864 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8865 // We must use 64-bit registers for addresses when targeting 64-bit, 8866 // since we're actually doing arithmetic on them. Other registers 8867 // can be 32-bit. 8868 bool is64bit = Subtarget.isPPC64(); 8869 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8870 8871 unsigned dest = MI->getOperand(0).getReg(); 8872 unsigned ptrA = MI->getOperand(1).getReg(); 8873 unsigned ptrB = MI->getOperand(2).getReg(); 8874 unsigned oldval = MI->getOperand(3).getReg(); 8875 unsigned newval = MI->getOperand(4).getReg(); 8876 DebugLoc dl = MI->getDebugLoc(); 8877 8878 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8879 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8880 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8881 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8882 F->insert(It, loop1MBB); 8883 F->insert(It, loop2MBB); 8884 F->insert(It, midMBB); 8885 F->insert(It, exitMBB); 8886 exitMBB->splice(exitMBB->begin(), BB, 8887 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8888 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8889 8890 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8891 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8892 : &PPC::GPRCRegClass; 8893 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8894 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8895 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8896 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8897 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8898 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8899 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8900 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8901 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8902 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8903 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8904 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8905 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8906 unsigned Ptr1Reg; 8907 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8908 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8909 // thisMBB: 8910 // ... 8911 // fallthrough --> loopMBB 8912 BB->addSuccessor(loop1MBB); 8913 8914 // The 4-byte load must be aligned, while a char or short may be 8915 // anywhere in the word. Hence all this nasty bookkeeping code. 8916 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8917 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8918 // xori shift, shift1, 24 [16] 8919 // rlwinm ptr, ptr1, 0, 0, 29 8920 // slw newval2, newval, shift 8921 // slw oldval2, oldval,shift 8922 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8923 // slw mask, mask2, shift 8924 // and newval3, newval2, mask 8925 // and oldval3, oldval2, mask 8926 // loop1MBB: 8927 // lwarx tmpDest, ptr 8928 // and tmp, tmpDest, mask 8929 // cmpw tmp, oldval3 8930 // bne- midMBB 8931 // loop2MBB: 8932 // andc tmp2, tmpDest, mask 8933 // or tmp4, tmp2, newval3 8934 // stwcx. tmp4, ptr 8935 // bne- loop1MBB 8936 // b exitBB 8937 // midMBB: 8938 // stwcx. tmpDest, ptr 8939 // exitBB: 8940 // srw dest, tmpDest, shift 8941 if (ptrA != ZeroReg) { 8942 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8943 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8944 .addReg(ptrA).addReg(ptrB); 8945 } else { 8946 Ptr1Reg = ptrB; 8947 } 8948 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8949 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8950 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8951 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8952 if (is64bit) 8953 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8954 .addReg(Ptr1Reg).addImm(0).addImm(61); 8955 else 8956 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8957 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8958 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 8959 .addReg(newval).addReg(ShiftReg); 8960 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 8961 .addReg(oldval).addReg(ShiftReg); 8962 if (is8bit) 8963 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8964 else { 8965 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8966 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 8967 .addReg(Mask3Reg).addImm(65535); 8968 } 8969 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8970 .addReg(Mask2Reg).addReg(ShiftReg); 8971 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 8972 .addReg(NewVal2Reg).addReg(MaskReg); 8973 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 8974 .addReg(OldVal2Reg).addReg(MaskReg); 8975 8976 BB = loop1MBB; 8977 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8978 .addReg(ZeroReg).addReg(PtrReg); 8979 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 8980 .addReg(TmpDestReg).addReg(MaskReg); 8981 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 8982 .addReg(TmpReg).addReg(OldVal3Reg); 8983 BuildMI(BB, dl, TII->get(PPC::BCC)) 8984 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8985 BB->addSuccessor(loop2MBB); 8986 BB->addSuccessor(midMBB); 8987 8988 BB = loop2MBB; 8989 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 8990 .addReg(TmpDestReg).addReg(MaskReg); 8991 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 8992 .addReg(Tmp2Reg).addReg(NewVal3Reg); 8993 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 8994 .addReg(ZeroReg).addReg(PtrReg); 8995 BuildMI(BB, dl, TII->get(PPC::BCC)) 8996 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8997 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8998 BB->addSuccessor(loop1MBB); 8999 BB->addSuccessor(exitMBB); 9000 9001 BB = midMBB; 9002 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9003 .addReg(ZeroReg).addReg(PtrReg); 9004 BB->addSuccessor(exitMBB); 9005 9006 // exitMBB: 9007 // ... 9008 BB = exitMBB; 9009 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9010 .addReg(ShiftReg); 9011 } else if (MI->getOpcode() == PPC::FADDrtz) { 9012 // This pseudo performs an FADD with rounding mode temporarily forced 9013 // to round-to-zero. We emit this via custom inserter since the FPSCR 9014 // is not modeled at the SelectionDAG level. 9015 unsigned Dest = MI->getOperand(0).getReg(); 9016 unsigned Src1 = MI->getOperand(1).getReg(); 9017 unsigned Src2 = MI->getOperand(2).getReg(); 9018 DebugLoc dl = MI->getDebugLoc(); 9019 9020 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9021 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9022 9023 // Save FPSCR value. 9024 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9025 9026 // Set rounding mode to round-to-zero. 9027 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9028 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9029 9030 // Perform addition. 9031 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9032 9033 // Restore FPSCR value. 9034 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9035 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9036 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9037 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9038 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9039 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9040 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9041 PPC::ANDIo8 : PPC::ANDIo; 9042 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9043 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9044 9045 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9046 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9047 &PPC::GPRCRegClass : 9048 &PPC::G8RCRegClass); 9049 9050 DebugLoc dl = MI->getDebugLoc(); 9051 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9052 .addReg(MI->getOperand(1).getReg()).addImm(1); 9053 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9054 MI->getOperand(0).getReg()) 9055 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9056 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9057 DebugLoc Dl = MI->getDebugLoc(); 9058 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9059 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9060 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9061 return BB; 9062 } else { 9063 llvm_unreachable("Unexpected instr type to insert"); 9064 } 9065 9066 MI->eraseFromParent(); // The pseudo instruction is gone now. 9067 return BB; 9068 } 9069 9070 //===----------------------------------------------------------------------===// 9071 // Target Optimization Hooks 9072 //===----------------------------------------------------------------------===// 9073 9074 static std::string getRecipOp(const char *Base, EVT VT) { 9075 std::string RecipOp(Base); 9076 if (VT.getScalarType() == MVT::f64) 9077 RecipOp += "d"; 9078 else 9079 RecipOp += "f"; 9080 9081 if (VT.isVector()) 9082 RecipOp = "vec-" + RecipOp; 9083 9084 return RecipOp; 9085 } 9086 9087 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9088 DAGCombinerInfo &DCI, 9089 unsigned &RefinementSteps, 9090 bool &UseOneConstNR) const { 9091 EVT VT = Operand.getValueType(); 9092 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9093 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9094 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9095 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9096 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9097 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9098 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9099 std::string RecipOp = getRecipOp("sqrt", VT); 9100 if (!Recips.isEnabled(RecipOp)) 9101 return SDValue(); 9102 9103 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9104 UseOneConstNR = true; 9105 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9106 } 9107 return SDValue(); 9108 } 9109 9110 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9111 DAGCombinerInfo &DCI, 9112 unsigned &RefinementSteps) const { 9113 EVT VT = Operand.getValueType(); 9114 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9115 (VT == MVT::f64 && Subtarget.hasFRE()) || 9116 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9117 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9118 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9119 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9120 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9121 std::string RecipOp = getRecipOp("div", VT); 9122 if (!Recips.isEnabled(RecipOp)) 9123 return SDValue(); 9124 9125 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9126 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9127 } 9128 return SDValue(); 9129 } 9130 9131 bool PPCTargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const { 9132 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9133 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9134 // enabled for division), this functionality is redundant with the default 9135 // combiner logic (once the division -> reciprocal/multiply transformation 9136 // has taken place). As a result, this matters more for older cores than for 9137 // newer ones. 9138 9139 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9140 // reciprocal if there are two or more FDIVs (for embedded cores with only 9141 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9142 switch (Subtarget.getDarwinDirective()) { 9143 default: 9144 return NumUsers > 2; 9145 case PPC::DIR_440: 9146 case PPC::DIR_A2: 9147 case PPC::DIR_E500mc: 9148 case PPC::DIR_E5500: 9149 return NumUsers > 1; 9150 } 9151 } 9152 9153 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9154 unsigned Bytes, int Dist, 9155 SelectionDAG &DAG) { 9156 if (VT.getSizeInBits() / 8 != Bytes) 9157 return false; 9158 9159 SDValue BaseLoc = Base->getBasePtr(); 9160 if (Loc.getOpcode() == ISD::FrameIndex) { 9161 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9162 return false; 9163 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9164 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9165 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9166 int FS = MFI->getObjectSize(FI); 9167 int BFS = MFI->getObjectSize(BFI); 9168 if (FS != BFS || FS != (int)Bytes) return false; 9169 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9170 } 9171 9172 // Handle X+C 9173 if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc && 9174 cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes) 9175 return true; 9176 9177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9178 const GlobalValue *GV1 = nullptr; 9179 const GlobalValue *GV2 = nullptr; 9180 int64_t Offset1 = 0; 9181 int64_t Offset2 = 0; 9182 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9183 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9184 if (isGA1 && isGA2 && GV1 == GV2) 9185 return Offset1 == (Offset2 + Dist*Bytes); 9186 return false; 9187 } 9188 9189 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9190 // not enforce equality of the chain operands. 9191 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9192 unsigned Bytes, int Dist, 9193 SelectionDAG &DAG) { 9194 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9195 EVT VT = LS->getMemoryVT(); 9196 SDValue Loc = LS->getBasePtr(); 9197 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9198 } 9199 9200 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9201 EVT VT; 9202 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9203 default: return false; 9204 case Intrinsic::ppc_qpx_qvlfd: 9205 case Intrinsic::ppc_qpx_qvlfda: 9206 VT = MVT::v4f64; 9207 break; 9208 case Intrinsic::ppc_qpx_qvlfs: 9209 case Intrinsic::ppc_qpx_qvlfsa: 9210 VT = MVT::v4f32; 9211 break; 9212 case Intrinsic::ppc_qpx_qvlfcd: 9213 case Intrinsic::ppc_qpx_qvlfcda: 9214 VT = MVT::v2f64; 9215 break; 9216 case Intrinsic::ppc_qpx_qvlfcs: 9217 case Intrinsic::ppc_qpx_qvlfcsa: 9218 VT = MVT::v2f32; 9219 break; 9220 case Intrinsic::ppc_qpx_qvlfiwa: 9221 case Intrinsic::ppc_qpx_qvlfiwz: 9222 case Intrinsic::ppc_altivec_lvx: 9223 case Intrinsic::ppc_altivec_lvxl: 9224 case Intrinsic::ppc_vsx_lxvw4x: 9225 VT = MVT::v4i32; 9226 break; 9227 case Intrinsic::ppc_vsx_lxvd2x: 9228 VT = MVT::v2f64; 9229 break; 9230 case Intrinsic::ppc_altivec_lvebx: 9231 VT = MVT::i8; 9232 break; 9233 case Intrinsic::ppc_altivec_lvehx: 9234 VT = MVT::i16; 9235 break; 9236 case Intrinsic::ppc_altivec_lvewx: 9237 VT = MVT::i32; 9238 break; 9239 } 9240 9241 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9242 } 9243 9244 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9245 EVT VT; 9246 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9247 default: return false; 9248 case Intrinsic::ppc_qpx_qvstfd: 9249 case Intrinsic::ppc_qpx_qvstfda: 9250 VT = MVT::v4f64; 9251 break; 9252 case Intrinsic::ppc_qpx_qvstfs: 9253 case Intrinsic::ppc_qpx_qvstfsa: 9254 VT = MVT::v4f32; 9255 break; 9256 case Intrinsic::ppc_qpx_qvstfcd: 9257 case Intrinsic::ppc_qpx_qvstfcda: 9258 VT = MVT::v2f64; 9259 break; 9260 case Intrinsic::ppc_qpx_qvstfcs: 9261 case Intrinsic::ppc_qpx_qvstfcsa: 9262 VT = MVT::v2f32; 9263 break; 9264 case Intrinsic::ppc_qpx_qvstfiw: 9265 case Intrinsic::ppc_qpx_qvstfiwa: 9266 case Intrinsic::ppc_altivec_stvx: 9267 case Intrinsic::ppc_altivec_stvxl: 9268 case Intrinsic::ppc_vsx_stxvw4x: 9269 VT = MVT::v4i32; 9270 break; 9271 case Intrinsic::ppc_vsx_stxvd2x: 9272 VT = MVT::v2f64; 9273 break; 9274 case Intrinsic::ppc_altivec_stvebx: 9275 VT = MVT::i8; 9276 break; 9277 case Intrinsic::ppc_altivec_stvehx: 9278 VT = MVT::i16; 9279 break; 9280 case Intrinsic::ppc_altivec_stvewx: 9281 VT = MVT::i32; 9282 break; 9283 } 9284 9285 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9286 } 9287 9288 return false; 9289 } 9290 9291 // Return true is there is a nearyby consecutive load to the one provided 9292 // (regardless of alignment). We search up and down the chain, looking though 9293 // token factors and other loads (but nothing else). As a result, a true result 9294 // indicates that it is safe to create a new consecutive load adjacent to the 9295 // load provided. 9296 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9297 SDValue Chain = LD->getChain(); 9298 EVT VT = LD->getMemoryVT(); 9299 9300 SmallSet<SDNode *, 16> LoadRoots; 9301 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9302 SmallSet<SDNode *, 16> Visited; 9303 9304 // First, search up the chain, branching to follow all token-factor operands. 9305 // If we find a consecutive load, then we're done, otherwise, record all 9306 // nodes just above the top-level loads and token factors. 9307 while (!Queue.empty()) { 9308 SDNode *ChainNext = Queue.pop_back_val(); 9309 if (!Visited.insert(ChainNext).second) 9310 continue; 9311 9312 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9313 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9314 return true; 9315 9316 if (!Visited.count(ChainLD->getChain().getNode())) 9317 Queue.push_back(ChainLD->getChain().getNode()); 9318 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9319 for (const SDUse &O : ChainNext->ops()) 9320 if (!Visited.count(O.getNode())) 9321 Queue.push_back(O.getNode()); 9322 } else 9323 LoadRoots.insert(ChainNext); 9324 } 9325 9326 // Second, search down the chain, starting from the top-level nodes recorded 9327 // in the first phase. These top-level nodes are the nodes just above all 9328 // loads and token factors. Starting with their uses, recursively look though 9329 // all loads (just the chain uses) and token factors to find a consecutive 9330 // load. 9331 Visited.clear(); 9332 Queue.clear(); 9333 9334 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9335 IE = LoadRoots.end(); I != IE; ++I) { 9336 Queue.push_back(*I); 9337 9338 while (!Queue.empty()) { 9339 SDNode *LoadRoot = Queue.pop_back_val(); 9340 if (!Visited.insert(LoadRoot).second) 9341 continue; 9342 9343 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9344 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9345 return true; 9346 9347 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9348 UE = LoadRoot->use_end(); UI != UE; ++UI) 9349 if (((isa<MemSDNode>(*UI) && 9350 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9351 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9352 Queue.push_back(*UI); 9353 } 9354 } 9355 9356 return false; 9357 } 9358 9359 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9360 DAGCombinerInfo &DCI) const { 9361 SelectionDAG &DAG = DCI.DAG; 9362 SDLoc dl(N); 9363 9364 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9365 // If we're tracking CR bits, we need to be careful that we don't have: 9366 // trunc(binary-ops(zext(x), zext(y))) 9367 // or 9368 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9369 // such that we're unnecessarily moving things into GPRs when it would be 9370 // better to keep them in CR bits. 9371 9372 // Note that trunc here can be an actual i1 trunc, or can be the effective 9373 // truncation that comes from a setcc or select_cc. 9374 if (N->getOpcode() == ISD::TRUNCATE && 9375 N->getValueType(0) != MVT::i1) 9376 return SDValue(); 9377 9378 if (N->getOperand(0).getValueType() != MVT::i32 && 9379 N->getOperand(0).getValueType() != MVT::i64) 9380 return SDValue(); 9381 9382 if (N->getOpcode() == ISD::SETCC || 9383 N->getOpcode() == ISD::SELECT_CC) { 9384 // If we're looking at a comparison, then we need to make sure that the 9385 // high bits (all except for the first) don't matter the result. 9386 ISD::CondCode CC = 9387 cast<CondCodeSDNode>(N->getOperand( 9388 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9389 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9390 9391 if (ISD::isSignedIntSetCC(CC)) { 9392 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9393 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9394 return SDValue(); 9395 } else if (ISD::isUnsignedIntSetCC(CC)) { 9396 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9397 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9398 !DAG.MaskedValueIsZero(N->getOperand(1), 9399 APInt::getHighBitsSet(OpBits, OpBits-1))) 9400 return SDValue(); 9401 } else { 9402 // This is neither a signed nor an unsigned comparison, just make sure 9403 // that the high bits are equal. 9404 APInt Op1Zero, Op1One; 9405 APInt Op2Zero, Op2One; 9406 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9407 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9408 9409 // We don't really care about what is known about the first bit (if 9410 // anything), so clear it in all masks prior to comparing them. 9411 Op1Zero.clearBit(0); Op1One.clearBit(0); 9412 Op2Zero.clearBit(0); Op2One.clearBit(0); 9413 9414 if (Op1Zero != Op2Zero || Op1One != Op2One) 9415 return SDValue(); 9416 } 9417 } 9418 9419 // We now know that the higher-order bits are irrelevant, we just need to 9420 // make sure that all of the intermediate operations are bit operations, and 9421 // all inputs are extensions. 9422 if (N->getOperand(0).getOpcode() != ISD::AND && 9423 N->getOperand(0).getOpcode() != ISD::OR && 9424 N->getOperand(0).getOpcode() != ISD::XOR && 9425 N->getOperand(0).getOpcode() != ISD::SELECT && 9426 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9427 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9428 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9429 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9430 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9431 return SDValue(); 9432 9433 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9434 N->getOperand(1).getOpcode() != ISD::AND && 9435 N->getOperand(1).getOpcode() != ISD::OR && 9436 N->getOperand(1).getOpcode() != ISD::XOR && 9437 N->getOperand(1).getOpcode() != ISD::SELECT && 9438 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9439 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9440 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9441 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9442 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9443 return SDValue(); 9444 9445 SmallVector<SDValue, 4> Inputs; 9446 SmallVector<SDValue, 8> BinOps, PromOps; 9447 SmallPtrSet<SDNode *, 16> Visited; 9448 9449 for (unsigned i = 0; i < 2; ++i) { 9450 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9451 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9452 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9453 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9454 isa<ConstantSDNode>(N->getOperand(i))) 9455 Inputs.push_back(N->getOperand(i)); 9456 else 9457 BinOps.push_back(N->getOperand(i)); 9458 9459 if (N->getOpcode() == ISD::TRUNCATE) 9460 break; 9461 } 9462 9463 // Visit all inputs, collect all binary operations (and, or, xor and 9464 // select) that are all fed by extensions. 9465 while (!BinOps.empty()) { 9466 SDValue BinOp = BinOps.back(); 9467 BinOps.pop_back(); 9468 9469 if (!Visited.insert(BinOp.getNode()).second) 9470 continue; 9471 9472 PromOps.push_back(BinOp); 9473 9474 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9475 // The condition of the select is not promoted. 9476 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9477 continue; 9478 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9479 continue; 9480 9481 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9482 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9483 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9484 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9485 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9486 Inputs.push_back(BinOp.getOperand(i)); 9487 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9488 BinOp.getOperand(i).getOpcode() == ISD::OR || 9489 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9490 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9491 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9492 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9493 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9494 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9495 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9496 BinOps.push_back(BinOp.getOperand(i)); 9497 } else { 9498 // We have an input that is not an extension or another binary 9499 // operation; we'll abort this transformation. 9500 return SDValue(); 9501 } 9502 } 9503 } 9504 9505 // Make sure that this is a self-contained cluster of operations (which 9506 // is not quite the same thing as saying that everything has only one 9507 // use). 9508 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9509 if (isa<ConstantSDNode>(Inputs[i])) 9510 continue; 9511 9512 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9513 UE = Inputs[i].getNode()->use_end(); 9514 UI != UE; ++UI) { 9515 SDNode *User = *UI; 9516 if (User != N && !Visited.count(User)) 9517 return SDValue(); 9518 9519 // Make sure that we're not going to promote the non-output-value 9520 // operand(s) or SELECT or SELECT_CC. 9521 // FIXME: Although we could sometimes handle this, and it does occur in 9522 // practice that one of the condition inputs to the select is also one of 9523 // the outputs, we currently can't deal with this. 9524 if (User->getOpcode() == ISD::SELECT) { 9525 if (User->getOperand(0) == Inputs[i]) 9526 return SDValue(); 9527 } else if (User->getOpcode() == ISD::SELECT_CC) { 9528 if (User->getOperand(0) == Inputs[i] || 9529 User->getOperand(1) == Inputs[i]) 9530 return SDValue(); 9531 } 9532 } 9533 } 9534 9535 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9536 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9537 UE = PromOps[i].getNode()->use_end(); 9538 UI != UE; ++UI) { 9539 SDNode *User = *UI; 9540 if (User != N && !Visited.count(User)) 9541 return SDValue(); 9542 9543 // Make sure that we're not going to promote the non-output-value 9544 // operand(s) or SELECT or SELECT_CC. 9545 // FIXME: Although we could sometimes handle this, and it does occur in 9546 // practice that one of the condition inputs to the select is also one of 9547 // the outputs, we currently can't deal with this. 9548 if (User->getOpcode() == ISD::SELECT) { 9549 if (User->getOperand(0) == PromOps[i]) 9550 return SDValue(); 9551 } else if (User->getOpcode() == ISD::SELECT_CC) { 9552 if (User->getOperand(0) == PromOps[i] || 9553 User->getOperand(1) == PromOps[i]) 9554 return SDValue(); 9555 } 9556 } 9557 } 9558 9559 // Replace all inputs with the extension operand. 9560 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9561 // Constants may have users outside the cluster of to-be-promoted nodes, 9562 // and so we need to replace those as we do the promotions. 9563 if (isa<ConstantSDNode>(Inputs[i])) 9564 continue; 9565 else 9566 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9567 } 9568 9569 // Replace all operations (these are all the same, but have a different 9570 // (i1) return type). DAG.getNode will validate that the types of 9571 // a binary operator match, so go through the list in reverse so that 9572 // we've likely promoted both operands first. Any intermediate truncations or 9573 // extensions disappear. 9574 while (!PromOps.empty()) { 9575 SDValue PromOp = PromOps.back(); 9576 PromOps.pop_back(); 9577 9578 if (PromOp.getOpcode() == ISD::TRUNCATE || 9579 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9580 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9581 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9582 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9583 PromOp.getOperand(0).getValueType() != MVT::i1) { 9584 // The operand is not yet ready (see comment below). 9585 PromOps.insert(PromOps.begin(), PromOp); 9586 continue; 9587 } 9588 9589 SDValue RepValue = PromOp.getOperand(0); 9590 if (isa<ConstantSDNode>(RepValue)) 9591 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9592 9593 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9594 continue; 9595 } 9596 9597 unsigned C; 9598 switch (PromOp.getOpcode()) { 9599 default: C = 0; break; 9600 case ISD::SELECT: C = 1; break; 9601 case ISD::SELECT_CC: C = 2; break; 9602 } 9603 9604 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9605 PromOp.getOperand(C).getValueType() != MVT::i1) || 9606 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9607 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9608 // The to-be-promoted operands of this node have not yet been 9609 // promoted (this should be rare because we're going through the 9610 // list backward, but if one of the operands has several users in 9611 // this cluster of to-be-promoted nodes, it is possible). 9612 PromOps.insert(PromOps.begin(), PromOp); 9613 continue; 9614 } 9615 9616 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9617 PromOp.getNode()->op_end()); 9618 9619 // If there are any constant inputs, make sure they're replaced now. 9620 for (unsigned i = 0; i < 2; ++i) 9621 if (isa<ConstantSDNode>(Ops[C+i])) 9622 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9623 9624 DAG.ReplaceAllUsesOfValueWith(PromOp, 9625 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9626 } 9627 9628 // Now we're left with the initial truncation itself. 9629 if (N->getOpcode() == ISD::TRUNCATE) 9630 return N->getOperand(0); 9631 9632 // Otherwise, this is a comparison. The operands to be compared have just 9633 // changed type (to i1), but everything else is the same. 9634 return SDValue(N, 0); 9635 } 9636 9637 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9638 DAGCombinerInfo &DCI) const { 9639 SelectionDAG &DAG = DCI.DAG; 9640 SDLoc dl(N); 9641 9642 // If we're tracking CR bits, we need to be careful that we don't have: 9643 // zext(binary-ops(trunc(x), trunc(y))) 9644 // or 9645 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9646 // such that we're unnecessarily moving things into CR bits that can more 9647 // efficiently stay in GPRs. Note that if we're not certain that the high 9648 // bits are set as required by the final extension, we still may need to do 9649 // some masking to get the proper behavior. 9650 9651 // This same functionality is important on PPC64 when dealing with 9652 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9653 // the return values of functions. Because it is so similar, it is handled 9654 // here as well. 9655 9656 if (N->getValueType(0) != MVT::i32 && 9657 N->getValueType(0) != MVT::i64) 9658 return SDValue(); 9659 9660 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9661 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9662 return SDValue(); 9663 9664 if (N->getOperand(0).getOpcode() != ISD::AND && 9665 N->getOperand(0).getOpcode() != ISD::OR && 9666 N->getOperand(0).getOpcode() != ISD::XOR && 9667 N->getOperand(0).getOpcode() != ISD::SELECT && 9668 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9669 return SDValue(); 9670 9671 SmallVector<SDValue, 4> Inputs; 9672 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9673 SmallPtrSet<SDNode *, 16> Visited; 9674 9675 // Visit all inputs, collect all binary operations (and, or, xor and 9676 // select) that are all fed by truncations. 9677 while (!BinOps.empty()) { 9678 SDValue BinOp = BinOps.back(); 9679 BinOps.pop_back(); 9680 9681 if (!Visited.insert(BinOp.getNode()).second) 9682 continue; 9683 9684 PromOps.push_back(BinOp); 9685 9686 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9687 // The condition of the select is not promoted. 9688 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9689 continue; 9690 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9691 continue; 9692 9693 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9694 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9695 Inputs.push_back(BinOp.getOperand(i)); 9696 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9697 BinOp.getOperand(i).getOpcode() == ISD::OR || 9698 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9699 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9700 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9701 BinOps.push_back(BinOp.getOperand(i)); 9702 } else { 9703 // We have an input that is not a truncation or another binary 9704 // operation; we'll abort this transformation. 9705 return SDValue(); 9706 } 9707 } 9708 } 9709 9710 // The operands of a select that must be truncated when the select is 9711 // promoted because the operand is actually part of the to-be-promoted set. 9712 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9713 9714 // Make sure that this is a self-contained cluster of operations (which 9715 // is not quite the same thing as saying that everything has only one 9716 // use). 9717 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9718 if (isa<ConstantSDNode>(Inputs[i])) 9719 continue; 9720 9721 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9722 UE = Inputs[i].getNode()->use_end(); 9723 UI != UE; ++UI) { 9724 SDNode *User = *UI; 9725 if (User != N && !Visited.count(User)) 9726 return SDValue(); 9727 9728 // If we're going to promote the non-output-value operand(s) or SELECT or 9729 // SELECT_CC, record them for truncation. 9730 if (User->getOpcode() == ISD::SELECT) { 9731 if (User->getOperand(0) == Inputs[i]) 9732 SelectTruncOp[0].insert(std::make_pair(User, 9733 User->getOperand(0).getValueType())); 9734 } else if (User->getOpcode() == ISD::SELECT_CC) { 9735 if (User->getOperand(0) == Inputs[i]) 9736 SelectTruncOp[0].insert(std::make_pair(User, 9737 User->getOperand(0).getValueType())); 9738 if (User->getOperand(1) == Inputs[i]) 9739 SelectTruncOp[1].insert(std::make_pair(User, 9740 User->getOperand(1).getValueType())); 9741 } 9742 } 9743 } 9744 9745 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9746 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9747 UE = PromOps[i].getNode()->use_end(); 9748 UI != UE; ++UI) { 9749 SDNode *User = *UI; 9750 if (User != N && !Visited.count(User)) 9751 return SDValue(); 9752 9753 // If we're going to promote the non-output-value operand(s) or SELECT or 9754 // SELECT_CC, record them for truncation. 9755 if (User->getOpcode() == ISD::SELECT) { 9756 if (User->getOperand(0) == PromOps[i]) 9757 SelectTruncOp[0].insert(std::make_pair(User, 9758 User->getOperand(0).getValueType())); 9759 } else if (User->getOpcode() == ISD::SELECT_CC) { 9760 if (User->getOperand(0) == PromOps[i]) 9761 SelectTruncOp[0].insert(std::make_pair(User, 9762 User->getOperand(0).getValueType())); 9763 if (User->getOperand(1) == PromOps[i]) 9764 SelectTruncOp[1].insert(std::make_pair(User, 9765 User->getOperand(1).getValueType())); 9766 } 9767 } 9768 } 9769 9770 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9771 bool ReallyNeedsExt = false; 9772 if (N->getOpcode() != ISD::ANY_EXTEND) { 9773 // If all of the inputs are not already sign/zero extended, then 9774 // we'll still need to do that at the end. 9775 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9776 if (isa<ConstantSDNode>(Inputs[i])) 9777 continue; 9778 9779 unsigned OpBits = 9780 Inputs[i].getOperand(0).getValueSizeInBits(); 9781 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9782 9783 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9784 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9785 APInt::getHighBitsSet(OpBits, 9786 OpBits-PromBits))) || 9787 (N->getOpcode() == ISD::SIGN_EXTEND && 9788 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9789 (OpBits-(PromBits-1)))) { 9790 ReallyNeedsExt = true; 9791 break; 9792 } 9793 } 9794 } 9795 9796 // Replace all inputs, either with the truncation operand, or a 9797 // truncation or extension to the final output type. 9798 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9799 // Constant inputs need to be replaced with the to-be-promoted nodes that 9800 // use them because they might have users outside of the cluster of 9801 // promoted nodes. 9802 if (isa<ConstantSDNode>(Inputs[i])) 9803 continue; 9804 9805 SDValue InSrc = Inputs[i].getOperand(0); 9806 if (Inputs[i].getValueType() == N->getValueType(0)) 9807 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9808 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9809 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9810 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9811 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9812 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9813 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9814 else 9815 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9816 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9817 } 9818 9819 // Replace all operations (these are all the same, but have a different 9820 // (promoted) return type). DAG.getNode will validate that the types of 9821 // a binary operator match, so go through the list in reverse so that 9822 // we've likely promoted both operands first. 9823 while (!PromOps.empty()) { 9824 SDValue PromOp = PromOps.back(); 9825 PromOps.pop_back(); 9826 9827 unsigned C; 9828 switch (PromOp.getOpcode()) { 9829 default: C = 0; break; 9830 case ISD::SELECT: C = 1; break; 9831 case ISD::SELECT_CC: C = 2; break; 9832 } 9833 9834 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9835 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9836 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9837 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9838 // The to-be-promoted operands of this node have not yet been 9839 // promoted (this should be rare because we're going through the 9840 // list backward, but if one of the operands has several users in 9841 // this cluster of to-be-promoted nodes, it is possible). 9842 PromOps.insert(PromOps.begin(), PromOp); 9843 continue; 9844 } 9845 9846 // For SELECT and SELECT_CC nodes, we do a similar check for any 9847 // to-be-promoted comparison inputs. 9848 if (PromOp.getOpcode() == ISD::SELECT || 9849 PromOp.getOpcode() == ISD::SELECT_CC) { 9850 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9851 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9852 (SelectTruncOp[1].count(PromOp.getNode()) && 9853 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9854 PromOps.insert(PromOps.begin(), PromOp); 9855 continue; 9856 } 9857 } 9858 9859 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9860 PromOp.getNode()->op_end()); 9861 9862 // If this node has constant inputs, then they'll need to be promoted here. 9863 for (unsigned i = 0; i < 2; ++i) { 9864 if (!isa<ConstantSDNode>(Ops[C+i])) 9865 continue; 9866 if (Ops[C+i].getValueType() == N->getValueType(0)) 9867 continue; 9868 9869 if (N->getOpcode() == ISD::SIGN_EXTEND) 9870 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9871 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9872 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9873 else 9874 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9875 } 9876 9877 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9878 // truncate them again to the original value type. 9879 if (PromOp.getOpcode() == ISD::SELECT || 9880 PromOp.getOpcode() == ISD::SELECT_CC) { 9881 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9882 if (SI0 != SelectTruncOp[0].end()) 9883 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9884 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9885 if (SI1 != SelectTruncOp[1].end()) 9886 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9887 } 9888 9889 DAG.ReplaceAllUsesOfValueWith(PromOp, 9890 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9891 } 9892 9893 // Now we're left with the initial extension itself. 9894 if (!ReallyNeedsExt) 9895 return N->getOperand(0); 9896 9897 // To zero extend, just mask off everything except for the first bit (in the 9898 // i1 case). 9899 if (N->getOpcode() == ISD::ZERO_EXTEND) 9900 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9901 DAG.getConstant(APInt::getLowBitsSet( 9902 N->getValueSizeInBits(0), PromBits), 9903 dl, N->getValueType(0))); 9904 9905 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9906 "Invalid extension type"); 9907 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 9908 SDValue ShiftCst = 9909 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9910 return DAG.getNode(ISD::SRA, dl, N->getValueType(0), 9911 DAG.getNode(ISD::SHL, dl, N->getValueType(0), 9912 N->getOperand(0), ShiftCst), ShiftCst); 9913 } 9914 9915 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9916 DAGCombinerInfo &DCI) const { 9917 assert((N->getOpcode() == ISD::SINT_TO_FP || 9918 N->getOpcode() == ISD::UINT_TO_FP) && 9919 "Need an int -> FP conversion node here"); 9920 9921 if (!Subtarget.has64BitSupport()) 9922 return SDValue(); 9923 9924 SelectionDAG &DAG = DCI.DAG; 9925 SDLoc dl(N); 9926 SDValue Op(N, 0); 9927 9928 // Don't handle ppc_fp128 here or i1 conversions. 9929 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 9930 return SDValue(); 9931 if (Op.getOperand(0).getValueType() == MVT::i1) 9932 return SDValue(); 9933 9934 // For i32 intermediate values, unfortunately, the conversion functions 9935 // leave the upper 32 bits of the value are undefined. Within the set of 9936 // scalar instructions, we have no method for zero- or sign-extending the 9937 // value. Thus, we cannot handle i32 intermediate values here. 9938 if (Op.getOperand(0).getValueType() == MVT::i32) 9939 return SDValue(); 9940 9941 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 9942 "UINT_TO_FP is supported only with FPCVT"); 9943 9944 // If we have FCFIDS, then use it when converting to single-precision. 9945 // Otherwise, convert to double-precision and then round. 9946 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 9947 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 9948 : PPCISD::FCFIDS) 9949 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 9950 : PPCISD::FCFID); 9951 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 9952 ? MVT::f32 9953 : MVT::f64; 9954 9955 // If we're converting from a float, to an int, and back to a float again, 9956 // then we don't need the store/load pair at all. 9957 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 9958 Subtarget.hasFPCVT()) || 9959 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 9960 SDValue Src = Op.getOperand(0).getOperand(0); 9961 if (Src.getValueType() == MVT::f32) { 9962 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 9963 DCI.AddToWorklist(Src.getNode()); 9964 } 9965 9966 unsigned FCTOp = 9967 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 9968 PPCISD::FCTIDUZ; 9969 9970 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 9971 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 9972 9973 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 9974 FP = DAG.getNode(ISD::FP_ROUND, dl, 9975 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 9976 DCI.AddToWorklist(FP.getNode()); 9977 } 9978 9979 return FP; 9980 } 9981 9982 return SDValue(); 9983 } 9984 9985 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 9986 // builtins) into loads with swaps. 9987 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 9988 DAGCombinerInfo &DCI) const { 9989 SelectionDAG &DAG = DCI.DAG; 9990 SDLoc dl(N); 9991 SDValue Chain; 9992 SDValue Base; 9993 MachineMemOperand *MMO; 9994 9995 switch (N->getOpcode()) { 9996 default: 9997 llvm_unreachable("Unexpected opcode for little endian VSX load"); 9998 case ISD::LOAD: { 9999 LoadSDNode *LD = cast<LoadSDNode>(N); 10000 Chain = LD->getChain(); 10001 Base = LD->getBasePtr(); 10002 MMO = LD->getMemOperand(); 10003 // If the MMO suggests this isn't a load of a full vector, leave 10004 // things alone. For a built-in, we have to make the change for 10005 // correctness, so if there is a size problem that will be a bug. 10006 if (MMO->getSize() < 16) 10007 return SDValue(); 10008 break; 10009 } 10010 case ISD::INTRINSIC_W_CHAIN: { 10011 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10012 Chain = Intrin->getChain(); 10013 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10014 // us what we want. Get operand 2 instead. 10015 Base = Intrin->getOperand(2); 10016 MMO = Intrin->getMemOperand(); 10017 break; 10018 } 10019 } 10020 10021 MVT VecTy = N->getValueType(0).getSimpleVT(); 10022 SDValue LoadOps[] = { Chain, Base }; 10023 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10024 DAG.getVTList(VecTy, MVT::Other), 10025 LoadOps, VecTy, MMO); 10026 DCI.AddToWorklist(Load.getNode()); 10027 Chain = Load.getValue(1); 10028 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10029 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 10030 DCI.AddToWorklist(Swap.getNode()); 10031 return Swap; 10032 } 10033 10034 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10035 // builtins) into stores with swaps. 10036 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10037 DAGCombinerInfo &DCI) const { 10038 SelectionDAG &DAG = DCI.DAG; 10039 SDLoc dl(N); 10040 SDValue Chain; 10041 SDValue Base; 10042 unsigned SrcOpnd; 10043 MachineMemOperand *MMO; 10044 10045 switch (N->getOpcode()) { 10046 default: 10047 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10048 case ISD::STORE: { 10049 StoreSDNode *ST = cast<StoreSDNode>(N); 10050 Chain = ST->getChain(); 10051 Base = ST->getBasePtr(); 10052 MMO = ST->getMemOperand(); 10053 SrcOpnd = 1; 10054 // If the MMO suggests this isn't a store of a full vector, leave 10055 // things alone. For a built-in, we have to make the change for 10056 // correctness, so if there is a size problem that will be a bug. 10057 if (MMO->getSize() < 16) 10058 return SDValue(); 10059 break; 10060 } 10061 case ISD::INTRINSIC_VOID: { 10062 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10063 Chain = Intrin->getChain(); 10064 // Intrin->getBasePtr() oddly does not get what we want. 10065 Base = Intrin->getOperand(3); 10066 MMO = Intrin->getMemOperand(); 10067 SrcOpnd = 2; 10068 break; 10069 } 10070 } 10071 10072 SDValue Src = N->getOperand(SrcOpnd); 10073 MVT VecTy = Src.getValueType().getSimpleVT(); 10074 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10075 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10076 DCI.AddToWorklist(Swap.getNode()); 10077 Chain = Swap.getValue(1); 10078 SDValue StoreOps[] = { Chain, Swap, Base }; 10079 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10080 DAG.getVTList(MVT::Other), 10081 StoreOps, VecTy, MMO); 10082 DCI.AddToWorklist(Store.getNode()); 10083 return Store; 10084 } 10085 10086 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10087 DAGCombinerInfo &DCI) const { 10088 SelectionDAG &DAG = DCI.DAG; 10089 SDLoc dl(N); 10090 switch (N->getOpcode()) { 10091 default: break; 10092 case PPCISD::SHL: 10093 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10094 if (C->isNullValue()) // 0 << V -> 0. 10095 return N->getOperand(0); 10096 } 10097 break; 10098 case PPCISD::SRL: 10099 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10100 if (C->isNullValue()) // 0 >>u V -> 0. 10101 return N->getOperand(0); 10102 } 10103 break; 10104 case PPCISD::SRA: 10105 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10106 if (C->isNullValue() || // 0 >>s V -> 0. 10107 C->isAllOnesValue()) // -1 >>s V -> -1. 10108 return N->getOperand(0); 10109 } 10110 break; 10111 case ISD::SIGN_EXTEND: 10112 case ISD::ZERO_EXTEND: 10113 case ISD::ANY_EXTEND: 10114 return DAGCombineExtBoolTrunc(N, DCI); 10115 case ISD::TRUNCATE: 10116 case ISD::SETCC: 10117 case ISD::SELECT_CC: 10118 return DAGCombineTruncBoolExt(N, DCI); 10119 case ISD::SINT_TO_FP: 10120 case ISD::UINT_TO_FP: 10121 return combineFPToIntToFP(N, DCI); 10122 case ISD::STORE: { 10123 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10124 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10125 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10126 N->getOperand(1).getValueType() == MVT::i32 && 10127 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10128 SDValue Val = N->getOperand(1).getOperand(0); 10129 if (Val.getValueType() == MVT::f32) { 10130 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10131 DCI.AddToWorklist(Val.getNode()); 10132 } 10133 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10134 DCI.AddToWorklist(Val.getNode()); 10135 10136 SDValue Ops[] = { 10137 N->getOperand(0), Val, N->getOperand(2), 10138 DAG.getValueType(N->getOperand(1).getValueType()) 10139 }; 10140 10141 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10142 DAG.getVTList(MVT::Other), Ops, 10143 cast<StoreSDNode>(N)->getMemoryVT(), 10144 cast<StoreSDNode>(N)->getMemOperand()); 10145 DCI.AddToWorklist(Val.getNode()); 10146 return Val; 10147 } 10148 10149 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10150 if (cast<StoreSDNode>(N)->isUnindexed() && 10151 N->getOperand(1).getOpcode() == ISD::BSWAP && 10152 N->getOperand(1).getNode()->hasOneUse() && 10153 (N->getOperand(1).getValueType() == MVT::i32 || 10154 N->getOperand(1).getValueType() == MVT::i16 || 10155 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10156 N->getOperand(1).getValueType() == MVT::i64))) { 10157 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10158 // Do an any-extend to 32-bits if this is a half-word input. 10159 if (BSwapOp.getValueType() == MVT::i16) 10160 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10161 10162 SDValue Ops[] = { 10163 N->getOperand(0), BSwapOp, N->getOperand(2), 10164 DAG.getValueType(N->getOperand(1).getValueType()) 10165 }; 10166 return 10167 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10168 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10169 cast<StoreSDNode>(N)->getMemOperand()); 10170 } 10171 10172 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10173 EVT VT = N->getOperand(1).getValueType(); 10174 if (VT.isSimple()) { 10175 MVT StoreVT = VT.getSimpleVT(); 10176 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10177 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10178 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10179 return expandVSXStoreForLE(N, DCI); 10180 } 10181 break; 10182 } 10183 case ISD::LOAD: { 10184 LoadSDNode *LD = cast<LoadSDNode>(N); 10185 EVT VT = LD->getValueType(0); 10186 10187 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10188 if (VT.isSimple()) { 10189 MVT LoadVT = VT.getSimpleVT(); 10190 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10191 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10192 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10193 return expandVSXLoadForLE(N, DCI); 10194 } 10195 10196 EVT MemVT = LD->getMemoryVT(); 10197 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10198 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10199 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10200 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10201 if (LD->isUnindexed() && VT.isVector() && 10202 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10203 // P8 and later hardware should just use LOAD. 10204 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10205 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10206 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10207 LD->getAlignment() >= ScalarABIAlignment)) && 10208 LD->getAlignment() < ABIAlignment) { 10209 // This is a type-legal unaligned Altivec or QPX load. 10210 SDValue Chain = LD->getChain(); 10211 SDValue Ptr = LD->getBasePtr(); 10212 bool isLittleEndian = Subtarget.isLittleEndian(); 10213 10214 // This implements the loading of unaligned vectors as described in 10215 // the venerable Apple Velocity Engine overview. Specifically: 10216 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10217 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10218 // 10219 // The general idea is to expand a sequence of one or more unaligned 10220 // loads into an alignment-based permutation-control instruction (lvsl 10221 // or lvsr), a series of regular vector loads (which always truncate 10222 // their input address to an aligned address), and a series of 10223 // permutations. The results of these permutations are the requested 10224 // loaded values. The trick is that the last "extra" load is not taken 10225 // from the address you might suspect (sizeof(vector) bytes after the 10226 // last requested load), but rather sizeof(vector) - 1 bytes after the 10227 // last requested vector. The point of this is to avoid a page fault if 10228 // the base address happened to be aligned. This works because if the 10229 // base address is aligned, then adding less than a full vector length 10230 // will cause the last vector in the sequence to be (re)loaded. 10231 // Otherwise, the next vector will be fetched as you might suspect was 10232 // necessary. 10233 10234 // We might be able to reuse the permutation generation from 10235 // a different base address offset from this one by an aligned amount. 10236 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10237 // optimization later. 10238 Intrinsic::ID Intr, IntrLD, IntrPerm; 10239 MVT PermCntlTy, PermTy, LDTy; 10240 if (Subtarget.hasAltivec()) { 10241 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10242 Intrinsic::ppc_altivec_lvsl; 10243 IntrLD = Intrinsic::ppc_altivec_lvx; 10244 IntrPerm = Intrinsic::ppc_altivec_vperm; 10245 PermCntlTy = MVT::v16i8; 10246 PermTy = MVT::v4i32; 10247 LDTy = MVT::v4i32; 10248 } else { 10249 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10250 Intrinsic::ppc_qpx_qvlpcls; 10251 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10252 Intrinsic::ppc_qpx_qvlfs; 10253 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10254 PermCntlTy = MVT::v4f64; 10255 PermTy = MVT::v4f64; 10256 LDTy = MemVT.getSimpleVT(); 10257 } 10258 10259 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10260 10261 // Create the new MMO for the new base load. It is like the original MMO, 10262 // but represents an area in memory almost twice the vector size centered 10263 // on the original address. If the address is unaligned, we might start 10264 // reading up to (sizeof(vector)-1) bytes below the address of the 10265 // original unaligned load. 10266 MachineFunction &MF = DAG.getMachineFunction(); 10267 MachineMemOperand *BaseMMO = 10268 MF.getMachineMemOperand(LD->getMemOperand(), -MemVT.getStoreSize()+1, 10269 2*MemVT.getStoreSize()-1); 10270 10271 // Create the new base load. 10272 SDValue LDXIntID = 10273 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10274 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10275 SDValue BaseLoad = 10276 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10277 DAG.getVTList(PermTy, MVT::Other), 10278 BaseLoadOps, LDTy, BaseMMO); 10279 10280 // Note that the value of IncOffset (which is provided to the next 10281 // load's pointer info offset value, and thus used to calculate the 10282 // alignment), and the value of IncValue (which is actually used to 10283 // increment the pointer value) are different! This is because we 10284 // require the next load to appear to be aligned, even though it 10285 // is actually offset from the base pointer by a lesser amount. 10286 int IncOffset = VT.getSizeInBits() / 8; 10287 int IncValue = IncOffset; 10288 10289 // Walk (both up and down) the chain looking for another load at the real 10290 // (aligned) offset (the alignment of the other load does not matter in 10291 // this case). If found, then do not use the offset reduction trick, as 10292 // that will prevent the loads from being later combined (as they would 10293 // otherwise be duplicates). 10294 if (!findConsecutiveLoad(LD, DAG)) 10295 --IncValue; 10296 10297 SDValue Increment = 10298 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10299 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10300 10301 MachineMemOperand *ExtraMMO = 10302 MF.getMachineMemOperand(LD->getMemOperand(), 10303 1, 2*MemVT.getStoreSize()-1); 10304 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10305 SDValue ExtraLoad = 10306 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10307 DAG.getVTList(PermTy, MVT::Other), 10308 ExtraLoadOps, LDTy, ExtraMMO); 10309 10310 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10311 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10312 10313 // Because vperm has a big-endian bias, we must reverse the order 10314 // of the input vectors and complement the permute control vector 10315 // when generating little endian code. We have already handled the 10316 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10317 // and ExtraLoad here. 10318 SDValue Perm; 10319 if (isLittleEndian) 10320 Perm = BuildIntrinsicOp(IntrPerm, 10321 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10322 else 10323 Perm = BuildIntrinsicOp(IntrPerm, 10324 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10325 10326 if (VT != PermTy) 10327 Perm = Subtarget.hasAltivec() ? 10328 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10329 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10330 DAG.getTargetConstant(1, dl, MVT::i64)); 10331 // second argument is 1 because this rounding 10332 // is always exact. 10333 10334 // The output of the permutation is our loaded result, the TokenFactor is 10335 // our new chain. 10336 DCI.CombineTo(N, Perm, TF); 10337 return SDValue(N, 0); 10338 } 10339 } 10340 break; 10341 case ISD::INTRINSIC_WO_CHAIN: { 10342 bool isLittleEndian = Subtarget.isLittleEndian(); 10343 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10344 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10345 : Intrinsic::ppc_altivec_lvsl); 10346 if ((IID == Intr || 10347 IID == Intrinsic::ppc_qpx_qvlpcld || 10348 IID == Intrinsic::ppc_qpx_qvlpcls) && 10349 N->getOperand(1)->getOpcode() == ISD::ADD) { 10350 SDValue Add = N->getOperand(1); 10351 10352 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10353 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10354 10355 if (DAG.MaskedValueIsZero( 10356 Add->getOperand(1), 10357 APInt::getAllOnesValue(Bits /* alignment */) 10358 .zext( 10359 Add.getValueType().getScalarType().getSizeInBits()))) { 10360 SDNode *BasePtr = Add->getOperand(0).getNode(); 10361 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10362 UE = BasePtr->use_end(); 10363 UI != UE; ++UI) { 10364 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10365 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10366 // We've found another LVSL/LVSR, and this address is an aligned 10367 // multiple of that one. The results will be the same, so use the 10368 // one we've just found instead. 10369 10370 return SDValue(*UI, 0); 10371 } 10372 } 10373 } 10374 10375 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10376 SDNode *BasePtr = Add->getOperand(0).getNode(); 10377 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10378 UE = BasePtr->use_end(); UI != UE; ++UI) { 10379 if (UI->getOpcode() == ISD::ADD && 10380 isa<ConstantSDNode>(UI->getOperand(1)) && 10381 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10382 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10383 (1ULL << Bits) == 0) { 10384 SDNode *OtherAdd = *UI; 10385 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10386 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10387 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10388 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10389 return SDValue(*VI, 0); 10390 } 10391 } 10392 } 10393 } 10394 } 10395 } 10396 } 10397 10398 break; 10399 case ISD::INTRINSIC_W_CHAIN: { 10400 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10401 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10402 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10403 default: 10404 break; 10405 case Intrinsic::ppc_vsx_lxvw4x: 10406 case Intrinsic::ppc_vsx_lxvd2x: 10407 return expandVSXLoadForLE(N, DCI); 10408 } 10409 } 10410 break; 10411 } 10412 case ISD::INTRINSIC_VOID: { 10413 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10414 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10415 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10416 default: 10417 break; 10418 case Intrinsic::ppc_vsx_stxvw4x: 10419 case Intrinsic::ppc_vsx_stxvd2x: 10420 return expandVSXStoreForLE(N, DCI); 10421 } 10422 } 10423 break; 10424 } 10425 case ISD::BSWAP: 10426 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10427 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10428 N->getOperand(0).hasOneUse() && 10429 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10430 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10431 N->getValueType(0) == MVT::i64))) { 10432 SDValue Load = N->getOperand(0); 10433 LoadSDNode *LD = cast<LoadSDNode>(Load); 10434 // Create the byte-swapping load. 10435 SDValue Ops[] = { 10436 LD->getChain(), // Chain 10437 LD->getBasePtr(), // Ptr 10438 DAG.getValueType(N->getValueType(0)) // VT 10439 }; 10440 SDValue BSLoad = 10441 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10442 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10443 MVT::i64 : MVT::i32, MVT::Other), 10444 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10445 10446 // If this is an i16 load, insert the truncate. 10447 SDValue ResVal = BSLoad; 10448 if (N->getValueType(0) == MVT::i16) 10449 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10450 10451 // First, combine the bswap away. This makes the value produced by the 10452 // load dead. 10453 DCI.CombineTo(N, ResVal); 10454 10455 // Next, combine the load away, we give it a bogus result value but a real 10456 // chain result. The result value is dead because the bswap is dead. 10457 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10458 10459 // Return N so it doesn't get rechecked! 10460 return SDValue(N, 0); 10461 } 10462 10463 break; 10464 case PPCISD::VCMP: { 10465 // If a VCMPo node already exists with exactly the same operands as this 10466 // node, use its result instead of this node (VCMPo computes both a CR6 and 10467 // a normal output). 10468 // 10469 if (!N->getOperand(0).hasOneUse() && 10470 !N->getOperand(1).hasOneUse() && 10471 !N->getOperand(2).hasOneUse()) { 10472 10473 // Scan all of the users of the LHS, looking for VCMPo's that match. 10474 SDNode *VCMPoNode = nullptr; 10475 10476 SDNode *LHSN = N->getOperand(0).getNode(); 10477 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10478 UI != E; ++UI) 10479 if (UI->getOpcode() == PPCISD::VCMPo && 10480 UI->getOperand(1) == N->getOperand(1) && 10481 UI->getOperand(2) == N->getOperand(2) && 10482 UI->getOperand(0) == N->getOperand(0)) { 10483 VCMPoNode = *UI; 10484 break; 10485 } 10486 10487 // If there is no VCMPo node, or if the flag value has a single use, don't 10488 // transform this. 10489 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10490 break; 10491 10492 // Look at the (necessarily single) use of the flag value. If it has a 10493 // chain, this transformation is more complex. Note that multiple things 10494 // could use the value result, which we should ignore. 10495 SDNode *FlagUser = nullptr; 10496 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10497 FlagUser == nullptr; ++UI) { 10498 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10499 SDNode *User = *UI; 10500 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10501 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10502 FlagUser = User; 10503 break; 10504 } 10505 } 10506 } 10507 10508 // If the user is a MFOCRF instruction, we know this is safe. 10509 // Otherwise we give up for right now. 10510 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10511 return SDValue(VCMPoNode, 0); 10512 } 10513 break; 10514 } 10515 case ISD::BRCOND: { 10516 SDValue Cond = N->getOperand(1); 10517 SDValue Target = N->getOperand(2); 10518 10519 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10520 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10521 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10522 10523 // We now need to make the intrinsic dead (it cannot be instruction 10524 // selected). 10525 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10526 assert(Cond.getNode()->hasOneUse() && 10527 "Counter decrement has more than one use"); 10528 10529 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10530 N->getOperand(0), Target); 10531 } 10532 } 10533 break; 10534 case ISD::BR_CC: { 10535 // If this is a branch on an altivec predicate comparison, lower this so 10536 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10537 // lowering is done pre-legalize, because the legalizer lowers the predicate 10538 // compare down to code that is difficult to reassemble. 10539 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10540 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10541 10542 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10543 // value. If so, pass-through the AND to get to the intrinsic. 10544 if (LHS.getOpcode() == ISD::AND && 10545 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10546 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10547 Intrinsic::ppc_is_decremented_ctr_nonzero && 10548 isa<ConstantSDNode>(LHS.getOperand(1)) && 10549 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> 10550 isZero()) 10551 LHS = LHS.getOperand(0); 10552 10553 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10554 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10555 Intrinsic::ppc_is_decremented_ctr_nonzero && 10556 isa<ConstantSDNode>(RHS)) { 10557 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10558 "Counter decrement comparison is not EQ or NE"); 10559 10560 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10561 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10562 (CC == ISD::SETNE && !Val); 10563 10564 // We now need to make the intrinsic dead (it cannot be instruction 10565 // selected). 10566 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10567 assert(LHS.getNode()->hasOneUse() && 10568 "Counter decrement has more than one use"); 10569 10570 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10571 N->getOperand(0), N->getOperand(4)); 10572 } 10573 10574 int CompareOpc; 10575 bool isDot; 10576 10577 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10578 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10579 getAltivecCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10580 assert(isDot && "Can't compare against a vector result!"); 10581 10582 // If this is a comparison against something other than 0/1, then we know 10583 // that the condition is never/always true. 10584 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10585 if (Val != 0 && Val != 1) { 10586 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10587 return N->getOperand(0); 10588 // Always !=, turn it into an unconditional branch. 10589 return DAG.getNode(ISD::BR, dl, MVT::Other, 10590 N->getOperand(0), N->getOperand(4)); 10591 } 10592 10593 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10594 10595 // Create the PPCISD altivec 'dot' comparison node. 10596 SDValue Ops[] = { 10597 LHS.getOperand(2), // LHS of compare 10598 LHS.getOperand(3), // RHS of compare 10599 DAG.getConstant(CompareOpc, dl, MVT::i32) 10600 }; 10601 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10602 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10603 10604 // Unpack the result based on how the target uses it. 10605 PPC::Predicate CompOpc; 10606 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10607 default: // Can't happen, don't crash on invalid number though. 10608 case 0: // Branch on the value of the EQ bit of CR6. 10609 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10610 break; 10611 case 1: // Branch on the inverted value of the EQ bit of CR6. 10612 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10613 break; 10614 case 2: // Branch on the value of the LT bit of CR6. 10615 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10616 break; 10617 case 3: // Branch on the inverted value of the LT bit of CR6. 10618 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10619 break; 10620 } 10621 10622 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10623 DAG.getConstant(CompOpc, dl, MVT::i32), 10624 DAG.getRegister(PPC::CR6, MVT::i32), 10625 N->getOperand(4), CompNode.getValue(1)); 10626 } 10627 break; 10628 } 10629 } 10630 10631 return SDValue(); 10632 } 10633 10634 SDValue 10635 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10636 SelectionDAG &DAG, 10637 std::vector<SDNode *> *Created) const { 10638 // fold (sdiv X, pow2) 10639 EVT VT = N->getValueType(0); 10640 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10641 return SDValue(); 10642 if ((VT != MVT::i32 && VT != MVT::i64) || 10643 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10644 return SDValue(); 10645 10646 SDLoc DL(N); 10647 SDValue N0 = N->getOperand(0); 10648 10649 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10650 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10651 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10652 10653 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10654 if (Created) 10655 Created->push_back(Op.getNode()); 10656 10657 if (IsNegPow2) { 10658 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10659 if (Created) 10660 Created->push_back(Op.getNode()); 10661 } 10662 10663 return Op; 10664 } 10665 10666 //===----------------------------------------------------------------------===// 10667 // Inline Assembly Support 10668 //===----------------------------------------------------------------------===// 10669 10670 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10671 APInt &KnownZero, 10672 APInt &KnownOne, 10673 const SelectionDAG &DAG, 10674 unsigned Depth) const { 10675 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10676 switch (Op.getOpcode()) { 10677 default: break; 10678 case PPCISD::LBRX: { 10679 // lhbrx is known to have the top bits cleared out. 10680 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10681 KnownZero = 0xFFFF0000; 10682 break; 10683 } 10684 case ISD::INTRINSIC_WO_CHAIN: { 10685 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10686 default: break; 10687 case Intrinsic::ppc_altivec_vcmpbfp_p: 10688 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10689 case Intrinsic::ppc_altivec_vcmpequb_p: 10690 case Intrinsic::ppc_altivec_vcmpequh_p: 10691 case Intrinsic::ppc_altivec_vcmpequw_p: 10692 case Intrinsic::ppc_altivec_vcmpequd_p: 10693 case Intrinsic::ppc_altivec_vcmpgefp_p: 10694 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10695 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10696 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10697 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10698 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10699 case Intrinsic::ppc_altivec_vcmpgtub_p: 10700 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10701 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10702 case Intrinsic::ppc_altivec_vcmpgtud_p: 10703 KnownZero = ~1U; // All bits but the low one are known to be zero. 10704 break; 10705 } 10706 } 10707 } 10708 } 10709 10710 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10711 switch (Subtarget.getDarwinDirective()) { 10712 default: break; 10713 case PPC::DIR_970: 10714 case PPC::DIR_PWR4: 10715 case PPC::DIR_PWR5: 10716 case PPC::DIR_PWR5X: 10717 case PPC::DIR_PWR6: 10718 case PPC::DIR_PWR6X: 10719 case PPC::DIR_PWR7: 10720 case PPC::DIR_PWR8: { 10721 if (!ML) 10722 break; 10723 10724 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10725 10726 // For small loops (between 5 and 8 instructions), align to a 32-byte 10727 // boundary so that the entire loop fits in one instruction-cache line. 10728 uint64_t LoopSize = 0; 10729 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10730 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 10731 LoopSize += TII->GetInstSizeInBytes(J); 10732 10733 if (LoopSize > 16 && LoopSize <= 32) 10734 return 5; 10735 10736 break; 10737 } 10738 } 10739 10740 return TargetLowering::getPrefLoopAlignment(ML); 10741 } 10742 10743 /// getConstraintType - Given a constraint, return the type of 10744 /// constraint it is for this target. 10745 PPCTargetLowering::ConstraintType 10746 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 10747 if (Constraint.size() == 1) { 10748 switch (Constraint[0]) { 10749 default: break; 10750 case 'b': 10751 case 'r': 10752 case 'f': 10753 case 'v': 10754 case 'y': 10755 return C_RegisterClass; 10756 case 'Z': 10757 // FIXME: While Z does indicate a memory constraint, it specifically 10758 // indicates an r+r address (used in conjunction with the 'y' modifier 10759 // in the replacement string). Currently, we're forcing the base 10760 // register to be r0 in the asm printer (which is interpreted as zero) 10761 // and forming the complete address in the second register. This is 10762 // suboptimal. 10763 return C_Memory; 10764 } 10765 } else if (Constraint == "wc") { // individual CR bits. 10766 return C_RegisterClass; 10767 } else if (Constraint == "wa" || Constraint == "wd" || 10768 Constraint == "wf" || Constraint == "ws") { 10769 return C_RegisterClass; // VSX registers. 10770 } 10771 return TargetLowering::getConstraintType(Constraint); 10772 } 10773 10774 /// Examine constraint type and operand type and determine a weight value. 10775 /// This object must already have been set up with the operand type 10776 /// and the current alternative constraint selected. 10777 TargetLowering::ConstraintWeight 10778 PPCTargetLowering::getSingleConstraintMatchWeight( 10779 AsmOperandInfo &info, const char *constraint) const { 10780 ConstraintWeight weight = CW_Invalid; 10781 Value *CallOperandVal = info.CallOperandVal; 10782 // If we don't have a value, we can't do a match, 10783 // but allow it at the lowest weight. 10784 if (!CallOperandVal) 10785 return CW_Default; 10786 Type *type = CallOperandVal->getType(); 10787 10788 // Look at the constraint type. 10789 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10790 return CW_Register; // an individual CR bit. 10791 else if ((StringRef(constraint) == "wa" || 10792 StringRef(constraint) == "wd" || 10793 StringRef(constraint) == "wf") && 10794 type->isVectorTy()) 10795 return CW_Register; 10796 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10797 return CW_Register; 10798 10799 switch (*constraint) { 10800 default: 10801 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10802 break; 10803 case 'b': 10804 if (type->isIntegerTy()) 10805 weight = CW_Register; 10806 break; 10807 case 'f': 10808 if (type->isFloatTy()) 10809 weight = CW_Register; 10810 break; 10811 case 'd': 10812 if (type->isDoubleTy()) 10813 weight = CW_Register; 10814 break; 10815 case 'v': 10816 if (type->isVectorTy()) 10817 weight = CW_Register; 10818 break; 10819 case 'y': 10820 weight = CW_Register; 10821 break; 10822 case 'Z': 10823 weight = CW_Memory; 10824 break; 10825 } 10826 return weight; 10827 } 10828 10829 std::pair<unsigned, const TargetRegisterClass *> 10830 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10831 StringRef Constraint, 10832 MVT VT) const { 10833 if (Constraint.size() == 1) { 10834 // GCC RS6000 Constraint Letters 10835 switch (Constraint[0]) { 10836 case 'b': // R1-R31 10837 if (VT == MVT::i64 && Subtarget.isPPC64()) 10838 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10839 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10840 case 'r': // R0-R31 10841 if (VT == MVT::i64 && Subtarget.isPPC64()) 10842 return std::make_pair(0U, &PPC::G8RCRegClass); 10843 return std::make_pair(0U, &PPC::GPRCRegClass); 10844 case 'f': 10845 if (VT == MVT::f32 || VT == MVT::i32) 10846 return std::make_pair(0U, &PPC::F4RCRegClass); 10847 if (VT == MVT::f64 || VT == MVT::i64) 10848 return std::make_pair(0U, &PPC::F8RCRegClass); 10849 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10850 return std::make_pair(0U, &PPC::QFRCRegClass); 10851 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10852 return std::make_pair(0U, &PPC::QSRCRegClass); 10853 break; 10854 case 'v': 10855 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10856 return std::make_pair(0U, &PPC::QFRCRegClass); 10857 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10858 return std::make_pair(0U, &PPC::QSRCRegClass); 10859 return std::make_pair(0U, &PPC::VRRCRegClass); 10860 case 'y': // crrc 10861 return std::make_pair(0U, &PPC::CRRCRegClass); 10862 } 10863 } else if (Constraint == "wc") { // an individual CR bit. 10864 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10865 } else if (Constraint == "wa" || Constraint == "wd" || 10866 Constraint == "wf") { 10867 return std::make_pair(0U, &PPC::VSRCRegClass); 10868 } else if (Constraint == "ws") { 10869 if (VT == MVT::f32) 10870 return std::make_pair(0U, &PPC::VSSRCRegClass); 10871 else 10872 return std::make_pair(0U, &PPC::VSFRCRegClass); 10873 } 10874 10875 std::pair<unsigned, const TargetRegisterClass *> R = 10876 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10877 10878 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10879 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10880 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10881 // register. 10882 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10883 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10884 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10885 PPC::GPRCRegClass.contains(R.first)) 10886 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10887 PPC::sub_32, &PPC::G8RCRegClass), 10888 &PPC::G8RCRegClass); 10889 10890 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10891 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10892 R.first = PPC::CR0; 10893 R.second = &PPC::CRRCRegClass; 10894 } 10895 10896 return R; 10897 } 10898 10899 10900 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10901 /// vector. If it is invalid, don't add anything to Ops. 10902 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10903 std::string &Constraint, 10904 std::vector<SDValue>&Ops, 10905 SelectionDAG &DAG) const { 10906 SDValue Result; 10907 10908 // Only support length 1 constraints. 10909 if (Constraint.length() > 1) return; 10910 10911 char Letter = Constraint[0]; 10912 switch (Letter) { 10913 default: break; 10914 case 'I': 10915 case 'J': 10916 case 'K': 10917 case 'L': 10918 case 'M': 10919 case 'N': 10920 case 'O': 10921 case 'P': { 10922 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 10923 if (!CST) return; // Must be an immediate to match. 10924 SDLoc dl(Op); 10925 int64_t Value = CST->getSExtValue(); 10926 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 10927 // numbers are printed as such. 10928 switch (Letter) { 10929 default: llvm_unreachable("Unknown constraint letter!"); 10930 case 'I': // "I" is a signed 16-bit constant. 10931 if (isInt<16>(Value)) 10932 Result = DAG.getTargetConstant(Value, dl, TCVT); 10933 break; 10934 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 10935 if (isShiftedUInt<16, 16>(Value)) 10936 Result = DAG.getTargetConstant(Value, dl, TCVT); 10937 break; 10938 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 10939 if (isShiftedInt<16, 16>(Value)) 10940 Result = DAG.getTargetConstant(Value, dl, TCVT); 10941 break; 10942 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 10943 if (isUInt<16>(Value)) 10944 Result = DAG.getTargetConstant(Value, dl, TCVT); 10945 break; 10946 case 'M': // "M" is a constant that is greater than 31. 10947 if (Value > 31) 10948 Result = DAG.getTargetConstant(Value, dl, TCVT); 10949 break; 10950 case 'N': // "N" is a positive constant that is an exact power of two. 10951 if (Value > 0 && isPowerOf2_64(Value)) 10952 Result = DAG.getTargetConstant(Value, dl, TCVT); 10953 break; 10954 case 'O': // "O" is the constant zero. 10955 if (Value == 0) 10956 Result = DAG.getTargetConstant(Value, dl, TCVT); 10957 break; 10958 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 10959 if (isInt<16>(-Value)) 10960 Result = DAG.getTargetConstant(Value, dl, TCVT); 10961 break; 10962 } 10963 break; 10964 } 10965 } 10966 10967 if (Result.getNode()) { 10968 Ops.push_back(Result); 10969 return; 10970 } 10971 10972 // Handle standard constraint letters. 10973 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10974 } 10975 10976 // isLegalAddressingMode - Return true if the addressing mode represented 10977 // by AM is legal for this target, for a load/store of the specified type. 10978 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 10979 const AddrMode &AM, Type *Ty, 10980 unsigned AS) const { 10981 // PPC does not allow r+i addressing modes for vectors! 10982 if (Ty->isVectorTy() && AM.BaseOffs != 0) 10983 return false; 10984 10985 // PPC allows a sign-extended 16-bit immediate field. 10986 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 10987 return false; 10988 10989 // No global is ever allowed as a base. 10990 if (AM.BaseGV) 10991 return false; 10992 10993 // PPC only support r+r, 10994 switch (AM.Scale) { 10995 case 0: // "r+i" or just "i", depending on HasBaseReg. 10996 break; 10997 case 1: 10998 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 10999 return false; 11000 // Otherwise we have r+r or r+i. 11001 break; 11002 case 2: 11003 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11004 return false; 11005 // Allow 2*r as r+r. 11006 break; 11007 default: 11008 // No other scales are supported. 11009 return false; 11010 } 11011 11012 return true; 11013 } 11014 11015 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11016 SelectionDAG &DAG) const { 11017 MachineFunction &MF = DAG.getMachineFunction(); 11018 MachineFrameInfo *MFI = MF.getFrameInfo(); 11019 MFI->setReturnAddressIsTaken(true); 11020 11021 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11022 return SDValue(); 11023 11024 SDLoc dl(Op); 11025 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11026 11027 // Make sure the function does not optimize away the store of the RA to 11028 // the stack. 11029 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11030 FuncInfo->setLRStoreRequired(); 11031 bool isPPC64 = Subtarget.isPPC64(); 11032 auto PtrVT = getPointerTy(MF.getDataLayout()); 11033 11034 if (Depth > 0) { 11035 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11036 SDValue Offset = 11037 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11038 isPPC64 ? MVT::i64 : MVT::i32); 11039 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11040 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11041 MachinePointerInfo(), false, false, false, 0); 11042 } 11043 11044 // Just load the return address off the stack. 11045 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11046 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11047 MachinePointerInfo(), false, false, false, 0); 11048 } 11049 11050 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11051 SelectionDAG &DAG) const { 11052 SDLoc dl(Op); 11053 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11054 11055 MachineFunction &MF = DAG.getMachineFunction(); 11056 MachineFrameInfo *MFI = MF.getFrameInfo(); 11057 MFI->setFrameAddressIsTaken(true); 11058 11059 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11060 bool isPPC64 = PtrVT == MVT::i64; 11061 11062 // Naked functions never have a frame pointer, and so we use r1. For all 11063 // other functions, this decision must be delayed until during PEI. 11064 unsigned FrameReg; 11065 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11066 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11067 else 11068 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11069 11070 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11071 PtrVT); 11072 while (Depth--) 11073 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11074 FrameAddr, MachinePointerInfo(), false, false, 11075 false, 0); 11076 return FrameAddr; 11077 } 11078 11079 // FIXME? Maybe this could be a TableGen attribute on some registers and 11080 // this table could be generated automatically from RegInfo. 11081 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11082 SelectionDAG &DAG) const { 11083 bool isPPC64 = Subtarget.isPPC64(); 11084 bool isDarwinABI = Subtarget.isDarwinABI(); 11085 11086 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11087 (!isPPC64 && VT != MVT::i32)) 11088 report_fatal_error("Invalid register global variable type"); 11089 11090 bool is64Bit = isPPC64 && VT == MVT::i64; 11091 unsigned Reg = StringSwitch<unsigned>(RegName) 11092 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11093 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11094 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11095 (is64Bit ? PPC::X13 : PPC::R13)) 11096 .Default(0); 11097 11098 if (Reg) 11099 return Reg; 11100 report_fatal_error("Invalid register name global variable"); 11101 } 11102 11103 bool 11104 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11105 // The PowerPC target isn't yet aware of offsets. 11106 return false; 11107 } 11108 11109 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11110 const CallInst &I, 11111 unsigned Intrinsic) const { 11112 11113 switch (Intrinsic) { 11114 case Intrinsic::ppc_qpx_qvlfd: 11115 case Intrinsic::ppc_qpx_qvlfs: 11116 case Intrinsic::ppc_qpx_qvlfcd: 11117 case Intrinsic::ppc_qpx_qvlfcs: 11118 case Intrinsic::ppc_qpx_qvlfiwa: 11119 case Intrinsic::ppc_qpx_qvlfiwz: 11120 case Intrinsic::ppc_altivec_lvx: 11121 case Intrinsic::ppc_altivec_lvxl: 11122 case Intrinsic::ppc_altivec_lvebx: 11123 case Intrinsic::ppc_altivec_lvehx: 11124 case Intrinsic::ppc_altivec_lvewx: 11125 case Intrinsic::ppc_vsx_lxvd2x: 11126 case Intrinsic::ppc_vsx_lxvw4x: { 11127 EVT VT; 11128 switch (Intrinsic) { 11129 case Intrinsic::ppc_altivec_lvebx: 11130 VT = MVT::i8; 11131 break; 11132 case Intrinsic::ppc_altivec_lvehx: 11133 VT = MVT::i16; 11134 break; 11135 case Intrinsic::ppc_altivec_lvewx: 11136 VT = MVT::i32; 11137 break; 11138 case Intrinsic::ppc_vsx_lxvd2x: 11139 VT = MVT::v2f64; 11140 break; 11141 case Intrinsic::ppc_qpx_qvlfd: 11142 VT = MVT::v4f64; 11143 break; 11144 case Intrinsic::ppc_qpx_qvlfs: 11145 VT = MVT::v4f32; 11146 break; 11147 case Intrinsic::ppc_qpx_qvlfcd: 11148 VT = MVT::v2f64; 11149 break; 11150 case Intrinsic::ppc_qpx_qvlfcs: 11151 VT = MVT::v2f32; 11152 break; 11153 default: 11154 VT = MVT::v4i32; 11155 break; 11156 } 11157 11158 Info.opc = ISD::INTRINSIC_W_CHAIN; 11159 Info.memVT = VT; 11160 Info.ptrVal = I.getArgOperand(0); 11161 Info.offset = -VT.getStoreSize()+1; 11162 Info.size = 2*VT.getStoreSize()-1; 11163 Info.align = 1; 11164 Info.vol = false; 11165 Info.readMem = true; 11166 Info.writeMem = false; 11167 return true; 11168 } 11169 case Intrinsic::ppc_qpx_qvlfda: 11170 case Intrinsic::ppc_qpx_qvlfsa: 11171 case Intrinsic::ppc_qpx_qvlfcda: 11172 case Intrinsic::ppc_qpx_qvlfcsa: 11173 case Intrinsic::ppc_qpx_qvlfiwaa: 11174 case Intrinsic::ppc_qpx_qvlfiwza: { 11175 EVT VT; 11176 switch (Intrinsic) { 11177 case Intrinsic::ppc_qpx_qvlfda: 11178 VT = MVT::v4f64; 11179 break; 11180 case Intrinsic::ppc_qpx_qvlfsa: 11181 VT = MVT::v4f32; 11182 break; 11183 case Intrinsic::ppc_qpx_qvlfcda: 11184 VT = MVT::v2f64; 11185 break; 11186 case Intrinsic::ppc_qpx_qvlfcsa: 11187 VT = MVT::v2f32; 11188 break; 11189 default: 11190 VT = MVT::v4i32; 11191 break; 11192 } 11193 11194 Info.opc = ISD::INTRINSIC_W_CHAIN; 11195 Info.memVT = VT; 11196 Info.ptrVal = I.getArgOperand(0); 11197 Info.offset = 0; 11198 Info.size = VT.getStoreSize(); 11199 Info.align = 1; 11200 Info.vol = false; 11201 Info.readMem = true; 11202 Info.writeMem = false; 11203 return true; 11204 } 11205 case Intrinsic::ppc_qpx_qvstfd: 11206 case Intrinsic::ppc_qpx_qvstfs: 11207 case Intrinsic::ppc_qpx_qvstfcd: 11208 case Intrinsic::ppc_qpx_qvstfcs: 11209 case Intrinsic::ppc_qpx_qvstfiw: 11210 case Intrinsic::ppc_altivec_stvx: 11211 case Intrinsic::ppc_altivec_stvxl: 11212 case Intrinsic::ppc_altivec_stvebx: 11213 case Intrinsic::ppc_altivec_stvehx: 11214 case Intrinsic::ppc_altivec_stvewx: 11215 case Intrinsic::ppc_vsx_stxvd2x: 11216 case Intrinsic::ppc_vsx_stxvw4x: { 11217 EVT VT; 11218 switch (Intrinsic) { 11219 case Intrinsic::ppc_altivec_stvebx: 11220 VT = MVT::i8; 11221 break; 11222 case Intrinsic::ppc_altivec_stvehx: 11223 VT = MVT::i16; 11224 break; 11225 case Intrinsic::ppc_altivec_stvewx: 11226 VT = MVT::i32; 11227 break; 11228 case Intrinsic::ppc_vsx_stxvd2x: 11229 VT = MVT::v2f64; 11230 break; 11231 case Intrinsic::ppc_qpx_qvstfd: 11232 VT = MVT::v4f64; 11233 break; 11234 case Intrinsic::ppc_qpx_qvstfs: 11235 VT = MVT::v4f32; 11236 break; 11237 case Intrinsic::ppc_qpx_qvstfcd: 11238 VT = MVT::v2f64; 11239 break; 11240 case Intrinsic::ppc_qpx_qvstfcs: 11241 VT = MVT::v2f32; 11242 break; 11243 default: 11244 VT = MVT::v4i32; 11245 break; 11246 } 11247 11248 Info.opc = ISD::INTRINSIC_VOID; 11249 Info.memVT = VT; 11250 Info.ptrVal = I.getArgOperand(1); 11251 Info.offset = -VT.getStoreSize()+1; 11252 Info.size = 2*VT.getStoreSize()-1; 11253 Info.align = 1; 11254 Info.vol = false; 11255 Info.readMem = false; 11256 Info.writeMem = true; 11257 return true; 11258 } 11259 case Intrinsic::ppc_qpx_qvstfda: 11260 case Intrinsic::ppc_qpx_qvstfsa: 11261 case Intrinsic::ppc_qpx_qvstfcda: 11262 case Intrinsic::ppc_qpx_qvstfcsa: 11263 case Intrinsic::ppc_qpx_qvstfiwa: { 11264 EVT VT; 11265 switch (Intrinsic) { 11266 case Intrinsic::ppc_qpx_qvstfda: 11267 VT = MVT::v4f64; 11268 break; 11269 case Intrinsic::ppc_qpx_qvstfsa: 11270 VT = MVT::v4f32; 11271 break; 11272 case Intrinsic::ppc_qpx_qvstfcda: 11273 VT = MVT::v2f64; 11274 break; 11275 case Intrinsic::ppc_qpx_qvstfcsa: 11276 VT = MVT::v2f32; 11277 break; 11278 default: 11279 VT = MVT::v4i32; 11280 break; 11281 } 11282 11283 Info.opc = ISD::INTRINSIC_VOID; 11284 Info.memVT = VT; 11285 Info.ptrVal = I.getArgOperand(1); 11286 Info.offset = 0; 11287 Info.size = VT.getStoreSize(); 11288 Info.align = 1; 11289 Info.vol = false; 11290 Info.readMem = false; 11291 Info.writeMem = true; 11292 return true; 11293 } 11294 default: 11295 break; 11296 } 11297 11298 return false; 11299 } 11300 11301 /// getOptimalMemOpType - Returns the target specific optimal type for load 11302 /// and store operations as a result of memset, memcpy, and memmove 11303 /// lowering. If DstAlign is zero that means it's safe to destination 11304 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11305 /// means there isn't a need to check it against alignment requirement, 11306 /// probably because the source does not need to be loaded. If 'IsMemset' is 11307 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11308 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11309 /// source is constant so it does not need to be loaded. 11310 /// It returns EVT::Other if the type should be determined using generic 11311 /// target-independent logic. 11312 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11313 unsigned DstAlign, unsigned SrcAlign, 11314 bool IsMemset, bool ZeroMemset, 11315 bool MemcpyStrSrc, 11316 MachineFunction &MF) const { 11317 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11318 const Function *F = MF.getFunction(); 11319 // When expanding a memset, require at least two QPX instructions to cover 11320 // the cost of loading the value to be stored from the constant pool. 11321 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11322 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11323 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11324 return MVT::v4f64; 11325 } 11326 11327 // We should use Altivec/VSX loads and stores when available. For unaligned 11328 // addresses, unaligned VSX loads are only fast starting with the P8. 11329 if (Subtarget.hasAltivec() && Size >= 16 && 11330 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11331 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11332 return MVT::v4i32; 11333 } 11334 11335 if (Subtarget.isPPC64()) { 11336 return MVT::i64; 11337 } 11338 11339 return MVT::i32; 11340 } 11341 11342 /// \brief Returns true if it is beneficial to convert a load of a constant 11343 /// to just the constant itself. 11344 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11345 Type *Ty) const { 11346 assert(Ty->isIntegerTy()); 11347 11348 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11349 if (BitSize == 0 || BitSize > 64) 11350 return false; 11351 return true; 11352 } 11353 11354 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11355 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11356 return false; 11357 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11358 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11359 return NumBits1 == 64 && NumBits2 == 32; 11360 } 11361 11362 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11363 if (!VT1.isInteger() || !VT2.isInteger()) 11364 return false; 11365 unsigned NumBits1 = VT1.getSizeInBits(); 11366 unsigned NumBits2 = VT2.getSizeInBits(); 11367 return NumBits1 == 64 && NumBits2 == 32; 11368 } 11369 11370 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11371 // Generally speaking, zexts are not free, but they are free when they can be 11372 // folded with other operations. 11373 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11374 EVT MemVT = LD->getMemoryVT(); 11375 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11376 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11377 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11378 LD->getExtensionType() == ISD::ZEXTLOAD)) 11379 return true; 11380 } 11381 11382 // FIXME: Add other cases... 11383 // - 32-bit shifts with a zext to i64 11384 // - zext after ctlz, bswap, etc. 11385 // - zext after and by a constant mask 11386 11387 return TargetLowering::isZExtFree(Val, VT2); 11388 } 11389 11390 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11391 assert(VT.isFloatingPoint()); 11392 return true; 11393 } 11394 11395 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11396 return isInt<16>(Imm) || isUInt<16>(Imm); 11397 } 11398 11399 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11400 return isInt<16>(Imm) || isUInt<16>(Imm); 11401 } 11402 11403 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11404 unsigned, 11405 unsigned, 11406 bool *Fast) const { 11407 if (DisablePPCUnaligned) 11408 return false; 11409 11410 // PowerPC supports unaligned memory access for simple non-vector types. 11411 // Although accessing unaligned addresses is not as efficient as accessing 11412 // aligned addresses, it is generally more efficient than manual expansion, 11413 // and generally only traps for software emulation when crossing page 11414 // boundaries. 11415 11416 if (!VT.isSimple()) 11417 return false; 11418 11419 if (VT.getSimpleVT().isVector()) { 11420 if (Subtarget.hasVSX()) { 11421 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11422 VT != MVT::v4f32 && VT != MVT::v4i32) 11423 return false; 11424 } else { 11425 return false; 11426 } 11427 } 11428 11429 if (VT == MVT::ppcf128) 11430 return false; 11431 11432 if (Fast) 11433 *Fast = true; 11434 11435 return true; 11436 } 11437 11438 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11439 VT = VT.getScalarType(); 11440 11441 if (!VT.isSimple()) 11442 return false; 11443 11444 switch (VT.getSimpleVT().SimpleTy) { 11445 case MVT::f32: 11446 case MVT::f64: 11447 return true; 11448 default: 11449 break; 11450 } 11451 11452 return false; 11453 } 11454 11455 const MCPhysReg * 11456 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11457 // LR is a callee-save register, but we must treat it as clobbered by any call 11458 // site. Hence we include LR in the scratch registers, which are in turn added 11459 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11460 // to CTR, which is used by any indirect call. 11461 static const MCPhysReg ScratchRegs[] = { 11462 PPC::X12, PPC::LR8, PPC::CTR8, 0 11463 }; 11464 11465 return ScratchRegs; 11466 } 11467 11468 bool 11469 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11470 EVT VT , unsigned DefinedValues) const { 11471 if (VT == MVT::v2i64) 11472 return false; 11473 11474 if (Subtarget.hasQPX()) { 11475 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11476 return true; 11477 } 11478 11479 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11480 } 11481 11482 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11483 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11484 return TargetLowering::getSchedulingPreference(N); 11485 11486 return Sched::ILP; 11487 } 11488 11489 // Create a fast isel object. 11490 FastISel * 11491 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11492 const TargetLibraryInfo *LibInfo) const { 11493 return PPC::createFastISel(FuncInfo, LibInfo); 11494 } 11495