1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnablePPCPCRelTLS(
125     "enable-ppc-pcrel-tls",
126     cl::desc("enable the use of PC relative memops in TLS instructions on PPC"),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
155     } else {
156       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
157       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
158     }
159   }
160 
161   // Match BITREVERSE to customized fast code sequence in the td file.
162   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
163   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
164 
165   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
166   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
167 
168   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
169   for (MVT VT : MVT::integer_valuetypes()) {
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
172   }
173 
174   if (Subtarget.isISA3_0()) {
175     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
176     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
177     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
178     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
179   } else {
180     // No extending loads from f16 or HW conversions back and forth.
181     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
183     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
184     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
185     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
186     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
187     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
188     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
189   }
190 
191   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
192 
193   // PowerPC has pre-inc load and store's.
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
200   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
204   if (!Subtarget.hasSPE()) {
205     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
206     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
207     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
209   }
210 
211   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
212   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
213   for (MVT VT : ScalarIntVTs) {
214     setOperationAction(ISD::ADDC, VT, Legal);
215     setOperationAction(ISD::ADDE, VT, Legal);
216     setOperationAction(ISD::SUBC, VT, Legal);
217     setOperationAction(ISD::SUBE, VT, Legal);
218   }
219 
220   if (Subtarget.useCRBits()) {
221     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222 
223     if (isPPC64 || Subtarget.hasFPCVT()) {
224       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
225       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
226                         isPPC64 ? MVT::i64 : MVT::i32);
227       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
228       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
229                         isPPC64 ? MVT::i64 : MVT::i32);
230 
231       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
232       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
233                          isPPC64 ? MVT::i64 : MVT::i32);
234       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
235       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
236                         isPPC64 ? MVT::i64 : MVT::i32);
237     } else {
238       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
240       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
241       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
242     }
243 
244     // PowerPC does not support direct load/store of condition registers.
245     setOperationAction(ISD::LOAD, MVT::i1, Custom);
246     setOperationAction(ISD::STORE, MVT::i1, Custom);
247 
248     // FIXME: Remove this once the ANDI glue bug is fixed:
249     if (ANDIGlueBug)
250       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
251 
252     for (MVT VT : MVT::integer_valuetypes()) {
253       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
254       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
255       setTruncStoreAction(VT, MVT::i1, Expand);
256     }
257 
258     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
259   }
260 
261   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
262   // PPC (the libcall is not available).
263   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
264   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
265   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
266   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
267 
268   // We do not currently implement these libm ops for PowerPC.
269   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
270   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
271   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
272   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
273   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
274   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
275 
276   // PowerPC has no SREM/UREM instructions unless we are on P9
277   // On P9 we may use a hardware instruction to compute the remainder.
278   // When the result of both the remainder and the division is required it is
279   // more efficient to compute the remainder from the result of the division
280   // rather than use the remainder instruction. The instructions are legalized
281   // directly because the DivRemPairsPass performs the transformation at the IR
282   // level.
283   if (Subtarget.isISA3_0()) {
284     setOperationAction(ISD::SREM, MVT::i32, Legal);
285     setOperationAction(ISD::UREM, MVT::i32, Legal);
286     setOperationAction(ISD::SREM, MVT::i64, Legal);
287     setOperationAction(ISD::UREM, MVT::i64, Legal);
288   } else {
289     setOperationAction(ISD::SREM, MVT::i32, Expand);
290     setOperationAction(ISD::UREM, MVT::i32, Expand);
291     setOperationAction(ISD::SREM, MVT::i64, Expand);
292     setOperationAction(ISD::UREM, MVT::i64, Expand);
293   }
294 
295   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
296   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
297   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
298   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
299   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
300   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
301   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
302   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
303   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
304 
305   // Handle constrained floating-point operations of scalar.
306   // TODO: Handle SPE specific operation.
307   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
308   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
309   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
310   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
311   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
312   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
313 
314   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
315   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
316   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
317   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
318   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
319   if (Subtarget.hasVSX()) {
320     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
321     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
322   }
323 
324   if (Subtarget.hasFSQRT()) {
325     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
326     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
327   }
328 
329   if (Subtarget.hasFPRND()) {
330     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
331     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
332     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
333     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
334 
335     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
336     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
337     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
338     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
339   }
340 
341   // We don't support sin/cos/sqrt/fmod/pow
342   setOperationAction(ISD::FSIN , MVT::f64, Expand);
343   setOperationAction(ISD::FCOS , MVT::f64, Expand);
344   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
345   setOperationAction(ISD::FREM , MVT::f64, Expand);
346   setOperationAction(ISD::FPOW , MVT::f64, Expand);
347   setOperationAction(ISD::FSIN , MVT::f32, Expand);
348   setOperationAction(ISD::FCOS , MVT::f32, Expand);
349   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
350   setOperationAction(ISD::FREM , MVT::f32, Expand);
351   setOperationAction(ISD::FPOW , MVT::f32, Expand);
352   if (Subtarget.hasSPE()) {
353     setOperationAction(ISD::FMA  , MVT::f64, Expand);
354     setOperationAction(ISD::FMA  , MVT::f32, Expand);
355   } else {
356     setOperationAction(ISD::FMA  , MVT::f64, Legal);
357     setOperationAction(ISD::FMA  , MVT::f32, Legal);
358   }
359 
360   if (Subtarget.hasSPE())
361     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
362 
363   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
364 
365   // If we're enabling GP optimizations, use hardware square root
366   if (!Subtarget.hasFSQRT() &&
367       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
368         Subtarget.hasFRE()))
369     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
370 
371   if (!Subtarget.hasFSQRT() &&
372       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
373         Subtarget.hasFRES()))
374     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
375 
376   if (Subtarget.hasFCPSGN()) {
377     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
378     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
379   } else {
380     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
381     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
382   }
383 
384   if (Subtarget.hasFPRND()) {
385     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
386     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
387     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
388     setOperationAction(ISD::FROUND, MVT::f64, Legal);
389 
390     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
391     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
392     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
393     setOperationAction(ISD::FROUND, MVT::f32, Legal);
394   }
395 
396   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
397   // to speed up scalar BSWAP64.
398   // CTPOP or CTTZ were introduced in P8/P9 respectively
399   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
400   if (Subtarget.hasP9Vector())
401     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
402   else
403     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
404   if (Subtarget.isISA3_0()) {
405     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
406     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
407   } else {
408     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
409     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
410   }
411 
412   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
413     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
414     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
415   } else {
416     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
417     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
418   }
419 
420   // PowerPC does not have ROTR
421   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
422   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
423 
424   if (!Subtarget.useCRBits()) {
425     // PowerPC does not have Select
426     setOperationAction(ISD::SELECT, MVT::i32, Expand);
427     setOperationAction(ISD::SELECT, MVT::i64, Expand);
428     setOperationAction(ISD::SELECT, MVT::f32, Expand);
429     setOperationAction(ISD::SELECT, MVT::f64, Expand);
430   }
431 
432   // PowerPC wants to turn select_cc of FP into fsel when possible.
433   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
434   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
435 
436   // PowerPC wants to optimize integer setcc a bit
437   if (!Subtarget.useCRBits())
438     setOperationAction(ISD::SETCC, MVT::i32, Custom);
439 
440   if (Subtarget.hasFPU()) {
441     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
442     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
443     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
444 
445     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
446     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
447     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
448   }
449 
450   // PowerPC does not have BRCOND which requires SetCC
451   if (!Subtarget.useCRBits())
452     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
453 
454   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
455 
456   if (Subtarget.hasSPE()) {
457     // SPE has built-in conversions
458     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
459     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
460     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
461     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
462     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
463     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
464   } else {
465     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
466     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
467     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
468 
469     // PowerPC does not have [U|S]INT_TO_FP
470     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
471     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
472     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
473     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
474   }
475 
476   if (Subtarget.hasDirectMove() && isPPC64) {
477     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
478     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
479     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
480     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
481     if (TM.Options.UnsafeFPMath) {
482       setOperationAction(ISD::LRINT, MVT::f64, Legal);
483       setOperationAction(ISD::LRINT, MVT::f32, Legal);
484       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
485       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
486       setOperationAction(ISD::LROUND, MVT::f64, Legal);
487       setOperationAction(ISD::LROUND, MVT::f32, Legal);
488       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
489       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
490     }
491   } else {
492     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
493     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
494     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
495     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
496   }
497 
498   // We cannot sextinreg(i1).  Expand to shifts.
499   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
500 
501   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
502   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
503   // support continuation, user-level threading, and etc.. As a result, no
504   // other SjLj exception interfaces are implemented and please don't build
505   // your own exception handling based on them.
506   // LLVM/Clang supports zero-cost DWARF exception handling.
507   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
508   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
509 
510   // We want to legalize GlobalAddress and ConstantPool nodes into the
511   // appropriate instructions to materialize the address.
512   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
513   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
514   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
515   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
516   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
517   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
518   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
519   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
520   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
521   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
522 
523   // TRAP is legal.
524   setOperationAction(ISD::TRAP, MVT::Other, Legal);
525 
526   // TRAMPOLINE is custom lowered.
527   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
528   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
529 
530   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
531   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
532 
533   if (Subtarget.is64BitELFABI()) {
534     // VAARG always uses double-word chunks, so promote anything smaller.
535     setOperationAction(ISD::VAARG, MVT::i1, Promote);
536     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
537     setOperationAction(ISD::VAARG, MVT::i8, Promote);
538     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
539     setOperationAction(ISD::VAARG, MVT::i16, Promote);
540     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
541     setOperationAction(ISD::VAARG, MVT::i32, Promote);
542     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
543     setOperationAction(ISD::VAARG, MVT::Other, Expand);
544   } else if (Subtarget.is32BitELFABI()) {
545     // VAARG is custom lowered with the 32-bit SVR4 ABI.
546     setOperationAction(ISD::VAARG, MVT::Other, Custom);
547     setOperationAction(ISD::VAARG, MVT::i64, Custom);
548   } else
549     setOperationAction(ISD::VAARG, MVT::Other, Expand);
550 
551   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
552   if (Subtarget.is32BitELFABI())
553     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
554   else
555     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
556 
557   // Use the default implementation.
558   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
559   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
560   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
561   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
562   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
563   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
564   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
565   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
566   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
567 
568   // We want to custom lower some of our intrinsics.
569   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
570 
571   // To handle counter-based loop conditions.
572   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
573 
574   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
575   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
576   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
577   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
578 
579   // Comparisons that require checking two conditions.
580   if (Subtarget.hasSPE()) {
581     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
582     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
583     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
584     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
585   }
586   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
587   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
588   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
589   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
590   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
591   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
592   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
593   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
594   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
595   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
596   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
597   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
598 
599   if (Subtarget.has64BitSupport()) {
600     // They also have instructions for converting between i64 and fp.
601     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
602     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
603     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
604     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
605     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
606     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
607     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
608     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
609     // This is just the low 32 bits of a (signed) fp->i64 conversion.
610     // We cannot do this with Promote because i64 is not a legal type.
611     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
612     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
613 
614     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
615       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
616       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
617     }
618   } else {
619     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
620     if (Subtarget.hasSPE()) {
621       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
622       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
623     } else {
624       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
625       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
626     }
627   }
628 
629   // With the instructions enabled under FPCVT, we can do everything.
630   if (Subtarget.hasFPCVT()) {
631     if (Subtarget.has64BitSupport()) {
632       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
633       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
634       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
635       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
636       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
637       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
638       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
639       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
640     }
641 
642     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
643     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
644     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
645     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
646     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
647     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
648     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
649     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
650   }
651 
652   if (Subtarget.use64BitRegs()) {
653     // 64-bit PowerPC implementations can support i64 types directly
654     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
655     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
656     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
657     // 64-bit PowerPC wants to expand i128 shifts itself.
658     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
659     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
660     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
661   } else {
662     // 32-bit PowerPC wants to expand i64 shifts itself.
663     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
664     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
665     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
666   }
667 
668   // PowerPC has better expansions for funnel shifts than the generic
669   // TargetLowering::expandFunnelShift.
670   if (Subtarget.has64BitSupport()) {
671     setOperationAction(ISD::FSHL, MVT::i64, Custom);
672     setOperationAction(ISD::FSHR, MVT::i64, Custom);
673   }
674   setOperationAction(ISD::FSHL, MVT::i32, Custom);
675   setOperationAction(ISD::FSHR, MVT::i32, Custom);
676 
677   if (Subtarget.hasVSX()) {
678     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
679     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
680     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
681     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
682   }
683 
684   if (Subtarget.hasAltivec()) {
685     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
686       setOperationAction(ISD::SADDSAT, VT, Legal);
687       setOperationAction(ISD::SSUBSAT, VT, Legal);
688       setOperationAction(ISD::UADDSAT, VT, Legal);
689       setOperationAction(ISD::USUBSAT, VT, Legal);
690     }
691     // First set operation action for all vector types to expand. Then we
692     // will selectively turn on ones that can be effectively codegen'd.
693     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
694       // add/sub are legal for all supported vector VT's.
695       setOperationAction(ISD::ADD, VT, Legal);
696       setOperationAction(ISD::SUB, VT, Legal);
697 
698       // For v2i64, these are only valid with P8Vector. This is corrected after
699       // the loop.
700       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
701         setOperationAction(ISD::SMAX, VT, Legal);
702         setOperationAction(ISD::SMIN, VT, Legal);
703         setOperationAction(ISD::UMAX, VT, Legal);
704         setOperationAction(ISD::UMIN, VT, Legal);
705       }
706       else {
707         setOperationAction(ISD::SMAX, VT, Expand);
708         setOperationAction(ISD::SMIN, VT, Expand);
709         setOperationAction(ISD::UMAX, VT, Expand);
710         setOperationAction(ISD::UMIN, VT, Expand);
711       }
712 
713       if (Subtarget.hasVSX()) {
714         setOperationAction(ISD::FMAXNUM, VT, Legal);
715         setOperationAction(ISD::FMINNUM, VT, Legal);
716       }
717 
718       // Vector instructions introduced in P8
719       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
720         setOperationAction(ISD::CTPOP, VT, Legal);
721         setOperationAction(ISD::CTLZ, VT, Legal);
722       }
723       else {
724         setOperationAction(ISD::CTPOP, VT, Expand);
725         setOperationAction(ISD::CTLZ, VT, Expand);
726       }
727 
728       // Vector instructions introduced in P9
729       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
730         setOperationAction(ISD::CTTZ, VT, Legal);
731       else
732         setOperationAction(ISD::CTTZ, VT, Expand);
733 
734       // We promote all shuffles to v16i8.
735       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
736       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
737 
738       // We promote all non-typed operations to v4i32.
739       setOperationAction(ISD::AND   , VT, Promote);
740       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
741       setOperationAction(ISD::OR    , VT, Promote);
742       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
743       setOperationAction(ISD::XOR   , VT, Promote);
744       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
745       setOperationAction(ISD::LOAD  , VT, Promote);
746       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
747       setOperationAction(ISD::SELECT, VT, Promote);
748       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
749       setOperationAction(ISD::VSELECT, VT, Legal);
750       setOperationAction(ISD::SELECT_CC, VT, Promote);
751       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
752       setOperationAction(ISD::STORE, VT, Promote);
753       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
754 
755       // No other operations are legal.
756       setOperationAction(ISD::MUL , VT, Expand);
757       setOperationAction(ISD::SDIV, VT, Expand);
758       setOperationAction(ISD::SREM, VT, Expand);
759       setOperationAction(ISD::UDIV, VT, Expand);
760       setOperationAction(ISD::UREM, VT, Expand);
761       setOperationAction(ISD::FDIV, VT, Expand);
762       setOperationAction(ISD::FREM, VT, Expand);
763       setOperationAction(ISD::FNEG, VT, Expand);
764       setOperationAction(ISD::FSQRT, VT, Expand);
765       setOperationAction(ISD::FLOG, VT, Expand);
766       setOperationAction(ISD::FLOG10, VT, Expand);
767       setOperationAction(ISD::FLOG2, VT, Expand);
768       setOperationAction(ISD::FEXP, VT, Expand);
769       setOperationAction(ISD::FEXP2, VT, Expand);
770       setOperationAction(ISD::FSIN, VT, Expand);
771       setOperationAction(ISD::FCOS, VT, Expand);
772       setOperationAction(ISD::FABS, VT, Expand);
773       setOperationAction(ISD::FFLOOR, VT, Expand);
774       setOperationAction(ISD::FCEIL,  VT, Expand);
775       setOperationAction(ISD::FTRUNC, VT, Expand);
776       setOperationAction(ISD::FRINT,  VT, Expand);
777       setOperationAction(ISD::FNEARBYINT, VT, Expand);
778       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
779       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
780       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
781       setOperationAction(ISD::MULHU, VT, Expand);
782       setOperationAction(ISD::MULHS, VT, Expand);
783       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
784       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
785       setOperationAction(ISD::UDIVREM, VT, Expand);
786       setOperationAction(ISD::SDIVREM, VT, Expand);
787       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
788       setOperationAction(ISD::FPOW, VT, Expand);
789       setOperationAction(ISD::BSWAP, VT, Expand);
790       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
791       setOperationAction(ISD::ROTL, VT, Expand);
792       setOperationAction(ISD::ROTR, VT, Expand);
793 
794       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
795         setTruncStoreAction(VT, InnerVT, Expand);
796         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
797         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
798         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
799       }
800     }
801     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
802     if (!Subtarget.hasP8Vector()) {
803       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
804       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
805       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
806       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
807     }
808 
809     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
810       setOperationAction(ISD::ABS, VT, Custom);
811 
812     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
813     // with merges, splats, etc.
814     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
815 
816     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
817     // are cheap, so handle them before they get expanded to scalar.
818     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
819     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
820     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
821     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
822     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
823 
824     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
825     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
826     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
827     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
828     setOperationAction(ISD::SELECT, MVT::v4i32,
829                        Subtarget.useCRBits() ? Legal : Expand);
830     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
831     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
832     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
833     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
834     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
835     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
836     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
837     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
838     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
839     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
840     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
841     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
842     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
843 
844     // Without hasP8Altivec set, v2i64 SMAX isn't available.
845     // But ABS custom lowering requires SMAX support.
846     if (!Subtarget.hasP8Altivec())
847       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
848 
849     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
850     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
851     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
852     if (Subtarget.hasAltivec())
853       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
854         setOperationAction(ISD::ROTL, VT, Legal);
855     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
856     if (Subtarget.hasP8Altivec())
857       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
858 
859     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
860     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
861     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
862     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
863 
864     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
865     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
866 
867     if (Subtarget.hasVSX()) {
868       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
869       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
870     }
871 
872     if (Subtarget.hasP8Altivec())
873       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
874     else
875       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
876 
877     if (Subtarget.isISA3_1()) {
878       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
879       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
880       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
881       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
882       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
883       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
884       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
885       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
886       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
887       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
888       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
889       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
890       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
891       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
892       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
893       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
894       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
895     }
896 
897     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
898     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
899 
900     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
901     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
902 
903     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
904     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
905     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
906     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
907 
908     // Altivec does not contain unordered floating-point compare instructions
909     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
910     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
911     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
912     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
913 
914     if (Subtarget.hasVSX()) {
915       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
916       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
917       if (Subtarget.hasP8Vector()) {
918         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
919         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
920       }
921       if (Subtarget.hasDirectMove() && isPPC64) {
922         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
923         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
924         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
925         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
926         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
927         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
928         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
929         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
930       }
931       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
932 
933       // The nearbyint variants are not allowed to raise the inexact exception
934       // so we can only code-gen them with unsafe math.
935       if (TM.Options.UnsafeFPMath) {
936         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
937         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
938       }
939 
940       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
941       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
942       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
943       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
944       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
945       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
946       setOperationAction(ISD::FROUND, MVT::f64, Legal);
947       setOperationAction(ISD::FRINT, MVT::f64, Legal);
948 
949       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
950       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
951       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
952       setOperationAction(ISD::FROUND, MVT::f32, Legal);
953       setOperationAction(ISD::FRINT, MVT::f32, Legal);
954 
955       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
956       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
957 
958       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
959       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
960 
961       // Share the Altivec comparison restrictions.
962       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
963       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
964       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
965       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
966 
967       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
968       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
969 
970       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
971 
972       if (Subtarget.hasP8Vector())
973         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
974 
975       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
976 
977       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
978       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
979       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
980 
981       if (Subtarget.hasP8Altivec()) {
982         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
983         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
984         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
985 
986         // 128 bit shifts can be accomplished via 3 instructions for SHL and
987         // SRL, but not for SRA because of the instructions available:
988         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
989         // doing
990         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
991         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
992         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
993 
994         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
995       }
996       else {
997         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
998         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
999         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1000 
1001         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1002 
1003         // VSX v2i64 only supports non-arithmetic operations.
1004         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1005         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1006       }
1007 
1008       if (Subtarget.isISA3_1())
1009         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1010       else
1011         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1012 
1013       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1014       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1015       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1016       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1017 
1018       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1019 
1020       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1021       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1022       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1023       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1024       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1025       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1026       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1027       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1028 
1029       // Custom handling for partial vectors of integers converted to
1030       // floating point. We already have optimal handling for v2i32 through
1031       // the DAG combine, so those aren't necessary.
1032       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1033       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1034       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1035       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1036       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1037       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1038       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1039       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1040       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1041       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1042       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1043       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1044       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1045       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1046       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1047       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1048 
1049       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1050       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1051       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1052       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1053       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1054       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1055 
1056       if (Subtarget.hasDirectMove())
1057         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1058       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1059 
1060       // Handle constrained floating-point operations of vector.
1061       // The predictor is `hasVSX` because altivec instruction has
1062       // no exception but VSX vector instruction has.
1063       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1064       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1065       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1066       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1067       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1068       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1069       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1070       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1071       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1072       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1073       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1074       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1075       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1076 
1077       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1078       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1079       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1080       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1081       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1082       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1083       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1084       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1085       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1086       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1087       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1088       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1089       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1090 
1091       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1092     }
1093 
1094     if (Subtarget.hasP8Altivec()) {
1095       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1096       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1097     }
1098 
1099     if (Subtarget.hasP9Vector()) {
1100       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1101       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1102 
1103       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1104       // SRL, but not for SRA because of the instructions available:
1105       // VS{RL} and VS{RL}O.
1106       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1107       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1108       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1109 
1110       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1111       setOperationAction(ISD::FADD, MVT::f128, Legal);
1112       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1113       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1114       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1115       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1116       // No extending loads to f128 on PPC.
1117       for (MVT FPT : MVT::fp_valuetypes())
1118         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1119       setOperationAction(ISD::FMA, MVT::f128, Legal);
1120       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1121       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1122       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1123       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1124       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1125       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1126 
1127       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1128       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1129       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1130       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1131       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1132       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1133 
1134       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1135       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1136       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1137       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1138       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1139       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1140       // No implementation for these ops for PowerPC.
1141       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1142       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1143       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1144       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1145       setOperationAction(ISD::FREM, MVT::f128, Expand);
1146 
1147       // Handle constrained floating-point operations of fp128
1148       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1149       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1150       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1151       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1152       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1153       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1154       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1155       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1156       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1157       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1158       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1159       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1160       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1161       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1162       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1163       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1164       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1165       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1166       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1167       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1168     }
1169 
1170     if (Subtarget.hasP9Altivec()) {
1171       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1172       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1173 
1174       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1175       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1176       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1177       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1178       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1179       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1180       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1181     }
1182   }
1183 
1184   if (Subtarget.pairedVectorMemops()) {
1185     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1186     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1187     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1188   }
1189   if (Subtarget.hasMMA()) {
1190     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1191     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1192     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1193     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1194   }
1195 
1196   if (Subtarget.has64BitSupport())
1197     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1198 
1199   if (Subtarget.isISA3_1())
1200     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1201 
1202   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1203 
1204   if (!isPPC64) {
1205     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1206     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1207   }
1208 
1209   setBooleanContents(ZeroOrOneBooleanContent);
1210 
1211   if (Subtarget.hasAltivec()) {
1212     // Altivec instructions set fields to all zeros or all ones.
1213     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1214   }
1215 
1216   if (!isPPC64) {
1217     // These libcalls are not available in 32-bit.
1218     setLibcallName(RTLIB::SHL_I128, nullptr);
1219     setLibcallName(RTLIB::SRL_I128, nullptr);
1220     setLibcallName(RTLIB::SRA_I128, nullptr);
1221   }
1222 
1223   if (!isPPC64)
1224     setMaxAtomicSizeInBitsSupported(32);
1225 
1226   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1227 
1228   // We have target-specific dag combine patterns for the following nodes:
1229   setTargetDAGCombine(ISD::ADD);
1230   setTargetDAGCombine(ISD::SHL);
1231   setTargetDAGCombine(ISD::SRA);
1232   setTargetDAGCombine(ISD::SRL);
1233   setTargetDAGCombine(ISD::MUL);
1234   setTargetDAGCombine(ISD::FMA);
1235   setTargetDAGCombine(ISD::SINT_TO_FP);
1236   setTargetDAGCombine(ISD::BUILD_VECTOR);
1237   if (Subtarget.hasFPCVT())
1238     setTargetDAGCombine(ISD::UINT_TO_FP);
1239   setTargetDAGCombine(ISD::LOAD);
1240   setTargetDAGCombine(ISD::STORE);
1241   setTargetDAGCombine(ISD::BR_CC);
1242   if (Subtarget.useCRBits())
1243     setTargetDAGCombine(ISD::BRCOND);
1244   setTargetDAGCombine(ISD::BSWAP);
1245   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1246   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1247   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1248 
1249   setTargetDAGCombine(ISD::SIGN_EXTEND);
1250   setTargetDAGCombine(ISD::ZERO_EXTEND);
1251   setTargetDAGCombine(ISD::ANY_EXTEND);
1252 
1253   setTargetDAGCombine(ISD::TRUNCATE);
1254   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1255 
1256 
1257   if (Subtarget.useCRBits()) {
1258     setTargetDAGCombine(ISD::TRUNCATE);
1259     setTargetDAGCombine(ISD::SETCC);
1260     setTargetDAGCombine(ISD::SELECT_CC);
1261   }
1262 
1263   if (Subtarget.hasP9Altivec()) {
1264     setTargetDAGCombine(ISD::ABS);
1265     setTargetDAGCombine(ISD::VSELECT);
1266   }
1267 
1268   setLibcallName(RTLIB::LOG_F128, "logf128");
1269   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1270   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1271   setLibcallName(RTLIB::EXP_F128, "expf128");
1272   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1273   setLibcallName(RTLIB::SIN_F128, "sinf128");
1274   setLibcallName(RTLIB::COS_F128, "cosf128");
1275   setLibcallName(RTLIB::POW_F128, "powf128");
1276   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1277   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1278   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1279   setLibcallName(RTLIB::REM_F128, "fmodf128");
1280 
1281   // With 32 condition bits, we don't need to sink (and duplicate) compares
1282   // aggressively in CodeGenPrep.
1283   if (Subtarget.useCRBits()) {
1284     setHasMultipleConditionRegisters();
1285     setJumpIsExpensive();
1286   }
1287 
1288   setMinFunctionAlignment(Align(4));
1289 
1290   switch (Subtarget.getCPUDirective()) {
1291   default: break;
1292   case PPC::DIR_970:
1293   case PPC::DIR_A2:
1294   case PPC::DIR_E500:
1295   case PPC::DIR_E500mc:
1296   case PPC::DIR_E5500:
1297   case PPC::DIR_PWR4:
1298   case PPC::DIR_PWR5:
1299   case PPC::DIR_PWR5X:
1300   case PPC::DIR_PWR6:
1301   case PPC::DIR_PWR6X:
1302   case PPC::DIR_PWR7:
1303   case PPC::DIR_PWR8:
1304   case PPC::DIR_PWR9:
1305   case PPC::DIR_PWR10:
1306   case PPC::DIR_PWR_FUTURE:
1307     setPrefLoopAlignment(Align(16));
1308     setPrefFunctionAlignment(Align(16));
1309     break;
1310   }
1311 
1312   if (Subtarget.enableMachineScheduler())
1313     setSchedulingPreference(Sched::Source);
1314   else
1315     setSchedulingPreference(Sched::Hybrid);
1316 
1317   computeRegisterProperties(STI.getRegisterInfo());
1318 
1319   // The Freescale cores do better with aggressive inlining of memcpy and
1320   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1321   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1322       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1323     MaxStoresPerMemset = 32;
1324     MaxStoresPerMemsetOptSize = 16;
1325     MaxStoresPerMemcpy = 32;
1326     MaxStoresPerMemcpyOptSize = 8;
1327     MaxStoresPerMemmove = 32;
1328     MaxStoresPerMemmoveOptSize = 8;
1329   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1330     // The A2 also benefits from (very) aggressive inlining of memcpy and
1331     // friends. The overhead of a the function call, even when warm, can be
1332     // over one hundred cycles.
1333     MaxStoresPerMemset = 128;
1334     MaxStoresPerMemcpy = 128;
1335     MaxStoresPerMemmove = 128;
1336     MaxLoadsPerMemcmp = 128;
1337   } else {
1338     MaxLoadsPerMemcmp = 8;
1339     MaxLoadsPerMemcmpOptSize = 4;
1340   }
1341 
1342   IsStrictFPEnabled = true;
1343 
1344   // Let the subtarget (CPU) decide if a predictable select is more expensive
1345   // than the corresponding branch. This information is used in CGP to decide
1346   // when to convert selects into branches.
1347   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1348 }
1349 
1350 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1351 /// the desired ByVal argument alignment.
1352 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1353   if (MaxAlign == MaxMaxAlign)
1354     return;
1355   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1356     if (MaxMaxAlign >= 32 &&
1357         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1358       MaxAlign = Align(32);
1359     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1360              MaxAlign < 16)
1361       MaxAlign = Align(16);
1362   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1363     Align EltAlign;
1364     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1365     if (EltAlign > MaxAlign)
1366       MaxAlign = EltAlign;
1367   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1368     for (auto *EltTy : STy->elements()) {
1369       Align EltAlign;
1370       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1371       if (EltAlign > MaxAlign)
1372         MaxAlign = EltAlign;
1373       if (MaxAlign == MaxMaxAlign)
1374         break;
1375     }
1376   }
1377 }
1378 
1379 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1380 /// function arguments in the caller parameter area.
1381 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1382                                                   const DataLayout &DL) const {
1383   // 16byte and wider vectors are passed on 16byte boundary.
1384   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1385   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1386   if (Subtarget.hasAltivec())
1387     getMaxByValAlign(Ty, Alignment, Align(16));
1388   return Alignment.value();
1389 }
1390 
1391 bool PPCTargetLowering::useSoftFloat() const {
1392   return Subtarget.useSoftFloat();
1393 }
1394 
1395 bool PPCTargetLowering::hasSPE() const {
1396   return Subtarget.hasSPE();
1397 }
1398 
1399 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1400   return VT.isScalarInteger();
1401 }
1402 
1403 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1404 /// type is cheaper than a multiply followed by a shift.
1405 /// This is true for words and doublewords on 64-bit PowerPC.
1406 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1407   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1408                               isOperationLegal(ISD::MULHU, Type)))
1409     return true;
1410   return TargetLowering::isMulhCheaperThanMulShift(Type);
1411 }
1412 
1413 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1414   switch ((PPCISD::NodeType)Opcode) {
1415   case PPCISD::FIRST_NUMBER:    break;
1416   case PPCISD::FSEL:            return "PPCISD::FSEL";
1417   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1418   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1419   case PPCISD::FCFID:           return "PPCISD::FCFID";
1420   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1421   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1422   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1423   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1424   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1425   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1426   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1427   case PPCISD::FP_TO_UINT_IN_VSR:
1428                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1429   case PPCISD::FP_TO_SINT_IN_VSR:
1430                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1431   case PPCISD::FRE:             return "PPCISD::FRE";
1432   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1433   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1434   case PPCISD::VPERM:           return "PPCISD::VPERM";
1435   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1436   case PPCISD::XXSPLTI_SP_TO_DP:
1437     return "PPCISD::XXSPLTI_SP_TO_DP";
1438   case PPCISD::XXSPLTI32DX:
1439     return "PPCISD::XXSPLTI32DX";
1440   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1441   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1442   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1443   case PPCISD::CMPB:            return "PPCISD::CMPB";
1444   case PPCISD::Hi:              return "PPCISD::Hi";
1445   case PPCISD::Lo:              return "PPCISD::Lo";
1446   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1447   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1448   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1449   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1450   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1451   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1452   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1453   case PPCISD::SRL:             return "PPCISD::SRL";
1454   case PPCISD::SRA:             return "PPCISD::SRA";
1455   case PPCISD::SHL:             return "PPCISD::SHL";
1456   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1457   case PPCISD::CALL:            return "PPCISD::CALL";
1458   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1459   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1460   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1461   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1462   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1463   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1464   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1465   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1466   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1467   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1468   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1469   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1470   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1471   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1472   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1473   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1474     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1475   case PPCISD::ANDI_rec_1_EQ_BIT:
1476     return "PPCISD::ANDI_rec_1_EQ_BIT";
1477   case PPCISD::ANDI_rec_1_GT_BIT:
1478     return "PPCISD::ANDI_rec_1_GT_BIT";
1479   case PPCISD::VCMP:            return "PPCISD::VCMP";
1480   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1481   case PPCISD::LBRX:            return "PPCISD::LBRX";
1482   case PPCISD::STBRX:           return "PPCISD::STBRX";
1483   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1484   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1485   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1486   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1487   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1488   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1489   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1490   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1491   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1492   case PPCISD::ST_VSR_SCAL_INT:
1493                                 return "PPCISD::ST_VSR_SCAL_INT";
1494   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1495   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1496   case PPCISD::BDZ:             return "PPCISD::BDZ";
1497   case PPCISD::MFFS:            return "PPCISD::MFFS";
1498   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1499   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1500   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1501   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1502   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1503   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1504   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1505   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1506   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1507   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1508   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1509   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1510   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1511   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1512   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1513   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1514   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1515   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1516   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1517   case PPCISD::PADDI_DTPREL:
1518     return "PPCISD::PADDI_DTPREL";
1519   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1520   case PPCISD::SC:              return "PPCISD::SC";
1521   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1522   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1523   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1524   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1525   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1526   case PPCISD::VABSD:           return "PPCISD::VABSD";
1527   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1528   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1529   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1530   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1531   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1532   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1533   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1534   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1535     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1536   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1537     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1538   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1539   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1540   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1541   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1542   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1543   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1544   case PPCISD::STRICT_FADDRTZ:
1545     return "PPCISD::STRICT_FADDRTZ";
1546   case PPCISD::STRICT_FCTIDZ:
1547     return "PPCISD::STRICT_FCTIDZ";
1548   case PPCISD::STRICT_FCTIWZ:
1549     return "PPCISD::STRICT_FCTIWZ";
1550   case PPCISD::STRICT_FCTIDUZ:
1551     return "PPCISD::STRICT_FCTIDUZ";
1552   case PPCISD::STRICT_FCTIWUZ:
1553     return "PPCISD::STRICT_FCTIWUZ";
1554   case PPCISD::STRICT_FCFID:
1555     return "PPCISD::STRICT_FCFID";
1556   case PPCISD::STRICT_FCFIDU:
1557     return "PPCISD::STRICT_FCFIDU";
1558   case PPCISD::STRICT_FCFIDS:
1559     return "PPCISD::STRICT_FCFIDS";
1560   case PPCISD::STRICT_FCFIDUS:
1561     return "PPCISD::STRICT_FCFIDUS";
1562   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1563   }
1564   return nullptr;
1565 }
1566 
1567 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1568                                           EVT VT) const {
1569   if (!VT.isVector())
1570     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1571 
1572   return VT.changeVectorElementTypeToInteger();
1573 }
1574 
1575 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1576   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1577   return true;
1578 }
1579 
1580 //===----------------------------------------------------------------------===//
1581 // Node matching predicates, for use by the tblgen matching code.
1582 //===----------------------------------------------------------------------===//
1583 
1584 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1585 static bool isFloatingPointZero(SDValue Op) {
1586   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1587     return CFP->getValueAPF().isZero();
1588   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1589     // Maybe this has already been legalized into the constant pool?
1590     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1591       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1592         return CFP->getValueAPF().isZero();
1593   }
1594   return false;
1595 }
1596 
1597 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1598 /// true if Op is undef or if it matches the specified value.
1599 static bool isConstantOrUndef(int Op, int Val) {
1600   return Op < 0 || Op == Val;
1601 }
1602 
1603 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1604 /// VPKUHUM instruction.
1605 /// The ShuffleKind distinguishes between big-endian operations with
1606 /// two different inputs (0), either-endian operations with two identical
1607 /// inputs (1), and little-endian operations with two different inputs (2).
1608 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1609 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1610                                SelectionDAG &DAG) {
1611   bool IsLE = DAG.getDataLayout().isLittleEndian();
1612   if (ShuffleKind == 0) {
1613     if (IsLE)
1614       return false;
1615     for (unsigned i = 0; i != 16; ++i)
1616       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1617         return false;
1618   } else if (ShuffleKind == 2) {
1619     if (!IsLE)
1620       return false;
1621     for (unsigned i = 0; i != 16; ++i)
1622       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1623         return false;
1624   } else if (ShuffleKind == 1) {
1625     unsigned j = IsLE ? 0 : 1;
1626     for (unsigned i = 0; i != 8; ++i)
1627       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1628           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1629         return false;
1630   }
1631   return true;
1632 }
1633 
1634 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1635 /// VPKUWUM instruction.
1636 /// The ShuffleKind distinguishes between big-endian operations with
1637 /// two different inputs (0), either-endian operations with two identical
1638 /// inputs (1), and little-endian operations with two different inputs (2).
1639 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1640 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1641                                SelectionDAG &DAG) {
1642   bool IsLE = DAG.getDataLayout().isLittleEndian();
1643   if (ShuffleKind == 0) {
1644     if (IsLE)
1645       return false;
1646     for (unsigned i = 0; i != 16; i += 2)
1647       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1648           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1649         return false;
1650   } else if (ShuffleKind == 2) {
1651     if (!IsLE)
1652       return false;
1653     for (unsigned i = 0; i != 16; i += 2)
1654       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1655           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1656         return false;
1657   } else if (ShuffleKind == 1) {
1658     unsigned j = IsLE ? 0 : 2;
1659     for (unsigned i = 0; i != 8; i += 2)
1660       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1661           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1662           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1663           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1664         return false;
1665   }
1666   return true;
1667 }
1668 
1669 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1670 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1671 /// current subtarget.
1672 ///
1673 /// The ShuffleKind distinguishes between big-endian operations with
1674 /// two different inputs (0), either-endian operations with two identical
1675 /// inputs (1), and little-endian operations with two different inputs (2).
1676 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1677 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1678                                SelectionDAG &DAG) {
1679   const PPCSubtarget& Subtarget =
1680       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1681   if (!Subtarget.hasP8Vector())
1682     return false;
1683 
1684   bool IsLE = DAG.getDataLayout().isLittleEndian();
1685   if (ShuffleKind == 0) {
1686     if (IsLE)
1687       return false;
1688     for (unsigned i = 0; i != 16; i += 4)
1689       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1690           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1691           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1692           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1693         return false;
1694   } else if (ShuffleKind == 2) {
1695     if (!IsLE)
1696       return false;
1697     for (unsigned i = 0; i != 16; i += 4)
1698       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1699           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1700           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1701           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1702         return false;
1703   } else if (ShuffleKind == 1) {
1704     unsigned j = IsLE ? 0 : 4;
1705     for (unsigned i = 0; i != 8; i += 4)
1706       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1707           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1708           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1709           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1710           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1711           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1712           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1713           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1714         return false;
1715   }
1716   return true;
1717 }
1718 
1719 /// isVMerge - Common function, used to match vmrg* shuffles.
1720 ///
1721 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1722                      unsigned LHSStart, unsigned RHSStart) {
1723   if (N->getValueType(0) != MVT::v16i8)
1724     return false;
1725   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1726          "Unsupported merge size!");
1727 
1728   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1729     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1730       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1731                              LHSStart+j+i*UnitSize) ||
1732           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1733                              RHSStart+j+i*UnitSize))
1734         return false;
1735     }
1736   return true;
1737 }
1738 
1739 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1740 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1741 /// The ShuffleKind distinguishes between big-endian merges with two
1742 /// different inputs (0), either-endian merges with two identical inputs (1),
1743 /// and little-endian merges with two different inputs (2).  For the latter,
1744 /// the input operands are swapped (see PPCInstrAltivec.td).
1745 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1746                              unsigned ShuffleKind, SelectionDAG &DAG) {
1747   if (DAG.getDataLayout().isLittleEndian()) {
1748     if (ShuffleKind == 1) // unary
1749       return isVMerge(N, UnitSize, 0, 0);
1750     else if (ShuffleKind == 2) // swapped
1751       return isVMerge(N, UnitSize, 0, 16);
1752     else
1753       return false;
1754   } else {
1755     if (ShuffleKind == 1) // unary
1756       return isVMerge(N, UnitSize, 8, 8);
1757     else if (ShuffleKind == 0) // normal
1758       return isVMerge(N, UnitSize, 8, 24);
1759     else
1760       return false;
1761   }
1762 }
1763 
1764 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1765 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1766 /// The ShuffleKind distinguishes between big-endian merges with two
1767 /// different inputs (0), either-endian merges with two identical inputs (1),
1768 /// and little-endian merges with two different inputs (2).  For the latter,
1769 /// the input operands are swapped (see PPCInstrAltivec.td).
1770 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1771                              unsigned ShuffleKind, SelectionDAG &DAG) {
1772   if (DAG.getDataLayout().isLittleEndian()) {
1773     if (ShuffleKind == 1) // unary
1774       return isVMerge(N, UnitSize, 8, 8);
1775     else if (ShuffleKind == 2) // swapped
1776       return isVMerge(N, UnitSize, 8, 24);
1777     else
1778       return false;
1779   } else {
1780     if (ShuffleKind == 1) // unary
1781       return isVMerge(N, UnitSize, 0, 0);
1782     else if (ShuffleKind == 0) // normal
1783       return isVMerge(N, UnitSize, 0, 16);
1784     else
1785       return false;
1786   }
1787 }
1788 
1789 /**
1790  * Common function used to match vmrgew and vmrgow shuffles
1791  *
1792  * The indexOffset determines whether to look for even or odd words in
1793  * the shuffle mask. This is based on the of the endianness of the target
1794  * machine.
1795  *   - Little Endian:
1796  *     - Use offset of 0 to check for odd elements
1797  *     - Use offset of 4 to check for even elements
1798  *   - Big Endian:
1799  *     - Use offset of 0 to check for even elements
1800  *     - Use offset of 4 to check for odd elements
1801  * A detailed description of the vector element ordering for little endian and
1802  * big endian can be found at
1803  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1804  * Targeting your applications - what little endian and big endian IBM XL C/C++
1805  * compiler differences mean to you
1806  *
1807  * The mask to the shuffle vector instruction specifies the indices of the
1808  * elements from the two input vectors to place in the result. The elements are
1809  * numbered in array-access order, starting with the first vector. These vectors
1810  * are always of type v16i8, thus each vector will contain 16 elements of size
1811  * 8. More info on the shuffle vector can be found in the
1812  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1813  * Language Reference.
1814  *
1815  * The RHSStartValue indicates whether the same input vectors are used (unary)
1816  * or two different input vectors are used, based on the following:
1817  *   - If the instruction uses the same vector for both inputs, the range of the
1818  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1819  *     be 0.
1820  *   - If the instruction has two different vectors then the range of the
1821  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1822  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1823  *     to 31 specify elements in the second vector).
1824  *
1825  * \param[in] N The shuffle vector SD Node to analyze
1826  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1827  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1828  * vector to the shuffle_vector instruction
1829  * \return true iff this shuffle vector represents an even or odd word merge
1830  */
1831 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1832                      unsigned RHSStartValue) {
1833   if (N->getValueType(0) != MVT::v16i8)
1834     return false;
1835 
1836   for (unsigned i = 0; i < 2; ++i)
1837     for (unsigned j = 0; j < 4; ++j)
1838       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1839                              i*RHSStartValue+j+IndexOffset) ||
1840           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1841                              i*RHSStartValue+j+IndexOffset+8))
1842         return false;
1843   return true;
1844 }
1845 
1846 /**
1847  * Determine if the specified shuffle mask is suitable for the vmrgew or
1848  * vmrgow instructions.
1849  *
1850  * \param[in] N The shuffle vector SD Node to analyze
1851  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1852  * \param[in] ShuffleKind Identify the type of merge:
1853  *   - 0 = big-endian merge with two different inputs;
1854  *   - 1 = either-endian merge with two identical inputs;
1855  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1856  *     little-endian merges).
1857  * \param[in] DAG The current SelectionDAG
1858  * \return true iff this shuffle mask
1859  */
1860 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1861                               unsigned ShuffleKind, SelectionDAG &DAG) {
1862   if (DAG.getDataLayout().isLittleEndian()) {
1863     unsigned indexOffset = CheckEven ? 4 : 0;
1864     if (ShuffleKind == 1) // Unary
1865       return isVMerge(N, indexOffset, 0);
1866     else if (ShuffleKind == 2) // swapped
1867       return isVMerge(N, indexOffset, 16);
1868     else
1869       return false;
1870   }
1871   else {
1872     unsigned indexOffset = CheckEven ? 0 : 4;
1873     if (ShuffleKind == 1) // Unary
1874       return isVMerge(N, indexOffset, 0);
1875     else if (ShuffleKind == 0) // Normal
1876       return isVMerge(N, indexOffset, 16);
1877     else
1878       return false;
1879   }
1880   return false;
1881 }
1882 
1883 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1884 /// amount, otherwise return -1.
1885 /// The ShuffleKind distinguishes between big-endian operations with two
1886 /// different inputs (0), either-endian operations with two identical inputs
1887 /// (1), and little-endian operations with two different inputs (2).  For the
1888 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1889 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1890                              SelectionDAG &DAG) {
1891   if (N->getValueType(0) != MVT::v16i8)
1892     return -1;
1893 
1894   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1895 
1896   // Find the first non-undef value in the shuffle mask.
1897   unsigned i;
1898   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1899     /*search*/;
1900 
1901   if (i == 16) return -1;  // all undef.
1902 
1903   // Otherwise, check to see if the rest of the elements are consecutively
1904   // numbered from this value.
1905   unsigned ShiftAmt = SVOp->getMaskElt(i);
1906   if (ShiftAmt < i) return -1;
1907 
1908   ShiftAmt -= i;
1909   bool isLE = DAG.getDataLayout().isLittleEndian();
1910 
1911   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1912     // Check the rest of the elements to see if they are consecutive.
1913     for (++i; i != 16; ++i)
1914       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1915         return -1;
1916   } else if (ShuffleKind == 1) {
1917     // Check the rest of the elements to see if they are consecutive.
1918     for (++i; i != 16; ++i)
1919       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1920         return -1;
1921   } else
1922     return -1;
1923 
1924   if (isLE)
1925     ShiftAmt = 16 - ShiftAmt;
1926 
1927   return ShiftAmt;
1928 }
1929 
1930 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1931 /// specifies a splat of a single element that is suitable for input to
1932 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1933 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1934   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1935          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1936 
1937   // The consecutive indices need to specify an element, not part of two
1938   // different elements.  So abandon ship early if this isn't the case.
1939   if (N->getMaskElt(0) % EltSize != 0)
1940     return false;
1941 
1942   // This is a splat operation if each element of the permute is the same, and
1943   // if the value doesn't reference the second vector.
1944   unsigned ElementBase = N->getMaskElt(0);
1945 
1946   // FIXME: Handle UNDEF elements too!
1947   if (ElementBase >= 16)
1948     return false;
1949 
1950   // Check that the indices are consecutive, in the case of a multi-byte element
1951   // splatted with a v16i8 mask.
1952   for (unsigned i = 1; i != EltSize; ++i)
1953     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1954       return false;
1955 
1956   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1957     if (N->getMaskElt(i) < 0) continue;
1958     for (unsigned j = 0; j != EltSize; ++j)
1959       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1960         return false;
1961   }
1962   return true;
1963 }
1964 
1965 /// Check that the mask is shuffling N byte elements. Within each N byte
1966 /// element of the mask, the indices could be either in increasing or
1967 /// decreasing order as long as they are consecutive.
1968 /// \param[in] N the shuffle vector SD Node to analyze
1969 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1970 /// Word/DoubleWord/QuadWord).
1971 /// \param[in] StepLen the delta indices number among the N byte element, if
1972 /// the mask is in increasing/decreasing order then it is 1/-1.
1973 /// \return true iff the mask is shuffling N byte elements.
1974 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1975                                    int StepLen) {
1976   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1977          "Unexpected element width.");
1978   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1979 
1980   unsigned NumOfElem = 16 / Width;
1981   unsigned MaskVal[16]; //  Width is never greater than 16
1982   for (unsigned i = 0; i < NumOfElem; ++i) {
1983     MaskVal[0] = N->getMaskElt(i * Width);
1984     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1985       return false;
1986     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1987       return false;
1988     }
1989 
1990     for (unsigned int j = 1; j < Width; ++j) {
1991       MaskVal[j] = N->getMaskElt(i * Width + j);
1992       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1993         return false;
1994       }
1995     }
1996   }
1997 
1998   return true;
1999 }
2000 
2001 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2002                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2003   if (!isNByteElemShuffleMask(N, 4, 1))
2004     return false;
2005 
2006   // Now we look at mask elements 0,4,8,12
2007   unsigned M0 = N->getMaskElt(0) / 4;
2008   unsigned M1 = N->getMaskElt(4) / 4;
2009   unsigned M2 = N->getMaskElt(8) / 4;
2010   unsigned M3 = N->getMaskElt(12) / 4;
2011   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2012   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2013 
2014   // Below, let H and L be arbitrary elements of the shuffle mask
2015   // where H is in the range [4,7] and L is in the range [0,3].
2016   // H, 1, 2, 3 or L, 5, 6, 7
2017   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2018       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2019     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2020     InsertAtByte = IsLE ? 12 : 0;
2021     Swap = M0 < 4;
2022     return true;
2023   }
2024   // 0, H, 2, 3 or 4, L, 6, 7
2025   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2026       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2027     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2028     InsertAtByte = IsLE ? 8 : 4;
2029     Swap = M1 < 4;
2030     return true;
2031   }
2032   // 0, 1, H, 3 or 4, 5, L, 7
2033   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2034       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2035     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2036     InsertAtByte = IsLE ? 4 : 8;
2037     Swap = M2 < 4;
2038     return true;
2039   }
2040   // 0, 1, 2, H or 4, 5, 6, L
2041   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2042       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2043     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2044     InsertAtByte = IsLE ? 0 : 12;
2045     Swap = M3 < 4;
2046     return true;
2047   }
2048 
2049   // If both vector operands for the shuffle are the same vector, the mask will
2050   // contain only elements from the first one and the second one will be undef.
2051   if (N->getOperand(1).isUndef()) {
2052     ShiftElts = 0;
2053     Swap = true;
2054     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2055     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2056       InsertAtByte = IsLE ? 12 : 0;
2057       return true;
2058     }
2059     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2060       InsertAtByte = IsLE ? 8 : 4;
2061       return true;
2062     }
2063     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2064       InsertAtByte = IsLE ? 4 : 8;
2065       return true;
2066     }
2067     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2068       InsertAtByte = IsLE ? 0 : 12;
2069       return true;
2070     }
2071   }
2072 
2073   return false;
2074 }
2075 
2076 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2077                                bool &Swap, bool IsLE) {
2078   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2079   // Ensure each byte index of the word is consecutive.
2080   if (!isNByteElemShuffleMask(N, 4, 1))
2081     return false;
2082 
2083   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2084   unsigned M0 = N->getMaskElt(0) / 4;
2085   unsigned M1 = N->getMaskElt(4) / 4;
2086   unsigned M2 = N->getMaskElt(8) / 4;
2087   unsigned M3 = N->getMaskElt(12) / 4;
2088 
2089   // If both vector operands for the shuffle are the same vector, the mask will
2090   // contain only elements from the first one and the second one will be undef.
2091   if (N->getOperand(1).isUndef()) {
2092     assert(M0 < 4 && "Indexing into an undef vector?");
2093     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2094       return false;
2095 
2096     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2097     Swap = false;
2098     return true;
2099   }
2100 
2101   // Ensure each word index of the ShuffleVector Mask is consecutive.
2102   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2103     return false;
2104 
2105   if (IsLE) {
2106     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2107       // Input vectors don't need to be swapped if the leading element
2108       // of the result is one of the 3 left elements of the second vector
2109       // (or if there is no shift to be done at all).
2110       Swap = false;
2111       ShiftElts = (8 - M0) % 8;
2112     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2113       // Input vectors need to be swapped if the leading element
2114       // of the result is one of the 3 left elements of the first vector
2115       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2116       Swap = true;
2117       ShiftElts = (4 - M0) % 4;
2118     }
2119 
2120     return true;
2121   } else {                                          // BE
2122     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2123       // Input vectors don't need to be swapped if the leading element
2124       // of the result is one of the 4 elements of the first vector.
2125       Swap = false;
2126       ShiftElts = M0;
2127     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2128       // Input vectors need to be swapped if the leading element
2129       // of the result is one of the 4 elements of the right vector.
2130       Swap = true;
2131       ShiftElts = M0 - 4;
2132     }
2133 
2134     return true;
2135   }
2136 }
2137 
2138 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2139   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2140 
2141   if (!isNByteElemShuffleMask(N, Width, -1))
2142     return false;
2143 
2144   for (int i = 0; i < 16; i += Width)
2145     if (N->getMaskElt(i) != i + Width - 1)
2146       return false;
2147 
2148   return true;
2149 }
2150 
2151 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2152   return isXXBRShuffleMaskHelper(N, 2);
2153 }
2154 
2155 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2156   return isXXBRShuffleMaskHelper(N, 4);
2157 }
2158 
2159 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2160   return isXXBRShuffleMaskHelper(N, 8);
2161 }
2162 
2163 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2164   return isXXBRShuffleMaskHelper(N, 16);
2165 }
2166 
2167 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2168 /// if the inputs to the instruction should be swapped and set \p DM to the
2169 /// value for the immediate.
2170 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2171 /// AND element 0 of the result comes from the first input (LE) or second input
2172 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2173 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2174 /// mask.
2175 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2176                                bool &Swap, bool IsLE) {
2177   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2178 
2179   // Ensure each byte index of the double word is consecutive.
2180   if (!isNByteElemShuffleMask(N, 8, 1))
2181     return false;
2182 
2183   unsigned M0 = N->getMaskElt(0) / 8;
2184   unsigned M1 = N->getMaskElt(8) / 8;
2185   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2186 
2187   // If both vector operands for the shuffle are the same vector, the mask will
2188   // contain only elements from the first one and the second one will be undef.
2189   if (N->getOperand(1).isUndef()) {
2190     if ((M0 | M1) < 2) {
2191       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2192       Swap = false;
2193       return true;
2194     } else
2195       return false;
2196   }
2197 
2198   if (IsLE) {
2199     if (M0 > 1 && M1 < 2) {
2200       Swap = false;
2201     } else if (M0 < 2 && M1 > 1) {
2202       M0 = (M0 + 2) % 4;
2203       M1 = (M1 + 2) % 4;
2204       Swap = true;
2205     } else
2206       return false;
2207 
2208     // Note: if control flow comes here that means Swap is already set above
2209     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2210     return true;
2211   } else { // BE
2212     if (M0 < 2 && M1 > 1) {
2213       Swap = false;
2214     } else if (M0 > 1 && M1 < 2) {
2215       M0 = (M0 + 2) % 4;
2216       M1 = (M1 + 2) % 4;
2217       Swap = true;
2218     } else
2219       return false;
2220 
2221     // Note: if control flow comes here that means Swap is already set above
2222     DM = (M0 << 1) + (M1 & 1);
2223     return true;
2224   }
2225 }
2226 
2227 
2228 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2229 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2230 /// elements are counted from the left of the vector register).
2231 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2232                                          SelectionDAG &DAG) {
2233   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2234   assert(isSplatShuffleMask(SVOp, EltSize));
2235   if (DAG.getDataLayout().isLittleEndian())
2236     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2237   else
2238     return SVOp->getMaskElt(0) / EltSize;
2239 }
2240 
2241 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2242 /// by using a vspltis[bhw] instruction of the specified element size, return
2243 /// the constant being splatted.  The ByteSize field indicates the number of
2244 /// bytes of each element [124] -> [bhw].
2245 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2246   SDValue OpVal(nullptr, 0);
2247 
2248   // If ByteSize of the splat is bigger than the element size of the
2249   // build_vector, then we have a case where we are checking for a splat where
2250   // multiple elements of the buildvector are folded together into a single
2251   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2252   unsigned EltSize = 16/N->getNumOperands();
2253   if (EltSize < ByteSize) {
2254     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2255     SDValue UniquedVals[4];
2256     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2257 
2258     // See if all of the elements in the buildvector agree across.
2259     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2260       if (N->getOperand(i).isUndef()) continue;
2261       // If the element isn't a constant, bail fully out.
2262       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2263 
2264       if (!UniquedVals[i&(Multiple-1)].getNode())
2265         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2266       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2267         return SDValue();  // no match.
2268     }
2269 
2270     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2271     // either constant or undef values that are identical for each chunk.  See
2272     // if these chunks can form into a larger vspltis*.
2273 
2274     // Check to see if all of the leading entries are either 0 or -1.  If
2275     // neither, then this won't fit into the immediate field.
2276     bool LeadingZero = true;
2277     bool LeadingOnes = true;
2278     for (unsigned i = 0; i != Multiple-1; ++i) {
2279       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2280 
2281       LeadingZero &= isNullConstant(UniquedVals[i]);
2282       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2283     }
2284     // Finally, check the least significant entry.
2285     if (LeadingZero) {
2286       if (!UniquedVals[Multiple-1].getNode())
2287         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2288       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2289       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2290         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2291     }
2292     if (LeadingOnes) {
2293       if (!UniquedVals[Multiple-1].getNode())
2294         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2295       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2296       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2297         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2298     }
2299 
2300     return SDValue();
2301   }
2302 
2303   // Check to see if this buildvec has a single non-undef value in its elements.
2304   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2305     if (N->getOperand(i).isUndef()) continue;
2306     if (!OpVal.getNode())
2307       OpVal = N->getOperand(i);
2308     else if (OpVal != N->getOperand(i))
2309       return SDValue();
2310   }
2311 
2312   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2313 
2314   unsigned ValSizeInBytes = EltSize;
2315   uint64_t Value = 0;
2316   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2317     Value = CN->getZExtValue();
2318   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2319     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2320     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2321   }
2322 
2323   // If the splat value is larger than the element value, then we can never do
2324   // this splat.  The only case that we could fit the replicated bits into our
2325   // immediate field for would be zero, and we prefer to use vxor for it.
2326   if (ValSizeInBytes < ByteSize) return SDValue();
2327 
2328   // If the element value is larger than the splat value, check if it consists
2329   // of a repeated bit pattern of size ByteSize.
2330   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2331     return SDValue();
2332 
2333   // Properly sign extend the value.
2334   int MaskVal = SignExtend32(Value, ByteSize * 8);
2335 
2336   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2337   if (MaskVal == 0) return SDValue();
2338 
2339   // Finally, if this value fits in a 5 bit sext field, return it
2340   if (SignExtend32<5>(MaskVal) == MaskVal)
2341     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2342   return SDValue();
2343 }
2344 
2345 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2346 /// amount, otherwise return -1.
2347 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2348   EVT VT = N->getValueType(0);
2349   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2350     return -1;
2351 
2352   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2353 
2354   // Find the first non-undef value in the shuffle mask.
2355   unsigned i;
2356   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2357     /*search*/;
2358 
2359   if (i == 4) return -1;  // all undef.
2360 
2361   // Otherwise, check to see if the rest of the elements are consecutively
2362   // numbered from this value.
2363   unsigned ShiftAmt = SVOp->getMaskElt(i);
2364   if (ShiftAmt < i) return -1;
2365   ShiftAmt -= i;
2366 
2367   // Check the rest of the elements to see if they are consecutive.
2368   for (++i; i != 4; ++i)
2369     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2370       return -1;
2371 
2372   return ShiftAmt;
2373 }
2374 
2375 //===----------------------------------------------------------------------===//
2376 //  Addressing Mode Selection
2377 //===----------------------------------------------------------------------===//
2378 
2379 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2380 /// or 64-bit immediate, and if the value can be accurately represented as a
2381 /// sign extension from a 16-bit value.  If so, this returns true and the
2382 /// immediate.
2383 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2384   if (!isa<ConstantSDNode>(N))
2385     return false;
2386 
2387   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2388   if (N->getValueType(0) == MVT::i32)
2389     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2390   else
2391     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2392 }
2393 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2394   return isIntS16Immediate(Op.getNode(), Imm);
2395 }
2396 
2397 
2398 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2399 /// be represented as an indexed [r+r] operation.
2400 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2401                                                SDValue &Index,
2402                                                SelectionDAG &DAG) const {
2403   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2404       UI != E; ++UI) {
2405     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2406       if (Memop->getMemoryVT() == MVT::f64) {
2407           Base = N.getOperand(0);
2408           Index = N.getOperand(1);
2409           return true;
2410       }
2411     }
2412   }
2413   return false;
2414 }
2415 
2416 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2417 /// can be represented as an indexed [r+r] operation.  Returns false if it
2418 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2419 /// non-zero and N can be represented by a base register plus a signed 16-bit
2420 /// displacement, make a more precise judgement by checking (displacement % \p
2421 /// EncodingAlignment).
2422 bool PPCTargetLowering::SelectAddressRegReg(
2423     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2424     MaybeAlign EncodingAlignment) const {
2425   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2426   // a [pc+imm].
2427   if (SelectAddressPCRel(N, Base))
2428     return false;
2429 
2430   int16_t Imm = 0;
2431   if (N.getOpcode() == ISD::ADD) {
2432     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2433     // SPE load/store can only handle 8-bit offsets.
2434     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2435         return true;
2436     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2437         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2438       return false; // r+i
2439     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2440       return false;    // r+i
2441 
2442     Base = N.getOperand(0);
2443     Index = N.getOperand(1);
2444     return true;
2445   } else if (N.getOpcode() == ISD::OR) {
2446     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2447         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2448       return false; // r+i can fold it if we can.
2449 
2450     // If this is an or of disjoint bitfields, we can codegen this as an add
2451     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2452     // disjoint.
2453     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2454 
2455     if (LHSKnown.Zero.getBoolValue()) {
2456       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2457       // If all of the bits are known zero on the LHS or RHS, the add won't
2458       // carry.
2459       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2460         Base = N.getOperand(0);
2461         Index = N.getOperand(1);
2462         return true;
2463       }
2464     }
2465   }
2466 
2467   return false;
2468 }
2469 
2470 // If we happen to be doing an i64 load or store into a stack slot that has
2471 // less than a 4-byte alignment, then the frame-index elimination may need to
2472 // use an indexed load or store instruction (because the offset may not be a
2473 // multiple of 4). The extra register needed to hold the offset comes from the
2474 // register scavenger, and it is possible that the scavenger will need to use
2475 // an emergency spill slot. As a result, we need to make sure that a spill slot
2476 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2477 // stack slot.
2478 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2479   // FIXME: This does not handle the LWA case.
2480   if (VT != MVT::i64)
2481     return;
2482 
2483   // NOTE: We'll exclude negative FIs here, which come from argument
2484   // lowering, because there are no known test cases triggering this problem
2485   // using packed structures (or similar). We can remove this exclusion if
2486   // we find such a test case. The reason why this is so test-case driven is
2487   // because this entire 'fixup' is only to prevent crashes (from the
2488   // register scavenger) on not-really-valid inputs. For example, if we have:
2489   //   %a = alloca i1
2490   //   %b = bitcast i1* %a to i64*
2491   //   store i64* a, i64 b
2492   // then the store should really be marked as 'align 1', but is not. If it
2493   // were marked as 'align 1' then the indexed form would have been
2494   // instruction-selected initially, and the problem this 'fixup' is preventing
2495   // won't happen regardless.
2496   if (FrameIdx < 0)
2497     return;
2498 
2499   MachineFunction &MF = DAG.getMachineFunction();
2500   MachineFrameInfo &MFI = MF.getFrameInfo();
2501 
2502   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2503     return;
2504 
2505   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2506   FuncInfo->setHasNonRISpills();
2507 }
2508 
2509 /// Returns true if the address N can be represented by a base register plus
2510 /// a signed 16-bit displacement [r+imm], and if it is not better
2511 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2512 /// displacements that are multiples of that value.
2513 bool PPCTargetLowering::SelectAddressRegImm(
2514     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2515     MaybeAlign EncodingAlignment) const {
2516   // FIXME dl should come from parent load or store, not from address
2517   SDLoc dl(N);
2518 
2519   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2520   // a [pc+imm].
2521   if (SelectAddressPCRel(N, Base))
2522     return false;
2523 
2524   // If this can be more profitably realized as r+r, fail.
2525   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2526     return false;
2527 
2528   if (N.getOpcode() == ISD::ADD) {
2529     int16_t imm = 0;
2530     if (isIntS16Immediate(N.getOperand(1), imm) &&
2531         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2532       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2533       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2534         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2535         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2536       } else {
2537         Base = N.getOperand(0);
2538       }
2539       return true; // [r+i]
2540     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2541       // Match LOAD (ADD (X, Lo(G))).
2542       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2543              && "Cannot handle constant offsets yet!");
2544       Disp = N.getOperand(1).getOperand(0);  // The global address.
2545       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2546              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2547              Disp.getOpcode() == ISD::TargetConstantPool ||
2548              Disp.getOpcode() == ISD::TargetJumpTable);
2549       Base = N.getOperand(0);
2550       return true;  // [&g+r]
2551     }
2552   } else if (N.getOpcode() == ISD::OR) {
2553     int16_t imm = 0;
2554     if (isIntS16Immediate(N.getOperand(1), imm) &&
2555         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2556       // If this is an or of disjoint bitfields, we can codegen this as an add
2557       // (for better address arithmetic) if the LHS and RHS of the OR are
2558       // provably disjoint.
2559       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2560 
2561       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2562         // If all of the bits are known zero on the LHS or RHS, the add won't
2563         // carry.
2564         if (FrameIndexSDNode *FI =
2565               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2566           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2567           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2568         } else {
2569           Base = N.getOperand(0);
2570         }
2571         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2572         return true;
2573       }
2574     }
2575   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2576     // Loading from a constant address.
2577 
2578     // If this address fits entirely in a 16-bit sext immediate field, codegen
2579     // this as "d, 0"
2580     int16_t Imm;
2581     if (isIntS16Immediate(CN, Imm) &&
2582         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2583       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2584       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2585                              CN->getValueType(0));
2586       return true;
2587     }
2588 
2589     // Handle 32-bit sext immediates with LIS + addr mode.
2590     if ((CN->getValueType(0) == MVT::i32 ||
2591          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2592         (!EncodingAlignment ||
2593          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2594       int Addr = (int)CN->getZExtValue();
2595 
2596       // Otherwise, break this down into an LIS + disp.
2597       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2598 
2599       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2600                                    MVT::i32);
2601       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2602       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2603       return true;
2604     }
2605   }
2606 
2607   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2608   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2609     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2610     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2611   } else
2612     Base = N;
2613   return true;      // [r+0]
2614 }
2615 
2616 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2617 /// represented as an indexed [r+r] operation.
2618 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2619                                                 SDValue &Index,
2620                                                 SelectionDAG &DAG) const {
2621   // Check to see if we can easily represent this as an [r+r] address.  This
2622   // will fail if it thinks that the address is more profitably represented as
2623   // reg+imm, e.g. where imm = 0.
2624   if (SelectAddressRegReg(N, Base, Index, DAG))
2625     return true;
2626 
2627   // If the address is the result of an add, we will utilize the fact that the
2628   // address calculation includes an implicit add.  However, we can reduce
2629   // register pressure if we do not materialize a constant just for use as the
2630   // index register.  We only get rid of the add if it is not an add of a
2631   // value and a 16-bit signed constant and both have a single use.
2632   int16_t imm = 0;
2633   if (N.getOpcode() == ISD::ADD &&
2634       (!isIntS16Immediate(N.getOperand(1), imm) ||
2635        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2636     Base = N.getOperand(0);
2637     Index = N.getOperand(1);
2638     return true;
2639   }
2640 
2641   // Otherwise, do it the hard way, using R0 as the base register.
2642   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2643                          N.getValueType());
2644   Index = N;
2645   return true;
2646 }
2647 
2648 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2649   Ty *PCRelCand = dyn_cast<Ty>(N);
2650   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2651 }
2652 
2653 /// Returns true if this address is a PC Relative address.
2654 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2655 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2656 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2657   // This is a materialize PC Relative node. Always select this as PC Relative.
2658   Base = N;
2659   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2660     return true;
2661   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2662       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2663       isValidPCRelNode<JumpTableSDNode>(N) ||
2664       isValidPCRelNode<BlockAddressSDNode>(N))
2665     return true;
2666   return false;
2667 }
2668 
2669 /// Returns true if we should use a direct load into vector instruction
2670 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2671 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2672 
2673   // If there are any other uses other than scalar to vector, then we should
2674   // keep it as a scalar load -> direct move pattern to prevent multiple
2675   // loads.
2676   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2677   if (!LD)
2678     return false;
2679 
2680   EVT MemVT = LD->getMemoryVT();
2681   if (!MemVT.isSimple())
2682     return false;
2683   switch(MemVT.getSimpleVT().SimpleTy) {
2684   case MVT::i64:
2685     break;
2686   case MVT::i32:
2687     if (!ST.hasP8Vector())
2688       return false;
2689     break;
2690   case MVT::i16:
2691   case MVT::i8:
2692     if (!ST.hasP9Vector())
2693       return false;
2694     break;
2695   default:
2696     return false;
2697   }
2698 
2699   SDValue LoadedVal(N, 0);
2700   if (!LoadedVal.hasOneUse())
2701     return false;
2702 
2703   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2704        UI != UE; ++UI)
2705     if (UI.getUse().get().getResNo() == 0 &&
2706         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2707         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2708       return false;
2709 
2710   return true;
2711 }
2712 
2713 /// getPreIndexedAddressParts - returns true by value, base pointer and
2714 /// offset pointer and addressing mode by reference if the node's address
2715 /// can be legally represented as pre-indexed load / store address.
2716 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2717                                                   SDValue &Offset,
2718                                                   ISD::MemIndexedMode &AM,
2719                                                   SelectionDAG &DAG) const {
2720   if (DisablePPCPreinc) return false;
2721 
2722   bool isLoad = true;
2723   SDValue Ptr;
2724   EVT VT;
2725   unsigned Alignment;
2726   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2727     Ptr = LD->getBasePtr();
2728     VT = LD->getMemoryVT();
2729     Alignment = LD->getAlignment();
2730   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2731     Ptr = ST->getBasePtr();
2732     VT  = ST->getMemoryVT();
2733     Alignment = ST->getAlignment();
2734     isLoad = false;
2735   } else
2736     return false;
2737 
2738   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2739   // instructions because we can fold these into a more efficient instruction
2740   // instead, (such as LXSD).
2741   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2742     return false;
2743   }
2744 
2745   // PowerPC doesn't have preinc load/store instructions for vectors
2746   if (VT.isVector())
2747     return false;
2748 
2749   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2750     // Common code will reject creating a pre-inc form if the base pointer
2751     // is a frame index, or if N is a store and the base pointer is either
2752     // the same as or a predecessor of the value being stored.  Check for
2753     // those situations here, and try with swapped Base/Offset instead.
2754     bool Swap = false;
2755 
2756     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2757       Swap = true;
2758     else if (!isLoad) {
2759       SDValue Val = cast<StoreSDNode>(N)->getValue();
2760       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2761         Swap = true;
2762     }
2763 
2764     if (Swap)
2765       std::swap(Base, Offset);
2766 
2767     AM = ISD::PRE_INC;
2768     return true;
2769   }
2770 
2771   // LDU/STU can only handle immediates that are a multiple of 4.
2772   if (VT != MVT::i64) {
2773     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2774       return false;
2775   } else {
2776     // LDU/STU need an address with at least 4-byte alignment.
2777     if (Alignment < 4)
2778       return false;
2779 
2780     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2781       return false;
2782   }
2783 
2784   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2785     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2786     // sext i32 to i64 when addr mode is r+i.
2787     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2788         LD->getExtensionType() == ISD::SEXTLOAD &&
2789         isa<ConstantSDNode>(Offset))
2790       return false;
2791   }
2792 
2793   AM = ISD::PRE_INC;
2794   return true;
2795 }
2796 
2797 //===----------------------------------------------------------------------===//
2798 //  LowerOperation implementation
2799 //===----------------------------------------------------------------------===//
2800 
2801 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2802 /// and LoOpFlags to the target MO flags.
2803 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2804                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2805                                const GlobalValue *GV = nullptr) {
2806   HiOpFlags = PPCII::MO_HA;
2807   LoOpFlags = PPCII::MO_LO;
2808 
2809   // Don't use the pic base if not in PIC relocation model.
2810   if (IsPIC) {
2811     HiOpFlags |= PPCII::MO_PIC_FLAG;
2812     LoOpFlags |= PPCII::MO_PIC_FLAG;
2813   }
2814 }
2815 
2816 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2817                              SelectionDAG &DAG) {
2818   SDLoc DL(HiPart);
2819   EVT PtrVT = HiPart.getValueType();
2820   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2821 
2822   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2823   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2824 
2825   // With PIC, the first instruction is actually "GR+hi(&G)".
2826   if (isPIC)
2827     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2828                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2829 
2830   // Generate non-pic code that has direct accesses to the constant pool.
2831   // The address of the global is just (hi(&g)+lo(&g)).
2832   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2833 }
2834 
2835 static void setUsesTOCBasePtr(MachineFunction &MF) {
2836   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2837   FuncInfo->setUsesTOCBasePtr();
2838 }
2839 
2840 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2841   setUsesTOCBasePtr(DAG.getMachineFunction());
2842 }
2843 
2844 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2845                                        SDValue GA) const {
2846   const bool Is64Bit = Subtarget.isPPC64();
2847   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2848   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2849                         : Subtarget.isAIXABI()
2850                               ? DAG.getRegister(PPC::R2, VT)
2851                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2852   SDValue Ops[] = { GA, Reg };
2853   return DAG.getMemIntrinsicNode(
2854       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2855       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2856       MachineMemOperand::MOLoad);
2857 }
2858 
2859 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2860                                              SelectionDAG &DAG) const {
2861   EVT PtrVT = Op.getValueType();
2862   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2863   const Constant *C = CP->getConstVal();
2864 
2865   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2866   // The actual address of the GlobalValue is stored in the TOC.
2867   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2868     if (Subtarget.isUsingPCRelativeCalls()) {
2869       SDLoc DL(CP);
2870       EVT Ty = getPointerTy(DAG.getDataLayout());
2871       SDValue ConstPool = DAG.getTargetConstantPool(
2872           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2873       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2874     }
2875     setUsesTOCBasePtr(DAG);
2876     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2877     return getTOCEntry(DAG, SDLoc(CP), GA);
2878   }
2879 
2880   unsigned MOHiFlag, MOLoFlag;
2881   bool IsPIC = isPositionIndependent();
2882   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2883 
2884   if (IsPIC && Subtarget.isSVR4ABI()) {
2885     SDValue GA =
2886         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2887     return getTOCEntry(DAG, SDLoc(CP), GA);
2888   }
2889 
2890   SDValue CPIHi =
2891       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2892   SDValue CPILo =
2893       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2894   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2895 }
2896 
2897 // For 64-bit PowerPC, prefer the more compact relative encodings.
2898 // This trades 32 bits per jump table entry for one or two instructions
2899 // on the jump site.
2900 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2901   if (isJumpTableRelative())
2902     return MachineJumpTableInfo::EK_LabelDifference32;
2903 
2904   return TargetLowering::getJumpTableEncoding();
2905 }
2906 
2907 bool PPCTargetLowering::isJumpTableRelative() const {
2908   if (UseAbsoluteJumpTables)
2909     return false;
2910   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2911     return true;
2912   return TargetLowering::isJumpTableRelative();
2913 }
2914 
2915 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2916                                                     SelectionDAG &DAG) const {
2917   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2918     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2919 
2920   switch (getTargetMachine().getCodeModel()) {
2921   case CodeModel::Small:
2922   case CodeModel::Medium:
2923     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2924   default:
2925     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2926                        getPointerTy(DAG.getDataLayout()));
2927   }
2928 }
2929 
2930 const MCExpr *
2931 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2932                                                 unsigned JTI,
2933                                                 MCContext &Ctx) const {
2934   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2935     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2936 
2937   switch (getTargetMachine().getCodeModel()) {
2938   case CodeModel::Small:
2939   case CodeModel::Medium:
2940     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2941   default:
2942     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2943   }
2944 }
2945 
2946 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2947   EVT PtrVT = Op.getValueType();
2948   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2949 
2950   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2951   if (Subtarget.isUsingPCRelativeCalls()) {
2952     SDLoc DL(JT);
2953     EVT Ty = getPointerTy(DAG.getDataLayout());
2954     SDValue GA =
2955         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2956     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2957     return MatAddr;
2958   }
2959 
2960   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2961   // The actual address of the GlobalValue is stored in the TOC.
2962   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2963     setUsesTOCBasePtr(DAG);
2964     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2965     return getTOCEntry(DAG, SDLoc(JT), GA);
2966   }
2967 
2968   unsigned MOHiFlag, MOLoFlag;
2969   bool IsPIC = isPositionIndependent();
2970   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2971 
2972   if (IsPIC && Subtarget.isSVR4ABI()) {
2973     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2974                                         PPCII::MO_PIC_FLAG);
2975     return getTOCEntry(DAG, SDLoc(GA), GA);
2976   }
2977 
2978   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2979   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2980   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2981 }
2982 
2983 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2984                                              SelectionDAG &DAG) const {
2985   EVT PtrVT = Op.getValueType();
2986   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2987   const BlockAddress *BA = BASDN->getBlockAddress();
2988 
2989   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2990   if (Subtarget.isUsingPCRelativeCalls()) {
2991     SDLoc DL(BASDN);
2992     EVT Ty = getPointerTy(DAG.getDataLayout());
2993     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2994                                            PPCII::MO_PCREL_FLAG);
2995     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2996     return MatAddr;
2997   }
2998 
2999   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3000   // The actual BlockAddress is stored in the TOC.
3001   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3002     setUsesTOCBasePtr(DAG);
3003     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3004     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3005   }
3006 
3007   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3008   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3009     return getTOCEntry(
3010         DAG, SDLoc(BASDN),
3011         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3012 
3013   unsigned MOHiFlag, MOLoFlag;
3014   bool IsPIC = isPositionIndependent();
3015   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3016   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3017   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3018   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3019 }
3020 
3021 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3022                                               SelectionDAG &DAG) const {
3023   // FIXME: TLS addresses currently use medium model code sequences,
3024   // which is the most useful form.  Eventually support for small and
3025   // large models could be added if users need it, at the cost of
3026   // additional complexity.
3027   if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS)
3028     report_fatal_error("Thread local storage is not supported with pc-relative"
3029                        " addressing - please compile with -mno-pcrel");
3030   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3031   if (DAG.getTarget().useEmulatedTLS())
3032     return LowerToTLSEmulatedModel(GA, DAG);
3033 
3034   SDLoc dl(GA);
3035   const GlobalValue *GV = GA->getGlobal();
3036   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3037   bool is64bit = Subtarget.isPPC64();
3038   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3039   PICLevel::Level picLevel = M->getPICLevel();
3040 
3041   const TargetMachine &TM = getTargetMachine();
3042   TLSModel::Model Model = TM.getTLSModel(GV);
3043 
3044   if (Model == TLSModel::LocalExec) {
3045     if (Subtarget.isUsingPCRelativeCalls()) {
3046       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3047       SDValue TGA = DAG.getTargetGlobalAddress(
3048           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3049       SDValue MatAddr =
3050           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3051       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3052     }
3053 
3054     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3055                                                PPCII::MO_TPREL_HA);
3056     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3057                                                PPCII::MO_TPREL_LO);
3058     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3059                              : DAG.getRegister(PPC::R2, MVT::i32);
3060 
3061     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3062     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3063   }
3064 
3065   if (Model == TLSModel::InitialExec) {
3066     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3067     SDValue TGA = DAG.getTargetGlobalAddress(
3068         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3069     SDValue TGATLS = DAG.getTargetGlobalAddress(
3070         GV, dl, PtrVT, 0,
3071         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3072     SDValue TPOffset;
3073     if (IsPCRel) {
3074       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3075       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3076                              MachinePointerInfo());
3077     } else {
3078       SDValue GOTPtr;
3079       if (is64bit) {
3080         setUsesTOCBasePtr(DAG);
3081         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3082         GOTPtr =
3083             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3084       } else {
3085         if (!TM.isPositionIndependent())
3086           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3087         else if (picLevel == PICLevel::SmallPIC)
3088           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3089         else
3090           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3091       }
3092       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3093     }
3094     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3095   }
3096 
3097   if (Model == TLSModel::GeneralDynamic) {
3098     if (Subtarget.isUsingPCRelativeCalls()) {
3099       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3100                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3101       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3102     }
3103 
3104     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3105     SDValue GOTPtr;
3106     if (is64bit) {
3107       setUsesTOCBasePtr(DAG);
3108       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3109       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3110                                    GOTReg, TGA);
3111     } else {
3112       if (picLevel == PICLevel::SmallPIC)
3113         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3114       else
3115         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3116     }
3117     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3118                        GOTPtr, TGA, TGA);
3119   }
3120 
3121   if (Model == TLSModel::LocalDynamic) {
3122     if (Subtarget.isUsingPCRelativeCalls()) {
3123       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3124                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3125       SDValue MatPCRel =
3126           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3127       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3128     }
3129 
3130     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3131     SDValue GOTPtr;
3132     if (is64bit) {
3133       setUsesTOCBasePtr(DAG);
3134       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3135       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3136                            GOTReg, TGA);
3137     } else {
3138       if (picLevel == PICLevel::SmallPIC)
3139         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3140       else
3141         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3142     }
3143     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3144                                   PtrVT, GOTPtr, TGA, TGA);
3145     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3146                                       PtrVT, TLSAddr, TGA);
3147     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3148   }
3149 
3150   llvm_unreachable("Unknown TLS model!");
3151 }
3152 
3153 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3154                                               SelectionDAG &DAG) const {
3155   EVT PtrVT = Op.getValueType();
3156   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3157   SDLoc DL(GSDN);
3158   const GlobalValue *GV = GSDN->getGlobal();
3159 
3160   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3161   // The actual address of the GlobalValue is stored in the TOC.
3162   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3163     if (Subtarget.isUsingPCRelativeCalls()) {
3164       EVT Ty = getPointerTy(DAG.getDataLayout());
3165       if (isAccessedAsGotIndirect(Op)) {
3166         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3167                                                 PPCII::MO_PCREL_FLAG |
3168                                                     PPCII::MO_GOT_FLAG);
3169         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3170         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3171                                    MachinePointerInfo());
3172         return Load;
3173       } else {
3174         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3175                                                 PPCII::MO_PCREL_FLAG);
3176         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3177       }
3178     }
3179     setUsesTOCBasePtr(DAG);
3180     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3181     return getTOCEntry(DAG, DL, GA);
3182   }
3183 
3184   unsigned MOHiFlag, MOLoFlag;
3185   bool IsPIC = isPositionIndependent();
3186   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3187 
3188   if (IsPIC && Subtarget.isSVR4ABI()) {
3189     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3190                                             GSDN->getOffset(),
3191                                             PPCII::MO_PIC_FLAG);
3192     return getTOCEntry(DAG, DL, GA);
3193   }
3194 
3195   SDValue GAHi =
3196     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3197   SDValue GALo =
3198     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3199 
3200   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3201 }
3202 
3203 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3204   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3205   SDLoc dl(Op);
3206 
3207   if (Op.getValueType() == MVT::v2i64) {
3208     // When the operands themselves are v2i64 values, we need to do something
3209     // special because VSX has no underlying comparison operations for these.
3210     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3211       // Equality can be handled by casting to the legal type for Altivec
3212       // comparisons, everything else needs to be expanded.
3213       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3214         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3215                  DAG.getSetCC(dl, MVT::v4i32,
3216                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3217                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3218                    CC));
3219       }
3220 
3221       return SDValue();
3222     }
3223 
3224     // We handle most of these in the usual way.
3225     return Op;
3226   }
3227 
3228   // If we're comparing for equality to zero, expose the fact that this is
3229   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3230   // fold the new nodes.
3231   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3232     return V;
3233 
3234   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3235     // Leave comparisons against 0 and -1 alone for now, since they're usually
3236     // optimized.  FIXME: revisit this when we can custom lower all setcc
3237     // optimizations.
3238     if (C->isAllOnesValue() || C->isNullValue())
3239       return SDValue();
3240   }
3241 
3242   // If we have an integer seteq/setne, turn it into a compare against zero
3243   // by xor'ing the rhs with the lhs, which is faster than setting a
3244   // condition register, reading it back out, and masking the correct bit.  The
3245   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3246   // the result to other bit-twiddling opportunities.
3247   EVT LHSVT = Op.getOperand(0).getValueType();
3248   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3249     EVT VT = Op.getValueType();
3250     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3251                                 Op.getOperand(1));
3252     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3253   }
3254   return SDValue();
3255 }
3256 
3257 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3258   SDNode *Node = Op.getNode();
3259   EVT VT = Node->getValueType(0);
3260   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3261   SDValue InChain = Node->getOperand(0);
3262   SDValue VAListPtr = Node->getOperand(1);
3263   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3264   SDLoc dl(Node);
3265 
3266   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3267 
3268   // gpr_index
3269   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3270                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3271   InChain = GprIndex.getValue(1);
3272 
3273   if (VT == MVT::i64) {
3274     // Check if GprIndex is even
3275     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3276                                  DAG.getConstant(1, dl, MVT::i32));
3277     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3278                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3279     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3280                                           DAG.getConstant(1, dl, MVT::i32));
3281     // Align GprIndex to be even if it isn't
3282     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3283                            GprIndex);
3284   }
3285 
3286   // fpr index is 1 byte after gpr
3287   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3288                                DAG.getConstant(1, dl, MVT::i32));
3289 
3290   // fpr
3291   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3292                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3293   InChain = FprIndex.getValue(1);
3294 
3295   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3296                                        DAG.getConstant(8, dl, MVT::i32));
3297 
3298   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3299                                         DAG.getConstant(4, dl, MVT::i32));
3300 
3301   // areas
3302   SDValue OverflowArea =
3303       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3304   InChain = OverflowArea.getValue(1);
3305 
3306   SDValue RegSaveArea =
3307       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3308   InChain = RegSaveArea.getValue(1);
3309 
3310   // select overflow_area if index > 8
3311   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3312                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3313 
3314   // adjustment constant gpr_index * 4/8
3315   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3316                                     VT.isInteger() ? GprIndex : FprIndex,
3317                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3318                                                     MVT::i32));
3319 
3320   // OurReg = RegSaveArea + RegConstant
3321   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3322                                RegConstant);
3323 
3324   // Floating types are 32 bytes into RegSaveArea
3325   if (VT.isFloatingPoint())
3326     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3327                          DAG.getConstant(32, dl, MVT::i32));
3328 
3329   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3330   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3331                                    VT.isInteger() ? GprIndex : FprIndex,
3332                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3333                                                    MVT::i32));
3334 
3335   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3336                               VT.isInteger() ? VAListPtr : FprPtr,
3337                               MachinePointerInfo(SV), MVT::i8);
3338 
3339   // determine if we should load from reg_save_area or overflow_area
3340   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3341 
3342   // increase overflow_area by 4/8 if gpr/fpr > 8
3343   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3344                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3345                                           dl, MVT::i32));
3346 
3347   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3348                              OverflowAreaPlusN);
3349 
3350   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3351                               MachinePointerInfo(), MVT::i32);
3352 
3353   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3354 }
3355 
3356 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3357   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3358 
3359   // We have to copy the entire va_list struct:
3360   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3361   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3362                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3363                        false, true, false, MachinePointerInfo(),
3364                        MachinePointerInfo());
3365 }
3366 
3367 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3368                                                   SelectionDAG &DAG) const {
3369   if (Subtarget.isAIXABI())
3370     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3371 
3372   return Op.getOperand(0);
3373 }
3374 
3375 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3376                                                 SelectionDAG &DAG) const {
3377   if (Subtarget.isAIXABI())
3378     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3379 
3380   SDValue Chain = Op.getOperand(0);
3381   SDValue Trmp = Op.getOperand(1); // trampoline
3382   SDValue FPtr = Op.getOperand(2); // nested function
3383   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3384   SDLoc dl(Op);
3385 
3386   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3387   bool isPPC64 = (PtrVT == MVT::i64);
3388   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3389 
3390   TargetLowering::ArgListTy Args;
3391   TargetLowering::ArgListEntry Entry;
3392 
3393   Entry.Ty = IntPtrTy;
3394   Entry.Node = Trmp; Args.push_back(Entry);
3395 
3396   // TrampSize == (isPPC64 ? 48 : 40);
3397   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3398                                isPPC64 ? MVT::i64 : MVT::i32);
3399   Args.push_back(Entry);
3400 
3401   Entry.Node = FPtr; Args.push_back(Entry);
3402   Entry.Node = Nest; Args.push_back(Entry);
3403 
3404   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3405   TargetLowering::CallLoweringInfo CLI(DAG);
3406   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3407       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3408       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3409 
3410   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3411   return CallResult.second;
3412 }
3413 
3414 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3415   MachineFunction &MF = DAG.getMachineFunction();
3416   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3417   EVT PtrVT = getPointerTy(MF.getDataLayout());
3418 
3419   SDLoc dl(Op);
3420 
3421   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3422     // vastart just stores the address of the VarArgsFrameIndex slot into the
3423     // memory location argument.
3424     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3425     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3426     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3427                         MachinePointerInfo(SV));
3428   }
3429 
3430   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3431   // We suppose the given va_list is already allocated.
3432   //
3433   // typedef struct {
3434   //  char gpr;     /* index into the array of 8 GPRs
3435   //                 * stored in the register save area
3436   //                 * gpr=0 corresponds to r3,
3437   //                 * gpr=1 to r4, etc.
3438   //                 */
3439   //  char fpr;     /* index into the array of 8 FPRs
3440   //                 * stored in the register save area
3441   //                 * fpr=0 corresponds to f1,
3442   //                 * fpr=1 to f2, etc.
3443   //                 */
3444   //  char *overflow_arg_area;
3445   //                /* location on stack that holds
3446   //                 * the next overflow argument
3447   //                 */
3448   //  char *reg_save_area;
3449   //               /* where r3:r10 and f1:f8 (if saved)
3450   //                * are stored
3451   //                */
3452   // } va_list[1];
3453 
3454   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3455   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3456   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3457                                             PtrVT);
3458   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3459                                  PtrVT);
3460 
3461   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3462   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3463 
3464   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3465   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3466 
3467   uint64_t FPROffset = 1;
3468   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3469 
3470   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3471 
3472   // Store first byte : number of int regs
3473   SDValue firstStore =
3474       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3475                         MachinePointerInfo(SV), MVT::i8);
3476   uint64_t nextOffset = FPROffset;
3477   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3478                                   ConstFPROffset);
3479 
3480   // Store second byte : number of float regs
3481   SDValue secondStore =
3482       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3483                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3484   nextOffset += StackOffset;
3485   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3486 
3487   // Store second word : arguments given on stack
3488   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3489                                     MachinePointerInfo(SV, nextOffset));
3490   nextOffset += FrameOffset;
3491   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3492 
3493   // Store third word : arguments given in registers
3494   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3495                       MachinePointerInfo(SV, nextOffset));
3496 }
3497 
3498 /// FPR - The set of FP registers that should be allocated for arguments
3499 /// on Darwin and AIX.
3500 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3501                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3502                                 PPC::F11, PPC::F12, PPC::F13};
3503 
3504 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3505 /// the stack.
3506 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3507                                        unsigned PtrByteSize) {
3508   unsigned ArgSize = ArgVT.getStoreSize();
3509   if (Flags.isByVal())
3510     ArgSize = Flags.getByValSize();
3511 
3512   // Round up to multiples of the pointer size, except for array members,
3513   // which are always packed.
3514   if (!Flags.isInConsecutiveRegs())
3515     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3516 
3517   return ArgSize;
3518 }
3519 
3520 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3521 /// on the stack.
3522 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3523                                          ISD::ArgFlagsTy Flags,
3524                                          unsigned PtrByteSize) {
3525   Align Alignment(PtrByteSize);
3526 
3527   // Altivec parameters are padded to a 16 byte boundary.
3528   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3529       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3530       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3531       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3532     Alignment = Align(16);
3533 
3534   // ByVal parameters are aligned as requested.
3535   if (Flags.isByVal()) {
3536     auto BVAlign = Flags.getNonZeroByValAlign();
3537     if (BVAlign > PtrByteSize) {
3538       if (BVAlign.value() % PtrByteSize != 0)
3539         llvm_unreachable(
3540             "ByVal alignment is not a multiple of the pointer size");
3541 
3542       Alignment = BVAlign;
3543     }
3544   }
3545 
3546   // Array members are always packed to their original alignment.
3547   if (Flags.isInConsecutiveRegs()) {
3548     // If the array member was split into multiple registers, the first
3549     // needs to be aligned to the size of the full type.  (Except for
3550     // ppcf128, which is only aligned as its f64 components.)
3551     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3552       Alignment = Align(OrigVT.getStoreSize());
3553     else
3554       Alignment = Align(ArgVT.getStoreSize());
3555   }
3556 
3557   return Alignment;
3558 }
3559 
3560 /// CalculateStackSlotUsed - Return whether this argument will use its
3561 /// stack slot (instead of being passed in registers).  ArgOffset,
3562 /// AvailableFPRs, and AvailableVRs must hold the current argument
3563 /// position, and will be updated to account for this argument.
3564 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3565                                    unsigned PtrByteSize, unsigned LinkageSize,
3566                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3567                                    unsigned &AvailableFPRs,
3568                                    unsigned &AvailableVRs) {
3569   bool UseMemory = false;
3570 
3571   // Respect alignment of argument on the stack.
3572   Align Alignment =
3573       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3574   ArgOffset = alignTo(ArgOffset, Alignment);
3575   // If there's no space left in the argument save area, we must
3576   // use memory (this check also catches zero-sized arguments).
3577   if (ArgOffset >= LinkageSize + ParamAreaSize)
3578     UseMemory = true;
3579 
3580   // Allocate argument on the stack.
3581   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3582   if (Flags.isInConsecutiveRegsLast())
3583     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3584   // If we overran the argument save area, we must use memory
3585   // (this check catches arguments passed partially in memory)
3586   if (ArgOffset > LinkageSize + ParamAreaSize)
3587     UseMemory = true;
3588 
3589   // However, if the argument is actually passed in an FPR or a VR,
3590   // we don't use memory after all.
3591   if (!Flags.isByVal()) {
3592     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3593       if (AvailableFPRs > 0) {
3594         --AvailableFPRs;
3595         return false;
3596       }
3597     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3598         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3599         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3600         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3601       if (AvailableVRs > 0) {
3602         --AvailableVRs;
3603         return false;
3604       }
3605   }
3606 
3607   return UseMemory;
3608 }
3609 
3610 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3611 /// ensure minimum alignment required for target.
3612 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3613                                      unsigned NumBytes) {
3614   return alignTo(NumBytes, Lowering->getStackAlign());
3615 }
3616 
3617 SDValue PPCTargetLowering::LowerFormalArguments(
3618     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3619     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3620     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3621   if (Subtarget.isAIXABI())
3622     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3623                                     InVals);
3624   if (Subtarget.is64BitELFABI())
3625     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3626                                        InVals);
3627   if (Subtarget.is32BitELFABI())
3628     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3629                                        InVals);
3630 
3631   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3632                                      InVals);
3633 }
3634 
3635 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3636     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3637     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3638     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3639 
3640   // 32-bit SVR4 ABI Stack Frame Layout:
3641   //              +-----------------------------------+
3642   //        +-->  |            Back chain             |
3643   //        |     +-----------------------------------+
3644   //        |     | Floating-point register save area |
3645   //        |     +-----------------------------------+
3646   //        |     |    General register save area     |
3647   //        |     +-----------------------------------+
3648   //        |     |          CR save word             |
3649   //        |     +-----------------------------------+
3650   //        |     |         VRSAVE save word          |
3651   //        |     +-----------------------------------+
3652   //        |     |         Alignment padding         |
3653   //        |     +-----------------------------------+
3654   //        |     |     Vector register save area     |
3655   //        |     +-----------------------------------+
3656   //        |     |       Local variable space        |
3657   //        |     +-----------------------------------+
3658   //        |     |        Parameter list area        |
3659   //        |     +-----------------------------------+
3660   //        |     |           LR save word            |
3661   //        |     +-----------------------------------+
3662   // SP-->  +---  |            Back chain             |
3663   //              +-----------------------------------+
3664   //
3665   // Specifications:
3666   //   System V Application Binary Interface PowerPC Processor Supplement
3667   //   AltiVec Technology Programming Interface Manual
3668 
3669   MachineFunction &MF = DAG.getMachineFunction();
3670   MachineFrameInfo &MFI = MF.getFrameInfo();
3671   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3672 
3673   EVT PtrVT = getPointerTy(MF.getDataLayout());
3674   // Potential tail calls could cause overwriting of argument stack slots.
3675   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3676                        (CallConv == CallingConv::Fast));
3677   const Align PtrAlign(4);
3678 
3679   // Assign locations to all of the incoming arguments.
3680   SmallVector<CCValAssign, 16> ArgLocs;
3681   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3682                  *DAG.getContext());
3683 
3684   // Reserve space for the linkage area on the stack.
3685   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3686   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3687   if (useSoftFloat())
3688     CCInfo.PreAnalyzeFormalArguments(Ins);
3689 
3690   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3691   CCInfo.clearWasPPCF128();
3692 
3693   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3694     CCValAssign &VA = ArgLocs[i];
3695 
3696     // Arguments stored in registers.
3697     if (VA.isRegLoc()) {
3698       const TargetRegisterClass *RC;
3699       EVT ValVT = VA.getValVT();
3700 
3701       switch (ValVT.getSimpleVT().SimpleTy) {
3702         default:
3703           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3704         case MVT::i1:
3705         case MVT::i32:
3706           RC = &PPC::GPRCRegClass;
3707           break;
3708         case MVT::f32:
3709           if (Subtarget.hasP8Vector())
3710             RC = &PPC::VSSRCRegClass;
3711           else if (Subtarget.hasSPE())
3712             RC = &PPC::GPRCRegClass;
3713           else
3714             RC = &PPC::F4RCRegClass;
3715           break;
3716         case MVT::f64:
3717           if (Subtarget.hasVSX())
3718             RC = &PPC::VSFRCRegClass;
3719           else if (Subtarget.hasSPE())
3720             // SPE passes doubles in GPR pairs.
3721             RC = &PPC::GPRCRegClass;
3722           else
3723             RC = &PPC::F8RCRegClass;
3724           break;
3725         case MVT::v16i8:
3726         case MVT::v8i16:
3727         case MVT::v4i32:
3728           RC = &PPC::VRRCRegClass;
3729           break;
3730         case MVT::v4f32:
3731           RC = &PPC::VRRCRegClass;
3732           break;
3733         case MVT::v2f64:
3734         case MVT::v2i64:
3735           RC = &PPC::VRRCRegClass;
3736           break;
3737       }
3738 
3739       SDValue ArgValue;
3740       // Transform the arguments stored in physical registers into
3741       // virtual ones.
3742       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3743         assert(i + 1 < e && "No second half of double precision argument");
3744         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3745         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3746         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3747         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3748         if (!Subtarget.isLittleEndian())
3749           std::swap (ArgValueLo, ArgValueHi);
3750         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3751                                ArgValueHi);
3752       } else {
3753         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3754         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3755                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3756         if (ValVT == MVT::i1)
3757           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3758       }
3759 
3760       InVals.push_back(ArgValue);
3761     } else {
3762       // Argument stored in memory.
3763       assert(VA.isMemLoc());
3764 
3765       // Get the extended size of the argument type in stack
3766       unsigned ArgSize = VA.getLocVT().getStoreSize();
3767       // Get the actual size of the argument type
3768       unsigned ObjSize = VA.getValVT().getStoreSize();
3769       unsigned ArgOffset = VA.getLocMemOffset();
3770       // Stack objects in PPC32 are right justified.
3771       ArgOffset += ArgSize - ObjSize;
3772       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3773 
3774       // Create load nodes to retrieve arguments from the stack.
3775       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3776       InVals.push_back(
3777           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3778     }
3779   }
3780 
3781   // Assign locations to all of the incoming aggregate by value arguments.
3782   // Aggregates passed by value are stored in the local variable space of the
3783   // caller's stack frame, right above the parameter list area.
3784   SmallVector<CCValAssign, 16> ByValArgLocs;
3785   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3786                       ByValArgLocs, *DAG.getContext());
3787 
3788   // Reserve stack space for the allocations in CCInfo.
3789   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3790 
3791   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3792 
3793   // Area that is at least reserved in the caller of this function.
3794   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3795   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3796 
3797   // Set the size that is at least reserved in caller of this function.  Tail
3798   // call optimized function's reserved stack space needs to be aligned so that
3799   // taking the difference between two stack areas will result in an aligned
3800   // stack.
3801   MinReservedArea =
3802       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3803   FuncInfo->setMinReservedArea(MinReservedArea);
3804 
3805   SmallVector<SDValue, 8> MemOps;
3806 
3807   // If the function takes variable number of arguments, make a frame index for
3808   // the start of the first vararg value... for expansion of llvm.va_start.
3809   if (isVarArg) {
3810     static const MCPhysReg GPArgRegs[] = {
3811       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3812       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3813     };
3814     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3815 
3816     static const MCPhysReg FPArgRegs[] = {
3817       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3818       PPC::F8
3819     };
3820     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3821 
3822     if (useSoftFloat() || hasSPE())
3823        NumFPArgRegs = 0;
3824 
3825     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3826     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3827 
3828     // Make room for NumGPArgRegs and NumFPArgRegs.
3829     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3830                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3831 
3832     FuncInfo->setVarArgsStackOffset(
3833       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3834                             CCInfo.getNextStackOffset(), true));
3835 
3836     FuncInfo->setVarArgsFrameIndex(
3837         MFI.CreateStackObject(Depth, Align(8), false));
3838     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3839 
3840     // The fixed integer arguments of a variadic function are stored to the
3841     // VarArgsFrameIndex on the stack so that they may be loaded by
3842     // dereferencing the result of va_next.
3843     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3844       // Get an existing live-in vreg, or add a new one.
3845       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3846       if (!VReg)
3847         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3848 
3849       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3850       SDValue Store =
3851           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3852       MemOps.push_back(Store);
3853       // Increment the address by four for the next argument to store
3854       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3855       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3856     }
3857 
3858     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3859     // is set.
3860     // The double arguments are stored to the VarArgsFrameIndex
3861     // on the stack.
3862     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3863       // Get an existing live-in vreg, or add a new one.
3864       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3865       if (!VReg)
3866         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3867 
3868       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3869       SDValue Store =
3870           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3871       MemOps.push_back(Store);
3872       // Increment the address by eight for the next argument to store
3873       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3874                                          PtrVT);
3875       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3876     }
3877   }
3878 
3879   if (!MemOps.empty())
3880     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3881 
3882   return Chain;
3883 }
3884 
3885 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3886 // value to MVT::i64 and then truncate to the correct register size.
3887 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3888                                              EVT ObjectVT, SelectionDAG &DAG,
3889                                              SDValue ArgVal,
3890                                              const SDLoc &dl) const {
3891   if (Flags.isSExt())
3892     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3893                          DAG.getValueType(ObjectVT));
3894   else if (Flags.isZExt())
3895     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3896                          DAG.getValueType(ObjectVT));
3897 
3898   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3899 }
3900 
3901 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3902     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3903     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3904     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3905   // TODO: add description of PPC stack frame format, or at least some docs.
3906   //
3907   bool isELFv2ABI = Subtarget.isELFv2ABI();
3908   bool isLittleEndian = Subtarget.isLittleEndian();
3909   MachineFunction &MF = DAG.getMachineFunction();
3910   MachineFrameInfo &MFI = MF.getFrameInfo();
3911   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3912 
3913   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3914          "fastcc not supported on varargs functions");
3915 
3916   EVT PtrVT = getPointerTy(MF.getDataLayout());
3917   // Potential tail calls could cause overwriting of argument stack slots.
3918   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3919                        (CallConv == CallingConv::Fast));
3920   unsigned PtrByteSize = 8;
3921   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3922 
3923   static const MCPhysReg GPR[] = {
3924     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3925     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3926   };
3927   static const MCPhysReg VR[] = {
3928     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3929     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3930   };
3931 
3932   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3933   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3934   const unsigned Num_VR_Regs  = array_lengthof(VR);
3935 
3936   // Do a first pass over the arguments to determine whether the ABI
3937   // guarantees that our caller has allocated the parameter save area
3938   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3939   // in the ELFv2 ABI, it is true if this is a vararg function or if
3940   // any parameter is located in a stack slot.
3941 
3942   bool HasParameterArea = !isELFv2ABI || isVarArg;
3943   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3944   unsigned NumBytes = LinkageSize;
3945   unsigned AvailableFPRs = Num_FPR_Regs;
3946   unsigned AvailableVRs = Num_VR_Regs;
3947   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3948     if (Ins[i].Flags.isNest())
3949       continue;
3950 
3951     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3952                                PtrByteSize, LinkageSize, ParamAreaSize,
3953                                NumBytes, AvailableFPRs, AvailableVRs))
3954       HasParameterArea = true;
3955   }
3956 
3957   // Add DAG nodes to load the arguments or copy them out of registers.  On
3958   // entry to a function on PPC, the arguments start after the linkage area,
3959   // although the first ones are often in registers.
3960 
3961   unsigned ArgOffset = LinkageSize;
3962   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3963   SmallVector<SDValue, 8> MemOps;
3964   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3965   unsigned CurArgIdx = 0;
3966   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3967     SDValue ArgVal;
3968     bool needsLoad = false;
3969     EVT ObjectVT = Ins[ArgNo].VT;
3970     EVT OrigVT = Ins[ArgNo].ArgVT;
3971     unsigned ObjSize = ObjectVT.getStoreSize();
3972     unsigned ArgSize = ObjSize;
3973     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3974     if (Ins[ArgNo].isOrigArg()) {
3975       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3976       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3977     }
3978     // We re-align the argument offset for each argument, except when using the
3979     // fast calling convention, when we need to make sure we do that only when
3980     // we'll actually use a stack slot.
3981     unsigned CurArgOffset;
3982     Align Alignment;
3983     auto ComputeArgOffset = [&]() {
3984       /* Respect alignment of argument on the stack.  */
3985       Alignment =
3986           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3987       ArgOffset = alignTo(ArgOffset, Alignment);
3988       CurArgOffset = ArgOffset;
3989     };
3990 
3991     if (CallConv != CallingConv::Fast) {
3992       ComputeArgOffset();
3993 
3994       /* Compute GPR index associated with argument offset.  */
3995       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3996       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3997     }
3998 
3999     // FIXME the codegen can be much improved in some cases.
4000     // We do not have to keep everything in memory.
4001     if (Flags.isByVal()) {
4002       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4003 
4004       if (CallConv == CallingConv::Fast)
4005         ComputeArgOffset();
4006 
4007       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4008       ObjSize = Flags.getByValSize();
4009       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4010       // Empty aggregate parameters do not take up registers.  Examples:
4011       //   struct { } a;
4012       //   union  { } b;
4013       //   int c[0];
4014       // etc.  However, we have to provide a place-holder in InVals, so
4015       // pretend we have an 8-byte item at the current address for that
4016       // purpose.
4017       if (!ObjSize) {
4018         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4019         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4020         InVals.push_back(FIN);
4021         continue;
4022       }
4023 
4024       // Create a stack object covering all stack doublewords occupied
4025       // by the argument.  If the argument is (fully or partially) on
4026       // the stack, or if the argument is fully in registers but the
4027       // caller has allocated the parameter save anyway, we can refer
4028       // directly to the caller's stack frame.  Otherwise, create a
4029       // local copy in our own frame.
4030       int FI;
4031       if (HasParameterArea ||
4032           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4033         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4034       else
4035         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4036       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4037 
4038       // Handle aggregates smaller than 8 bytes.
4039       if (ObjSize < PtrByteSize) {
4040         // The value of the object is its address, which differs from the
4041         // address of the enclosing doubleword on big-endian systems.
4042         SDValue Arg = FIN;
4043         if (!isLittleEndian) {
4044           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4045           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4046         }
4047         InVals.push_back(Arg);
4048 
4049         if (GPR_idx != Num_GPR_Regs) {
4050           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4051           FuncInfo->addLiveInAttr(VReg, Flags);
4052           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4053           SDValue Store;
4054 
4055           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4056             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4057                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4058             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4059                                       MachinePointerInfo(&*FuncArg), ObjType);
4060           } else {
4061             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4062             // store the whole register as-is to the parameter save area
4063             // slot.
4064             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4065                                  MachinePointerInfo(&*FuncArg));
4066           }
4067 
4068           MemOps.push_back(Store);
4069         }
4070         // Whether we copied from a register or not, advance the offset
4071         // into the parameter save area by a full doubleword.
4072         ArgOffset += PtrByteSize;
4073         continue;
4074       }
4075 
4076       // The value of the object is its address, which is the address of
4077       // its first stack doubleword.
4078       InVals.push_back(FIN);
4079 
4080       // Store whatever pieces of the object are in registers to memory.
4081       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4082         if (GPR_idx == Num_GPR_Regs)
4083           break;
4084 
4085         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4086         FuncInfo->addLiveInAttr(VReg, Flags);
4087         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4088         SDValue Addr = FIN;
4089         if (j) {
4090           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4091           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4092         }
4093         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4094                                      MachinePointerInfo(&*FuncArg, j));
4095         MemOps.push_back(Store);
4096         ++GPR_idx;
4097       }
4098       ArgOffset += ArgSize;
4099       continue;
4100     }
4101 
4102     switch (ObjectVT.getSimpleVT().SimpleTy) {
4103     default: llvm_unreachable("Unhandled argument type!");
4104     case MVT::i1:
4105     case MVT::i32:
4106     case MVT::i64:
4107       if (Flags.isNest()) {
4108         // The 'nest' parameter, if any, is passed in R11.
4109         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4110         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4111 
4112         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4113           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4114 
4115         break;
4116       }
4117 
4118       // These can be scalar arguments or elements of an integer array type
4119       // passed directly.  Clang may use those instead of "byval" aggregate
4120       // types to avoid forcing arguments to memory unnecessarily.
4121       if (GPR_idx != Num_GPR_Regs) {
4122         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4123         FuncInfo->addLiveInAttr(VReg, Flags);
4124         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4125 
4126         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4127           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4128           // value to MVT::i64 and then truncate to the correct register size.
4129           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4130       } else {
4131         if (CallConv == CallingConv::Fast)
4132           ComputeArgOffset();
4133 
4134         needsLoad = true;
4135         ArgSize = PtrByteSize;
4136       }
4137       if (CallConv != CallingConv::Fast || needsLoad)
4138         ArgOffset += 8;
4139       break;
4140 
4141     case MVT::f32:
4142     case MVT::f64:
4143       // These can be scalar arguments or elements of a float array type
4144       // passed directly.  The latter are used to implement ELFv2 homogenous
4145       // float aggregates.
4146       if (FPR_idx != Num_FPR_Regs) {
4147         unsigned VReg;
4148 
4149         if (ObjectVT == MVT::f32)
4150           VReg = MF.addLiveIn(FPR[FPR_idx],
4151                               Subtarget.hasP8Vector()
4152                                   ? &PPC::VSSRCRegClass
4153                                   : &PPC::F4RCRegClass);
4154         else
4155           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4156                                                 ? &PPC::VSFRCRegClass
4157                                                 : &PPC::F8RCRegClass);
4158 
4159         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4160         ++FPR_idx;
4161       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4162         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4163         // once we support fp <-> gpr moves.
4164 
4165         // This can only ever happen in the presence of f32 array types,
4166         // since otherwise we never run out of FPRs before running out
4167         // of GPRs.
4168         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4169         FuncInfo->addLiveInAttr(VReg, Flags);
4170         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4171 
4172         if (ObjectVT == MVT::f32) {
4173           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4174             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4175                                  DAG.getConstant(32, dl, MVT::i32));
4176           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4177         }
4178 
4179         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4180       } else {
4181         if (CallConv == CallingConv::Fast)
4182           ComputeArgOffset();
4183 
4184         needsLoad = true;
4185       }
4186 
4187       // When passing an array of floats, the array occupies consecutive
4188       // space in the argument area; only round up to the next doubleword
4189       // at the end of the array.  Otherwise, each float takes 8 bytes.
4190       if (CallConv != CallingConv::Fast || needsLoad) {
4191         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4192         ArgOffset += ArgSize;
4193         if (Flags.isInConsecutiveRegsLast())
4194           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4195       }
4196       break;
4197     case MVT::v4f32:
4198     case MVT::v4i32:
4199     case MVT::v8i16:
4200     case MVT::v16i8:
4201     case MVT::v2f64:
4202     case MVT::v2i64:
4203     case MVT::v1i128:
4204     case MVT::f128:
4205       // These can be scalar arguments or elements of a vector array type
4206       // passed directly.  The latter are used to implement ELFv2 homogenous
4207       // vector aggregates.
4208       if (VR_idx != Num_VR_Regs) {
4209         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4210         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4211         ++VR_idx;
4212       } else {
4213         if (CallConv == CallingConv::Fast)
4214           ComputeArgOffset();
4215         needsLoad = true;
4216       }
4217       if (CallConv != CallingConv::Fast || needsLoad)
4218         ArgOffset += 16;
4219       break;
4220     }
4221 
4222     // We need to load the argument to a virtual register if we determined
4223     // above that we ran out of physical registers of the appropriate type.
4224     if (needsLoad) {
4225       if (ObjSize < ArgSize && !isLittleEndian)
4226         CurArgOffset += ArgSize - ObjSize;
4227       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4228       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4229       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4230     }
4231 
4232     InVals.push_back(ArgVal);
4233   }
4234 
4235   // Area that is at least reserved in the caller of this function.
4236   unsigned MinReservedArea;
4237   if (HasParameterArea)
4238     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4239   else
4240     MinReservedArea = LinkageSize;
4241 
4242   // Set the size that is at least reserved in caller of this function.  Tail
4243   // call optimized functions' reserved stack space needs to be aligned so that
4244   // taking the difference between two stack areas will result in an aligned
4245   // stack.
4246   MinReservedArea =
4247       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4248   FuncInfo->setMinReservedArea(MinReservedArea);
4249 
4250   // If the function takes variable number of arguments, make a frame index for
4251   // the start of the first vararg value... for expansion of llvm.va_start.
4252   // On ELFv2ABI spec, it writes:
4253   // C programs that are intended to be *portable* across different compilers
4254   // and architectures must use the header file <stdarg.h> to deal with variable
4255   // argument lists.
4256   if (isVarArg && MFI.hasVAStart()) {
4257     int Depth = ArgOffset;
4258 
4259     FuncInfo->setVarArgsFrameIndex(
4260       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4261     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4262 
4263     // If this function is vararg, store any remaining integer argument regs
4264     // to their spots on the stack so that they may be loaded by dereferencing
4265     // the result of va_next.
4266     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4267          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4268       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4269       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4270       SDValue Store =
4271           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4272       MemOps.push_back(Store);
4273       // Increment the address by four for the next argument to store
4274       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4275       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4276     }
4277   }
4278 
4279   if (!MemOps.empty())
4280     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4281 
4282   return Chain;
4283 }
4284 
4285 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4286     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4287     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4288     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4289   // TODO: add description of PPC stack frame format, or at least some docs.
4290   //
4291   MachineFunction &MF = DAG.getMachineFunction();
4292   MachineFrameInfo &MFI = MF.getFrameInfo();
4293   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4294 
4295   EVT PtrVT = getPointerTy(MF.getDataLayout());
4296   bool isPPC64 = PtrVT == MVT::i64;
4297   // Potential tail calls could cause overwriting of argument stack slots.
4298   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4299                        (CallConv == CallingConv::Fast));
4300   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4301   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4302   unsigned ArgOffset = LinkageSize;
4303   // Area that is at least reserved in caller of this function.
4304   unsigned MinReservedArea = ArgOffset;
4305 
4306   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4307     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4308     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4309   };
4310   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4311     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4312     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4313   };
4314   static const MCPhysReg VR[] = {
4315     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4316     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4317   };
4318 
4319   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4320   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4321   const unsigned Num_VR_Regs  = array_lengthof( VR);
4322 
4323   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4324 
4325   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4326 
4327   // In 32-bit non-varargs functions, the stack space for vectors is after the
4328   // stack space for non-vectors.  We do not use this space unless we have
4329   // too many vectors to fit in registers, something that only occurs in
4330   // constructed examples:), but we have to walk the arglist to figure
4331   // that out...for the pathological case, compute VecArgOffset as the
4332   // start of the vector parameter area.  Computing VecArgOffset is the
4333   // entire point of the following loop.
4334   unsigned VecArgOffset = ArgOffset;
4335   if (!isVarArg && !isPPC64) {
4336     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4337          ++ArgNo) {
4338       EVT ObjectVT = Ins[ArgNo].VT;
4339       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4340 
4341       if (Flags.isByVal()) {
4342         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4343         unsigned ObjSize = Flags.getByValSize();
4344         unsigned ArgSize =
4345                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4346         VecArgOffset += ArgSize;
4347         continue;
4348       }
4349 
4350       switch(ObjectVT.getSimpleVT().SimpleTy) {
4351       default: llvm_unreachable("Unhandled argument type!");
4352       case MVT::i1:
4353       case MVT::i32:
4354       case MVT::f32:
4355         VecArgOffset += 4;
4356         break;
4357       case MVT::i64:  // PPC64
4358       case MVT::f64:
4359         // FIXME: We are guaranteed to be !isPPC64 at this point.
4360         // Does MVT::i64 apply?
4361         VecArgOffset += 8;
4362         break;
4363       case MVT::v4f32:
4364       case MVT::v4i32:
4365       case MVT::v8i16:
4366       case MVT::v16i8:
4367         // Nothing to do, we're only looking at Nonvector args here.
4368         break;
4369       }
4370     }
4371   }
4372   // We've found where the vector parameter area in memory is.  Skip the
4373   // first 12 parameters; these don't use that memory.
4374   VecArgOffset = ((VecArgOffset+15)/16)*16;
4375   VecArgOffset += 12*16;
4376 
4377   // Add DAG nodes to load the arguments or copy them out of registers.  On
4378   // entry to a function on PPC, the arguments start after the linkage area,
4379   // although the first ones are often in registers.
4380 
4381   SmallVector<SDValue, 8> MemOps;
4382   unsigned nAltivecParamsAtEnd = 0;
4383   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4384   unsigned CurArgIdx = 0;
4385   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4386     SDValue ArgVal;
4387     bool needsLoad = false;
4388     EVT ObjectVT = Ins[ArgNo].VT;
4389     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4390     unsigned ArgSize = ObjSize;
4391     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4392     if (Ins[ArgNo].isOrigArg()) {
4393       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4394       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4395     }
4396     unsigned CurArgOffset = ArgOffset;
4397 
4398     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4399     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4400         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4401       if (isVarArg || isPPC64) {
4402         MinReservedArea = ((MinReservedArea+15)/16)*16;
4403         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4404                                                   Flags,
4405                                                   PtrByteSize);
4406       } else  nAltivecParamsAtEnd++;
4407     } else
4408       // Calculate min reserved area.
4409       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4410                                                 Flags,
4411                                                 PtrByteSize);
4412 
4413     // FIXME the codegen can be much improved in some cases.
4414     // We do not have to keep everything in memory.
4415     if (Flags.isByVal()) {
4416       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4417 
4418       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4419       ObjSize = Flags.getByValSize();
4420       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4421       // Objects of size 1 and 2 are right justified, everything else is
4422       // left justified.  This means the memory address is adjusted forwards.
4423       if (ObjSize==1 || ObjSize==2) {
4424         CurArgOffset = CurArgOffset + (4 - ObjSize);
4425       }
4426       // The value of the object is its address.
4427       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4428       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4429       InVals.push_back(FIN);
4430       if (ObjSize==1 || ObjSize==2) {
4431         if (GPR_idx != Num_GPR_Regs) {
4432           unsigned VReg;
4433           if (isPPC64)
4434             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4435           else
4436             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4437           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4438           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4439           SDValue Store =
4440               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4441                                 MachinePointerInfo(&*FuncArg), ObjType);
4442           MemOps.push_back(Store);
4443           ++GPR_idx;
4444         }
4445 
4446         ArgOffset += PtrByteSize;
4447 
4448         continue;
4449       }
4450       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4451         // Store whatever pieces of the object are in registers
4452         // to memory.  ArgOffset will be the address of the beginning
4453         // of the object.
4454         if (GPR_idx != Num_GPR_Regs) {
4455           unsigned VReg;
4456           if (isPPC64)
4457             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4458           else
4459             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4460           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4461           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4462           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4463           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4464                                        MachinePointerInfo(&*FuncArg, j));
4465           MemOps.push_back(Store);
4466           ++GPR_idx;
4467           ArgOffset += PtrByteSize;
4468         } else {
4469           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4470           break;
4471         }
4472       }
4473       continue;
4474     }
4475 
4476     switch (ObjectVT.getSimpleVT().SimpleTy) {
4477     default: llvm_unreachable("Unhandled argument type!");
4478     case MVT::i1:
4479     case MVT::i32:
4480       if (!isPPC64) {
4481         if (GPR_idx != Num_GPR_Regs) {
4482           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4483           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4484 
4485           if (ObjectVT == MVT::i1)
4486             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4487 
4488           ++GPR_idx;
4489         } else {
4490           needsLoad = true;
4491           ArgSize = PtrByteSize;
4492         }
4493         // All int arguments reserve stack space in the Darwin ABI.
4494         ArgOffset += PtrByteSize;
4495         break;
4496       }
4497       LLVM_FALLTHROUGH;
4498     case MVT::i64:  // PPC64
4499       if (GPR_idx != Num_GPR_Regs) {
4500         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4501         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4502 
4503         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4504           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4505           // value to MVT::i64 and then truncate to the correct register size.
4506           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4507 
4508         ++GPR_idx;
4509       } else {
4510         needsLoad = true;
4511         ArgSize = PtrByteSize;
4512       }
4513       // All int arguments reserve stack space in the Darwin ABI.
4514       ArgOffset += 8;
4515       break;
4516 
4517     case MVT::f32:
4518     case MVT::f64:
4519       // Every 4 bytes of argument space consumes one of the GPRs available for
4520       // argument passing.
4521       if (GPR_idx != Num_GPR_Regs) {
4522         ++GPR_idx;
4523         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4524           ++GPR_idx;
4525       }
4526       if (FPR_idx != Num_FPR_Regs) {
4527         unsigned VReg;
4528 
4529         if (ObjectVT == MVT::f32)
4530           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4531         else
4532           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4533 
4534         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4535         ++FPR_idx;
4536       } else {
4537         needsLoad = true;
4538       }
4539 
4540       // All FP arguments reserve stack space in the Darwin ABI.
4541       ArgOffset += isPPC64 ? 8 : ObjSize;
4542       break;
4543     case MVT::v4f32:
4544     case MVT::v4i32:
4545     case MVT::v8i16:
4546     case MVT::v16i8:
4547       // Note that vector arguments in registers don't reserve stack space,
4548       // except in varargs functions.
4549       if (VR_idx != Num_VR_Regs) {
4550         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4551         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4552         if (isVarArg) {
4553           while ((ArgOffset % 16) != 0) {
4554             ArgOffset += PtrByteSize;
4555             if (GPR_idx != Num_GPR_Regs)
4556               GPR_idx++;
4557           }
4558           ArgOffset += 16;
4559           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4560         }
4561         ++VR_idx;
4562       } else {
4563         if (!isVarArg && !isPPC64) {
4564           // Vectors go after all the nonvectors.
4565           CurArgOffset = VecArgOffset;
4566           VecArgOffset += 16;
4567         } else {
4568           // Vectors are aligned.
4569           ArgOffset = ((ArgOffset+15)/16)*16;
4570           CurArgOffset = ArgOffset;
4571           ArgOffset += 16;
4572         }
4573         needsLoad = true;
4574       }
4575       break;
4576     }
4577 
4578     // We need to load the argument to a virtual register if we determined above
4579     // that we ran out of physical registers of the appropriate type.
4580     if (needsLoad) {
4581       int FI = MFI.CreateFixedObject(ObjSize,
4582                                      CurArgOffset + (ArgSize - ObjSize),
4583                                      isImmutable);
4584       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4585       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4586     }
4587 
4588     InVals.push_back(ArgVal);
4589   }
4590 
4591   // Allow for Altivec parameters at the end, if needed.
4592   if (nAltivecParamsAtEnd) {
4593     MinReservedArea = ((MinReservedArea+15)/16)*16;
4594     MinReservedArea += 16*nAltivecParamsAtEnd;
4595   }
4596 
4597   // Area that is at least reserved in the caller of this function.
4598   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4599 
4600   // Set the size that is at least reserved in caller of this function.  Tail
4601   // call optimized functions' reserved stack space needs to be aligned so that
4602   // taking the difference between two stack areas will result in an aligned
4603   // stack.
4604   MinReservedArea =
4605       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4606   FuncInfo->setMinReservedArea(MinReservedArea);
4607 
4608   // If the function takes variable number of arguments, make a frame index for
4609   // the start of the first vararg value... for expansion of llvm.va_start.
4610   if (isVarArg) {
4611     int Depth = ArgOffset;
4612 
4613     FuncInfo->setVarArgsFrameIndex(
4614       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4615                             Depth, true));
4616     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4617 
4618     // If this function is vararg, store any remaining integer argument regs
4619     // to their spots on the stack so that they may be loaded by dereferencing
4620     // the result of va_next.
4621     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4622       unsigned VReg;
4623 
4624       if (isPPC64)
4625         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4626       else
4627         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4628 
4629       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4630       SDValue Store =
4631           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4632       MemOps.push_back(Store);
4633       // Increment the address by four for the next argument to store
4634       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4635       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4636     }
4637   }
4638 
4639   if (!MemOps.empty())
4640     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4641 
4642   return Chain;
4643 }
4644 
4645 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4646 /// adjusted to accommodate the arguments for the tailcall.
4647 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4648                                    unsigned ParamSize) {
4649 
4650   if (!isTailCall) return 0;
4651 
4652   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4653   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4654   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4655   // Remember only if the new adjustment is bigger.
4656   if (SPDiff < FI->getTailCallSPDelta())
4657     FI->setTailCallSPDelta(SPDiff);
4658 
4659   return SPDiff;
4660 }
4661 
4662 static bool isFunctionGlobalAddress(SDValue Callee);
4663 
4664 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4665                               const TargetMachine &TM) {
4666   // It does not make sense to call callsShareTOCBase() with a caller that
4667   // is PC Relative since PC Relative callers do not have a TOC.
4668 #ifndef NDEBUG
4669   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4670   assert(!STICaller->isUsingPCRelativeCalls() &&
4671          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4672 #endif
4673 
4674   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4675   // don't have enough information to determine if the caller and callee share
4676   // the same  TOC base, so we have to pessimistically assume they don't for
4677   // correctness.
4678   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4679   if (!G)
4680     return false;
4681 
4682   const GlobalValue *GV = G->getGlobal();
4683 
4684   // If the callee is preemptable, then the static linker will use a plt-stub
4685   // which saves the toc to the stack, and needs a nop after the call
4686   // instruction to convert to a toc-restore.
4687   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4688     return false;
4689 
4690   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4691   // We may need a TOC restore in the situation where the caller requires a
4692   // valid TOC but the callee is PC Relative and does not.
4693   const Function *F = dyn_cast<Function>(GV);
4694   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4695 
4696   // If we have an Alias we can try to get the function from there.
4697   if (Alias) {
4698     const GlobalObject *GlobalObj = Alias->getBaseObject();
4699     F = dyn_cast<Function>(GlobalObj);
4700   }
4701 
4702   // If we still have no valid function pointer we do not have enough
4703   // information to determine if the callee uses PC Relative calls so we must
4704   // assume that it does.
4705   if (!F)
4706     return false;
4707 
4708   // If the callee uses PC Relative we cannot guarantee that the callee won't
4709   // clobber the TOC of the caller and so we must assume that the two
4710   // functions do not share a TOC base.
4711   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4712   if (STICallee->isUsingPCRelativeCalls())
4713     return false;
4714 
4715   // The medium and large code models are expected to provide a sufficiently
4716   // large TOC to provide all data addressing needs of a module with a
4717   // single TOC.
4718   if (CodeModel::Medium == TM.getCodeModel() ||
4719       CodeModel::Large == TM.getCodeModel())
4720     return true;
4721 
4722   // Otherwise we need to ensure callee and caller are in the same section,
4723   // since the linker may allocate multiple TOCs, and we don't know which
4724   // sections will belong to the same TOC base.
4725   if (!GV->isStrongDefinitionForLinker())
4726     return false;
4727 
4728   // Any explicitly-specified sections and section prefixes must also match.
4729   // Also, if we're using -ffunction-sections, then each function is always in
4730   // a different section (the same is true for COMDAT functions).
4731   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4732       GV->getSection() != Caller->getSection())
4733     return false;
4734   if (const auto *F = dyn_cast<Function>(GV)) {
4735     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4736       return false;
4737   }
4738 
4739   return true;
4740 }
4741 
4742 static bool
4743 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4744                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4745   assert(Subtarget.is64BitELFABI());
4746 
4747   const unsigned PtrByteSize = 8;
4748   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4749 
4750   static const MCPhysReg GPR[] = {
4751     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4752     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4753   };
4754   static const MCPhysReg VR[] = {
4755     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4756     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4757   };
4758 
4759   const unsigned NumGPRs = array_lengthof(GPR);
4760   const unsigned NumFPRs = 13;
4761   const unsigned NumVRs = array_lengthof(VR);
4762   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4763 
4764   unsigned NumBytes = LinkageSize;
4765   unsigned AvailableFPRs = NumFPRs;
4766   unsigned AvailableVRs = NumVRs;
4767 
4768   for (const ISD::OutputArg& Param : Outs) {
4769     if (Param.Flags.isNest()) continue;
4770 
4771     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4772                                LinkageSize, ParamAreaSize, NumBytes,
4773                                AvailableFPRs, AvailableVRs))
4774       return true;
4775   }
4776   return false;
4777 }
4778 
4779 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4780   if (CB.arg_size() != CallerFn->arg_size())
4781     return false;
4782 
4783   auto CalleeArgIter = CB.arg_begin();
4784   auto CalleeArgEnd = CB.arg_end();
4785   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4786 
4787   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4788     const Value* CalleeArg = *CalleeArgIter;
4789     const Value* CallerArg = &(*CallerArgIter);
4790     if (CalleeArg == CallerArg)
4791       continue;
4792 
4793     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4794     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4795     //      }
4796     // 1st argument of callee is undef and has the same type as caller.
4797     if (CalleeArg->getType() == CallerArg->getType() &&
4798         isa<UndefValue>(CalleeArg))
4799       continue;
4800 
4801     return false;
4802   }
4803 
4804   return true;
4805 }
4806 
4807 // Returns true if TCO is possible between the callers and callees
4808 // calling conventions.
4809 static bool
4810 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4811                                     CallingConv::ID CalleeCC) {
4812   // Tail calls are possible with fastcc and ccc.
4813   auto isTailCallableCC  = [] (CallingConv::ID CC){
4814       return  CC == CallingConv::C || CC == CallingConv::Fast;
4815   };
4816   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4817     return false;
4818 
4819   // We can safely tail call both fastcc and ccc callees from a c calling
4820   // convention caller. If the caller is fastcc, we may have less stack space
4821   // than a non-fastcc caller with the same signature so disable tail-calls in
4822   // that case.
4823   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4824 }
4825 
4826 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4827     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4828     const SmallVectorImpl<ISD::OutputArg> &Outs,
4829     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4830   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4831 
4832   if (DisableSCO && !TailCallOpt) return false;
4833 
4834   // Variadic argument functions are not supported.
4835   if (isVarArg) return false;
4836 
4837   auto &Caller = DAG.getMachineFunction().getFunction();
4838   // Check that the calling conventions are compatible for tco.
4839   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4840     return false;
4841 
4842   // Caller contains any byval parameter is not supported.
4843   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4844     return false;
4845 
4846   // Callee contains any byval parameter is not supported, too.
4847   // Note: This is a quick work around, because in some cases, e.g.
4848   // caller's stack size > callee's stack size, we are still able to apply
4849   // sibling call optimization. For example, gcc is able to do SCO for caller1
4850   // in the following example, but not for caller2.
4851   //   struct test {
4852   //     long int a;
4853   //     char ary[56];
4854   //   } gTest;
4855   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4856   //     b->a = v.a;
4857   //     return 0;
4858   //   }
4859   //   void caller1(struct test a, struct test c, struct test *b) {
4860   //     callee(gTest, b); }
4861   //   void caller2(struct test *b) { callee(gTest, b); }
4862   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4863     return false;
4864 
4865   // If callee and caller use different calling conventions, we cannot pass
4866   // parameters on stack since offsets for the parameter area may be different.
4867   if (Caller.getCallingConv() != CalleeCC &&
4868       needStackSlotPassParameters(Subtarget, Outs))
4869     return false;
4870 
4871   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4872   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4873   // callee potentially have different TOC bases then we cannot tail call since
4874   // we need to restore the TOC pointer after the call.
4875   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4876   // We cannot guarantee this for indirect calls or calls to external functions.
4877   // When PC-Relative addressing is used, the concept of the TOC is no longer
4878   // applicable so this check is not required.
4879   // Check first for indirect calls.
4880   if (!Subtarget.isUsingPCRelativeCalls() &&
4881       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4882     return false;
4883 
4884   // Check if we share the TOC base.
4885   if (!Subtarget.isUsingPCRelativeCalls() &&
4886       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4887     return false;
4888 
4889   // TCO allows altering callee ABI, so we don't have to check further.
4890   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4891     return true;
4892 
4893   if (DisableSCO) return false;
4894 
4895   // If callee use the same argument list that caller is using, then we can
4896   // apply SCO on this case. If it is not, then we need to check if callee needs
4897   // stack for passing arguments.
4898   // PC Relative tail calls may not have a CallBase.
4899   // If there is no CallBase we cannot verify if we have the same argument
4900   // list so assume that we don't have the same argument list.
4901   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4902       needStackSlotPassParameters(Subtarget, Outs))
4903     return false;
4904   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4905     return false;
4906 
4907   return true;
4908 }
4909 
4910 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4911 /// for tail call optimization. Targets which want to do tail call
4912 /// optimization should implement this function.
4913 bool
4914 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4915                                                      CallingConv::ID CalleeCC,
4916                                                      bool isVarArg,
4917                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4918                                                      SelectionDAG& DAG) const {
4919   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4920     return false;
4921 
4922   // Variable argument functions are not supported.
4923   if (isVarArg)
4924     return false;
4925 
4926   MachineFunction &MF = DAG.getMachineFunction();
4927   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4928   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4929     // Functions containing by val parameters are not supported.
4930     for (unsigned i = 0; i != Ins.size(); i++) {
4931        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4932        if (Flags.isByVal()) return false;
4933     }
4934 
4935     // Non-PIC/GOT tail calls are supported.
4936     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4937       return true;
4938 
4939     // At the moment we can only do local tail calls (in same module, hidden
4940     // or protected) if we are generating PIC.
4941     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4942       return G->getGlobal()->hasHiddenVisibility()
4943           || G->getGlobal()->hasProtectedVisibility();
4944   }
4945 
4946   return false;
4947 }
4948 
4949 /// isCallCompatibleAddress - Return the immediate to use if the specified
4950 /// 32-bit value is representable in the immediate field of a BxA instruction.
4951 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4952   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4953   if (!C) return nullptr;
4954 
4955   int Addr = C->getZExtValue();
4956   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4957       SignExtend32<26>(Addr) != Addr)
4958     return nullptr;  // Top 6 bits have to be sext of immediate.
4959 
4960   return DAG
4961       .getConstant(
4962           (int)C->getZExtValue() >> 2, SDLoc(Op),
4963           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4964       .getNode();
4965 }
4966 
4967 namespace {
4968 
4969 struct TailCallArgumentInfo {
4970   SDValue Arg;
4971   SDValue FrameIdxOp;
4972   int FrameIdx = 0;
4973 
4974   TailCallArgumentInfo() = default;
4975 };
4976 
4977 } // end anonymous namespace
4978 
4979 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4980 static void StoreTailCallArgumentsToStackSlot(
4981     SelectionDAG &DAG, SDValue Chain,
4982     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4983     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4984   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4985     SDValue Arg = TailCallArgs[i].Arg;
4986     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4987     int FI = TailCallArgs[i].FrameIdx;
4988     // Store relative to framepointer.
4989     MemOpChains.push_back(DAG.getStore(
4990         Chain, dl, Arg, FIN,
4991         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4992   }
4993 }
4994 
4995 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4996 /// the appropriate stack slot for the tail call optimized function call.
4997 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4998                                              SDValue OldRetAddr, SDValue OldFP,
4999                                              int SPDiff, const SDLoc &dl) {
5000   if (SPDiff) {
5001     // Calculate the new stack slot for the return address.
5002     MachineFunction &MF = DAG.getMachineFunction();
5003     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5004     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5005     bool isPPC64 = Subtarget.isPPC64();
5006     int SlotSize = isPPC64 ? 8 : 4;
5007     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5008     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5009                                                          NewRetAddrLoc, true);
5010     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5011     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5012     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5013                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5014   }
5015   return Chain;
5016 }
5017 
5018 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5019 /// the position of the argument.
5020 static void
5021 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5022                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5023                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5024   int Offset = ArgOffset + SPDiff;
5025   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5026   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5027   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5028   SDValue FIN = DAG.getFrameIndex(FI, VT);
5029   TailCallArgumentInfo Info;
5030   Info.Arg = Arg;
5031   Info.FrameIdxOp = FIN;
5032   Info.FrameIdx = FI;
5033   TailCallArguments.push_back(Info);
5034 }
5035 
5036 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5037 /// stack slot. Returns the chain as result and the loaded frame pointers in
5038 /// LROpOut/FPOpout. Used when tail calling.
5039 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5040     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5041     SDValue &FPOpOut, const SDLoc &dl) const {
5042   if (SPDiff) {
5043     // Load the LR and FP stack slot for later adjusting.
5044     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5045     LROpOut = getReturnAddrFrameIndex(DAG);
5046     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5047     Chain = SDValue(LROpOut.getNode(), 1);
5048   }
5049   return Chain;
5050 }
5051 
5052 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5053 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5054 /// specified by the specific parameter attribute. The copy will be passed as
5055 /// a byval function parameter.
5056 /// Sometimes what we are copying is the end of a larger object, the part that
5057 /// does not fit in registers.
5058 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5059                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5060                                          SelectionDAG &DAG, const SDLoc &dl) {
5061   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5062   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5063                        Flags.getNonZeroByValAlign(), false, false, false,
5064                        MachinePointerInfo(), MachinePointerInfo());
5065 }
5066 
5067 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5068 /// tail calls.
5069 static void LowerMemOpCallTo(
5070     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5071     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5072     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5073     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5074   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5075   if (!isTailCall) {
5076     if (isVector) {
5077       SDValue StackPtr;
5078       if (isPPC64)
5079         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5080       else
5081         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5082       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5083                            DAG.getConstant(ArgOffset, dl, PtrVT));
5084     }
5085     MemOpChains.push_back(
5086         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5087     // Calculate and remember argument location.
5088   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5089                                   TailCallArguments);
5090 }
5091 
5092 static void
5093 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5094                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5095                 SDValue FPOp,
5096                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5097   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5098   // might overwrite each other in case of tail call optimization.
5099   SmallVector<SDValue, 8> MemOpChains2;
5100   // Do not flag preceding copytoreg stuff together with the following stuff.
5101   InFlag = SDValue();
5102   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5103                                     MemOpChains2, dl);
5104   if (!MemOpChains2.empty())
5105     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5106 
5107   // Store the return address to the appropriate stack slot.
5108   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5109 
5110   // Emit callseq_end just before tailcall node.
5111   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5112                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5113   InFlag = Chain.getValue(1);
5114 }
5115 
5116 // Is this global address that of a function that can be called by name? (as
5117 // opposed to something that must hold a descriptor for an indirect call).
5118 static bool isFunctionGlobalAddress(SDValue Callee) {
5119   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5120     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5121         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5122       return false;
5123 
5124     return G->getGlobal()->getValueType()->isFunctionTy();
5125   }
5126 
5127   return false;
5128 }
5129 
5130 SDValue PPCTargetLowering::LowerCallResult(
5131     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5132     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5133     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5134   SmallVector<CCValAssign, 16> RVLocs;
5135   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5136                     *DAG.getContext());
5137 
5138   CCRetInfo.AnalyzeCallResult(
5139       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5140                ? RetCC_PPC_Cold
5141                : RetCC_PPC);
5142 
5143   // Copy all of the result registers out of their specified physreg.
5144   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5145     CCValAssign &VA = RVLocs[i];
5146     assert(VA.isRegLoc() && "Can only return in registers!");
5147 
5148     SDValue Val;
5149 
5150     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5151       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5152                                       InFlag);
5153       Chain = Lo.getValue(1);
5154       InFlag = Lo.getValue(2);
5155       VA = RVLocs[++i]; // skip ahead to next loc
5156       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5157                                       InFlag);
5158       Chain = Hi.getValue(1);
5159       InFlag = Hi.getValue(2);
5160       if (!Subtarget.isLittleEndian())
5161         std::swap (Lo, Hi);
5162       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5163     } else {
5164       Val = DAG.getCopyFromReg(Chain, dl,
5165                                VA.getLocReg(), VA.getLocVT(), InFlag);
5166       Chain = Val.getValue(1);
5167       InFlag = Val.getValue(2);
5168     }
5169 
5170     switch (VA.getLocInfo()) {
5171     default: llvm_unreachable("Unknown loc info!");
5172     case CCValAssign::Full: break;
5173     case CCValAssign::AExt:
5174       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5175       break;
5176     case CCValAssign::ZExt:
5177       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5178                         DAG.getValueType(VA.getValVT()));
5179       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5180       break;
5181     case CCValAssign::SExt:
5182       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5183                         DAG.getValueType(VA.getValVT()));
5184       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5185       break;
5186     }
5187 
5188     InVals.push_back(Val);
5189   }
5190 
5191   return Chain;
5192 }
5193 
5194 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5195                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5196   // PatchPoint calls are not indirect.
5197   if (isPatchPoint)
5198     return false;
5199 
5200   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5201     return false;
5202 
5203   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5204   // becuase the immediate function pointer points to a descriptor instead of
5205   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5206   // pointer immediate points to the global entry point, while the BLA would
5207   // need to jump to the local entry point (see rL211174).
5208   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5209       isBLACompatibleAddress(Callee, DAG))
5210     return false;
5211 
5212   return true;
5213 }
5214 
5215 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5216 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5217   return Subtarget.isAIXABI() ||
5218          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5219 }
5220 
5221 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5222                               const Function &Caller,
5223                               const SDValue &Callee,
5224                               const PPCSubtarget &Subtarget,
5225                               const TargetMachine &TM) {
5226   if (CFlags.IsTailCall)
5227     return PPCISD::TC_RETURN;
5228 
5229   // This is a call through a function pointer.
5230   if (CFlags.IsIndirect) {
5231     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5232     // indirect calls. The save of the caller's TOC pointer to the stack will be
5233     // inserted into the DAG as part of call lowering. The restore of the TOC
5234     // pointer is modeled by using a pseudo instruction for the call opcode that
5235     // represents the 2 instruction sequence of an indirect branch and link,
5236     // immediately followed by a load of the TOC pointer from the the stack save
5237     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5238     // as it is not saved or used.
5239     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5240                                                : PPCISD::BCTRL;
5241   }
5242 
5243   if (Subtarget.isUsingPCRelativeCalls()) {
5244     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5245     return PPCISD::CALL_NOTOC;
5246   }
5247 
5248   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5249   // immediately following the call instruction if the caller and callee may
5250   // have different TOC bases. At link time if the linker determines the calls
5251   // may not share a TOC base, the call is redirected to a trampoline inserted
5252   // by the linker. The trampoline will (among other things) save the callers
5253   // TOC pointer at an ABI designated offset in the linkage area and the linker
5254   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5255   // into gpr2.
5256   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5257     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5258                                                   : PPCISD::CALL_NOP;
5259 
5260   return PPCISD::CALL;
5261 }
5262 
5263 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5264                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5265   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5266     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5267       return SDValue(Dest, 0);
5268 
5269   // Returns true if the callee is local, and false otherwise.
5270   auto isLocalCallee = [&]() {
5271     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5272     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5273     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5274 
5275     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5276            !dyn_cast_or_null<GlobalIFunc>(GV);
5277   };
5278 
5279   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5280   // a static relocation model causes some versions of GNU LD (2.17.50, at
5281   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5282   // built with secure-PLT.
5283   bool UsePlt =
5284       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5285       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5286 
5287   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5288     const TargetMachine &TM = Subtarget.getTargetMachine();
5289     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5290     MCSymbolXCOFF *S =
5291         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5292 
5293     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5294     return DAG.getMCSymbol(S, PtrVT);
5295   };
5296 
5297   if (isFunctionGlobalAddress(Callee)) {
5298     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5299 
5300     if (Subtarget.isAIXABI()) {
5301       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5302       return getAIXFuncEntryPointSymbolSDNode(GV);
5303     }
5304     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5305                                       UsePlt ? PPCII::MO_PLT : 0);
5306   }
5307 
5308   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5309     const char *SymName = S->getSymbol();
5310     if (Subtarget.isAIXABI()) {
5311       // If there exists a user-declared function whose name is the same as the
5312       // ExternalSymbol's, then we pick up the user-declared version.
5313       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5314       if (const Function *F =
5315               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5316         return getAIXFuncEntryPointSymbolSDNode(F);
5317 
5318       // On AIX, direct function calls reference the symbol for the function's
5319       // entry point, which is named by prepending a "." before the function's
5320       // C-linkage name. A Qualname is returned here because an external
5321       // function entry point is a csect with XTY_ER property.
5322       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5323         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5324         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5325             (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5326             SectionKind::getMetadata());
5327         return Sec->getQualNameSymbol();
5328       };
5329 
5330       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5331     }
5332     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5333                                        UsePlt ? PPCII::MO_PLT : 0);
5334   }
5335 
5336   // No transformation needed.
5337   assert(Callee.getNode() && "What no callee?");
5338   return Callee;
5339 }
5340 
5341 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5342   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5343          "Expected a CALLSEQ_STARTSDNode.");
5344 
5345   // The last operand is the chain, except when the node has glue. If the node
5346   // has glue, then the last operand is the glue, and the chain is the second
5347   // last operand.
5348   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5349   if (LastValue.getValueType() != MVT::Glue)
5350     return LastValue;
5351 
5352   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5353 }
5354 
5355 // Creates the node that moves a functions address into the count register
5356 // to prepare for an indirect call instruction.
5357 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5358                                 SDValue &Glue, SDValue &Chain,
5359                                 const SDLoc &dl) {
5360   SDValue MTCTROps[] = {Chain, Callee, Glue};
5361   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5362   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5363                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5364   // The glue is the second value produced.
5365   Glue = Chain.getValue(1);
5366 }
5367 
5368 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5369                                           SDValue &Glue, SDValue &Chain,
5370                                           SDValue CallSeqStart,
5371                                           const CallBase *CB, const SDLoc &dl,
5372                                           bool hasNest,
5373                                           const PPCSubtarget &Subtarget) {
5374   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5375   // entry point, but to the function descriptor (the function entry point
5376   // address is part of the function descriptor though).
5377   // The function descriptor is a three doubleword structure with the
5378   // following fields: function entry point, TOC base address and
5379   // environment pointer.
5380   // Thus for a call through a function pointer, the following actions need
5381   // to be performed:
5382   //   1. Save the TOC of the caller in the TOC save area of its stack
5383   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5384   //   2. Load the address of the function entry point from the function
5385   //      descriptor.
5386   //   3. Load the TOC of the callee from the function descriptor into r2.
5387   //   4. Load the environment pointer from the function descriptor into
5388   //      r11.
5389   //   5. Branch to the function entry point address.
5390   //   6. On return of the callee, the TOC of the caller needs to be
5391   //      restored (this is done in FinishCall()).
5392   //
5393   // The loads are scheduled at the beginning of the call sequence, and the
5394   // register copies are flagged together to ensure that no other
5395   // operations can be scheduled in between. E.g. without flagging the
5396   // copies together, a TOC access in the caller could be scheduled between
5397   // the assignment of the callee TOC and the branch to the callee, which leads
5398   // to incorrect code.
5399 
5400   // Start by loading the function address from the descriptor.
5401   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5402   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5403                       ? (MachineMemOperand::MODereferenceable |
5404                          MachineMemOperand::MOInvariant)
5405                       : MachineMemOperand::MONone;
5406 
5407   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5408 
5409   // Registers used in building the DAG.
5410   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5411   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5412 
5413   // Offsets of descriptor members.
5414   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5415   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5416 
5417   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5418   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5419 
5420   // One load for the functions entry point address.
5421   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5422                                     Alignment, MMOFlags);
5423 
5424   // One for loading the TOC anchor for the module that contains the called
5425   // function.
5426   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5427   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5428   SDValue TOCPtr =
5429       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5430                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5431 
5432   // One for loading the environment pointer.
5433   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5434   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5435   SDValue LoadEnvPtr =
5436       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5437                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5438 
5439 
5440   // Then copy the newly loaded TOC anchor to the TOC pointer.
5441   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5442   Chain = TOCVal.getValue(0);
5443   Glue = TOCVal.getValue(1);
5444 
5445   // If the function call has an explicit 'nest' parameter, it takes the
5446   // place of the environment pointer.
5447   assert((!hasNest || !Subtarget.isAIXABI()) &&
5448          "Nest parameter is not supported on AIX.");
5449   if (!hasNest) {
5450     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5451     Chain = EnvVal.getValue(0);
5452     Glue = EnvVal.getValue(1);
5453   }
5454 
5455   // The rest of the indirect call sequence is the same as the non-descriptor
5456   // DAG.
5457   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5458 }
5459 
5460 static void
5461 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5462                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5463                   SelectionDAG &DAG,
5464                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5465                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5466                   const PPCSubtarget &Subtarget) {
5467   const bool IsPPC64 = Subtarget.isPPC64();
5468   // MVT for a general purpose register.
5469   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5470 
5471   // First operand is always the chain.
5472   Ops.push_back(Chain);
5473 
5474   // If it's a direct call pass the callee as the second operand.
5475   if (!CFlags.IsIndirect)
5476     Ops.push_back(Callee);
5477   else {
5478     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5479 
5480     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5481     // on the stack (this would have been done in `LowerCall_64SVR4` or
5482     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5483     // represents both the indirect branch and a load that restores the TOC
5484     // pointer from the linkage area. The operand for the TOC restore is an add
5485     // of the TOC save offset to the stack pointer. This must be the second
5486     // operand: after the chain input but before any other variadic arguments.
5487     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5488     // saved or used.
5489     if (isTOCSaveRestoreRequired(Subtarget)) {
5490       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5491 
5492       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5493       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5494       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5495       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5496       Ops.push_back(AddTOC);
5497     }
5498 
5499     // Add the register used for the environment pointer.
5500     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5501       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5502                                     RegVT));
5503 
5504 
5505     // Add CTR register as callee so a bctr can be emitted later.
5506     if (CFlags.IsTailCall)
5507       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5508   }
5509 
5510   // If this is a tail call add stack pointer delta.
5511   if (CFlags.IsTailCall)
5512     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5513 
5514   // Add argument registers to the end of the list so that they are known live
5515   // into the call.
5516   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5517     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5518                                   RegsToPass[i].second.getValueType()));
5519 
5520   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5521   // no way to mark dependencies as implicit here.
5522   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5523   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5524        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5525     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5526 
5527   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5528   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5529     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5530 
5531   // Add a register mask operand representing the call-preserved registers.
5532   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5533   const uint32_t *Mask =
5534       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5535   assert(Mask && "Missing call preserved mask for calling convention");
5536   Ops.push_back(DAG.getRegisterMask(Mask));
5537 
5538   // If the glue is valid, it is the last operand.
5539   if (Glue.getNode())
5540     Ops.push_back(Glue);
5541 }
5542 
5543 SDValue PPCTargetLowering::FinishCall(
5544     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5545     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5546     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5547     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5548     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5549 
5550   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5551       Subtarget.isAIXABI())
5552     setUsesTOCBasePtr(DAG);
5553 
5554   unsigned CallOpc =
5555       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5556                     Subtarget, DAG.getTarget());
5557 
5558   if (!CFlags.IsIndirect)
5559     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5560   else if (Subtarget.usesFunctionDescriptors())
5561     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5562                                   dl, CFlags.HasNest, Subtarget);
5563   else
5564     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5565 
5566   // Build the operand list for the call instruction.
5567   SmallVector<SDValue, 8> Ops;
5568   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5569                     SPDiff, Subtarget);
5570 
5571   // Emit tail call.
5572   if (CFlags.IsTailCall) {
5573     // Indirect tail call when using PC Relative calls do not have the same
5574     // constraints.
5575     assert(((Callee.getOpcode() == ISD::Register &&
5576              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5577             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5578             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5579             isa<ConstantSDNode>(Callee) ||
5580             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5581            "Expecting a global address, external symbol, absolute value, "
5582            "register or an indirect tail call when PC Relative calls are "
5583            "used.");
5584     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5585     assert(CallOpc == PPCISD::TC_RETURN &&
5586            "Unexpected call opcode for a tail call.");
5587     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5588     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5589   }
5590 
5591   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5592   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5593   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5594   Glue = Chain.getValue(1);
5595 
5596   // When performing tail call optimization the callee pops its arguments off
5597   // the stack. Account for this here so these bytes can be pushed back on in
5598   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5599   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5600                          getTargetMachine().Options.GuaranteedTailCallOpt)
5601                             ? NumBytes
5602                             : 0;
5603 
5604   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5605                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5606                              Glue, dl);
5607   Glue = Chain.getValue(1);
5608 
5609   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5610                          DAG, InVals);
5611 }
5612 
5613 SDValue
5614 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5615                              SmallVectorImpl<SDValue> &InVals) const {
5616   SelectionDAG &DAG                     = CLI.DAG;
5617   SDLoc &dl                             = CLI.DL;
5618   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5619   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5620   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5621   SDValue Chain                         = CLI.Chain;
5622   SDValue Callee                        = CLI.Callee;
5623   bool &isTailCall                      = CLI.IsTailCall;
5624   CallingConv::ID CallConv              = CLI.CallConv;
5625   bool isVarArg                         = CLI.IsVarArg;
5626   bool isPatchPoint                     = CLI.IsPatchPoint;
5627   const CallBase *CB                    = CLI.CB;
5628 
5629   if (isTailCall) {
5630     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5631       isTailCall = false;
5632     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5633       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5634           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5635     else
5636       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5637                                                      Ins, DAG);
5638     if (isTailCall) {
5639       ++NumTailCalls;
5640       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5641         ++NumSiblingCalls;
5642 
5643       // PC Relative calls no longer guarantee that the callee is a Global
5644       // Address Node. The callee could be an indirect tail call in which
5645       // case the SDValue for the callee could be a load (to load the address
5646       // of a function pointer) or it may be a register copy (to move the
5647       // address of the callee from a function parameter into a virtual
5648       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5649       assert((Subtarget.isUsingPCRelativeCalls() ||
5650               isa<GlobalAddressSDNode>(Callee)) &&
5651              "Callee should be an llvm::Function object.");
5652 
5653       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5654                         << "\nTCO callee: ");
5655       LLVM_DEBUG(Callee.dump());
5656     }
5657   }
5658 
5659   if (!isTailCall && CB && CB->isMustTailCall())
5660     report_fatal_error("failed to perform tail call elimination on a call "
5661                        "site marked musttail");
5662 
5663   // When long calls (i.e. indirect calls) are always used, calls are always
5664   // made via function pointer. If we have a function name, first translate it
5665   // into a pointer.
5666   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5667       !isTailCall)
5668     Callee = LowerGlobalAddress(Callee, DAG);
5669 
5670   CallFlags CFlags(
5671       CallConv, isTailCall, isVarArg, isPatchPoint,
5672       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5673       // hasNest
5674       Subtarget.is64BitELFABI() &&
5675           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5676       CLI.NoMerge);
5677 
5678   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5679     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5680                             InVals, CB);
5681 
5682   if (Subtarget.isSVR4ABI())
5683     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5684                             InVals, CB);
5685 
5686   if (Subtarget.isAIXABI())
5687     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5688                          InVals, CB);
5689 
5690   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5691                           InVals, CB);
5692 }
5693 
5694 SDValue PPCTargetLowering::LowerCall_32SVR4(
5695     SDValue Chain, SDValue Callee, CallFlags CFlags,
5696     const SmallVectorImpl<ISD::OutputArg> &Outs,
5697     const SmallVectorImpl<SDValue> &OutVals,
5698     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5699     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5700     const CallBase *CB) const {
5701   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5702   // of the 32-bit SVR4 ABI stack frame layout.
5703 
5704   const CallingConv::ID CallConv = CFlags.CallConv;
5705   const bool IsVarArg = CFlags.IsVarArg;
5706   const bool IsTailCall = CFlags.IsTailCall;
5707 
5708   assert((CallConv == CallingConv::C ||
5709           CallConv == CallingConv::Cold ||
5710           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5711 
5712   const Align PtrAlign(4);
5713 
5714   MachineFunction &MF = DAG.getMachineFunction();
5715 
5716   // Mark this function as potentially containing a function that contains a
5717   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5718   // and restoring the callers stack pointer in this functions epilog. This is
5719   // done because by tail calling the called function might overwrite the value
5720   // in this function's (MF) stack pointer stack slot 0(SP).
5721   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5722       CallConv == CallingConv::Fast)
5723     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5724 
5725   // Count how many bytes are to be pushed on the stack, including the linkage
5726   // area, parameter list area and the part of the local variable space which
5727   // contains copies of aggregates which are passed by value.
5728 
5729   // Assign locations to all of the outgoing arguments.
5730   SmallVector<CCValAssign, 16> ArgLocs;
5731   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5732 
5733   // Reserve space for the linkage area on the stack.
5734   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5735                        PtrAlign);
5736   if (useSoftFloat())
5737     CCInfo.PreAnalyzeCallOperands(Outs);
5738 
5739   if (IsVarArg) {
5740     // Handle fixed and variable vector arguments differently.
5741     // Fixed vector arguments go into registers as long as registers are
5742     // available. Variable vector arguments always go into memory.
5743     unsigned NumArgs = Outs.size();
5744 
5745     for (unsigned i = 0; i != NumArgs; ++i) {
5746       MVT ArgVT = Outs[i].VT;
5747       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5748       bool Result;
5749 
5750       if (Outs[i].IsFixed) {
5751         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5752                                CCInfo);
5753       } else {
5754         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5755                                       ArgFlags, CCInfo);
5756       }
5757 
5758       if (Result) {
5759 #ifndef NDEBUG
5760         errs() << "Call operand #" << i << " has unhandled type "
5761              << EVT(ArgVT).getEVTString() << "\n";
5762 #endif
5763         llvm_unreachable(nullptr);
5764       }
5765     }
5766   } else {
5767     // All arguments are treated the same.
5768     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5769   }
5770   CCInfo.clearWasPPCF128();
5771 
5772   // Assign locations to all of the outgoing aggregate by value arguments.
5773   SmallVector<CCValAssign, 16> ByValArgLocs;
5774   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5775 
5776   // Reserve stack space for the allocations in CCInfo.
5777   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5778 
5779   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5780 
5781   // Size of the linkage area, parameter list area and the part of the local
5782   // space variable where copies of aggregates which are passed by value are
5783   // stored.
5784   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5785 
5786   // Calculate by how many bytes the stack has to be adjusted in case of tail
5787   // call optimization.
5788   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5789 
5790   // Adjust the stack pointer for the new arguments...
5791   // These operations are automatically eliminated by the prolog/epilog pass
5792   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5793   SDValue CallSeqStart = Chain;
5794 
5795   // Load the return address and frame pointer so it can be moved somewhere else
5796   // later.
5797   SDValue LROp, FPOp;
5798   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5799 
5800   // Set up a copy of the stack pointer for use loading and storing any
5801   // arguments that may not fit in the registers available for argument
5802   // passing.
5803   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5804 
5805   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5806   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5807   SmallVector<SDValue, 8> MemOpChains;
5808 
5809   bool seenFloatArg = false;
5810   // Walk the register/memloc assignments, inserting copies/loads.
5811   // i - Tracks the index into the list of registers allocated for the call
5812   // RealArgIdx - Tracks the index into the list of actual function arguments
5813   // j - Tracks the index into the list of byval arguments
5814   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5815        i != e;
5816        ++i, ++RealArgIdx) {
5817     CCValAssign &VA = ArgLocs[i];
5818     SDValue Arg = OutVals[RealArgIdx];
5819     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5820 
5821     if (Flags.isByVal()) {
5822       // Argument is an aggregate which is passed by value, thus we need to
5823       // create a copy of it in the local variable space of the current stack
5824       // frame (which is the stack frame of the caller) and pass the address of
5825       // this copy to the callee.
5826       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5827       CCValAssign &ByValVA = ByValArgLocs[j++];
5828       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5829 
5830       // Memory reserved in the local variable space of the callers stack frame.
5831       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5832 
5833       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5834       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5835                            StackPtr, PtrOff);
5836 
5837       // Create a copy of the argument in the local area of the current
5838       // stack frame.
5839       SDValue MemcpyCall =
5840         CreateCopyOfByValArgument(Arg, PtrOff,
5841                                   CallSeqStart.getNode()->getOperand(0),
5842                                   Flags, DAG, dl);
5843 
5844       // This must go outside the CALLSEQ_START..END.
5845       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5846                                                      SDLoc(MemcpyCall));
5847       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5848                              NewCallSeqStart.getNode());
5849       Chain = CallSeqStart = NewCallSeqStart;
5850 
5851       // Pass the address of the aggregate copy on the stack either in a
5852       // physical register or in the parameter list area of the current stack
5853       // frame to the callee.
5854       Arg = PtrOff;
5855     }
5856 
5857     // When useCRBits() is true, there can be i1 arguments.
5858     // It is because getRegisterType(MVT::i1) => MVT::i1,
5859     // and for other integer types getRegisterType() => MVT::i32.
5860     // Extend i1 and ensure callee will get i32.
5861     if (Arg.getValueType() == MVT::i1)
5862       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5863                         dl, MVT::i32, Arg);
5864 
5865     if (VA.isRegLoc()) {
5866       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5867       // Put argument in a physical register.
5868       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5869         bool IsLE = Subtarget.isLittleEndian();
5870         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5871                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5872         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5873         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5874                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5875         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5876                              SVal.getValue(0)));
5877       } else
5878         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5879     } else {
5880       // Put argument in the parameter list area of the current stack frame.
5881       assert(VA.isMemLoc());
5882       unsigned LocMemOffset = VA.getLocMemOffset();
5883 
5884       if (!IsTailCall) {
5885         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5886         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5887                              StackPtr, PtrOff);
5888 
5889         MemOpChains.push_back(
5890             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5891       } else {
5892         // Calculate and remember argument location.
5893         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5894                                  TailCallArguments);
5895       }
5896     }
5897   }
5898 
5899   if (!MemOpChains.empty())
5900     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5901 
5902   // Build a sequence of copy-to-reg nodes chained together with token chain
5903   // and flag operands which copy the outgoing args into the appropriate regs.
5904   SDValue InFlag;
5905   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5906     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5907                              RegsToPass[i].second, InFlag);
5908     InFlag = Chain.getValue(1);
5909   }
5910 
5911   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5912   // registers.
5913   if (IsVarArg) {
5914     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5915     SDValue Ops[] = { Chain, InFlag };
5916 
5917     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5918                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5919 
5920     InFlag = Chain.getValue(1);
5921   }
5922 
5923   if (IsTailCall)
5924     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5925                     TailCallArguments);
5926 
5927   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5928                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5929 }
5930 
5931 // Copy an argument into memory, being careful to do this outside the
5932 // call sequence for the call to which the argument belongs.
5933 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5934     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5935     SelectionDAG &DAG, const SDLoc &dl) const {
5936   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5937                         CallSeqStart.getNode()->getOperand(0),
5938                         Flags, DAG, dl);
5939   // The MEMCPY must go outside the CALLSEQ_START..END.
5940   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5941   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5942                                                  SDLoc(MemcpyCall));
5943   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5944                          NewCallSeqStart.getNode());
5945   return NewCallSeqStart;
5946 }
5947 
5948 SDValue PPCTargetLowering::LowerCall_64SVR4(
5949     SDValue Chain, SDValue Callee, CallFlags CFlags,
5950     const SmallVectorImpl<ISD::OutputArg> &Outs,
5951     const SmallVectorImpl<SDValue> &OutVals,
5952     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5953     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5954     const CallBase *CB) const {
5955   bool isELFv2ABI = Subtarget.isELFv2ABI();
5956   bool isLittleEndian = Subtarget.isLittleEndian();
5957   unsigned NumOps = Outs.size();
5958   bool IsSibCall = false;
5959   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5960 
5961   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5962   unsigned PtrByteSize = 8;
5963 
5964   MachineFunction &MF = DAG.getMachineFunction();
5965 
5966   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5967     IsSibCall = true;
5968 
5969   // Mark this function as potentially containing a function that contains a
5970   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5971   // and restoring the callers stack pointer in this functions epilog. This is
5972   // done because by tail calling the called function might overwrite the value
5973   // in this function's (MF) stack pointer stack slot 0(SP).
5974   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5975     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5976 
5977   assert(!(IsFastCall && CFlags.IsVarArg) &&
5978          "fastcc not supported on varargs functions");
5979 
5980   // Count how many bytes are to be pushed on the stack, including the linkage
5981   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5982   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5983   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5984   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5985   unsigned NumBytes = LinkageSize;
5986   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5987 
5988   static const MCPhysReg GPR[] = {
5989     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5990     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5991   };
5992   static const MCPhysReg VR[] = {
5993     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5994     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5995   };
5996 
5997   const unsigned NumGPRs = array_lengthof(GPR);
5998   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5999   const unsigned NumVRs  = array_lengthof(VR);
6000 
6001   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6002   // can be passed to the callee in registers.
6003   // For the fast calling convention, there is another check below.
6004   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6005   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6006   if (!HasParameterArea) {
6007     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6008     unsigned AvailableFPRs = NumFPRs;
6009     unsigned AvailableVRs = NumVRs;
6010     unsigned NumBytesTmp = NumBytes;
6011     for (unsigned i = 0; i != NumOps; ++i) {
6012       if (Outs[i].Flags.isNest()) continue;
6013       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6014                                  PtrByteSize, LinkageSize, ParamAreaSize,
6015                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
6016         HasParameterArea = true;
6017     }
6018   }
6019 
6020   // When using the fast calling convention, we don't provide backing for
6021   // arguments that will be in registers.
6022   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6023 
6024   // Avoid allocating parameter area for fastcc functions if all the arguments
6025   // can be passed in the registers.
6026   if (IsFastCall)
6027     HasParameterArea = false;
6028 
6029   // Add up all the space actually used.
6030   for (unsigned i = 0; i != NumOps; ++i) {
6031     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6032     EVT ArgVT = Outs[i].VT;
6033     EVT OrigVT = Outs[i].ArgVT;
6034 
6035     if (Flags.isNest())
6036       continue;
6037 
6038     if (IsFastCall) {
6039       if (Flags.isByVal()) {
6040         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6041         if (NumGPRsUsed > NumGPRs)
6042           HasParameterArea = true;
6043       } else {
6044         switch (ArgVT.getSimpleVT().SimpleTy) {
6045         default: llvm_unreachable("Unexpected ValueType for argument!");
6046         case MVT::i1:
6047         case MVT::i32:
6048         case MVT::i64:
6049           if (++NumGPRsUsed <= NumGPRs)
6050             continue;
6051           break;
6052         case MVT::v4i32:
6053         case MVT::v8i16:
6054         case MVT::v16i8:
6055         case MVT::v2f64:
6056         case MVT::v2i64:
6057         case MVT::v1i128:
6058         case MVT::f128:
6059           if (++NumVRsUsed <= NumVRs)
6060             continue;
6061           break;
6062         case MVT::v4f32:
6063           if (++NumVRsUsed <= NumVRs)
6064             continue;
6065           break;
6066         case MVT::f32:
6067         case MVT::f64:
6068           if (++NumFPRsUsed <= NumFPRs)
6069             continue;
6070           break;
6071         }
6072         HasParameterArea = true;
6073       }
6074     }
6075 
6076     /* Respect alignment of argument on the stack.  */
6077     auto Alignement =
6078         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6079     NumBytes = alignTo(NumBytes, Alignement);
6080 
6081     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6082     if (Flags.isInConsecutiveRegsLast())
6083       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6084   }
6085 
6086   unsigned NumBytesActuallyUsed = NumBytes;
6087 
6088   // In the old ELFv1 ABI,
6089   // the prolog code of the callee may store up to 8 GPR argument registers to
6090   // the stack, allowing va_start to index over them in memory if its varargs.
6091   // Because we cannot tell if this is needed on the caller side, we have to
6092   // conservatively assume that it is needed.  As such, make sure we have at
6093   // least enough stack space for the caller to store the 8 GPRs.
6094   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6095   // really requires memory operands, e.g. a vararg function.
6096   if (HasParameterArea)
6097     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6098   else
6099     NumBytes = LinkageSize;
6100 
6101   // Tail call needs the stack to be aligned.
6102   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6103     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6104 
6105   int SPDiff = 0;
6106 
6107   // Calculate by how many bytes the stack has to be adjusted in case of tail
6108   // call optimization.
6109   if (!IsSibCall)
6110     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6111 
6112   // To protect arguments on the stack from being clobbered in a tail call,
6113   // force all the loads to happen before doing any other lowering.
6114   if (CFlags.IsTailCall)
6115     Chain = DAG.getStackArgumentTokenFactor(Chain);
6116 
6117   // Adjust the stack pointer for the new arguments...
6118   // These operations are automatically eliminated by the prolog/epilog pass
6119   if (!IsSibCall)
6120     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6121   SDValue CallSeqStart = Chain;
6122 
6123   // Load the return address and frame pointer so it can be move somewhere else
6124   // later.
6125   SDValue LROp, FPOp;
6126   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6127 
6128   // Set up a copy of the stack pointer for use loading and storing any
6129   // arguments that may not fit in the registers available for argument
6130   // passing.
6131   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6132 
6133   // Figure out which arguments are going to go in registers, and which in
6134   // memory.  Also, if this is a vararg function, floating point operations
6135   // must be stored to our stack, and loaded into integer regs as well, if
6136   // any integer regs are available for argument passing.
6137   unsigned ArgOffset = LinkageSize;
6138 
6139   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6140   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6141 
6142   SmallVector<SDValue, 8> MemOpChains;
6143   for (unsigned i = 0; i != NumOps; ++i) {
6144     SDValue Arg = OutVals[i];
6145     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6146     EVT ArgVT = Outs[i].VT;
6147     EVT OrigVT = Outs[i].ArgVT;
6148 
6149     // PtrOff will be used to store the current argument to the stack if a
6150     // register cannot be found for it.
6151     SDValue PtrOff;
6152 
6153     // We re-align the argument offset for each argument, except when using the
6154     // fast calling convention, when we need to make sure we do that only when
6155     // we'll actually use a stack slot.
6156     auto ComputePtrOff = [&]() {
6157       /* Respect alignment of argument on the stack.  */
6158       auto Alignment =
6159           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6160       ArgOffset = alignTo(ArgOffset, Alignment);
6161 
6162       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6163 
6164       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6165     };
6166 
6167     if (!IsFastCall) {
6168       ComputePtrOff();
6169 
6170       /* Compute GPR index associated with argument offset.  */
6171       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6172       GPR_idx = std::min(GPR_idx, NumGPRs);
6173     }
6174 
6175     // Promote integers to 64-bit values.
6176     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6177       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6178       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6179       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6180     }
6181 
6182     // FIXME memcpy is used way more than necessary.  Correctness first.
6183     // Note: "by value" is code for passing a structure by value, not
6184     // basic types.
6185     if (Flags.isByVal()) {
6186       // Note: Size includes alignment padding, so
6187       //   struct x { short a; char b; }
6188       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6189       // These are the proper values we need for right-justifying the
6190       // aggregate in a parameter register.
6191       unsigned Size = Flags.getByValSize();
6192 
6193       // An empty aggregate parameter takes up no storage and no
6194       // registers.
6195       if (Size == 0)
6196         continue;
6197 
6198       if (IsFastCall)
6199         ComputePtrOff();
6200 
6201       // All aggregates smaller than 8 bytes must be passed right-justified.
6202       if (Size==1 || Size==2 || Size==4) {
6203         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6204         if (GPR_idx != NumGPRs) {
6205           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6206                                         MachinePointerInfo(), VT);
6207           MemOpChains.push_back(Load.getValue(1));
6208           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6209 
6210           ArgOffset += PtrByteSize;
6211           continue;
6212         }
6213       }
6214 
6215       if (GPR_idx == NumGPRs && Size < 8) {
6216         SDValue AddPtr = PtrOff;
6217         if (!isLittleEndian) {
6218           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6219                                           PtrOff.getValueType());
6220           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6221         }
6222         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6223                                                           CallSeqStart,
6224                                                           Flags, DAG, dl);
6225         ArgOffset += PtrByteSize;
6226         continue;
6227       }
6228       // Copy entire object into memory.  There are cases where gcc-generated
6229       // code assumes it is there, even if it could be put entirely into
6230       // registers.  (This is not what the doc says.)
6231 
6232       // FIXME: The above statement is likely due to a misunderstanding of the
6233       // documents.  All arguments must be copied into the parameter area BY
6234       // THE CALLEE in the event that the callee takes the address of any
6235       // formal argument.  That has not yet been implemented.  However, it is
6236       // reasonable to use the stack area as a staging area for the register
6237       // load.
6238 
6239       // Skip this for small aggregates, as we will use the same slot for a
6240       // right-justified copy, below.
6241       if (Size >= 8)
6242         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6243                                                           CallSeqStart,
6244                                                           Flags, DAG, dl);
6245 
6246       // When a register is available, pass a small aggregate right-justified.
6247       if (Size < 8 && GPR_idx != NumGPRs) {
6248         // The easiest way to get this right-justified in a register
6249         // is to copy the structure into the rightmost portion of a
6250         // local variable slot, then load the whole slot into the
6251         // register.
6252         // FIXME: The memcpy seems to produce pretty awful code for
6253         // small aggregates, particularly for packed ones.
6254         // FIXME: It would be preferable to use the slot in the
6255         // parameter save area instead of a new local variable.
6256         SDValue AddPtr = PtrOff;
6257         if (!isLittleEndian) {
6258           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6259           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6260         }
6261         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6262                                                           CallSeqStart,
6263                                                           Flags, DAG, dl);
6264 
6265         // Load the slot into the register.
6266         SDValue Load =
6267             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6268         MemOpChains.push_back(Load.getValue(1));
6269         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6270 
6271         // Done with this argument.
6272         ArgOffset += PtrByteSize;
6273         continue;
6274       }
6275 
6276       // For aggregates larger than PtrByteSize, copy the pieces of the
6277       // object that fit into registers from the parameter save area.
6278       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6279         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6280         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6281         if (GPR_idx != NumGPRs) {
6282           SDValue Load =
6283               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6284           MemOpChains.push_back(Load.getValue(1));
6285           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6286           ArgOffset += PtrByteSize;
6287         } else {
6288           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6289           break;
6290         }
6291       }
6292       continue;
6293     }
6294 
6295     switch (Arg.getSimpleValueType().SimpleTy) {
6296     default: llvm_unreachable("Unexpected ValueType for argument!");
6297     case MVT::i1:
6298     case MVT::i32:
6299     case MVT::i64:
6300       if (Flags.isNest()) {
6301         // The 'nest' parameter, if any, is passed in R11.
6302         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6303         break;
6304       }
6305 
6306       // These can be scalar arguments or elements of an integer array type
6307       // passed directly.  Clang may use those instead of "byval" aggregate
6308       // types to avoid forcing arguments to memory unnecessarily.
6309       if (GPR_idx != NumGPRs) {
6310         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6311       } else {
6312         if (IsFastCall)
6313           ComputePtrOff();
6314 
6315         assert(HasParameterArea &&
6316                "Parameter area must exist to pass an argument in memory.");
6317         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6318                          true, CFlags.IsTailCall, false, MemOpChains,
6319                          TailCallArguments, dl);
6320         if (IsFastCall)
6321           ArgOffset += PtrByteSize;
6322       }
6323       if (!IsFastCall)
6324         ArgOffset += PtrByteSize;
6325       break;
6326     case MVT::f32:
6327     case MVT::f64: {
6328       // These can be scalar arguments or elements of a float array type
6329       // passed directly.  The latter are used to implement ELFv2 homogenous
6330       // float aggregates.
6331 
6332       // Named arguments go into FPRs first, and once they overflow, the
6333       // remaining arguments go into GPRs and then the parameter save area.
6334       // Unnamed arguments for vararg functions always go to GPRs and
6335       // then the parameter save area.  For now, put all arguments to vararg
6336       // routines always in both locations (FPR *and* GPR or stack slot).
6337       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6338       bool NeededLoad = false;
6339 
6340       // First load the argument into the next available FPR.
6341       if (FPR_idx != NumFPRs)
6342         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6343 
6344       // Next, load the argument into GPR or stack slot if needed.
6345       if (!NeedGPROrStack)
6346         ;
6347       else if (GPR_idx != NumGPRs && !IsFastCall) {
6348         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6349         // once we support fp <-> gpr moves.
6350 
6351         // In the non-vararg case, this can only ever happen in the
6352         // presence of f32 array types, since otherwise we never run
6353         // out of FPRs before running out of GPRs.
6354         SDValue ArgVal;
6355 
6356         // Double values are always passed in a single GPR.
6357         if (Arg.getValueType() != MVT::f32) {
6358           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6359 
6360         // Non-array float values are extended and passed in a GPR.
6361         } else if (!Flags.isInConsecutiveRegs()) {
6362           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6363           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6364 
6365         // If we have an array of floats, we collect every odd element
6366         // together with its predecessor into one GPR.
6367         } else if (ArgOffset % PtrByteSize != 0) {
6368           SDValue Lo, Hi;
6369           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6370           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6371           if (!isLittleEndian)
6372             std::swap(Lo, Hi);
6373           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6374 
6375         // The final element, if even, goes into the first half of a GPR.
6376         } else if (Flags.isInConsecutiveRegsLast()) {
6377           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6378           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6379           if (!isLittleEndian)
6380             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6381                                  DAG.getConstant(32, dl, MVT::i32));
6382 
6383         // Non-final even elements are skipped; they will be handled
6384         // together the with subsequent argument on the next go-around.
6385         } else
6386           ArgVal = SDValue();
6387 
6388         if (ArgVal.getNode())
6389           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6390       } else {
6391         if (IsFastCall)
6392           ComputePtrOff();
6393 
6394         // Single-precision floating-point values are mapped to the
6395         // second (rightmost) word of the stack doubleword.
6396         if (Arg.getValueType() == MVT::f32 &&
6397             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6398           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6399           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6400         }
6401 
6402         assert(HasParameterArea &&
6403                "Parameter area must exist to pass an argument in memory.");
6404         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6405                          true, CFlags.IsTailCall, false, MemOpChains,
6406                          TailCallArguments, dl);
6407 
6408         NeededLoad = true;
6409       }
6410       // When passing an array of floats, the array occupies consecutive
6411       // space in the argument area; only round up to the next doubleword
6412       // at the end of the array.  Otherwise, each float takes 8 bytes.
6413       if (!IsFastCall || NeededLoad) {
6414         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6415                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6416         if (Flags.isInConsecutiveRegsLast())
6417           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6418       }
6419       break;
6420     }
6421     case MVT::v4f32:
6422     case MVT::v4i32:
6423     case MVT::v8i16:
6424     case MVT::v16i8:
6425     case MVT::v2f64:
6426     case MVT::v2i64:
6427     case MVT::v1i128:
6428     case MVT::f128:
6429       // These can be scalar arguments or elements of a vector array type
6430       // passed directly.  The latter are used to implement ELFv2 homogenous
6431       // vector aggregates.
6432 
6433       // For a varargs call, named arguments go into VRs or on the stack as
6434       // usual; unnamed arguments always go to the stack or the corresponding
6435       // GPRs when within range.  For now, we always put the value in both
6436       // locations (or even all three).
6437       if (CFlags.IsVarArg) {
6438         assert(HasParameterArea &&
6439                "Parameter area must exist if we have a varargs call.");
6440         // We could elide this store in the case where the object fits
6441         // entirely in R registers.  Maybe later.
6442         SDValue Store =
6443             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6444         MemOpChains.push_back(Store);
6445         if (VR_idx != NumVRs) {
6446           SDValue Load =
6447               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6448           MemOpChains.push_back(Load.getValue(1));
6449           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6450         }
6451         ArgOffset += 16;
6452         for (unsigned i=0; i<16; i+=PtrByteSize) {
6453           if (GPR_idx == NumGPRs)
6454             break;
6455           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6456                                    DAG.getConstant(i, dl, PtrVT));
6457           SDValue Load =
6458               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6459           MemOpChains.push_back(Load.getValue(1));
6460           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6461         }
6462         break;
6463       }
6464 
6465       // Non-varargs Altivec params go into VRs or on the stack.
6466       if (VR_idx != NumVRs) {
6467         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6468       } else {
6469         if (IsFastCall)
6470           ComputePtrOff();
6471 
6472         assert(HasParameterArea &&
6473                "Parameter area must exist to pass an argument in memory.");
6474         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6475                          true, CFlags.IsTailCall, true, MemOpChains,
6476                          TailCallArguments, dl);
6477         if (IsFastCall)
6478           ArgOffset += 16;
6479       }
6480 
6481       if (!IsFastCall)
6482         ArgOffset += 16;
6483       break;
6484     }
6485   }
6486 
6487   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6488          "mismatch in size of parameter area");
6489   (void)NumBytesActuallyUsed;
6490 
6491   if (!MemOpChains.empty())
6492     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6493 
6494   // Check if this is an indirect call (MTCTR/BCTRL).
6495   // See prepareDescriptorIndirectCall and buildCallOperands for more
6496   // information about calls through function pointers in the 64-bit SVR4 ABI.
6497   if (CFlags.IsIndirect) {
6498     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6499     // caller in the TOC save area.
6500     if (isTOCSaveRestoreRequired(Subtarget)) {
6501       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6502       // Load r2 into a virtual register and store it to the TOC save area.
6503       setUsesTOCBasePtr(DAG);
6504       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6505       // TOC save area offset.
6506       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6507       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6508       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6509       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6510                            MachinePointerInfo::getStack(
6511                                DAG.getMachineFunction(), TOCSaveOffset));
6512     }
6513     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6514     // This does not mean the MTCTR instruction must use R12; it's easier
6515     // to model this as an extra parameter, so do that.
6516     if (isELFv2ABI && !CFlags.IsPatchPoint)
6517       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6518   }
6519 
6520   // Build a sequence of copy-to-reg nodes chained together with token chain
6521   // and flag operands which copy the outgoing args into the appropriate regs.
6522   SDValue InFlag;
6523   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6524     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6525                              RegsToPass[i].second, InFlag);
6526     InFlag = Chain.getValue(1);
6527   }
6528 
6529   if (CFlags.IsTailCall && !IsSibCall)
6530     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6531                     TailCallArguments);
6532 
6533   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6534                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6535 }
6536 
6537 SDValue PPCTargetLowering::LowerCall_Darwin(
6538     SDValue Chain, SDValue Callee, CallFlags CFlags,
6539     const SmallVectorImpl<ISD::OutputArg> &Outs,
6540     const SmallVectorImpl<SDValue> &OutVals,
6541     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6542     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6543     const CallBase *CB) const {
6544   unsigned NumOps = Outs.size();
6545 
6546   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6547   bool isPPC64 = PtrVT == MVT::i64;
6548   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6549 
6550   MachineFunction &MF = DAG.getMachineFunction();
6551 
6552   // Mark this function as potentially containing a function that contains a
6553   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6554   // and restoring the callers stack pointer in this functions epilog. This is
6555   // done because by tail calling the called function might overwrite the value
6556   // in this function's (MF) stack pointer stack slot 0(SP).
6557   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6558       CFlags.CallConv == CallingConv::Fast)
6559     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6560 
6561   // Count how many bytes are to be pushed on the stack, including the linkage
6562   // area, and parameter passing area.  We start with 24/48 bytes, which is
6563   // prereserved space for [SP][CR][LR][3 x unused].
6564   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6565   unsigned NumBytes = LinkageSize;
6566 
6567   // Add up all the space actually used.
6568   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6569   // they all go in registers, but we must reserve stack space for them for
6570   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6571   // assigned stack space in order, with padding so Altivec parameters are
6572   // 16-byte aligned.
6573   unsigned nAltivecParamsAtEnd = 0;
6574   for (unsigned i = 0; i != NumOps; ++i) {
6575     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6576     EVT ArgVT = Outs[i].VT;
6577     // Varargs Altivec parameters are padded to a 16 byte boundary.
6578     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6579         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6580         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6581       if (!CFlags.IsVarArg && !isPPC64) {
6582         // Non-varargs Altivec parameters go after all the non-Altivec
6583         // parameters; handle those later so we know how much padding we need.
6584         nAltivecParamsAtEnd++;
6585         continue;
6586       }
6587       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6588       NumBytes = ((NumBytes+15)/16)*16;
6589     }
6590     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6591   }
6592 
6593   // Allow for Altivec parameters at the end, if needed.
6594   if (nAltivecParamsAtEnd) {
6595     NumBytes = ((NumBytes+15)/16)*16;
6596     NumBytes += 16*nAltivecParamsAtEnd;
6597   }
6598 
6599   // The prolog code of the callee may store up to 8 GPR argument registers to
6600   // the stack, allowing va_start to index over them in memory if its varargs.
6601   // Because we cannot tell if this is needed on the caller side, we have to
6602   // conservatively assume that it is needed.  As such, make sure we have at
6603   // least enough stack space for the caller to store the 8 GPRs.
6604   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6605 
6606   // Tail call needs the stack to be aligned.
6607   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6608       CFlags.CallConv == CallingConv::Fast)
6609     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6610 
6611   // Calculate by how many bytes the stack has to be adjusted in case of tail
6612   // call optimization.
6613   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6614 
6615   // To protect arguments on the stack from being clobbered in a tail call,
6616   // force all the loads to happen before doing any other lowering.
6617   if (CFlags.IsTailCall)
6618     Chain = DAG.getStackArgumentTokenFactor(Chain);
6619 
6620   // Adjust the stack pointer for the new arguments...
6621   // These operations are automatically eliminated by the prolog/epilog pass
6622   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6623   SDValue CallSeqStart = Chain;
6624 
6625   // Load the return address and frame pointer so it can be move somewhere else
6626   // later.
6627   SDValue LROp, FPOp;
6628   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6629 
6630   // Set up a copy of the stack pointer for use loading and storing any
6631   // arguments that may not fit in the registers available for argument
6632   // passing.
6633   SDValue StackPtr;
6634   if (isPPC64)
6635     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6636   else
6637     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6638 
6639   // Figure out which arguments are going to go in registers, and which in
6640   // memory.  Also, if this is a vararg function, floating point operations
6641   // must be stored to our stack, and loaded into integer regs as well, if
6642   // any integer regs are available for argument passing.
6643   unsigned ArgOffset = LinkageSize;
6644   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6645 
6646   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6647     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6648     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6649   };
6650   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6651     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6652     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6653   };
6654   static const MCPhysReg VR[] = {
6655     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6656     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6657   };
6658   const unsigned NumGPRs = array_lengthof(GPR_32);
6659   const unsigned NumFPRs = 13;
6660   const unsigned NumVRs  = array_lengthof(VR);
6661 
6662   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6663 
6664   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6665   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6666 
6667   SmallVector<SDValue, 8> MemOpChains;
6668   for (unsigned i = 0; i != NumOps; ++i) {
6669     SDValue Arg = OutVals[i];
6670     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6671 
6672     // PtrOff will be used to store the current argument to the stack if a
6673     // register cannot be found for it.
6674     SDValue PtrOff;
6675 
6676     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6677 
6678     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6679 
6680     // On PPC64, promote integers to 64-bit values.
6681     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6682       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6683       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6684       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6685     }
6686 
6687     // FIXME memcpy is used way more than necessary.  Correctness first.
6688     // Note: "by value" is code for passing a structure by value, not
6689     // basic types.
6690     if (Flags.isByVal()) {
6691       unsigned Size = Flags.getByValSize();
6692       // Very small objects are passed right-justified.  Everything else is
6693       // passed left-justified.
6694       if (Size==1 || Size==2) {
6695         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6696         if (GPR_idx != NumGPRs) {
6697           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6698                                         MachinePointerInfo(), VT);
6699           MemOpChains.push_back(Load.getValue(1));
6700           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6701 
6702           ArgOffset += PtrByteSize;
6703         } else {
6704           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6705                                           PtrOff.getValueType());
6706           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6707           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6708                                                             CallSeqStart,
6709                                                             Flags, DAG, dl);
6710           ArgOffset += PtrByteSize;
6711         }
6712         continue;
6713       }
6714       // Copy entire object into memory.  There are cases where gcc-generated
6715       // code assumes it is there, even if it could be put entirely into
6716       // registers.  (This is not what the doc says.)
6717       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6718                                                         CallSeqStart,
6719                                                         Flags, DAG, dl);
6720 
6721       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6722       // copy the pieces of the object that fit into registers from the
6723       // parameter save area.
6724       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6725         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6726         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6727         if (GPR_idx != NumGPRs) {
6728           SDValue Load =
6729               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6730           MemOpChains.push_back(Load.getValue(1));
6731           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6732           ArgOffset += PtrByteSize;
6733         } else {
6734           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6735           break;
6736         }
6737       }
6738       continue;
6739     }
6740 
6741     switch (Arg.getSimpleValueType().SimpleTy) {
6742     default: llvm_unreachable("Unexpected ValueType for argument!");
6743     case MVT::i1:
6744     case MVT::i32:
6745     case MVT::i64:
6746       if (GPR_idx != NumGPRs) {
6747         if (Arg.getValueType() == MVT::i1)
6748           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6749 
6750         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6751       } else {
6752         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6753                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6754                          TailCallArguments, dl);
6755       }
6756       ArgOffset += PtrByteSize;
6757       break;
6758     case MVT::f32:
6759     case MVT::f64:
6760       if (FPR_idx != NumFPRs) {
6761         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6762 
6763         if (CFlags.IsVarArg) {
6764           SDValue Store =
6765               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6766           MemOpChains.push_back(Store);
6767 
6768           // Float varargs are always shadowed in available integer registers
6769           if (GPR_idx != NumGPRs) {
6770             SDValue Load =
6771                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6772             MemOpChains.push_back(Load.getValue(1));
6773             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6774           }
6775           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6776             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6777             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6778             SDValue Load =
6779                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6780             MemOpChains.push_back(Load.getValue(1));
6781             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6782           }
6783         } else {
6784           // If we have any FPRs remaining, we may also have GPRs remaining.
6785           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6786           // GPRs.
6787           if (GPR_idx != NumGPRs)
6788             ++GPR_idx;
6789           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6790               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6791             ++GPR_idx;
6792         }
6793       } else
6794         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6795                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6796                          TailCallArguments, dl);
6797       if (isPPC64)
6798         ArgOffset += 8;
6799       else
6800         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6801       break;
6802     case MVT::v4f32:
6803     case MVT::v4i32:
6804     case MVT::v8i16:
6805     case MVT::v16i8:
6806       if (CFlags.IsVarArg) {
6807         // These go aligned on the stack, or in the corresponding R registers
6808         // when within range.  The Darwin PPC ABI doc claims they also go in
6809         // V registers; in fact gcc does this only for arguments that are
6810         // prototyped, not for those that match the ...  We do it for all
6811         // arguments, seems to work.
6812         while (ArgOffset % 16 !=0) {
6813           ArgOffset += PtrByteSize;
6814           if (GPR_idx != NumGPRs)
6815             GPR_idx++;
6816         }
6817         // We could elide this store in the case where the object fits
6818         // entirely in R registers.  Maybe later.
6819         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6820                              DAG.getConstant(ArgOffset, dl, PtrVT));
6821         SDValue Store =
6822             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6823         MemOpChains.push_back(Store);
6824         if (VR_idx != NumVRs) {
6825           SDValue Load =
6826               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6827           MemOpChains.push_back(Load.getValue(1));
6828           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6829         }
6830         ArgOffset += 16;
6831         for (unsigned i=0; i<16; i+=PtrByteSize) {
6832           if (GPR_idx == NumGPRs)
6833             break;
6834           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6835                                    DAG.getConstant(i, dl, PtrVT));
6836           SDValue Load =
6837               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6838           MemOpChains.push_back(Load.getValue(1));
6839           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6840         }
6841         break;
6842       }
6843 
6844       // Non-varargs Altivec params generally go in registers, but have
6845       // stack space allocated at the end.
6846       if (VR_idx != NumVRs) {
6847         // Doesn't have GPR space allocated.
6848         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6849       } else if (nAltivecParamsAtEnd==0) {
6850         // We are emitting Altivec params in order.
6851         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6852                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6853                          TailCallArguments, dl);
6854         ArgOffset += 16;
6855       }
6856       break;
6857     }
6858   }
6859   // If all Altivec parameters fit in registers, as they usually do,
6860   // they get stack space following the non-Altivec parameters.  We
6861   // don't track this here because nobody below needs it.
6862   // If there are more Altivec parameters than fit in registers emit
6863   // the stores here.
6864   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6865     unsigned j = 0;
6866     // Offset is aligned; skip 1st 12 params which go in V registers.
6867     ArgOffset = ((ArgOffset+15)/16)*16;
6868     ArgOffset += 12*16;
6869     for (unsigned i = 0; i != NumOps; ++i) {
6870       SDValue Arg = OutVals[i];
6871       EVT ArgType = Outs[i].VT;
6872       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6873           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6874         if (++j > NumVRs) {
6875           SDValue PtrOff;
6876           // We are emitting Altivec params in order.
6877           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6878                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6879                            TailCallArguments, dl);
6880           ArgOffset += 16;
6881         }
6882       }
6883     }
6884   }
6885 
6886   if (!MemOpChains.empty())
6887     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6888 
6889   // On Darwin, R12 must contain the address of an indirect callee.  This does
6890   // not mean the MTCTR instruction must use R12; it's easier to model this as
6891   // an extra parameter, so do that.
6892   if (CFlags.IsIndirect) {
6893     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6894     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6895                                                    PPC::R12), Callee));
6896   }
6897 
6898   // Build a sequence of copy-to-reg nodes chained together with token chain
6899   // and flag operands which copy the outgoing args into the appropriate regs.
6900   SDValue InFlag;
6901   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6902     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6903                              RegsToPass[i].second, InFlag);
6904     InFlag = Chain.getValue(1);
6905   }
6906 
6907   if (CFlags.IsTailCall)
6908     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6909                     TailCallArguments);
6910 
6911   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6912                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6913 }
6914 
6915 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6916                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6917                    CCState &State) {
6918 
6919   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6920       State.getMachineFunction().getSubtarget());
6921   const bool IsPPC64 = Subtarget.isPPC64();
6922   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6923   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6924 
6925   assert((!ValVT.isInteger() ||
6926           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6927          "Integer argument exceeds register size: should have been legalized");
6928 
6929   if (ValVT == MVT::f128)
6930     report_fatal_error("f128 is unimplemented on AIX.");
6931 
6932   if (ArgFlags.isNest())
6933     report_fatal_error("Nest arguments are unimplemented.");
6934 
6935   if (ValVT.isVector() || LocVT.isVector())
6936     report_fatal_error("Vector arguments are unimplemented on AIX.");
6937 
6938   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6939                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6940                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6941   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6942                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6943                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6944 
6945   if (ArgFlags.isByVal()) {
6946     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6947       report_fatal_error("Pass-by-value arguments with alignment greater than "
6948                          "register width are not supported.");
6949 
6950     const unsigned ByValSize = ArgFlags.getByValSize();
6951 
6952     // An empty aggregate parameter takes up no storage and no registers,
6953     // but needs a MemLoc for a stack slot for the formal arguments side.
6954     if (ByValSize == 0) {
6955       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6956                                        State.getNextStackOffset(), RegVT,
6957                                        LocInfo));
6958       return false;
6959     }
6960 
6961     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6962     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6963     for (const unsigned E = Offset + StackSize; Offset < E;
6964          Offset += PtrAlign.value()) {
6965       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6966         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6967       else {
6968         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6969                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6970                                          LocInfo));
6971         break;
6972       }
6973     }
6974     return false;
6975   }
6976 
6977   // Arguments always reserve parameter save area.
6978   switch (ValVT.SimpleTy) {
6979   default:
6980     report_fatal_error("Unhandled value type for argument.");
6981   case MVT::i64:
6982     // i64 arguments should have been split to i32 for PPC32.
6983     assert(IsPPC64 && "PPC32 should have split i64 values.");
6984     LLVM_FALLTHROUGH;
6985   case MVT::i1:
6986   case MVT::i32: {
6987     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6988     // AIX integer arguments are always passed in register width.
6989     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6990       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6991                                   : CCValAssign::LocInfo::ZExt;
6992     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6993       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6994     else
6995       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6996 
6997     return false;
6998   }
6999   case MVT::f32:
7000   case MVT::f64: {
7001     // Parameter save area (PSA) is reserved even if the float passes in fpr.
7002     const unsigned StoreSize = LocVT.getStoreSize();
7003     // Floats are always 4-byte aligned in the PSA on AIX.
7004     // This includes f64 in 64-bit mode for ABI compatibility.
7005     const unsigned Offset =
7006         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
7007     unsigned FReg = State.AllocateReg(FPR);
7008     if (FReg)
7009       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
7010 
7011     // Reserve and initialize GPRs or initialize the PSA as required.
7012     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
7013       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
7014         assert(FReg && "An FPR should be available when a GPR is reserved.");
7015         if (State.isVarArg()) {
7016           // Successfully reserved GPRs are only initialized for vararg calls.
7017           // Custom handling is required for:
7018           //   f64 in PPC32 needs to be split into 2 GPRs.
7019           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
7020           State.addLoc(
7021               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7022         }
7023       } else {
7024         // If there are insufficient GPRs, the PSA needs to be initialized.
7025         // Initialization occurs even if an FPR was initialized for
7026         // compatibility with the AIX XL compiler. The full memory for the
7027         // argument will be initialized even if a prior word is saved in GPR.
7028         // A custom memLoc is used when the argument also passes in FPR so
7029         // that the callee handling can skip over it easily.
7030         State.addLoc(
7031             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
7032                                              LocInfo)
7033                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
7034         break;
7035       }
7036     }
7037 
7038     return false;
7039   }
7040   }
7041   return true;
7042 }
7043 
7044 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7045                                                     bool IsPPC64) {
7046   assert((IsPPC64 || SVT != MVT::i64) &&
7047          "i64 should have been split for 32-bit codegen.");
7048 
7049   switch (SVT) {
7050   default:
7051     report_fatal_error("Unexpected value type for formal argument");
7052   case MVT::i1:
7053   case MVT::i32:
7054   case MVT::i64:
7055     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7056   case MVT::f32:
7057     return &PPC::F4RCRegClass;
7058   case MVT::f64:
7059     return &PPC::F8RCRegClass;
7060   }
7061 }
7062 
7063 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7064                                         SelectionDAG &DAG, SDValue ArgValue,
7065                                         MVT LocVT, const SDLoc &dl) {
7066   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7067   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7068 
7069   if (Flags.isSExt())
7070     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7071                            DAG.getValueType(ValVT));
7072   else if (Flags.isZExt())
7073     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7074                            DAG.getValueType(ValVT));
7075 
7076   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7077 }
7078 
7079 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7080   const unsigned LASize = FL->getLinkageSize();
7081 
7082   if (PPC::GPRCRegClass.contains(Reg)) {
7083     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7084            "Reg must be a valid argument register!");
7085     return LASize + 4 * (Reg - PPC::R3);
7086   }
7087 
7088   if (PPC::G8RCRegClass.contains(Reg)) {
7089     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7090            "Reg must be a valid argument register!");
7091     return LASize + 8 * (Reg - PPC::X3);
7092   }
7093 
7094   llvm_unreachable("Only general purpose registers expected.");
7095 }
7096 
7097 //   AIX ABI Stack Frame Layout:
7098 //
7099 //   Low Memory +--------------------------------------------+
7100 //   SP   +---> | Back chain                                 | ---+
7101 //        |     +--------------------------------------------+    |
7102 //        |     | Saved Condition Register                   |    |
7103 //        |     +--------------------------------------------+    |
7104 //        |     | Saved Linkage Register                     |    |
7105 //        |     +--------------------------------------------+    | Linkage Area
7106 //        |     | Reserved for compilers                     |    |
7107 //        |     +--------------------------------------------+    |
7108 //        |     | Reserved for binders                       |    |
7109 //        |     +--------------------------------------------+    |
7110 //        |     | Saved TOC pointer                          | ---+
7111 //        |     +--------------------------------------------+
7112 //        |     | Parameter save area                        |
7113 //        |     +--------------------------------------------+
7114 //        |     | Alloca space                               |
7115 //        |     +--------------------------------------------+
7116 //        |     | Local variable space                       |
7117 //        |     +--------------------------------------------+
7118 //        |     | Float/int conversion temporary             |
7119 //        |     +--------------------------------------------+
7120 //        |     | Save area for AltiVec registers            |
7121 //        |     +--------------------------------------------+
7122 //        |     | AltiVec alignment padding                  |
7123 //        |     +--------------------------------------------+
7124 //        |     | Save area for VRSAVE register              |
7125 //        |     +--------------------------------------------+
7126 //        |     | Save area for General Purpose registers    |
7127 //        |     +--------------------------------------------+
7128 //        |     | Save area for Floating Point registers     |
7129 //        |     +--------------------------------------------+
7130 //        +---- | Back chain                                 |
7131 // High Memory  +--------------------------------------------+
7132 //
7133 //  Specifications:
7134 //  AIX 7.2 Assembler Language Reference
7135 //  Subroutine linkage convention
7136 
7137 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7138     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7139     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7140     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7141 
7142   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7143           CallConv == CallingConv::Fast) &&
7144          "Unexpected calling convention!");
7145 
7146   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7147     report_fatal_error("Tail call support is unimplemented on AIX.");
7148 
7149   if (useSoftFloat())
7150     report_fatal_error("Soft float support is unimplemented on AIX.");
7151 
7152   const PPCSubtarget &Subtarget =
7153       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7154 
7155   const bool IsPPC64 = Subtarget.isPPC64();
7156   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7157 
7158   // Assign locations to all of the incoming arguments.
7159   SmallVector<CCValAssign, 16> ArgLocs;
7160   MachineFunction &MF = DAG.getMachineFunction();
7161   MachineFrameInfo &MFI = MF.getFrameInfo();
7162   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7163 
7164   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7165   // Reserve space for the linkage area on the stack.
7166   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7167   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7168   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7169 
7170   SmallVector<SDValue, 8> MemOps;
7171 
7172   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7173     CCValAssign &VA = ArgLocs[I++];
7174     MVT LocVT = VA.getLocVT();
7175     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7176 
7177     // For compatibility with the AIX XL compiler, the float args in the
7178     // parameter save area are initialized even if the argument is available
7179     // in register.  The caller is required to initialize both the register
7180     // and memory, however, the callee can choose to expect it in either.
7181     // The memloc is dismissed here because the argument is retrieved from
7182     // the register.
7183     if (VA.isMemLoc() && VA.needsCustom())
7184       continue;
7185 
7186     if (Flags.isByVal() && VA.isMemLoc()) {
7187       const unsigned Size =
7188           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7189                   PtrByteSize);
7190       const int FI = MF.getFrameInfo().CreateFixedObject(
7191           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7192           /* IsAliased */ true);
7193       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7194       InVals.push_back(FIN);
7195 
7196       continue;
7197     }
7198 
7199     if (Flags.isByVal()) {
7200       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7201 
7202       const MCPhysReg ArgReg = VA.getLocReg();
7203       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7204 
7205       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7206         report_fatal_error("Over aligned byvals not supported yet.");
7207 
7208       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7209       const int FI = MF.getFrameInfo().CreateFixedObject(
7210           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7211           /* IsAliased */ true);
7212       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7213       InVals.push_back(FIN);
7214 
7215       // Add live ins for all the RegLocs for the same ByVal.
7216       const TargetRegisterClass *RegClass =
7217           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7218 
7219       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7220                                                unsigned Offset) {
7221         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7222         // Since the callers side has left justified the aggregate in the
7223         // register, we can simply store the entire register into the stack
7224         // slot.
7225         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7226         // The store to the fixedstack object is needed becuase accessing a
7227         // field of the ByVal will use a gep and load. Ideally we will optimize
7228         // to extracting the value from the register directly, and elide the
7229         // stores when the arguments address is not taken, but that will need to
7230         // be future work.
7231         SDValue Store = DAG.getStore(
7232             CopyFrom.getValue(1), dl, CopyFrom,
7233             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7234             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7235 
7236         MemOps.push_back(Store);
7237       };
7238 
7239       unsigned Offset = 0;
7240       HandleRegLoc(VA.getLocReg(), Offset);
7241       Offset += PtrByteSize;
7242       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7243            Offset += PtrByteSize) {
7244         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7245                "RegLocs should be for ByVal argument.");
7246 
7247         const CCValAssign RL = ArgLocs[I++];
7248         HandleRegLoc(RL.getLocReg(), Offset);
7249       }
7250 
7251       if (Offset != StackSize) {
7252         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7253                "Expected MemLoc for remaining bytes.");
7254         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7255         // Consume the MemLoc.The InVal has already been emitted, so nothing
7256         // more needs to be done.
7257         ++I;
7258       }
7259 
7260       continue;
7261     }
7262 
7263     EVT ValVT = VA.getValVT();
7264     if (VA.isRegLoc() && !VA.needsCustom()) {
7265       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7266       unsigned VReg =
7267           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7268       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7269       if (ValVT.isScalarInteger() &&
7270           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7271         ArgValue =
7272             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7273       }
7274       InVals.push_back(ArgValue);
7275       continue;
7276     }
7277     if (VA.isMemLoc()) {
7278       const unsigned LocSize = LocVT.getStoreSize();
7279       const unsigned ValSize = ValVT.getStoreSize();
7280       assert((ValSize <= LocSize) &&
7281              "Object size is larger than size of MemLoc");
7282       int CurArgOffset = VA.getLocMemOffset();
7283       // Objects are right-justified because AIX is big-endian.
7284       if (LocSize > ValSize)
7285         CurArgOffset += LocSize - ValSize;
7286       // Potential tail calls could cause overwriting of argument stack slots.
7287       const bool IsImmutable =
7288           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7289             (CallConv == CallingConv::Fast));
7290       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7291       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7292       SDValue ArgValue =
7293           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7294       InVals.push_back(ArgValue);
7295       continue;
7296     }
7297   }
7298 
7299   // On AIX a minimum of 8 words is saved to the parameter save area.
7300   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7301   // Area that is at least reserved in the caller of this function.
7302   unsigned CallerReservedArea =
7303       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7304 
7305   // Set the size that is at least reserved in caller of this function. Tail
7306   // call optimized function's reserved stack space needs to be aligned so
7307   // that taking the difference between two stack areas will result in an
7308   // aligned stack.
7309   CallerReservedArea =
7310       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7311   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7312   FuncInfo->setMinReservedArea(CallerReservedArea);
7313 
7314   if (isVarArg) {
7315     FuncInfo->setVarArgsFrameIndex(
7316         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7317     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7318 
7319     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7320                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7321 
7322     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7323                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7324     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7325 
7326     // The fixed integer arguments of a variadic function are stored to the
7327     // VarArgsFrameIndex on the stack so that they may be loaded by
7328     // dereferencing the result of va_next.
7329     for (unsigned GPRIndex =
7330              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7331          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7332 
7333       const unsigned VReg =
7334           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7335                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7336 
7337       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7338       SDValue Store =
7339           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7340       MemOps.push_back(Store);
7341       // Increment the address for the next argument to store.
7342       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7343       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7344     }
7345   }
7346 
7347   if (!MemOps.empty())
7348     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7349 
7350   return Chain;
7351 }
7352 
7353 SDValue PPCTargetLowering::LowerCall_AIX(
7354     SDValue Chain, SDValue Callee, CallFlags CFlags,
7355     const SmallVectorImpl<ISD::OutputArg> &Outs,
7356     const SmallVectorImpl<SDValue> &OutVals,
7357     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7358     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7359     const CallBase *CB) const {
7360   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7361   // AIX ABI stack frame layout.
7362 
7363   assert((CFlags.CallConv == CallingConv::C ||
7364           CFlags.CallConv == CallingConv::Cold ||
7365           CFlags.CallConv == CallingConv::Fast) &&
7366          "Unexpected calling convention!");
7367 
7368   if (CFlags.IsPatchPoint)
7369     report_fatal_error("This call type is unimplemented on AIX.");
7370 
7371   const PPCSubtarget& Subtarget =
7372       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7373   if (Subtarget.hasAltivec())
7374     report_fatal_error("Altivec support is unimplemented on AIX.");
7375 
7376   MachineFunction &MF = DAG.getMachineFunction();
7377   SmallVector<CCValAssign, 16> ArgLocs;
7378   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7379                  *DAG.getContext());
7380 
7381   // Reserve space for the linkage save area (LSA) on the stack.
7382   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7383   //   [SP][CR][LR][2 x reserved][TOC].
7384   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7385   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7386   const bool IsPPC64 = Subtarget.isPPC64();
7387   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7388   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7389   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7390   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7391 
7392   // The prolog code of the callee may store up to 8 GPR argument registers to
7393   // the stack, allowing va_start to index over them in memory if the callee
7394   // is variadic.
7395   // Because we cannot tell if this is needed on the caller side, we have to
7396   // conservatively assume that it is needed.  As such, make sure we have at
7397   // least enough stack space for the caller to store the 8 GPRs.
7398   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7399   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7400                                      CCInfo.getNextStackOffset());
7401 
7402   // Adjust the stack pointer for the new arguments...
7403   // These operations are automatically eliminated by the prolog/epilog pass.
7404   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7405   SDValue CallSeqStart = Chain;
7406 
7407   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7408   SmallVector<SDValue, 8> MemOpChains;
7409 
7410   // Set up a copy of the stack pointer for loading and storing any
7411   // arguments that may not fit in the registers available for argument
7412   // passing.
7413   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7414                                    : DAG.getRegister(PPC::R1, MVT::i32);
7415 
7416   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7417     const unsigned ValNo = ArgLocs[I].getValNo();
7418     SDValue Arg = OutVals[ValNo];
7419     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7420 
7421     if (Flags.isByVal()) {
7422       const unsigned ByValSize = Flags.getByValSize();
7423 
7424       // Nothing to do for zero-sized ByVals on the caller side.
7425       if (!ByValSize) {
7426         ++I;
7427         continue;
7428       }
7429 
7430       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7431         return DAG.getExtLoad(
7432             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7433             (LoadOffset != 0)
7434                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7435                 : Arg,
7436             MachinePointerInfo(), VT);
7437       };
7438 
7439       unsigned LoadOffset = 0;
7440 
7441       // Initialize registers, which are fully occupied by the by-val argument.
7442       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7443         SDValue Load = GetLoad(PtrVT, LoadOffset);
7444         MemOpChains.push_back(Load.getValue(1));
7445         LoadOffset += PtrByteSize;
7446         const CCValAssign &ByValVA = ArgLocs[I++];
7447         assert(ByValVA.getValNo() == ValNo &&
7448                "Unexpected location for pass-by-value argument.");
7449         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7450       }
7451 
7452       if (LoadOffset == ByValSize)
7453         continue;
7454 
7455       // There must be one more loc to handle the remainder.
7456       assert(ArgLocs[I].getValNo() == ValNo &&
7457              "Expected additional location for by-value argument.");
7458 
7459       if (ArgLocs[I].isMemLoc()) {
7460         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7461         const CCValAssign &ByValVA = ArgLocs[I++];
7462         ISD::ArgFlagsTy MemcpyFlags = Flags;
7463         // Only memcpy the bytes that don't pass in register.
7464         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7465         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7466             (LoadOffset != 0)
7467                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7468                 : Arg,
7469             DAG.getObjectPtrOffset(dl, StackPtr,
7470                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7471             CallSeqStart, MemcpyFlags, DAG, dl);
7472         continue;
7473       }
7474 
7475       // Initialize the final register residue.
7476       // Any residue that occupies the final by-val arg register must be
7477       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7478       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7479       // 2 and 1 byte loads.
7480       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7481       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7482              "Unexpected register residue for by-value argument.");
7483       SDValue ResidueVal;
7484       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7485         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7486         const MVT VT =
7487             N == 1 ? MVT::i8
7488                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7489         SDValue Load = GetLoad(VT, LoadOffset);
7490         MemOpChains.push_back(Load.getValue(1));
7491         LoadOffset += N;
7492         Bytes += N;
7493 
7494         // By-val arguments are passed left-justfied in register.
7495         // Every load here needs to be shifted, otherwise a full register load
7496         // should have been used.
7497         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7498                "Unexpected load emitted during handling of pass-by-value "
7499                "argument.");
7500         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7501         EVT ShiftAmountTy =
7502             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7503         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7504         SDValue ShiftedLoad =
7505             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7506         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7507                                               ShiftedLoad)
7508                                 : ShiftedLoad;
7509       }
7510 
7511       const CCValAssign &ByValVA = ArgLocs[I++];
7512       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7513       continue;
7514     }
7515 
7516     CCValAssign &VA = ArgLocs[I++];
7517     const MVT LocVT = VA.getLocVT();
7518     const MVT ValVT = VA.getValVT();
7519 
7520     switch (VA.getLocInfo()) {
7521     default:
7522       report_fatal_error("Unexpected argument extension type.");
7523     case CCValAssign::Full:
7524       break;
7525     case CCValAssign::ZExt:
7526       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7527       break;
7528     case CCValAssign::SExt:
7529       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7530       break;
7531     }
7532 
7533     if (VA.isRegLoc() && !VA.needsCustom()) {
7534       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7535       continue;
7536     }
7537 
7538     if (VA.isMemLoc()) {
7539       SDValue PtrOff =
7540           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7541       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7542       MemOpChains.push_back(
7543           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7544 
7545       continue;
7546     }
7547 
7548     // Custom handling is used for GPR initializations for vararg float
7549     // arguments.
7550     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7551            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7552            "Unexpected register handling for calling convention.");
7553 
7554     SDValue ArgAsInt =
7555         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7556 
7557     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7558       // f32 in 32-bit GPR
7559       // f64 in 64-bit GPR
7560       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7561     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7562       // f32 in 64-bit GPR.
7563       RegsToPass.push_back(std::make_pair(
7564           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7565     else {
7566       // f64 in two 32-bit GPRs
7567       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7568       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7569              "Unexpected custom register for argument!");
7570       CCValAssign &GPR1 = VA;
7571       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7572                                      DAG.getConstant(32, dl, MVT::i8));
7573       RegsToPass.push_back(std::make_pair(
7574           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7575 
7576       if (I != E) {
7577         // If only 1 GPR was available, there will only be one custom GPR and
7578         // the argument will also pass in memory.
7579         CCValAssign &PeekArg = ArgLocs[I];
7580         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7581           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7582           CCValAssign &GPR2 = ArgLocs[I++];
7583           RegsToPass.push_back(std::make_pair(
7584               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7585         }
7586       }
7587     }
7588   }
7589 
7590   if (!MemOpChains.empty())
7591     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7592 
7593   // For indirect calls, we need to save the TOC base to the stack for
7594   // restoration after the call.
7595   if (CFlags.IsIndirect) {
7596     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7597     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7598     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7599     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7600     const unsigned TOCSaveOffset =
7601         Subtarget.getFrameLowering()->getTOCSaveOffset();
7602 
7603     setUsesTOCBasePtr(DAG);
7604     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7605     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7606     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7607     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7608     Chain = DAG.getStore(
7609         Val.getValue(1), dl, Val, AddPtr,
7610         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7611   }
7612 
7613   // Build a sequence of copy-to-reg nodes chained together with token chain
7614   // and flag operands which copy the outgoing args into the appropriate regs.
7615   SDValue InFlag;
7616   for (auto Reg : RegsToPass) {
7617     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7618     InFlag = Chain.getValue(1);
7619   }
7620 
7621   const int SPDiff = 0;
7622   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7623                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7624 }
7625 
7626 bool
7627 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7628                                   MachineFunction &MF, bool isVarArg,
7629                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7630                                   LLVMContext &Context) const {
7631   SmallVector<CCValAssign, 16> RVLocs;
7632   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7633   return CCInfo.CheckReturn(
7634       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7635                 ? RetCC_PPC_Cold
7636                 : RetCC_PPC);
7637 }
7638 
7639 SDValue
7640 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7641                                bool isVarArg,
7642                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7643                                const SmallVectorImpl<SDValue> &OutVals,
7644                                const SDLoc &dl, SelectionDAG &DAG) const {
7645   SmallVector<CCValAssign, 16> RVLocs;
7646   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7647                  *DAG.getContext());
7648   CCInfo.AnalyzeReturn(Outs,
7649                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7650                            ? RetCC_PPC_Cold
7651                            : RetCC_PPC);
7652 
7653   SDValue Flag;
7654   SmallVector<SDValue, 4> RetOps(1, Chain);
7655 
7656   // Copy the result values into the output registers.
7657   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7658     CCValAssign &VA = RVLocs[i];
7659     assert(VA.isRegLoc() && "Can only return in registers!");
7660 
7661     SDValue Arg = OutVals[RealResIdx];
7662 
7663     if (Subtarget.isAIXABI() &&
7664         (VA.getLocVT().isVector() || VA.getValVT().isVector()))
7665       report_fatal_error("Returning vector types not yet supported on AIX.");
7666 
7667     switch (VA.getLocInfo()) {
7668     default: llvm_unreachable("Unknown loc info!");
7669     case CCValAssign::Full: break;
7670     case CCValAssign::AExt:
7671       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7672       break;
7673     case CCValAssign::ZExt:
7674       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7675       break;
7676     case CCValAssign::SExt:
7677       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7678       break;
7679     }
7680     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7681       bool isLittleEndian = Subtarget.isLittleEndian();
7682       // Legalize ret f64 -> ret 2 x i32.
7683       SDValue SVal =
7684           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7685                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7686       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7687       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7688       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7689                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7690       Flag = Chain.getValue(1);
7691       VA = RVLocs[++i]; // skip ahead to next loc
7692       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7693     } else
7694       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7695     Flag = Chain.getValue(1);
7696     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7697   }
7698 
7699   RetOps[0] = Chain;  // Update chain.
7700 
7701   // Add the flag if we have it.
7702   if (Flag.getNode())
7703     RetOps.push_back(Flag);
7704 
7705   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7706 }
7707 
7708 SDValue
7709 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7710                                                 SelectionDAG &DAG) const {
7711   SDLoc dl(Op);
7712 
7713   // Get the correct type for integers.
7714   EVT IntVT = Op.getValueType();
7715 
7716   // Get the inputs.
7717   SDValue Chain = Op.getOperand(0);
7718   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7719   // Build a DYNAREAOFFSET node.
7720   SDValue Ops[2] = {Chain, FPSIdx};
7721   SDVTList VTs = DAG.getVTList(IntVT);
7722   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7723 }
7724 
7725 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7726                                              SelectionDAG &DAG) const {
7727   // When we pop the dynamic allocation we need to restore the SP link.
7728   SDLoc dl(Op);
7729 
7730   // Get the correct type for pointers.
7731   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7732 
7733   // Construct the stack pointer operand.
7734   bool isPPC64 = Subtarget.isPPC64();
7735   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7736   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7737 
7738   // Get the operands for the STACKRESTORE.
7739   SDValue Chain = Op.getOperand(0);
7740   SDValue SaveSP = Op.getOperand(1);
7741 
7742   // Load the old link SP.
7743   SDValue LoadLinkSP =
7744       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7745 
7746   // Restore the stack pointer.
7747   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7748 
7749   // Store the old link SP.
7750   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7751 }
7752 
7753 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7754   MachineFunction &MF = DAG.getMachineFunction();
7755   bool isPPC64 = Subtarget.isPPC64();
7756   EVT PtrVT = getPointerTy(MF.getDataLayout());
7757 
7758   // Get current frame pointer save index.  The users of this index will be
7759   // primarily DYNALLOC instructions.
7760   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7761   int RASI = FI->getReturnAddrSaveIndex();
7762 
7763   // If the frame pointer save index hasn't been defined yet.
7764   if (!RASI) {
7765     // Find out what the fix offset of the frame pointer save area.
7766     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7767     // Allocate the frame index for frame pointer save area.
7768     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7769     // Save the result.
7770     FI->setReturnAddrSaveIndex(RASI);
7771   }
7772   return DAG.getFrameIndex(RASI, PtrVT);
7773 }
7774 
7775 SDValue
7776 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7777   MachineFunction &MF = DAG.getMachineFunction();
7778   bool isPPC64 = Subtarget.isPPC64();
7779   EVT PtrVT = getPointerTy(MF.getDataLayout());
7780 
7781   // Get current frame pointer save index.  The users of this index will be
7782   // primarily DYNALLOC instructions.
7783   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7784   int FPSI = FI->getFramePointerSaveIndex();
7785 
7786   // If the frame pointer save index hasn't been defined yet.
7787   if (!FPSI) {
7788     // Find out what the fix offset of the frame pointer save area.
7789     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7790     // Allocate the frame index for frame pointer save area.
7791     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7792     // Save the result.
7793     FI->setFramePointerSaveIndex(FPSI);
7794   }
7795   return DAG.getFrameIndex(FPSI, PtrVT);
7796 }
7797 
7798 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7799                                                    SelectionDAG &DAG) const {
7800   MachineFunction &MF = DAG.getMachineFunction();
7801   // Get the inputs.
7802   SDValue Chain = Op.getOperand(0);
7803   SDValue Size  = Op.getOperand(1);
7804   SDLoc dl(Op);
7805 
7806   // Get the correct type for pointers.
7807   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7808   // Negate the size.
7809   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7810                                 DAG.getConstant(0, dl, PtrVT), Size);
7811   // Construct a node for the frame pointer save index.
7812   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7813   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7814   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7815   if (hasInlineStackProbe(MF))
7816     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7817   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7818 }
7819 
7820 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7821                                                      SelectionDAG &DAG) const {
7822   MachineFunction &MF = DAG.getMachineFunction();
7823 
7824   bool isPPC64 = Subtarget.isPPC64();
7825   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7826 
7827   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7828   return DAG.getFrameIndex(FI, PtrVT);
7829 }
7830 
7831 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7832                                                SelectionDAG &DAG) const {
7833   SDLoc DL(Op);
7834   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7835                      DAG.getVTList(MVT::i32, MVT::Other),
7836                      Op.getOperand(0), Op.getOperand(1));
7837 }
7838 
7839 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7840                                                 SelectionDAG &DAG) const {
7841   SDLoc DL(Op);
7842   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7843                      Op.getOperand(0), Op.getOperand(1));
7844 }
7845 
7846 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7847   if (Op.getValueType().isVector())
7848     return LowerVectorLoad(Op, DAG);
7849 
7850   assert(Op.getValueType() == MVT::i1 &&
7851          "Custom lowering only for i1 loads");
7852 
7853   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7854 
7855   SDLoc dl(Op);
7856   LoadSDNode *LD = cast<LoadSDNode>(Op);
7857 
7858   SDValue Chain = LD->getChain();
7859   SDValue BasePtr = LD->getBasePtr();
7860   MachineMemOperand *MMO = LD->getMemOperand();
7861 
7862   SDValue NewLD =
7863       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7864                      BasePtr, MVT::i8, MMO);
7865   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7866 
7867   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7868   return DAG.getMergeValues(Ops, dl);
7869 }
7870 
7871 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7872   if (Op.getOperand(1).getValueType().isVector())
7873     return LowerVectorStore(Op, DAG);
7874 
7875   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7876          "Custom lowering only for i1 stores");
7877 
7878   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7879 
7880   SDLoc dl(Op);
7881   StoreSDNode *ST = cast<StoreSDNode>(Op);
7882 
7883   SDValue Chain = ST->getChain();
7884   SDValue BasePtr = ST->getBasePtr();
7885   SDValue Value = ST->getValue();
7886   MachineMemOperand *MMO = ST->getMemOperand();
7887 
7888   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7889                       Value);
7890   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7891 }
7892 
7893 // FIXME: Remove this once the ANDI glue bug is fixed:
7894 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7895   assert(Op.getValueType() == MVT::i1 &&
7896          "Custom lowering only for i1 results");
7897 
7898   SDLoc DL(Op);
7899   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7900 }
7901 
7902 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7903                                                SelectionDAG &DAG) const {
7904 
7905   // Implements a vector truncate that fits in a vector register as a shuffle.
7906   // We want to legalize vector truncates down to where the source fits in
7907   // a vector register (and target is therefore smaller than vector register
7908   // size).  At that point legalization will try to custom lower the sub-legal
7909   // result and get here - where we can contain the truncate as a single target
7910   // operation.
7911 
7912   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7913   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7914   //
7915   // We will implement it for big-endian ordering as this (where x denotes
7916   // undefined):
7917   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7918   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7919   //
7920   // The same operation in little-endian ordering will be:
7921   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7922   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7923 
7924   EVT TrgVT = Op.getValueType();
7925   assert(TrgVT.isVector() && "Vector type expected.");
7926   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7927   EVT EltVT = TrgVT.getVectorElementType();
7928   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7929       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7930       !isPowerOf2_32(EltVT.getSizeInBits()))
7931     return SDValue();
7932 
7933   SDValue N1 = Op.getOperand(0);
7934   EVT SrcVT = N1.getValueType();
7935   unsigned SrcSize = SrcVT.getSizeInBits();
7936   if (SrcSize > 256 ||
7937       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7938       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7939     return SDValue();
7940   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7941     return SDValue();
7942 
7943   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7944   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7945 
7946   SDLoc DL(Op);
7947   SDValue Op1, Op2;
7948   if (SrcSize == 256) {
7949     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7950     EVT SplitVT =
7951         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7952     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7953     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7954                       DAG.getConstant(0, DL, VecIdxTy));
7955     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7956                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7957   }
7958   else {
7959     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7960     Op2 = DAG.getUNDEF(WideVT);
7961   }
7962 
7963   // First list the elements we want to keep.
7964   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7965   SmallVector<int, 16> ShuffV;
7966   if (Subtarget.isLittleEndian())
7967     for (unsigned i = 0; i < TrgNumElts; ++i)
7968       ShuffV.push_back(i * SizeMult);
7969   else
7970     for (unsigned i = 1; i <= TrgNumElts; ++i)
7971       ShuffV.push_back(i * SizeMult - 1);
7972 
7973   // Populate the remaining elements with undefs.
7974   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7975     // ShuffV.push_back(i + WideNumElts);
7976     ShuffV.push_back(WideNumElts + 1);
7977 
7978   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7979   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7980   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7981 }
7982 
7983 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7984 /// possible.
7985 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7986   // Not FP, or using SPE? Not a fsel.
7987   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7988       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7989     return Op;
7990 
7991   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7992 
7993   EVT ResVT = Op.getValueType();
7994   EVT CmpVT = Op.getOperand(0).getValueType();
7995   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7996   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7997   SDLoc dl(Op);
7998   SDNodeFlags Flags = Op.getNode()->getFlags();
7999 
8000   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
8001   // presence of infinities.
8002   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
8003     switch (CC) {
8004     default:
8005       break;
8006     case ISD::SETOGT:
8007     case ISD::SETGT:
8008       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
8009     case ISD::SETOLT:
8010     case ISD::SETLT:
8011       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
8012     }
8013   }
8014 
8015   // We might be able to do better than this under some circumstances, but in
8016   // general, fsel-based lowering of select is a finite-math-only optimization.
8017   // For more information, see section F.3 of the 2.06 ISA specification.
8018   // With ISA 3.0
8019   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
8020       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
8021     return Op;
8022 
8023   // If the RHS of the comparison is a 0.0, we don't need to do the
8024   // subtraction at all.
8025   SDValue Sel1;
8026   if (isFloatingPointZero(RHS))
8027     switch (CC) {
8028     default: break;       // SETUO etc aren't handled by fsel.
8029     case ISD::SETNE:
8030       std::swap(TV, FV);
8031       LLVM_FALLTHROUGH;
8032     case ISD::SETEQ:
8033       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8034         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8035       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8036       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8037         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8038       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8039                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8040     case ISD::SETULT:
8041     case ISD::SETLT:
8042       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8043       LLVM_FALLTHROUGH;
8044     case ISD::SETOGE:
8045     case ISD::SETGE:
8046       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8047         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8048       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8049     case ISD::SETUGT:
8050     case ISD::SETGT:
8051       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8052       LLVM_FALLTHROUGH;
8053     case ISD::SETOLE:
8054     case ISD::SETLE:
8055       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8056         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8057       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8058                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8059     }
8060 
8061   SDValue Cmp;
8062   switch (CC) {
8063   default: break;       // SETUO etc aren't handled by fsel.
8064   case ISD::SETNE:
8065     std::swap(TV, FV);
8066     LLVM_FALLTHROUGH;
8067   case ISD::SETEQ:
8068     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8069     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8070       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8071     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8072     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8073       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8074     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8075                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8076   case ISD::SETULT:
8077   case ISD::SETLT:
8078     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8079     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8080       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8081     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8082   case ISD::SETOGE:
8083   case ISD::SETGE:
8084     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8085     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8086       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8087     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8088   case ISD::SETUGT:
8089   case ISD::SETGT:
8090     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8091     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8092       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8093     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8094   case ISD::SETOLE:
8095   case ISD::SETLE:
8096     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8097     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8098       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8099     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8100   }
8101   return Op;
8102 }
8103 
8104 static unsigned getPPCStrictOpcode(unsigned Opc) {
8105   switch (Opc) {
8106   default:
8107     llvm_unreachable("No strict version of this opcode!");
8108   case PPCISD::FCTIDZ:
8109     return PPCISD::STRICT_FCTIDZ;
8110   case PPCISD::FCTIWZ:
8111     return PPCISD::STRICT_FCTIWZ;
8112   case PPCISD::FCTIDUZ:
8113     return PPCISD::STRICT_FCTIDUZ;
8114   case PPCISD::FCTIWUZ:
8115     return PPCISD::STRICT_FCTIWUZ;
8116   case PPCISD::FCFID:
8117     return PPCISD::STRICT_FCFID;
8118   case PPCISD::FCFIDU:
8119     return PPCISD::STRICT_FCFIDU;
8120   case PPCISD::FCFIDS:
8121     return PPCISD::STRICT_FCFIDS;
8122   case PPCISD::FCFIDUS:
8123     return PPCISD::STRICT_FCFIDUS;
8124   }
8125 }
8126 
8127 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8128                               const PPCSubtarget &Subtarget) {
8129   SDLoc dl(Op);
8130   bool IsStrict = Op->isStrictFPOpcode();
8131   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8132                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8133 
8134   // TODO: Any other flags to propagate?
8135   SDNodeFlags Flags;
8136   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8137 
8138   // For strict nodes, source is the second operand.
8139   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8140   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8141   assert(Src.getValueType().isFloatingPoint());
8142   if (Src.getValueType() == MVT::f32) {
8143     if (IsStrict) {
8144       Src =
8145           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8146                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8147       Chain = Src.getValue(1);
8148     } else
8149       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8150   }
8151   SDValue Conv;
8152   unsigned Opc = ISD::DELETED_NODE;
8153   switch (Op.getSimpleValueType().SimpleTy) {
8154   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8155   case MVT::i32:
8156     Opc = IsSigned ? PPCISD::FCTIWZ
8157                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8158     break;
8159   case MVT::i64:
8160     assert((IsSigned || Subtarget.hasFPCVT()) &&
8161            "i64 FP_TO_UINT is supported only with FPCVT");
8162     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8163   }
8164   if (IsStrict) {
8165     Opc = getPPCStrictOpcode(Opc);
8166     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8167                        {Chain, Src}, Flags);
8168   } else {
8169     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8170   }
8171   return Conv;
8172 }
8173 
8174 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8175                                                SelectionDAG &DAG,
8176                                                const SDLoc &dl) const {
8177   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8178   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8179                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8180   bool IsStrict = Op->isStrictFPOpcode();
8181 
8182   // Convert the FP value to an int value through memory.
8183   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8184                   (IsSigned || Subtarget.hasFPCVT());
8185   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8186   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8187   MachinePointerInfo MPI =
8188       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8189 
8190   // Emit a store to the stack slot.
8191   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8192   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8193   if (i32Stack) {
8194     MachineFunction &MF = DAG.getMachineFunction();
8195     Alignment = Align(4);
8196     MachineMemOperand *MMO =
8197         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8198     SDValue Ops[] = { Chain, Tmp, FIPtr };
8199     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8200               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8201   } else
8202     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8203 
8204   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8205   // add in a bias on big endian.
8206   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8207     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8208                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8209     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8210   }
8211 
8212   RLI.Chain = Chain;
8213   RLI.Ptr = FIPtr;
8214   RLI.MPI = MPI;
8215   RLI.Alignment = Alignment;
8216 }
8217 
8218 /// Custom lowers floating point to integer conversions to use
8219 /// the direct move instructions available in ISA 2.07 to avoid the
8220 /// need for load/store combinations.
8221 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8222                                                     SelectionDAG &DAG,
8223                                                     const SDLoc &dl) const {
8224   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8225   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8226   if (Op->isStrictFPOpcode())
8227     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8228   else
8229     return Mov;
8230 }
8231 
8232 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8233                                           const SDLoc &dl) const {
8234   bool IsStrict = Op->isStrictFPOpcode();
8235   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8236                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8237   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8238   EVT SrcVT = Src.getValueType();
8239   EVT DstVT = Op.getValueType();
8240 
8241   // FP to INT conversions are legal for f128.
8242   if (SrcVT == MVT::f128)
8243     return Op;
8244 
8245   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8246   // PPC (the libcall is not available).
8247   if (SrcVT == MVT::ppcf128) {
8248     if (DstVT == MVT::i32) {
8249       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8250       // set other fast-math flags to FP operations in both strict and
8251       // non-strict cases. (FP_TO_SINT, FSUB)
8252       SDNodeFlags Flags;
8253       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8254 
8255       if (IsSigned) {
8256         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8257                                  DAG.getIntPtrConstant(0, dl));
8258         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8259                                  DAG.getIntPtrConstant(1, dl));
8260 
8261         // Add the two halves of the long double in round-to-zero mode, and use
8262         // a smaller FP_TO_SINT.
8263         if (IsStrict) {
8264           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8265                                     DAG.getVTList(MVT::f64, MVT::Other),
8266                                     {Op.getOperand(0), Lo, Hi}, Flags);
8267           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8268                              DAG.getVTList(MVT::i32, MVT::Other),
8269                              {Res.getValue(1), Res}, Flags);
8270         } else {
8271           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8272           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8273         }
8274       } else {
8275         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8276         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8277         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8278         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8279         if (IsStrict) {
8280           // Sel = Src < 0x80000000
8281           // FltOfs = select Sel, 0.0, 0x80000000
8282           // IntOfs = select Sel, 0, 0x80000000
8283           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8284           SDValue Chain = Op.getOperand(0);
8285           EVT SetCCVT =
8286               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8287           EVT DstSetCCVT =
8288               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8289           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8290                                      SDNodeFlags(), Chain, true);
8291           Chain = Sel.getValue(1);
8292 
8293           SDValue FltOfs = DAG.getSelect(
8294               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8295           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8296 
8297           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8298                                     DAG.getVTList(SrcVT, MVT::Other),
8299                                     {Chain, Src, FltOfs}, Flags);
8300           Chain = Val.getValue(1);
8301           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8302                                      DAG.getVTList(DstVT, MVT::Other),
8303                                      {Chain, Val}, Flags);
8304           Chain = SInt.getValue(1);
8305           SDValue IntOfs = DAG.getSelect(
8306               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8307           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8308           return DAG.getMergeValues({Result, Chain}, dl);
8309         } else {
8310           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8311           // FIXME: generated code sucks.
8312           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8313           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8314           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8315           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8316           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8317         }
8318       }
8319     }
8320 
8321     return SDValue();
8322   }
8323 
8324   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8325     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8326 
8327   ReuseLoadInfo RLI;
8328   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8329 
8330   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8331                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8332 }
8333 
8334 // We're trying to insert a regular store, S, and then a load, L. If the
8335 // incoming value, O, is a load, we might just be able to have our load use the
8336 // address used by O. However, we don't know if anything else will store to
8337 // that address before we can load from it. To prevent this situation, we need
8338 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8339 // the same chain operand as O, we create a token factor from the chain results
8340 // of O and L, and we replace all uses of O's chain result with that token
8341 // factor (see spliceIntoChain below for this last part).
8342 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8343                                             ReuseLoadInfo &RLI,
8344                                             SelectionDAG &DAG,
8345                                             ISD::LoadExtType ET) const {
8346   // Conservatively skip reusing for constrained FP nodes.
8347   if (Op->isStrictFPOpcode())
8348     return false;
8349 
8350   SDLoc dl(Op);
8351   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8352                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8353   if (ET == ISD::NON_EXTLOAD &&
8354       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8355       isOperationLegalOrCustom(Op.getOpcode(),
8356                                Op.getOperand(0).getValueType())) {
8357 
8358     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8359     return true;
8360   }
8361 
8362   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8363   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8364       LD->isNonTemporal())
8365     return false;
8366   if (LD->getMemoryVT() != MemVT)
8367     return false;
8368 
8369   RLI.Ptr = LD->getBasePtr();
8370   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8371     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8372            "Non-pre-inc AM on PPC?");
8373     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8374                           LD->getOffset());
8375   }
8376 
8377   RLI.Chain = LD->getChain();
8378   RLI.MPI = LD->getPointerInfo();
8379   RLI.IsDereferenceable = LD->isDereferenceable();
8380   RLI.IsInvariant = LD->isInvariant();
8381   RLI.Alignment = LD->getAlign();
8382   RLI.AAInfo = LD->getAAInfo();
8383   RLI.Ranges = LD->getRanges();
8384 
8385   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8386   return true;
8387 }
8388 
8389 // Given the head of the old chain, ResChain, insert a token factor containing
8390 // it and NewResChain, and make users of ResChain now be users of that token
8391 // factor.
8392 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8393 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8394                                         SDValue NewResChain,
8395                                         SelectionDAG &DAG) const {
8396   if (!ResChain)
8397     return;
8398 
8399   SDLoc dl(NewResChain);
8400 
8401   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8402                            NewResChain, DAG.getUNDEF(MVT::Other));
8403   assert(TF.getNode() != NewResChain.getNode() &&
8404          "A new TF really is required here");
8405 
8406   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8407   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8408 }
8409 
8410 /// Analyze profitability of direct move
8411 /// prefer float load to int load plus direct move
8412 /// when there is no integer use of int load
8413 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8414   SDNode *Origin = Op.getOperand(0).getNode();
8415   if (Origin->getOpcode() != ISD::LOAD)
8416     return true;
8417 
8418   // If there is no LXSIBZX/LXSIHZX, like Power8,
8419   // prefer direct move if the memory size is 1 or 2 bytes.
8420   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8421   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8422     return true;
8423 
8424   for (SDNode::use_iterator UI = Origin->use_begin(),
8425                             UE = Origin->use_end();
8426        UI != UE; ++UI) {
8427 
8428     // Only look at the users of the loaded value.
8429     if (UI.getUse().get().getResNo() != 0)
8430       continue;
8431 
8432     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8433         UI->getOpcode() != ISD::UINT_TO_FP &&
8434         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8435         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8436       return true;
8437   }
8438 
8439   return false;
8440 }
8441 
8442 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8443                               const PPCSubtarget &Subtarget,
8444                               SDValue Chain = SDValue()) {
8445   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8446                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8447   SDLoc dl(Op);
8448 
8449   // TODO: Any other flags to propagate?
8450   SDNodeFlags Flags;
8451   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8452 
8453   // If we have FCFIDS, then use it when converting to single-precision.
8454   // Otherwise, convert to double-precision and then round.
8455   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8456   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8457                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8458   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8459   if (Op->isStrictFPOpcode()) {
8460     if (!Chain)
8461       Chain = Op.getOperand(0);
8462     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8463                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8464   } else
8465     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8466 }
8467 
8468 /// Custom lowers integer to floating point conversions to use
8469 /// the direct move instructions available in ISA 2.07 to avoid the
8470 /// need for load/store combinations.
8471 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8472                                                     SelectionDAG &DAG,
8473                                                     const SDLoc &dl) const {
8474   assert((Op.getValueType() == MVT::f32 ||
8475           Op.getValueType() == MVT::f64) &&
8476          "Invalid floating point type as target of conversion");
8477   assert(Subtarget.hasFPCVT() &&
8478          "Int to FP conversions with direct moves require FPCVT");
8479   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8480   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8481   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8482                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8483   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8484   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8485   return convertIntToFP(Op, Mov, DAG, Subtarget);
8486 }
8487 
8488 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8489 
8490   EVT VecVT = Vec.getValueType();
8491   assert(VecVT.isVector() && "Expected a vector type.");
8492   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8493 
8494   EVT EltVT = VecVT.getVectorElementType();
8495   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8496   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8497 
8498   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8499   SmallVector<SDValue, 16> Ops(NumConcat);
8500   Ops[0] = Vec;
8501   SDValue UndefVec = DAG.getUNDEF(VecVT);
8502   for (unsigned i = 1; i < NumConcat; ++i)
8503     Ops[i] = UndefVec;
8504 
8505   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8506 }
8507 
8508 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8509                                                 const SDLoc &dl) const {
8510   bool IsStrict = Op->isStrictFPOpcode();
8511   unsigned Opc = Op.getOpcode();
8512   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8513   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8514           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8515          "Unexpected conversion type");
8516   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8517          "Supports conversions to v2f64/v4f32 only.");
8518 
8519   // TODO: Any other flags to propagate?
8520   SDNodeFlags Flags;
8521   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8522 
8523   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8524   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8525 
8526   SDValue Wide = widenVec(DAG, Src, dl);
8527   EVT WideVT = Wide.getValueType();
8528   unsigned WideNumElts = WideVT.getVectorNumElements();
8529   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8530 
8531   SmallVector<int, 16> ShuffV;
8532   for (unsigned i = 0; i < WideNumElts; ++i)
8533     ShuffV.push_back(i + WideNumElts);
8534 
8535   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8536   int SaveElts = FourEltRes ? 4 : 2;
8537   if (Subtarget.isLittleEndian())
8538     for (int i = 0; i < SaveElts; i++)
8539       ShuffV[i * Stride] = i;
8540   else
8541     for (int i = 1; i <= SaveElts; i++)
8542       ShuffV[i * Stride - 1] = i - 1;
8543 
8544   SDValue ShuffleSrc2 =
8545       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8546   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8547 
8548   SDValue Extend;
8549   if (SignedConv) {
8550     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8551     EVT ExtVT = Src.getValueType();
8552     if (Subtarget.hasP9Altivec())
8553       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8554                                IntermediateVT.getVectorNumElements());
8555 
8556     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8557                          DAG.getValueType(ExtVT));
8558   } else
8559     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8560 
8561   if (IsStrict)
8562     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8563                        {Op.getOperand(0), Extend}, Flags);
8564 
8565   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8566 }
8567 
8568 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8569                                           SelectionDAG &DAG) const {
8570   SDLoc dl(Op);
8571   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8572                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8573   bool IsStrict = Op->isStrictFPOpcode();
8574   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8575   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8576 
8577   // TODO: Any other flags to propagate?
8578   SDNodeFlags Flags;
8579   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8580 
8581   EVT InVT = Src.getValueType();
8582   EVT OutVT = Op.getValueType();
8583   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8584       isOperationCustom(Op.getOpcode(), InVT))
8585     return LowerINT_TO_FPVector(Op, DAG, dl);
8586 
8587   // Conversions to f128 are legal.
8588   if (Op.getValueType() == MVT::f128)
8589     return Op;
8590 
8591   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8592   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8593     return SDValue();
8594 
8595   if (Src.getValueType() == MVT::i1)
8596     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8597                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8598                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8599 
8600   // If we have direct moves, we can do all the conversion, skip the store/load
8601   // however, without FPCVT we can't do most conversions.
8602   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8603       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8604     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8605 
8606   assert((IsSigned || Subtarget.hasFPCVT()) &&
8607          "UINT_TO_FP is supported only with FPCVT");
8608 
8609   if (Src.getValueType() == MVT::i64) {
8610     SDValue SINT = Src;
8611     // When converting to single-precision, we actually need to convert
8612     // to double-precision first and then round to single-precision.
8613     // To avoid double-rounding effects during that operation, we have
8614     // to prepare the input operand.  Bits that might be truncated when
8615     // converting to double-precision are replaced by a bit that won't
8616     // be lost at this stage, but is below the single-precision rounding
8617     // position.
8618     //
8619     // However, if -enable-unsafe-fp-math is in effect, accept double
8620     // rounding to avoid the extra overhead.
8621     if (Op.getValueType() == MVT::f32 &&
8622         !Subtarget.hasFPCVT() &&
8623         !DAG.getTarget().Options.UnsafeFPMath) {
8624 
8625       // Twiddle input to make sure the low 11 bits are zero.  (If this
8626       // is the case, we are guaranteed the value will fit into the 53 bit
8627       // mantissa of an IEEE double-precision value without rounding.)
8628       // If any of those low 11 bits were not zero originally, make sure
8629       // bit 12 (value 2048) is set instead, so that the final rounding
8630       // to single-precision gets the correct result.
8631       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8632                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8633       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8634                           Round, DAG.getConstant(2047, dl, MVT::i64));
8635       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8636       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8637                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8638 
8639       // However, we cannot use that value unconditionally: if the magnitude
8640       // of the input value is small, the bit-twiddling we did above might
8641       // end up visibly changing the output.  Fortunately, in that case, we
8642       // don't need to twiddle bits since the original input will convert
8643       // exactly to double-precision floating-point already.  Therefore,
8644       // construct a conditional to use the original value if the top 11
8645       // bits are all sign-bit copies, and use the rounded value computed
8646       // above otherwise.
8647       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8648                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8649       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8650                          Cond, DAG.getConstant(1, dl, MVT::i64));
8651       Cond = DAG.getSetCC(
8652           dl,
8653           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8654           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8655 
8656       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8657     }
8658 
8659     ReuseLoadInfo RLI;
8660     SDValue Bits;
8661 
8662     MachineFunction &MF = DAG.getMachineFunction();
8663     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8664       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8665                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8666       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8667     } else if (Subtarget.hasLFIWAX() &&
8668                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8669       MachineMemOperand *MMO =
8670         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8671                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8672       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8673       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8674                                      DAG.getVTList(MVT::f64, MVT::Other),
8675                                      Ops, MVT::i32, MMO);
8676       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8677     } else if (Subtarget.hasFPCVT() &&
8678                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8679       MachineMemOperand *MMO =
8680         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8681                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8682       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8683       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8684                                      DAG.getVTList(MVT::f64, MVT::Other),
8685                                      Ops, MVT::i32, MMO);
8686       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8687     } else if (((Subtarget.hasLFIWAX() &&
8688                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8689                 (Subtarget.hasFPCVT() &&
8690                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8691                SINT.getOperand(0).getValueType() == MVT::i32) {
8692       MachineFrameInfo &MFI = MF.getFrameInfo();
8693       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8694 
8695       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8696       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8697 
8698       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8699                                    MachinePointerInfo::getFixedStack(
8700                                        DAG.getMachineFunction(), FrameIdx));
8701       Chain = Store;
8702 
8703       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8704              "Expected an i32 store");
8705 
8706       RLI.Ptr = FIdx;
8707       RLI.Chain = Chain;
8708       RLI.MPI =
8709           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8710       RLI.Alignment = Align(4);
8711 
8712       MachineMemOperand *MMO =
8713         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8714                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8715       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8716       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8717                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8718                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8719                                      Ops, MVT::i32, MMO);
8720       Chain = Bits.getValue(1);
8721     } else
8722       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8723 
8724     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8725     if (IsStrict)
8726       Chain = FP.getValue(1);
8727 
8728     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8729       if (IsStrict)
8730         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8731                          DAG.getVTList(MVT::f32, MVT::Other),
8732                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8733       else
8734         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8735                          DAG.getIntPtrConstant(0, dl));
8736     }
8737     return FP;
8738   }
8739 
8740   assert(Src.getValueType() == MVT::i32 &&
8741          "Unhandled INT_TO_FP type in custom expander!");
8742   // Since we only generate this in 64-bit mode, we can take advantage of
8743   // 64-bit registers.  In particular, sign extend the input value into the
8744   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8745   // then lfd it and fcfid it.
8746   MachineFunction &MF = DAG.getMachineFunction();
8747   MachineFrameInfo &MFI = MF.getFrameInfo();
8748   EVT PtrVT = getPointerTy(MF.getDataLayout());
8749 
8750   SDValue Ld;
8751   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8752     ReuseLoadInfo RLI;
8753     bool ReusingLoad;
8754     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8755       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8756       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8757 
8758       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8759                                    MachinePointerInfo::getFixedStack(
8760                                        DAG.getMachineFunction(), FrameIdx));
8761       Chain = Store;
8762 
8763       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8764              "Expected an i32 store");
8765 
8766       RLI.Ptr = FIdx;
8767       RLI.Chain = Chain;
8768       RLI.MPI =
8769           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8770       RLI.Alignment = Align(4);
8771     }
8772 
8773     MachineMemOperand *MMO =
8774       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8775                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8776     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8777     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8778                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8779                                  MVT::i32, MMO);
8780     Chain = Ld.getValue(1);
8781     if (ReusingLoad)
8782       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8783   } else {
8784     assert(Subtarget.isPPC64() &&
8785            "i32->FP without LFIWAX supported only on PPC64");
8786 
8787     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8788     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8789 
8790     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8791 
8792     // STD the extended value into the stack slot.
8793     SDValue Store = DAG.getStore(
8794         Chain, dl, Ext64, FIdx,
8795         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8796     Chain = Store;
8797 
8798     // Load the value as a double.
8799     Ld = DAG.getLoad(
8800         MVT::f64, dl, Chain, FIdx,
8801         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8802     Chain = Ld.getValue(1);
8803   }
8804 
8805   // FCFID it and return it.
8806   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8807   if (IsStrict)
8808     Chain = FP.getValue(1);
8809   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8810     if (IsStrict)
8811       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8812                        DAG.getVTList(MVT::f32, MVT::Other),
8813                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8814     else
8815       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8816                        DAG.getIntPtrConstant(0, dl));
8817   }
8818   return FP;
8819 }
8820 
8821 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8822                                             SelectionDAG &DAG) const {
8823   SDLoc dl(Op);
8824   /*
8825    The rounding mode is in bits 30:31 of FPSR, and has the following
8826    settings:
8827      00 Round to nearest
8828      01 Round to 0
8829      10 Round to +inf
8830      11 Round to -inf
8831 
8832   FLT_ROUNDS, on the other hand, expects the following:
8833     -1 Undefined
8834      0 Round to 0
8835      1 Round to nearest
8836      2 Round to +inf
8837      3 Round to -inf
8838 
8839   To perform the conversion, we do:
8840     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8841   */
8842 
8843   MachineFunction &MF = DAG.getMachineFunction();
8844   EVT VT = Op.getValueType();
8845   EVT PtrVT = getPointerTy(MF.getDataLayout());
8846 
8847   // Save FP Control Word to register
8848   SDValue Chain = Op.getOperand(0);
8849   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8850   Chain = MFFS.getValue(1);
8851 
8852   // Save FP register to stack slot
8853   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8854   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8855   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8856 
8857   // Load FP Control Word from low 32 bits of stack slot.
8858   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8859   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8860   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8861   Chain = CWD.getValue(1);
8862 
8863   // Transform as necessary
8864   SDValue CWD1 =
8865     DAG.getNode(ISD::AND, dl, MVT::i32,
8866                 CWD, DAG.getConstant(3, dl, MVT::i32));
8867   SDValue CWD2 =
8868     DAG.getNode(ISD::SRL, dl, MVT::i32,
8869                 DAG.getNode(ISD::AND, dl, MVT::i32,
8870                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8871                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8872                             DAG.getConstant(3, dl, MVT::i32)),
8873                 DAG.getConstant(1, dl, MVT::i32));
8874 
8875   SDValue RetVal =
8876     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8877 
8878   RetVal =
8879       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8880                   dl, VT, RetVal);
8881 
8882   return DAG.getMergeValues({RetVal, Chain}, dl);
8883 }
8884 
8885 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8886   EVT VT = Op.getValueType();
8887   unsigned BitWidth = VT.getSizeInBits();
8888   SDLoc dl(Op);
8889   assert(Op.getNumOperands() == 3 &&
8890          VT == Op.getOperand(1).getValueType() &&
8891          "Unexpected SHL!");
8892 
8893   // Expand into a bunch of logical ops.  Note that these ops
8894   // depend on the PPC behavior for oversized shift amounts.
8895   SDValue Lo = Op.getOperand(0);
8896   SDValue Hi = Op.getOperand(1);
8897   SDValue Amt = Op.getOperand(2);
8898   EVT AmtVT = Amt.getValueType();
8899 
8900   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8901                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8902   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8903   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8904   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8905   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8906                              DAG.getConstant(-BitWidth, dl, AmtVT));
8907   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8908   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8909   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8910   SDValue OutOps[] = { OutLo, OutHi };
8911   return DAG.getMergeValues(OutOps, dl);
8912 }
8913 
8914 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8915   EVT VT = Op.getValueType();
8916   SDLoc dl(Op);
8917   unsigned BitWidth = VT.getSizeInBits();
8918   assert(Op.getNumOperands() == 3 &&
8919          VT == Op.getOperand(1).getValueType() &&
8920          "Unexpected SRL!");
8921 
8922   // Expand into a bunch of logical ops.  Note that these ops
8923   // depend on the PPC behavior for oversized shift amounts.
8924   SDValue Lo = Op.getOperand(0);
8925   SDValue Hi = Op.getOperand(1);
8926   SDValue Amt = Op.getOperand(2);
8927   EVT AmtVT = Amt.getValueType();
8928 
8929   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8930                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8931   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8932   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8933   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8934   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8935                              DAG.getConstant(-BitWidth, dl, AmtVT));
8936   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8937   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8938   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8939   SDValue OutOps[] = { OutLo, OutHi };
8940   return DAG.getMergeValues(OutOps, dl);
8941 }
8942 
8943 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8944   SDLoc dl(Op);
8945   EVT VT = Op.getValueType();
8946   unsigned BitWidth = VT.getSizeInBits();
8947   assert(Op.getNumOperands() == 3 &&
8948          VT == Op.getOperand(1).getValueType() &&
8949          "Unexpected SRA!");
8950 
8951   // Expand into a bunch of logical ops, followed by a select_cc.
8952   SDValue Lo = Op.getOperand(0);
8953   SDValue Hi = Op.getOperand(1);
8954   SDValue Amt = Op.getOperand(2);
8955   EVT AmtVT = Amt.getValueType();
8956 
8957   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8958                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8959   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8960   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8961   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8962   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8963                              DAG.getConstant(-BitWidth, dl, AmtVT));
8964   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8965   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8966   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8967                                   Tmp4, Tmp6, ISD::SETLE);
8968   SDValue OutOps[] = { OutLo, OutHi };
8969   return DAG.getMergeValues(OutOps, dl);
8970 }
8971 
8972 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8973                                             SelectionDAG &DAG) const {
8974   SDLoc dl(Op);
8975   EVT VT = Op.getValueType();
8976   unsigned BitWidth = VT.getSizeInBits();
8977 
8978   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8979   SDValue X = Op.getOperand(0);
8980   SDValue Y = Op.getOperand(1);
8981   SDValue Z = Op.getOperand(2);
8982   EVT AmtVT = Z.getValueType();
8983 
8984   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8985   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8986   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8987   // on PowerPC shift by BW being well defined.
8988   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8989                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8990   SDValue SubZ =
8991       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8992   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8993   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8994   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8995 }
8996 
8997 //===----------------------------------------------------------------------===//
8998 // Vector related lowering.
8999 //
9000 
9001 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
9002 /// element size of SplatSize. Cast the result to VT.
9003 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
9004                                       SelectionDAG &DAG, const SDLoc &dl) {
9005   static const MVT VTys[] = { // canonical VT to use for each size.
9006     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
9007   };
9008 
9009   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
9010 
9011   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
9012   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
9013     SplatSize = 1;
9014     Val = 0xFF;
9015   }
9016 
9017   EVT CanonicalVT = VTys[SplatSize-1];
9018 
9019   // Build a canonical splat for this value.
9020   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
9021 }
9022 
9023 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
9024 /// specified intrinsic ID.
9025 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
9026                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
9027   if (DestVT == MVT::Other) DestVT = Op.getValueType();
9028   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9029                      DAG.getConstant(IID, dl, MVT::i32), Op);
9030 }
9031 
9032 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
9033 /// specified intrinsic ID.
9034 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
9035                                 SelectionDAG &DAG, const SDLoc &dl,
9036                                 EVT DestVT = MVT::Other) {
9037   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
9038   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9039                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
9040 }
9041 
9042 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
9043 /// specified intrinsic ID.
9044 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
9045                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
9046                                 EVT DestVT = MVT::Other) {
9047   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
9048   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9049                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
9050 }
9051 
9052 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9053 /// amount.  The result has the specified value type.
9054 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9055                            SelectionDAG &DAG, const SDLoc &dl) {
9056   // Force LHS/RHS to be the right type.
9057   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9058   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9059 
9060   int Ops[16];
9061   for (unsigned i = 0; i != 16; ++i)
9062     Ops[i] = i + Amt;
9063   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9064   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9065 }
9066 
9067 /// Do we have an efficient pattern in a .td file for this node?
9068 ///
9069 /// \param V - pointer to the BuildVectorSDNode being matched
9070 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9071 ///
9072 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9073 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9074 /// the opposite is true (expansion is beneficial) are:
9075 /// - The node builds a vector out of integers that are not 32 or 64-bits
9076 /// - The node builds a vector out of constants
9077 /// - The node is a "load-and-splat"
9078 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9079 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9080                                             bool HasDirectMove,
9081                                             bool HasP8Vector) {
9082   EVT VecVT = V->getValueType(0);
9083   bool RightType = VecVT == MVT::v2f64 ||
9084     (HasP8Vector && VecVT == MVT::v4f32) ||
9085     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9086   if (!RightType)
9087     return false;
9088 
9089   bool IsSplat = true;
9090   bool IsLoad = false;
9091   SDValue Op0 = V->getOperand(0);
9092 
9093   // This function is called in a block that confirms the node is not a constant
9094   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9095   // different constants.
9096   if (V->isConstant())
9097     return false;
9098   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9099     if (V->getOperand(i).isUndef())
9100       return false;
9101     // We want to expand nodes that represent load-and-splat even if the
9102     // loaded value is a floating point truncation or conversion to int.
9103     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9104         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9105          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9106         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9107          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9108         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9109          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9110       IsLoad = true;
9111     // If the operands are different or the input is not a load and has more
9112     // uses than just this BV node, then it isn't a splat.
9113     if (V->getOperand(i) != Op0 ||
9114         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9115       IsSplat = false;
9116   }
9117   return !(IsSplat && IsLoad);
9118 }
9119 
9120 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9121 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9122 
9123   SDLoc dl(Op);
9124   SDValue Op0 = Op->getOperand(0);
9125 
9126   if ((Op.getValueType() != MVT::f128) ||
9127       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9128       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9129       (Op0.getOperand(1).getValueType() != MVT::i64))
9130     return SDValue();
9131 
9132   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9133                      Op0.getOperand(1));
9134 }
9135 
9136 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9137   const SDValue *InputLoad = &Op;
9138   if (InputLoad->getOpcode() == ISD::BITCAST)
9139     InputLoad = &InputLoad->getOperand(0);
9140   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9141       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9142     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9143     InputLoad = &InputLoad->getOperand(0);
9144   }
9145   if (InputLoad->getOpcode() != ISD::LOAD)
9146     return nullptr;
9147   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9148   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9149 }
9150 
9151 // Convert the argument APFloat to a single precision APFloat if there is no
9152 // loss in information during the conversion to single precision APFloat and the
9153 // resulting number is not a denormal number. Return true if successful.
9154 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9155   APFloat APFloatToConvert = ArgAPFloat;
9156   bool LosesInfo = true;
9157   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9158                            &LosesInfo);
9159   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9160   if (Success)
9161     ArgAPFloat = APFloatToConvert;
9162   return Success;
9163 }
9164 
9165 // Bitcast the argument APInt to a double and convert it to a single precision
9166 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9167 // argument if there is no loss in information during the conversion from
9168 // double to single precision APFloat and the resulting number is not a denormal
9169 // number. Return true if successful.
9170 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9171   double DpValue = ArgAPInt.bitsToDouble();
9172   APFloat APFloatDp(DpValue);
9173   bool Success = convertToNonDenormSingle(APFloatDp);
9174   if (Success)
9175     ArgAPInt = APFloatDp.bitcastToAPInt();
9176   return Success;
9177 }
9178 
9179 // If this is a case we can't handle, return null and let the default
9180 // expansion code take care of it.  If we CAN select this case, and if it
9181 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9182 // this case more efficiently than a constant pool load, lower it to the
9183 // sequence of ops that should be used.
9184 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9185                                              SelectionDAG &DAG) const {
9186   SDLoc dl(Op);
9187   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9188   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9189 
9190   // Check if this is a splat of a constant value.
9191   APInt APSplatBits, APSplatUndef;
9192   unsigned SplatBitSize;
9193   bool HasAnyUndefs;
9194   bool BVNIsConstantSplat =
9195       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9196                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9197 
9198   // If it is a splat of a double, check if we can shrink it to a 32 bit
9199   // non-denormal float which when converted back to double gives us the same
9200   // double. This is to exploit the XXSPLTIDP instruction.
9201   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
9202       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
9203       convertToNonDenormSingle(APSplatBits)) {
9204     SDValue SplatNode = DAG.getNode(
9205         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9206         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9207     return DAG.getBitcast(Op.getValueType(), SplatNode);
9208   }
9209 
9210   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9211 
9212     bool IsPermutedLoad = false;
9213     const SDValue *InputLoad =
9214         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9215     // Handle load-and-splat patterns as we have instructions that will do this
9216     // in one go.
9217     if (InputLoad && DAG.isSplatValue(Op, true)) {
9218       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9219 
9220       // We have handling for 4 and 8 byte elements.
9221       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9222 
9223       // Checking for a single use of this load, we have to check for vector
9224       // width (128 bits) / ElementSize uses (since each operand of the
9225       // BUILD_VECTOR is a separate use of the value.
9226       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9227           ((Subtarget.hasVSX() && ElementSize == 64) ||
9228            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9229         SDValue Ops[] = {
9230           LD->getChain(),    // Chain
9231           LD->getBasePtr(),  // Ptr
9232           DAG.getValueType(Op.getValueType()) // VT
9233         };
9234         return
9235           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9236                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9237                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9238       }
9239     }
9240 
9241     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9242     // lowered to VSX instructions under certain conditions.
9243     // Without VSX, there is no pattern more efficient than expanding the node.
9244     if (Subtarget.hasVSX() &&
9245         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9246                                         Subtarget.hasP8Vector()))
9247       return Op;
9248     return SDValue();
9249   }
9250 
9251   uint64_t SplatBits = APSplatBits.getZExtValue();
9252   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9253   unsigned SplatSize = SplatBitSize / 8;
9254 
9255   // First, handle single instruction cases.
9256 
9257   // All zeros?
9258   if (SplatBits == 0) {
9259     // Canonicalize all zero vectors to be v4i32.
9260     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9261       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9262       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9263     }
9264     return Op;
9265   }
9266 
9267   // We have XXSPLTIW for constant splats four bytes wide.
9268   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9269   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9270   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9271   // turned into a 4-byte splat of 0xABABABAB.
9272   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9273     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
9274                                   Op.getValueType(), DAG, dl);
9275 
9276   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9277     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9278                                   dl);
9279 
9280   // We have XXSPLTIB for constant splats one byte wide.
9281   if (Subtarget.hasP9Vector() && SplatSize == 1)
9282     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9283                                   dl);
9284 
9285   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9286   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9287                     (32-SplatBitSize));
9288   if (SextVal >= -16 && SextVal <= 15)
9289     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9290                                   dl);
9291 
9292   // Two instruction sequences.
9293 
9294   // If this value is in the range [-32,30] and is even, use:
9295   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9296   // If this value is in the range [17,31] and is odd, use:
9297   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9298   // If this value is in the range [-31,-17] and is odd, use:
9299   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9300   // Note the last two are three-instruction sequences.
9301   if (SextVal >= -32 && SextVal <= 31) {
9302     // To avoid having these optimizations undone by constant folding,
9303     // we convert to a pseudo that will be expanded later into one of
9304     // the above forms.
9305     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9306     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9307               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9308     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9309     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9310     if (VT == Op.getValueType())
9311       return RetVal;
9312     else
9313       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9314   }
9315 
9316   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9317   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9318   // for fneg/fabs.
9319   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9320     // Make -1 and vspltisw -1:
9321     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9322 
9323     // Make the VSLW intrinsic, computing 0x8000_0000.
9324     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9325                                    OnesV, DAG, dl);
9326 
9327     // xor by OnesV to invert it.
9328     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9329     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9330   }
9331 
9332   // Check to see if this is a wide variety of vsplti*, binop self cases.
9333   static const signed char SplatCsts[] = {
9334     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9335     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9336   };
9337 
9338   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9339     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9340     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9341     int i = SplatCsts[idx];
9342 
9343     // Figure out what shift amount will be used by altivec if shifted by i in
9344     // this splat size.
9345     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9346 
9347     // vsplti + shl self.
9348     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9349       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9350       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9351         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9352         Intrinsic::ppc_altivec_vslw
9353       };
9354       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9355       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9356     }
9357 
9358     // vsplti + srl self.
9359     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9360       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9361       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9362         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9363         Intrinsic::ppc_altivec_vsrw
9364       };
9365       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9366       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9367     }
9368 
9369     // vsplti + sra self.
9370     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9371       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9372       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9373         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9374         Intrinsic::ppc_altivec_vsraw
9375       };
9376       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9377       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9378     }
9379 
9380     // vsplti + rol self.
9381     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9382                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9383       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9384       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9385         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9386         Intrinsic::ppc_altivec_vrlw
9387       };
9388       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9389       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9390     }
9391 
9392     // t = vsplti c, result = vsldoi t, t, 1
9393     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9394       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9395       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9396       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9397     }
9398     // t = vsplti c, result = vsldoi t, t, 2
9399     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9400       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9401       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9402       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9403     }
9404     // t = vsplti c, result = vsldoi t, t, 3
9405     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9406       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9407       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9408       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9409     }
9410   }
9411 
9412   return SDValue();
9413 }
9414 
9415 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9416 /// the specified operations to build the shuffle.
9417 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9418                                       SDValue RHS, SelectionDAG &DAG,
9419                                       const SDLoc &dl) {
9420   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9421   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9422   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9423 
9424   enum {
9425     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9426     OP_VMRGHW,
9427     OP_VMRGLW,
9428     OP_VSPLTISW0,
9429     OP_VSPLTISW1,
9430     OP_VSPLTISW2,
9431     OP_VSPLTISW3,
9432     OP_VSLDOI4,
9433     OP_VSLDOI8,
9434     OP_VSLDOI12
9435   };
9436 
9437   if (OpNum == OP_COPY) {
9438     if (LHSID == (1*9+2)*9+3) return LHS;
9439     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9440     return RHS;
9441   }
9442 
9443   SDValue OpLHS, OpRHS;
9444   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9445   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9446 
9447   int ShufIdxs[16];
9448   switch (OpNum) {
9449   default: llvm_unreachable("Unknown i32 permute!");
9450   case OP_VMRGHW:
9451     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9452     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9453     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9454     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9455     break;
9456   case OP_VMRGLW:
9457     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9458     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9459     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9460     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9461     break;
9462   case OP_VSPLTISW0:
9463     for (unsigned i = 0; i != 16; ++i)
9464       ShufIdxs[i] = (i&3)+0;
9465     break;
9466   case OP_VSPLTISW1:
9467     for (unsigned i = 0; i != 16; ++i)
9468       ShufIdxs[i] = (i&3)+4;
9469     break;
9470   case OP_VSPLTISW2:
9471     for (unsigned i = 0; i != 16; ++i)
9472       ShufIdxs[i] = (i&3)+8;
9473     break;
9474   case OP_VSPLTISW3:
9475     for (unsigned i = 0; i != 16; ++i)
9476       ShufIdxs[i] = (i&3)+12;
9477     break;
9478   case OP_VSLDOI4:
9479     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9480   case OP_VSLDOI8:
9481     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9482   case OP_VSLDOI12:
9483     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9484   }
9485   EVT VT = OpLHS.getValueType();
9486   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9487   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9488   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9489   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9490 }
9491 
9492 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9493 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9494 /// SDValue.
9495 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9496                                            SelectionDAG &DAG) const {
9497   const unsigned BytesInVector = 16;
9498   bool IsLE = Subtarget.isLittleEndian();
9499   SDLoc dl(N);
9500   SDValue V1 = N->getOperand(0);
9501   SDValue V2 = N->getOperand(1);
9502   unsigned ShiftElts = 0, InsertAtByte = 0;
9503   bool Swap = false;
9504 
9505   // Shifts required to get the byte we want at element 7.
9506   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9507                                    0, 15, 14, 13, 12, 11, 10, 9};
9508   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9509                                 1, 2,  3,  4,  5,  6,  7,  8};
9510 
9511   ArrayRef<int> Mask = N->getMask();
9512   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9513 
9514   // For each mask element, find out if we're just inserting something
9515   // from V2 into V1 or vice versa.
9516   // Possible permutations inserting an element from V2 into V1:
9517   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9518   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9519   //   ...
9520   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9521   // Inserting from V1 into V2 will be similar, except mask range will be
9522   // [16,31].
9523 
9524   bool FoundCandidate = false;
9525   // If both vector operands for the shuffle are the same vector, the mask
9526   // will contain only elements from the first one and the second one will be
9527   // undef.
9528   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9529   // Go through the mask of half-words to find an element that's being moved
9530   // from one vector to the other.
9531   for (unsigned i = 0; i < BytesInVector; ++i) {
9532     unsigned CurrentElement = Mask[i];
9533     // If 2nd operand is undefined, we should only look for element 7 in the
9534     // Mask.
9535     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9536       continue;
9537 
9538     bool OtherElementsInOrder = true;
9539     // Examine the other elements in the Mask to see if they're in original
9540     // order.
9541     for (unsigned j = 0; j < BytesInVector; ++j) {
9542       if (j == i)
9543         continue;
9544       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9545       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9546       // in which we always assume we're always picking from the 1st operand.
9547       int MaskOffset =
9548           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9549       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9550         OtherElementsInOrder = false;
9551         break;
9552       }
9553     }
9554     // If other elements are in original order, we record the number of shifts
9555     // we need to get the element we want into element 7. Also record which byte
9556     // in the vector we should insert into.
9557     if (OtherElementsInOrder) {
9558       // If 2nd operand is undefined, we assume no shifts and no swapping.
9559       if (V2.isUndef()) {
9560         ShiftElts = 0;
9561         Swap = false;
9562       } else {
9563         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9564         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9565                          : BigEndianShifts[CurrentElement & 0xF];
9566         Swap = CurrentElement < BytesInVector;
9567       }
9568       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9569       FoundCandidate = true;
9570       break;
9571     }
9572   }
9573 
9574   if (!FoundCandidate)
9575     return SDValue();
9576 
9577   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9578   // optionally with VECSHL if shift is required.
9579   if (Swap)
9580     std::swap(V1, V2);
9581   if (V2.isUndef())
9582     V2 = V1;
9583   if (ShiftElts) {
9584     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9585                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9586     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9587                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9588   }
9589   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9590                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9591 }
9592 
9593 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9594 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9595 /// SDValue.
9596 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9597                                            SelectionDAG &DAG) const {
9598   const unsigned NumHalfWords = 8;
9599   const unsigned BytesInVector = NumHalfWords * 2;
9600   // Check that the shuffle is on half-words.
9601   if (!isNByteElemShuffleMask(N, 2, 1))
9602     return SDValue();
9603 
9604   bool IsLE = Subtarget.isLittleEndian();
9605   SDLoc dl(N);
9606   SDValue V1 = N->getOperand(0);
9607   SDValue V2 = N->getOperand(1);
9608   unsigned ShiftElts = 0, InsertAtByte = 0;
9609   bool Swap = false;
9610 
9611   // Shifts required to get the half-word we want at element 3.
9612   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9613   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9614 
9615   uint32_t Mask = 0;
9616   uint32_t OriginalOrderLow = 0x1234567;
9617   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9618   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9619   // 32-bit space, only need 4-bit nibbles per element.
9620   for (unsigned i = 0; i < NumHalfWords; ++i) {
9621     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9622     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9623   }
9624 
9625   // For each mask element, find out if we're just inserting something
9626   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9627   // from V2 into V1:
9628   //   X, 1, 2, 3, 4, 5, 6, 7
9629   //   0, X, 2, 3, 4, 5, 6, 7
9630   //   0, 1, X, 3, 4, 5, 6, 7
9631   //   0, 1, 2, X, 4, 5, 6, 7
9632   //   0, 1, 2, 3, X, 5, 6, 7
9633   //   0, 1, 2, 3, 4, X, 6, 7
9634   //   0, 1, 2, 3, 4, 5, X, 7
9635   //   0, 1, 2, 3, 4, 5, 6, X
9636   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9637 
9638   bool FoundCandidate = false;
9639   // Go through the mask of half-words to find an element that's being moved
9640   // from one vector to the other.
9641   for (unsigned i = 0; i < NumHalfWords; ++i) {
9642     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9643     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9644     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9645     uint32_t TargetOrder = 0x0;
9646 
9647     // If both vector operands for the shuffle are the same vector, the mask
9648     // will contain only elements from the first one and the second one will be
9649     // undef.
9650     if (V2.isUndef()) {
9651       ShiftElts = 0;
9652       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9653       TargetOrder = OriginalOrderLow;
9654       Swap = false;
9655       // Skip if not the correct element or mask of other elements don't equal
9656       // to our expected order.
9657       if (MaskOneElt == VINSERTHSrcElem &&
9658           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9659         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9660         FoundCandidate = true;
9661         break;
9662       }
9663     } else { // If both operands are defined.
9664       // Target order is [8,15] if the current mask is between [0,7].
9665       TargetOrder =
9666           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9667       // Skip if mask of other elements don't equal our expected order.
9668       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9669         // We only need the last 3 bits for the number of shifts.
9670         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9671                          : BigEndianShifts[MaskOneElt & 0x7];
9672         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9673         Swap = MaskOneElt < NumHalfWords;
9674         FoundCandidate = true;
9675         break;
9676       }
9677     }
9678   }
9679 
9680   if (!FoundCandidate)
9681     return SDValue();
9682 
9683   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9684   // optionally with VECSHL if shift is required.
9685   if (Swap)
9686     std::swap(V1, V2);
9687   if (V2.isUndef())
9688     V2 = V1;
9689   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9690   if (ShiftElts) {
9691     // Double ShiftElts because we're left shifting on v16i8 type.
9692     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9693                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9694     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9695     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9696                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9697     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9698   }
9699   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9700   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9701                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9702   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9703 }
9704 
9705 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9706 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9707 /// return the default SDValue.
9708 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9709                                               SelectionDAG &DAG) const {
9710   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9711   // to v16i8. Peek through the bitcasts to get the actual operands.
9712   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9713   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9714 
9715   auto ShuffleMask = SVN->getMask();
9716   SDValue VecShuffle(SVN, 0);
9717   SDLoc DL(SVN);
9718 
9719   // Check that we have a four byte shuffle.
9720   if (!isNByteElemShuffleMask(SVN, 4, 1))
9721     return SDValue();
9722 
9723   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9724   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9725     std::swap(LHS, RHS);
9726     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9727     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9728   }
9729 
9730   // Ensure that the RHS is a vector of constants.
9731   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9732   if (!BVN)
9733     return SDValue();
9734 
9735   // Check if RHS is a splat of 4-bytes (or smaller).
9736   APInt APSplatValue, APSplatUndef;
9737   unsigned SplatBitSize;
9738   bool HasAnyUndefs;
9739   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9740                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9741       SplatBitSize > 32)
9742     return SDValue();
9743 
9744   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9745   // The instruction splats a constant C into two words of the source vector
9746   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9747   // Thus we check that the shuffle mask is the equivalent  of
9748   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9749   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9750   // within each word are consecutive, so we only need to check the first byte.
9751   SDValue Index;
9752   bool IsLE = Subtarget.isLittleEndian();
9753   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9754       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9755        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9756     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9757   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9758            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9759             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9760     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9761   else
9762     return SDValue();
9763 
9764   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9765   // for XXSPLTI32DX.
9766   unsigned SplatVal = APSplatValue.getZExtValue();
9767   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9768     SplatVal |= (SplatVal << SplatBitSize);
9769 
9770   SDValue SplatNode = DAG.getNode(
9771       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9772       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9773   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9774 }
9775 
9776 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9777 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9778 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9779 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9780 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9781   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9782   assert(Op.getValueType() == MVT::v1i128 &&
9783          "Only set v1i128 as custom, other type shouldn't reach here!");
9784   SDLoc dl(Op);
9785   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9786   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9787   unsigned SHLAmt = N1.getConstantOperandVal(0);
9788   if (SHLAmt % 8 == 0) {
9789     SmallVector<int, 16> Mask(16, 0);
9790     std::iota(Mask.begin(), Mask.end(), 0);
9791     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9792     if (SDValue Shuffle =
9793             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9794                                  DAG.getUNDEF(MVT::v16i8), Mask))
9795       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9796   }
9797   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9798   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9799                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9800   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9801                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9802   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9803   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9804 }
9805 
9806 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9807 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9808 /// return the code it can be lowered into.  Worst case, it can always be
9809 /// lowered into a vperm.
9810 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9811                                                SelectionDAG &DAG) const {
9812   SDLoc dl(Op);
9813   SDValue V1 = Op.getOperand(0);
9814   SDValue V2 = Op.getOperand(1);
9815   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9816 
9817   // Any nodes that were combined in the target-independent combiner prior
9818   // to vector legalization will not be sent to the target combine. Try to
9819   // combine it here.
9820   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9821     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9822       return NewShuffle;
9823     Op = NewShuffle;
9824     SVOp = cast<ShuffleVectorSDNode>(Op);
9825     V1 = Op.getOperand(0);
9826     V2 = Op.getOperand(1);
9827   }
9828   EVT VT = Op.getValueType();
9829   bool isLittleEndian = Subtarget.isLittleEndian();
9830 
9831   unsigned ShiftElts, InsertAtByte;
9832   bool Swap = false;
9833 
9834   // If this is a load-and-splat, we can do that with a single instruction
9835   // in some cases. However if the load has multiple uses, we don't want to
9836   // combine it because that will just produce multiple loads.
9837   bool IsPermutedLoad = false;
9838   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9839   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9840       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9841       InputLoad->hasOneUse()) {
9842     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9843     int SplatIdx =
9844       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9845 
9846     // The splat index for permuted loads will be in the left half of the vector
9847     // which is strictly wider than the loaded value by 8 bytes. So we need to
9848     // adjust the splat index to point to the correct address in memory.
9849     if (IsPermutedLoad) {
9850       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9851       SplatIdx += IsFourByte ? 2 : 1;
9852       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9853              "Splat of a value outside of the loaded memory");
9854     }
9855 
9856     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9857     // For 4-byte load-and-splat, we need Power9.
9858     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9859       uint64_t Offset = 0;
9860       if (IsFourByte)
9861         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9862       else
9863         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9864 
9865       SDValue BasePtr = LD->getBasePtr();
9866       if (Offset != 0)
9867         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9868                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9869       SDValue Ops[] = {
9870         LD->getChain(),    // Chain
9871         BasePtr,           // BasePtr
9872         DAG.getValueType(Op.getValueType()) // VT
9873       };
9874       SDVTList VTL =
9875         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9876       SDValue LdSplt =
9877         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9878                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9879       if (LdSplt.getValueType() != SVOp->getValueType(0))
9880         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9881       return LdSplt;
9882     }
9883   }
9884   if (Subtarget.hasP9Vector() &&
9885       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9886                            isLittleEndian)) {
9887     if (Swap)
9888       std::swap(V1, V2);
9889     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9890     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9891     if (ShiftElts) {
9892       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9893                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9894       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9895                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9896       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9897     }
9898     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9899                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9900     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9901   }
9902 
9903   if (Subtarget.hasPrefixInstrs()) {
9904     SDValue SplatInsertNode;
9905     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9906       return SplatInsertNode;
9907   }
9908 
9909   if (Subtarget.hasP9Altivec()) {
9910     SDValue NewISDNode;
9911     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9912       return NewISDNode;
9913 
9914     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9915       return NewISDNode;
9916   }
9917 
9918   if (Subtarget.hasVSX() &&
9919       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9920     if (Swap)
9921       std::swap(V1, V2);
9922     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9923     SDValue Conv2 =
9924         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9925 
9926     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9927                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9928     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9929   }
9930 
9931   if (Subtarget.hasVSX() &&
9932     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9933     if (Swap)
9934       std::swap(V1, V2);
9935     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9936     SDValue Conv2 =
9937         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9938 
9939     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9940                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9941     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9942   }
9943 
9944   if (Subtarget.hasP9Vector()) {
9945      if (PPC::isXXBRHShuffleMask(SVOp)) {
9946       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9947       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9948       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9949     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9950       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9951       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9952       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9953     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9954       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9955       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9956       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9957     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9958       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9959       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9960       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9961     }
9962   }
9963 
9964   if (Subtarget.hasVSX()) {
9965     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9966       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9967 
9968       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9969       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9970                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9971       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9972     }
9973 
9974     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9975     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9976       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9977       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9978       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9979     }
9980   }
9981 
9982   // Cases that are handled by instructions that take permute immediates
9983   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9984   // selected by the instruction selector.
9985   if (V2.isUndef()) {
9986     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9987         PPC::isSplatShuffleMask(SVOp, 2) ||
9988         PPC::isSplatShuffleMask(SVOp, 4) ||
9989         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9990         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9991         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9992         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9993         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9994         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9995         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9996         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9997         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9998         (Subtarget.hasP8Altivec() && (
9999          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10000          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10001          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10002       return Op;
10003     }
10004   }
10005 
10006   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10007   // and produce a fixed permutation.  If any of these match, do not lower to
10008   // VPERM.
10009   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10010   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10011       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10012       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10013       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10014       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10015       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10016       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10017       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10018       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10019       (Subtarget.hasP8Altivec() && (
10020        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10021        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10022        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10023     return Op;
10024 
10025   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10026   // perfect shuffle table to emit an optimal matching sequence.
10027   ArrayRef<int> PermMask = SVOp->getMask();
10028 
10029   unsigned PFIndexes[4];
10030   bool isFourElementShuffle = true;
10031   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
10032     unsigned EltNo = 8;   // Start out undef.
10033     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
10034       if (PermMask[i*4+j] < 0)
10035         continue;   // Undef, ignore it.
10036 
10037       unsigned ByteSource = PermMask[i*4+j];
10038       if ((ByteSource & 3) != j) {
10039         isFourElementShuffle = false;
10040         break;
10041       }
10042 
10043       if (EltNo == 8) {
10044         EltNo = ByteSource/4;
10045       } else if (EltNo != ByteSource/4) {
10046         isFourElementShuffle = false;
10047         break;
10048       }
10049     }
10050     PFIndexes[i] = EltNo;
10051   }
10052 
10053   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10054   // perfect shuffle vector to determine if it is cost effective to do this as
10055   // discrete instructions, or whether we should use a vperm.
10056   // For now, we skip this for little endian until such time as we have a
10057   // little-endian perfect shuffle table.
10058   if (isFourElementShuffle && !isLittleEndian) {
10059     // Compute the index in the perfect shuffle table.
10060     unsigned PFTableIndex =
10061       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10062 
10063     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10064     unsigned Cost  = (PFEntry >> 30);
10065 
10066     // Determining when to avoid vperm is tricky.  Many things affect the cost
10067     // of vperm, particularly how many times the perm mask needs to be computed.
10068     // For example, if the perm mask can be hoisted out of a loop or is already
10069     // used (perhaps because there are multiple permutes with the same shuffle
10070     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10071     // the loop requires an extra register.
10072     //
10073     // As a compromise, we only emit discrete instructions if the shuffle can be
10074     // generated in 3 or fewer operations.  When we have loop information
10075     // available, if this block is within a loop, we should avoid using vperm
10076     // for 3-operation perms and use a constant pool load instead.
10077     if (Cost < 3)
10078       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10079   }
10080 
10081   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10082   // vector that will get spilled to the constant pool.
10083   if (V2.isUndef()) V2 = V1;
10084 
10085   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10086   // that it is in input element units, not in bytes.  Convert now.
10087 
10088   // For little endian, the order of the input vectors is reversed, and
10089   // the permutation mask is complemented with respect to 31.  This is
10090   // necessary to produce proper semantics with the big-endian-biased vperm
10091   // instruction.
10092   EVT EltVT = V1.getValueType().getVectorElementType();
10093   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10094 
10095   SmallVector<SDValue, 16> ResultMask;
10096   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10097     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10098 
10099     for (unsigned j = 0; j != BytesPerElement; ++j)
10100       if (isLittleEndian)
10101         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10102                                              dl, MVT::i32));
10103       else
10104         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10105                                              MVT::i32));
10106   }
10107 
10108   ShufflesHandledWithVPERM++;
10109   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10110   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10111   LLVM_DEBUG(SVOp->dump());
10112   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10113   LLVM_DEBUG(VPermMask.dump());
10114 
10115   if (isLittleEndian)
10116     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10117                        V2, V1, VPermMask);
10118   else
10119     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10120                        V1, V2, VPermMask);
10121 }
10122 
10123 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10124 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10125 /// information about the intrinsic.
10126 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10127                                  bool &isDot, const PPCSubtarget &Subtarget) {
10128   unsigned IntrinsicID =
10129       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10130   CompareOpc = -1;
10131   isDot = false;
10132   switch (IntrinsicID) {
10133   default:
10134     return false;
10135   // Comparison predicates.
10136   case Intrinsic::ppc_altivec_vcmpbfp_p:
10137     CompareOpc = 966;
10138     isDot = true;
10139     break;
10140   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10141     CompareOpc = 198;
10142     isDot = true;
10143     break;
10144   case Intrinsic::ppc_altivec_vcmpequb_p:
10145     CompareOpc = 6;
10146     isDot = true;
10147     break;
10148   case Intrinsic::ppc_altivec_vcmpequh_p:
10149     CompareOpc = 70;
10150     isDot = true;
10151     break;
10152   case Intrinsic::ppc_altivec_vcmpequw_p:
10153     CompareOpc = 134;
10154     isDot = true;
10155     break;
10156   case Intrinsic::ppc_altivec_vcmpequd_p:
10157     if (Subtarget.hasP8Altivec()) {
10158       CompareOpc = 199;
10159       isDot = true;
10160     } else
10161       return false;
10162     break;
10163   case Intrinsic::ppc_altivec_vcmpneb_p:
10164   case Intrinsic::ppc_altivec_vcmpneh_p:
10165   case Intrinsic::ppc_altivec_vcmpnew_p:
10166   case Intrinsic::ppc_altivec_vcmpnezb_p:
10167   case Intrinsic::ppc_altivec_vcmpnezh_p:
10168   case Intrinsic::ppc_altivec_vcmpnezw_p:
10169     if (Subtarget.hasP9Altivec()) {
10170       switch (IntrinsicID) {
10171       default:
10172         llvm_unreachable("Unknown comparison intrinsic.");
10173       case Intrinsic::ppc_altivec_vcmpneb_p:
10174         CompareOpc = 7;
10175         break;
10176       case Intrinsic::ppc_altivec_vcmpneh_p:
10177         CompareOpc = 71;
10178         break;
10179       case Intrinsic::ppc_altivec_vcmpnew_p:
10180         CompareOpc = 135;
10181         break;
10182       case Intrinsic::ppc_altivec_vcmpnezb_p:
10183         CompareOpc = 263;
10184         break;
10185       case Intrinsic::ppc_altivec_vcmpnezh_p:
10186         CompareOpc = 327;
10187         break;
10188       case Intrinsic::ppc_altivec_vcmpnezw_p:
10189         CompareOpc = 391;
10190         break;
10191       }
10192       isDot = true;
10193     } else
10194       return false;
10195     break;
10196   case Intrinsic::ppc_altivec_vcmpgefp_p:
10197     CompareOpc = 454;
10198     isDot = true;
10199     break;
10200   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10201     CompareOpc = 710;
10202     isDot = true;
10203     break;
10204   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10205     CompareOpc = 774;
10206     isDot = true;
10207     break;
10208   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10209     CompareOpc = 838;
10210     isDot = true;
10211     break;
10212   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10213     CompareOpc = 902;
10214     isDot = true;
10215     break;
10216   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10217     if (Subtarget.hasP8Altivec()) {
10218       CompareOpc = 967;
10219       isDot = true;
10220     } else
10221       return false;
10222     break;
10223   case Intrinsic::ppc_altivec_vcmpgtub_p:
10224     CompareOpc = 518;
10225     isDot = true;
10226     break;
10227   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10228     CompareOpc = 582;
10229     isDot = true;
10230     break;
10231   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10232     CompareOpc = 646;
10233     isDot = true;
10234     break;
10235   case Intrinsic::ppc_altivec_vcmpgtud_p:
10236     if (Subtarget.hasP8Altivec()) {
10237       CompareOpc = 711;
10238       isDot = true;
10239     } else
10240       return false;
10241     break;
10242 
10243   case Intrinsic::ppc_altivec_vcmpequq:
10244   case Intrinsic::ppc_altivec_vcmpgtsq:
10245   case Intrinsic::ppc_altivec_vcmpgtuq:
10246     if (!Subtarget.isISA3_1())
10247       return false;
10248     switch (IntrinsicID) {
10249     default:
10250       llvm_unreachable("Unknown comparison intrinsic.");
10251     case Intrinsic::ppc_altivec_vcmpequq:
10252       CompareOpc = 455;
10253       break;
10254     case Intrinsic::ppc_altivec_vcmpgtsq:
10255       CompareOpc = 903;
10256       break;
10257     case Intrinsic::ppc_altivec_vcmpgtuq:
10258       CompareOpc = 647;
10259       break;
10260     }
10261     break;
10262 
10263   // VSX predicate comparisons use the same infrastructure
10264   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10265   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10266   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10267   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10268   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10269   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10270     if (Subtarget.hasVSX()) {
10271       switch (IntrinsicID) {
10272       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10273         CompareOpc = 99;
10274         break;
10275       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10276         CompareOpc = 115;
10277         break;
10278       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10279         CompareOpc = 107;
10280         break;
10281       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10282         CompareOpc = 67;
10283         break;
10284       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10285         CompareOpc = 83;
10286         break;
10287       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10288         CompareOpc = 75;
10289         break;
10290       }
10291       isDot = true;
10292     } else
10293       return false;
10294     break;
10295 
10296   // Normal Comparisons.
10297   case Intrinsic::ppc_altivec_vcmpbfp:
10298     CompareOpc = 966;
10299     break;
10300   case Intrinsic::ppc_altivec_vcmpeqfp:
10301     CompareOpc = 198;
10302     break;
10303   case Intrinsic::ppc_altivec_vcmpequb:
10304     CompareOpc = 6;
10305     break;
10306   case Intrinsic::ppc_altivec_vcmpequh:
10307     CompareOpc = 70;
10308     break;
10309   case Intrinsic::ppc_altivec_vcmpequw:
10310     CompareOpc = 134;
10311     break;
10312   case Intrinsic::ppc_altivec_vcmpequd:
10313     if (Subtarget.hasP8Altivec())
10314       CompareOpc = 199;
10315     else
10316       return false;
10317     break;
10318   case Intrinsic::ppc_altivec_vcmpneb:
10319   case Intrinsic::ppc_altivec_vcmpneh:
10320   case Intrinsic::ppc_altivec_vcmpnew:
10321   case Intrinsic::ppc_altivec_vcmpnezb:
10322   case Intrinsic::ppc_altivec_vcmpnezh:
10323   case Intrinsic::ppc_altivec_vcmpnezw:
10324     if (Subtarget.hasP9Altivec())
10325       switch (IntrinsicID) {
10326       default:
10327         llvm_unreachable("Unknown comparison intrinsic.");
10328       case Intrinsic::ppc_altivec_vcmpneb:
10329         CompareOpc = 7;
10330         break;
10331       case Intrinsic::ppc_altivec_vcmpneh:
10332         CompareOpc = 71;
10333         break;
10334       case Intrinsic::ppc_altivec_vcmpnew:
10335         CompareOpc = 135;
10336         break;
10337       case Intrinsic::ppc_altivec_vcmpnezb:
10338         CompareOpc = 263;
10339         break;
10340       case Intrinsic::ppc_altivec_vcmpnezh:
10341         CompareOpc = 327;
10342         break;
10343       case Intrinsic::ppc_altivec_vcmpnezw:
10344         CompareOpc = 391;
10345         break;
10346       }
10347     else
10348       return false;
10349     break;
10350   case Intrinsic::ppc_altivec_vcmpgefp:
10351     CompareOpc = 454;
10352     break;
10353   case Intrinsic::ppc_altivec_vcmpgtfp:
10354     CompareOpc = 710;
10355     break;
10356   case Intrinsic::ppc_altivec_vcmpgtsb:
10357     CompareOpc = 774;
10358     break;
10359   case Intrinsic::ppc_altivec_vcmpgtsh:
10360     CompareOpc = 838;
10361     break;
10362   case Intrinsic::ppc_altivec_vcmpgtsw:
10363     CompareOpc = 902;
10364     break;
10365   case Intrinsic::ppc_altivec_vcmpgtsd:
10366     if (Subtarget.hasP8Altivec())
10367       CompareOpc = 967;
10368     else
10369       return false;
10370     break;
10371   case Intrinsic::ppc_altivec_vcmpgtub:
10372     CompareOpc = 518;
10373     break;
10374   case Intrinsic::ppc_altivec_vcmpgtuh:
10375     CompareOpc = 582;
10376     break;
10377   case Intrinsic::ppc_altivec_vcmpgtuw:
10378     CompareOpc = 646;
10379     break;
10380   case Intrinsic::ppc_altivec_vcmpgtud:
10381     if (Subtarget.hasP8Altivec())
10382       CompareOpc = 711;
10383     else
10384       return false;
10385     break;
10386   case Intrinsic::ppc_altivec_vcmpequq_p:
10387   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10388   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10389     if (!Subtarget.isISA3_1())
10390       return false;
10391     switch (IntrinsicID) {
10392     default:
10393       llvm_unreachable("Unknown comparison intrinsic.");
10394     case Intrinsic::ppc_altivec_vcmpequq_p:
10395       CompareOpc = 455;
10396       break;
10397     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10398       CompareOpc = 903;
10399       break;
10400     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10401       CompareOpc = 647;
10402       break;
10403     }
10404     isDot = true;
10405     break;
10406   }
10407   return true;
10408 }
10409 
10410 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10411 /// lower, do it, otherwise return null.
10412 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10413                                                    SelectionDAG &DAG) const {
10414   unsigned IntrinsicID =
10415     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10416 
10417   SDLoc dl(Op);
10418 
10419   if (IntrinsicID == Intrinsic::thread_pointer) {
10420     // Reads the thread pointer register, used for __builtin_thread_pointer.
10421     if (Subtarget.isPPC64())
10422       return DAG.getRegister(PPC::X13, MVT::i64);
10423     return DAG.getRegister(PPC::R2, MVT::i32);
10424   }
10425 
10426   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10427   // opcode number of the comparison.
10428   int CompareOpc;
10429   bool isDot;
10430   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10431     return SDValue();    // Don't custom lower most intrinsics.
10432 
10433   // If this is a non-dot comparison, make the VCMP node and we are done.
10434   if (!isDot) {
10435     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10436                               Op.getOperand(1), Op.getOperand(2),
10437                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10438     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10439   }
10440 
10441   // Create the PPCISD altivec 'dot' comparison node.
10442   SDValue Ops[] = {
10443     Op.getOperand(2),  // LHS
10444     Op.getOperand(3),  // RHS
10445     DAG.getConstant(CompareOpc, dl, MVT::i32)
10446   };
10447   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10448   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10449 
10450   // Now that we have the comparison, emit a copy from the CR to a GPR.
10451   // This is flagged to the above dot comparison.
10452   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10453                                 DAG.getRegister(PPC::CR6, MVT::i32),
10454                                 CompNode.getValue(1));
10455 
10456   // Unpack the result based on how the target uses it.
10457   unsigned BitNo;   // Bit # of CR6.
10458   bool InvertBit;   // Invert result?
10459   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10460   default:  // Can't happen, don't crash on invalid number though.
10461   case 0:   // Return the value of the EQ bit of CR6.
10462     BitNo = 0; InvertBit = false;
10463     break;
10464   case 1:   // Return the inverted value of the EQ bit of CR6.
10465     BitNo = 0; InvertBit = true;
10466     break;
10467   case 2:   // Return the value of the LT bit of CR6.
10468     BitNo = 2; InvertBit = false;
10469     break;
10470   case 3:   // Return the inverted value of the LT bit of CR6.
10471     BitNo = 2; InvertBit = true;
10472     break;
10473   }
10474 
10475   // Shift the bit into the low position.
10476   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10477                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10478   // Isolate the bit.
10479   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10480                       DAG.getConstant(1, dl, MVT::i32));
10481 
10482   // If we are supposed to, toggle the bit.
10483   if (InvertBit)
10484     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10485                         DAG.getConstant(1, dl, MVT::i32));
10486   return Flags;
10487 }
10488 
10489 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10490                                                SelectionDAG &DAG) const {
10491   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10492   // the beginning of the argument list.
10493   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10494   SDLoc DL(Op);
10495   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10496   case Intrinsic::ppc_cfence: {
10497     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10498     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10499     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10500                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10501                                                   Op.getOperand(ArgStart + 1)),
10502                                       Op.getOperand(0)),
10503                    0);
10504   }
10505   default:
10506     break;
10507   }
10508   return SDValue();
10509 }
10510 
10511 // Lower scalar BSWAP64 to xxbrd.
10512 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10513   SDLoc dl(Op);
10514   // MTVSRDD
10515   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10516                    Op.getOperand(0));
10517   // XXBRD
10518   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10519   // MFVSRD
10520   int VectorIndex = 0;
10521   if (Subtarget.isLittleEndian())
10522     VectorIndex = 1;
10523   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10524                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10525   return Op;
10526 }
10527 
10528 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10529 // compared to a value that is atomically loaded (atomic loads zero-extend).
10530 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10531                                                 SelectionDAG &DAG) const {
10532   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10533          "Expecting an atomic compare-and-swap here.");
10534   SDLoc dl(Op);
10535   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10536   EVT MemVT = AtomicNode->getMemoryVT();
10537   if (MemVT.getSizeInBits() >= 32)
10538     return Op;
10539 
10540   SDValue CmpOp = Op.getOperand(2);
10541   // If this is already correctly zero-extended, leave it alone.
10542   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10543   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10544     return Op;
10545 
10546   // Clear the high bits of the compare operand.
10547   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10548   SDValue NewCmpOp =
10549     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10550                 DAG.getConstant(MaskVal, dl, MVT::i32));
10551 
10552   // Replace the existing compare operand with the properly zero-extended one.
10553   SmallVector<SDValue, 4> Ops;
10554   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10555     Ops.push_back(AtomicNode->getOperand(i));
10556   Ops[2] = NewCmpOp;
10557   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10558   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10559   auto NodeTy =
10560     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10561   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10562 }
10563 
10564 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10565                                                  SelectionDAG &DAG) const {
10566   SDLoc dl(Op);
10567   // Create a stack slot that is 16-byte aligned.
10568   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10569   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10570   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10571   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10572 
10573   // Store the input value into Value#0 of the stack slot.
10574   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10575                                MachinePointerInfo());
10576   // Load it out.
10577   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10578 }
10579 
10580 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10581                                                   SelectionDAG &DAG) const {
10582   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10583          "Should only be called for ISD::INSERT_VECTOR_ELT");
10584 
10585   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10586   // We have legal lowering for constant indices but not for variable ones.
10587   if (!C)
10588     return SDValue();
10589 
10590   EVT VT = Op.getValueType();
10591   SDLoc dl(Op);
10592   SDValue V1 = Op.getOperand(0);
10593   SDValue V2 = Op.getOperand(1);
10594   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10595   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10596     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10597     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10598     unsigned InsertAtElement = C->getZExtValue();
10599     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10600     if (Subtarget.isLittleEndian()) {
10601       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10602     }
10603     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10604                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10605   }
10606   return Op;
10607 }
10608 
10609 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10610                                            SelectionDAG &DAG) const {
10611   SDLoc dl(Op);
10612   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10613   SDValue LoadChain = LN->getChain();
10614   SDValue BasePtr = LN->getBasePtr();
10615   EVT VT = Op.getValueType();
10616 
10617   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10618     return Op;
10619 
10620   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10621   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10622   // 2 or 4 vsx registers.
10623   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10624          "Type unsupported without MMA");
10625   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10626          "Type unsupported without paired vector support");
10627   Align Alignment = LN->getAlign();
10628   SmallVector<SDValue, 4> Loads;
10629   SmallVector<SDValue, 4> LoadChains;
10630   unsigned NumVecs = VT.getSizeInBits() / 128;
10631   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10632     SDValue Load =
10633         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10634                     LN->getPointerInfo().getWithOffset(Idx * 16),
10635                     commonAlignment(Alignment, Idx * 16),
10636                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10637     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10638                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10639     Loads.push_back(Load);
10640     LoadChains.push_back(Load.getValue(1));
10641   }
10642   if (Subtarget.isLittleEndian()) {
10643     std::reverse(Loads.begin(), Loads.end());
10644     std::reverse(LoadChains.begin(), LoadChains.end());
10645   }
10646   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10647   SDValue Value =
10648       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10649                   dl, VT, Loads);
10650   SDValue RetOps[] = {Value, TF};
10651   return DAG.getMergeValues(RetOps, dl);
10652 }
10653 
10654 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10655                                             SelectionDAG &DAG) const {
10656   SDLoc dl(Op);
10657   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10658   SDValue StoreChain = SN->getChain();
10659   SDValue BasePtr = SN->getBasePtr();
10660   SDValue Value = SN->getValue();
10661   EVT StoreVT = Value.getValueType();
10662 
10663   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10664     return Op;
10665 
10666   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10667   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10668   // underlying registers individually.
10669   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10670          "Type unsupported without MMA");
10671   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10672          "Type unsupported without paired vector support");
10673   Align Alignment = SN->getAlign();
10674   SmallVector<SDValue, 4> Stores;
10675   unsigned NumVecs = 2;
10676   if (StoreVT == MVT::v512i1) {
10677     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10678     NumVecs = 4;
10679   }
10680   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10681     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10682     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10683                               DAG.getConstant(VecNum, dl, MVT::i64));
10684     SDValue Store =
10685         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10686                      SN->getPointerInfo().getWithOffset(Idx * 16),
10687                      commonAlignment(Alignment, Idx * 16),
10688                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10689     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10690                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10691     Stores.push_back(Store);
10692   }
10693   SDValue TF = DAG.getTokenFactor(dl, Stores);
10694   return TF;
10695 }
10696 
10697 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10698   SDLoc dl(Op);
10699   if (Op.getValueType() == MVT::v4i32) {
10700     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10701 
10702     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10703     // +16 as shift amt.
10704     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10705     SDValue RHSSwap =   // = vrlw RHS, 16
10706       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10707 
10708     // Shrinkify inputs to v8i16.
10709     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10710     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10711     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10712 
10713     // Low parts multiplied together, generating 32-bit results (we ignore the
10714     // top parts).
10715     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10716                                         LHS, RHS, DAG, dl, MVT::v4i32);
10717 
10718     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10719                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10720     // Shift the high parts up 16 bits.
10721     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10722                               Neg16, DAG, dl);
10723     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10724   } else if (Op.getValueType() == MVT::v16i8) {
10725     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10726     bool isLittleEndian = Subtarget.isLittleEndian();
10727 
10728     // Multiply the even 8-bit parts, producing 16-bit sums.
10729     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10730                                            LHS, RHS, DAG, dl, MVT::v8i16);
10731     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10732 
10733     // Multiply the odd 8-bit parts, producing 16-bit sums.
10734     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10735                                           LHS, RHS, DAG, dl, MVT::v8i16);
10736     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10737 
10738     // Merge the results together.  Because vmuleub and vmuloub are
10739     // instructions with a big-endian bias, we must reverse the
10740     // element numbering and reverse the meaning of "odd" and "even"
10741     // when generating little endian code.
10742     int Ops[16];
10743     for (unsigned i = 0; i != 8; ++i) {
10744       if (isLittleEndian) {
10745         Ops[i*2  ] = 2*i;
10746         Ops[i*2+1] = 2*i+16;
10747       } else {
10748         Ops[i*2  ] = 2*i+1;
10749         Ops[i*2+1] = 2*i+1+16;
10750       }
10751     }
10752     if (isLittleEndian)
10753       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10754     else
10755       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10756   } else {
10757     llvm_unreachable("Unknown mul to lower!");
10758   }
10759 }
10760 
10761 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10762 
10763   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10764 
10765   EVT VT = Op.getValueType();
10766   assert(VT.isVector() &&
10767          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10768   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10769           VT == MVT::v16i8) &&
10770          "Unexpected vector element type!");
10771   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10772          "Current subtarget doesn't support smax v2i64!");
10773 
10774   // For vector abs, it can be lowered to:
10775   // abs x
10776   // ==>
10777   // y = -x
10778   // smax(x, y)
10779 
10780   SDLoc dl(Op);
10781   SDValue X = Op.getOperand(0);
10782   SDValue Zero = DAG.getConstant(0, dl, VT);
10783   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10784 
10785   // SMAX patch https://reviews.llvm.org/D47332
10786   // hasn't landed yet, so use intrinsic first here.
10787   // TODO: Should use SMAX directly once SMAX patch landed
10788   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10789   if (VT == MVT::v2i64)
10790     BifID = Intrinsic::ppc_altivec_vmaxsd;
10791   else if (VT == MVT::v8i16)
10792     BifID = Intrinsic::ppc_altivec_vmaxsh;
10793   else if (VT == MVT::v16i8)
10794     BifID = Intrinsic::ppc_altivec_vmaxsb;
10795 
10796   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10797 }
10798 
10799 // Custom lowering for fpext vf32 to v2f64
10800 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10801 
10802   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10803          "Should only be called for ISD::FP_EXTEND");
10804 
10805   // FIXME: handle extends from half precision float vectors on P9.
10806   // We only want to custom lower an extend from v2f32 to v2f64.
10807   if (Op.getValueType() != MVT::v2f64 ||
10808       Op.getOperand(0).getValueType() != MVT::v2f32)
10809     return SDValue();
10810 
10811   SDLoc dl(Op);
10812   SDValue Op0 = Op.getOperand(0);
10813 
10814   switch (Op0.getOpcode()) {
10815   default:
10816     return SDValue();
10817   case ISD::EXTRACT_SUBVECTOR: {
10818     assert(Op0.getNumOperands() == 2 &&
10819            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10820            "Node should have 2 operands with second one being a constant!");
10821 
10822     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10823       return SDValue();
10824 
10825     // Custom lower is only done for high or low doubleword.
10826     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10827     if (Idx % 2 != 0)
10828       return SDValue();
10829 
10830     // Since input is v4f32, at this point Idx is either 0 or 2.
10831     // Shift to get the doubleword position we want.
10832     int DWord = Idx >> 1;
10833 
10834     // High and low word positions are different on little endian.
10835     if (Subtarget.isLittleEndian())
10836       DWord ^= 0x1;
10837 
10838     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10839                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10840   }
10841   case ISD::FADD:
10842   case ISD::FMUL:
10843   case ISD::FSUB: {
10844     SDValue NewLoad[2];
10845     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10846       // Ensure both input are loads.
10847       SDValue LdOp = Op0.getOperand(i);
10848       if (LdOp.getOpcode() != ISD::LOAD)
10849         return SDValue();
10850       // Generate new load node.
10851       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10852       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10853       NewLoad[i] = DAG.getMemIntrinsicNode(
10854           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10855           LD->getMemoryVT(), LD->getMemOperand());
10856     }
10857     SDValue NewOp =
10858         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10859                     NewLoad[1], Op0.getNode()->getFlags());
10860     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10861                        DAG.getConstant(0, dl, MVT::i32));
10862   }
10863   case ISD::LOAD: {
10864     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10865     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10866     SDValue NewLd = DAG.getMemIntrinsicNode(
10867         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10868         LD->getMemoryVT(), LD->getMemOperand());
10869     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10870                        DAG.getConstant(0, dl, MVT::i32));
10871   }
10872   }
10873   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10874 }
10875 
10876 /// LowerOperation - Provide custom lowering hooks for some operations.
10877 ///
10878 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10879   switch (Op.getOpcode()) {
10880   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10881   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10882   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10883   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10884   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10885   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10886   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10887   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10888   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10889 
10890   // Variable argument lowering.
10891   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10892   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10893   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10894 
10895   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10896   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10897   case ISD::GET_DYNAMIC_AREA_OFFSET:
10898     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10899 
10900   // Exception handling lowering.
10901   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10902   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10903   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10904 
10905   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10906   case ISD::STORE:              return LowerSTORE(Op, DAG);
10907   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10908   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10909   case ISD::STRICT_FP_TO_UINT:
10910   case ISD::STRICT_FP_TO_SINT:
10911   case ISD::FP_TO_UINT:
10912   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10913   case ISD::STRICT_UINT_TO_FP:
10914   case ISD::STRICT_SINT_TO_FP:
10915   case ISD::UINT_TO_FP:
10916   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10917   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10918 
10919   // Lower 64-bit shifts.
10920   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10921   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10922   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10923 
10924   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10925   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10926 
10927   // Vector-related lowering.
10928   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10929   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10930   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10931   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10932   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10933   case ISD::MUL:                return LowerMUL(Op, DAG);
10934   case ISD::ABS:                return LowerABS(Op, DAG);
10935   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10936   case ISD::ROTL:               return LowerROTL(Op, DAG);
10937 
10938   // For counter-based loop handling.
10939   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10940 
10941   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10942 
10943   // Frame & Return address.
10944   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10945   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10946 
10947   case ISD::INTRINSIC_VOID:
10948     return LowerINTRINSIC_VOID(Op, DAG);
10949   case ISD::BSWAP:
10950     return LowerBSWAP(Op, DAG);
10951   case ISD::ATOMIC_CMP_SWAP:
10952     return LowerATOMIC_CMP_SWAP(Op, DAG);
10953   }
10954 }
10955 
10956 void PPCTargetLowering::LowerOperationWrapper(SDNode *N,
10957                                               SmallVectorImpl<SDValue> &Results,
10958                                               SelectionDAG &DAG) const {
10959   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10960 
10961   if (!Res.getNode())
10962     return;
10963 
10964   // Take the return value as-is if original node has only one result.
10965   if (N->getNumValues() == 1) {
10966     Results.push_back(Res);
10967     return;
10968   }
10969 
10970   // New node should have the same number of results.
10971   assert((N->getNumValues() == Res->getNumValues()) &&
10972       "Lowering returned the wrong number of results!");
10973 
10974   for (unsigned i = 0; i < N->getNumValues(); ++i)
10975     Results.push_back(Res.getValue(i));
10976 }
10977 
10978 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10979                                            SmallVectorImpl<SDValue>&Results,
10980                                            SelectionDAG &DAG) const {
10981   SDLoc dl(N);
10982   switch (N->getOpcode()) {
10983   default:
10984     llvm_unreachable("Do not know how to custom type legalize this operation!");
10985   case ISD::READCYCLECOUNTER: {
10986     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10987     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10988 
10989     Results.push_back(
10990         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10991     Results.push_back(RTB.getValue(2));
10992     break;
10993   }
10994   case ISD::INTRINSIC_W_CHAIN: {
10995     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10996         Intrinsic::loop_decrement)
10997       break;
10998 
10999     assert(N->getValueType(0) == MVT::i1 &&
11000            "Unexpected result type for CTR decrement intrinsic");
11001     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11002                                  N->getValueType(0));
11003     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11004     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11005                                  N->getOperand(1));
11006 
11007     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11008     Results.push_back(NewInt.getValue(1));
11009     break;
11010   }
11011   case ISD::VAARG: {
11012     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11013       return;
11014 
11015     EVT VT = N->getValueType(0);
11016 
11017     if (VT == MVT::i64) {
11018       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11019 
11020       Results.push_back(NewNode);
11021       Results.push_back(NewNode.getValue(1));
11022     }
11023     return;
11024   }
11025   case ISD::STRICT_FP_TO_SINT:
11026   case ISD::STRICT_FP_TO_UINT:
11027   case ISD::FP_TO_SINT:
11028   case ISD::FP_TO_UINT:
11029     // LowerFP_TO_INT() can only handle f32 and f64.
11030     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11031         MVT::ppcf128)
11032       return;
11033     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
11034     return;
11035   case ISD::TRUNCATE: {
11036     if (!N->getValueType(0).isVector())
11037       return;
11038     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11039     if (Lowered)
11040       Results.push_back(Lowered);
11041     return;
11042   }
11043   case ISD::BITCAST:
11044     // Don't handle bitcast here.
11045     return;
11046   case ISD::FP_EXTEND:
11047     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11048     if (Lowered)
11049       Results.push_back(Lowered);
11050     return;
11051   }
11052 }
11053 
11054 //===----------------------------------------------------------------------===//
11055 //  Other Lowering Code
11056 //===----------------------------------------------------------------------===//
11057 
11058 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
11059   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11060   Function *Func = Intrinsic::getDeclaration(M, Id);
11061   return Builder.CreateCall(Func, {});
11062 }
11063 
11064 // The mappings for emitLeading/TrailingFence is taken from
11065 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11066 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
11067                                                  Instruction *Inst,
11068                                                  AtomicOrdering Ord) const {
11069   if (Ord == AtomicOrdering::SequentiallyConsistent)
11070     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11071   if (isReleaseOrStronger(Ord))
11072     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11073   return nullptr;
11074 }
11075 
11076 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11077                                                   Instruction *Inst,
11078                                                   AtomicOrdering Ord) const {
11079   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11080     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11081     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11082     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11083     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11084       return Builder.CreateCall(
11085           Intrinsic::getDeclaration(
11086               Builder.GetInsertBlock()->getParent()->getParent(),
11087               Intrinsic::ppc_cfence, {Inst->getType()}),
11088           {Inst});
11089     // FIXME: Can use isync for rmw operation.
11090     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11091   }
11092   return nullptr;
11093 }
11094 
11095 MachineBasicBlock *
11096 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11097                                     unsigned AtomicSize,
11098                                     unsigned BinOpcode,
11099                                     unsigned CmpOpcode,
11100                                     unsigned CmpPred) const {
11101   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11102   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11103 
11104   auto LoadMnemonic = PPC::LDARX;
11105   auto StoreMnemonic = PPC::STDCX;
11106   switch (AtomicSize) {
11107   default:
11108     llvm_unreachable("Unexpected size of atomic entity");
11109   case 1:
11110     LoadMnemonic = PPC::LBARX;
11111     StoreMnemonic = PPC::STBCX;
11112     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11113     break;
11114   case 2:
11115     LoadMnemonic = PPC::LHARX;
11116     StoreMnemonic = PPC::STHCX;
11117     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11118     break;
11119   case 4:
11120     LoadMnemonic = PPC::LWARX;
11121     StoreMnemonic = PPC::STWCX;
11122     break;
11123   case 8:
11124     LoadMnemonic = PPC::LDARX;
11125     StoreMnemonic = PPC::STDCX;
11126     break;
11127   }
11128 
11129   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11130   MachineFunction *F = BB->getParent();
11131   MachineFunction::iterator It = ++BB->getIterator();
11132 
11133   Register dest = MI.getOperand(0).getReg();
11134   Register ptrA = MI.getOperand(1).getReg();
11135   Register ptrB = MI.getOperand(2).getReg();
11136   Register incr = MI.getOperand(3).getReg();
11137   DebugLoc dl = MI.getDebugLoc();
11138 
11139   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11140   MachineBasicBlock *loop2MBB =
11141     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11142   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11143   F->insert(It, loopMBB);
11144   if (CmpOpcode)
11145     F->insert(It, loop2MBB);
11146   F->insert(It, exitMBB);
11147   exitMBB->splice(exitMBB->begin(), BB,
11148                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11149   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11150 
11151   MachineRegisterInfo &RegInfo = F->getRegInfo();
11152   Register TmpReg = (!BinOpcode) ? incr :
11153     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11154                                            : &PPC::GPRCRegClass);
11155 
11156   //  thisMBB:
11157   //   ...
11158   //   fallthrough --> loopMBB
11159   BB->addSuccessor(loopMBB);
11160 
11161   //  loopMBB:
11162   //   l[wd]arx dest, ptr
11163   //   add r0, dest, incr
11164   //   st[wd]cx. r0, ptr
11165   //   bne- loopMBB
11166   //   fallthrough --> exitMBB
11167 
11168   // For max/min...
11169   //  loopMBB:
11170   //   l[wd]arx dest, ptr
11171   //   cmpl?[wd] incr, dest
11172   //   bgt exitMBB
11173   //  loop2MBB:
11174   //   st[wd]cx. dest, ptr
11175   //   bne- loopMBB
11176   //   fallthrough --> exitMBB
11177 
11178   BB = loopMBB;
11179   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11180     .addReg(ptrA).addReg(ptrB);
11181   if (BinOpcode)
11182     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11183   if (CmpOpcode) {
11184     // Signed comparisons of byte or halfword values must be sign-extended.
11185     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11186       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11187       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11188               ExtReg).addReg(dest);
11189       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11190         .addReg(incr).addReg(ExtReg);
11191     } else
11192       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11193         .addReg(incr).addReg(dest);
11194 
11195     BuildMI(BB, dl, TII->get(PPC::BCC))
11196       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11197     BB->addSuccessor(loop2MBB);
11198     BB->addSuccessor(exitMBB);
11199     BB = loop2MBB;
11200   }
11201   BuildMI(BB, dl, TII->get(StoreMnemonic))
11202     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11203   BuildMI(BB, dl, TII->get(PPC::BCC))
11204     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11205   BB->addSuccessor(loopMBB);
11206   BB->addSuccessor(exitMBB);
11207 
11208   //  exitMBB:
11209   //   ...
11210   BB = exitMBB;
11211   return BB;
11212 }
11213 
11214 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11215     MachineInstr &MI, MachineBasicBlock *BB,
11216     bool is8bit, // operation
11217     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11218   // If we support part-word atomic mnemonics, just use them
11219   if (Subtarget.hasPartwordAtomics())
11220     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11221                             CmpPred);
11222 
11223   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11224   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11225   // In 64 bit mode we have to use 64 bits for addresses, even though the
11226   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11227   // registers without caring whether they're 32 or 64, but here we're
11228   // doing actual arithmetic on the addresses.
11229   bool is64bit = Subtarget.isPPC64();
11230   bool isLittleEndian = Subtarget.isLittleEndian();
11231   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11232 
11233   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11234   MachineFunction *F = BB->getParent();
11235   MachineFunction::iterator It = ++BB->getIterator();
11236 
11237   Register dest = MI.getOperand(0).getReg();
11238   Register ptrA = MI.getOperand(1).getReg();
11239   Register ptrB = MI.getOperand(2).getReg();
11240   Register incr = MI.getOperand(3).getReg();
11241   DebugLoc dl = MI.getDebugLoc();
11242 
11243   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11244   MachineBasicBlock *loop2MBB =
11245       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11246   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11247   F->insert(It, loopMBB);
11248   if (CmpOpcode)
11249     F->insert(It, loop2MBB);
11250   F->insert(It, exitMBB);
11251   exitMBB->splice(exitMBB->begin(), BB,
11252                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11253   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11254 
11255   MachineRegisterInfo &RegInfo = F->getRegInfo();
11256   const TargetRegisterClass *RC =
11257       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11258   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11259 
11260   Register PtrReg = RegInfo.createVirtualRegister(RC);
11261   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11262   Register ShiftReg =
11263       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11264   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11265   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11266   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11267   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11268   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11269   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11270   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11271   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11272   Register Ptr1Reg;
11273   Register TmpReg =
11274       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11275 
11276   //  thisMBB:
11277   //   ...
11278   //   fallthrough --> loopMBB
11279   BB->addSuccessor(loopMBB);
11280 
11281   // The 4-byte load must be aligned, while a char or short may be
11282   // anywhere in the word.  Hence all this nasty bookkeeping code.
11283   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11284   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11285   //   xori shift, shift1, 24 [16]
11286   //   rlwinm ptr, ptr1, 0, 0, 29
11287   //   slw incr2, incr, shift
11288   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11289   //   slw mask, mask2, shift
11290   //  loopMBB:
11291   //   lwarx tmpDest, ptr
11292   //   add tmp, tmpDest, incr2
11293   //   andc tmp2, tmpDest, mask
11294   //   and tmp3, tmp, mask
11295   //   or tmp4, tmp3, tmp2
11296   //   stwcx. tmp4, ptr
11297   //   bne- loopMBB
11298   //   fallthrough --> exitMBB
11299   //   srw dest, tmpDest, shift
11300   if (ptrA != ZeroReg) {
11301     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11302     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11303         .addReg(ptrA)
11304         .addReg(ptrB);
11305   } else {
11306     Ptr1Reg = ptrB;
11307   }
11308   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11309   // mode.
11310   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11311       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11312       .addImm(3)
11313       .addImm(27)
11314       .addImm(is8bit ? 28 : 27);
11315   if (!isLittleEndian)
11316     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11317         .addReg(Shift1Reg)
11318         .addImm(is8bit ? 24 : 16);
11319   if (is64bit)
11320     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11321         .addReg(Ptr1Reg)
11322         .addImm(0)
11323         .addImm(61);
11324   else
11325     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11326         .addReg(Ptr1Reg)
11327         .addImm(0)
11328         .addImm(0)
11329         .addImm(29);
11330   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11331   if (is8bit)
11332     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11333   else {
11334     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11335     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11336         .addReg(Mask3Reg)
11337         .addImm(65535);
11338   }
11339   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11340       .addReg(Mask2Reg)
11341       .addReg(ShiftReg);
11342 
11343   BB = loopMBB;
11344   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11345       .addReg(ZeroReg)
11346       .addReg(PtrReg);
11347   if (BinOpcode)
11348     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11349         .addReg(Incr2Reg)
11350         .addReg(TmpDestReg);
11351   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11352       .addReg(TmpDestReg)
11353       .addReg(MaskReg);
11354   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11355   if (CmpOpcode) {
11356     // For unsigned comparisons, we can directly compare the shifted values.
11357     // For signed comparisons we shift and sign extend.
11358     Register SReg = RegInfo.createVirtualRegister(GPRC);
11359     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11360         .addReg(TmpDestReg)
11361         .addReg(MaskReg);
11362     unsigned ValueReg = SReg;
11363     unsigned CmpReg = Incr2Reg;
11364     if (CmpOpcode == PPC::CMPW) {
11365       ValueReg = RegInfo.createVirtualRegister(GPRC);
11366       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11367           .addReg(SReg)
11368           .addReg(ShiftReg);
11369       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11370       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11371           .addReg(ValueReg);
11372       ValueReg = ValueSReg;
11373       CmpReg = incr;
11374     }
11375     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11376         .addReg(CmpReg)
11377         .addReg(ValueReg);
11378     BuildMI(BB, dl, TII->get(PPC::BCC))
11379         .addImm(CmpPred)
11380         .addReg(PPC::CR0)
11381         .addMBB(exitMBB);
11382     BB->addSuccessor(loop2MBB);
11383     BB->addSuccessor(exitMBB);
11384     BB = loop2MBB;
11385   }
11386   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11387   BuildMI(BB, dl, TII->get(PPC::STWCX))
11388       .addReg(Tmp4Reg)
11389       .addReg(ZeroReg)
11390       .addReg(PtrReg);
11391   BuildMI(BB, dl, TII->get(PPC::BCC))
11392       .addImm(PPC::PRED_NE)
11393       .addReg(PPC::CR0)
11394       .addMBB(loopMBB);
11395   BB->addSuccessor(loopMBB);
11396   BB->addSuccessor(exitMBB);
11397 
11398   //  exitMBB:
11399   //   ...
11400   BB = exitMBB;
11401   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11402       .addReg(TmpDestReg)
11403       .addReg(ShiftReg);
11404   return BB;
11405 }
11406 
11407 llvm::MachineBasicBlock *
11408 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11409                                     MachineBasicBlock *MBB) const {
11410   DebugLoc DL = MI.getDebugLoc();
11411   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11412   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11413 
11414   MachineFunction *MF = MBB->getParent();
11415   MachineRegisterInfo &MRI = MF->getRegInfo();
11416 
11417   const BasicBlock *BB = MBB->getBasicBlock();
11418   MachineFunction::iterator I = ++MBB->getIterator();
11419 
11420   Register DstReg = MI.getOperand(0).getReg();
11421   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11422   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11423   Register mainDstReg = MRI.createVirtualRegister(RC);
11424   Register restoreDstReg = MRI.createVirtualRegister(RC);
11425 
11426   MVT PVT = getPointerTy(MF->getDataLayout());
11427   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11428          "Invalid Pointer Size!");
11429   // For v = setjmp(buf), we generate
11430   //
11431   // thisMBB:
11432   //  SjLjSetup mainMBB
11433   //  bl mainMBB
11434   //  v_restore = 1
11435   //  b sinkMBB
11436   //
11437   // mainMBB:
11438   //  buf[LabelOffset] = LR
11439   //  v_main = 0
11440   //
11441   // sinkMBB:
11442   //  v = phi(main, restore)
11443   //
11444 
11445   MachineBasicBlock *thisMBB = MBB;
11446   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11447   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11448   MF->insert(I, mainMBB);
11449   MF->insert(I, sinkMBB);
11450 
11451   MachineInstrBuilder MIB;
11452 
11453   // Transfer the remainder of BB and its successor edges to sinkMBB.
11454   sinkMBB->splice(sinkMBB->begin(), MBB,
11455                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11456   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11457 
11458   // Note that the structure of the jmp_buf used here is not compatible
11459   // with that used by libc, and is not designed to be. Specifically, it
11460   // stores only those 'reserved' registers that LLVM does not otherwise
11461   // understand how to spill. Also, by convention, by the time this
11462   // intrinsic is called, Clang has already stored the frame address in the
11463   // first slot of the buffer and stack address in the third. Following the
11464   // X86 target code, we'll store the jump address in the second slot. We also
11465   // need to save the TOC pointer (R2) to handle jumps between shared
11466   // libraries, and that will be stored in the fourth slot. The thread
11467   // identifier (R13) is not affected.
11468 
11469   // thisMBB:
11470   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11471   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11472   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11473 
11474   // Prepare IP either in reg.
11475   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11476   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11477   Register BufReg = MI.getOperand(1).getReg();
11478 
11479   if (Subtarget.is64BitELFABI()) {
11480     setUsesTOCBasePtr(*MBB->getParent());
11481     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11482               .addReg(PPC::X2)
11483               .addImm(TOCOffset)
11484               .addReg(BufReg)
11485               .cloneMemRefs(MI);
11486   }
11487 
11488   // Naked functions never have a base pointer, and so we use r1. For all
11489   // other functions, this decision must be delayed until during PEI.
11490   unsigned BaseReg;
11491   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11492     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11493   else
11494     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11495 
11496   MIB = BuildMI(*thisMBB, MI, DL,
11497                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11498             .addReg(BaseReg)
11499             .addImm(BPOffset)
11500             .addReg(BufReg)
11501             .cloneMemRefs(MI);
11502 
11503   // Setup
11504   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11505   MIB.addRegMask(TRI->getNoPreservedMask());
11506 
11507   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11508 
11509   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11510           .addMBB(mainMBB);
11511   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11512 
11513   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11514   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11515 
11516   // mainMBB:
11517   //  mainDstReg = 0
11518   MIB =
11519       BuildMI(mainMBB, DL,
11520               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11521 
11522   // Store IP
11523   if (Subtarget.isPPC64()) {
11524     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11525             .addReg(LabelReg)
11526             .addImm(LabelOffset)
11527             .addReg(BufReg);
11528   } else {
11529     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11530             .addReg(LabelReg)
11531             .addImm(LabelOffset)
11532             .addReg(BufReg);
11533   }
11534   MIB.cloneMemRefs(MI);
11535 
11536   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11537   mainMBB->addSuccessor(sinkMBB);
11538 
11539   // sinkMBB:
11540   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11541           TII->get(PPC::PHI), DstReg)
11542     .addReg(mainDstReg).addMBB(mainMBB)
11543     .addReg(restoreDstReg).addMBB(thisMBB);
11544 
11545   MI.eraseFromParent();
11546   return sinkMBB;
11547 }
11548 
11549 MachineBasicBlock *
11550 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11551                                      MachineBasicBlock *MBB) const {
11552   DebugLoc DL = MI.getDebugLoc();
11553   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11554 
11555   MachineFunction *MF = MBB->getParent();
11556   MachineRegisterInfo &MRI = MF->getRegInfo();
11557 
11558   MVT PVT = getPointerTy(MF->getDataLayout());
11559   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11560          "Invalid Pointer Size!");
11561 
11562   const TargetRegisterClass *RC =
11563     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11564   Register Tmp = MRI.createVirtualRegister(RC);
11565   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11566   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11567   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11568   unsigned BP =
11569       (PVT == MVT::i64)
11570           ? PPC::X30
11571           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11572                                                               : PPC::R30);
11573 
11574   MachineInstrBuilder MIB;
11575 
11576   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11577   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11578   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11579   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11580 
11581   Register BufReg = MI.getOperand(0).getReg();
11582 
11583   // Reload FP (the jumped-to function may not have had a
11584   // frame pointer, and if so, then its r31 will be restored
11585   // as necessary).
11586   if (PVT == MVT::i64) {
11587     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11588             .addImm(0)
11589             .addReg(BufReg);
11590   } else {
11591     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11592             .addImm(0)
11593             .addReg(BufReg);
11594   }
11595   MIB.cloneMemRefs(MI);
11596 
11597   // Reload IP
11598   if (PVT == MVT::i64) {
11599     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11600             .addImm(LabelOffset)
11601             .addReg(BufReg);
11602   } else {
11603     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11604             .addImm(LabelOffset)
11605             .addReg(BufReg);
11606   }
11607   MIB.cloneMemRefs(MI);
11608 
11609   // Reload SP
11610   if (PVT == MVT::i64) {
11611     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11612             .addImm(SPOffset)
11613             .addReg(BufReg);
11614   } else {
11615     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11616             .addImm(SPOffset)
11617             .addReg(BufReg);
11618   }
11619   MIB.cloneMemRefs(MI);
11620 
11621   // Reload BP
11622   if (PVT == MVT::i64) {
11623     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11624             .addImm(BPOffset)
11625             .addReg(BufReg);
11626   } else {
11627     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11628             .addImm(BPOffset)
11629             .addReg(BufReg);
11630   }
11631   MIB.cloneMemRefs(MI);
11632 
11633   // Reload TOC
11634   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11635     setUsesTOCBasePtr(*MBB->getParent());
11636     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11637               .addImm(TOCOffset)
11638               .addReg(BufReg)
11639               .cloneMemRefs(MI);
11640   }
11641 
11642   // Jump
11643   BuildMI(*MBB, MI, DL,
11644           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11645   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11646 
11647   MI.eraseFromParent();
11648   return MBB;
11649 }
11650 
11651 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11652   // If the function specifically requests inline stack probes, emit them.
11653   if (MF.getFunction().hasFnAttribute("probe-stack"))
11654     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11655            "inline-asm";
11656   return false;
11657 }
11658 
11659 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11660   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11661   unsigned StackAlign = TFI->getStackAlignment();
11662   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11663          "Unexpected stack alignment");
11664   // The default stack probe size is 4096 if the function has no
11665   // stack-probe-size attribute.
11666   unsigned StackProbeSize = 4096;
11667   const Function &Fn = MF.getFunction();
11668   if (Fn.hasFnAttribute("stack-probe-size"))
11669     Fn.getFnAttribute("stack-probe-size")
11670         .getValueAsString()
11671         .getAsInteger(0, StackProbeSize);
11672   // Round down to the stack alignment.
11673   StackProbeSize &= ~(StackAlign - 1);
11674   return StackProbeSize ? StackProbeSize : StackAlign;
11675 }
11676 
11677 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11678 // into three phases. In the first phase, it uses pseudo instruction
11679 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11680 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11681 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11682 // MaxCallFrameSize so that it can calculate correct data area pointer.
11683 MachineBasicBlock *
11684 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11685                                     MachineBasicBlock *MBB) const {
11686   const bool isPPC64 = Subtarget.isPPC64();
11687   MachineFunction *MF = MBB->getParent();
11688   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11689   DebugLoc DL = MI.getDebugLoc();
11690   const unsigned ProbeSize = getStackProbeSize(*MF);
11691   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11692   MachineRegisterInfo &MRI = MF->getRegInfo();
11693   // The CFG of probing stack looks as
11694   //         +-----+
11695   //         | MBB |
11696   //         +--+--+
11697   //            |
11698   //       +----v----+
11699   //  +--->+ TestMBB +---+
11700   //  |    +----+----+   |
11701   //  |         |        |
11702   //  |   +-----v----+   |
11703   //  +---+ BlockMBB |   |
11704   //      +----------+   |
11705   //                     |
11706   //       +---------+   |
11707   //       | TailMBB +<--+
11708   //       +---------+
11709   // In MBB, calculate previous frame pointer and final stack pointer.
11710   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11711   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11712   // TailMBB is spliced via \p MI.
11713   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11714   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11715   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11716 
11717   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11718   MF->insert(MBBIter, TestMBB);
11719   MF->insert(MBBIter, BlockMBB);
11720   MF->insert(MBBIter, TailMBB);
11721 
11722   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11723   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11724 
11725   Register DstReg = MI.getOperand(0).getReg();
11726   Register NegSizeReg = MI.getOperand(1).getReg();
11727   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11728   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11729   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11730   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11731 
11732   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11733   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11734   // NegSize.
11735   unsigned ProbeOpc;
11736   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11737     ProbeOpc =
11738         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11739   else
11740     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11741     // and NegSizeReg will be allocated in the same phyreg to avoid
11742     // redundant copy when NegSizeReg has only one use which is current MI and
11743     // will be replaced by PREPARE_PROBED_ALLOCA then.
11744     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11745                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11746   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11747       .addDef(ActualNegSizeReg)
11748       .addReg(NegSizeReg)
11749       .add(MI.getOperand(2))
11750       .add(MI.getOperand(3));
11751 
11752   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11753   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11754           FinalStackPtr)
11755       .addReg(SPReg)
11756       .addReg(ActualNegSizeReg);
11757 
11758   // Materialize a scratch register for update.
11759   int64_t NegProbeSize = -(int64_t)ProbeSize;
11760   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11761   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11762   if (!isInt<16>(NegProbeSize)) {
11763     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11764     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11765         .addImm(NegProbeSize >> 16);
11766     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11767             ScratchReg)
11768         .addReg(TempReg)
11769         .addImm(NegProbeSize & 0xFFFF);
11770   } else
11771     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11772         .addImm(NegProbeSize);
11773 
11774   {
11775     // Probing leading residual part.
11776     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11777     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11778         .addReg(ActualNegSizeReg)
11779         .addReg(ScratchReg);
11780     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11781     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11782         .addReg(Div)
11783         .addReg(ScratchReg);
11784     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11785     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11786         .addReg(Mul)
11787         .addReg(ActualNegSizeReg);
11788     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11789         .addReg(FramePointer)
11790         .addReg(SPReg)
11791         .addReg(NegMod);
11792   }
11793 
11794   {
11795     // Remaining part should be multiple of ProbeSize.
11796     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11797     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11798         .addReg(SPReg)
11799         .addReg(FinalStackPtr);
11800     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11801         .addImm(PPC::PRED_EQ)
11802         .addReg(CmpResult)
11803         .addMBB(TailMBB);
11804     TestMBB->addSuccessor(BlockMBB);
11805     TestMBB->addSuccessor(TailMBB);
11806   }
11807 
11808   {
11809     // Touch the block.
11810     // |P...|P...|P...
11811     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11812         .addReg(FramePointer)
11813         .addReg(SPReg)
11814         .addReg(ScratchReg);
11815     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11816     BlockMBB->addSuccessor(TestMBB);
11817   }
11818 
11819   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11820   // DYNAREAOFFSET pseudo instruction to get the future result.
11821   Register MaxCallFrameSizeReg =
11822       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11823   BuildMI(TailMBB, DL,
11824           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11825           MaxCallFrameSizeReg)
11826       .add(MI.getOperand(2))
11827       .add(MI.getOperand(3));
11828   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11829       .addReg(SPReg)
11830       .addReg(MaxCallFrameSizeReg);
11831 
11832   // Splice instructions after MI to TailMBB.
11833   TailMBB->splice(TailMBB->end(), MBB,
11834                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11835   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11836   MBB->addSuccessor(TestMBB);
11837 
11838   // Delete the pseudo instruction.
11839   MI.eraseFromParent();
11840 
11841   ++NumDynamicAllocaProbed;
11842   return TailMBB;
11843 }
11844 
11845 MachineBasicBlock *
11846 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11847                                                MachineBasicBlock *BB) const {
11848   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11849       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11850     if (Subtarget.is64BitELFABI() &&
11851         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11852         !Subtarget.isUsingPCRelativeCalls()) {
11853       // Call lowering should have added an r2 operand to indicate a dependence
11854       // on the TOC base pointer value. It can't however, because there is no
11855       // way to mark the dependence as implicit there, and so the stackmap code
11856       // will confuse it with a regular operand. Instead, add the dependence
11857       // here.
11858       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11859     }
11860 
11861     return emitPatchPoint(MI, BB);
11862   }
11863 
11864   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11865       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11866     return emitEHSjLjSetJmp(MI, BB);
11867   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11868              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11869     return emitEHSjLjLongJmp(MI, BB);
11870   }
11871 
11872   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11873 
11874   // To "insert" these instructions we actually have to insert their
11875   // control-flow patterns.
11876   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11877   MachineFunction::iterator It = ++BB->getIterator();
11878 
11879   MachineFunction *F = BB->getParent();
11880 
11881   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11882       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11883       MI.getOpcode() == PPC::SELECT_I8) {
11884     SmallVector<MachineOperand, 2> Cond;
11885     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11886         MI.getOpcode() == PPC::SELECT_CC_I8)
11887       Cond.push_back(MI.getOperand(4));
11888     else
11889       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11890     Cond.push_back(MI.getOperand(1));
11891 
11892     DebugLoc dl = MI.getDebugLoc();
11893     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11894                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11895   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11896              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11897              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11898              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11899              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11900              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11901              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11902              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11903              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11904              MI.getOpcode() == PPC::SELECT_F4 ||
11905              MI.getOpcode() == PPC::SELECT_F8 ||
11906              MI.getOpcode() == PPC::SELECT_F16 ||
11907              MI.getOpcode() == PPC::SELECT_SPE ||
11908              MI.getOpcode() == PPC::SELECT_SPE4 ||
11909              MI.getOpcode() == PPC::SELECT_VRRC ||
11910              MI.getOpcode() == PPC::SELECT_VSFRC ||
11911              MI.getOpcode() == PPC::SELECT_VSSRC ||
11912              MI.getOpcode() == PPC::SELECT_VSRC) {
11913     // The incoming instruction knows the destination vreg to set, the
11914     // condition code register to branch on, the true/false values to
11915     // select between, and a branch opcode to use.
11916 
11917     //  thisMBB:
11918     //  ...
11919     //   TrueVal = ...
11920     //   cmpTY ccX, r1, r2
11921     //   bCC copy1MBB
11922     //   fallthrough --> copy0MBB
11923     MachineBasicBlock *thisMBB = BB;
11924     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11925     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11926     DebugLoc dl = MI.getDebugLoc();
11927     F->insert(It, copy0MBB);
11928     F->insert(It, sinkMBB);
11929 
11930     // Transfer the remainder of BB and its successor edges to sinkMBB.
11931     sinkMBB->splice(sinkMBB->begin(), BB,
11932                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11933     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11934 
11935     // Next, add the true and fallthrough blocks as its successors.
11936     BB->addSuccessor(copy0MBB);
11937     BB->addSuccessor(sinkMBB);
11938 
11939     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11940         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11941         MI.getOpcode() == PPC::SELECT_F16 ||
11942         MI.getOpcode() == PPC::SELECT_SPE4 ||
11943         MI.getOpcode() == PPC::SELECT_SPE ||
11944         MI.getOpcode() == PPC::SELECT_VRRC ||
11945         MI.getOpcode() == PPC::SELECT_VSFRC ||
11946         MI.getOpcode() == PPC::SELECT_VSSRC ||
11947         MI.getOpcode() == PPC::SELECT_VSRC) {
11948       BuildMI(BB, dl, TII->get(PPC::BC))
11949           .addReg(MI.getOperand(1).getReg())
11950           .addMBB(sinkMBB);
11951     } else {
11952       unsigned SelectPred = MI.getOperand(4).getImm();
11953       BuildMI(BB, dl, TII->get(PPC::BCC))
11954           .addImm(SelectPred)
11955           .addReg(MI.getOperand(1).getReg())
11956           .addMBB(sinkMBB);
11957     }
11958 
11959     //  copy0MBB:
11960     //   %FalseValue = ...
11961     //   # fallthrough to sinkMBB
11962     BB = copy0MBB;
11963 
11964     // Update machine-CFG edges
11965     BB->addSuccessor(sinkMBB);
11966 
11967     //  sinkMBB:
11968     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11969     //  ...
11970     BB = sinkMBB;
11971     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11972         .addReg(MI.getOperand(3).getReg())
11973         .addMBB(copy0MBB)
11974         .addReg(MI.getOperand(2).getReg())
11975         .addMBB(thisMBB);
11976   } else if (MI.getOpcode() == PPC::ReadTB) {
11977     // To read the 64-bit time-base register on a 32-bit target, we read the
11978     // two halves. Should the counter have wrapped while it was being read, we
11979     // need to try again.
11980     // ...
11981     // readLoop:
11982     // mfspr Rx,TBU # load from TBU
11983     // mfspr Ry,TB  # load from TB
11984     // mfspr Rz,TBU # load from TBU
11985     // cmpw crX,Rx,Rz # check if 'old'='new'
11986     // bne readLoop   # branch if they're not equal
11987     // ...
11988 
11989     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11990     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11991     DebugLoc dl = MI.getDebugLoc();
11992     F->insert(It, readMBB);
11993     F->insert(It, sinkMBB);
11994 
11995     // Transfer the remainder of BB and its successor edges to sinkMBB.
11996     sinkMBB->splice(sinkMBB->begin(), BB,
11997                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11998     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11999 
12000     BB->addSuccessor(readMBB);
12001     BB = readMBB;
12002 
12003     MachineRegisterInfo &RegInfo = F->getRegInfo();
12004     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12005     Register LoReg = MI.getOperand(0).getReg();
12006     Register HiReg = MI.getOperand(1).getReg();
12007 
12008     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12009     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12010     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12011 
12012     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12013 
12014     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12015         .addReg(HiReg)
12016         .addReg(ReadAgainReg);
12017     BuildMI(BB, dl, TII->get(PPC::BCC))
12018         .addImm(PPC::PRED_NE)
12019         .addReg(CmpReg)
12020         .addMBB(readMBB);
12021 
12022     BB->addSuccessor(readMBB);
12023     BB->addSuccessor(sinkMBB);
12024   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12025     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12026   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12027     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12028   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12029     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12030   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12031     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12032 
12033   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12034     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12035   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12036     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12037   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12038     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12039   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12040     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12041 
12042   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12043     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12044   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12045     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12046   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12047     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12048   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12049     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12050 
12051   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12052     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12053   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12054     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12055   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12056     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12057   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12058     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12059 
12060   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12061     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12062   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12063     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12064   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12065     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12066   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12067     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12068 
12069   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12070     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12071   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12072     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12073   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12074     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12075   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12076     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12077 
12078   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12079     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12080   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12081     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12082   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12083     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12084   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12085     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12086 
12087   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12088     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12089   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12090     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12091   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12092     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12093   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12094     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12095 
12096   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12097     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12098   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12099     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12100   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12101     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12102   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12103     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12104 
12105   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12106     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12107   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12108     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12109   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12110     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12111   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12112     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12113 
12114   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12115     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12116   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12117     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12118   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12119     BB = EmitAtomicBinary(MI, BB, 4, 0);
12120   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12121     BB = EmitAtomicBinary(MI, BB, 8, 0);
12122   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12123            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12124            (Subtarget.hasPartwordAtomics() &&
12125             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12126            (Subtarget.hasPartwordAtomics() &&
12127             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12128     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12129 
12130     auto LoadMnemonic = PPC::LDARX;
12131     auto StoreMnemonic = PPC::STDCX;
12132     switch (MI.getOpcode()) {
12133     default:
12134       llvm_unreachable("Compare and swap of unknown size");
12135     case PPC::ATOMIC_CMP_SWAP_I8:
12136       LoadMnemonic = PPC::LBARX;
12137       StoreMnemonic = PPC::STBCX;
12138       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12139       break;
12140     case PPC::ATOMIC_CMP_SWAP_I16:
12141       LoadMnemonic = PPC::LHARX;
12142       StoreMnemonic = PPC::STHCX;
12143       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12144       break;
12145     case PPC::ATOMIC_CMP_SWAP_I32:
12146       LoadMnemonic = PPC::LWARX;
12147       StoreMnemonic = PPC::STWCX;
12148       break;
12149     case PPC::ATOMIC_CMP_SWAP_I64:
12150       LoadMnemonic = PPC::LDARX;
12151       StoreMnemonic = PPC::STDCX;
12152       break;
12153     }
12154     Register dest = MI.getOperand(0).getReg();
12155     Register ptrA = MI.getOperand(1).getReg();
12156     Register ptrB = MI.getOperand(2).getReg();
12157     Register oldval = MI.getOperand(3).getReg();
12158     Register newval = MI.getOperand(4).getReg();
12159     DebugLoc dl = MI.getDebugLoc();
12160 
12161     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12162     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12163     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12164     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12165     F->insert(It, loop1MBB);
12166     F->insert(It, loop2MBB);
12167     F->insert(It, midMBB);
12168     F->insert(It, exitMBB);
12169     exitMBB->splice(exitMBB->begin(), BB,
12170                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12171     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12172 
12173     //  thisMBB:
12174     //   ...
12175     //   fallthrough --> loopMBB
12176     BB->addSuccessor(loop1MBB);
12177 
12178     // loop1MBB:
12179     //   l[bhwd]arx dest, ptr
12180     //   cmp[wd] dest, oldval
12181     //   bne- midMBB
12182     // loop2MBB:
12183     //   st[bhwd]cx. newval, ptr
12184     //   bne- loopMBB
12185     //   b exitBB
12186     // midMBB:
12187     //   st[bhwd]cx. dest, ptr
12188     // exitBB:
12189     BB = loop1MBB;
12190     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12191     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12192         .addReg(oldval)
12193         .addReg(dest);
12194     BuildMI(BB, dl, TII->get(PPC::BCC))
12195         .addImm(PPC::PRED_NE)
12196         .addReg(PPC::CR0)
12197         .addMBB(midMBB);
12198     BB->addSuccessor(loop2MBB);
12199     BB->addSuccessor(midMBB);
12200 
12201     BB = loop2MBB;
12202     BuildMI(BB, dl, TII->get(StoreMnemonic))
12203         .addReg(newval)
12204         .addReg(ptrA)
12205         .addReg(ptrB);
12206     BuildMI(BB, dl, TII->get(PPC::BCC))
12207         .addImm(PPC::PRED_NE)
12208         .addReg(PPC::CR0)
12209         .addMBB(loop1MBB);
12210     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12211     BB->addSuccessor(loop1MBB);
12212     BB->addSuccessor(exitMBB);
12213 
12214     BB = midMBB;
12215     BuildMI(BB, dl, TII->get(StoreMnemonic))
12216         .addReg(dest)
12217         .addReg(ptrA)
12218         .addReg(ptrB);
12219     BB->addSuccessor(exitMBB);
12220 
12221     //  exitMBB:
12222     //   ...
12223     BB = exitMBB;
12224   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12225              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12226     // We must use 64-bit registers for addresses when targeting 64-bit,
12227     // since we're actually doing arithmetic on them.  Other registers
12228     // can be 32-bit.
12229     bool is64bit = Subtarget.isPPC64();
12230     bool isLittleEndian = Subtarget.isLittleEndian();
12231     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12232 
12233     Register dest = MI.getOperand(0).getReg();
12234     Register ptrA = MI.getOperand(1).getReg();
12235     Register ptrB = MI.getOperand(2).getReg();
12236     Register oldval = MI.getOperand(3).getReg();
12237     Register newval = MI.getOperand(4).getReg();
12238     DebugLoc dl = MI.getDebugLoc();
12239 
12240     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12241     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12242     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12243     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12244     F->insert(It, loop1MBB);
12245     F->insert(It, loop2MBB);
12246     F->insert(It, midMBB);
12247     F->insert(It, exitMBB);
12248     exitMBB->splice(exitMBB->begin(), BB,
12249                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12250     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12251 
12252     MachineRegisterInfo &RegInfo = F->getRegInfo();
12253     const TargetRegisterClass *RC =
12254         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12255     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12256 
12257     Register PtrReg = RegInfo.createVirtualRegister(RC);
12258     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12259     Register ShiftReg =
12260         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12261     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12262     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12263     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12264     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12265     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12266     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12267     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12268     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12269     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12270     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12271     Register Ptr1Reg;
12272     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12273     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12274     //  thisMBB:
12275     //   ...
12276     //   fallthrough --> loopMBB
12277     BB->addSuccessor(loop1MBB);
12278 
12279     // The 4-byte load must be aligned, while a char or short may be
12280     // anywhere in the word.  Hence all this nasty bookkeeping code.
12281     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12282     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12283     //   xori shift, shift1, 24 [16]
12284     //   rlwinm ptr, ptr1, 0, 0, 29
12285     //   slw newval2, newval, shift
12286     //   slw oldval2, oldval,shift
12287     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12288     //   slw mask, mask2, shift
12289     //   and newval3, newval2, mask
12290     //   and oldval3, oldval2, mask
12291     // loop1MBB:
12292     //   lwarx tmpDest, ptr
12293     //   and tmp, tmpDest, mask
12294     //   cmpw tmp, oldval3
12295     //   bne- midMBB
12296     // loop2MBB:
12297     //   andc tmp2, tmpDest, mask
12298     //   or tmp4, tmp2, newval3
12299     //   stwcx. tmp4, ptr
12300     //   bne- loop1MBB
12301     //   b exitBB
12302     // midMBB:
12303     //   stwcx. tmpDest, ptr
12304     // exitBB:
12305     //   srw dest, tmpDest, shift
12306     if (ptrA != ZeroReg) {
12307       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12308       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12309           .addReg(ptrA)
12310           .addReg(ptrB);
12311     } else {
12312       Ptr1Reg = ptrB;
12313     }
12314 
12315     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12316     // mode.
12317     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12318         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12319         .addImm(3)
12320         .addImm(27)
12321         .addImm(is8bit ? 28 : 27);
12322     if (!isLittleEndian)
12323       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12324           .addReg(Shift1Reg)
12325           .addImm(is8bit ? 24 : 16);
12326     if (is64bit)
12327       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12328           .addReg(Ptr1Reg)
12329           .addImm(0)
12330           .addImm(61);
12331     else
12332       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12333           .addReg(Ptr1Reg)
12334           .addImm(0)
12335           .addImm(0)
12336           .addImm(29);
12337     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12338         .addReg(newval)
12339         .addReg(ShiftReg);
12340     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12341         .addReg(oldval)
12342         .addReg(ShiftReg);
12343     if (is8bit)
12344       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12345     else {
12346       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12347       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12348           .addReg(Mask3Reg)
12349           .addImm(65535);
12350     }
12351     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12352         .addReg(Mask2Reg)
12353         .addReg(ShiftReg);
12354     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12355         .addReg(NewVal2Reg)
12356         .addReg(MaskReg);
12357     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12358         .addReg(OldVal2Reg)
12359         .addReg(MaskReg);
12360 
12361     BB = loop1MBB;
12362     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12363         .addReg(ZeroReg)
12364         .addReg(PtrReg);
12365     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12366         .addReg(TmpDestReg)
12367         .addReg(MaskReg);
12368     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12369         .addReg(TmpReg)
12370         .addReg(OldVal3Reg);
12371     BuildMI(BB, dl, TII->get(PPC::BCC))
12372         .addImm(PPC::PRED_NE)
12373         .addReg(PPC::CR0)
12374         .addMBB(midMBB);
12375     BB->addSuccessor(loop2MBB);
12376     BB->addSuccessor(midMBB);
12377 
12378     BB = loop2MBB;
12379     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12380         .addReg(TmpDestReg)
12381         .addReg(MaskReg);
12382     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12383         .addReg(Tmp2Reg)
12384         .addReg(NewVal3Reg);
12385     BuildMI(BB, dl, TII->get(PPC::STWCX))
12386         .addReg(Tmp4Reg)
12387         .addReg(ZeroReg)
12388         .addReg(PtrReg);
12389     BuildMI(BB, dl, TII->get(PPC::BCC))
12390         .addImm(PPC::PRED_NE)
12391         .addReg(PPC::CR0)
12392         .addMBB(loop1MBB);
12393     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12394     BB->addSuccessor(loop1MBB);
12395     BB->addSuccessor(exitMBB);
12396 
12397     BB = midMBB;
12398     BuildMI(BB, dl, TII->get(PPC::STWCX))
12399         .addReg(TmpDestReg)
12400         .addReg(ZeroReg)
12401         .addReg(PtrReg);
12402     BB->addSuccessor(exitMBB);
12403 
12404     //  exitMBB:
12405     //   ...
12406     BB = exitMBB;
12407     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12408         .addReg(TmpReg)
12409         .addReg(ShiftReg);
12410   } else if (MI.getOpcode() == PPC::FADDrtz) {
12411     // This pseudo performs an FADD with rounding mode temporarily forced
12412     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12413     // is not modeled at the SelectionDAG level.
12414     Register Dest = MI.getOperand(0).getReg();
12415     Register Src1 = MI.getOperand(1).getReg();
12416     Register Src2 = MI.getOperand(2).getReg();
12417     DebugLoc dl = MI.getDebugLoc();
12418 
12419     MachineRegisterInfo &RegInfo = F->getRegInfo();
12420     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12421 
12422     // Save FPSCR value.
12423     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12424 
12425     // Set rounding mode to round-to-zero.
12426     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12427         .addImm(31)
12428         .addReg(PPC::RM, RegState::ImplicitDefine);
12429 
12430     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12431         .addImm(30)
12432         .addReg(PPC::RM, RegState::ImplicitDefine);
12433 
12434     // Perform addition.
12435     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12436                    .addReg(Src1)
12437                    .addReg(Src2);
12438     if (MI.getFlag(MachineInstr::NoFPExcept))
12439       MIB.setMIFlag(MachineInstr::NoFPExcept);
12440 
12441     // Restore FPSCR value.
12442     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12443   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12444              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12445              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12446              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12447     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12448                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12449                           ? PPC::ANDI8_rec
12450                           : PPC::ANDI_rec;
12451     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12452                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12453 
12454     MachineRegisterInfo &RegInfo = F->getRegInfo();
12455     Register Dest = RegInfo.createVirtualRegister(
12456         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12457 
12458     DebugLoc Dl = MI.getDebugLoc();
12459     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12460         .addReg(MI.getOperand(1).getReg())
12461         .addImm(1);
12462     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12463             MI.getOperand(0).getReg())
12464         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12465   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12466     DebugLoc Dl = MI.getDebugLoc();
12467     MachineRegisterInfo &RegInfo = F->getRegInfo();
12468     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12469     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12470     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12471             MI.getOperand(0).getReg())
12472         .addReg(CRReg);
12473   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12474     DebugLoc Dl = MI.getDebugLoc();
12475     unsigned Imm = MI.getOperand(1).getImm();
12476     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12477     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12478             MI.getOperand(0).getReg())
12479         .addReg(PPC::CR0EQ);
12480   } else if (MI.getOpcode() == PPC::SETRNDi) {
12481     DebugLoc dl = MI.getDebugLoc();
12482     Register OldFPSCRReg = MI.getOperand(0).getReg();
12483 
12484     // Save FPSCR value.
12485     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12486 
12487     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12488     // the following settings:
12489     //   00 Round to nearest
12490     //   01 Round to 0
12491     //   10 Round to +inf
12492     //   11 Round to -inf
12493 
12494     // When the operand is immediate, using the two least significant bits of
12495     // the immediate to set the bits 62:63 of FPSCR.
12496     unsigned Mode = MI.getOperand(1).getImm();
12497     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12498         .addImm(31)
12499         .addReg(PPC::RM, RegState::ImplicitDefine);
12500 
12501     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12502         .addImm(30)
12503         .addReg(PPC::RM, RegState::ImplicitDefine);
12504   } else if (MI.getOpcode() == PPC::SETRND) {
12505     DebugLoc dl = MI.getDebugLoc();
12506 
12507     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12508     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12509     // If the target doesn't have DirectMove, we should use stack to do the
12510     // conversion, because the target doesn't have the instructions like mtvsrd
12511     // or mfvsrd to do this conversion directly.
12512     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12513       if (Subtarget.hasDirectMove()) {
12514         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12515           .addReg(SrcReg);
12516       } else {
12517         // Use stack to do the register copy.
12518         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12519         MachineRegisterInfo &RegInfo = F->getRegInfo();
12520         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12521         if (RC == &PPC::F8RCRegClass) {
12522           // Copy register from F8RCRegClass to G8RCRegclass.
12523           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12524                  "Unsupported RegClass.");
12525 
12526           StoreOp = PPC::STFD;
12527           LoadOp = PPC::LD;
12528         } else {
12529           // Copy register from G8RCRegClass to F8RCRegclass.
12530           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12531                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12532                  "Unsupported RegClass.");
12533         }
12534 
12535         MachineFrameInfo &MFI = F->getFrameInfo();
12536         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12537 
12538         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12539             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12540             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12541             MFI.getObjectAlign(FrameIdx));
12542 
12543         // Store the SrcReg into the stack.
12544         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12545           .addReg(SrcReg)
12546           .addImm(0)
12547           .addFrameIndex(FrameIdx)
12548           .addMemOperand(MMOStore);
12549 
12550         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12551             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12552             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12553             MFI.getObjectAlign(FrameIdx));
12554 
12555         // Load from the stack where SrcReg is stored, and save to DestReg,
12556         // so we have done the RegClass conversion from RegClass::SrcReg to
12557         // RegClass::DestReg.
12558         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12559           .addImm(0)
12560           .addFrameIndex(FrameIdx)
12561           .addMemOperand(MMOLoad);
12562       }
12563     };
12564 
12565     Register OldFPSCRReg = MI.getOperand(0).getReg();
12566 
12567     // Save FPSCR value.
12568     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12569 
12570     // When the operand is gprc register, use two least significant bits of the
12571     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12572     //
12573     // copy OldFPSCRTmpReg, OldFPSCRReg
12574     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12575     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12576     // copy NewFPSCRReg, NewFPSCRTmpReg
12577     // mtfsf 255, NewFPSCRReg
12578     MachineOperand SrcOp = MI.getOperand(1);
12579     MachineRegisterInfo &RegInfo = F->getRegInfo();
12580     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12581 
12582     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12583 
12584     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12585     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12586 
12587     // The first operand of INSERT_SUBREG should be a register which has
12588     // subregisters, we only care about its RegClass, so we should use an
12589     // IMPLICIT_DEF register.
12590     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12591     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12592       .addReg(ImDefReg)
12593       .add(SrcOp)
12594       .addImm(1);
12595 
12596     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12597     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12598       .addReg(OldFPSCRTmpReg)
12599       .addReg(ExtSrcReg)
12600       .addImm(0)
12601       .addImm(62);
12602 
12603     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12604     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12605 
12606     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12607     // bits of FPSCR.
12608     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12609       .addImm(255)
12610       .addReg(NewFPSCRReg)
12611       .addImm(0)
12612       .addImm(0);
12613   } else if (MI.getOpcode() == PPC::SETFLM) {
12614     DebugLoc Dl = MI.getDebugLoc();
12615 
12616     // Result of setflm is previous FPSCR content, so we need to save it first.
12617     Register OldFPSCRReg = MI.getOperand(0).getReg();
12618     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12619 
12620     // Put bits in 32:63 to FPSCR.
12621     Register NewFPSCRReg = MI.getOperand(1).getReg();
12622     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12623         .addImm(255)
12624         .addReg(NewFPSCRReg)
12625         .addImm(0)
12626         .addImm(0);
12627   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12628              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12629     return emitProbedAlloca(MI, BB);
12630   } else {
12631     llvm_unreachable("Unexpected instr type to insert");
12632   }
12633 
12634   MI.eraseFromParent(); // The pseudo instruction is gone now.
12635   return BB;
12636 }
12637 
12638 //===----------------------------------------------------------------------===//
12639 // Target Optimization Hooks
12640 //===----------------------------------------------------------------------===//
12641 
12642 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12643   // For the estimates, convergence is quadratic, so we essentially double the
12644   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12645   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12646   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12647   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12648   if (VT.getScalarType() == MVT::f64)
12649     RefinementSteps++;
12650   return RefinementSteps;
12651 }
12652 
12653 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12654                                            int Enabled, int &RefinementSteps,
12655                                            bool &UseOneConstNR,
12656                                            bool Reciprocal) const {
12657   EVT VT = Operand.getValueType();
12658   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12659       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12660       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12661       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12662     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12663       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12664 
12665     // The Newton-Raphson computation with a single constant does not provide
12666     // enough accuracy on some CPUs.
12667     UseOneConstNR = !Subtarget.needsTwoConstNR();
12668     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12669   }
12670   return SDValue();
12671 }
12672 
12673 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12674                                             int Enabled,
12675                                             int &RefinementSteps) const {
12676   EVT VT = Operand.getValueType();
12677   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12678       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12679       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12680       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12681     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12682       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12683     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12684   }
12685   return SDValue();
12686 }
12687 
12688 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12689   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12690   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12691   // enabled for division), this functionality is redundant with the default
12692   // combiner logic (once the division -> reciprocal/multiply transformation
12693   // has taken place). As a result, this matters more for older cores than for
12694   // newer ones.
12695 
12696   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12697   // reciprocal if there are two or more FDIVs (for embedded cores with only
12698   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12699   switch (Subtarget.getCPUDirective()) {
12700   default:
12701     return 3;
12702   case PPC::DIR_440:
12703   case PPC::DIR_A2:
12704   case PPC::DIR_E500:
12705   case PPC::DIR_E500mc:
12706   case PPC::DIR_E5500:
12707     return 2;
12708   }
12709 }
12710 
12711 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12712 // collapsed, and so we need to look through chains of them.
12713 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12714                                      int64_t& Offset, SelectionDAG &DAG) {
12715   if (DAG.isBaseWithConstantOffset(Loc)) {
12716     Base = Loc.getOperand(0);
12717     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12718 
12719     // The base might itself be a base plus an offset, and if so, accumulate
12720     // that as well.
12721     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12722   }
12723 }
12724 
12725 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12726                             unsigned Bytes, int Dist,
12727                             SelectionDAG &DAG) {
12728   if (VT.getSizeInBits() / 8 != Bytes)
12729     return false;
12730 
12731   SDValue BaseLoc = Base->getBasePtr();
12732   if (Loc.getOpcode() == ISD::FrameIndex) {
12733     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12734       return false;
12735     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12736     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12737     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12738     int FS  = MFI.getObjectSize(FI);
12739     int BFS = MFI.getObjectSize(BFI);
12740     if (FS != BFS || FS != (int)Bytes) return false;
12741     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12742   }
12743 
12744   SDValue Base1 = Loc, Base2 = BaseLoc;
12745   int64_t Offset1 = 0, Offset2 = 0;
12746   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12747   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12748   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12749     return true;
12750 
12751   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12752   const GlobalValue *GV1 = nullptr;
12753   const GlobalValue *GV2 = nullptr;
12754   Offset1 = 0;
12755   Offset2 = 0;
12756   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12757   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12758   if (isGA1 && isGA2 && GV1 == GV2)
12759     return Offset1 == (Offset2 + Dist*Bytes);
12760   return false;
12761 }
12762 
12763 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12764 // not enforce equality of the chain operands.
12765 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12766                             unsigned Bytes, int Dist,
12767                             SelectionDAG &DAG) {
12768   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12769     EVT VT = LS->getMemoryVT();
12770     SDValue Loc = LS->getBasePtr();
12771     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12772   }
12773 
12774   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12775     EVT VT;
12776     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12777     default: return false;
12778     case Intrinsic::ppc_altivec_lvx:
12779     case Intrinsic::ppc_altivec_lvxl:
12780     case Intrinsic::ppc_vsx_lxvw4x:
12781     case Intrinsic::ppc_vsx_lxvw4x_be:
12782       VT = MVT::v4i32;
12783       break;
12784     case Intrinsic::ppc_vsx_lxvd2x:
12785     case Intrinsic::ppc_vsx_lxvd2x_be:
12786       VT = MVT::v2f64;
12787       break;
12788     case Intrinsic::ppc_altivec_lvebx:
12789       VT = MVT::i8;
12790       break;
12791     case Intrinsic::ppc_altivec_lvehx:
12792       VT = MVT::i16;
12793       break;
12794     case Intrinsic::ppc_altivec_lvewx:
12795       VT = MVT::i32;
12796       break;
12797     }
12798 
12799     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12800   }
12801 
12802   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12803     EVT VT;
12804     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12805     default: return false;
12806     case Intrinsic::ppc_altivec_stvx:
12807     case Intrinsic::ppc_altivec_stvxl:
12808     case Intrinsic::ppc_vsx_stxvw4x:
12809       VT = MVT::v4i32;
12810       break;
12811     case Intrinsic::ppc_vsx_stxvd2x:
12812       VT = MVT::v2f64;
12813       break;
12814     case Intrinsic::ppc_vsx_stxvw4x_be:
12815       VT = MVT::v4i32;
12816       break;
12817     case Intrinsic::ppc_vsx_stxvd2x_be:
12818       VT = MVT::v2f64;
12819       break;
12820     case Intrinsic::ppc_altivec_stvebx:
12821       VT = MVT::i8;
12822       break;
12823     case Intrinsic::ppc_altivec_stvehx:
12824       VT = MVT::i16;
12825       break;
12826     case Intrinsic::ppc_altivec_stvewx:
12827       VT = MVT::i32;
12828       break;
12829     }
12830 
12831     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12832   }
12833 
12834   return false;
12835 }
12836 
12837 // Return true is there is a nearyby consecutive load to the one provided
12838 // (regardless of alignment). We search up and down the chain, looking though
12839 // token factors and other loads (but nothing else). As a result, a true result
12840 // indicates that it is safe to create a new consecutive load adjacent to the
12841 // load provided.
12842 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12843   SDValue Chain = LD->getChain();
12844   EVT VT = LD->getMemoryVT();
12845 
12846   SmallSet<SDNode *, 16> LoadRoots;
12847   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12848   SmallSet<SDNode *, 16> Visited;
12849 
12850   // First, search up the chain, branching to follow all token-factor operands.
12851   // If we find a consecutive load, then we're done, otherwise, record all
12852   // nodes just above the top-level loads and token factors.
12853   while (!Queue.empty()) {
12854     SDNode *ChainNext = Queue.pop_back_val();
12855     if (!Visited.insert(ChainNext).second)
12856       continue;
12857 
12858     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12859       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12860         return true;
12861 
12862       if (!Visited.count(ChainLD->getChain().getNode()))
12863         Queue.push_back(ChainLD->getChain().getNode());
12864     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12865       for (const SDUse &O : ChainNext->ops())
12866         if (!Visited.count(O.getNode()))
12867           Queue.push_back(O.getNode());
12868     } else
12869       LoadRoots.insert(ChainNext);
12870   }
12871 
12872   // Second, search down the chain, starting from the top-level nodes recorded
12873   // in the first phase. These top-level nodes are the nodes just above all
12874   // loads and token factors. Starting with their uses, recursively look though
12875   // all loads (just the chain uses) and token factors to find a consecutive
12876   // load.
12877   Visited.clear();
12878   Queue.clear();
12879 
12880   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12881        IE = LoadRoots.end(); I != IE; ++I) {
12882     Queue.push_back(*I);
12883 
12884     while (!Queue.empty()) {
12885       SDNode *LoadRoot = Queue.pop_back_val();
12886       if (!Visited.insert(LoadRoot).second)
12887         continue;
12888 
12889       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12890         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12891           return true;
12892 
12893       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12894            UE = LoadRoot->use_end(); UI != UE; ++UI)
12895         if (((isa<MemSDNode>(*UI) &&
12896             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12897             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12898           Queue.push_back(*UI);
12899     }
12900   }
12901 
12902   return false;
12903 }
12904 
12905 /// This function is called when we have proved that a SETCC node can be replaced
12906 /// by subtraction (and other supporting instructions) so that the result of
12907 /// comparison is kept in a GPR instead of CR. This function is purely for
12908 /// codegen purposes and has some flags to guide the codegen process.
12909 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12910                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12911   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12912 
12913   // Zero extend the operands to the largest legal integer. Originally, they
12914   // must be of a strictly smaller size.
12915   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12916                          DAG.getConstant(Size, DL, MVT::i32));
12917   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12918                          DAG.getConstant(Size, DL, MVT::i32));
12919 
12920   // Swap if needed. Depends on the condition code.
12921   if (Swap)
12922     std::swap(Op0, Op1);
12923 
12924   // Subtract extended integers.
12925   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12926 
12927   // Move the sign bit to the least significant position and zero out the rest.
12928   // Now the least significant bit carries the result of original comparison.
12929   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12930                              DAG.getConstant(Size - 1, DL, MVT::i32));
12931   auto Final = Shifted;
12932 
12933   // Complement the result if needed. Based on the condition code.
12934   if (Complement)
12935     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12936                         DAG.getConstant(1, DL, MVT::i64));
12937 
12938   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12939 }
12940 
12941 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12942                                                   DAGCombinerInfo &DCI) const {
12943   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12944 
12945   SelectionDAG &DAG = DCI.DAG;
12946   SDLoc DL(N);
12947 
12948   // Size of integers being compared has a critical role in the following
12949   // analysis, so we prefer to do this when all types are legal.
12950   if (!DCI.isAfterLegalizeDAG())
12951     return SDValue();
12952 
12953   // If all users of SETCC extend its value to a legal integer type
12954   // then we replace SETCC with a subtraction
12955   for (SDNode::use_iterator UI = N->use_begin(),
12956        UE = N->use_end(); UI != UE; ++UI) {
12957     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12958       return SDValue();
12959   }
12960 
12961   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12962   auto OpSize = N->getOperand(0).getValueSizeInBits();
12963 
12964   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12965 
12966   if (OpSize < Size) {
12967     switch (CC) {
12968     default: break;
12969     case ISD::SETULT:
12970       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12971     case ISD::SETULE:
12972       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12973     case ISD::SETUGT:
12974       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12975     case ISD::SETUGE:
12976       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12977     }
12978   }
12979 
12980   return SDValue();
12981 }
12982 
12983 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12984                                                   DAGCombinerInfo &DCI) const {
12985   SelectionDAG &DAG = DCI.DAG;
12986   SDLoc dl(N);
12987 
12988   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12989   // If we're tracking CR bits, we need to be careful that we don't have:
12990   //   trunc(binary-ops(zext(x), zext(y)))
12991   // or
12992   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12993   // such that we're unnecessarily moving things into GPRs when it would be
12994   // better to keep them in CR bits.
12995 
12996   // Note that trunc here can be an actual i1 trunc, or can be the effective
12997   // truncation that comes from a setcc or select_cc.
12998   if (N->getOpcode() == ISD::TRUNCATE &&
12999       N->getValueType(0) != MVT::i1)
13000     return SDValue();
13001 
13002   if (N->getOperand(0).getValueType() != MVT::i32 &&
13003       N->getOperand(0).getValueType() != MVT::i64)
13004     return SDValue();
13005 
13006   if (N->getOpcode() == ISD::SETCC ||
13007       N->getOpcode() == ISD::SELECT_CC) {
13008     // If we're looking at a comparison, then we need to make sure that the
13009     // high bits (all except for the first) don't matter the result.
13010     ISD::CondCode CC =
13011       cast<CondCodeSDNode>(N->getOperand(
13012         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13013     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13014 
13015     if (ISD::isSignedIntSetCC(CC)) {
13016       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13017           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13018         return SDValue();
13019     } else if (ISD::isUnsignedIntSetCC(CC)) {
13020       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13021                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13022           !DAG.MaskedValueIsZero(N->getOperand(1),
13023                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13024         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13025                                              : SDValue());
13026     } else {
13027       // This is neither a signed nor an unsigned comparison, just make sure
13028       // that the high bits are equal.
13029       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13030       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13031 
13032       // We don't really care about what is known about the first bit (if
13033       // anything), so clear it in all masks prior to comparing them.
13034       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
13035       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
13036 
13037       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
13038         return SDValue();
13039     }
13040   }
13041 
13042   // We now know that the higher-order bits are irrelevant, we just need to
13043   // make sure that all of the intermediate operations are bit operations, and
13044   // all inputs are extensions.
13045   if (N->getOperand(0).getOpcode() != ISD::AND &&
13046       N->getOperand(0).getOpcode() != ISD::OR  &&
13047       N->getOperand(0).getOpcode() != ISD::XOR &&
13048       N->getOperand(0).getOpcode() != ISD::SELECT &&
13049       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13050       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13051       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13052       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13053       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13054     return SDValue();
13055 
13056   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13057       N->getOperand(1).getOpcode() != ISD::AND &&
13058       N->getOperand(1).getOpcode() != ISD::OR  &&
13059       N->getOperand(1).getOpcode() != ISD::XOR &&
13060       N->getOperand(1).getOpcode() != ISD::SELECT &&
13061       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13062       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13063       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13064       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13065       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13066     return SDValue();
13067 
13068   SmallVector<SDValue, 4> Inputs;
13069   SmallVector<SDValue, 8> BinOps, PromOps;
13070   SmallPtrSet<SDNode *, 16> Visited;
13071 
13072   for (unsigned i = 0; i < 2; ++i) {
13073     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13074           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13075           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13076           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13077         isa<ConstantSDNode>(N->getOperand(i)))
13078       Inputs.push_back(N->getOperand(i));
13079     else
13080       BinOps.push_back(N->getOperand(i));
13081 
13082     if (N->getOpcode() == ISD::TRUNCATE)
13083       break;
13084   }
13085 
13086   // Visit all inputs, collect all binary operations (and, or, xor and
13087   // select) that are all fed by extensions.
13088   while (!BinOps.empty()) {
13089     SDValue BinOp = BinOps.back();
13090     BinOps.pop_back();
13091 
13092     if (!Visited.insert(BinOp.getNode()).second)
13093       continue;
13094 
13095     PromOps.push_back(BinOp);
13096 
13097     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13098       // The condition of the select is not promoted.
13099       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13100         continue;
13101       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13102         continue;
13103 
13104       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13105             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13106             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13107            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13108           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13109         Inputs.push_back(BinOp.getOperand(i));
13110       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13111                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13112                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13113                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13114                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13115                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13116                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13117                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13118                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13119         BinOps.push_back(BinOp.getOperand(i));
13120       } else {
13121         // We have an input that is not an extension or another binary
13122         // operation; we'll abort this transformation.
13123         return SDValue();
13124       }
13125     }
13126   }
13127 
13128   // Make sure that this is a self-contained cluster of operations (which
13129   // is not quite the same thing as saying that everything has only one
13130   // use).
13131   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13132     if (isa<ConstantSDNode>(Inputs[i]))
13133       continue;
13134 
13135     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13136                               UE = Inputs[i].getNode()->use_end();
13137          UI != UE; ++UI) {
13138       SDNode *User = *UI;
13139       if (User != N && !Visited.count(User))
13140         return SDValue();
13141 
13142       // Make sure that we're not going to promote the non-output-value
13143       // operand(s) or SELECT or SELECT_CC.
13144       // FIXME: Although we could sometimes handle this, and it does occur in
13145       // practice that one of the condition inputs to the select is also one of
13146       // the outputs, we currently can't deal with this.
13147       if (User->getOpcode() == ISD::SELECT) {
13148         if (User->getOperand(0) == Inputs[i])
13149           return SDValue();
13150       } else if (User->getOpcode() == ISD::SELECT_CC) {
13151         if (User->getOperand(0) == Inputs[i] ||
13152             User->getOperand(1) == Inputs[i])
13153           return SDValue();
13154       }
13155     }
13156   }
13157 
13158   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13159     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13160                               UE = PromOps[i].getNode()->use_end();
13161          UI != UE; ++UI) {
13162       SDNode *User = *UI;
13163       if (User != N && !Visited.count(User))
13164         return SDValue();
13165 
13166       // Make sure that we're not going to promote the non-output-value
13167       // operand(s) or SELECT or SELECT_CC.
13168       // FIXME: Although we could sometimes handle this, and it does occur in
13169       // practice that one of the condition inputs to the select is also one of
13170       // the outputs, we currently can't deal with this.
13171       if (User->getOpcode() == ISD::SELECT) {
13172         if (User->getOperand(0) == PromOps[i])
13173           return SDValue();
13174       } else if (User->getOpcode() == ISD::SELECT_CC) {
13175         if (User->getOperand(0) == PromOps[i] ||
13176             User->getOperand(1) == PromOps[i])
13177           return SDValue();
13178       }
13179     }
13180   }
13181 
13182   // Replace all inputs with the extension operand.
13183   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13184     // Constants may have users outside the cluster of to-be-promoted nodes,
13185     // and so we need to replace those as we do the promotions.
13186     if (isa<ConstantSDNode>(Inputs[i]))
13187       continue;
13188     else
13189       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13190   }
13191 
13192   std::list<HandleSDNode> PromOpHandles;
13193   for (auto &PromOp : PromOps)
13194     PromOpHandles.emplace_back(PromOp);
13195 
13196   // Replace all operations (these are all the same, but have a different
13197   // (i1) return type). DAG.getNode will validate that the types of
13198   // a binary operator match, so go through the list in reverse so that
13199   // we've likely promoted both operands first. Any intermediate truncations or
13200   // extensions disappear.
13201   while (!PromOpHandles.empty()) {
13202     SDValue PromOp = PromOpHandles.back().getValue();
13203     PromOpHandles.pop_back();
13204 
13205     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13206         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13207         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13208         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13209       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13210           PromOp.getOperand(0).getValueType() != MVT::i1) {
13211         // The operand is not yet ready (see comment below).
13212         PromOpHandles.emplace_front(PromOp);
13213         continue;
13214       }
13215 
13216       SDValue RepValue = PromOp.getOperand(0);
13217       if (isa<ConstantSDNode>(RepValue))
13218         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13219 
13220       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13221       continue;
13222     }
13223 
13224     unsigned C;
13225     switch (PromOp.getOpcode()) {
13226     default:             C = 0; break;
13227     case ISD::SELECT:    C = 1; break;
13228     case ISD::SELECT_CC: C = 2; break;
13229     }
13230 
13231     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13232          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13233         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13234          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13235       // The to-be-promoted operands of this node have not yet been
13236       // promoted (this should be rare because we're going through the
13237       // list backward, but if one of the operands has several users in
13238       // this cluster of to-be-promoted nodes, it is possible).
13239       PromOpHandles.emplace_front(PromOp);
13240       continue;
13241     }
13242 
13243     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13244                                 PromOp.getNode()->op_end());
13245 
13246     // If there are any constant inputs, make sure they're replaced now.
13247     for (unsigned i = 0; i < 2; ++i)
13248       if (isa<ConstantSDNode>(Ops[C+i]))
13249         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13250 
13251     DAG.ReplaceAllUsesOfValueWith(PromOp,
13252       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13253   }
13254 
13255   // Now we're left with the initial truncation itself.
13256   if (N->getOpcode() == ISD::TRUNCATE)
13257     return N->getOperand(0);
13258 
13259   // Otherwise, this is a comparison. The operands to be compared have just
13260   // changed type (to i1), but everything else is the same.
13261   return SDValue(N, 0);
13262 }
13263 
13264 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13265                                                   DAGCombinerInfo &DCI) const {
13266   SelectionDAG &DAG = DCI.DAG;
13267   SDLoc dl(N);
13268 
13269   // If we're tracking CR bits, we need to be careful that we don't have:
13270   //   zext(binary-ops(trunc(x), trunc(y)))
13271   // or
13272   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13273   // such that we're unnecessarily moving things into CR bits that can more
13274   // efficiently stay in GPRs. Note that if we're not certain that the high
13275   // bits are set as required by the final extension, we still may need to do
13276   // some masking to get the proper behavior.
13277 
13278   // This same functionality is important on PPC64 when dealing with
13279   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13280   // the return values of functions. Because it is so similar, it is handled
13281   // here as well.
13282 
13283   if (N->getValueType(0) != MVT::i32 &&
13284       N->getValueType(0) != MVT::i64)
13285     return SDValue();
13286 
13287   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13288         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13289     return SDValue();
13290 
13291   if (N->getOperand(0).getOpcode() != ISD::AND &&
13292       N->getOperand(0).getOpcode() != ISD::OR  &&
13293       N->getOperand(0).getOpcode() != ISD::XOR &&
13294       N->getOperand(0).getOpcode() != ISD::SELECT &&
13295       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13296     return SDValue();
13297 
13298   SmallVector<SDValue, 4> Inputs;
13299   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13300   SmallPtrSet<SDNode *, 16> Visited;
13301 
13302   // Visit all inputs, collect all binary operations (and, or, xor and
13303   // select) that are all fed by truncations.
13304   while (!BinOps.empty()) {
13305     SDValue BinOp = BinOps.back();
13306     BinOps.pop_back();
13307 
13308     if (!Visited.insert(BinOp.getNode()).second)
13309       continue;
13310 
13311     PromOps.push_back(BinOp);
13312 
13313     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13314       // The condition of the select is not promoted.
13315       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13316         continue;
13317       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13318         continue;
13319 
13320       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13321           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13322         Inputs.push_back(BinOp.getOperand(i));
13323       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13324                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13325                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13326                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13327                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13328         BinOps.push_back(BinOp.getOperand(i));
13329       } else {
13330         // We have an input that is not a truncation or another binary
13331         // operation; we'll abort this transformation.
13332         return SDValue();
13333       }
13334     }
13335   }
13336 
13337   // The operands of a select that must be truncated when the select is
13338   // promoted because the operand is actually part of the to-be-promoted set.
13339   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13340 
13341   // Make sure that this is a self-contained cluster of operations (which
13342   // is not quite the same thing as saying that everything has only one
13343   // use).
13344   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13345     if (isa<ConstantSDNode>(Inputs[i]))
13346       continue;
13347 
13348     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13349                               UE = Inputs[i].getNode()->use_end();
13350          UI != UE; ++UI) {
13351       SDNode *User = *UI;
13352       if (User != N && !Visited.count(User))
13353         return SDValue();
13354 
13355       // If we're going to promote the non-output-value operand(s) or SELECT or
13356       // SELECT_CC, record them for truncation.
13357       if (User->getOpcode() == ISD::SELECT) {
13358         if (User->getOperand(0) == Inputs[i])
13359           SelectTruncOp[0].insert(std::make_pair(User,
13360                                     User->getOperand(0).getValueType()));
13361       } else if (User->getOpcode() == ISD::SELECT_CC) {
13362         if (User->getOperand(0) == Inputs[i])
13363           SelectTruncOp[0].insert(std::make_pair(User,
13364                                     User->getOperand(0).getValueType()));
13365         if (User->getOperand(1) == Inputs[i])
13366           SelectTruncOp[1].insert(std::make_pair(User,
13367                                     User->getOperand(1).getValueType()));
13368       }
13369     }
13370   }
13371 
13372   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13373     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13374                               UE = PromOps[i].getNode()->use_end();
13375          UI != UE; ++UI) {
13376       SDNode *User = *UI;
13377       if (User != N && !Visited.count(User))
13378         return SDValue();
13379 
13380       // If we're going to promote the non-output-value operand(s) or SELECT or
13381       // SELECT_CC, record them for truncation.
13382       if (User->getOpcode() == ISD::SELECT) {
13383         if (User->getOperand(0) == PromOps[i])
13384           SelectTruncOp[0].insert(std::make_pair(User,
13385                                     User->getOperand(0).getValueType()));
13386       } else if (User->getOpcode() == ISD::SELECT_CC) {
13387         if (User->getOperand(0) == PromOps[i])
13388           SelectTruncOp[0].insert(std::make_pair(User,
13389                                     User->getOperand(0).getValueType()));
13390         if (User->getOperand(1) == PromOps[i])
13391           SelectTruncOp[1].insert(std::make_pair(User,
13392                                     User->getOperand(1).getValueType()));
13393       }
13394     }
13395   }
13396 
13397   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13398   bool ReallyNeedsExt = false;
13399   if (N->getOpcode() != ISD::ANY_EXTEND) {
13400     // If all of the inputs are not already sign/zero extended, then
13401     // we'll still need to do that at the end.
13402     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13403       if (isa<ConstantSDNode>(Inputs[i]))
13404         continue;
13405 
13406       unsigned OpBits =
13407         Inputs[i].getOperand(0).getValueSizeInBits();
13408       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13409 
13410       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13411            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13412                                   APInt::getHighBitsSet(OpBits,
13413                                                         OpBits-PromBits))) ||
13414           (N->getOpcode() == ISD::SIGN_EXTEND &&
13415            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13416              (OpBits-(PromBits-1)))) {
13417         ReallyNeedsExt = true;
13418         break;
13419       }
13420     }
13421   }
13422 
13423   // Replace all inputs, either with the truncation operand, or a
13424   // truncation or extension to the final output type.
13425   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13426     // Constant inputs need to be replaced with the to-be-promoted nodes that
13427     // use them because they might have users outside of the cluster of
13428     // promoted nodes.
13429     if (isa<ConstantSDNode>(Inputs[i]))
13430       continue;
13431 
13432     SDValue InSrc = Inputs[i].getOperand(0);
13433     if (Inputs[i].getValueType() == N->getValueType(0))
13434       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13435     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13436       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13437         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13438     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13439       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13440         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13441     else
13442       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13443         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13444   }
13445 
13446   std::list<HandleSDNode> PromOpHandles;
13447   for (auto &PromOp : PromOps)
13448     PromOpHandles.emplace_back(PromOp);
13449 
13450   // Replace all operations (these are all the same, but have a different
13451   // (promoted) return type). DAG.getNode will validate that the types of
13452   // a binary operator match, so go through the list in reverse so that
13453   // we've likely promoted both operands first.
13454   while (!PromOpHandles.empty()) {
13455     SDValue PromOp = PromOpHandles.back().getValue();
13456     PromOpHandles.pop_back();
13457 
13458     unsigned C;
13459     switch (PromOp.getOpcode()) {
13460     default:             C = 0; break;
13461     case ISD::SELECT:    C = 1; break;
13462     case ISD::SELECT_CC: C = 2; break;
13463     }
13464 
13465     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13466          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13467         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13468          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13469       // The to-be-promoted operands of this node have not yet been
13470       // promoted (this should be rare because we're going through the
13471       // list backward, but if one of the operands has several users in
13472       // this cluster of to-be-promoted nodes, it is possible).
13473       PromOpHandles.emplace_front(PromOp);
13474       continue;
13475     }
13476 
13477     // For SELECT and SELECT_CC nodes, we do a similar check for any
13478     // to-be-promoted comparison inputs.
13479     if (PromOp.getOpcode() == ISD::SELECT ||
13480         PromOp.getOpcode() == ISD::SELECT_CC) {
13481       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13482            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13483           (SelectTruncOp[1].count(PromOp.getNode()) &&
13484            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13485         PromOpHandles.emplace_front(PromOp);
13486         continue;
13487       }
13488     }
13489 
13490     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13491                                 PromOp.getNode()->op_end());
13492 
13493     // If this node has constant inputs, then they'll need to be promoted here.
13494     for (unsigned i = 0; i < 2; ++i) {
13495       if (!isa<ConstantSDNode>(Ops[C+i]))
13496         continue;
13497       if (Ops[C+i].getValueType() == N->getValueType(0))
13498         continue;
13499 
13500       if (N->getOpcode() == ISD::SIGN_EXTEND)
13501         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13502       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13503         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13504       else
13505         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13506     }
13507 
13508     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13509     // truncate them again to the original value type.
13510     if (PromOp.getOpcode() == ISD::SELECT ||
13511         PromOp.getOpcode() == ISD::SELECT_CC) {
13512       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13513       if (SI0 != SelectTruncOp[0].end())
13514         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13515       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13516       if (SI1 != SelectTruncOp[1].end())
13517         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13518     }
13519 
13520     DAG.ReplaceAllUsesOfValueWith(PromOp,
13521       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13522   }
13523 
13524   // Now we're left with the initial extension itself.
13525   if (!ReallyNeedsExt)
13526     return N->getOperand(0);
13527 
13528   // To zero extend, just mask off everything except for the first bit (in the
13529   // i1 case).
13530   if (N->getOpcode() == ISD::ZERO_EXTEND)
13531     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13532                        DAG.getConstant(APInt::getLowBitsSet(
13533                                          N->getValueSizeInBits(0), PromBits),
13534                                        dl, N->getValueType(0)));
13535 
13536   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13537          "Invalid extension type");
13538   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13539   SDValue ShiftCst =
13540       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13541   return DAG.getNode(
13542       ISD::SRA, dl, N->getValueType(0),
13543       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13544       ShiftCst);
13545 }
13546 
13547 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13548                                         DAGCombinerInfo &DCI) const {
13549   assert(N->getOpcode() == ISD::SETCC &&
13550          "Should be called with a SETCC node");
13551 
13552   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13553   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13554     SDValue LHS = N->getOperand(0);
13555     SDValue RHS = N->getOperand(1);
13556 
13557     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13558     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13559         LHS.hasOneUse())
13560       std::swap(LHS, RHS);
13561 
13562     // x == 0-y --> x+y == 0
13563     // x != 0-y --> x+y != 0
13564     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13565         RHS.hasOneUse()) {
13566       SDLoc DL(N);
13567       SelectionDAG &DAG = DCI.DAG;
13568       EVT VT = N->getValueType(0);
13569       EVT OpVT = LHS.getValueType();
13570       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13571       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13572     }
13573   }
13574 
13575   return DAGCombineTruncBoolExt(N, DCI);
13576 }
13577 
13578 // Is this an extending load from an f32 to an f64?
13579 static bool isFPExtLoad(SDValue Op) {
13580   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13581     return LD->getExtensionType() == ISD::EXTLOAD &&
13582       Op.getValueType() == MVT::f64;
13583   return false;
13584 }
13585 
13586 /// Reduces the number of fp-to-int conversion when building a vector.
13587 ///
13588 /// If this vector is built out of floating to integer conversions,
13589 /// transform it to a vector built out of floating point values followed by a
13590 /// single floating to integer conversion of the vector.
13591 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13592 /// becomes (fptosi (build_vector ($A, $B, ...)))
13593 SDValue PPCTargetLowering::
13594 combineElementTruncationToVectorTruncation(SDNode *N,
13595                                            DAGCombinerInfo &DCI) const {
13596   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13597          "Should be called with a BUILD_VECTOR node");
13598 
13599   SelectionDAG &DAG = DCI.DAG;
13600   SDLoc dl(N);
13601 
13602   SDValue FirstInput = N->getOperand(0);
13603   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13604          "The input operand must be an fp-to-int conversion.");
13605 
13606   // This combine happens after legalization so the fp_to_[su]i nodes are
13607   // already converted to PPCSISD nodes.
13608   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13609   if (FirstConversion == PPCISD::FCTIDZ ||
13610       FirstConversion == PPCISD::FCTIDUZ ||
13611       FirstConversion == PPCISD::FCTIWZ ||
13612       FirstConversion == PPCISD::FCTIWUZ) {
13613     bool IsSplat = true;
13614     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13615       FirstConversion == PPCISD::FCTIWUZ;
13616     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13617     SmallVector<SDValue, 4> Ops;
13618     EVT TargetVT = N->getValueType(0);
13619     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13620       SDValue NextOp = N->getOperand(i);
13621       if (NextOp.getOpcode() != PPCISD::MFVSR)
13622         return SDValue();
13623       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13624       if (NextConversion != FirstConversion)
13625         return SDValue();
13626       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13627       // This is not valid if the input was originally double precision. It is
13628       // also not profitable to do unless this is an extending load in which
13629       // case doing this combine will allow us to combine consecutive loads.
13630       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13631         return SDValue();
13632       if (N->getOperand(i) != FirstInput)
13633         IsSplat = false;
13634     }
13635 
13636     // If this is a splat, we leave it as-is since there will be only a single
13637     // fp-to-int conversion followed by a splat of the integer. This is better
13638     // for 32-bit and smaller ints and neutral for 64-bit ints.
13639     if (IsSplat)
13640       return SDValue();
13641 
13642     // Now that we know we have the right type of node, get its operands
13643     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13644       SDValue In = N->getOperand(i).getOperand(0);
13645       if (Is32Bit) {
13646         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13647         // here, we know that all inputs are extending loads so this is safe).
13648         if (In.isUndef())
13649           Ops.push_back(DAG.getUNDEF(SrcVT));
13650         else {
13651           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13652                                       MVT::f32, In.getOperand(0),
13653                                       DAG.getIntPtrConstant(1, dl));
13654           Ops.push_back(Trunc);
13655         }
13656       } else
13657         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13658     }
13659 
13660     unsigned Opcode;
13661     if (FirstConversion == PPCISD::FCTIDZ ||
13662         FirstConversion == PPCISD::FCTIWZ)
13663       Opcode = ISD::FP_TO_SINT;
13664     else
13665       Opcode = ISD::FP_TO_UINT;
13666 
13667     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13668     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13669     return DAG.getNode(Opcode, dl, TargetVT, BV);
13670   }
13671   return SDValue();
13672 }
13673 
13674 /// Reduce the number of loads when building a vector.
13675 ///
13676 /// Building a vector out of multiple loads can be converted to a load
13677 /// of the vector type if the loads are consecutive. If the loads are
13678 /// consecutive but in descending order, a shuffle is added at the end
13679 /// to reorder the vector.
13680 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13681   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13682          "Should be called with a BUILD_VECTOR node");
13683 
13684   SDLoc dl(N);
13685 
13686   // Return early for non byte-sized type, as they can't be consecutive.
13687   if (!N->getValueType(0).getVectorElementType().isByteSized())
13688     return SDValue();
13689 
13690   bool InputsAreConsecutiveLoads = true;
13691   bool InputsAreReverseConsecutive = true;
13692   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13693   SDValue FirstInput = N->getOperand(0);
13694   bool IsRoundOfExtLoad = false;
13695 
13696   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13697       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13698     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13699     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13700   }
13701   // Not a build vector of (possibly fp_rounded) loads.
13702   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13703       N->getNumOperands() == 1)
13704     return SDValue();
13705 
13706   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13707     // If any inputs are fp_round(extload), they all must be.
13708     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13709       return SDValue();
13710 
13711     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13712       N->getOperand(i);
13713     if (NextInput.getOpcode() != ISD::LOAD)
13714       return SDValue();
13715 
13716     SDValue PreviousInput =
13717       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13718     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13719     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13720 
13721     // If any inputs are fp_round(extload), they all must be.
13722     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13723       return SDValue();
13724 
13725     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13726       InputsAreConsecutiveLoads = false;
13727     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13728       InputsAreReverseConsecutive = false;
13729 
13730     // Exit early if the loads are neither consecutive nor reverse consecutive.
13731     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13732       return SDValue();
13733   }
13734 
13735   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13736          "The loads cannot be both consecutive and reverse consecutive.");
13737 
13738   SDValue FirstLoadOp =
13739     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13740   SDValue LastLoadOp =
13741     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13742                        N->getOperand(N->getNumOperands()-1);
13743 
13744   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13745   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13746   if (InputsAreConsecutiveLoads) {
13747     assert(LD1 && "Input needs to be a LoadSDNode.");
13748     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13749                        LD1->getBasePtr(), LD1->getPointerInfo(),
13750                        LD1->getAlignment());
13751   }
13752   if (InputsAreReverseConsecutive) {
13753     assert(LDL && "Input needs to be a LoadSDNode.");
13754     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13755                                LDL->getBasePtr(), LDL->getPointerInfo(),
13756                                LDL->getAlignment());
13757     SmallVector<int, 16> Ops;
13758     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13759       Ops.push_back(i);
13760 
13761     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13762                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13763   }
13764   return SDValue();
13765 }
13766 
13767 // This function adds the required vector_shuffle needed to get
13768 // the elements of the vector extract in the correct position
13769 // as specified by the CorrectElems encoding.
13770 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13771                                       SDValue Input, uint64_t Elems,
13772                                       uint64_t CorrectElems) {
13773   SDLoc dl(N);
13774 
13775   unsigned NumElems = Input.getValueType().getVectorNumElements();
13776   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13777 
13778   // Knowing the element indices being extracted from the original
13779   // vector and the order in which they're being inserted, just put
13780   // them at element indices required for the instruction.
13781   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13782     if (DAG.getDataLayout().isLittleEndian())
13783       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13784     else
13785       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13786     CorrectElems = CorrectElems >> 8;
13787     Elems = Elems >> 8;
13788   }
13789 
13790   SDValue Shuffle =
13791       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13792                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13793 
13794   EVT VT = N->getValueType(0);
13795   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13796 
13797   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13798                                Input.getValueType().getVectorElementType(),
13799                                VT.getVectorNumElements());
13800   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13801                      DAG.getValueType(ExtVT));
13802 }
13803 
13804 // Look for build vector patterns where input operands come from sign
13805 // extended vector_extract elements of specific indices. If the correct indices
13806 // aren't used, add a vector shuffle to fix up the indices and create
13807 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13808 // during instruction selection.
13809 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13810   // This array encodes the indices that the vector sign extend instructions
13811   // extract from when extending from one type to another for both BE and LE.
13812   // The right nibble of each byte corresponds to the LE incides.
13813   // and the left nibble of each byte corresponds to the BE incides.
13814   // For example: 0x3074B8FC  byte->word
13815   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13816   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13817   // For example: 0x000070F8  byte->double word
13818   // For LE: the allowed indices are: 0x0,0x8
13819   // For BE: the allowed indices are: 0x7,0xF
13820   uint64_t TargetElems[] = {
13821       0x3074B8FC, // b->w
13822       0x000070F8, // b->d
13823       0x10325476, // h->w
13824       0x00003074, // h->d
13825       0x00001032, // w->d
13826   };
13827 
13828   uint64_t Elems = 0;
13829   int Index;
13830   SDValue Input;
13831 
13832   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13833     if (!Op)
13834       return false;
13835     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13836         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13837       return false;
13838 
13839     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13840     // of the right width.
13841     SDValue Extract = Op.getOperand(0);
13842     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13843       Extract = Extract.getOperand(0);
13844     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13845       return false;
13846 
13847     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13848     if (!ExtOp)
13849       return false;
13850 
13851     Index = ExtOp->getZExtValue();
13852     if (Input && Input != Extract.getOperand(0))
13853       return false;
13854 
13855     if (!Input)
13856       Input = Extract.getOperand(0);
13857 
13858     Elems = Elems << 8;
13859     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13860     Elems |= Index;
13861 
13862     return true;
13863   };
13864 
13865   // If the build vector operands aren't sign extended vector extracts,
13866   // of the same input vector, then return.
13867   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13868     if (!isSExtOfVecExtract(N->getOperand(i))) {
13869       return SDValue();
13870     }
13871   }
13872 
13873   // If the vector extract indicies are not correct, add the appropriate
13874   // vector_shuffle.
13875   int TgtElemArrayIdx;
13876   int InputSize = Input.getValueType().getScalarSizeInBits();
13877   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13878   if (InputSize + OutputSize == 40)
13879     TgtElemArrayIdx = 0;
13880   else if (InputSize + OutputSize == 72)
13881     TgtElemArrayIdx = 1;
13882   else if (InputSize + OutputSize == 48)
13883     TgtElemArrayIdx = 2;
13884   else if (InputSize + OutputSize == 80)
13885     TgtElemArrayIdx = 3;
13886   else if (InputSize + OutputSize == 96)
13887     TgtElemArrayIdx = 4;
13888   else
13889     return SDValue();
13890 
13891   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13892   CorrectElems = DAG.getDataLayout().isLittleEndian()
13893                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13894                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13895   if (Elems != CorrectElems) {
13896     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13897   }
13898 
13899   // Regular lowering will catch cases where a shuffle is not needed.
13900   return SDValue();
13901 }
13902 
13903 // Look for the pattern of a load from a narrow width to i128, feeding
13904 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13905 // (LXVRZX). This node represents a zero extending load that will be matched
13906 // to the Load VSX Vector Rightmost instructions.
13907 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13908   SDLoc DL(N);
13909 
13910   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13911   if (N->getValueType(0) != MVT::v1i128)
13912     return SDValue();
13913 
13914   SDValue Operand = N->getOperand(0);
13915   // Proceed with the transformation if the operand to the BUILD_VECTOR
13916   // is a load instruction.
13917   if (Operand.getOpcode() != ISD::LOAD)
13918     return SDValue();
13919 
13920   LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand);
13921   EVT MemoryType = LD->getMemoryVT();
13922 
13923   // This transformation is only valid if the we are loading either a byte,
13924   // halfword, word, or doubleword.
13925   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13926                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13927 
13928   // Ensure that the load from the narrow width is being zero extended to i128.
13929   if (!ValidLDType ||
13930       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13931        LD->getExtensionType() != ISD::EXTLOAD))
13932     return SDValue();
13933 
13934   SDValue LoadOps[] = {
13935       LD->getChain(), LD->getBasePtr(),
13936       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13937 
13938   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13939                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13940                                  LoadOps, MemoryType, LD->getMemOperand());
13941 }
13942 
13943 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13944                                                  DAGCombinerInfo &DCI) const {
13945   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13946          "Should be called with a BUILD_VECTOR node");
13947 
13948   SelectionDAG &DAG = DCI.DAG;
13949   SDLoc dl(N);
13950 
13951   if (!Subtarget.hasVSX())
13952     return SDValue();
13953 
13954   // The target independent DAG combiner will leave a build_vector of
13955   // float-to-int conversions intact. We can generate MUCH better code for
13956   // a float-to-int conversion of a vector of floats.
13957   SDValue FirstInput = N->getOperand(0);
13958   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13959     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13960     if (Reduced)
13961       return Reduced;
13962   }
13963 
13964   // If we're building a vector out of consecutive loads, just load that
13965   // vector type.
13966   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13967   if (Reduced)
13968     return Reduced;
13969 
13970   // If we're building a vector out of extended elements from another vector
13971   // we have P9 vector integer extend instructions. The code assumes legal
13972   // input types (i.e. it can't handle things like v4i16) so do not run before
13973   // legalization.
13974   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13975     Reduced = combineBVOfVecSExt(N, DAG);
13976     if (Reduced)
13977       return Reduced;
13978   }
13979 
13980   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13981   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13982   // is a load from <valid narrow width> to i128.
13983   if (Subtarget.isISA3_1()) {
13984     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
13985     if (BVOfZLoad)
13986       return BVOfZLoad;
13987   }
13988 
13989   if (N->getValueType(0) != MVT::v2f64)
13990     return SDValue();
13991 
13992   // Looking for:
13993   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13994   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13995       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13996     return SDValue();
13997   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13998       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13999     return SDValue();
14000   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14001     return SDValue();
14002 
14003   SDValue Ext1 = FirstInput.getOperand(0);
14004   SDValue Ext2 = N->getOperand(1).getOperand(0);
14005   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14006      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14007     return SDValue();
14008 
14009   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14010   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14011   if (!Ext1Op || !Ext2Op)
14012     return SDValue();
14013   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14014       Ext1.getOperand(0) != Ext2.getOperand(0))
14015     return SDValue();
14016 
14017   int FirstElem = Ext1Op->getZExtValue();
14018   int SecondElem = Ext2Op->getZExtValue();
14019   int SubvecIdx;
14020   if (FirstElem == 0 && SecondElem == 1)
14021     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14022   else if (FirstElem == 2 && SecondElem == 3)
14023     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14024   else
14025     return SDValue();
14026 
14027   SDValue SrcVec = Ext1.getOperand(0);
14028   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14029     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14030   return DAG.getNode(NodeType, dl, MVT::v2f64,
14031                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14032 }
14033 
14034 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14035                                               DAGCombinerInfo &DCI) const {
14036   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14037           N->getOpcode() == ISD::UINT_TO_FP) &&
14038          "Need an int -> FP conversion node here");
14039 
14040   if (useSoftFloat() || !Subtarget.has64BitSupport())
14041     return SDValue();
14042 
14043   SelectionDAG &DAG = DCI.DAG;
14044   SDLoc dl(N);
14045   SDValue Op(N, 0);
14046 
14047   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14048   // from the hardware.
14049   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14050     return SDValue();
14051   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14052       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14053     return SDValue();
14054 
14055   SDValue FirstOperand(Op.getOperand(0));
14056   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14057     (FirstOperand.getValueType() == MVT::i8 ||
14058      FirstOperand.getValueType() == MVT::i16);
14059   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14060     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14061     bool DstDouble = Op.getValueType() == MVT::f64;
14062     unsigned ConvOp = Signed ?
14063       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14064       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14065     SDValue WidthConst =
14066       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14067                             dl, false);
14068     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14069     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14070     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14071                                          DAG.getVTList(MVT::f64, MVT::Other),
14072                                          Ops, MVT::i8, LDN->getMemOperand());
14073 
14074     // For signed conversion, we need to sign-extend the value in the VSR
14075     if (Signed) {
14076       SDValue ExtOps[] = { Ld, WidthConst };
14077       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14078       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14079     } else
14080       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14081   }
14082 
14083 
14084   // For i32 intermediate values, unfortunately, the conversion functions
14085   // leave the upper 32 bits of the value are undefined. Within the set of
14086   // scalar instructions, we have no method for zero- or sign-extending the
14087   // value. Thus, we cannot handle i32 intermediate values here.
14088   if (Op.getOperand(0).getValueType() == MVT::i32)
14089     return SDValue();
14090 
14091   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14092          "UINT_TO_FP is supported only with FPCVT");
14093 
14094   // If we have FCFIDS, then use it when converting to single-precision.
14095   // Otherwise, convert to double-precision and then round.
14096   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14097                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14098                                                             : PPCISD::FCFIDS)
14099                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14100                                                             : PPCISD::FCFID);
14101   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14102                   ? MVT::f32
14103                   : MVT::f64;
14104 
14105   // If we're converting from a float, to an int, and back to a float again,
14106   // then we don't need the store/load pair at all.
14107   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14108        Subtarget.hasFPCVT()) ||
14109       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14110     SDValue Src = Op.getOperand(0).getOperand(0);
14111     if (Src.getValueType() == MVT::f32) {
14112       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14113       DCI.AddToWorklist(Src.getNode());
14114     } else if (Src.getValueType() != MVT::f64) {
14115       // Make sure that we don't pick up a ppc_fp128 source value.
14116       return SDValue();
14117     }
14118 
14119     unsigned FCTOp =
14120       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14121                                                         PPCISD::FCTIDUZ;
14122 
14123     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14124     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14125 
14126     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14127       FP = DAG.getNode(ISD::FP_ROUND, dl,
14128                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14129       DCI.AddToWorklist(FP.getNode());
14130     }
14131 
14132     return FP;
14133   }
14134 
14135   return SDValue();
14136 }
14137 
14138 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14139 // builtins) into loads with swaps.
14140 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14141                                               DAGCombinerInfo &DCI) const {
14142   SelectionDAG &DAG = DCI.DAG;
14143   SDLoc dl(N);
14144   SDValue Chain;
14145   SDValue Base;
14146   MachineMemOperand *MMO;
14147 
14148   switch (N->getOpcode()) {
14149   default:
14150     llvm_unreachable("Unexpected opcode for little endian VSX load");
14151   case ISD::LOAD: {
14152     LoadSDNode *LD = cast<LoadSDNode>(N);
14153     Chain = LD->getChain();
14154     Base = LD->getBasePtr();
14155     MMO = LD->getMemOperand();
14156     // If the MMO suggests this isn't a load of a full vector, leave
14157     // things alone.  For a built-in, we have to make the change for
14158     // correctness, so if there is a size problem that will be a bug.
14159     if (MMO->getSize() < 16)
14160       return SDValue();
14161     break;
14162   }
14163   case ISD::INTRINSIC_W_CHAIN: {
14164     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14165     Chain = Intrin->getChain();
14166     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14167     // us what we want. Get operand 2 instead.
14168     Base = Intrin->getOperand(2);
14169     MMO = Intrin->getMemOperand();
14170     break;
14171   }
14172   }
14173 
14174   MVT VecTy = N->getValueType(0).getSimpleVT();
14175 
14176   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14177   // aligned and the type is a vector with elements up to 4 bytes
14178   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14179       VecTy.getScalarSizeInBits() <= 32) {
14180     return SDValue();
14181   }
14182 
14183   SDValue LoadOps[] = { Chain, Base };
14184   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14185                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14186                                          LoadOps, MVT::v2f64, MMO);
14187 
14188   DCI.AddToWorklist(Load.getNode());
14189   Chain = Load.getValue(1);
14190   SDValue Swap = DAG.getNode(
14191       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14192   DCI.AddToWorklist(Swap.getNode());
14193 
14194   // Add a bitcast if the resulting load type doesn't match v2f64.
14195   if (VecTy != MVT::v2f64) {
14196     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14197     DCI.AddToWorklist(N.getNode());
14198     // Package {bitcast value, swap's chain} to match Load's shape.
14199     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14200                        N, Swap.getValue(1));
14201   }
14202 
14203   return Swap;
14204 }
14205 
14206 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14207 // builtins) into stores with swaps.
14208 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14209                                                DAGCombinerInfo &DCI) const {
14210   SelectionDAG &DAG = DCI.DAG;
14211   SDLoc dl(N);
14212   SDValue Chain;
14213   SDValue Base;
14214   unsigned SrcOpnd;
14215   MachineMemOperand *MMO;
14216 
14217   switch (N->getOpcode()) {
14218   default:
14219     llvm_unreachable("Unexpected opcode for little endian VSX store");
14220   case ISD::STORE: {
14221     StoreSDNode *ST = cast<StoreSDNode>(N);
14222     Chain = ST->getChain();
14223     Base = ST->getBasePtr();
14224     MMO = ST->getMemOperand();
14225     SrcOpnd = 1;
14226     // If the MMO suggests this isn't a store of a full vector, leave
14227     // things alone.  For a built-in, we have to make the change for
14228     // correctness, so if there is a size problem that will be a bug.
14229     if (MMO->getSize() < 16)
14230       return SDValue();
14231     break;
14232   }
14233   case ISD::INTRINSIC_VOID: {
14234     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14235     Chain = Intrin->getChain();
14236     // Intrin->getBasePtr() oddly does not get what we want.
14237     Base = Intrin->getOperand(3);
14238     MMO = Intrin->getMemOperand();
14239     SrcOpnd = 2;
14240     break;
14241   }
14242   }
14243 
14244   SDValue Src = N->getOperand(SrcOpnd);
14245   MVT VecTy = Src.getValueType().getSimpleVT();
14246 
14247   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14248   // aligned and the type is a vector with elements up to 4 bytes
14249   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14250       VecTy.getScalarSizeInBits() <= 32) {
14251     return SDValue();
14252   }
14253 
14254   // All stores are done as v2f64 and possible bit cast.
14255   if (VecTy != MVT::v2f64) {
14256     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14257     DCI.AddToWorklist(Src.getNode());
14258   }
14259 
14260   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14261                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14262   DCI.AddToWorklist(Swap.getNode());
14263   Chain = Swap.getValue(1);
14264   SDValue StoreOps[] = { Chain, Swap, Base };
14265   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14266                                           DAG.getVTList(MVT::Other),
14267                                           StoreOps, VecTy, MMO);
14268   DCI.AddToWorklist(Store.getNode());
14269   return Store;
14270 }
14271 
14272 // Handle DAG combine for STORE (FP_TO_INT F).
14273 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14274                                                DAGCombinerInfo &DCI) const {
14275 
14276   SelectionDAG &DAG = DCI.DAG;
14277   SDLoc dl(N);
14278   unsigned Opcode = N->getOperand(1).getOpcode();
14279 
14280   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14281          && "Not a FP_TO_INT Instruction!");
14282 
14283   SDValue Val = N->getOperand(1).getOperand(0);
14284   EVT Op1VT = N->getOperand(1).getValueType();
14285   EVT ResVT = Val.getValueType();
14286 
14287   if (!isTypeLegal(ResVT))
14288     return SDValue();
14289 
14290   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14291   bool ValidTypeForStoreFltAsInt =
14292         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14293          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14294 
14295   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14296       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14297     return SDValue();
14298 
14299   // Extend f32 values to f64
14300   if (ResVT.getScalarSizeInBits() == 32) {
14301     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14302     DCI.AddToWorklist(Val.getNode());
14303   }
14304 
14305   // Set signed or unsigned conversion opcode.
14306   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14307                           PPCISD::FP_TO_SINT_IN_VSR :
14308                           PPCISD::FP_TO_UINT_IN_VSR;
14309 
14310   Val = DAG.getNode(ConvOpcode,
14311                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14312   DCI.AddToWorklist(Val.getNode());
14313 
14314   // Set number of bytes being converted.
14315   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14316   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14317                     DAG.getIntPtrConstant(ByteSize, dl, false),
14318                     DAG.getValueType(Op1VT) };
14319 
14320   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14321           DAG.getVTList(MVT::Other), Ops,
14322           cast<StoreSDNode>(N)->getMemoryVT(),
14323           cast<StoreSDNode>(N)->getMemOperand());
14324 
14325   DCI.AddToWorklist(Val.getNode());
14326   return Val;
14327 }
14328 
14329 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14330   // Check that the source of the element keeps flipping
14331   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14332   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14333   for (int i = 1, e = Mask.size(); i < e; i++) {
14334     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14335       return false;
14336     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14337       return false;
14338     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14339   }
14340   return true;
14341 }
14342 
14343 static bool isSplatBV(SDValue Op) {
14344   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14345     return false;
14346   SDValue FirstOp;
14347 
14348   // Find first non-undef input.
14349   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14350     FirstOp = Op.getOperand(i);
14351     if (!FirstOp.isUndef())
14352       break;
14353   }
14354 
14355   // All inputs are undef or the same as the first non-undef input.
14356   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14357     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14358       return false;
14359   return true;
14360 }
14361 
14362 static SDValue isScalarToVec(SDValue Op) {
14363   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14364     return Op;
14365   if (Op.getOpcode() != ISD::BITCAST)
14366     return SDValue();
14367   Op = Op.getOperand(0);
14368   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14369     return Op;
14370   return SDValue();
14371 }
14372 
14373 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14374                                             int LHSMaxIdx, int RHSMinIdx,
14375                                             int RHSMaxIdx, int HalfVec) {
14376   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14377     int Idx = ShuffV[i];
14378     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14379       ShuffV[i] += HalfVec;
14380   }
14381   return;
14382 }
14383 
14384 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14385 // the original is:
14386 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14387 // In such a case, just change the shuffle mask to extract the element
14388 // from the permuted index.
14389 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14390   SDLoc dl(OrigSToV);
14391   EVT VT = OrigSToV.getValueType();
14392   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14393          "Expecting a SCALAR_TO_VECTOR here");
14394   SDValue Input = OrigSToV.getOperand(0);
14395 
14396   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14397     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14398     SDValue OrigVector = Input.getOperand(0);
14399 
14400     // Can't handle non-const element indices or different vector types
14401     // for the input to the extract and the output of the scalar_to_vector.
14402     if (Idx && VT == OrigVector.getValueType()) {
14403       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14404       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14405       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14406     }
14407   }
14408   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14409                      OrigSToV.getOperand(0));
14410 }
14411 
14412 // On little endian subtargets, combine shuffles such as:
14413 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14414 // into:
14415 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14416 // because the latter can be matched to a single instruction merge.
14417 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14418 // to put the value into element zero. Adjust the shuffle mask so that the
14419 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14420 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14421                                                 SelectionDAG &DAG) const {
14422   SDValue LHS = SVN->getOperand(0);
14423   SDValue RHS = SVN->getOperand(1);
14424   auto Mask = SVN->getMask();
14425   int NumElts = LHS.getValueType().getVectorNumElements();
14426   SDValue Res(SVN, 0);
14427   SDLoc dl(SVN);
14428 
14429   // None of these combines are useful on big endian systems since the ISA
14430   // already has a big endian bias.
14431   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14432     return Res;
14433 
14434   // If this is not a shuffle of a shuffle and the first element comes from
14435   // the second vector, canonicalize to the commuted form. This will make it
14436   // more likely to match one of the single instruction patterns.
14437   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14438       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14439     std::swap(LHS, RHS);
14440     Res = DAG.getCommutedVectorShuffle(*SVN);
14441     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14442   }
14443 
14444   // Adjust the shuffle mask if either input vector comes from a
14445   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14446   // form (to prevent the need for a swap).
14447   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14448   SDValue SToVLHS = isScalarToVec(LHS);
14449   SDValue SToVRHS = isScalarToVec(RHS);
14450   if (SToVLHS || SToVRHS) {
14451     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14452                             : SToVRHS.getValueType().getVectorNumElements();
14453     int NumEltsOut = ShuffV.size();
14454 
14455     // Initially assume that neither input is permuted. These will be adjusted
14456     // accordingly if either input is.
14457     int LHSMaxIdx = -1;
14458     int RHSMinIdx = -1;
14459     int RHSMaxIdx = -1;
14460     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14461 
14462     // Get the permuted scalar to vector nodes for the source(s) that come from
14463     // ISD::SCALAR_TO_VECTOR.
14464     if (SToVLHS) {
14465       // Set up the values for the shuffle vector fixup.
14466       LHSMaxIdx = NumEltsOut / NumEltsIn;
14467       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14468       if (SToVLHS.getValueType() != LHS.getValueType())
14469         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14470       LHS = SToVLHS;
14471     }
14472     if (SToVRHS) {
14473       RHSMinIdx = NumEltsOut;
14474       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14475       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14476       if (SToVRHS.getValueType() != RHS.getValueType())
14477         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14478       RHS = SToVRHS;
14479     }
14480 
14481     // Fix up the shuffle mask to reflect where the desired element actually is.
14482     // The minimum and maximum indices that correspond to element zero for both
14483     // the LHS and RHS are computed and will control which shuffle mask entries
14484     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14485     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14486     // HalfVec to refer to the corresponding element in the permuted vector.
14487     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14488                                     HalfVec);
14489     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14490 
14491     // We may have simplified away the shuffle. We won't be able to do anything
14492     // further with it here.
14493     if (!isa<ShuffleVectorSDNode>(Res))
14494       return Res;
14495     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14496   }
14497 
14498   // The common case after we commuted the shuffle is that the RHS is a splat
14499   // and we have elements coming in from the splat at indices that are not
14500   // conducive to using a merge.
14501   // Example:
14502   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14503   if (!isSplatBV(RHS))
14504     return Res;
14505 
14506   // We are looking for a mask such that all even elements are from
14507   // one vector and all odd elements from the other.
14508   if (!isAlternatingShuffMask(Mask, NumElts))
14509     return Res;
14510 
14511   // Adjust the mask so we are pulling in the same index from the splat
14512   // as the index from the interesting vector in consecutive elements.
14513   // Example (even elements from first vector):
14514   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14515   if (Mask[0] < NumElts)
14516     for (int i = 1, e = Mask.size(); i < e; i += 2)
14517       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14518   // Example (odd elements from first vector):
14519   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14520   else
14521     for (int i = 0, e = Mask.size(); i < e; i += 2)
14522       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14523 
14524   // If the RHS has undefs, we need to remove them since we may have created
14525   // a shuffle that adds those instead of the splat value.
14526   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14527   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14528 
14529   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14530   return Res;
14531 }
14532 
14533 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14534                                                 LSBaseSDNode *LSBase,
14535                                                 DAGCombinerInfo &DCI) const {
14536   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14537         "Not a reverse memop pattern!");
14538 
14539   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14540     auto Mask = SVN->getMask();
14541     int i = 0;
14542     auto I = Mask.rbegin();
14543     auto E = Mask.rend();
14544 
14545     for (; I != E; ++I) {
14546       if (*I != i)
14547         return false;
14548       i++;
14549     }
14550     return true;
14551   };
14552 
14553   SelectionDAG &DAG = DCI.DAG;
14554   EVT VT = SVN->getValueType(0);
14555 
14556   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14557     return SDValue();
14558 
14559   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14560   // See comment in PPCVSXSwapRemoval.cpp.
14561   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14562   if (!Subtarget.hasP9Vector())
14563     return SDValue();
14564 
14565   if(!IsElementReverse(SVN))
14566     return SDValue();
14567 
14568   if (LSBase->getOpcode() == ISD::LOAD) {
14569     SDLoc dl(SVN);
14570     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14571     return DAG.getMemIntrinsicNode(
14572         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14573         LSBase->getMemoryVT(), LSBase->getMemOperand());
14574   }
14575 
14576   if (LSBase->getOpcode() == ISD::STORE) {
14577     SDLoc dl(LSBase);
14578     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14579                           LSBase->getBasePtr()};
14580     return DAG.getMemIntrinsicNode(
14581         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14582         LSBase->getMemoryVT(), LSBase->getMemOperand());
14583   }
14584 
14585   llvm_unreachable("Expected a load or store node here");
14586 }
14587 
14588 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14589                                              DAGCombinerInfo &DCI) const {
14590   SelectionDAG &DAG = DCI.DAG;
14591   SDLoc dl(N);
14592   switch (N->getOpcode()) {
14593   default: break;
14594   case ISD::ADD:
14595     return combineADD(N, DCI);
14596   case ISD::SHL:
14597     return combineSHL(N, DCI);
14598   case ISD::SRA:
14599     return combineSRA(N, DCI);
14600   case ISD::SRL:
14601     return combineSRL(N, DCI);
14602   case ISD::MUL:
14603     return combineMUL(N, DCI);
14604   case ISD::FMA:
14605   case PPCISD::FNMSUB:
14606     return combineFMALike(N, DCI);
14607   case PPCISD::SHL:
14608     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14609         return N->getOperand(0);
14610     break;
14611   case PPCISD::SRL:
14612     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14613         return N->getOperand(0);
14614     break;
14615   case PPCISD::SRA:
14616     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14617       if (C->isNullValue() ||   //  0 >>s V -> 0.
14618           C->isAllOnesValue())    // -1 >>s V -> -1.
14619         return N->getOperand(0);
14620     }
14621     break;
14622   case ISD::SIGN_EXTEND:
14623   case ISD::ZERO_EXTEND:
14624   case ISD::ANY_EXTEND:
14625     return DAGCombineExtBoolTrunc(N, DCI);
14626   case ISD::TRUNCATE:
14627     return combineTRUNCATE(N, DCI);
14628   case ISD::SETCC:
14629     if (SDValue CSCC = combineSetCC(N, DCI))
14630       return CSCC;
14631     LLVM_FALLTHROUGH;
14632   case ISD::SELECT_CC:
14633     return DAGCombineTruncBoolExt(N, DCI);
14634   case ISD::SINT_TO_FP:
14635   case ISD::UINT_TO_FP:
14636     return combineFPToIntToFP(N, DCI);
14637   case ISD::VECTOR_SHUFFLE:
14638     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14639       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14640       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14641     }
14642     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14643   case ISD::STORE: {
14644 
14645     EVT Op1VT = N->getOperand(1).getValueType();
14646     unsigned Opcode = N->getOperand(1).getOpcode();
14647 
14648     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14649       SDValue Val= combineStoreFPToInt(N, DCI);
14650       if (Val)
14651         return Val;
14652     }
14653 
14654     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14655       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14656       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14657       if (Val)
14658         return Val;
14659     }
14660 
14661     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14662     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14663         N->getOperand(1).getNode()->hasOneUse() &&
14664         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14665          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14666 
14667       // STBRX can only handle simple types and it makes no sense to store less
14668       // two bytes in byte-reversed order.
14669       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14670       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14671         break;
14672 
14673       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14674       // Do an any-extend to 32-bits if this is a half-word input.
14675       if (BSwapOp.getValueType() == MVT::i16)
14676         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14677 
14678       // If the type of BSWAP operand is wider than stored memory width
14679       // it need to be shifted to the right side before STBRX.
14680       if (Op1VT.bitsGT(mVT)) {
14681         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14682         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14683                               DAG.getConstant(Shift, dl, MVT::i32));
14684         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14685         if (Op1VT == MVT::i64)
14686           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14687       }
14688 
14689       SDValue Ops[] = {
14690         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14691       };
14692       return
14693         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14694                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14695                                 cast<StoreSDNode>(N)->getMemOperand());
14696     }
14697 
14698     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14699     // So it can increase the chance of CSE constant construction.
14700     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14701         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14702       // Need to sign-extended to 64-bits to handle negative values.
14703       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14704       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14705                                     MemVT.getSizeInBits());
14706       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14707 
14708       // DAG.getTruncStore() can't be used here because it doesn't accept
14709       // the general (base + offset) addressing mode.
14710       // So we use UpdateNodeOperands and setTruncatingStore instead.
14711       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14712                              N->getOperand(3));
14713       cast<StoreSDNode>(N)->setTruncatingStore(true);
14714       return SDValue(N, 0);
14715     }
14716 
14717     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14718     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14719     if (Op1VT.isSimple()) {
14720       MVT StoreVT = Op1VT.getSimpleVT();
14721       if (Subtarget.needsSwapsForVSXMemOps() &&
14722           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14723            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14724         return expandVSXStoreForLE(N, DCI);
14725     }
14726     break;
14727   }
14728   case ISD::LOAD: {
14729     LoadSDNode *LD = cast<LoadSDNode>(N);
14730     EVT VT = LD->getValueType(0);
14731 
14732     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14733     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14734     if (VT.isSimple()) {
14735       MVT LoadVT = VT.getSimpleVT();
14736       if (Subtarget.needsSwapsForVSXMemOps() &&
14737           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14738            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14739         return expandVSXLoadForLE(N, DCI);
14740     }
14741 
14742     // We sometimes end up with a 64-bit integer load, from which we extract
14743     // two single-precision floating-point numbers. This happens with
14744     // std::complex<float>, and other similar structures, because of the way we
14745     // canonicalize structure copies. However, if we lack direct moves,
14746     // then the final bitcasts from the extracted integer values to the
14747     // floating-point numbers turn into store/load pairs. Even with direct moves,
14748     // just loading the two floating-point numbers is likely better.
14749     auto ReplaceTwoFloatLoad = [&]() {
14750       if (VT != MVT::i64)
14751         return false;
14752 
14753       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14754           LD->isVolatile())
14755         return false;
14756 
14757       //  We're looking for a sequence like this:
14758       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14759       //      t16: i64 = srl t13, Constant:i32<32>
14760       //    t17: i32 = truncate t16
14761       //  t18: f32 = bitcast t17
14762       //    t19: i32 = truncate t13
14763       //  t20: f32 = bitcast t19
14764 
14765       if (!LD->hasNUsesOfValue(2, 0))
14766         return false;
14767 
14768       auto UI = LD->use_begin();
14769       while (UI.getUse().getResNo() != 0) ++UI;
14770       SDNode *Trunc = *UI++;
14771       while (UI.getUse().getResNo() != 0) ++UI;
14772       SDNode *RightShift = *UI;
14773       if (Trunc->getOpcode() != ISD::TRUNCATE)
14774         std::swap(Trunc, RightShift);
14775 
14776       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14777           Trunc->getValueType(0) != MVT::i32 ||
14778           !Trunc->hasOneUse())
14779         return false;
14780       if (RightShift->getOpcode() != ISD::SRL ||
14781           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14782           RightShift->getConstantOperandVal(1) != 32 ||
14783           !RightShift->hasOneUse())
14784         return false;
14785 
14786       SDNode *Trunc2 = *RightShift->use_begin();
14787       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14788           Trunc2->getValueType(0) != MVT::i32 ||
14789           !Trunc2->hasOneUse())
14790         return false;
14791 
14792       SDNode *Bitcast = *Trunc->use_begin();
14793       SDNode *Bitcast2 = *Trunc2->use_begin();
14794 
14795       if (Bitcast->getOpcode() != ISD::BITCAST ||
14796           Bitcast->getValueType(0) != MVT::f32)
14797         return false;
14798       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14799           Bitcast2->getValueType(0) != MVT::f32)
14800         return false;
14801 
14802       if (Subtarget.isLittleEndian())
14803         std::swap(Bitcast, Bitcast2);
14804 
14805       // Bitcast has the second float (in memory-layout order) and Bitcast2
14806       // has the first one.
14807 
14808       SDValue BasePtr = LD->getBasePtr();
14809       if (LD->isIndexed()) {
14810         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14811                "Non-pre-inc AM on PPC?");
14812         BasePtr =
14813           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14814                       LD->getOffset());
14815       }
14816 
14817       auto MMOFlags =
14818           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14819       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14820                                       LD->getPointerInfo(), LD->getAlignment(),
14821                                       MMOFlags, LD->getAAInfo());
14822       SDValue AddPtr =
14823         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14824                     BasePtr, DAG.getIntPtrConstant(4, dl));
14825       SDValue FloatLoad2 = DAG.getLoad(
14826           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14827           LD->getPointerInfo().getWithOffset(4),
14828           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14829 
14830       if (LD->isIndexed()) {
14831         // Note that DAGCombine should re-form any pre-increment load(s) from
14832         // what is produced here if that makes sense.
14833         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14834       }
14835 
14836       DCI.CombineTo(Bitcast2, FloatLoad);
14837       DCI.CombineTo(Bitcast, FloatLoad2);
14838 
14839       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14840                                     SDValue(FloatLoad2.getNode(), 1));
14841       return true;
14842     };
14843 
14844     if (ReplaceTwoFloatLoad())
14845       return SDValue(N, 0);
14846 
14847     EVT MemVT = LD->getMemoryVT();
14848     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14849     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14850     if (LD->isUnindexed() && VT.isVector() &&
14851         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14852           // P8 and later hardware should just use LOAD.
14853           !Subtarget.hasP8Vector() &&
14854           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14855            VT == MVT::v4f32))) &&
14856         LD->getAlign() < ABIAlignment) {
14857       // This is a type-legal unaligned Altivec load.
14858       SDValue Chain = LD->getChain();
14859       SDValue Ptr = LD->getBasePtr();
14860       bool isLittleEndian = Subtarget.isLittleEndian();
14861 
14862       // This implements the loading of unaligned vectors as described in
14863       // the venerable Apple Velocity Engine overview. Specifically:
14864       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14865       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14866       //
14867       // The general idea is to expand a sequence of one or more unaligned
14868       // loads into an alignment-based permutation-control instruction (lvsl
14869       // or lvsr), a series of regular vector loads (which always truncate
14870       // their input address to an aligned address), and a series of
14871       // permutations.  The results of these permutations are the requested
14872       // loaded values.  The trick is that the last "extra" load is not taken
14873       // from the address you might suspect (sizeof(vector) bytes after the
14874       // last requested load), but rather sizeof(vector) - 1 bytes after the
14875       // last requested vector. The point of this is to avoid a page fault if
14876       // the base address happened to be aligned. This works because if the
14877       // base address is aligned, then adding less than a full vector length
14878       // will cause the last vector in the sequence to be (re)loaded.
14879       // Otherwise, the next vector will be fetched as you might suspect was
14880       // necessary.
14881 
14882       // We might be able to reuse the permutation generation from
14883       // a different base address offset from this one by an aligned amount.
14884       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14885       // optimization later.
14886       Intrinsic::ID Intr, IntrLD, IntrPerm;
14887       MVT PermCntlTy, PermTy, LDTy;
14888       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14889                             : Intrinsic::ppc_altivec_lvsl;
14890       IntrLD = Intrinsic::ppc_altivec_lvx;
14891       IntrPerm = Intrinsic::ppc_altivec_vperm;
14892       PermCntlTy = MVT::v16i8;
14893       PermTy = MVT::v4i32;
14894       LDTy = MVT::v4i32;
14895 
14896       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14897 
14898       // Create the new MMO for the new base load. It is like the original MMO,
14899       // but represents an area in memory almost twice the vector size centered
14900       // on the original address. If the address is unaligned, we might start
14901       // reading up to (sizeof(vector)-1) bytes below the address of the
14902       // original unaligned load.
14903       MachineFunction &MF = DAG.getMachineFunction();
14904       MachineMemOperand *BaseMMO =
14905         MF.getMachineMemOperand(LD->getMemOperand(),
14906                                 -(long)MemVT.getStoreSize()+1,
14907                                 2*MemVT.getStoreSize()-1);
14908 
14909       // Create the new base load.
14910       SDValue LDXIntID =
14911           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14912       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14913       SDValue BaseLoad =
14914         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14915                                 DAG.getVTList(PermTy, MVT::Other),
14916                                 BaseLoadOps, LDTy, BaseMMO);
14917 
14918       // Note that the value of IncOffset (which is provided to the next
14919       // load's pointer info offset value, and thus used to calculate the
14920       // alignment), and the value of IncValue (which is actually used to
14921       // increment the pointer value) are different! This is because we
14922       // require the next load to appear to be aligned, even though it
14923       // is actually offset from the base pointer by a lesser amount.
14924       int IncOffset = VT.getSizeInBits() / 8;
14925       int IncValue = IncOffset;
14926 
14927       // Walk (both up and down) the chain looking for another load at the real
14928       // (aligned) offset (the alignment of the other load does not matter in
14929       // this case). If found, then do not use the offset reduction trick, as
14930       // that will prevent the loads from being later combined (as they would
14931       // otherwise be duplicates).
14932       if (!findConsecutiveLoad(LD, DAG))
14933         --IncValue;
14934 
14935       SDValue Increment =
14936           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14937       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14938 
14939       MachineMemOperand *ExtraMMO =
14940         MF.getMachineMemOperand(LD->getMemOperand(),
14941                                 1, 2*MemVT.getStoreSize()-1);
14942       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14943       SDValue ExtraLoad =
14944         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14945                                 DAG.getVTList(PermTy, MVT::Other),
14946                                 ExtraLoadOps, LDTy, ExtraMMO);
14947 
14948       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14949         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14950 
14951       // Because vperm has a big-endian bias, we must reverse the order
14952       // of the input vectors and complement the permute control vector
14953       // when generating little endian code.  We have already handled the
14954       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14955       // and ExtraLoad here.
14956       SDValue Perm;
14957       if (isLittleEndian)
14958         Perm = BuildIntrinsicOp(IntrPerm,
14959                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14960       else
14961         Perm = BuildIntrinsicOp(IntrPerm,
14962                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14963 
14964       if (VT != PermTy)
14965         Perm = Subtarget.hasAltivec()
14966                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14967                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14968                                  DAG.getTargetConstant(1, dl, MVT::i64));
14969                                // second argument is 1 because this rounding
14970                                // is always exact.
14971 
14972       // The output of the permutation is our loaded result, the TokenFactor is
14973       // our new chain.
14974       DCI.CombineTo(N, Perm, TF);
14975       return SDValue(N, 0);
14976     }
14977     }
14978     break;
14979     case ISD::INTRINSIC_WO_CHAIN: {
14980       bool isLittleEndian = Subtarget.isLittleEndian();
14981       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14982       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14983                                            : Intrinsic::ppc_altivec_lvsl);
14984       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14985         SDValue Add = N->getOperand(1);
14986 
14987         int Bits = 4 /* 16 byte alignment */;
14988 
14989         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14990                                   APInt::getAllOnesValue(Bits /* alignment */)
14991                                       .zext(Add.getScalarValueSizeInBits()))) {
14992           SDNode *BasePtr = Add->getOperand(0).getNode();
14993           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14994                                     UE = BasePtr->use_end();
14995                UI != UE; ++UI) {
14996             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14997                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14998                     IID) {
14999               // We've found another LVSL/LVSR, and this address is an aligned
15000               // multiple of that one. The results will be the same, so use the
15001               // one we've just found instead.
15002 
15003               return SDValue(*UI, 0);
15004             }
15005           }
15006         }
15007 
15008         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15009           SDNode *BasePtr = Add->getOperand(0).getNode();
15010           for (SDNode::use_iterator UI = BasePtr->use_begin(),
15011                UE = BasePtr->use_end(); UI != UE; ++UI) {
15012             if (UI->getOpcode() == ISD::ADD &&
15013                 isa<ConstantSDNode>(UI->getOperand(1)) &&
15014                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15015                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
15016                 (1ULL << Bits) == 0) {
15017               SDNode *OtherAdd = *UI;
15018               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
15019                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
15020                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15021                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
15022                   return SDValue(*VI, 0);
15023                 }
15024               }
15025             }
15026           }
15027         }
15028       }
15029 
15030       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15031       // Expose the vabsduw/h/b opportunity for down stream
15032       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15033           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15034            IID == Intrinsic::ppc_altivec_vmaxsh ||
15035            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15036         SDValue V1 = N->getOperand(1);
15037         SDValue V2 = N->getOperand(2);
15038         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15039              V1.getSimpleValueType() == MVT::v8i16 ||
15040              V1.getSimpleValueType() == MVT::v16i8) &&
15041             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15042           // (0-a, a)
15043           if (V1.getOpcode() == ISD::SUB &&
15044               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15045               V1.getOperand(1) == V2) {
15046             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15047           }
15048           // (a, 0-a)
15049           if (V2.getOpcode() == ISD::SUB &&
15050               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15051               V2.getOperand(1) == V1) {
15052             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15053           }
15054           // (x-y, y-x)
15055           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15056               V1.getOperand(0) == V2.getOperand(1) &&
15057               V1.getOperand(1) == V2.getOperand(0)) {
15058             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15059           }
15060         }
15061       }
15062     }
15063 
15064     break;
15065   case ISD::INTRINSIC_W_CHAIN:
15066     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15067     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15068     if (Subtarget.needsSwapsForVSXMemOps()) {
15069       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15070       default:
15071         break;
15072       case Intrinsic::ppc_vsx_lxvw4x:
15073       case Intrinsic::ppc_vsx_lxvd2x:
15074         return expandVSXLoadForLE(N, DCI);
15075       }
15076     }
15077     break;
15078   case ISD::INTRINSIC_VOID:
15079     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15080     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15081     if (Subtarget.needsSwapsForVSXMemOps()) {
15082       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15083       default:
15084         break;
15085       case Intrinsic::ppc_vsx_stxvw4x:
15086       case Intrinsic::ppc_vsx_stxvd2x:
15087         return expandVSXStoreForLE(N, DCI);
15088       }
15089     }
15090     break;
15091   case ISD::BSWAP:
15092     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15093     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
15094         N->getOperand(0).hasOneUse() &&
15095         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15096          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
15097           N->getValueType(0) == MVT::i64))) {
15098       SDValue Load = N->getOperand(0);
15099       LoadSDNode *LD = cast<LoadSDNode>(Load);
15100       // Create the byte-swapping load.
15101       SDValue Ops[] = {
15102         LD->getChain(),    // Chain
15103         LD->getBasePtr(),  // Ptr
15104         DAG.getValueType(N->getValueType(0)) // VT
15105       };
15106       SDValue BSLoad =
15107         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15108                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15109                                               MVT::i64 : MVT::i32, MVT::Other),
15110                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15111 
15112       // If this is an i16 load, insert the truncate.
15113       SDValue ResVal = BSLoad;
15114       if (N->getValueType(0) == MVT::i16)
15115         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15116 
15117       // First, combine the bswap away.  This makes the value produced by the
15118       // load dead.
15119       DCI.CombineTo(N, ResVal);
15120 
15121       // Next, combine the load away, we give it a bogus result value but a real
15122       // chain result.  The result value is dead because the bswap is dead.
15123       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15124 
15125       // Return N so it doesn't get rechecked!
15126       return SDValue(N, 0);
15127     }
15128     break;
15129   case PPCISD::VCMP:
15130     // If a VCMPo node already exists with exactly the same operands as this
15131     // node, use its result instead of this node (VCMPo computes both a CR6 and
15132     // a normal output).
15133     //
15134     if (!N->getOperand(0).hasOneUse() &&
15135         !N->getOperand(1).hasOneUse() &&
15136         !N->getOperand(2).hasOneUse()) {
15137 
15138       // Scan all of the users of the LHS, looking for VCMPo's that match.
15139       SDNode *VCMPoNode = nullptr;
15140 
15141       SDNode *LHSN = N->getOperand(0).getNode();
15142       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15143            UI != E; ++UI)
15144         if (UI->getOpcode() == PPCISD::VCMPo &&
15145             UI->getOperand(1) == N->getOperand(1) &&
15146             UI->getOperand(2) == N->getOperand(2) &&
15147             UI->getOperand(0) == N->getOperand(0)) {
15148           VCMPoNode = *UI;
15149           break;
15150         }
15151 
15152       // If there is no VCMPo node, or if the flag value has a single use, don't
15153       // transform this.
15154       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
15155         break;
15156 
15157       // Look at the (necessarily single) use of the flag value.  If it has a
15158       // chain, this transformation is more complex.  Note that multiple things
15159       // could use the value result, which we should ignore.
15160       SDNode *FlagUser = nullptr;
15161       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
15162            FlagUser == nullptr; ++UI) {
15163         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
15164         SDNode *User = *UI;
15165         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15166           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
15167             FlagUser = User;
15168             break;
15169           }
15170         }
15171       }
15172 
15173       // If the user is a MFOCRF instruction, we know this is safe.
15174       // Otherwise we give up for right now.
15175       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15176         return SDValue(VCMPoNode, 0);
15177     }
15178     break;
15179   case ISD::BRCOND: {
15180     SDValue Cond = N->getOperand(1);
15181     SDValue Target = N->getOperand(2);
15182 
15183     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15184         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15185           Intrinsic::loop_decrement) {
15186 
15187       // We now need to make the intrinsic dead (it cannot be instruction
15188       // selected).
15189       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15190       assert(Cond.getNode()->hasOneUse() &&
15191              "Counter decrement has more than one use");
15192 
15193       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15194                          N->getOperand(0), Target);
15195     }
15196   }
15197   break;
15198   case ISD::BR_CC: {
15199     // If this is a branch on an altivec predicate comparison, lower this so
15200     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15201     // lowering is done pre-legalize, because the legalizer lowers the predicate
15202     // compare down to code that is difficult to reassemble.
15203     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15204     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15205 
15206     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15207     // value. If so, pass-through the AND to get to the intrinsic.
15208     if (LHS.getOpcode() == ISD::AND &&
15209         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15210         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15211           Intrinsic::loop_decrement &&
15212         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15213         !isNullConstant(LHS.getOperand(1)))
15214       LHS = LHS.getOperand(0);
15215 
15216     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15217         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15218           Intrinsic::loop_decrement &&
15219         isa<ConstantSDNode>(RHS)) {
15220       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15221              "Counter decrement comparison is not EQ or NE");
15222 
15223       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15224       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15225                     (CC == ISD::SETNE && !Val);
15226 
15227       // We now need to make the intrinsic dead (it cannot be instruction
15228       // selected).
15229       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15230       assert(LHS.getNode()->hasOneUse() &&
15231              "Counter decrement has more than one use");
15232 
15233       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15234                          N->getOperand(0), N->getOperand(4));
15235     }
15236 
15237     int CompareOpc;
15238     bool isDot;
15239 
15240     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15241         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15242         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15243       assert(isDot && "Can't compare against a vector result!");
15244 
15245       // If this is a comparison against something other than 0/1, then we know
15246       // that the condition is never/always true.
15247       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15248       if (Val != 0 && Val != 1) {
15249         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15250           return N->getOperand(0);
15251         // Always !=, turn it into an unconditional branch.
15252         return DAG.getNode(ISD::BR, dl, MVT::Other,
15253                            N->getOperand(0), N->getOperand(4));
15254       }
15255 
15256       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15257 
15258       // Create the PPCISD altivec 'dot' comparison node.
15259       SDValue Ops[] = {
15260         LHS.getOperand(2),  // LHS of compare
15261         LHS.getOperand(3),  // RHS of compare
15262         DAG.getConstant(CompareOpc, dl, MVT::i32)
15263       };
15264       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15265       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
15266 
15267       // Unpack the result based on how the target uses it.
15268       PPC::Predicate CompOpc;
15269       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15270       default:  // Can't happen, don't crash on invalid number though.
15271       case 0:   // Branch on the value of the EQ bit of CR6.
15272         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15273         break;
15274       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15275         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15276         break;
15277       case 2:   // Branch on the value of the LT bit of CR6.
15278         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15279         break;
15280       case 3:   // Branch on the inverted value of the LT bit of CR6.
15281         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15282         break;
15283       }
15284 
15285       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15286                          DAG.getConstant(CompOpc, dl, MVT::i32),
15287                          DAG.getRegister(PPC::CR6, MVT::i32),
15288                          N->getOperand(4), CompNode.getValue(1));
15289     }
15290     break;
15291   }
15292   case ISD::BUILD_VECTOR:
15293     return DAGCombineBuildVector(N, DCI);
15294   case ISD::ABS:
15295     return combineABS(N, DCI);
15296   case ISD::VSELECT:
15297     return combineVSelect(N, DCI);
15298   }
15299 
15300   return SDValue();
15301 }
15302 
15303 SDValue
15304 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15305                                  SelectionDAG &DAG,
15306                                  SmallVectorImpl<SDNode *> &Created) const {
15307   // fold (sdiv X, pow2)
15308   EVT VT = N->getValueType(0);
15309   if (VT == MVT::i64 && !Subtarget.isPPC64())
15310     return SDValue();
15311   if ((VT != MVT::i32 && VT != MVT::i64) ||
15312       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15313     return SDValue();
15314 
15315   SDLoc DL(N);
15316   SDValue N0 = N->getOperand(0);
15317 
15318   bool IsNegPow2 = (-Divisor).isPowerOf2();
15319   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15320   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15321 
15322   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15323   Created.push_back(Op.getNode());
15324 
15325   if (IsNegPow2) {
15326     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15327     Created.push_back(Op.getNode());
15328   }
15329 
15330   return Op;
15331 }
15332 
15333 //===----------------------------------------------------------------------===//
15334 // Inline Assembly Support
15335 //===----------------------------------------------------------------------===//
15336 
15337 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15338                                                       KnownBits &Known,
15339                                                       const APInt &DemandedElts,
15340                                                       const SelectionDAG &DAG,
15341                                                       unsigned Depth) const {
15342   Known.resetAll();
15343   switch (Op.getOpcode()) {
15344   default: break;
15345   case PPCISD::LBRX: {
15346     // lhbrx is known to have the top bits cleared out.
15347     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15348       Known.Zero = 0xFFFF0000;
15349     break;
15350   }
15351   case ISD::INTRINSIC_WO_CHAIN: {
15352     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15353     default: break;
15354     case Intrinsic::ppc_altivec_vcmpbfp_p:
15355     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15356     case Intrinsic::ppc_altivec_vcmpequb_p:
15357     case Intrinsic::ppc_altivec_vcmpequh_p:
15358     case Intrinsic::ppc_altivec_vcmpequw_p:
15359     case Intrinsic::ppc_altivec_vcmpequd_p:
15360     case Intrinsic::ppc_altivec_vcmpequq_p:
15361     case Intrinsic::ppc_altivec_vcmpgefp_p:
15362     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15363     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15364     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15365     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15366     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15367     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15368     case Intrinsic::ppc_altivec_vcmpgtub_p:
15369     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15370     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15371     case Intrinsic::ppc_altivec_vcmpgtud_p:
15372     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15373       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15374       break;
15375     }
15376   }
15377   }
15378 }
15379 
15380 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15381   switch (Subtarget.getCPUDirective()) {
15382   default: break;
15383   case PPC::DIR_970:
15384   case PPC::DIR_PWR4:
15385   case PPC::DIR_PWR5:
15386   case PPC::DIR_PWR5X:
15387   case PPC::DIR_PWR6:
15388   case PPC::DIR_PWR6X:
15389   case PPC::DIR_PWR7:
15390   case PPC::DIR_PWR8:
15391   case PPC::DIR_PWR9:
15392   case PPC::DIR_PWR10:
15393   case PPC::DIR_PWR_FUTURE: {
15394     if (!ML)
15395       break;
15396 
15397     if (!DisableInnermostLoopAlign32) {
15398       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15399       // so that we can decrease cache misses and branch-prediction misses.
15400       // Actual alignment of the loop will depend on the hotness check and other
15401       // logic in alignBlocks.
15402       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15403         return Align(32);
15404     }
15405 
15406     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15407 
15408     // For small loops (between 5 and 8 instructions), align to a 32-byte
15409     // boundary so that the entire loop fits in one instruction-cache line.
15410     uint64_t LoopSize = 0;
15411     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15412       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15413         LoopSize += TII->getInstSizeInBytes(*J);
15414         if (LoopSize > 32)
15415           break;
15416       }
15417 
15418     if (LoopSize > 16 && LoopSize <= 32)
15419       return Align(32);
15420 
15421     break;
15422   }
15423   }
15424 
15425   return TargetLowering::getPrefLoopAlignment(ML);
15426 }
15427 
15428 /// getConstraintType - Given a constraint, return the type of
15429 /// constraint it is for this target.
15430 PPCTargetLowering::ConstraintType
15431 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15432   if (Constraint.size() == 1) {
15433     switch (Constraint[0]) {
15434     default: break;
15435     case 'b':
15436     case 'r':
15437     case 'f':
15438     case 'd':
15439     case 'v':
15440     case 'y':
15441       return C_RegisterClass;
15442     case 'Z':
15443       // FIXME: While Z does indicate a memory constraint, it specifically
15444       // indicates an r+r address (used in conjunction with the 'y' modifier
15445       // in the replacement string). Currently, we're forcing the base
15446       // register to be r0 in the asm printer (which is interpreted as zero)
15447       // and forming the complete address in the second register. This is
15448       // suboptimal.
15449       return C_Memory;
15450     }
15451   } else if (Constraint == "wc") { // individual CR bits.
15452     return C_RegisterClass;
15453   } else if (Constraint == "wa" || Constraint == "wd" ||
15454              Constraint == "wf" || Constraint == "ws" ||
15455              Constraint == "wi" || Constraint == "ww") {
15456     return C_RegisterClass; // VSX registers.
15457   }
15458   return TargetLowering::getConstraintType(Constraint);
15459 }
15460 
15461 /// Examine constraint type and operand type and determine a weight value.
15462 /// This object must already have been set up with the operand type
15463 /// and the current alternative constraint selected.
15464 TargetLowering::ConstraintWeight
15465 PPCTargetLowering::getSingleConstraintMatchWeight(
15466     AsmOperandInfo &info, const char *constraint) const {
15467   ConstraintWeight weight = CW_Invalid;
15468   Value *CallOperandVal = info.CallOperandVal;
15469     // If we don't have a value, we can't do a match,
15470     // but allow it at the lowest weight.
15471   if (!CallOperandVal)
15472     return CW_Default;
15473   Type *type = CallOperandVal->getType();
15474 
15475   // Look at the constraint type.
15476   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15477     return CW_Register; // an individual CR bit.
15478   else if ((StringRef(constraint) == "wa" ||
15479             StringRef(constraint) == "wd" ||
15480             StringRef(constraint) == "wf") &&
15481            type->isVectorTy())
15482     return CW_Register;
15483   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15484     return CW_Register; // just hold 64-bit integers data.
15485   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15486     return CW_Register;
15487   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15488     return CW_Register;
15489 
15490   switch (*constraint) {
15491   default:
15492     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15493     break;
15494   case 'b':
15495     if (type->isIntegerTy())
15496       weight = CW_Register;
15497     break;
15498   case 'f':
15499     if (type->isFloatTy())
15500       weight = CW_Register;
15501     break;
15502   case 'd':
15503     if (type->isDoubleTy())
15504       weight = CW_Register;
15505     break;
15506   case 'v':
15507     if (type->isVectorTy())
15508       weight = CW_Register;
15509     break;
15510   case 'y':
15511     weight = CW_Register;
15512     break;
15513   case 'Z':
15514     weight = CW_Memory;
15515     break;
15516   }
15517   return weight;
15518 }
15519 
15520 std::pair<unsigned, const TargetRegisterClass *>
15521 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15522                                                 StringRef Constraint,
15523                                                 MVT VT) const {
15524   if (Constraint.size() == 1) {
15525     // GCC RS6000 Constraint Letters
15526     switch (Constraint[0]) {
15527     case 'b':   // R1-R31
15528       if (VT == MVT::i64 && Subtarget.isPPC64())
15529         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15530       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15531     case 'r':   // R0-R31
15532       if (VT == MVT::i64 && Subtarget.isPPC64())
15533         return std::make_pair(0U, &PPC::G8RCRegClass);
15534       return std::make_pair(0U, &PPC::GPRCRegClass);
15535     // 'd' and 'f' constraints are both defined to be "the floating point
15536     // registers", where one is for 32-bit and the other for 64-bit. We don't
15537     // really care overly much here so just give them all the same reg classes.
15538     case 'd':
15539     case 'f':
15540       if (Subtarget.hasSPE()) {
15541         if (VT == MVT::f32 || VT == MVT::i32)
15542           return std::make_pair(0U, &PPC::GPRCRegClass);
15543         if (VT == MVT::f64 || VT == MVT::i64)
15544           return std::make_pair(0U, &PPC::SPERCRegClass);
15545       } else {
15546         if (VT == MVT::f32 || VT == MVT::i32)
15547           return std::make_pair(0U, &PPC::F4RCRegClass);
15548         if (VT == MVT::f64 || VT == MVT::i64)
15549           return std::make_pair(0U, &PPC::F8RCRegClass);
15550       }
15551       break;
15552     case 'v':
15553       if (Subtarget.hasAltivec())
15554         return std::make_pair(0U, &PPC::VRRCRegClass);
15555       break;
15556     case 'y':   // crrc
15557       return std::make_pair(0U, &PPC::CRRCRegClass);
15558     }
15559   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15560     // An individual CR bit.
15561     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15562   } else if ((Constraint == "wa" || Constraint == "wd" ||
15563              Constraint == "wf" || Constraint == "wi") &&
15564              Subtarget.hasVSX()) {
15565     return std::make_pair(0U, &PPC::VSRCRegClass);
15566   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15567     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15568       return std::make_pair(0U, &PPC::VSSRCRegClass);
15569     else
15570       return std::make_pair(0U, &PPC::VSFRCRegClass);
15571   }
15572 
15573   // If we name a VSX register, we can't defer to the base class because it
15574   // will not recognize the correct register (their names will be VSL{0-31}
15575   // and V{0-31} so they won't match). So we match them here.
15576   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15577     int VSNum = atoi(Constraint.data() + 3);
15578     assert(VSNum >= 0 && VSNum <= 63 &&
15579            "Attempted to access a vsr out of range");
15580     if (VSNum < 32)
15581       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15582     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15583   }
15584   std::pair<unsigned, const TargetRegisterClass *> R =
15585       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15586 
15587   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15588   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15589   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15590   // register.
15591   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15592   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15593   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15594       PPC::GPRCRegClass.contains(R.first))
15595     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15596                             PPC::sub_32, &PPC::G8RCRegClass),
15597                           &PPC::G8RCRegClass);
15598 
15599   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15600   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15601     R.first = PPC::CR0;
15602     R.second = &PPC::CRRCRegClass;
15603   }
15604 
15605   return R;
15606 }
15607 
15608 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15609 /// vector.  If it is invalid, don't add anything to Ops.
15610 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15611                                                      std::string &Constraint,
15612                                                      std::vector<SDValue>&Ops,
15613                                                      SelectionDAG &DAG) const {
15614   SDValue Result;
15615 
15616   // Only support length 1 constraints.
15617   if (Constraint.length() > 1) return;
15618 
15619   char Letter = Constraint[0];
15620   switch (Letter) {
15621   default: break;
15622   case 'I':
15623   case 'J':
15624   case 'K':
15625   case 'L':
15626   case 'M':
15627   case 'N':
15628   case 'O':
15629   case 'P': {
15630     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15631     if (!CST) return; // Must be an immediate to match.
15632     SDLoc dl(Op);
15633     int64_t Value = CST->getSExtValue();
15634     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15635                          // numbers are printed as such.
15636     switch (Letter) {
15637     default: llvm_unreachable("Unknown constraint letter!");
15638     case 'I':  // "I" is a signed 16-bit constant.
15639       if (isInt<16>(Value))
15640         Result = DAG.getTargetConstant(Value, dl, TCVT);
15641       break;
15642     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15643       if (isShiftedUInt<16, 16>(Value))
15644         Result = DAG.getTargetConstant(Value, dl, TCVT);
15645       break;
15646     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15647       if (isShiftedInt<16, 16>(Value))
15648         Result = DAG.getTargetConstant(Value, dl, TCVT);
15649       break;
15650     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15651       if (isUInt<16>(Value))
15652         Result = DAG.getTargetConstant(Value, dl, TCVT);
15653       break;
15654     case 'M':  // "M" is a constant that is greater than 31.
15655       if (Value > 31)
15656         Result = DAG.getTargetConstant(Value, dl, TCVT);
15657       break;
15658     case 'N':  // "N" is a positive constant that is an exact power of two.
15659       if (Value > 0 && isPowerOf2_64(Value))
15660         Result = DAG.getTargetConstant(Value, dl, TCVT);
15661       break;
15662     case 'O':  // "O" is the constant zero.
15663       if (Value == 0)
15664         Result = DAG.getTargetConstant(Value, dl, TCVT);
15665       break;
15666     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15667       if (isInt<16>(-Value))
15668         Result = DAG.getTargetConstant(Value, dl, TCVT);
15669       break;
15670     }
15671     break;
15672   }
15673   }
15674 
15675   if (Result.getNode()) {
15676     Ops.push_back(Result);
15677     return;
15678   }
15679 
15680   // Handle standard constraint letters.
15681   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15682 }
15683 
15684 // isLegalAddressingMode - Return true if the addressing mode represented
15685 // by AM is legal for this target, for a load/store of the specified type.
15686 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15687                                               const AddrMode &AM, Type *Ty,
15688                                               unsigned AS,
15689                                               Instruction *I) const {
15690   // Vector type r+i form is supported since power9 as DQ form. We don't check
15691   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15692   // imm form is preferred and the offset can be adjusted to use imm form later
15693   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15694   // max offset to check legal addressing mode, we should be a little aggressive
15695   // to contain other offsets for that LSRUse.
15696   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15697     return false;
15698 
15699   // PPC allows a sign-extended 16-bit immediate field.
15700   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15701     return false;
15702 
15703   // No global is ever allowed as a base.
15704   if (AM.BaseGV)
15705     return false;
15706 
15707   // PPC only support r+r,
15708   switch (AM.Scale) {
15709   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15710     break;
15711   case 1:
15712     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15713       return false;
15714     // Otherwise we have r+r or r+i.
15715     break;
15716   case 2:
15717     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15718       return false;
15719     // Allow 2*r as r+r.
15720     break;
15721   default:
15722     // No other scales are supported.
15723     return false;
15724   }
15725 
15726   return true;
15727 }
15728 
15729 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15730                                            SelectionDAG &DAG) const {
15731   MachineFunction &MF = DAG.getMachineFunction();
15732   MachineFrameInfo &MFI = MF.getFrameInfo();
15733   MFI.setReturnAddressIsTaken(true);
15734 
15735   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15736     return SDValue();
15737 
15738   SDLoc dl(Op);
15739   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15740 
15741   // Make sure the function does not optimize away the store of the RA to
15742   // the stack.
15743   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15744   FuncInfo->setLRStoreRequired();
15745   bool isPPC64 = Subtarget.isPPC64();
15746   auto PtrVT = getPointerTy(MF.getDataLayout());
15747 
15748   if (Depth > 0) {
15749     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15750     SDValue Offset =
15751         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15752                         isPPC64 ? MVT::i64 : MVT::i32);
15753     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15754                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15755                        MachinePointerInfo());
15756   }
15757 
15758   // Just load the return address off the stack.
15759   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15760   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15761                      MachinePointerInfo());
15762 }
15763 
15764 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15765                                           SelectionDAG &DAG) const {
15766   SDLoc dl(Op);
15767   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15768 
15769   MachineFunction &MF = DAG.getMachineFunction();
15770   MachineFrameInfo &MFI = MF.getFrameInfo();
15771   MFI.setFrameAddressIsTaken(true);
15772 
15773   EVT PtrVT = getPointerTy(MF.getDataLayout());
15774   bool isPPC64 = PtrVT == MVT::i64;
15775 
15776   // Naked functions never have a frame pointer, and so we use r1. For all
15777   // other functions, this decision must be delayed until during PEI.
15778   unsigned FrameReg;
15779   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15780     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15781   else
15782     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15783 
15784   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15785                                          PtrVT);
15786   while (Depth--)
15787     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15788                             FrameAddr, MachinePointerInfo());
15789   return FrameAddr;
15790 }
15791 
15792 // FIXME? Maybe this could be a TableGen attribute on some registers and
15793 // this table could be generated automatically from RegInfo.
15794 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15795                                               const MachineFunction &MF) const {
15796   bool isPPC64 = Subtarget.isPPC64();
15797 
15798   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15799   if (!is64Bit && VT != LLT::scalar(32))
15800     report_fatal_error("Invalid register global variable type");
15801 
15802   Register Reg = StringSwitch<Register>(RegName)
15803                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15804                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15805                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15806                      .Default(Register());
15807 
15808   if (Reg)
15809     return Reg;
15810   report_fatal_error("Invalid register name global variable");
15811 }
15812 
15813 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15814   // 32-bit SVR4 ABI access everything as got-indirect.
15815   if (Subtarget.is32BitELFABI())
15816     return true;
15817 
15818   // AIX accesses everything indirectly through the TOC, which is similar to
15819   // the GOT.
15820   if (Subtarget.isAIXABI())
15821     return true;
15822 
15823   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15824   // If it is small or large code model, module locals are accessed
15825   // indirectly by loading their address from .toc/.got.
15826   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15827     return true;
15828 
15829   // JumpTable and BlockAddress are accessed as got-indirect.
15830   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15831     return true;
15832 
15833   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15834     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15835 
15836   return false;
15837 }
15838 
15839 bool
15840 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15841   // The PowerPC target isn't yet aware of offsets.
15842   return false;
15843 }
15844 
15845 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15846                                            const CallInst &I,
15847                                            MachineFunction &MF,
15848                                            unsigned Intrinsic) const {
15849   switch (Intrinsic) {
15850   case Intrinsic::ppc_altivec_lvx:
15851   case Intrinsic::ppc_altivec_lvxl:
15852   case Intrinsic::ppc_altivec_lvebx:
15853   case Intrinsic::ppc_altivec_lvehx:
15854   case Intrinsic::ppc_altivec_lvewx:
15855   case Intrinsic::ppc_vsx_lxvd2x:
15856   case Intrinsic::ppc_vsx_lxvw4x: {
15857     EVT VT;
15858     switch (Intrinsic) {
15859     case Intrinsic::ppc_altivec_lvebx:
15860       VT = MVT::i8;
15861       break;
15862     case Intrinsic::ppc_altivec_lvehx:
15863       VT = MVT::i16;
15864       break;
15865     case Intrinsic::ppc_altivec_lvewx:
15866       VT = MVT::i32;
15867       break;
15868     case Intrinsic::ppc_vsx_lxvd2x:
15869       VT = MVT::v2f64;
15870       break;
15871     default:
15872       VT = MVT::v4i32;
15873       break;
15874     }
15875 
15876     Info.opc = ISD::INTRINSIC_W_CHAIN;
15877     Info.memVT = VT;
15878     Info.ptrVal = I.getArgOperand(0);
15879     Info.offset = -VT.getStoreSize()+1;
15880     Info.size = 2*VT.getStoreSize()-1;
15881     Info.align = Align(1);
15882     Info.flags = MachineMemOperand::MOLoad;
15883     return true;
15884   }
15885   case Intrinsic::ppc_altivec_stvx:
15886   case Intrinsic::ppc_altivec_stvxl:
15887   case Intrinsic::ppc_altivec_stvebx:
15888   case Intrinsic::ppc_altivec_stvehx:
15889   case Intrinsic::ppc_altivec_stvewx:
15890   case Intrinsic::ppc_vsx_stxvd2x:
15891   case Intrinsic::ppc_vsx_stxvw4x: {
15892     EVT VT;
15893     switch (Intrinsic) {
15894     case Intrinsic::ppc_altivec_stvebx:
15895       VT = MVT::i8;
15896       break;
15897     case Intrinsic::ppc_altivec_stvehx:
15898       VT = MVT::i16;
15899       break;
15900     case Intrinsic::ppc_altivec_stvewx:
15901       VT = MVT::i32;
15902       break;
15903     case Intrinsic::ppc_vsx_stxvd2x:
15904       VT = MVT::v2f64;
15905       break;
15906     default:
15907       VT = MVT::v4i32;
15908       break;
15909     }
15910 
15911     Info.opc = ISD::INTRINSIC_VOID;
15912     Info.memVT = VT;
15913     Info.ptrVal = I.getArgOperand(1);
15914     Info.offset = -VT.getStoreSize()+1;
15915     Info.size = 2*VT.getStoreSize()-1;
15916     Info.align = Align(1);
15917     Info.flags = MachineMemOperand::MOStore;
15918     return true;
15919   }
15920   default:
15921     break;
15922   }
15923 
15924   return false;
15925 }
15926 
15927 /// It returns EVT::Other if the type should be determined using generic
15928 /// target-independent logic.
15929 EVT PPCTargetLowering::getOptimalMemOpType(
15930     const MemOp &Op, const AttributeList &FuncAttributes) const {
15931   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15932     // We should use Altivec/VSX loads and stores when available. For unaligned
15933     // addresses, unaligned VSX loads are only fast starting with the P8.
15934     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15935         (Op.isAligned(Align(16)) ||
15936          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15937       return MVT::v4i32;
15938   }
15939 
15940   if (Subtarget.isPPC64()) {
15941     return MVT::i64;
15942   }
15943 
15944   return MVT::i32;
15945 }
15946 
15947 /// Returns true if it is beneficial to convert a load of a constant
15948 /// to just the constant itself.
15949 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15950                                                           Type *Ty) const {
15951   assert(Ty->isIntegerTy());
15952 
15953   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15954   return !(BitSize == 0 || BitSize > 64);
15955 }
15956 
15957 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15958   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15959     return false;
15960   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15961   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15962   return NumBits1 == 64 && NumBits2 == 32;
15963 }
15964 
15965 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15966   if (!VT1.isInteger() || !VT2.isInteger())
15967     return false;
15968   unsigned NumBits1 = VT1.getSizeInBits();
15969   unsigned NumBits2 = VT2.getSizeInBits();
15970   return NumBits1 == 64 && NumBits2 == 32;
15971 }
15972 
15973 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15974   // Generally speaking, zexts are not free, but they are free when they can be
15975   // folded with other operations.
15976   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15977     EVT MemVT = LD->getMemoryVT();
15978     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15979          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15980         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15981          LD->getExtensionType() == ISD::ZEXTLOAD))
15982       return true;
15983   }
15984 
15985   // FIXME: Add other cases...
15986   //  - 32-bit shifts with a zext to i64
15987   //  - zext after ctlz, bswap, etc.
15988   //  - zext after and by a constant mask
15989 
15990   return TargetLowering::isZExtFree(Val, VT2);
15991 }
15992 
15993 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15994   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15995          "invalid fpext types");
15996   // Extending to float128 is not free.
15997   if (DestVT == MVT::f128)
15998     return false;
15999   return true;
16000 }
16001 
16002 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16003   return isInt<16>(Imm) || isUInt<16>(Imm);
16004 }
16005 
16006 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16007   return isInt<16>(Imm) || isUInt<16>(Imm);
16008 }
16009 
16010 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
16011                                                        unsigned,
16012                                                        unsigned,
16013                                                        MachineMemOperand::Flags,
16014                                                        bool *Fast) const {
16015   if (DisablePPCUnaligned)
16016     return false;
16017 
16018   // PowerPC supports unaligned memory access for simple non-vector types.
16019   // Although accessing unaligned addresses is not as efficient as accessing
16020   // aligned addresses, it is generally more efficient than manual expansion,
16021   // and generally only traps for software emulation when crossing page
16022   // boundaries.
16023 
16024   if (!VT.isSimple())
16025     return false;
16026 
16027   if (VT.isFloatingPoint() && !VT.isVector() &&
16028       !Subtarget.allowsUnalignedFPAccess())
16029     return false;
16030 
16031   if (VT.getSimpleVT().isVector()) {
16032     if (Subtarget.hasVSX()) {
16033       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16034           VT != MVT::v4f32 && VT != MVT::v4i32)
16035         return false;
16036     } else {
16037       return false;
16038     }
16039   }
16040 
16041   if (VT == MVT::ppcf128)
16042     return false;
16043 
16044   if (Fast)
16045     *Fast = true;
16046 
16047   return true;
16048 }
16049 
16050 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16051                                                    EVT VT) const {
16052   return isFMAFasterThanFMulAndFAdd(
16053       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16054 }
16055 
16056 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16057                                                    Type *Ty) const {
16058   switch (Ty->getScalarType()->getTypeID()) {
16059   case Type::FloatTyID:
16060   case Type::DoubleTyID:
16061     return true;
16062   case Type::FP128TyID:
16063     return Subtarget.hasP9Vector();
16064   default:
16065     return false;
16066   }
16067 }
16068 
16069 // FIXME: add more patterns which are not profitable to hoist.
16070 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16071   if (!I->hasOneUse())
16072     return true;
16073 
16074   Instruction *User = I->user_back();
16075   assert(User && "A single use instruction with no uses.");
16076 
16077   switch (I->getOpcode()) {
16078   case Instruction::FMul: {
16079     // Don't break FMA, PowerPC prefers FMA.
16080     if (User->getOpcode() != Instruction::FSub &&
16081         User->getOpcode() != Instruction::FAdd)
16082       return true;
16083 
16084     const TargetOptions &Options = getTargetMachine().Options;
16085     const Function *F = I->getFunction();
16086     const DataLayout &DL = F->getParent()->getDataLayout();
16087     Type *Ty = User->getOperand(0)->getType();
16088 
16089     return !(
16090         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16091         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16092         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16093   }
16094   case Instruction::Load: {
16095     // Don't break "store (load float*)" pattern, this pattern will be combined
16096     // to "store (load int32)" in later InstCombine pass. See function
16097     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16098     // cycles than loading a 32 bit integer.
16099     LoadInst *LI = cast<LoadInst>(I);
16100     // For the loads that combineLoadToOperationType does nothing, like
16101     // ordered load, it should be profitable to hoist them.
16102     // For swifterror load, it can only be used for pointer to pointer type, so
16103     // later type check should get rid of this case.
16104     if (!LI->isUnordered())
16105       return true;
16106 
16107     if (User->getOpcode() != Instruction::Store)
16108       return true;
16109 
16110     if (I->getType()->getTypeID() != Type::FloatTyID)
16111       return true;
16112 
16113     return false;
16114   }
16115   default:
16116     return true;
16117   }
16118   return true;
16119 }
16120 
16121 const MCPhysReg *
16122 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16123   // LR is a callee-save register, but we must treat it as clobbered by any call
16124   // site. Hence we include LR in the scratch registers, which are in turn added
16125   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16126   // to CTR, which is used by any indirect call.
16127   static const MCPhysReg ScratchRegs[] = {
16128     PPC::X12, PPC::LR8, PPC::CTR8, 0
16129   };
16130 
16131   return ScratchRegs;
16132 }
16133 
16134 Register PPCTargetLowering::getExceptionPointerRegister(
16135     const Constant *PersonalityFn) const {
16136   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16137 }
16138 
16139 Register PPCTargetLowering::getExceptionSelectorRegister(
16140     const Constant *PersonalityFn) const {
16141   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16142 }
16143 
16144 bool
16145 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16146                      EVT VT , unsigned DefinedValues) const {
16147   if (VT == MVT::v2i64)
16148     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16149 
16150   if (Subtarget.hasVSX())
16151     return true;
16152 
16153   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16154 }
16155 
16156 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16157   if (DisableILPPref || Subtarget.enableMachineScheduler())
16158     return TargetLowering::getSchedulingPreference(N);
16159 
16160   return Sched::ILP;
16161 }
16162 
16163 // Create a fast isel object.
16164 FastISel *
16165 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16166                                   const TargetLibraryInfo *LibInfo) const {
16167   return PPC::createFastISel(FuncInfo, LibInfo);
16168 }
16169 
16170 // 'Inverted' means the FMA opcode after negating one multiplicand.
16171 // For example, (fma -a b c) = (fnmsub a b c)
16172 static unsigned invertFMAOpcode(unsigned Opc) {
16173   switch (Opc) {
16174   default:
16175     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16176   case ISD::FMA:
16177     return PPCISD::FNMSUB;
16178   case PPCISD::FNMSUB:
16179     return ISD::FMA;
16180   }
16181 }
16182 
16183 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16184                                                 bool LegalOps, bool OptForSize,
16185                                                 NegatibleCost &Cost,
16186                                                 unsigned Depth) const {
16187   if (Depth > SelectionDAG::MaxRecursionDepth)
16188     return SDValue();
16189 
16190   unsigned Opc = Op.getOpcode();
16191   EVT VT = Op.getValueType();
16192   SDNodeFlags Flags = Op.getNode()->getFlags();
16193 
16194   switch (Opc) {
16195   case PPCISD::FNMSUB:
16196     if (!Op.hasOneUse() || !isTypeLegal(VT))
16197       break;
16198 
16199     const TargetOptions &Options = getTargetMachine().Options;
16200     SDValue N0 = Op.getOperand(0);
16201     SDValue N1 = Op.getOperand(1);
16202     SDValue N2 = Op.getOperand(2);
16203     SDLoc Loc(Op);
16204 
16205     NegatibleCost N2Cost = NegatibleCost::Expensive;
16206     SDValue NegN2 =
16207         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16208 
16209     if (!NegN2)
16210       return SDValue();
16211 
16212     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16213     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16214     // These transformations may change sign of zeroes. For example,
16215     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16216     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16217       // Try and choose the cheaper one to negate.
16218       NegatibleCost N0Cost = NegatibleCost::Expensive;
16219       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16220                                            N0Cost, Depth + 1);
16221 
16222       NegatibleCost N1Cost = NegatibleCost::Expensive;
16223       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16224                                            N1Cost, Depth + 1);
16225 
16226       if (NegN0 && N0Cost <= N1Cost) {
16227         Cost = std::min(N0Cost, N2Cost);
16228         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16229       } else if (NegN1) {
16230         Cost = std::min(N1Cost, N2Cost);
16231         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16232       }
16233     }
16234 
16235     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16236     if (isOperationLegal(ISD::FMA, VT)) {
16237       Cost = N2Cost;
16238       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16239     }
16240 
16241     break;
16242   }
16243 
16244   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16245                                               Cost, Depth);
16246 }
16247 
16248 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16249 bool PPCTargetLowering::useLoadStackGuardNode() const {
16250   if (!Subtarget.isTargetLinux())
16251     return TargetLowering::useLoadStackGuardNode();
16252   return true;
16253 }
16254 
16255 // Override to disable global variable loading on Linux.
16256 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16257   if (!Subtarget.isTargetLinux())
16258     return TargetLowering::insertSSPDeclarations(M);
16259 }
16260 
16261 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16262                                      bool ForCodeSize) const {
16263   if (!VT.isSimple() || !Subtarget.hasVSX())
16264     return false;
16265 
16266   switch(VT.getSimpleVT().SimpleTy) {
16267   default:
16268     // For FP types that are currently not supported by PPC backend, return
16269     // false. Examples: f16, f80.
16270     return false;
16271   case MVT::f32:
16272   case MVT::f64:
16273     if (Subtarget.hasPrefixInstrs()) {
16274       // With prefixed instructions, we can materialize anything that can be
16275       // represented with a 32-bit immediate, not just positive zero.
16276       APFloat APFloatOfImm = Imm;
16277       return convertToNonDenormSingle(APFloatOfImm);
16278     }
16279     LLVM_FALLTHROUGH;
16280   case MVT::ppcf128:
16281     return Imm.isPosZero();
16282   }
16283 }
16284 
16285 // For vector shift operation op, fold
16286 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16287 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16288                                   SelectionDAG &DAG) {
16289   SDValue N0 = N->getOperand(0);
16290   SDValue N1 = N->getOperand(1);
16291   EVT VT = N0.getValueType();
16292   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16293   unsigned Opcode = N->getOpcode();
16294   unsigned TargetOpcode;
16295 
16296   switch (Opcode) {
16297   default:
16298     llvm_unreachable("Unexpected shift operation");
16299   case ISD::SHL:
16300     TargetOpcode = PPCISD::SHL;
16301     break;
16302   case ISD::SRL:
16303     TargetOpcode = PPCISD::SRL;
16304     break;
16305   case ISD::SRA:
16306     TargetOpcode = PPCISD::SRA;
16307     break;
16308   }
16309 
16310   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16311       N1->getOpcode() == ISD::AND)
16312     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16313       if (Mask->getZExtValue() == OpSizeInBits - 1)
16314         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16315 
16316   return SDValue();
16317 }
16318 
16319 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16320   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16321     return Value;
16322 
16323   SDValue N0 = N->getOperand(0);
16324   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16325   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16326       N0.getOpcode() != ISD::SIGN_EXTEND ||
16327       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16328       N->getValueType(0) != MVT::i64)
16329     return SDValue();
16330 
16331   // We can't save an operation here if the value is already extended, and
16332   // the existing shift is easier to combine.
16333   SDValue ExtsSrc = N0.getOperand(0);
16334   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16335       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16336     return SDValue();
16337 
16338   SDLoc DL(N0);
16339   SDValue ShiftBy = SDValue(CN1, 0);
16340   // We want the shift amount to be i32 on the extswli, but the shift could
16341   // have an i64.
16342   if (ShiftBy.getValueType() == MVT::i64)
16343     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16344 
16345   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16346                          ShiftBy);
16347 }
16348 
16349 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16350   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16351     return Value;
16352 
16353   return SDValue();
16354 }
16355 
16356 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16357   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16358     return Value;
16359 
16360   return SDValue();
16361 }
16362 
16363 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16364 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16365 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16366 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16367 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16368                                  const PPCSubtarget &Subtarget) {
16369   if (!Subtarget.isPPC64())
16370     return SDValue();
16371 
16372   SDValue LHS = N->getOperand(0);
16373   SDValue RHS = N->getOperand(1);
16374 
16375   auto isZextOfCompareWithConstant = [](SDValue Op) {
16376     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16377         Op.getValueType() != MVT::i64)
16378       return false;
16379 
16380     SDValue Cmp = Op.getOperand(0);
16381     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16382         Cmp.getOperand(0).getValueType() != MVT::i64)
16383       return false;
16384 
16385     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16386       int64_t NegConstant = 0 - Constant->getSExtValue();
16387       // Due to the limitations of the addi instruction,
16388       // -C is required to be [-32768, 32767].
16389       return isInt<16>(NegConstant);
16390     }
16391 
16392     return false;
16393   };
16394 
16395   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16396   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16397 
16398   // If there is a pattern, canonicalize a zext operand to the RHS.
16399   if (LHSHasPattern && !RHSHasPattern)
16400     std::swap(LHS, RHS);
16401   else if (!LHSHasPattern && !RHSHasPattern)
16402     return SDValue();
16403 
16404   SDLoc DL(N);
16405   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16406   SDValue Cmp = RHS.getOperand(0);
16407   SDValue Z = Cmp.getOperand(0);
16408   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16409 
16410   assert(Constant && "Constant Should not be a null pointer.");
16411   int64_t NegConstant = 0 - Constant->getSExtValue();
16412 
16413   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16414   default: break;
16415   case ISD::SETNE: {
16416     //                                 when C == 0
16417     //                             --> addze X, (addic Z, -1).carry
16418     //                            /
16419     // add X, (zext(setne Z, C))--
16420     //                            \    when -32768 <= -C <= 32767 && C != 0
16421     //                             --> addze X, (addic (addi Z, -C), -1).carry
16422     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16423                               DAG.getConstant(NegConstant, DL, MVT::i64));
16424     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16425     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16426                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16427     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16428                        SDValue(Addc.getNode(), 1));
16429     }
16430   case ISD::SETEQ: {
16431     //                                 when C == 0
16432     //                             --> addze X, (subfic Z, 0).carry
16433     //                            /
16434     // add X, (zext(sete  Z, C))--
16435     //                            \    when -32768 <= -C <= 32767 && C != 0
16436     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16437     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16438                               DAG.getConstant(NegConstant, DL, MVT::i64));
16439     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16440     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16441                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16442     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16443                        SDValue(Subc.getNode(), 1));
16444     }
16445   }
16446 
16447   return SDValue();
16448 }
16449 
16450 // Transform
16451 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16452 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16453 // In this case both C1 and C2 must be known constants.
16454 // C1+C2 must fit into a 34 bit signed integer.
16455 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16456                                           const PPCSubtarget &Subtarget) {
16457   if (!Subtarget.isUsingPCRelativeCalls())
16458     return SDValue();
16459 
16460   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16461   // If we find that node try to cast the Global Address and the Constant.
16462   SDValue LHS = N->getOperand(0);
16463   SDValue RHS = N->getOperand(1);
16464 
16465   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16466     std::swap(LHS, RHS);
16467 
16468   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16469     return SDValue();
16470 
16471   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16472   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16473   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16474 
16475   // Check that both casts succeeded.
16476   if (!GSDN || !ConstNode)
16477     return SDValue();
16478 
16479   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16480   SDLoc DL(GSDN);
16481 
16482   // The signed int offset needs to fit in 34 bits.
16483   if (!isInt<34>(NewOffset))
16484     return SDValue();
16485 
16486   // The new global address is a copy of the old global address except
16487   // that it has the updated Offset.
16488   SDValue GA =
16489       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16490                                  NewOffset, GSDN->getTargetFlags());
16491   SDValue MatPCRel =
16492       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16493   return MatPCRel;
16494 }
16495 
16496 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16497   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16498     return Value;
16499 
16500   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16501     return Value;
16502 
16503   return SDValue();
16504 }
16505 
16506 // Detect TRUNCATE operations on bitcasts of float128 values.
16507 // What we are looking for here is the situtation where we extract a subset
16508 // of bits from a 128 bit float.
16509 // This can be of two forms:
16510 // 1) BITCAST of f128 feeding TRUNCATE
16511 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16512 // The reason this is required is because we do not have a legal i128 type
16513 // and so we want to prevent having to store the f128 and then reload part
16514 // of it.
16515 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16516                                            DAGCombinerInfo &DCI) const {
16517   // If we are using CRBits then try that first.
16518   if (Subtarget.useCRBits()) {
16519     // Check if CRBits did anything and return that if it did.
16520     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16521       return CRTruncValue;
16522   }
16523 
16524   SDLoc dl(N);
16525   SDValue Op0 = N->getOperand(0);
16526 
16527   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16528   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16529     EVT VT = N->getValueType(0);
16530     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16531       return SDValue();
16532     SDValue Sub = Op0.getOperand(0);
16533     if (Sub.getOpcode() == ISD::SUB) {
16534       SDValue SubOp0 = Sub.getOperand(0);
16535       SDValue SubOp1 = Sub.getOperand(1);
16536       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16537           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16538         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16539                                SubOp1.getOperand(0),
16540                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16541       }
16542     }
16543   }
16544 
16545   // Looking for a truncate of i128 to i64.
16546   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16547     return SDValue();
16548 
16549   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16550 
16551   // SRL feeding TRUNCATE.
16552   if (Op0.getOpcode() == ISD::SRL) {
16553     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16554     // The right shift has to be by 64 bits.
16555     if (!ConstNode || ConstNode->getZExtValue() != 64)
16556       return SDValue();
16557 
16558     // Switch the element number to extract.
16559     EltToExtract = EltToExtract ? 0 : 1;
16560     // Update Op0 past the SRL.
16561     Op0 = Op0.getOperand(0);
16562   }
16563 
16564   // BITCAST feeding a TRUNCATE possibly via SRL.
16565   if (Op0.getOpcode() == ISD::BITCAST &&
16566       Op0.getValueType() == MVT::i128 &&
16567       Op0.getOperand(0).getValueType() == MVT::f128) {
16568     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16569     return DCI.DAG.getNode(
16570         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16571         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16572   }
16573   return SDValue();
16574 }
16575 
16576 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16577   SelectionDAG &DAG = DCI.DAG;
16578 
16579   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16580   if (!ConstOpOrElement)
16581     return SDValue();
16582 
16583   // An imul is usually smaller than the alternative sequence for legal type.
16584   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16585       isOperationLegal(ISD::MUL, N->getValueType(0)))
16586     return SDValue();
16587 
16588   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16589     switch (this->Subtarget.getCPUDirective()) {
16590     default:
16591       // TODO: enhance the condition for subtarget before pwr8
16592       return false;
16593     case PPC::DIR_PWR8:
16594       //  type        mul     add    shl
16595       // scalar        4       1      1
16596       // vector        7       2      2
16597       return true;
16598     case PPC::DIR_PWR9:
16599     case PPC::DIR_PWR10:
16600     case PPC::DIR_PWR_FUTURE:
16601       //  type        mul     add    shl
16602       // scalar        5       2      2
16603       // vector        7       2      2
16604 
16605       // The cycle RATIO of related operations are showed as a table above.
16606       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16607       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16608       // are 4, it is always profitable; but for 3 instrs patterns
16609       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16610       // So we should only do it for vector type.
16611       return IsAddOne && IsNeg ? VT.isVector() : true;
16612     }
16613   };
16614 
16615   EVT VT = N->getValueType(0);
16616   SDLoc DL(N);
16617 
16618   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16619   bool IsNeg = MulAmt.isNegative();
16620   APInt MulAmtAbs = MulAmt.abs();
16621 
16622   if ((MulAmtAbs - 1).isPowerOf2()) {
16623     // (mul x, 2^N + 1) => (add (shl x, N), x)
16624     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16625 
16626     if (!IsProfitable(IsNeg, true, VT))
16627       return SDValue();
16628 
16629     SDValue Op0 = N->getOperand(0);
16630     SDValue Op1 =
16631         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16632                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16633     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16634 
16635     if (!IsNeg)
16636       return Res;
16637 
16638     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16639   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16640     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16641     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16642 
16643     if (!IsProfitable(IsNeg, false, VT))
16644       return SDValue();
16645 
16646     SDValue Op0 = N->getOperand(0);
16647     SDValue Op1 =
16648         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16649                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16650 
16651     if (!IsNeg)
16652       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16653     else
16654       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16655 
16656   } else {
16657     return SDValue();
16658   }
16659 }
16660 
16661 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16662 // in combiner since we need to check SD flags and other subtarget features.
16663 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16664                                           DAGCombinerInfo &DCI) const {
16665   SDValue N0 = N->getOperand(0);
16666   SDValue N1 = N->getOperand(1);
16667   SDValue N2 = N->getOperand(2);
16668   SDNodeFlags Flags = N->getFlags();
16669   EVT VT = N->getValueType(0);
16670   SelectionDAG &DAG = DCI.DAG;
16671   const TargetOptions &Options = getTargetMachine().Options;
16672   unsigned Opc = N->getOpcode();
16673   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16674   bool LegalOps = !DCI.isBeforeLegalizeOps();
16675   SDLoc Loc(N);
16676 
16677   if (!isOperationLegal(ISD::FMA, VT))
16678     return SDValue();
16679 
16680   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16681   // since (fnmsub a b c)=-0 while c-ab=+0.
16682   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16683     return SDValue();
16684 
16685   // (fma (fneg a) b c) => (fnmsub a b c)
16686   // (fnmsub (fneg a) b c) => (fma a b c)
16687   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16688     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16689 
16690   // (fma a (fneg b) c) => (fnmsub a b c)
16691   // (fnmsub a (fneg b) c) => (fma a b c)
16692   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16693     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16694 
16695   return SDValue();
16696 }
16697 
16698 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16699   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16700   if (!Subtarget.is64BitELFABI())
16701     return false;
16702 
16703   // If not a tail call then no need to proceed.
16704   if (!CI->isTailCall())
16705     return false;
16706 
16707   // If sibling calls have been disabled and tail-calls aren't guaranteed
16708   // there is no reason to duplicate.
16709   auto &TM = getTargetMachine();
16710   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16711     return false;
16712 
16713   // Can't tail call a function called indirectly, or if it has variadic args.
16714   const Function *Callee = CI->getCalledFunction();
16715   if (!Callee || Callee->isVarArg())
16716     return false;
16717 
16718   // Make sure the callee and caller calling conventions are eligible for tco.
16719   const Function *Caller = CI->getParent()->getParent();
16720   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16721                                            CI->getCallingConv()))
16722       return false;
16723 
16724   // If the function is local then we have a good chance at tail-calling it
16725   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16726 }
16727 
16728 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16729   if (!Subtarget.hasVSX())
16730     return false;
16731   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16732     return true;
16733   return VT == MVT::f32 || VT == MVT::f64 ||
16734     VT == MVT::v4f32 || VT == MVT::v2f64;
16735 }
16736 
16737 bool PPCTargetLowering::
16738 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16739   const Value *Mask = AndI.getOperand(1);
16740   // If the mask is suitable for andi. or andis. we should sink the and.
16741   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16742     // Can't handle constants wider than 64-bits.
16743     if (CI->getBitWidth() > 64)
16744       return false;
16745     int64_t ConstVal = CI->getZExtValue();
16746     return isUInt<16>(ConstVal) ||
16747       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16748   }
16749 
16750   // For non-constant masks, we can always use the record-form and.
16751   return true;
16752 }
16753 
16754 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16755 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16756 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16757 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16758 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16759 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16760   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16761   assert(Subtarget.hasP9Altivec() &&
16762          "Only combine this when P9 altivec supported!");
16763   EVT VT = N->getValueType(0);
16764   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16765     return SDValue();
16766 
16767   SelectionDAG &DAG = DCI.DAG;
16768   SDLoc dl(N);
16769   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16770     // Even for signed integers, if it's known to be positive (as signed
16771     // integer) due to zero-extended inputs.
16772     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16773     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16774     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16775          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16776         (SubOpcd1 == ISD::ZERO_EXTEND ||
16777          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16778       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16779                          N->getOperand(0)->getOperand(0),
16780                          N->getOperand(0)->getOperand(1),
16781                          DAG.getTargetConstant(0, dl, MVT::i32));
16782     }
16783 
16784     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16785     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16786         N->getOperand(0).hasOneUse()) {
16787       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16788                          N->getOperand(0)->getOperand(0),
16789                          N->getOperand(0)->getOperand(1),
16790                          DAG.getTargetConstant(1, dl, MVT::i32));
16791     }
16792   }
16793 
16794   return SDValue();
16795 }
16796 
16797 // For type v4i32/v8ii16/v16i8, transform
16798 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16799 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16800 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16801 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16802 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16803                                           DAGCombinerInfo &DCI) const {
16804   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16805   assert(Subtarget.hasP9Altivec() &&
16806          "Only combine this when P9 altivec supported!");
16807 
16808   SelectionDAG &DAG = DCI.DAG;
16809   SDLoc dl(N);
16810   SDValue Cond = N->getOperand(0);
16811   SDValue TrueOpnd = N->getOperand(1);
16812   SDValue FalseOpnd = N->getOperand(2);
16813   EVT VT = N->getOperand(1).getValueType();
16814 
16815   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16816       FalseOpnd.getOpcode() != ISD::SUB)
16817     return SDValue();
16818 
16819   // ABSD only available for type v4i32/v8i16/v16i8
16820   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16821     return SDValue();
16822 
16823   // At least to save one more dependent computation
16824   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16825     return SDValue();
16826 
16827   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16828 
16829   // Can only handle unsigned comparison here
16830   switch (CC) {
16831   default:
16832     return SDValue();
16833   case ISD::SETUGT:
16834   case ISD::SETUGE:
16835     break;
16836   case ISD::SETULT:
16837   case ISD::SETULE:
16838     std::swap(TrueOpnd, FalseOpnd);
16839     break;
16840   }
16841 
16842   SDValue CmpOpnd1 = Cond.getOperand(0);
16843   SDValue CmpOpnd2 = Cond.getOperand(1);
16844 
16845   // SETCC CmpOpnd1 CmpOpnd2 cond
16846   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16847   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16848   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16849       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16850       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16851       FalseOpnd.getOperand(1) == CmpOpnd1) {
16852     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16853                        CmpOpnd1, CmpOpnd2,
16854                        DAG.getTargetConstant(0, dl, MVT::i32));
16855   }
16856 
16857   return SDValue();
16858 }
16859