1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSymbolXCOFF.h" 78 #include "llvm/Support/AtomicOrdering.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CodeGen.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetMachine.h" 92 #include "llvm/Target/TargetOptions.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <list> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 103 #define DEBUG_TYPE "ppc-lowering" 104 105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 113 114 static cl::opt<bool> DisableSCO("disable-ppc-sco", 115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 116 117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 119 120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 121 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 122 123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 124 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 125 126 STATISTIC(NumTailCalls, "Number of tail calls"); 127 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 128 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 129 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 130 131 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 132 133 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 134 135 // FIXME: Remove this once the bug has been fixed! 136 extern cl::opt<bool> ANDIGlueBug; 137 138 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 139 const PPCSubtarget &STI) 140 : TargetLowering(TM), Subtarget(STI) { 141 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 142 // arguments are at least 4/8 bytes aligned. 143 bool isPPC64 = Subtarget.isPPC64(); 144 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 145 146 // Set up the register classes. 147 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 148 if (!useSoftFloat()) { 149 if (hasSPE()) { 150 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 151 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 152 } else { 153 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 154 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 155 } 156 } 157 158 // Match BITREVERSE to customized fast code sequence in the td file. 159 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 160 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 161 162 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 163 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 164 165 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 166 for (MVT VT : MVT::integer_valuetypes()) { 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 169 } 170 171 if (Subtarget.isISA3_0()) { 172 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 173 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 174 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 175 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 176 } else { 177 // No extending loads from f16 or HW conversions back and forth. 178 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 179 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 180 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 181 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 182 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 183 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 184 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 185 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 186 } 187 188 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 189 190 // PowerPC has pre-inc load and store's. 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 195 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 200 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 201 if (!Subtarget.hasSPE()) { 202 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 203 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 205 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 206 } 207 208 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 209 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 210 for (MVT VT : ScalarIntVTs) { 211 setOperationAction(ISD::ADDC, VT, Legal); 212 setOperationAction(ISD::ADDE, VT, Legal); 213 setOperationAction(ISD::SUBC, VT, Legal); 214 setOperationAction(ISD::SUBE, VT, Legal); 215 } 216 217 if (Subtarget.useCRBits()) { 218 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 219 220 if (isPPC64 || Subtarget.hasFPCVT()) { 221 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 222 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 223 isPPC64 ? MVT::i64 : MVT::i32); 224 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 225 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 226 isPPC64 ? MVT::i64 : MVT::i32); 227 } else { 228 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 229 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 230 } 231 232 // PowerPC does not support direct load/store of condition registers. 233 setOperationAction(ISD::LOAD, MVT::i1, Custom); 234 setOperationAction(ISD::STORE, MVT::i1, Custom); 235 236 // FIXME: Remove this once the ANDI glue bug is fixed: 237 if (ANDIGlueBug) 238 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 239 240 for (MVT VT : MVT::integer_valuetypes()) { 241 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 242 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 243 setTruncStoreAction(VT, MVT::i1, Expand); 244 } 245 246 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 247 } 248 249 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 250 // PPC (the libcall is not available). 251 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 252 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 253 254 // We do not currently implement these libm ops for PowerPC. 255 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 258 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 259 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 260 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 261 262 // PowerPC has no SREM/UREM instructions unless we are on P9 263 // On P9 we may use a hardware instruction to compute the remainder. 264 // When the result of both the remainder and the division is required it is 265 // more efficient to compute the remainder from the result of the division 266 // rather than use the remainder instruction. The instructions are legalized 267 // directly because the DivRemPairsPass performs the transformation at the IR 268 // level. 269 if (Subtarget.isISA3_0()) { 270 setOperationAction(ISD::SREM, MVT::i32, Legal); 271 setOperationAction(ISD::UREM, MVT::i32, Legal); 272 setOperationAction(ISD::SREM, MVT::i64, Legal); 273 setOperationAction(ISD::UREM, MVT::i64, Legal); 274 } else { 275 setOperationAction(ISD::SREM, MVT::i32, Expand); 276 setOperationAction(ISD::UREM, MVT::i32, Expand); 277 setOperationAction(ISD::SREM, MVT::i64, Expand); 278 setOperationAction(ISD::UREM, MVT::i64, Expand); 279 } 280 281 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 282 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 283 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 284 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 285 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 286 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 287 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 288 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 289 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 290 291 // Handle constrained floating-point operations of scalar. 292 // TODO: Handle SPE specific operation. 293 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 295 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 296 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 297 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 298 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 299 300 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 301 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 302 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 303 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 304 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 305 if (Subtarget.hasVSX()) 306 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal); 307 308 if (Subtarget.hasFSQRT()) { 309 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 310 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 311 } 312 313 if (Subtarget.hasFPRND()) { 314 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 315 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 316 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 317 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 318 319 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 320 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 321 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 322 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 323 } 324 325 // We don't support sin/cos/sqrt/fmod/pow 326 setOperationAction(ISD::FSIN , MVT::f64, Expand); 327 setOperationAction(ISD::FCOS , MVT::f64, Expand); 328 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 329 setOperationAction(ISD::FREM , MVT::f64, Expand); 330 setOperationAction(ISD::FPOW , MVT::f64, Expand); 331 setOperationAction(ISD::FSIN , MVT::f32, Expand); 332 setOperationAction(ISD::FCOS , MVT::f32, Expand); 333 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 334 setOperationAction(ISD::FREM , MVT::f32, Expand); 335 setOperationAction(ISD::FPOW , MVT::f32, Expand); 336 if (Subtarget.hasSPE()) { 337 setOperationAction(ISD::FMA , MVT::f64, Expand); 338 setOperationAction(ISD::FMA , MVT::f32, Expand); 339 } else { 340 setOperationAction(ISD::FMA , MVT::f64, Legal); 341 setOperationAction(ISD::FMA , MVT::f32, Legal); 342 } 343 344 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 345 346 // If we're enabling GP optimizations, use hardware square root 347 if (!Subtarget.hasFSQRT() && 348 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 349 Subtarget.hasFRE())) 350 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 351 352 if (!Subtarget.hasFSQRT() && 353 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 354 Subtarget.hasFRES())) 355 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 356 357 if (Subtarget.hasFCPSGN()) { 358 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 359 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 360 } else { 361 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 362 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 363 } 364 365 if (Subtarget.hasFPRND()) { 366 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 367 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 368 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 369 setOperationAction(ISD::FROUND, MVT::f64, Legal); 370 371 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 372 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 373 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 374 setOperationAction(ISD::FROUND, MVT::f32, Legal); 375 } 376 377 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 378 // to speed up scalar BSWAP64. 379 // CTPOP or CTTZ were introduced in P8/P9 respectively 380 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 381 if (Subtarget.hasP9Vector()) 382 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 383 else 384 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 385 if (Subtarget.isISA3_0()) { 386 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 387 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 388 } else { 389 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 390 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 391 } 392 393 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 394 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 395 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 396 } else { 397 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 398 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 399 } 400 401 // PowerPC does not have ROTR 402 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 403 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 404 405 if (!Subtarget.useCRBits()) { 406 // PowerPC does not have Select 407 setOperationAction(ISD::SELECT, MVT::i32, Expand); 408 setOperationAction(ISD::SELECT, MVT::i64, Expand); 409 setOperationAction(ISD::SELECT, MVT::f32, Expand); 410 setOperationAction(ISD::SELECT, MVT::f64, Expand); 411 } 412 413 // PowerPC wants to turn select_cc of FP into fsel when possible. 414 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 415 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 416 417 // PowerPC wants to optimize integer setcc a bit 418 if (!Subtarget.useCRBits()) 419 setOperationAction(ISD::SETCC, MVT::i32, Custom); 420 421 // PowerPC does not have BRCOND which requires SetCC 422 if (!Subtarget.useCRBits()) 423 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 424 425 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 426 427 if (Subtarget.hasSPE()) { 428 // SPE has built-in conversions 429 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 430 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 431 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 432 } else { 433 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 434 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 435 436 // PowerPC does not have [U|S]INT_TO_FP 437 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 438 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 439 } 440 441 if (Subtarget.hasDirectMove() && isPPC64) { 442 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 443 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 444 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 445 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 446 if (TM.Options.UnsafeFPMath) { 447 setOperationAction(ISD::LRINT, MVT::f64, Legal); 448 setOperationAction(ISD::LRINT, MVT::f32, Legal); 449 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 450 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 451 setOperationAction(ISD::LROUND, MVT::f64, Legal); 452 setOperationAction(ISD::LROUND, MVT::f32, Legal); 453 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 454 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 455 } 456 } else { 457 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 458 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 459 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 460 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 461 } 462 463 // We cannot sextinreg(i1). Expand to shifts. 464 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 465 466 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 467 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 468 // support continuation, user-level threading, and etc.. As a result, no 469 // other SjLj exception interfaces are implemented and please don't build 470 // your own exception handling based on them. 471 // LLVM/Clang supports zero-cost DWARF exception handling. 472 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 473 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 474 475 // We want to legalize GlobalAddress and ConstantPool nodes into the 476 // appropriate instructions to materialize the address. 477 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 478 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 479 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 480 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 481 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 482 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 483 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 484 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 485 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 486 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 487 488 // TRAP is legal. 489 setOperationAction(ISD::TRAP, MVT::Other, Legal); 490 491 // TRAMPOLINE is custom lowered. 492 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 493 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 494 495 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 496 setOperationAction(ISD::VASTART , MVT::Other, Custom); 497 498 if (Subtarget.is64BitELFABI()) { 499 // VAARG always uses double-word chunks, so promote anything smaller. 500 setOperationAction(ISD::VAARG, MVT::i1, Promote); 501 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 502 setOperationAction(ISD::VAARG, MVT::i8, Promote); 503 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 504 setOperationAction(ISD::VAARG, MVT::i16, Promote); 505 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 506 setOperationAction(ISD::VAARG, MVT::i32, Promote); 507 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 508 setOperationAction(ISD::VAARG, MVT::Other, Expand); 509 } else if (Subtarget.is32BitELFABI()) { 510 // VAARG is custom lowered with the 32-bit SVR4 ABI. 511 setOperationAction(ISD::VAARG, MVT::Other, Custom); 512 setOperationAction(ISD::VAARG, MVT::i64, Custom); 513 } else 514 setOperationAction(ISD::VAARG, MVT::Other, Expand); 515 516 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 517 if (Subtarget.is32BitELFABI()) 518 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 519 else 520 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 521 522 // Use the default implementation. 523 setOperationAction(ISD::VAEND , MVT::Other, Expand); 524 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 525 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 526 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 527 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 528 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 529 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 530 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 531 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 532 533 // We want to custom lower some of our intrinsics. 534 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 535 536 // To handle counter-based loop conditions. 537 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 538 539 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 540 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 541 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 542 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 543 544 // Comparisons that require checking two conditions. 545 if (Subtarget.hasSPE()) { 546 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 547 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 548 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 549 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 550 } 551 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 552 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 553 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 554 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 555 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 556 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 557 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 558 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 559 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 560 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 561 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 562 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 563 564 if (Subtarget.has64BitSupport()) { 565 // They also have instructions for converting between i64 and fp. 566 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 567 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 568 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 569 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 570 // This is just the low 32 bits of a (signed) fp->i64 conversion. 571 // We cannot do this with Promote because i64 is not a legal type. 572 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 573 574 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 575 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 576 } else { 577 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 578 if (Subtarget.hasSPE()) 579 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 580 else 581 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 582 } 583 584 // With the instructions enabled under FPCVT, we can do everything. 585 if (Subtarget.hasFPCVT()) { 586 if (Subtarget.has64BitSupport()) { 587 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 588 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 589 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 590 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 591 } 592 593 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 594 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 595 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 596 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 597 } 598 599 if (Subtarget.use64BitRegs()) { 600 // 64-bit PowerPC implementations can support i64 types directly 601 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 602 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 603 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 604 // 64-bit PowerPC wants to expand i128 shifts itself. 605 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 606 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 607 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 608 } else { 609 // 32-bit PowerPC wants to expand i64 shifts itself. 610 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 611 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 612 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 613 } 614 615 if (Subtarget.hasVSX()) { 616 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 617 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 618 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 619 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 620 } 621 622 if (Subtarget.hasAltivec()) { 623 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 624 setOperationAction(ISD::SADDSAT, VT, Legal); 625 setOperationAction(ISD::SSUBSAT, VT, Legal); 626 setOperationAction(ISD::UADDSAT, VT, Legal); 627 setOperationAction(ISD::USUBSAT, VT, Legal); 628 } 629 // First set operation action for all vector types to expand. Then we 630 // will selectively turn on ones that can be effectively codegen'd. 631 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 632 // add/sub are legal for all supported vector VT's. 633 setOperationAction(ISD::ADD, VT, Legal); 634 setOperationAction(ISD::SUB, VT, Legal); 635 636 // For v2i64, these are only valid with P8Vector. This is corrected after 637 // the loop. 638 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 639 setOperationAction(ISD::SMAX, VT, Legal); 640 setOperationAction(ISD::SMIN, VT, Legal); 641 setOperationAction(ISD::UMAX, VT, Legal); 642 setOperationAction(ISD::UMIN, VT, Legal); 643 } 644 else { 645 setOperationAction(ISD::SMAX, VT, Expand); 646 setOperationAction(ISD::SMIN, VT, Expand); 647 setOperationAction(ISD::UMAX, VT, Expand); 648 setOperationAction(ISD::UMIN, VT, Expand); 649 } 650 651 if (Subtarget.hasVSX()) { 652 setOperationAction(ISD::FMAXNUM, VT, Legal); 653 setOperationAction(ISD::FMINNUM, VT, Legal); 654 } 655 656 // Vector instructions introduced in P8 657 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 658 setOperationAction(ISD::CTPOP, VT, Legal); 659 setOperationAction(ISD::CTLZ, VT, Legal); 660 } 661 else { 662 setOperationAction(ISD::CTPOP, VT, Expand); 663 setOperationAction(ISD::CTLZ, VT, Expand); 664 } 665 666 // Vector instructions introduced in P9 667 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 668 setOperationAction(ISD::CTTZ, VT, Legal); 669 else 670 setOperationAction(ISD::CTTZ, VT, Expand); 671 672 // We promote all shuffles to v16i8. 673 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 674 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 675 676 // We promote all non-typed operations to v4i32. 677 setOperationAction(ISD::AND , VT, Promote); 678 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 679 setOperationAction(ISD::OR , VT, Promote); 680 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 681 setOperationAction(ISD::XOR , VT, Promote); 682 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 683 setOperationAction(ISD::LOAD , VT, Promote); 684 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 685 setOperationAction(ISD::SELECT, VT, Promote); 686 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 687 setOperationAction(ISD::VSELECT, VT, Legal); 688 setOperationAction(ISD::SELECT_CC, VT, Promote); 689 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 690 setOperationAction(ISD::STORE, VT, Promote); 691 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 692 693 // No other operations are legal. 694 setOperationAction(ISD::MUL , VT, Expand); 695 setOperationAction(ISD::SDIV, VT, Expand); 696 setOperationAction(ISD::SREM, VT, Expand); 697 setOperationAction(ISD::UDIV, VT, Expand); 698 setOperationAction(ISD::UREM, VT, Expand); 699 setOperationAction(ISD::FDIV, VT, Expand); 700 setOperationAction(ISD::FREM, VT, Expand); 701 setOperationAction(ISD::FNEG, VT, Expand); 702 setOperationAction(ISD::FSQRT, VT, Expand); 703 setOperationAction(ISD::FLOG, VT, Expand); 704 setOperationAction(ISD::FLOG10, VT, Expand); 705 setOperationAction(ISD::FLOG2, VT, Expand); 706 setOperationAction(ISD::FEXP, VT, Expand); 707 setOperationAction(ISD::FEXP2, VT, Expand); 708 setOperationAction(ISD::FSIN, VT, Expand); 709 setOperationAction(ISD::FCOS, VT, Expand); 710 setOperationAction(ISD::FABS, VT, Expand); 711 setOperationAction(ISD::FFLOOR, VT, Expand); 712 setOperationAction(ISD::FCEIL, VT, Expand); 713 setOperationAction(ISD::FTRUNC, VT, Expand); 714 setOperationAction(ISD::FRINT, VT, Expand); 715 setOperationAction(ISD::FNEARBYINT, VT, Expand); 716 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 717 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 718 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 719 setOperationAction(ISD::MULHU, VT, Expand); 720 setOperationAction(ISD::MULHS, VT, Expand); 721 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 722 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 723 setOperationAction(ISD::UDIVREM, VT, Expand); 724 setOperationAction(ISD::SDIVREM, VT, Expand); 725 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 726 setOperationAction(ISD::FPOW, VT, Expand); 727 setOperationAction(ISD::BSWAP, VT, Expand); 728 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 729 setOperationAction(ISD::ROTL, VT, Expand); 730 setOperationAction(ISD::ROTR, VT, Expand); 731 732 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 733 setTruncStoreAction(VT, InnerVT, Expand); 734 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 735 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 736 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 737 } 738 } 739 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 740 if (!Subtarget.hasP8Vector()) { 741 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 742 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 743 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 744 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 745 } 746 747 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 748 setOperationAction(ISD::ABS, VT, Custom); 749 750 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 751 // with merges, splats, etc. 752 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 753 754 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 755 // are cheap, so handle them before they get expanded to scalar. 756 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 757 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 758 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 759 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 760 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 761 762 setOperationAction(ISD::AND , MVT::v4i32, Legal); 763 setOperationAction(ISD::OR , MVT::v4i32, Legal); 764 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 765 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 766 setOperationAction(ISD::SELECT, MVT::v4i32, 767 Subtarget.useCRBits() ? Legal : Expand); 768 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 769 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 770 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 771 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 772 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 773 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 774 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 775 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 776 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 777 778 // Without hasP8Altivec set, v2i64 SMAX isn't available. 779 // But ABS custom lowering requires SMAX support. 780 if (!Subtarget.hasP8Altivec()) 781 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 782 783 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 784 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 785 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 786 if (Subtarget.hasAltivec()) 787 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 788 setOperationAction(ISD::ROTL, VT, Legal); 789 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 790 if (Subtarget.hasP8Altivec()) 791 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 792 793 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 794 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 795 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 796 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 797 798 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 799 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 800 801 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 802 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 803 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 804 } 805 806 if (Subtarget.hasP8Altivec()) 807 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 808 else 809 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 810 811 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 812 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 813 814 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 815 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 816 817 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 818 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 819 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 820 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 821 822 // Altivec does not contain unordered floating-point compare instructions 823 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 824 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 825 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 826 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 827 828 if (Subtarget.hasVSX()) { 829 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 830 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 831 if (Subtarget.hasP8Vector()) { 832 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 833 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 834 } 835 if (Subtarget.hasDirectMove() && isPPC64) { 836 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 837 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 838 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 839 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 840 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 841 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 842 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 844 } 845 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 846 847 // The nearbyint variants are not allowed to raise the inexact exception 848 // so we can only code-gen them with unsafe math. 849 if (TM.Options.UnsafeFPMath) { 850 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 851 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 852 } 853 854 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 855 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 856 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 857 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 858 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 859 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 860 setOperationAction(ISD::FROUND, MVT::f64, Legal); 861 setOperationAction(ISD::FRINT, MVT::f64, Legal); 862 863 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 864 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 865 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 866 setOperationAction(ISD::FROUND, MVT::f32, Legal); 867 setOperationAction(ISD::FRINT, MVT::f32, Legal); 868 869 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 870 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 871 872 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 873 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 874 875 // Share the Altivec comparison restrictions. 876 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 877 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 878 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 879 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 880 881 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 882 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 883 884 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 885 886 if (Subtarget.hasP8Vector()) 887 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 888 889 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 890 891 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 892 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 893 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 894 895 if (Subtarget.hasP8Altivec()) { 896 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 897 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 898 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 899 900 // 128 bit shifts can be accomplished via 3 instructions for SHL and 901 // SRL, but not for SRA because of the instructions available: 902 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 903 // doing 904 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 905 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 906 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 907 908 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 909 } 910 else { 911 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 912 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 913 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 914 915 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 916 917 // VSX v2i64 only supports non-arithmetic operations. 918 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 919 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 920 } 921 922 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 923 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 924 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 925 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 926 927 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 928 929 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 930 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 931 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 932 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 933 934 // Custom handling for partial vectors of integers converted to 935 // floating point. We already have optimal handling for v2i32 through 936 // the DAG combine, so those aren't necessary. 937 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 938 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 939 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 940 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 941 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 942 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 943 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 944 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 945 946 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 947 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 948 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 949 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 950 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 951 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 952 953 if (Subtarget.hasDirectMove()) 954 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 955 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 956 957 // Handle constrained floating-point operations of vector. 958 // The predictor is `hasVSX` because altivec instruction has 959 // no exception but VSX vector instruction has. 960 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 961 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 962 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 963 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 964 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 965 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 966 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 967 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 968 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 969 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 970 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 971 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 972 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 973 974 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 975 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 976 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 977 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 978 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 979 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 980 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 981 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 982 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 983 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 984 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 985 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 986 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 987 988 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 989 } 990 991 if (Subtarget.hasP8Altivec()) { 992 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 993 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 994 } 995 996 if (Subtarget.hasP9Vector()) { 997 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 998 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 999 1000 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1001 // SRL, but not for SRA because of the instructions available: 1002 // VS{RL} and VS{RL}O. 1003 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1004 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1005 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1006 1007 if (EnableQuadPrecision) { 1008 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1009 setOperationAction(ISD::FADD, MVT::f128, Legal); 1010 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1011 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1012 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1013 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1014 // No extending loads to f128 on PPC. 1015 for (MVT FPT : MVT::fp_valuetypes()) 1016 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1017 setOperationAction(ISD::FMA, MVT::f128, Legal); 1018 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1019 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1020 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1021 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1022 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1023 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1024 1025 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1026 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1027 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1028 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1029 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1030 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1031 1032 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1033 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1034 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1035 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1036 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1037 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1038 // No implementation for these ops for PowerPC. 1039 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1040 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1041 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1042 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1043 setOperationAction(ISD::FREM, MVT::f128, Expand); 1044 1045 // Handle constrained floating-point operations of fp128 1046 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1047 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1048 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1049 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1050 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1051 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1052 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1053 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1054 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1055 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1056 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1057 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1058 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1059 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1060 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1061 } 1062 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1063 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1064 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1065 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1066 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1067 } 1068 1069 if (Subtarget.hasP9Altivec()) { 1070 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1071 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1072 1073 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1074 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1075 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1076 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1077 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1078 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1079 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1080 } 1081 } 1082 1083 if (Subtarget.hasQPX()) { 1084 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1085 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1086 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1087 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1088 1089 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1090 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1091 1092 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1093 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1094 1095 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1096 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1097 1098 if (!Subtarget.useCRBits()) 1099 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1100 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1101 1102 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1103 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1104 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1105 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1106 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1107 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1108 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1109 1110 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1111 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1112 1113 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1114 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1115 1116 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1117 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1118 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1119 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1120 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1121 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1122 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1123 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1124 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1125 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1126 1127 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1128 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1129 1130 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1131 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1132 1133 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1134 1135 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1136 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1137 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1138 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1139 1140 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1141 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1142 1143 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1144 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1145 1146 if (!Subtarget.useCRBits()) 1147 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1148 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1149 1150 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1151 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1152 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1153 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1154 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1155 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1156 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1157 1158 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1159 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1160 1161 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1162 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1163 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1164 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1165 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1166 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1167 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1168 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1169 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1170 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1171 1172 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1173 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1174 1175 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1176 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1177 1178 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1179 1180 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1181 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1182 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1183 1184 if (!Subtarget.useCRBits()) 1185 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1186 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1187 1188 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1189 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1190 1191 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1192 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1193 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1194 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1195 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1196 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1197 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1198 1199 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1200 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1201 1202 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1203 1204 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1205 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1206 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1207 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1208 1209 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1210 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1211 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1212 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1213 1214 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1215 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1216 1217 // These need to set FE_INEXACT, and so cannot be vectorized here. 1218 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1219 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1220 1221 if (TM.Options.UnsafeFPMath) { 1222 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1223 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1224 1225 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1226 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1227 } else { 1228 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1229 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1230 1231 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1232 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1233 } 1234 1235 // TODO: Handle constrained floating-point operations of v4f64 1236 } 1237 1238 if (Subtarget.has64BitSupport()) 1239 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1240 1241 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1242 1243 if (!isPPC64) { 1244 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1245 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1246 } 1247 1248 setBooleanContents(ZeroOrOneBooleanContent); 1249 1250 if (Subtarget.hasAltivec()) { 1251 // Altivec instructions set fields to all zeros or all ones. 1252 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1253 } 1254 1255 if (!isPPC64) { 1256 // These libcalls are not available in 32-bit. 1257 setLibcallName(RTLIB::SHL_I128, nullptr); 1258 setLibcallName(RTLIB::SRL_I128, nullptr); 1259 setLibcallName(RTLIB::SRA_I128, nullptr); 1260 } 1261 1262 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1263 1264 // We have target-specific dag combine patterns for the following nodes: 1265 setTargetDAGCombine(ISD::ADD); 1266 setTargetDAGCombine(ISD::SHL); 1267 setTargetDAGCombine(ISD::SRA); 1268 setTargetDAGCombine(ISD::SRL); 1269 setTargetDAGCombine(ISD::MUL); 1270 setTargetDAGCombine(ISD::FMA); 1271 setTargetDAGCombine(ISD::SINT_TO_FP); 1272 setTargetDAGCombine(ISD::BUILD_VECTOR); 1273 if (Subtarget.hasFPCVT()) 1274 setTargetDAGCombine(ISD::UINT_TO_FP); 1275 setTargetDAGCombine(ISD::LOAD); 1276 setTargetDAGCombine(ISD::STORE); 1277 setTargetDAGCombine(ISD::BR_CC); 1278 if (Subtarget.useCRBits()) 1279 setTargetDAGCombine(ISD::BRCOND); 1280 setTargetDAGCombine(ISD::BSWAP); 1281 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1282 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1283 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1284 1285 setTargetDAGCombine(ISD::SIGN_EXTEND); 1286 setTargetDAGCombine(ISD::ZERO_EXTEND); 1287 setTargetDAGCombine(ISD::ANY_EXTEND); 1288 1289 setTargetDAGCombine(ISD::TRUNCATE); 1290 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1291 1292 1293 if (Subtarget.useCRBits()) { 1294 setTargetDAGCombine(ISD::TRUNCATE); 1295 setTargetDAGCombine(ISD::SETCC); 1296 setTargetDAGCombine(ISD::SELECT_CC); 1297 } 1298 1299 // Use reciprocal estimates. 1300 if (TM.Options.UnsafeFPMath) { 1301 setTargetDAGCombine(ISD::FDIV); 1302 setTargetDAGCombine(ISD::FSQRT); 1303 } 1304 1305 if (Subtarget.hasP9Altivec()) { 1306 setTargetDAGCombine(ISD::ABS); 1307 setTargetDAGCombine(ISD::VSELECT); 1308 } 1309 1310 if (EnableQuadPrecision) { 1311 setLibcallName(RTLIB::LOG_F128, "logf128"); 1312 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1313 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1314 setLibcallName(RTLIB::EXP_F128, "expf128"); 1315 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1316 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1317 setLibcallName(RTLIB::COS_F128, "cosf128"); 1318 setLibcallName(RTLIB::POW_F128, "powf128"); 1319 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1320 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1321 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1322 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1323 } 1324 1325 // With 32 condition bits, we don't need to sink (and duplicate) compares 1326 // aggressively in CodeGenPrep. 1327 if (Subtarget.useCRBits()) { 1328 setHasMultipleConditionRegisters(); 1329 setJumpIsExpensive(); 1330 } 1331 1332 setMinFunctionAlignment(Align(4)); 1333 1334 switch (Subtarget.getCPUDirective()) { 1335 default: break; 1336 case PPC::DIR_970: 1337 case PPC::DIR_A2: 1338 case PPC::DIR_E500: 1339 case PPC::DIR_E500mc: 1340 case PPC::DIR_E5500: 1341 case PPC::DIR_PWR4: 1342 case PPC::DIR_PWR5: 1343 case PPC::DIR_PWR5X: 1344 case PPC::DIR_PWR6: 1345 case PPC::DIR_PWR6X: 1346 case PPC::DIR_PWR7: 1347 case PPC::DIR_PWR8: 1348 case PPC::DIR_PWR9: 1349 case PPC::DIR_PWR10: 1350 case PPC::DIR_PWR_FUTURE: 1351 setPrefLoopAlignment(Align(16)); 1352 setPrefFunctionAlignment(Align(16)); 1353 break; 1354 } 1355 1356 if (Subtarget.enableMachineScheduler()) 1357 setSchedulingPreference(Sched::Source); 1358 else 1359 setSchedulingPreference(Sched::Hybrid); 1360 1361 computeRegisterProperties(STI.getRegisterInfo()); 1362 1363 // The Freescale cores do better with aggressive inlining of memcpy and 1364 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1365 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1366 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1367 MaxStoresPerMemset = 32; 1368 MaxStoresPerMemsetOptSize = 16; 1369 MaxStoresPerMemcpy = 32; 1370 MaxStoresPerMemcpyOptSize = 8; 1371 MaxStoresPerMemmove = 32; 1372 MaxStoresPerMemmoveOptSize = 8; 1373 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1374 // The A2 also benefits from (very) aggressive inlining of memcpy and 1375 // friends. The overhead of a the function call, even when warm, can be 1376 // over one hundred cycles. 1377 MaxStoresPerMemset = 128; 1378 MaxStoresPerMemcpy = 128; 1379 MaxStoresPerMemmove = 128; 1380 MaxLoadsPerMemcmp = 128; 1381 } else { 1382 MaxLoadsPerMemcmp = 8; 1383 MaxLoadsPerMemcmpOptSize = 4; 1384 } 1385 1386 // Let the subtarget (CPU) decide if a predictable select is more expensive 1387 // than the corresponding branch. This information is used in CGP to decide 1388 // when to convert selects into branches. 1389 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1390 } 1391 1392 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1393 /// the desired ByVal argument alignment. 1394 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1395 if (MaxAlign == MaxMaxAlign) 1396 return; 1397 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1398 if (MaxMaxAlign >= 32 && 1399 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1400 MaxAlign = Align(32); 1401 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1402 MaxAlign < 16) 1403 MaxAlign = Align(16); 1404 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1405 Align EltAlign; 1406 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1407 if (EltAlign > MaxAlign) 1408 MaxAlign = EltAlign; 1409 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1410 for (auto *EltTy : STy->elements()) { 1411 Align EltAlign; 1412 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1413 if (EltAlign > MaxAlign) 1414 MaxAlign = EltAlign; 1415 if (MaxAlign == MaxMaxAlign) 1416 break; 1417 } 1418 } 1419 } 1420 1421 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1422 /// function arguments in the caller parameter area. 1423 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1424 const DataLayout &DL) const { 1425 // 16byte and wider vectors are passed on 16byte boundary. 1426 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1427 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1428 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1429 getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16)); 1430 return Alignment.value(); 1431 } 1432 1433 bool PPCTargetLowering::useSoftFloat() const { 1434 return Subtarget.useSoftFloat(); 1435 } 1436 1437 bool PPCTargetLowering::hasSPE() const { 1438 return Subtarget.hasSPE(); 1439 } 1440 1441 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1442 return VT.isScalarInteger(); 1443 } 1444 1445 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1446 /// type is cheaper than a multiply followed by a shift. 1447 /// This is true for words and doublewords on 64-bit PowerPC. 1448 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1449 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1450 isOperationLegal(ISD::MULHU, Type))) 1451 return true; 1452 return TargetLowering::isMulhCheaperThanMulShift(Type); 1453 } 1454 1455 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1456 switch ((PPCISD::NodeType)Opcode) { 1457 case PPCISD::FIRST_NUMBER: break; 1458 case PPCISD::FSEL: return "PPCISD::FSEL"; 1459 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1460 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1461 case PPCISD::FCFID: return "PPCISD::FCFID"; 1462 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1463 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1464 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1465 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1466 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1467 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1468 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1469 case PPCISD::FP_TO_UINT_IN_VSR: 1470 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1471 case PPCISD::FP_TO_SINT_IN_VSR: 1472 return "PPCISD::FP_TO_SINT_IN_VSR"; 1473 case PPCISD::FRE: return "PPCISD::FRE"; 1474 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1475 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1476 case PPCISD::VPERM: return "PPCISD::VPERM"; 1477 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1478 case PPCISD::XXSPLTI_SP_TO_DP: 1479 return "PPCISD::XXSPLTI_SP_TO_DP"; 1480 case PPCISD::XXSPLTI32DX: 1481 return "PPCISD::XXSPLTI32DX"; 1482 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1483 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1484 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1485 case PPCISD::CMPB: return "PPCISD::CMPB"; 1486 case PPCISD::Hi: return "PPCISD::Hi"; 1487 case PPCISD::Lo: return "PPCISD::Lo"; 1488 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1489 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1490 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1491 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1492 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1493 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1494 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1495 case PPCISD::SRL: return "PPCISD::SRL"; 1496 case PPCISD::SRA: return "PPCISD::SRA"; 1497 case PPCISD::SHL: return "PPCISD::SHL"; 1498 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1499 case PPCISD::CALL: return "PPCISD::CALL"; 1500 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1501 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1502 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1503 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1504 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1505 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1506 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1507 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1508 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1509 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1510 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1511 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1512 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1513 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1514 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1515 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1516 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1517 case PPCISD::ANDI_rec_1_EQ_BIT: 1518 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1519 case PPCISD::ANDI_rec_1_GT_BIT: 1520 return "PPCISD::ANDI_rec_1_GT_BIT"; 1521 case PPCISD::VCMP: return "PPCISD::VCMP"; 1522 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1523 case PPCISD::LBRX: return "PPCISD::LBRX"; 1524 case PPCISD::STBRX: return "PPCISD::STBRX"; 1525 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1526 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1527 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1528 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1529 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1530 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1531 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1532 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1533 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1534 case PPCISD::ST_VSR_SCAL_INT: 1535 return "PPCISD::ST_VSR_SCAL_INT"; 1536 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1537 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1538 case PPCISD::BDZ: return "PPCISD::BDZ"; 1539 case PPCISD::MFFS: return "PPCISD::MFFS"; 1540 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1541 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1542 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1543 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1544 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1545 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1546 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1547 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1548 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1549 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1550 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1551 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1552 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1553 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1554 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1555 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1556 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1557 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1558 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1559 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1560 case PPCISD::SC: return "PPCISD::SC"; 1561 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1562 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1563 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1564 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1565 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1566 case PPCISD::VABSD: return "PPCISD::VABSD"; 1567 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1568 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1569 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1570 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1571 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1572 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1573 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1574 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1575 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1576 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1577 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1578 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1579 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1580 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1581 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1582 } 1583 return nullptr; 1584 } 1585 1586 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1587 EVT VT) const { 1588 if (!VT.isVector()) 1589 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1590 1591 if (Subtarget.hasQPX()) 1592 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1593 1594 return VT.changeVectorElementTypeToInteger(); 1595 } 1596 1597 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1598 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1599 return true; 1600 } 1601 1602 //===----------------------------------------------------------------------===// 1603 // Node matching predicates, for use by the tblgen matching code. 1604 //===----------------------------------------------------------------------===// 1605 1606 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1607 static bool isFloatingPointZero(SDValue Op) { 1608 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1609 return CFP->getValueAPF().isZero(); 1610 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1611 // Maybe this has already been legalized into the constant pool? 1612 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1613 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1614 return CFP->getValueAPF().isZero(); 1615 } 1616 return false; 1617 } 1618 1619 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1620 /// true if Op is undef or if it matches the specified value. 1621 static bool isConstantOrUndef(int Op, int Val) { 1622 return Op < 0 || Op == Val; 1623 } 1624 1625 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1626 /// VPKUHUM instruction. 1627 /// The ShuffleKind distinguishes between big-endian operations with 1628 /// two different inputs (0), either-endian operations with two identical 1629 /// inputs (1), and little-endian operations with two different inputs (2). 1630 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1631 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1632 SelectionDAG &DAG) { 1633 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1634 if (ShuffleKind == 0) { 1635 if (IsLE) 1636 return false; 1637 for (unsigned i = 0; i != 16; ++i) 1638 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1639 return false; 1640 } else if (ShuffleKind == 2) { 1641 if (!IsLE) 1642 return false; 1643 for (unsigned i = 0; i != 16; ++i) 1644 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1645 return false; 1646 } else if (ShuffleKind == 1) { 1647 unsigned j = IsLE ? 0 : 1; 1648 for (unsigned i = 0; i != 8; ++i) 1649 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1650 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1651 return false; 1652 } 1653 return true; 1654 } 1655 1656 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1657 /// VPKUWUM instruction. 1658 /// The ShuffleKind distinguishes between big-endian operations with 1659 /// two different inputs (0), either-endian operations with two identical 1660 /// inputs (1), and little-endian operations with two different inputs (2). 1661 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1662 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1663 SelectionDAG &DAG) { 1664 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1665 if (ShuffleKind == 0) { 1666 if (IsLE) 1667 return false; 1668 for (unsigned i = 0; i != 16; i += 2) 1669 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1670 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1671 return false; 1672 } else if (ShuffleKind == 2) { 1673 if (!IsLE) 1674 return false; 1675 for (unsigned i = 0; i != 16; i += 2) 1676 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1677 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1678 return false; 1679 } else if (ShuffleKind == 1) { 1680 unsigned j = IsLE ? 0 : 2; 1681 for (unsigned i = 0; i != 8; i += 2) 1682 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1683 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1684 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1685 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1692 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1693 /// current subtarget. 1694 /// 1695 /// The ShuffleKind distinguishes between big-endian operations with 1696 /// two different inputs (0), either-endian operations with two identical 1697 /// inputs (1), and little-endian operations with two different inputs (2). 1698 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1699 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1700 SelectionDAG &DAG) { 1701 const PPCSubtarget& Subtarget = 1702 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1703 if (!Subtarget.hasP8Vector()) 1704 return false; 1705 1706 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1707 if (ShuffleKind == 0) { 1708 if (IsLE) 1709 return false; 1710 for (unsigned i = 0; i != 16; i += 4) 1711 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1712 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1713 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1714 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1715 return false; 1716 } else if (ShuffleKind == 2) { 1717 if (!IsLE) 1718 return false; 1719 for (unsigned i = 0; i != 16; i += 4) 1720 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1721 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1722 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1723 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1724 return false; 1725 } else if (ShuffleKind == 1) { 1726 unsigned j = IsLE ? 0 : 4; 1727 for (unsigned i = 0; i != 8; i += 4) 1728 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1729 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1730 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1731 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1732 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1733 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1734 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1735 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1736 return false; 1737 } 1738 return true; 1739 } 1740 1741 /// isVMerge - Common function, used to match vmrg* shuffles. 1742 /// 1743 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1744 unsigned LHSStart, unsigned RHSStart) { 1745 if (N->getValueType(0) != MVT::v16i8) 1746 return false; 1747 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1748 "Unsupported merge size!"); 1749 1750 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1751 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1752 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1753 LHSStart+j+i*UnitSize) || 1754 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1755 RHSStart+j+i*UnitSize)) 1756 return false; 1757 } 1758 return true; 1759 } 1760 1761 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1762 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1763 /// The ShuffleKind distinguishes between big-endian merges with two 1764 /// different inputs (0), either-endian merges with two identical inputs (1), 1765 /// and little-endian merges with two different inputs (2). For the latter, 1766 /// the input operands are swapped (see PPCInstrAltivec.td). 1767 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1768 unsigned ShuffleKind, SelectionDAG &DAG) { 1769 if (DAG.getDataLayout().isLittleEndian()) { 1770 if (ShuffleKind == 1) // unary 1771 return isVMerge(N, UnitSize, 0, 0); 1772 else if (ShuffleKind == 2) // swapped 1773 return isVMerge(N, UnitSize, 0, 16); 1774 else 1775 return false; 1776 } else { 1777 if (ShuffleKind == 1) // unary 1778 return isVMerge(N, UnitSize, 8, 8); 1779 else if (ShuffleKind == 0) // normal 1780 return isVMerge(N, UnitSize, 8, 24); 1781 else 1782 return false; 1783 } 1784 } 1785 1786 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1787 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1788 /// The ShuffleKind distinguishes between big-endian merges with two 1789 /// different inputs (0), either-endian merges with two identical inputs (1), 1790 /// and little-endian merges with two different inputs (2). For the latter, 1791 /// the input operands are swapped (see PPCInstrAltivec.td). 1792 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1793 unsigned ShuffleKind, SelectionDAG &DAG) { 1794 if (DAG.getDataLayout().isLittleEndian()) { 1795 if (ShuffleKind == 1) // unary 1796 return isVMerge(N, UnitSize, 8, 8); 1797 else if (ShuffleKind == 2) // swapped 1798 return isVMerge(N, UnitSize, 8, 24); 1799 else 1800 return false; 1801 } else { 1802 if (ShuffleKind == 1) // unary 1803 return isVMerge(N, UnitSize, 0, 0); 1804 else if (ShuffleKind == 0) // normal 1805 return isVMerge(N, UnitSize, 0, 16); 1806 else 1807 return false; 1808 } 1809 } 1810 1811 /** 1812 * Common function used to match vmrgew and vmrgow shuffles 1813 * 1814 * The indexOffset determines whether to look for even or odd words in 1815 * the shuffle mask. This is based on the of the endianness of the target 1816 * machine. 1817 * - Little Endian: 1818 * - Use offset of 0 to check for odd elements 1819 * - Use offset of 4 to check for even elements 1820 * - Big Endian: 1821 * - Use offset of 0 to check for even elements 1822 * - Use offset of 4 to check for odd elements 1823 * A detailed description of the vector element ordering for little endian and 1824 * big endian can be found at 1825 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1826 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1827 * compiler differences mean to you 1828 * 1829 * The mask to the shuffle vector instruction specifies the indices of the 1830 * elements from the two input vectors to place in the result. The elements are 1831 * numbered in array-access order, starting with the first vector. These vectors 1832 * are always of type v16i8, thus each vector will contain 16 elements of size 1833 * 8. More info on the shuffle vector can be found in the 1834 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1835 * Language Reference. 1836 * 1837 * The RHSStartValue indicates whether the same input vectors are used (unary) 1838 * or two different input vectors are used, based on the following: 1839 * - If the instruction uses the same vector for both inputs, the range of the 1840 * indices will be 0 to 15. In this case, the RHSStart value passed should 1841 * be 0. 1842 * - If the instruction has two different vectors then the range of the 1843 * indices will be 0 to 31. In this case, the RHSStart value passed should 1844 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1845 * to 31 specify elements in the second vector). 1846 * 1847 * \param[in] N The shuffle vector SD Node to analyze 1848 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1849 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1850 * vector to the shuffle_vector instruction 1851 * \return true iff this shuffle vector represents an even or odd word merge 1852 */ 1853 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1854 unsigned RHSStartValue) { 1855 if (N->getValueType(0) != MVT::v16i8) 1856 return false; 1857 1858 for (unsigned i = 0; i < 2; ++i) 1859 for (unsigned j = 0; j < 4; ++j) 1860 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1861 i*RHSStartValue+j+IndexOffset) || 1862 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1863 i*RHSStartValue+j+IndexOffset+8)) 1864 return false; 1865 return true; 1866 } 1867 1868 /** 1869 * Determine if the specified shuffle mask is suitable for the vmrgew or 1870 * vmrgow instructions. 1871 * 1872 * \param[in] N The shuffle vector SD Node to analyze 1873 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1874 * \param[in] ShuffleKind Identify the type of merge: 1875 * - 0 = big-endian merge with two different inputs; 1876 * - 1 = either-endian merge with two identical inputs; 1877 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1878 * little-endian merges). 1879 * \param[in] DAG The current SelectionDAG 1880 * \return true iff this shuffle mask 1881 */ 1882 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1883 unsigned ShuffleKind, SelectionDAG &DAG) { 1884 if (DAG.getDataLayout().isLittleEndian()) { 1885 unsigned indexOffset = CheckEven ? 4 : 0; 1886 if (ShuffleKind == 1) // Unary 1887 return isVMerge(N, indexOffset, 0); 1888 else if (ShuffleKind == 2) // swapped 1889 return isVMerge(N, indexOffset, 16); 1890 else 1891 return false; 1892 } 1893 else { 1894 unsigned indexOffset = CheckEven ? 0 : 4; 1895 if (ShuffleKind == 1) // Unary 1896 return isVMerge(N, indexOffset, 0); 1897 else if (ShuffleKind == 0) // Normal 1898 return isVMerge(N, indexOffset, 16); 1899 else 1900 return false; 1901 } 1902 return false; 1903 } 1904 1905 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1906 /// amount, otherwise return -1. 1907 /// The ShuffleKind distinguishes between big-endian operations with two 1908 /// different inputs (0), either-endian operations with two identical inputs 1909 /// (1), and little-endian operations with two different inputs (2). For the 1910 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1911 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1912 SelectionDAG &DAG) { 1913 if (N->getValueType(0) != MVT::v16i8) 1914 return -1; 1915 1916 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1917 1918 // Find the first non-undef value in the shuffle mask. 1919 unsigned i; 1920 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1921 /*search*/; 1922 1923 if (i == 16) return -1; // all undef. 1924 1925 // Otherwise, check to see if the rest of the elements are consecutively 1926 // numbered from this value. 1927 unsigned ShiftAmt = SVOp->getMaskElt(i); 1928 if (ShiftAmt < i) return -1; 1929 1930 ShiftAmt -= i; 1931 bool isLE = DAG.getDataLayout().isLittleEndian(); 1932 1933 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1934 // Check the rest of the elements to see if they are consecutive. 1935 for (++i; i != 16; ++i) 1936 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1937 return -1; 1938 } else if (ShuffleKind == 1) { 1939 // Check the rest of the elements to see if they are consecutive. 1940 for (++i; i != 16; ++i) 1941 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1942 return -1; 1943 } else 1944 return -1; 1945 1946 if (isLE) 1947 ShiftAmt = 16 - ShiftAmt; 1948 1949 return ShiftAmt; 1950 } 1951 1952 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1953 /// specifies a splat of a single element that is suitable for input to 1954 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1955 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1956 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1957 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1958 1959 // The consecutive indices need to specify an element, not part of two 1960 // different elements. So abandon ship early if this isn't the case. 1961 if (N->getMaskElt(0) % EltSize != 0) 1962 return false; 1963 1964 // This is a splat operation if each element of the permute is the same, and 1965 // if the value doesn't reference the second vector. 1966 unsigned ElementBase = N->getMaskElt(0); 1967 1968 // FIXME: Handle UNDEF elements too! 1969 if (ElementBase >= 16) 1970 return false; 1971 1972 // Check that the indices are consecutive, in the case of a multi-byte element 1973 // splatted with a v16i8 mask. 1974 for (unsigned i = 1; i != EltSize; ++i) 1975 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1976 return false; 1977 1978 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1979 if (N->getMaskElt(i) < 0) continue; 1980 for (unsigned j = 0; j != EltSize; ++j) 1981 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1982 return false; 1983 } 1984 return true; 1985 } 1986 1987 /// Check that the mask is shuffling N byte elements. Within each N byte 1988 /// element of the mask, the indices could be either in increasing or 1989 /// decreasing order as long as they are consecutive. 1990 /// \param[in] N the shuffle vector SD Node to analyze 1991 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1992 /// Word/DoubleWord/QuadWord). 1993 /// \param[in] StepLen the delta indices number among the N byte element, if 1994 /// the mask is in increasing/decreasing order then it is 1/-1. 1995 /// \return true iff the mask is shuffling N byte elements. 1996 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1997 int StepLen) { 1998 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1999 "Unexpected element width."); 2000 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2001 2002 unsigned NumOfElem = 16 / Width; 2003 unsigned MaskVal[16]; // Width is never greater than 16 2004 for (unsigned i = 0; i < NumOfElem; ++i) { 2005 MaskVal[0] = N->getMaskElt(i * Width); 2006 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2007 return false; 2008 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2009 return false; 2010 } 2011 2012 for (unsigned int j = 1; j < Width; ++j) { 2013 MaskVal[j] = N->getMaskElt(i * Width + j); 2014 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2015 return false; 2016 } 2017 } 2018 } 2019 2020 return true; 2021 } 2022 2023 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2024 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2025 if (!isNByteElemShuffleMask(N, 4, 1)) 2026 return false; 2027 2028 // Now we look at mask elements 0,4,8,12 2029 unsigned M0 = N->getMaskElt(0) / 4; 2030 unsigned M1 = N->getMaskElt(4) / 4; 2031 unsigned M2 = N->getMaskElt(8) / 4; 2032 unsigned M3 = N->getMaskElt(12) / 4; 2033 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2034 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2035 2036 // Below, let H and L be arbitrary elements of the shuffle mask 2037 // where H is in the range [4,7] and L is in the range [0,3]. 2038 // H, 1, 2, 3 or L, 5, 6, 7 2039 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2040 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2041 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2042 InsertAtByte = IsLE ? 12 : 0; 2043 Swap = M0 < 4; 2044 return true; 2045 } 2046 // 0, H, 2, 3 or 4, L, 6, 7 2047 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2048 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2049 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2050 InsertAtByte = IsLE ? 8 : 4; 2051 Swap = M1 < 4; 2052 return true; 2053 } 2054 // 0, 1, H, 3 or 4, 5, L, 7 2055 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2056 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2057 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2058 InsertAtByte = IsLE ? 4 : 8; 2059 Swap = M2 < 4; 2060 return true; 2061 } 2062 // 0, 1, 2, H or 4, 5, 6, L 2063 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2064 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2065 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2066 InsertAtByte = IsLE ? 0 : 12; 2067 Swap = M3 < 4; 2068 return true; 2069 } 2070 2071 // If both vector operands for the shuffle are the same vector, the mask will 2072 // contain only elements from the first one and the second one will be undef. 2073 if (N->getOperand(1).isUndef()) { 2074 ShiftElts = 0; 2075 Swap = true; 2076 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2077 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2078 InsertAtByte = IsLE ? 12 : 0; 2079 return true; 2080 } 2081 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2082 InsertAtByte = IsLE ? 8 : 4; 2083 return true; 2084 } 2085 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2086 InsertAtByte = IsLE ? 4 : 8; 2087 return true; 2088 } 2089 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2090 InsertAtByte = IsLE ? 0 : 12; 2091 return true; 2092 } 2093 } 2094 2095 return false; 2096 } 2097 2098 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2099 bool &Swap, bool IsLE) { 2100 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2101 // Ensure each byte index of the word is consecutive. 2102 if (!isNByteElemShuffleMask(N, 4, 1)) 2103 return false; 2104 2105 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2106 unsigned M0 = N->getMaskElt(0) / 4; 2107 unsigned M1 = N->getMaskElt(4) / 4; 2108 unsigned M2 = N->getMaskElt(8) / 4; 2109 unsigned M3 = N->getMaskElt(12) / 4; 2110 2111 // If both vector operands for the shuffle are the same vector, the mask will 2112 // contain only elements from the first one and the second one will be undef. 2113 if (N->getOperand(1).isUndef()) { 2114 assert(M0 < 4 && "Indexing into an undef vector?"); 2115 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2116 return false; 2117 2118 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2119 Swap = false; 2120 return true; 2121 } 2122 2123 // Ensure each word index of the ShuffleVector Mask is consecutive. 2124 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2125 return false; 2126 2127 if (IsLE) { 2128 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2129 // Input vectors don't need to be swapped if the leading element 2130 // of the result is one of the 3 left elements of the second vector 2131 // (or if there is no shift to be done at all). 2132 Swap = false; 2133 ShiftElts = (8 - M0) % 8; 2134 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2135 // Input vectors need to be swapped if the leading element 2136 // of the result is one of the 3 left elements of the first vector 2137 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2138 Swap = true; 2139 ShiftElts = (4 - M0) % 4; 2140 } 2141 2142 return true; 2143 } else { // BE 2144 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2145 // Input vectors don't need to be swapped if the leading element 2146 // of the result is one of the 4 elements of the first vector. 2147 Swap = false; 2148 ShiftElts = M0; 2149 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2150 // Input vectors need to be swapped if the leading element 2151 // of the result is one of the 4 elements of the right vector. 2152 Swap = true; 2153 ShiftElts = M0 - 4; 2154 } 2155 2156 return true; 2157 } 2158 } 2159 2160 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2161 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2162 2163 if (!isNByteElemShuffleMask(N, Width, -1)) 2164 return false; 2165 2166 for (int i = 0; i < 16; i += Width) 2167 if (N->getMaskElt(i) != i + Width - 1) 2168 return false; 2169 2170 return true; 2171 } 2172 2173 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2174 return isXXBRShuffleMaskHelper(N, 2); 2175 } 2176 2177 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2178 return isXXBRShuffleMaskHelper(N, 4); 2179 } 2180 2181 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2182 return isXXBRShuffleMaskHelper(N, 8); 2183 } 2184 2185 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2186 return isXXBRShuffleMaskHelper(N, 16); 2187 } 2188 2189 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2190 /// if the inputs to the instruction should be swapped and set \p DM to the 2191 /// value for the immediate. 2192 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2193 /// AND element 0 of the result comes from the first input (LE) or second input 2194 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2195 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2196 /// mask. 2197 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2198 bool &Swap, bool IsLE) { 2199 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2200 2201 // Ensure each byte index of the double word is consecutive. 2202 if (!isNByteElemShuffleMask(N, 8, 1)) 2203 return false; 2204 2205 unsigned M0 = N->getMaskElt(0) / 8; 2206 unsigned M1 = N->getMaskElt(8) / 8; 2207 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2208 2209 // If both vector operands for the shuffle are the same vector, the mask will 2210 // contain only elements from the first one and the second one will be undef. 2211 if (N->getOperand(1).isUndef()) { 2212 if ((M0 | M1) < 2) { 2213 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2214 Swap = false; 2215 return true; 2216 } else 2217 return false; 2218 } 2219 2220 if (IsLE) { 2221 if (M0 > 1 && M1 < 2) { 2222 Swap = false; 2223 } else if (M0 < 2 && M1 > 1) { 2224 M0 = (M0 + 2) % 4; 2225 M1 = (M1 + 2) % 4; 2226 Swap = true; 2227 } else 2228 return false; 2229 2230 // Note: if control flow comes here that means Swap is already set above 2231 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2232 return true; 2233 } else { // BE 2234 if (M0 < 2 && M1 > 1) { 2235 Swap = false; 2236 } else if (M0 > 1 && M1 < 2) { 2237 M0 = (M0 + 2) % 4; 2238 M1 = (M1 + 2) % 4; 2239 Swap = true; 2240 } else 2241 return false; 2242 2243 // Note: if control flow comes here that means Swap is already set above 2244 DM = (M0 << 1) + (M1 & 1); 2245 return true; 2246 } 2247 } 2248 2249 2250 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2251 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2252 /// elements are counted from the left of the vector register). 2253 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2254 SelectionDAG &DAG) { 2255 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2256 assert(isSplatShuffleMask(SVOp, EltSize)); 2257 if (DAG.getDataLayout().isLittleEndian()) 2258 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2259 else 2260 return SVOp->getMaskElt(0) / EltSize; 2261 } 2262 2263 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2264 /// by using a vspltis[bhw] instruction of the specified element size, return 2265 /// the constant being splatted. The ByteSize field indicates the number of 2266 /// bytes of each element [124] -> [bhw]. 2267 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2268 SDValue OpVal(nullptr, 0); 2269 2270 // If ByteSize of the splat is bigger than the element size of the 2271 // build_vector, then we have a case where we are checking for a splat where 2272 // multiple elements of the buildvector are folded together into a single 2273 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2274 unsigned EltSize = 16/N->getNumOperands(); 2275 if (EltSize < ByteSize) { 2276 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2277 SDValue UniquedVals[4]; 2278 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2279 2280 // See if all of the elements in the buildvector agree across. 2281 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2282 if (N->getOperand(i).isUndef()) continue; 2283 // If the element isn't a constant, bail fully out. 2284 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2285 2286 if (!UniquedVals[i&(Multiple-1)].getNode()) 2287 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2288 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2289 return SDValue(); // no match. 2290 } 2291 2292 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2293 // either constant or undef values that are identical for each chunk. See 2294 // if these chunks can form into a larger vspltis*. 2295 2296 // Check to see if all of the leading entries are either 0 or -1. If 2297 // neither, then this won't fit into the immediate field. 2298 bool LeadingZero = true; 2299 bool LeadingOnes = true; 2300 for (unsigned i = 0; i != Multiple-1; ++i) { 2301 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2302 2303 LeadingZero &= isNullConstant(UniquedVals[i]); 2304 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2305 } 2306 // Finally, check the least significant entry. 2307 if (LeadingZero) { 2308 if (!UniquedVals[Multiple-1].getNode()) 2309 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2310 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2311 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2312 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2313 } 2314 if (LeadingOnes) { 2315 if (!UniquedVals[Multiple-1].getNode()) 2316 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2317 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2318 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2319 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2320 } 2321 2322 return SDValue(); 2323 } 2324 2325 // Check to see if this buildvec has a single non-undef value in its elements. 2326 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2327 if (N->getOperand(i).isUndef()) continue; 2328 if (!OpVal.getNode()) 2329 OpVal = N->getOperand(i); 2330 else if (OpVal != N->getOperand(i)) 2331 return SDValue(); 2332 } 2333 2334 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2335 2336 unsigned ValSizeInBytes = EltSize; 2337 uint64_t Value = 0; 2338 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2339 Value = CN->getZExtValue(); 2340 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2341 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2342 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2343 } 2344 2345 // If the splat value is larger than the element value, then we can never do 2346 // this splat. The only case that we could fit the replicated bits into our 2347 // immediate field for would be zero, and we prefer to use vxor for it. 2348 if (ValSizeInBytes < ByteSize) return SDValue(); 2349 2350 // If the element value is larger than the splat value, check if it consists 2351 // of a repeated bit pattern of size ByteSize. 2352 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2353 return SDValue(); 2354 2355 // Properly sign extend the value. 2356 int MaskVal = SignExtend32(Value, ByteSize * 8); 2357 2358 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2359 if (MaskVal == 0) return SDValue(); 2360 2361 // Finally, if this value fits in a 5 bit sext field, return it 2362 if (SignExtend32<5>(MaskVal) == MaskVal) 2363 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2364 return SDValue(); 2365 } 2366 2367 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2368 /// amount, otherwise return -1. 2369 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2370 EVT VT = N->getValueType(0); 2371 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2372 return -1; 2373 2374 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2375 2376 // Find the first non-undef value in the shuffle mask. 2377 unsigned i; 2378 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2379 /*search*/; 2380 2381 if (i == 4) return -1; // all undef. 2382 2383 // Otherwise, check to see if the rest of the elements are consecutively 2384 // numbered from this value. 2385 unsigned ShiftAmt = SVOp->getMaskElt(i); 2386 if (ShiftAmt < i) return -1; 2387 ShiftAmt -= i; 2388 2389 // Check the rest of the elements to see if they are consecutive. 2390 for (++i; i != 4; ++i) 2391 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2392 return -1; 2393 2394 return ShiftAmt; 2395 } 2396 2397 //===----------------------------------------------------------------------===// 2398 // Addressing Mode Selection 2399 //===----------------------------------------------------------------------===// 2400 2401 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2402 /// or 64-bit immediate, and if the value can be accurately represented as a 2403 /// sign extension from a 16-bit value. If so, this returns true and the 2404 /// immediate. 2405 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2406 if (!isa<ConstantSDNode>(N)) 2407 return false; 2408 2409 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2410 if (N->getValueType(0) == MVT::i32) 2411 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2412 else 2413 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2414 } 2415 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2416 return isIntS16Immediate(Op.getNode(), Imm); 2417 } 2418 2419 2420 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2421 /// be represented as an indexed [r+r] operation. 2422 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2423 SDValue &Index, 2424 SelectionDAG &DAG) const { 2425 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2426 UI != E; ++UI) { 2427 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2428 if (Memop->getMemoryVT() == MVT::f64) { 2429 Base = N.getOperand(0); 2430 Index = N.getOperand(1); 2431 return true; 2432 } 2433 } 2434 } 2435 return false; 2436 } 2437 2438 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2439 /// can be represented as an indexed [r+r] operation. Returns false if it 2440 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2441 /// non-zero and N can be represented by a base register plus a signed 16-bit 2442 /// displacement, make a more precise judgement by checking (displacement % \p 2443 /// EncodingAlignment). 2444 bool PPCTargetLowering::SelectAddressRegReg( 2445 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2446 MaybeAlign EncodingAlignment) const { 2447 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2448 // a [pc+imm]. 2449 if (SelectAddressPCRel(N, Base)) 2450 return false; 2451 2452 int16_t Imm = 0; 2453 if (N.getOpcode() == ISD::ADD) { 2454 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2455 // SPE load/store can only handle 8-bit offsets. 2456 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2457 return true; 2458 if (isIntS16Immediate(N.getOperand(1), Imm) && 2459 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2460 return false; // r+i 2461 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2462 return false; // r+i 2463 2464 Base = N.getOperand(0); 2465 Index = N.getOperand(1); 2466 return true; 2467 } else if (N.getOpcode() == ISD::OR) { 2468 if (isIntS16Immediate(N.getOperand(1), Imm) && 2469 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2470 return false; // r+i can fold it if we can. 2471 2472 // If this is an or of disjoint bitfields, we can codegen this as an add 2473 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2474 // disjoint. 2475 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2476 2477 if (LHSKnown.Zero.getBoolValue()) { 2478 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2479 // If all of the bits are known zero on the LHS or RHS, the add won't 2480 // carry. 2481 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2482 Base = N.getOperand(0); 2483 Index = N.getOperand(1); 2484 return true; 2485 } 2486 } 2487 } 2488 2489 return false; 2490 } 2491 2492 // If we happen to be doing an i64 load or store into a stack slot that has 2493 // less than a 4-byte alignment, then the frame-index elimination may need to 2494 // use an indexed load or store instruction (because the offset may not be a 2495 // multiple of 4). The extra register needed to hold the offset comes from the 2496 // register scavenger, and it is possible that the scavenger will need to use 2497 // an emergency spill slot. As a result, we need to make sure that a spill slot 2498 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2499 // stack slot. 2500 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2501 // FIXME: This does not handle the LWA case. 2502 if (VT != MVT::i64) 2503 return; 2504 2505 // NOTE: We'll exclude negative FIs here, which come from argument 2506 // lowering, because there are no known test cases triggering this problem 2507 // using packed structures (or similar). We can remove this exclusion if 2508 // we find such a test case. The reason why this is so test-case driven is 2509 // because this entire 'fixup' is only to prevent crashes (from the 2510 // register scavenger) on not-really-valid inputs. For example, if we have: 2511 // %a = alloca i1 2512 // %b = bitcast i1* %a to i64* 2513 // store i64* a, i64 b 2514 // then the store should really be marked as 'align 1', but is not. If it 2515 // were marked as 'align 1' then the indexed form would have been 2516 // instruction-selected initially, and the problem this 'fixup' is preventing 2517 // won't happen regardless. 2518 if (FrameIdx < 0) 2519 return; 2520 2521 MachineFunction &MF = DAG.getMachineFunction(); 2522 MachineFrameInfo &MFI = MF.getFrameInfo(); 2523 2524 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2525 return; 2526 2527 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2528 FuncInfo->setHasNonRISpills(); 2529 } 2530 2531 /// Returns true if the address N can be represented by a base register plus 2532 /// a signed 16-bit displacement [r+imm], and if it is not better 2533 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2534 /// displacements that are multiples of that value. 2535 bool PPCTargetLowering::SelectAddressRegImm( 2536 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2537 MaybeAlign EncodingAlignment) const { 2538 // FIXME dl should come from parent load or store, not from address 2539 SDLoc dl(N); 2540 2541 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2542 // a [pc+imm]. 2543 if (SelectAddressPCRel(N, Base)) 2544 return false; 2545 2546 // If this can be more profitably realized as r+r, fail. 2547 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2548 return false; 2549 2550 if (N.getOpcode() == ISD::ADD) { 2551 int16_t imm = 0; 2552 if (isIntS16Immediate(N.getOperand(1), imm) && 2553 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2554 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2555 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2556 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2557 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2558 } else { 2559 Base = N.getOperand(0); 2560 } 2561 return true; // [r+i] 2562 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2563 // Match LOAD (ADD (X, Lo(G))). 2564 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2565 && "Cannot handle constant offsets yet!"); 2566 Disp = N.getOperand(1).getOperand(0); // The global address. 2567 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2568 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2569 Disp.getOpcode() == ISD::TargetConstantPool || 2570 Disp.getOpcode() == ISD::TargetJumpTable); 2571 Base = N.getOperand(0); 2572 return true; // [&g+r] 2573 } 2574 } else if (N.getOpcode() == ISD::OR) { 2575 int16_t imm = 0; 2576 if (isIntS16Immediate(N.getOperand(1), imm) && 2577 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2578 // If this is an or of disjoint bitfields, we can codegen this as an add 2579 // (for better address arithmetic) if the LHS and RHS of the OR are 2580 // provably disjoint. 2581 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2582 2583 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2584 // If all of the bits are known zero on the LHS or RHS, the add won't 2585 // carry. 2586 if (FrameIndexSDNode *FI = 2587 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2588 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2589 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2590 } else { 2591 Base = N.getOperand(0); 2592 } 2593 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2594 return true; 2595 } 2596 } 2597 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2598 // Loading from a constant address. 2599 2600 // If this address fits entirely in a 16-bit sext immediate field, codegen 2601 // this as "d, 0" 2602 int16_t Imm; 2603 if (isIntS16Immediate(CN, Imm) && 2604 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2605 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2606 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2607 CN->getValueType(0)); 2608 return true; 2609 } 2610 2611 // Handle 32-bit sext immediates with LIS + addr mode. 2612 if ((CN->getValueType(0) == MVT::i32 || 2613 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2614 (!EncodingAlignment || 2615 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2616 int Addr = (int)CN->getZExtValue(); 2617 2618 // Otherwise, break this down into an LIS + disp. 2619 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2620 2621 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2622 MVT::i32); 2623 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2624 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2625 return true; 2626 } 2627 } 2628 2629 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2630 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2631 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2632 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2633 } else 2634 Base = N; 2635 return true; // [r+0] 2636 } 2637 2638 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2639 /// represented as an indexed [r+r] operation. 2640 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2641 SDValue &Index, 2642 SelectionDAG &DAG) const { 2643 // Check to see if we can easily represent this as an [r+r] address. This 2644 // will fail if it thinks that the address is more profitably represented as 2645 // reg+imm, e.g. where imm = 0. 2646 if (SelectAddressRegReg(N, Base, Index, DAG)) 2647 return true; 2648 2649 // If the address is the result of an add, we will utilize the fact that the 2650 // address calculation includes an implicit add. However, we can reduce 2651 // register pressure if we do not materialize a constant just for use as the 2652 // index register. We only get rid of the add if it is not an add of a 2653 // value and a 16-bit signed constant and both have a single use. 2654 int16_t imm = 0; 2655 if (N.getOpcode() == ISD::ADD && 2656 (!isIntS16Immediate(N.getOperand(1), imm) || 2657 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2658 Base = N.getOperand(0); 2659 Index = N.getOperand(1); 2660 return true; 2661 } 2662 2663 // Otherwise, do it the hard way, using R0 as the base register. 2664 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2665 N.getValueType()); 2666 Index = N; 2667 return true; 2668 } 2669 2670 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2671 Ty *PCRelCand = dyn_cast<Ty>(N); 2672 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2673 } 2674 2675 /// Returns true if this address is a PC Relative address. 2676 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2677 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2678 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2679 // This is a materialize PC Relative node. Always select this as PC Relative. 2680 Base = N; 2681 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2682 return true; 2683 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2684 isValidPCRelNode<GlobalAddressSDNode>(N) || 2685 isValidPCRelNode<JumpTableSDNode>(N) || 2686 isValidPCRelNode<BlockAddressSDNode>(N)) 2687 return true; 2688 return false; 2689 } 2690 2691 /// Returns true if we should use a direct load into vector instruction 2692 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2693 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2694 2695 // If there are any other uses other than scalar to vector, then we should 2696 // keep it as a scalar load -> direct move pattern to prevent multiple 2697 // loads. 2698 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2699 if (!LD) 2700 return false; 2701 2702 EVT MemVT = LD->getMemoryVT(); 2703 if (!MemVT.isSimple()) 2704 return false; 2705 switch(MemVT.getSimpleVT().SimpleTy) { 2706 case MVT::i64: 2707 break; 2708 case MVT::i32: 2709 if (!ST.hasP8Vector()) 2710 return false; 2711 break; 2712 case MVT::i16: 2713 case MVT::i8: 2714 if (!ST.hasP9Vector()) 2715 return false; 2716 break; 2717 default: 2718 return false; 2719 } 2720 2721 SDValue LoadedVal(N, 0); 2722 if (!LoadedVal.hasOneUse()) 2723 return false; 2724 2725 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2726 UI != UE; ++UI) 2727 if (UI.getUse().get().getResNo() == 0 && 2728 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2729 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2730 return false; 2731 2732 return true; 2733 } 2734 2735 /// getPreIndexedAddressParts - returns true by value, base pointer and 2736 /// offset pointer and addressing mode by reference if the node's address 2737 /// can be legally represented as pre-indexed load / store address. 2738 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2739 SDValue &Offset, 2740 ISD::MemIndexedMode &AM, 2741 SelectionDAG &DAG) const { 2742 if (DisablePPCPreinc) return false; 2743 2744 bool isLoad = true; 2745 SDValue Ptr; 2746 EVT VT; 2747 unsigned Alignment; 2748 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2749 Ptr = LD->getBasePtr(); 2750 VT = LD->getMemoryVT(); 2751 Alignment = LD->getAlignment(); 2752 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2753 Ptr = ST->getBasePtr(); 2754 VT = ST->getMemoryVT(); 2755 Alignment = ST->getAlignment(); 2756 isLoad = false; 2757 } else 2758 return false; 2759 2760 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2761 // instructions because we can fold these into a more efficient instruction 2762 // instead, (such as LXSD). 2763 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2764 return false; 2765 } 2766 2767 // PowerPC doesn't have preinc load/store instructions for vectors (except 2768 // for QPX, which does have preinc r+r forms). 2769 if (VT.isVector()) { 2770 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2771 return false; 2772 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2773 AM = ISD::PRE_INC; 2774 return true; 2775 } 2776 } 2777 2778 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2779 // Common code will reject creating a pre-inc form if the base pointer 2780 // is a frame index, or if N is a store and the base pointer is either 2781 // the same as or a predecessor of the value being stored. Check for 2782 // those situations here, and try with swapped Base/Offset instead. 2783 bool Swap = false; 2784 2785 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2786 Swap = true; 2787 else if (!isLoad) { 2788 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2789 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2790 Swap = true; 2791 } 2792 2793 if (Swap) 2794 std::swap(Base, Offset); 2795 2796 AM = ISD::PRE_INC; 2797 return true; 2798 } 2799 2800 // LDU/STU can only handle immediates that are a multiple of 4. 2801 if (VT != MVT::i64) { 2802 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2803 return false; 2804 } else { 2805 // LDU/STU need an address with at least 4-byte alignment. 2806 if (Alignment < 4) 2807 return false; 2808 2809 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2810 return false; 2811 } 2812 2813 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2814 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2815 // sext i32 to i64 when addr mode is r+i. 2816 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2817 LD->getExtensionType() == ISD::SEXTLOAD && 2818 isa<ConstantSDNode>(Offset)) 2819 return false; 2820 } 2821 2822 AM = ISD::PRE_INC; 2823 return true; 2824 } 2825 2826 //===----------------------------------------------------------------------===// 2827 // LowerOperation implementation 2828 //===----------------------------------------------------------------------===// 2829 2830 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2831 /// and LoOpFlags to the target MO flags. 2832 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2833 unsigned &HiOpFlags, unsigned &LoOpFlags, 2834 const GlobalValue *GV = nullptr) { 2835 HiOpFlags = PPCII::MO_HA; 2836 LoOpFlags = PPCII::MO_LO; 2837 2838 // Don't use the pic base if not in PIC relocation model. 2839 if (IsPIC) { 2840 HiOpFlags |= PPCII::MO_PIC_FLAG; 2841 LoOpFlags |= PPCII::MO_PIC_FLAG; 2842 } 2843 } 2844 2845 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2846 SelectionDAG &DAG) { 2847 SDLoc DL(HiPart); 2848 EVT PtrVT = HiPart.getValueType(); 2849 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2850 2851 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2852 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2853 2854 // With PIC, the first instruction is actually "GR+hi(&G)". 2855 if (isPIC) 2856 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2857 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2858 2859 // Generate non-pic code that has direct accesses to the constant pool. 2860 // The address of the global is just (hi(&g)+lo(&g)). 2861 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2862 } 2863 2864 static void setUsesTOCBasePtr(MachineFunction &MF) { 2865 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2866 FuncInfo->setUsesTOCBasePtr(); 2867 } 2868 2869 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2870 setUsesTOCBasePtr(DAG.getMachineFunction()); 2871 } 2872 2873 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2874 SDValue GA) const { 2875 const bool Is64Bit = Subtarget.isPPC64(); 2876 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2877 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2878 : Subtarget.isAIXABI() 2879 ? DAG.getRegister(PPC::R2, VT) 2880 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2881 SDValue Ops[] = { GA, Reg }; 2882 return DAG.getMemIntrinsicNode( 2883 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2884 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2885 MachineMemOperand::MOLoad); 2886 } 2887 2888 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2889 SelectionDAG &DAG) const { 2890 EVT PtrVT = Op.getValueType(); 2891 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2892 const Constant *C = CP->getConstVal(); 2893 2894 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2895 // The actual address of the GlobalValue is stored in the TOC. 2896 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2897 if (Subtarget.isUsingPCRelativeCalls()) { 2898 SDLoc DL(CP); 2899 EVT Ty = getPointerTy(DAG.getDataLayout()); 2900 SDValue ConstPool = DAG.getTargetConstantPool( 2901 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2902 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2903 } 2904 setUsesTOCBasePtr(DAG); 2905 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2906 return getTOCEntry(DAG, SDLoc(CP), GA); 2907 } 2908 2909 unsigned MOHiFlag, MOLoFlag; 2910 bool IsPIC = isPositionIndependent(); 2911 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2912 2913 if (IsPIC && Subtarget.isSVR4ABI()) { 2914 SDValue GA = 2915 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2916 return getTOCEntry(DAG, SDLoc(CP), GA); 2917 } 2918 2919 SDValue CPIHi = 2920 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2921 SDValue CPILo = 2922 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2923 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2924 } 2925 2926 // For 64-bit PowerPC, prefer the more compact relative encodings. 2927 // This trades 32 bits per jump table entry for one or two instructions 2928 // on the jump site. 2929 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2930 if (isJumpTableRelative()) 2931 return MachineJumpTableInfo::EK_LabelDifference32; 2932 2933 return TargetLowering::getJumpTableEncoding(); 2934 } 2935 2936 bool PPCTargetLowering::isJumpTableRelative() const { 2937 if (UseAbsoluteJumpTables) 2938 return false; 2939 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2940 return true; 2941 return TargetLowering::isJumpTableRelative(); 2942 } 2943 2944 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2945 SelectionDAG &DAG) const { 2946 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2947 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2948 2949 switch (getTargetMachine().getCodeModel()) { 2950 case CodeModel::Small: 2951 case CodeModel::Medium: 2952 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2953 default: 2954 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2955 getPointerTy(DAG.getDataLayout())); 2956 } 2957 } 2958 2959 const MCExpr * 2960 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2961 unsigned JTI, 2962 MCContext &Ctx) const { 2963 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2964 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2965 2966 switch (getTargetMachine().getCodeModel()) { 2967 case CodeModel::Small: 2968 case CodeModel::Medium: 2969 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2970 default: 2971 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2972 } 2973 } 2974 2975 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2976 EVT PtrVT = Op.getValueType(); 2977 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2978 2979 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2980 if (Subtarget.isUsingPCRelativeCalls()) { 2981 SDLoc DL(JT); 2982 EVT Ty = getPointerTy(DAG.getDataLayout()); 2983 SDValue GA = 2984 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2985 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2986 return MatAddr; 2987 } 2988 2989 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2990 // The actual address of the GlobalValue is stored in the TOC. 2991 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2992 setUsesTOCBasePtr(DAG); 2993 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2994 return getTOCEntry(DAG, SDLoc(JT), GA); 2995 } 2996 2997 unsigned MOHiFlag, MOLoFlag; 2998 bool IsPIC = isPositionIndependent(); 2999 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3000 3001 if (IsPIC && Subtarget.isSVR4ABI()) { 3002 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3003 PPCII::MO_PIC_FLAG); 3004 return getTOCEntry(DAG, SDLoc(GA), GA); 3005 } 3006 3007 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3008 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3009 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3010 } 3011 3012 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3013 SelectionDAG &DAG) const { 3014 EVT PtrVT = Op.getValueType(); 3015 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3016 const BlockAddress *BA = BASDN->getBlockAddress(); 3017 3018 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3019 if (Subtarget.isUsingPCRelativeCalls()) { 3020 SDLoc DL(BASDN); 3021 EVT Ty = getPointerTy(DAG.getDataLayout()); 3022 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3023 PPCII::MO_PCREL_FLAG); 3024 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3025 return MatAddr; 3026 } 3027 3028 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3029 // The actual BlockAddress is stored in the TOC. 3030 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3031 setUsesTOCBasePtr(DAG); 3032 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3033 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3034 } 3035 3036 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3037 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3038 return getTOCEntry( 3039 DAG, SDLoc(BASDN), 3040 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3041 3042 unsigned MOHiFlag, MOLoFlag; 3043 bool IsPIC = isPositionIndependent(); 3044 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3045 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3046 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3047 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3048 } 3049 3050 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3051 SelectionDAG &DAG) const { 3052 // FIXME: TLS addresses currently use medium model code sequences, 3053 // which is the most useful form. Eventually support for small and 3054 // large models could be added if users need it, at the cost of 3055 // additional complexity. 3056 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3057 if (DAG.getTarget().useEmulatedTLS()) 3058 return LowerToTLSEmulatedModel(GA, DAG); 3059 3060 SDLoc dl(GA); 3061 const GlobalValue *GV = GA->getGlobal(); 3062 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3063 bool is64bit = Subtarget.isPPC64(); 3064 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3065 PICLevel::Level picLevel = M->getPICLevel(); 3066 3067 const TargetMachine &TM = getTargetMachine(); 3068 TLSModel::Model Model = TM.getTLSModel(GV); 3069 3070 if (Model == TLSModel::LocalExec) { 3071 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3072 PPCII::MO_TPREL_HA); 3073 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3074 PPCII::MO_TPREL_LO); 3075 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3076 : DAG.getRegister(PPC::R2, MVT::i32); 3077 3078 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3079 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3080 } 3081 3082 if (Model == TLSModel::InitialExec) { 3083 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3084 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3085 PPCII::MO_TLS); 3086 SDValue GOTPtr; 3087 if (is64bit) { 3088 setUsesTOCBasePtr(DAG); 3089 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3090 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 3091 PtrVT, GOTReg, TGA); 3092 } else { 3093 if (!TM.isPositionIndependent()) 3094 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3095 else if (picLevel == PICLevel::SmallPIC) 3096 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3097 else 3098 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3099 } 3100 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 3101 PtrVT, TGA, GOTPtr); 3102 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3103 } 3104 3105 if (Model == TLSModel::GeneralDynamic) { 3106 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3107 SDValue GOTPtr; 3108 if (is64bit) { 3109 setUsesTOCBasePtr(DAG); 3110 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3111 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3112 GOTReg, TGA); 3113 } else { 3114 if (picLevel == PICLevel::SmallPIC) 3115 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3116 else 3117 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3118 } 3119 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3120 GOTPtr, TGA, TGA); 3121 } 3122 3123 if (Model == TLSModel::LocalDynamic) { 3124 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3125 SDValue GOTPtr; 3126 if (is64bit) { 3127 setUsesTOCBasePtr(DAG); 3128 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3129 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3130 GOTReg, TGA); 3131 } else { 3132 if (picLevel == PICLevel::SmallPIC) 3133 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3134 else 3135 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3136 } 3137 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3138 PtrVT, GOTPtr, TGA, TGA); 3139 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3140 PtrVT, TLSAddr, TGA); 3141 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3142 } 3143 3144 llvm_unreachable("Unknown TLS model!"); 3145 } 3146 3147 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3148 SelectionDAG &DAG) const { 3149 EVT PtrVT = Op.getValueType(); 3150 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3151 SDLoc DL(GSDN); 3152 const GlobalValue *GV = GSDN->getGlobal(); 3153 3154 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3155 // The actual address of the GlobalValue is stored in the TOC. 3156 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3157 if (Subtarget.isUsingPCRelativeCalls()) { 3158 EVT Ty = getPointerTy(DAG.getDataLayout()); 3159 if (isAccessedAsGotIndirect(Op)) { 3160 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3161 PPCII::MO_PCREL_FLAG | 3162 PPCII::MO_GOT_FLAG); 3163 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3164 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3165 MachinePointerInfo()); 3166 return Load; 3167 } else { 3168 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3169 PPCII::MO_PCREL_FLAG); 3170 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3171 } 3172 } 3173 setUsesTOCBasePtr(DAG); 3174 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3175 return getTOCEntry(DAG, DL, GA); 3176 } 3177 3178 unsigned MOHiFlag, MOLoFlag; 3179 bool IsPIC = isPositionIndependent(); 3180 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3181 3182 if (IsPIC && Subtarget.isSVR4ABI()) { 3183 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3184 GSDN->getOffset(), 3185 PPCII::MO_PIC_FLAG); 3186 return getTOCEntry(DAG, DL, GA); 3187 } 3188 3189 SDValue GAHi = 3190 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3191 SDValue GALo = 3192 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3193 3194 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3195 } 3196 3197 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3198 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3199 SDLoc dl(Op); 3200 3201 if (Op.getValueType() == MVT::v2i64) { 3202 // When the operands themselves are v2i64 values, we need to do something 3203 // special because VSX has no underlying comparison operations for these. 3204 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3205 // Equality can be handled by casting to the legal type for Altivec 3206 // comparisons, everything else needs to be expanded. 3207 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3208 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3209 DAG.getSetCC(dl, MVT::v4i32, 3210 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3211 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3212 CC)); 3213 } 3214 3215 return SDValue(); 3216 } 3217 3218 // We handle most of these in the usual way. 3219 return Op; 3220 } 3221 3222 // If we're comparing for equality to zero, expose the fact that this is 3223 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3224 // fold the new nodes. 3225 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3226 return V; 3227 3228 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3229 // Leave comparisons against 0 and -1 alone for now, since they're usually 3230 // optimized. FIXME: revisit this when we can custom lower all setcc 3231 // optimizations. 3232 if (C->isAllOnesValue() || C->isNullValue()) 3233 return SDValue(); 3234 } 3235 3236 // If we have an integer seteq/setne, turn it into a compare against zero 3237 // by xor'ing the rhs with the lhs, which is faster than setting a 3238 // condition register, reading it back out, and masking the correct bit. The 3239 // normal approach here uses sub to do this instead of xor. Using xor exposes 3240 // the result to other bit-twiddling opportunities. 3241 EVT LHSVT = Op.getOperand(0).getValueType(); 3242 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3243 EVT VT = Op.getValueType(); 3244 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3245 Op.getOperand(1)); 3246 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3247 } 3248 return SDValue(); 3249 } 3250 3251 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3252 SDNode *Node = Op.getNode(); 3253 EVT VT = Node->getValueType(0); 3254 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3255 SDValue InChain = Node->getOperand(0); 3256 SDValue VAListPtr = Node->getOperand(1); 3257 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3258 SDLoc dl(Node); 3259 3260 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3261 3262 // gpr_index 3263 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3264 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3265 InChain = GprIndex.getValue(1); 3266 3267 if (VT == MVT::i64) { 3268 // Check if GprIndex is even 3269 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3270 DAG.getConstant(1, dl, MVT::i32)); 3271 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3272 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3273 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3274 DAG.getConstant(1, dl, MVT::i32)); 3275 // Align GprIndex to be even if it isn't 3276 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3277 GprIndex); 3278 } 3279 3280 // fpr index is 1 byte after gpr 3281 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3282 DAG.getConstant(1, dl, MVT::i32)); 3283 3284 // fpr 3285 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3286 FprPtr, MachinePointerInfo(SV), MVT::i8); 3287 InChain = FprIndex.getValue(1); 3288 3289 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3290 DAG.getConstant(8, dl, MVT::i32)); 3291 3292 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3293 DAG.getConstant(4, dl, MVT::i32)); 3294 3295 // areas 3296 SDValue OverflowArea = 3297 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3298 InChain = OverflowArea.getValue(1); 3299 3300 SDValue RegSaveArea = 3301 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3302 InChain = RegSaveArea.getValue(1); 3303 3304 // select overflow_area if index > 8 3305 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3306 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3307 3308 // adjustment constant gpr_index * 4/8 3309 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3310 VT.isInteger() ? GprIndex : FprIndex, 3311 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3312 MVT::i32)); 3313 3314 // OurReg = RegSaveArea + RegConstant 3315 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3316 RegConstant); 3317 3318 // Floating types are 32 bytes into RegSaveArea 3319 if (VT.isFloatingPoint()) 3320 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3321 DAG.getConstant(32, dl, MVT::i32)); 3322 3323 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3324 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3325 VT.isInteger() ? GprIndex : FprIndex, 3326 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3327 MVT::i32)); 3328 3329 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3330 VT.isInteger() ? VAListPtr : FprPtr, 3331 MachinePointerInfo(SV), MVT::i8); 3332 3333 // determine if we should load from reg_save_area or overflow_area 3334 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3335 3336 // increase overflow_area by 4/8 if gpr/fpr > 8 3337 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3338 DAG.getConstant(VT.isInteger() ? 4 : 8, 3339 dl, MVT::i32)); 3340 3341 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3342 OverflowAreaPlusN); 3343 3344 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3345 MachinePointerInfo(), MVT::i32); 3346 3347 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3348 } 3349 3350 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3351 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3352 3353 // We have to copy the entire va_list struct: 3354 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3355 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3356 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3357 false, true, false, MachinePointerInfo(), 3358 MachinePointerInfo()); 3359 } 3360 3361 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3362 SelectionDAG &DAG) const { 3363 if (Subtarget.isAIXABI()) 3364 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3365 3366 return Op.getOperand(0); 3367 } 3368 3369 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3370 SelectionDAG &DAG) const { 3371 if (Subtarget.isAIXABI()) 3372 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3373 3374 SDValue Chain = Op.getOperand(0); 3375 SDValue Trmp = Op.getOperand(1); // trampoline 3376 SDValue FPtr = Op.getOperand(2); // nested function 3377 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3378 SDLoc dl(Op); 3379 3380 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3381 bool isPPC64 = (PtrVT == MVT::i64); 3382 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3383 3384 TargetLowering::ArgListTy Args; 3385 TargetLowering::ArgListEntry Entry; 3386 3387 Entry.Ty = IntPtrTy; 3388 Entry.Node = Trmp; Args.push_back(Entry); 3389 3390 // TrampSize == (isPPC64 ? 48 : 40); 3391 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3392 isPPC64 ? MVT::i64 : MVT::i32); 3393 Args.push_back(Entry); 3394 3395 Entry.Node = FPtr; Args.push_back(Entry); 3396 Entry.Node = Nest; Args.push_back(Entry); 3397 3398 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3399 TargetLowering::CallLoweringInfo CLI(DAG); 3400 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3401 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3402 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3403 3404 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3405 return CallResult.second; 3406 } 3407 3408 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3409 MachineFunction &MF = DAG.getMachineFunction(); 3410 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3411 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3412 3413 SDLoc dl(Op); 3414 3415 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3416 // vastart just stores the address of the VarArgsFrameIndex slot into the 3417 // memory location argument. 3418 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3419 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3420 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3421 MachinePointerInfo(SV)); 3422 } 3423 3424 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3425 // We suppose the given va_list is already allocated. 3426 // 3427 // typedef struct { 3428 // char gpr; /* index into the array of 8 GPRs 3429 // * stored in the register save area 3430 // * gpr=0 corresponds to r3, 3431 // * gpr=1 to r4, etc. 3432 // */ 3433 // char fpr; /* index into the array of 8 FPRs 3434 // * stored in the register save area 3435 // * fpr=0 corresponds to f1, 3436 // * fpr=1 to f2, etc. 3437 // */ 3438 // char *overflow_arg_area; 3439 // /* location on stack that holds 3440 // * the next overflow argument 3441 // */ 3442 // char *reg_save_area; 3443 // /* where r3:r10 and f1:f8 (if saved) 3444 // * are stored 3445 // */ 3446 // } va_list[1]; 3447 3448 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3449 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3450 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3451 PtrVT); 3452 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3453 PtrVT); 3454 3455 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3456 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3457 3458 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3459 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3460 3461 uint64_t FPROffset = 1; 3462 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3463 3464 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3465 3466 // Store first byte : number of int regs 3467 SDValue firstStore = 3468 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3469 MachinePointerInfo(SV), MVT::i8); 3470 uint64_t nextOffset = FPROffset; 3471 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3472 ConstFPROffset); 3473 3474 // Store second byte : number of float regs 3475 SDValue secondStore = 3476 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3477 MachinePointerInfo(SV, nextOffset), MVT::i8); 3478 nextOffset += StackOffset; 3479 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3480 3481 // Store second word : arguments given on stack 3482 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3483 MachinePointerInfo(SV, nextOffset)); 3484 nextOffset += FrameOffset; 3485 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3486 3487 // Store third word : arguments given in registers 3488 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3489 MachinePointerInfo(SV, nextOffset)); 3490 } 3491 3492 /// FPR - The set of FP registers that should be allocated for arguments 3493 /// on Darwin and AIX. 3494 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3495 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3496 PPC::F11, PPC::F12, PPC::F13}; 3497 3498 /// QFPR - The set of QPX registers that should be allocated for arguments. 3499 static const MCPhysReg QFPR[] = { 3500 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3501 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3502 3503 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3504 /// the stack. 3505 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3506 unsigned PtrByteSize) { 3507 unsigned ArgSize = ArgVT.getStoreSize(); 3508 if (Flags.isByVal()) 3509 ArgSize = Flags.getByValSize(); 3510 3511 // Round up to multiples of the pointer size, except for array members, 3512 // which are always packed. 3513 if (!Flags.isInConsecutiveRegs()) 3514 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3515 3516 return ArgSize; 3517 } 3518 3519 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3520 /// on the stack. 3521 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3522 ISD::ArgFlagsTy Flags, 3523 unsigned PtrByteSize) { 3524 Align Alignment(PtrByteSize); 3525 3526 // Altivec parameters are padded to a 16 byte boundary. 3527 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3528 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3529 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3530 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3531 Alignment = Align(16); 3532 // QPX vector types stored in double-precision are padded to a 32 byte 3533 // boundary. 3534 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3535 Alignment = Align(32); 3536 3537 // ByVal parameters are aligned as requested. 3538 if (Flags.isByVal()) { 3539 auto BVAlign = Flags.getNonZeroByValAlign(); 3540 if (BVAlign > PtrByteSize) { 3541 if (BVAlign.value() % PtrByteSize != 0) 3542 llvm_unreachable( 3543 "ByVal alignment is not a multiple of the pointer size"); 3544 3545 Alignment = BVAlign; 3546 } 3547 } 3548 3549 // Array members are always packed to their original alignment. 3550 if (Flags.isInConsecutiveRegs()) { 3551 // If the array member was split into multiple registers, the first 3552 // needs to be aligned to the size of the full type. (Except for 3553 // ppcf128, which is only aligned as its f64 components.) 3554 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3555 Alignment = Align(OrigVT.getStoreSize()); 3556 else 3557 Alignment = Align(ArgVT.getStoreSize()); 3558 } 3559 3560 return Alignment; 3561 } 3562 3563 /// CalculateStackSlotUsed - Return whether this argument will use its 3564 /// stack slot (instead of being passed in registers). ArgOffset, 3565 /// AvailableFPRs, and AvailableVRs must hold the current argument 3566 /// position, and will be updated to account for this argument. 3567 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3568 ISD::ArgFlagsTy Flags, 3569 unsigned PtrByteSize, 3570 unsigned LinkageSize, 3571 unsigned ParamAreaSize, 3572 unsigned &ArgOffset, 3573 unsigned &AvailableFPRs, 3574 unsigned &AvailableVRs, bool HasQPX) { 3575 bool UseMemory = false; 3576 3577 // Respect alignment of argument on the stack. 3578 Align Alignment = 3579 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3580 ArgOffset = alignTo(ArgOffset, Alignment); 3581 // If there's no space left in the argument save area, we must 3582 // use memory (this check also catches zero-sized arguments). 3583 if (ArgOffset >= LinkageSize + ParamAreaSize) 3584 UseMemory = true; 3585 3586 // Allocate argument on the stack. 3587 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3588 if (Flags.isInConsecutiveRegsLast()) 3589 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3590 // If we overran the argument save area, we must use memory 3591 // (this check catches arguments passed partially in memory) 3592 if (ArgOffset > LinkageSize + ParamAreaSize) 3593 UseMemory = true; 3594 3595 // However, if the argument is actually passed in an FPR or a VR, 3596 // we don't use memory after all. 3597 if (!Flags.isByVal()) { 3598 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3599 // QPX registers overlap with the scalar FP registers. 3600 (HasQPX && (ArgVT == MVT::v4f32 || 3601 ArgVT == MVT::v4f64 || 3602 ArgVT == MVT::v4i1))) 3603 if (AvailableFPRs > 0) { 3604 --AvailableFPRs; 3605 return false; 3606 } 3607 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3608 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3609 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3610 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3611 if (AvailableVRs > 0) { 3612 --AvailableVRs; 3613 return false; 3614 } 3615 } 3616 3617 return UseMemory; 3618 } 3619 3620 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3621 /// ensure minimum alignment required for target. 3622 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3623 unsigned NumBytes) { 3624 return alignTo(NumBytes, Lowering->getStackAlign()); 3625 } 3626 3627 SDValue PPCTargetLowering::LowerFormalArguments( 3628 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3629 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3630 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3631 if (Subtarget.isAIXABI()) 3632 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3633 InVals); 3634 if (Subtarget.is64BitELFABI()) 3635 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3636 InVals); 3637 if (Subtarget.is32BitELFABI()) 3638 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3639 InVals); 3640 3641 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3642 InVals); 3643 } 3644 3645 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3646 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3647 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3648 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3649 3650 // 32-bit SVR4 ABI Stack Frame Layout: 3651 // +-----------------------------------+ 3652 // +--> | Back chain | 3653 // | +-----------------------------------+ 3654 // | | Floating-point register save area | 3655 // | +-----------------------------------+ 3656 // | | General register save area | 3657 // | +-----------------------------------+ 3658 // | | CR save word | 3659 // | +-----------------------------------+ 3660 // | | VRSAVE save word | 3661 // | +-----------------------------------+ 3662 // | | Alignment padding | 3663 // | +-----------------------------------+ 3664 // | | Vector register save area | 3665 // | +-----------------------------------+ 3666 // | | Local variable space | 3667 // | +-----------------------------------+ 3668 // | | Parameter list area | 3669 // | +-----------------------------------+ 3670 // | | LR save word | 3671 // | +-----------------------------------+ 3672 // SP--> +--- | Back chain | 3673 // +-----------------------------------+ 3674 // 3675 // Specifications: 3676 // System V Application Binary Interface PowerPC Processor Supplement 3677 // AltiVec Technology Programming Interface Manual 3678 3679 MachineFunction &MF = DAG.getMachineFunction(); 3680 MachineFrameInfo &MFI = MF.getFrameInfo(); 3681 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3682 3683 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3684 // Potential tail calls could cause overwriting of argument stack slots. 3685 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3686 (CallConv == CallingConv::Fast)); 3687 const Align PtrAlign(4); 3688 3689 // Assign locations to all of the incoming arguments. 3690 SmallVector<CCValAssign, 16> ArgLocs; 3691 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3692 *DAG.getContext()); 3693 3694 // Reserve space for the linkage area on the stack. 3695 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3696 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3697 if (useSoftFloat()) 3698 CCInfo.PreAnalyzeFormalArguments(Ins); 3699 3700 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3701 CCInfo.clearWasPPCF128(); 3702 3703 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3704 CCValAssign &VA = ArgLocs[i]; 3705 3706 // Arguments stored in registers. 3707 if (VA.isRegLoc()) { 3708 const TargetRegisterClass *RC; 3709 EVT ValVT = VA.getValVT(); 3710 3711 switch (ValVT.getSimpleVT().SimpleTy) { 3712 default: 3713 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3714 case MVT::i1: 3715 case MVT::i32: 3716 RC = &PPC::GPRCRegClass; 3717 break; 3718 case MVT::f32: 3719 if (Subtarget.hasP8Vector()) 3720 RC = &PPC::VSSRCRegClass; 3721 else if (Subtarget.hasSPE()) 3722 RC = &PPC::GPRCRegClass; 3723 else 3724 RC = &PPC::F4RCRegClass; 3725 break; 3726 case MVT::f64: 3727 if (Subtarget.hasVSX()) 3728 RC = &PPC::VSFRCRegClass; 3729 else if (Subtarget.hasSPE()) 3730 // SPE passes doubles in GPR pairs. 3731 RC = &PPC::GPRCRegClass; 3732 else 3733 RC = &PPC::F8RCRegClass; 3734 break; 3735 case MVT::v16i8: 3736 case MVT::v8i16: 3737 case MVT::v4i32: 3738 RC = &PPC::VRRCRegClass; 3739 break; 3740 case MVT::v4f32: 3741 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3742 break; 3743 case MVT::v2f64: 3744 case MVT::v2i64: 3745 RC = &PPC::VRRCRegClass; 3746 break; 3747 case MVT::v4f64: 3748 RC = &PPC::QFRCRegClass; 3749 break; 3750 case MVT::v4i1: 3751 RC = &PPC::QBRCRegClass; 3752 break; 3753 } 3754 3755 SDValue ArgValue; 3756 // Transform the arguments stored in physical registers into 3757 // virtual ones. 3758 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3759 assert(i + 1 < e && "No second half of double precision argument"); 3760 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3761 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3762 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3763 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3764 if (!Subtarget.isLittleEndian()) 3765 std::swap (ArgValueLo, ArgValueHi); 3766 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3767 ArgValueHi); 3768 } else { 3769 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3770 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3771 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3772 if (ValVT == MVT::i1) 3773 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3774 } 3775 3776 InVals.push_back(ArgValue); 3777 } else { 3778 // Argument stored in memory. 3779 assert(VA.isMemLoc()); 3780 3781 // Get the extended size of the argument type in stack 3782 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3783 // Get the actual size of the argument type 3784 unsigned ObjSize = VA.getValVT().getStoreSize(); 3785 unsigned ArgOffset = VA.getLocMemOffset(); 3786 // Stack objects in PPC32 are right justified. 3787 ArgOffset += ArgSize - ObjSize; 3788 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3789 3790 // Create load nodes to retrieve arguments from the stack. 3791 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3792 InVals.push_back( 3793 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3794 } 3795 } 3796 3797 // Assign locations to all of the incoming aggregate by value arguments. 3798 // Aggregates passed by value are stored in the local variable space of the 3799 // caller's stack frame, right above the parameter list area. 3800 SmallVector<CCValAssign, 16> ByValArgLocs; 3801 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3802 ByValArgLocs, *DAG.getContext()); 3803 3804 // Reserve stack space for the allocations in CCInfo. 3805 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3806 3807 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3808 3809 // Area that is at least reserved in the caller of this function. 3810 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3811 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3812 3813 // Set the size that is at least reserved in caller of this function. Tail 3814 // call optimized function's reserved stack space needs to be aligned so that 3815 // taking the difference between two stack areas will result in an aligned 3816 // stack. 3817 MinReservedArea = 3818 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3819 FuncInfo->setMinReservedArea(MinReservedArea); 3820 3821 SmallVector<SDValue, 8> MemOps; 3822 3823 // If the function takes variable number of arguments, make a frame index for 3824 // the start of the first vararg value... for expansion of llvm.va_start. 3825 if (isVarArg) { 3826 static const MCPhysReg GPArgRegs[] = { 3827 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3828 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3829 }; 3830 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3831 3832 static const MCPhysReg FPArgRegs[] = { 3833 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3834 PPC::F8 3835 }; 3836 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3837 3838 if (useSoftFloat() || hasSPE()) 3839 NumFPArgRegs = 0; 3840 3841 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3842 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3843 3844 // Make room for NumGPArgRegs and NumFPArgRegs. 3845 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3846 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3847 3848 FuncInfo->setVarArgsStackOffset( 3849 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3850 CCInfo.getNextStackOffset(), true)); 3851 3852 FuncInfo->setVarArgsFrameIndex( 3853 MFI.CreateStackObject(Depth, Align(8), false)); 3854 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3855 3856 // The fixed integer arguments of a variadic function are stored to the 3857 // VarArgsFrameIndex on the stack so that they may be loaded by 3858 // dereferencing the result of va_next. 3859 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3860 // Get an existing live-in vreg, or add a new one. 3861 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3862 if (!VReg) 3863 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3864 3865 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3866 SDValue Store = 3867 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3868 MemOps.push_back(Store); 3869 // Increment the address by four for the next argument to store 3870 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3871 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3872 } 3873 3874 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3875 // is set. 3876 // The double arguments are stored to the VarArgsFrameIndex 3877 // on the stack. 3878 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3879 // Get an existing live-in vreg, or add a new one. 3880 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3881 if (!VReg) 3882 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3883 3884 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3885 SDValue Store = 3886 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3887 MemOps.push_back(Store); 3888 // Increment the address by eight for the next argument to store 3889 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3890 PtrVT); 3891 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3892 } 3893 } 3894 3895 if (!MemOps.empty()) 3896 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3897 3898 return Chain; 3899 } 3900 3901 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3902 // value to MVT::i64 and then truncate to the correct register size. 3903 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3904 EVT ObjectVT, SelectionDAG &DAG, 3905 SDValue ArgVal, 3906 const SDLoc &dl) const { 3907 if (Flags.isSExt()) 3908 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3909 DAG.getValueType(ObjectVT)); 3910 else if (Flags.isZExt()) 3911 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3912 DAG.getValueType(ObjectVT)); 3913 3914 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3915 } 3916 3917 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3918 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3919 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3920 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3921 // TODO: add description of PPC stack frame format, or at least some docs. 3922 // 3923 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3924 bool isLittleEndian = Subtarget.isLittleEndian(); 3925 MachineFunction &MF = DAG.getMachineFunction(); 3926 MachineFrameInfo &MFI = MF.getFrameInfo(); 3927 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3928 3929 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3930 "fastcc not supported on varargs functions"); 3931 3932 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3933 // Potential tail calls could cause overwriting of argument stack slots. 3934 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3935 (CallConv == CallingConv::Fast)); 3936 unsigned PtrByteSize = 8; 3937 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3938 3939 static const MCPhysReg GPR[] = { 3940 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3941 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3942 }; 3943 static const MCPhysReg VR[] = { 3944 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3945 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3946 }; 3947 3948 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3949 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3950 const unsigned Num_VR_Regs = array_lengthof(VR); 3951 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3952 3953 // Do a first pass over the arguments to determine whether the ABI 3954 // guarantees that our caller has allocated the parameter save area 3955 // on its stack frame. In the ELFv1 ABI, this is always the case; 3956 // in the ELFv2 ABI, it is true if this is a vararg function or if 3957 // any parameter is located in a stack slot. 3958 3959 bool HasParameterArea = !isELFv2ABI || isVarArg; 3960 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3961 unsigned NumBytes = LinkageSize; 3962 unsigned AvailableFPRs = Num_FPR_Regs; 3963 unsigned AvailableVRs = Num_VR_Regs; 3964 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3965 if (Ins[i].Flags.isNest()) 3966 continue; 3967 3968 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3969 PtrByteSize, LinkageSize, ParamAreaSize, 3970 NumBytes, AvailableFPRs, AvailableVRs, 3971 Subtarget.hasQPX())) 3972 HasParameterArea = true; 3973 } 3974 3975 // Add DAG nodes to load the arguments or copy them out of registers. On 3976 // entry to a function on PPC, the arguments start after the linkage area, 3977 // although the first ones are often in registers. 3978 3979 unsigned ArgOffset = LinkageSize; 3980 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3981 unsigned &QFPR_idx = FPR_idx; 3982 SmallVector<SDValue, 8> MemOps; 3983 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3984 unsigned CurArgIdx = 0; 3985 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3986 SDValue ArgVal; 3987 bool needsLoad = false; 3988 EVT ObjectVT = Ins[ArgNo].VT; 3989 EVT OrigVT = Ins[ArgNo].ArgVT; 3990 unsigned ObjSize = ObjectVT.getStoreSize(); 3991 unsigned ArgSize = ObjSize; 3992 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3993 if (Ins[ArgNo].isOrigArg()) { 3994 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3995 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3996 } 3997 // We re-align the argument offset for each argument, except when using the 3998 // fast calling convention, when we need to make sure we do that only when 3999 // we'll actually use a stack slot. 4000 unsigned CurArgOffset; 4001 Align Alignment; 4002 auto ComputeArgOffset = [&]() { 4003 /* Respect alignment of argument on the stack. */ 4004 Alignment = 4005 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4006 ArgOffset = alignTo(ArgOffset, Alignment); 4007 CurArgOffset = ArgOffset; 4008 }; 4009 4010 if (CallConv != CallingConv::Fast) { 4011 ComputeArgOffset(); 4012 4013 /* Compute GPR index associated with argument offset. */ 4014 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4015 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4016 } 4017 4018 // FIXME the codegen can be much improved in some cases. 4019 // We do not have to keep everything in memory. 4020 if (Flags.isByVal()) { 4021 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4022 4023 if (CallConv == CallingConv::Fast) 4024 ComputeArgOffset(); 4025 4026 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4027 ObjSize = Flags.getByValSize(); 4028 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4029 // Empty aggregate parameters do not take up registers. Examples: 4030 // struct { } a; 4031 // union { } b; 4032 // int c[0]; 4033 // etc. However, we have to provide a place-holder in InVals, so 4034 // pretend we have an 8-byte item at the current address for that 4035 // purpose. 4036 if (!ObjSize) { 4037 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4038 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4039 InVals.push_back(FIN); 4040 continue; 4041 } 4042 4043 // Create a stack object covering all stack doublewords occupied 4044 // by the argument. If the argument is (fully or partially) on 4045 // the stack, or if the argument is fully in registers but the 4046 // caller has allocated the parameter save anyway, we can refer 4047 // directly to the caller's stack frame. Otherwise, create a 4048 // local copy in our own frame. 4049 int FI; 4050 if (HasParameterArea || 4051 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4052 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4053 else 4054 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4055 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4056 4057 // Handle aggregates smaller than 8 bytes. 4058 if (ObjSize < PtrByteSize) { 4059 // The value of the object is its address, which differs from the 4060 // address of the enclosing doubleword on big-endian systems. 4061 SDValue Arg = FIN; 4062 if (!isLittleEndian) { 4063 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4064 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4065 } 4066 InVals.push_back(Arg); 4067 4068 if (GPR_idx != Num_GPR_Regs) { 4069 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4070 FuncInfo->addLiveInAttr(VReg, Flags); 4071 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4072 SDValue Store; 4073 4074 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4075 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4076 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4077 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4078 MachinePointerInfo(&*FuncArg), ObjType); 4079 } else { 4080 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4081 // store the whole register as-is to the parameter save area 4082 // slot. 4083 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4084 MachinePointerInfo(&*FuncArg)); 4085 } 4086 4087 MemOps.push_back(Store); 4088 } 4089 // Whether we copied from a register or not, advance the offset 4090 // into the parameter save area by a full doubleword. 4091 ArgOffset += PtrByteSize; 4092 continue; 4093 } 4094 4095 // The value of the object is its address, which is the address of 4096 // its first stack doubleword. 4097 InVals.push_back(FIN); 4098 4099 // Store whatever pieces of the object are in registers to memory. 4100 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4101 if (GPR_idx == Num_GPR_Regs) 4102 break; 4103 4104 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4105 FuncInfo->addLiveInAttr(VReg, Flags); 4106 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4107 SDValue Addr = FIN; 4108 if (j) { 4109 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4110 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4111 } 4112 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4113 MachinePointerInfo(&*FuncArg, j)); 4114 MemOps.push_back(Store); 4115 ++GPR_idx; 4116 } 4117 ArgOffset += ArgSize; 4118 continue; 4119 } 4120 4121 switch (ObjectVT.getSimpleVT().SimpleTy) { 4122 default: llvm_unreachable("Unhandled argument type!"); 4123 case MVT::i1: 4124 case MVT::i32: 4125 case MVT::i64: 4126 if (Flags.isNest()) { 4127 // The 'nest' parameter, if any, is passed in R11. 4128 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4129 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4130 4131 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4132 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4133 4134 break; 4135 } 4136 4137 // These can be scalar arguments or elements of an integer array type 4138 // passed directly. Clang may use those instead of "byval" aggregate 4139 // types to avoid forcing arguments to memory unnecessarily. 4140 if (GPR_idx != Num_GPR_Regs) { 4141 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4142 FuncInfo->addLiveInAttr(VReg, Flags); 4143 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4144 4145 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4146 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4147 // value to MVT::i64 and then truncate to the correct register size. 4148 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4149 } else { 4150 if (CallConv == CallingConv::Fast) 4151 ComputeArgOffset(); 4152 4153 needsLoad = true; 4154 ArgSize = PtrByteSize; 4155 } 4156 if (CallConv != CallingConv::Fast || needsLoad) 4157 ArgOffset += 8; 4158 break; 4159 4160 case MVT::f32: 4161 case MVT::f64: 4162 // These can be scalar arguments or elements of a float array type 4163 // passed directly. The latter are used to implement ELFv2 homogenous 4164 // float aggregates. 4165 if (FPR_idx != Num_FPR_Regs) { 4166 unsigned VReg; 4167 4168 if (ObjectVT == MVT::f32) 4169 VReg = MF.addLiveIn(FPR[FPR_idx], 4170 Subtarget.hasP8Vector() 4171 ? &PPC::VSSRCRegClass 4172 : &PPC::F4RCRegClass); 4173 else 4174 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4175 ? &PPC::VSFRCRegClass 4176 : &PPC::F8RCRegClass); 4177 4178 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4179 ++FPR_idx; 4180 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4181 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4182 // once we support fp <-> gpr moves. 4183 4184 // This can only ever happen in the presence of f32 array types, 4185 // since otherwise we never run out of FPRs before running out 4186 // of GPRs. 4187 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4188 FuncInfo->addLiveInAttr(VReg, Flags); 4189 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4190 4191 if (ObjectVT == MVT::f32) { 4192 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4193 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4194 DAG.getConstant(32, dl, MVT::i32)); 4195 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4196 } 4197 4198 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4199 } else { 4200 if (CallConv == CallingConv::Fast) 4201 ComputeArgOffset(); 4202 4203 needsLoad = true; 4204 } 4205 4206 // When passing an array of floats, the array occupies consecutive 4207 // space in the argument area; only round up to the next doubleword 4208 // at the end of the array. Otherwise, each float takes 8 bytes. 4209 if (CallConv != CallingConv::Fast || needsLoad) { 4210 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4211 ArgOffset += ArgSize; 4212 if (Flags.isInConsecutiveRegsLast()) 4213 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4214 } 4215 break; 4216 case MVT::v4f32: 4217 case MVT::v4i32: 4218 case MVT::v8i16: 4219 case MVT::v16i8: 4220 case MVT::v2f64: 4221 case MVT::v2i64: 4222 case MVT::v1i128: 4223 case MVT::f128: 4224 if (!Subtarget.hasQPX()) { 4225 // These can be scalar arguments or elements of a vector array type 4226 // passed directly. The latter are used to implement ELFv2 homogenous 4227 // vector aggregates. 4228 if (VR_idx != Num_VR_Regs) { 4229 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4230 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4231 ++VR_idx; 4232 } else { 4233 if (CallConv == CallingConv::Fast) 4234 ComputeArgOffset(); 4235 needsLoad = true; 4236 } 4237 if (CallConv != CallingConv::Fast || needsLoad) 4238 ArgOffset += 16; 4239 break; 4240 } // not QPX 4241 4242 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4243 "Invalid QPX parameter type"); 4244 LLVM_FALLTHROUGH; 4245 4246 case MVT::v4f64: 4247 case MVT::v4i1: 4248 // QPX vectors are treated like their scalar floating-point subregisters 4249 // (except that they're larger). 4250 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4251 if (QFPR_idx != Num_QFPR_Regs) { 4252 const TargetRegisterClass *RC; 4253 switch (ObjectVT.getSimpleVT().SimpleTy) { 4254 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4255 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4256 default: RC = &PPC::QBRCRegClass; break; 4257 } 4258 4259 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4260 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4261 ++QFPR_idx; 4262 } else { 4263 if (CallConv == CallingConv::Fast) 4264 ComputeArgOffset(); 4265 needsLoad = true; 4266 } 4267 if (CallConv != CallingConv::Fast || needsLoad) 4268 ArgOffset += Sz; 4269 break; 4270 } 4271 4272 // We need to load the argument to a virtual register if we determined 4273 // above that we ran out of physical registers of the appropriate type. 4274 if (needsLoad) { 4275 if (ObjSize < ArgSize && !isLittleEndian) 4276 CurArgOffset += ArgSize - ObjSize; 4277 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4278 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4279 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4280 } 4281 4282 InVals.push_back(ArgVal); 4283 } 4284 4285 // Area that is at least reserved in the caller of this function. 4286 unsigned MinReservedArea; 4287 if (HasParameterArea) 4288 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4289 else 4290 MinReservedArea = LinkageSize; 4291 4292 // Set the size that is at least reserved in caller of this function. Tail 4293 // call optimized functions' reserved stack space needs to be aligned so that 4294 // taking the difference between two stack areas will result in an aligned 4295 // stack. 4296 MinReservedArea = 4297 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4298 FuncInfo->setMinReservedArea(MinReservedArea); 4299 4300 // If the function takes variable number of arguments, make a frame index for 4301 // the start of the first vararg value... for expansion of llvm.va_start. 4302 if (isVarArg) { 4303 int Depth = ArgOffset; 4304 4305 FuncInfo->setVarArgsFrameIndex( 4306 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4307 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4308 4309 // If this function is vararg, store any remaining integer argument regs 4310 // to their spots on the stack so that they may be loaded by dereferencing 4311 // the result of va_next. 4312 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4313 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4314 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4315 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4316 SDValue Store = 4317 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4318 MemOps.push_back(Store); 4319 // Increment the address by four for the next argument to store 4320 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4321 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4322 } 4323 } 4324 4325 if (!MemOps.empty()) 4326 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4327 4328 return Chain; 4329 } 4330 4331 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4332 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4333 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4334 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4335 // TODO: add description of PPC stack frame format, or at least some docs. 4336 // 4337 MachineFunction &MF = DAG.getMachineFunction(); 4338 MachineFrameInfo &MFI = MF.getFrameInfo(); 4339 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4340 4341 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4342 bool isPPC64 = PtrVT == MVT::i64; 4343 // Potential tail calls could cause overwriting of argument stack slots. 4344 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4345 (CallConv == CallingConv::Fast)); 4346 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4347 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4348 unsigned ArgOffset = LinkageSize; 4349 // Area that is at least reserved in caller of this function. 4350 unsigned MinReservedArea = ArgOffset; 4351 4352 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4353 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4354 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4355 }; 4356 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4357 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4358 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4359 }; 4360 static const MCPhysReg VR[] = { 4361 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4362 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4363 }; 4364 4365 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4366 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4367 const unsigned Num_VR_Regs = array_lengthof( VR); 4368 4369 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4370 4371 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4372 4373 // In 32-bit non-varargs functions, the stack space for vectors is after the 4374 // stack space for non-vectors. We do not use this space unless we have 4375 // too many vectors to fit in registers, something that only occurs in 4376 // constructed examples:), but we have to walk the arglist to figure 4377 // that out...for the pathological case, compute VecArgOffset as the 4378 // start of the vector parameter area. Computing VecArgOffset is the 4379 // entire point of the following loop. 4380 unsigned VecArgOffset = ArgOffset; 4381 if (!isVarArg && !isPPC64) { 4382 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4383 ++ArgNo) { 4384 EVT ObjectVT = Ins[ArgNo].VT; 4385 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4386 4387 if (Flags.isByVal()) { 4388 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4389 unsigned ObjSize = Flags.getByValSize(); 4390 unsigned ArgSize = 4391 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4392 VecArgOffset += ArgSize; 4393 continue; 4394 } 4395 4396 switch(ObjectVT.getSimpleVT().SimpleTy) { 4397 default: llvm_unreachable("Unhandled argument type!"); 4398 case MVT::i1: 4399 case MVT::i32: 4400 case MVT::f32: 4401 VecArgOffset += 4; 4402 break; 4403 case MVT::i64: // PPC64 4404 case MVT::f64: 4405 // FIXME: We are guaranteed to be !isPPC64 at this point. 4406 // Does MVT::i64 apply? 4407 VecArgOffset += 8; 4408 break; 4409 case MVT::v4f32: 4410 case MVT::v4i32: 4411 case MVT::v8i16: 4412 case MVT::v16i8: 4413 // Nothing to do, we're only looking at Nonvector args here. 4414 break; 4415 } 4416 } 4417 } 4418 // We've found where the vector parameter area in memory is. Skip the 4419 // first 12 parameters; these don't use that memory. 4420 VecArgOffset = ((VecArgOffset+15)/16)*16; 4421 VecArgOffset += 12*16; 4422 4423 // Add DAG nodes to load the arguments or copy them out of registers. On 4424 // entry to a function on PPC, the arguments start after the linkage area, 4425 // although the first ones are often in registers. 4426 4427 SmallVector<SDValue, 8> MemOps; 4428 unsigned nAltivecParamsAtEnd = 0; 4429 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4430 unsigned CurArgIdx = 0; 4431 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4432 SDValue ArgVal; 4433 bool needsLoad = false; 4434 EVT ObjectVT = Ins[ArgNo].VT; 4435 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4436 unsigned ArgSize = ObjSize; 4437 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4438 if (Ins[ArgNo].isOrigArg()) { 4439 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4440 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4441 } 4442 unsigned CurArgOffset = ArgOffset; 4443 4444 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4445 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4446 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4447 if (isVarArg || isPPC64) { 4448 MinReservedArea = ((MinReservedArea+15)/16)*16; 4449 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4450 Flags, 4451 PtrByteSize); 4452 } else nAltivecParamsAtEnd++; 4453 } else 4454 // Calculate min reserved area. 4455 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4456 Flags, 4457 PtrByteSize); 4458 4459 // FIXME the codegen can be much improved in some cases. 4460 // We do not have to keep everything in memory. 4461 if (Flags.isByVal()) { 4462 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4463 4464 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4465 ObjSize = Flags.getByValSize(); 4466 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4467 // Objects of size 1 and 2 are right justified, everything else is 4468 // left justified. This means the memory address is adjusted forwards. 4469 if (ObjSize==1 || ObjSize==2) { 4470 CurArgOffset = CurArgOffset + (4 - ObjSize); 4471 } 4472 // The value of the object is its address. 4473 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4474 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4475 InVals.push_back(FIN); 4476 if (ObjSize==1 || ObjSize==2) { 4477 if (GPR_idx != Num_GPR_Regs) { 4478 unsigned VReg; 4479 if (isPPC64) 4480 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4481 else 4482 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4483 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4484 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4485 SDValue Store = 4486 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4487 MachinePointerInfo(&*FuncArg), ObjType); 4488 MemOps.push_back(Store); 4489 ++GPR_idx; 4490 } 4491 4492 ArgOffset += PtrByteSize; 4493 4494 continue; 4495 } 4496 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4497 // Store whatever pieces of the object are in registers 4498 // to memory. ArgOffset will be the address of the beginning 4499 // of the object. 4500 if (GPR_idx != Num_GPR_Regs) { 4501 unsigned VReg; 4502 if (isPPC64) 4503 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4504 else 4505 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4506 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4507 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4508 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4509 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4510 MachinePointerInfo(&*FuncArg, j)); 4511 MemOps.push_back(Store); 4512 ++GPR_idx; 4513 ArgOffset += PtrByteSize; 4514 } else { 4515 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4516 break; 4517 } 4518 } 4519 continue; 4520 } 4521 4522 switch (ObjectVT.getSimpleVT().SimpleTy) { 4523 default: llvm_unreachable("Unhandled argument type!"); 4524 case MVT::i1: 4525 case MVT::i32: 4526 if (!isPPC64) { 4527 if (GPR_idx != Num_GPR_Regs) { 4528 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4529 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4530 4531 if (ObjectVT == MVT::i1) 4532 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4533 4534 ++GPR_idx; 4535 } else { 4536 needsLoad = true; 4537 ArgSize = PtrByteSize; 4538 } 4539 // All int arguments reserve stack space in the Darwin ABI. 4540 ArgOffset += PtrByteSize; 4541 break; 4542 } 4543 LLVM_FALLTHROUGH; 4544 case MVT::i64: // PPC64 4545 if (GPR_idx != Num_GPR_Regs) { 4546 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4547 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4548 4549 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4550 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4551 // value to MVT::i64 and then truncate to the correct register size. 4552 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4553 4554 ++GPR_idx; 4555 } else { 4556 needsLoad = true; 4557 ArgSize = PtrByteSize; 4558 } 4559 // All int arguments reserve stack space in the Darwin ABI. 4560 ArgOffset += 8; 4561 break; 4562 4563 case MVT::f32: 4564 case MVT::f64: 4565 // Every 4 bytes of argument space consumes one of the GPRs available for 4566 // argument passing. 4567 if (GPR_idx != Num_GPR_Regs) { 4568 ++GPR_idx; 4569 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4570 ++GPR_idx; 4571 } 4572 if (FPR_idx != Num_FPR_Regs) { 4573 unsigned VReg; 4574 4575 if (ObjectVT == MVT::f32) 4576 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4577 else 4578 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4579 4580 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4581 ++FPR_idx; 4582 } else { 4583 needsLoad = true; 4584 } 4585 4586 // All FP arguments reserve stack space in the Darwin ABI. 4587 ArgOffset += isPPC64 ? 8 : ObjSize; 4588 break; 4589 case MVT::v4f32: 4590 case MVT::v4i32: 4591 case MVT::v8i16: 4592 case MVT::v16i8: 4593 // Note that vector arguments in registers don't reserve stack space, 4594 // except in varargs functions. 4595 if (VR_idx != Num_VR_Regs) { 4596 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4597 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4598 if (isVarArg) { 4599 while ((ArgOffset % 16) != 0) { 4600 ArgOffset += PtrByteSize; 4601 if (GPR_idx != Num_GPR_Regs) 4602 GPR_idx++; 4603 } 4604 ArgOffset += 16; 4605 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4606 } 4607 ++VR_idx; 4608 } else { 4609 if (!isVarArg && !isPPC64) { 4610 // Vectors go after all the nonvectors. 4611 CurArgOffset = VecArgOffset; 4612 VecArgOffset += 16; 4613 } else { 4614 // Vectors are aligned. 4615 ArgOffset = ((ArgOffset+15)/16)*16; 4616 CurArgOffset = ArgOffset; 4617 ArgOffset += 16; 4618 } 4619 needsLoad = true; 4620 } 4621 break; 4622 } 4623 4624 // We need to load the argument to a virtual register if we determined above 4625 // that we ran out of physical registers of the appropriate type. 4626 if (needsLoad) { 4627 int FI = MFI.CreateFixedObject(ObjSize, 4628 CurArgOffset + (ArgSize - ObjSize), 4629 isImmutable); 4630 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4631 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4632 } 4633 4634 InVals.push_back(ArgVal); 4635 } 4636 4637 // Allow for Altivec parameters at the end, if needed. 4638 if (nAltivecParamsAtEnd) { 4639 MinReservedArea = ((MinReservedArea+15)/16)*16; 4640 MinReservedArea += 16*nAltivecParamsAtEnd; 4641 } 4642 4643 // Area that is at least reserved in the caller of this function. 4644 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4645 4646 // Set the size that is at least reserved in caller of this function. Tail 4647 // call optimized functions' reserved stack space needs to be aligned so that 4648 // taking the difference between two stack areas will result in an aligned 4649 // stack. 4650 MinReservedArea = 4651 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4652 FuncInfo->setMinReservedArea(MinReservedArea); 4653 4654 // If the function takes variable number of arguments, make a frame index for 4655 // the start of the first vararg value... for expansion of llvm.va_start. 4656 if (isVarArg) { 4657 int Depth = ArgOffset; 4658 4659 FuncInfo->setVarArgsFrameIndex( 4660 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4661 Depth, true)); 4662 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4663 4664 // If this function is vararg, store any remaining integer argument regs 4665 // to their spots on the stack so that they may be loaded by dereferencing 4666 // the result of va_next. 4667 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4668 unsigned VReg; 4669 4670 if (isPPC64) 4671 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4672 else 4673 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4674 4675 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4676 SDValue Store = 4677 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4678 MemOps.push_back(Store); 4679 // Increment the address by four for the next argument to store 4680 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4681 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4682 } 4683 } 4684 4685 if (!MemOps.empty()) 4686 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4687 4688 return Chain; 4689 } 4690 4691 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4692 /// adjusted to accommodate the arguments for the tailcall. 4693 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4694 unsigned ParamSize) { 4695 4696 if (!isTailCall) return 0; 4697 4698 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4699 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4700 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4701 // Remember only if the new adjustment is bigger. 4702 if (SPDiff < FI->getTailCallSPDelta()) 4703 FI->setTailCallSPDelta(SPDiff); 4704 4705 return SPDiff; 4706 } 4707 4708 static bool isFunctionGlobalAddress(SDValue Callee); 4709 4710 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4711 const TargetMachine &TM) { 4712 // It does not make sense to call callsShareTOCBase() with a caller that 4713 // is PC Relative since PC Relative callers do not have a TOC. 4714 #ifndef NDEBUG 4715 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4716 assert(!STICaller->isUsingPCRelativeCalls() && 4717 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4718 #endif 4719 4720 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4721 // don't have enough information to determine if the caller and callee share 4722 // the same TOC base, so we have to pessimistically assume they don't for 4723 // correctness. 4724 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4725 if (!G) 4726 return false; 4727 4728 const GlobalValue *GV = G->getGlobal(); 4729 4730 // If the callee is preemptable, then the static linker will use a plt-stub 4731 // which saves the toc to the stack, and needs a nop after the call 4732 // instruction to convert to a toc-restore. 4733 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4734 return false; 4735 4736 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4737 // We may need a TOC restore in the situation where the caller requires a 4738 // valid TOC but the callee is PC Relative and does not. 4739 const Function *F = dyn_cast<Function>(GV); 4740 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4741 4742 // If we have an Alias we can try to get the function from there. 4743 if (Alias) { 4744 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4745 F = dyn_cast<Function>(GlobalObj); 4746 } 4747 4748 // If we still have no valid function pointer we do not have enough 4749 // information to determine if the callee uses PC Relative calls so we must 4750 // assume that it does. 4751 if (!F) 4752 return false; 4753 4754 // If the callee uses PC Relative we cannot guarantee that the callee won't 4755 // clobber the TOC of the caller and so we must assume that the two 4756 // functions do not share a TOC base. 4757 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4758 if (STICallee->isUsingPCRelativeCalls()) 4759 return false; 4760 4761 // The medium and large code models are expected to provide a sufficiently 4762 // large TOC to provide all data addressing needs of a module with a 4763 // single TOC. 4764 if (CodeModel::Medium == TM.getCodeModel() || 4765 CodeModel::Large == TM.getCodeModel()) 4766 return true; 4767 4768 // Otherwise we need to ensure callee and caller are in the same section, 4769 // since the linker may allocate multiple TOCs, and we don't know which 4770 // sections will belong to the same TOC base. 4771 if (!GV->isStrongDefinitionForLinker()) 4772 return false; 4773 4774 // Any explicitly-specified sections and section prefixes must also match. 4775 // Also, if we're using -ffunction-sections, then each function is always in 4776 // a different section (the same is true for COMDAT functions). 4777 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4778 GV->getSection() != Caller->getSection()) 4779 return false; 4780 if (const auto *F = dyn_cast<Function>(GV)) { 4781 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4782 return false; 4783 } 4784 4785 return true; 4786 } 4787 4788 static bool 4789 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4790 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4791 assert(Subtarget.is64BitELFABI()); 4792 4793 const unsigned PtrByteSize = 8; 4794 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4795 4796 static const MCPhysReg GPR[] = { 4797 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4798 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4799 }; 4800 static const MCPhysReg VR[] = { 4801 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4802 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4803 }; 4804 4805 const unsigned NumGPRs = array_lengthof(GPR); 4806 const unsigned NumFPRs = 13; 4807 const unsigned NumVRs = array_lengthof(VR); 4808 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4809 4810 unsigned NumBytes = LinkageSize; 4811 unsigned AvailableFPRs = NumFPRs; 4812 unsigned AvailableVRs = NumVRs; 4813 4814 for (const ISD::OutputArg& Param : Outs) { 4815 if (Param.Flags.isNest()) continue; 4816 4817 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4818 PtrByteSize, LinkageSize, ParamAreaSize, 4819 NumBytes, AvailableFPRs, AvailableVRs, 4820 Subtarget.hasQPX())) 4821 return true; 4822 } 4823 return false; 4824 } 4825 4826 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4827 if (CB.arg_size() != CallerFn->arg_size()) 4828 return false; 4829 4830 auto CalleeArgIter = CB.arg_begin(); 4831 auto CalleeArgEnd = CB.arg_end(); 4832 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4833 4834 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4835 const Value* CalleeArg = *CalleeArgIter; 4836 const Value* CallerArg = &(*CallerArgIter); 4837 if (CalleeArg == CallerArg) 4838 continue; 4839 4840 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4841 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4842 // } 4843 // 1st argument of callee is undef and has the same type as caller. 4844 if (CalleeArg->getType() == CallerArg->getType() && 4845 isa<UndefValue>(CalleeArg)) 4846 continue; 4847 4848 return false; 4849 } 4850 4851 return true; 4852 } 4853 4854 // Returns true if TCO is possible between the callers and callees 4855 // calling conventions. 4856 static bool 4857 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4858 CallingConv::ID CalleeCC) { 4859 // Tail calls are possible with fastcc and ccc. 4860 auto isTailCallableCC = [] (CallingConv::ID CC){ 4861 return CC == CallingConv::C || CC == CallingConv::Fast; 4862 }; 4863 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4864 return false; 4865 4866 // We can safely tail call both fastcc and ccc callees from a c calling 4867 // convention caller. If the caller is fastcc, we may have less stack space 4868 // than a non-fastcc caller with the same signature so disable tail-calls in 4869 // that case. 4870 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4871 } 4872 4873 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4874 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4875 const SmallVectorImpl<ISD::OutputArg> &Outs, 4876 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4877 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4878 4879 if (DisableSCO && !TailCallOpt) return false; 4880 4881 // Variadic argument functions are not supported. 4882 if (isVarArg) return false; 4883 4884 auto &Caller = DAG.getMachineFunction().getFunction(); 4885 // Check that the calling conventions are compatible for tco. 4886 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4887 return false; 4888 4889 // Caller contains any byval parameter is not supported. 4890 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4891 return false; 4892 4893 // Callee contains any byval parameter is not supported, too. 4894 // Note: This is a quick work around, because in some cases, e.g. 4895 // caller's stack size > callee's stack size, we are still able to apply 4896 // sibling call optimization. For example, gcc is able to do SCO for caller1 4897 // in the following example, but not for caller2. 4898 // struct test { 4899 // long int a; 4900 // char ary[56]; 4901 // } gTest; 4902 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4903 // b->a = v.a; 4904 // return 0; 4905 // } 4906 // void caller1(struct test a, struct test c, struct test *b) { 4907 // callee(gTest, b); } 4908 // void caller2(struct test *b) { callee(gTest, b); } 4909 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4910 return false; 4911 4912 // If callee and caller use different calling conventions, we cannot pass 4913 // parameters on stack since offsets for the parameter area may be different. 4914 if (Caller.getCallingConv() != CalleeCC && 4915 needStackSlotPassParameters(Subtarget, Outs)) 4916 return false; 4917 4918 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4919 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4920 // callee potentially have different TOC bases then we cannot tail call since 4921 // we need to restore the TOC pointer after the call. 4922 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4923 // We cannot guarantee this for indirect calls or calls to external functions. 4924 // When PC-Relative addressing is used, the concept of the TOC is no longer 4925 // applicable so this check is not required. 4926 // Check first for indirect calls. 4927 if (!Subtarget.isUsingPCRelativeCalls() && 4928 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4929 return false; 4930 4931 // Check if we share the TOC base. 4932 if (!Subtarget.isUsingPCRelativeCalls() && 4933 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4934 return false; 4935 4936 // TCO allows altering callee ABI, so we don't have to check further. 4937 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4938 return true; 4939 4940 if (DisableSCO) return false; 4941 4942 // If callee use the same argument list that caller is using, then we can 4943 // apply SCO on this case. If it is not, then we need to check if callee needs 4944 // stack for passing arguments. 4945 // PC Relative tail calls may not have a CallBase. 4946 // If there is no CallBase we cannot verify if we have the same argument 4947 // list so assume that we don't have the same argument list. 4948 if (CB && !hasSameArgumentList(&Caller, *CB) && 4949 needStackSlotPassParameters(Subtarget, Outs)) 4950 return false; 4951 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4952 return false; 4953 4954 return true; 4955 } 4956 4957 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4958 /// for tail call optimization. Targets which want to do tail call 4959 /// optimization should implement this function. 4960 bool 4961 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4962 CallingConv::ID CalleeCC, 4963 bool isVarArg, 4964 const SmallVectorImpl<ISD::InputArg> &Ins, 4965 SelectionDAG& DAG) const { 4966 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4967 return false; 4968 4969 // Variable argument functions are not supported. 4970 if (isVarArg) 4971 return false; 4972 4973 MachineFunction &MF = DAG.getMachineFunction(); 4974 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4975 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4976 // Functions containing by val parameters are not supported. 4977 for (unsigned i = 0; i != Ins.size(); i++) { 4978 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4979 if (Flags.isByVal()) return false; 4980 } 4981 4982 // Non-PIC/GOT tail calls are supported. 4983 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4984 return true; 4985 4986 // At the moment we can only do local tail calls (in same module, hidden 4987 // or protected) if we are generating PIC. 4988 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4989 return G->getGlobal()->hasHiddenVisibility() 4990 || G->getGlobal()->hasProtectedVisibility(); 4991 } 4992 4993 return false; 4994 } 4995 4996 /// isCallCompatibleAddress - Return the immediate to use if the specified 4997 /// 32-bit value is representable in the immediate field of a BxA instruction. 4998 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4999 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 5000 if (!C) return nullptr; 5001 5002 int Addr = C->getZExtValue(); 5003 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 5004 SignExtend32<26>(Addr) != Addr) 5005 return nullptr; // Top 6 bits have to be sext of immediate. 5006 5007 return DAG 5008 .getConstant( 5009 (int)C->getZExtValue() >> 2, SDLoc(Op), 5010 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5011 .getNode(); 5012 } 5013 5014 namespace { 5015 5016 struct TailCallArgumentInfo { 5017 SDValue Arg; 5018 SDValue FrameIdxOp; 5019 int FrameIdx = 0; 5020 5021 TailCallArgumentInfo() = default; 5022 }; 5023 5024 } // end anonymous namespace 5025 5026 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5027 static void StoreTailCallArgumentsToStackSlot( 5028 SelectionDAG &DAG, SDValue Chain, 5029 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5030 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5031 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5032 SDValue Arg = TailCallArgs[i].Arg; 5033 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5034 int FI = TailCallArgs[i].FrameIdx; 5035 // Store relative to framepointer. 5036 MemOpChains.push_back(DAG.getStore( 5037 Chain, dl, Arg, FIN, 5038 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5039 } 5040 } 5041 5042 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5043 /// the appropriate stack slot for the tail call optimized function call. 5044 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5045 SDValue OldRetAddr, SDValue OldFP, 5046 int SPDiff, const SDLoc &dl) { 5047 if (SPDiff) { 5048 // Calculate the new stack slot for the return address. 5049 MachineFunction &MF = DAG.getMachineFunction(); 5050 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5051 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5052 bool isPPC64 = Subtarget.isPPC64(); 5053 int SlotSize = isPPC64 ? 8 : 4; 5054 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5055 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5056 NewRetAddrLoc, true); 5057 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5058 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5059 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5060 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5061 } 5062 return Chain; 5063 } 5064 5065 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5066 /// the position of the argument. 5067 static void 5068 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5069 SDValue Arg, int SPDiff, unsigned ArgOffset, 5070 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5071 int Offset = ArgOffset + SPDiff; 5072 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5073 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5074 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5075 SDValue FIN = DAG.getFrameIndex(FI, VT); 5076 TailCallArgumentInfo Info; 5077 Info.Arg = Arg; 5078 Info.FrameIdxOp = FIN; 5079 Info.FrameIdx = FI; 5080 TailCallArguments.push_back(Info); 5081 } 5082 5083 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5084 /// stack slot. Returns the chain as result and the loaded frame pointers in 5085 /// LROpOut/FPOpout. Used when tail calling. 5086 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5087 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5088 SDValue &FPOpOut, const SDLoc &dl) const { 5089 if (SPDiff) { 5090 // Load the LR and FP stack slot for later adjusting. 5091 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5092 LROpOut = getReturnAddrFrameIndex(DAG); 5093 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5094 Chain = SDValue(LROpOut.getNode(), 1); 5095 } 5096 return Chain; 5097 } 5098 5099 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5100 /// by "Src" to address "Dst" of size "Size". Alignment information is 5101 /// specified by the specific parameter attribute. The copy will be passed as 5102 /// a byval function parameter. 5103 /// Sometimes what we are copying is the end of a larger object, the part that 5104 /// does not fit in registers. 5105 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5106 SDValue Chain, ISD::ArgFlagsTy Flags, 5107 SelectionDAG &DAG, const SDLoc &dl) { 5108 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5109 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5110 Flags.getNonZeroByValAlign(), false, false, false, 5111 MachinePointerInfo(), MachinePointerInfo()); 5112 } 5113 5114 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5115 /// tail calls. 5116 static void LowerMemOpCallTo( 5117 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5118 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5119 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5120 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5121 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5122 if (!isTailCall) { 5123 if (isVector) { 5124 SDValue StackPtr; 5125 if (isPPC64) 5126 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5127 else 5128 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5129 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5130 DAG.getConstant(ArgOffset, dl, PtrVT)); 5131 } 5132 MemOpChains.push_back( 5133 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5134 // Calculate and remember argument location. 5135 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5136 TailCallArguments); 5137 } 5138 5139 static void 5140 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5141 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5142 SDValue FPOp, 5143 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5144 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5145 // might overwrite each other in case of tail call optimization. 5146 SmallVector<SDValue, 8> MemOpChains2; 5147 // Do not flag preceding copytoreg stuff together with the following stuff. 5148 InFlag = SDValue(); 5149 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5150 MemOpChains2, dl); 5151 if (!MemOpChains2.empty()) 5152 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5153 5154 // Store the return address to the appropriate stack slot. 5155 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5156 5157 // Emit callseq_end just before tailcall node. 5158 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5159 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5160 InFlag = Chain.getValue(1); 5161 } 5162 5163 // Is this global address that of a function that can be called by name? (as 5164 // opposed to something that must hold a descriptor for an indirect call). 5165 static bool isFunctionGlobalAddress(SDValue Callee) { 5166 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5167 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5168 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5169 return false; 5170 5171 return G->getGlobal()->getValueType()->isFunctionTy(); 5172 } 5173 5174 return false; 5175 } 5176 5177 SDValue PPCTargetLowering::LowerCallResult( 5178 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5179 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5180 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5181 SmallVector<CCValAssign, 16> RVLocs; 5182 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5183 *DAG.getContext()); 5184 5185 CCRetInfo.AnalyzeCallResult( 5186 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5187 ? RetCC_PPC_Cold 5188 : RetCC_PPC); 5189 5190 // Copy all of the result registers out of their specified physreg. 5191 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5192 CCValAssign &VA = RVLocs[i]; 5193 assert(VA.isRegLoc() && "Can only return in registers!"); 5194 5195 SDValue Val; 5196 5197 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5198 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5199 InFlag); 5200 Chain = Lo.getValue(1); 5201 InFlag = Lo.getValue(2); 5202 VA = RVLocs[++i]; // skip ahead to next loc 5203 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5204 InFlag); 5205 Chain = Hi.getValue(1); 5206 InFlag = Hi.getValue(2); 5207 if (!Subtarget.isLittleEndian()) 5208 std::swap (Lo, Hi); 5209 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5210 } else { 5211 Val = DAG.getCopyFromReg(Chain, dl, 5212 VA.getLocReg(), VA.getLocVT(), InFlag); 5213 Chain = Val.getValue(1); 5214 InFlag = Val.getValue(2); 5215 } 5216 5217 switch (VA.getLocInfo()) { 5218 default: llvm_unreachable("Unknown loc info!"); 5219 case CCValAssign::Full: break; 5220 case CCValAssign::AExt: 5221 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5222 break; 5223 case CCValAssign::ZExt: 5224 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5225 DAG.getValueType(VA.getValVT())); 5226 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5227 break; 5228 case CCValAssign::SExt: 5229 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5230 DAG.getValueType(VA.getValVT())); 5231 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5232 break; 5233 } 5234 5235 InVals.push_back(Val); 5236 } 5237 5238 return Chain; 5239 } 5240 5241 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5242 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5243 // PatchPoint calls are not indirect. 5244 if (isPatchPoint) 5245 return false; 5246 5247 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5248 return false; 5249 5250 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5251 // becuase the immediate function pointer points to a descriptor instead of 5252 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5253 // pointer immediate points to the global entry point, while the BLA would 5254 // need to jump to the local entry point (see rL211174). 5255 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5256 isBLACompatibleAddress(Callee, DAG)) 5257 return false; 5258 5259 return true; 5260 } 5261 5262 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5263 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5264 return Subtarget.isAIXABI() || 5265 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5266 } 5267 5268 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5269 const Function &Caller, 5270 const SDValue &Callee, 5271 const PPCSubtarget &Subtarget, 5272 const TargetMachine &TM) { 5273 if (CFlags.IsTailCall) 5274 return PPCISD::TC_RETURN; 5275 5276 // This is a call through a function pointer. 5277 if (CFlags.IsIndirect) { 5278 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5279 // indirect calls. The save of the caller's TOC pointer to the stack will be 5280 // inserted into the DAG as part of call lowering. The restore of the TOC 5281 // pointer is modeled by using a pseudo instruction for the call opcode that 5282 // represents the 2 instruction sequence of an indirect branch and link, 5283 // immediately followed by a load of the TOC pointer from the the stack save 5284 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5285 // as it is not saved or used. 5286 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5287 : PPCISD::BCTRL; 5288 } 5289 5290 if (Subtarget.isUsingPCRelativeCalls()) { 5291 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5292 return PPCISD::CALL_NOTOC; 5293 } 5294 5295 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5296 // immediately following the call instruction if the caller and callee may 5297 // have different TOC bases. At link time if the linker determines the calls 5298 // may not share a TOC base, the call is redirected to a trampoline inserted 5299 // by the linker. The trampoline will (among other things) save the callers 5300 // TOC pointer at an ABI designated offset in the linkage area and the linker 5301 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5302 // into gpr2. 5303 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5304 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5305 : PPCISD::CALL_NOP; 5306 5307 return PPCISD::CALL; 5308 } 5309 5310 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5311 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5312 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5313 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5314 return SDValue(Dest, 0); 5315 5316 // Returns true if the callee is local, and false otherwise. 5317 auto isLocalCallee = [&]() { 5318 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5319 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5320 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5321 5322 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5323 !dyn_cast_or_null<GlobalIFunc>(GV); 5324 }; 5325 5326 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5327 // a static relocation model causes some versions of GNU LD (2.17.50, at 5328 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5329 // built with secure-PLT. 5330 bool UsePlt = 5331 Subtarget.is32BitELFABI() && !isLocalCallee() && 5332 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5333 5334 // On AIX, direct function calls reference the symbol for the function's 5335 // entry point, which is named by prepending a "." before the function's 5336 // C-linkage name. 5337 const auto getAIXFuncEntryPointSymbolSDNode = 5338 [&](StringRef FuncName, bool IsDeclaration, 5339 const XCOFF::StorageClass &SC) { 5340 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5341 5342 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5343 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5344 5345 if (IsDeclaration && !S->hasRepresentedCsectSet()) { 5346 // On AIX, an undefined symbol needs to be associated with a 5347 // MCSectionXCOFF to get the correct storage mapping class. 5348 // In this case, XCOFF::XMC_PR. 5349 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5350 S->getSymbolTableName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5351 SectionKind::getMetadata()); 5352 S->setRepresentedCsect(Sec); 5353 } 5354 5355 MVT PtrVT = 5356 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5357 return DAG.getMCSymbol(S, PtrVT); 5358 }; 5359 5360 if (isFunctionGlobalAddress(Callee)) { 5361 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5362 const GlobalValue *GV = G->getGlobal(); 5363 5364 if (!Subtarget.isAIXABI()) 5365 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5366 UsePlt ? PPCII::MO_PLT : 0); 5367 5368 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5369 const GlobalObject *GO = cast<GlobalObject>(GV); 5370 const XCOFF::StorageClass SC = 5371 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5372 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5373 SC); 5374 } 5375 5376 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5377 const char *SymName = S->getSymbol(); 5378 if (!Subtarget.isAIXABI()) 5379 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5380 UsePlt ? PPCII::MO_PLT : 0); 5381 5382 // If there exists a user-declared function whose name is the same as the 5383 // ExternalSymbol's, then we pick up the user-declared version. 5384 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5385 if (const Function *F = 5386 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5387 const XCOFF::StorageClass SC = 5388 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5389 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5390 SC); 5391 } 5392 5393 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5394 } 5395 5396 // No transformation needed. 5397 assert(Callee.getNode() && "What no callee?"); 5398 return Callee; 5399 } 5400 5401 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5402 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5403 "Expected a CALLSEQ_STARTSDNode."); 5404 5405 // The last operand is the chain, except when the node has glue. If the node 5406 // has glue, then the last operand is the glue, and the chain is the second 5407 // last operand. 5408 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5409 if (LastValue.getValueType() != MVT::Glue) 5410 return LastValue; 5411 5412 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5413 } 5414 5415 // Creates the node that moves a functions address into the count register 5416 // to prepare for an indirect call instruction. 5417 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5418 SDValue &Glue, SDValue &Chain, 5419 const SDLoc &dl) { 5420 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5421 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5422 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5423 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5424 // The glue is the second value produced. 5425 Glue = Chain.getValue(1); 5426 } 5427 5428 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5429 SDValue &Glue, SDValue &Chain, 5430 SDValue CallSeqStart, 5431 const CallBase *CB, const SDLoc &dl, 5432 bool hasNest, 5433 const PPCSubtarget &Subtarget) { 5434 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5435 // entry point, but to the function descriptor (the function entry point 5436 // address is part of the function descriptor though). 5437 // The function descriptor is a three doubleword structure with the 5438 // following fields: function entry point, TOC base address and 5439 // environment pointer. 5440 // Thus for a call through a function pointer, the following actions need 5441 // to be performed: 5442 // 1. Save the TOC of the caller in the TOC save area of its stack 5443 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5444 // 2. Load the address of the function entry point from the function 5445 // descriptor. 5446 // 3. Load the TOC of the callee from the function descriptor into r2. 5447 // 4. Load the environment pointer from the function descriptor into 5448 // r11. 5449 // 5. Branch to the function entry point address. 5450 // 6. On return of the callee, the TOC of the caller needs to be 5451 // restored (this is done in FinishCall()). 5452 // 5453 // The loads are scheduled at the beginning of the call sequence, and the 5454 // register copies are flagged together to ensure that no other 5455 // operations can be scheduled in between. E.g. without flagging the 5456 // copies together, a TOC access in the caller could be scheduled between 5457 // the assignment of the callee TOC and the branch to the callee, which leads 5458 // to incorrect code. 5459 5460 // Start by loading the function address from the descriptor. 5461 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5462 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5463 ? (MachineMemOperand::MODereferenceable | 5464 MachineMemOperand::MOInvariant) 5465 : MachineMemOperand::MONone; 5466 5467 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5468 5469 // Registers used in building the DAG. 5470 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5471 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5472 5473 // Offsets of descriptor members. 5474 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5475 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5476 5477 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5478 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5479 5480 // One load for the functions entry point address. 5481 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5482 Alignment, MMOFlags); 5483 5484 // One for loading the TOC anchor for the module that contains the called 5485 // function. 5486 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5487 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5488 SDValue TOCPtr = 5489 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5490 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5491 5492 // One for loading the environment pointer. 5493 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5494 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5495 SDValue LoadEnvPtr = 5496 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5497 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5498 5499 5500 // Then copy the newly loaded TOC anchor to the TOC pointer. 5501 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5502 Chain = TOCVal.getValue(0); 5503 Glue = TOCVal.getValue(1); 5504 5505 // If the function call has an explicit 'nest' parameter, it takes the 5506 // place of the environment pointer. 5507 assert((!hasNest || !Subtarget.isAIXABI()) && 5508 "Nest parameter is not supported on AIX."); 5509 if (!hasNest) { 5510 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5511 Chain = EnvVal.getValue(0); 5512 Glue = EnvVal.getValue(1); 5513 } 5514 5515 // The rest of the indirect call sequence is the same as the non-descriptor 5516 // DAG. 5517 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5518 } 5519 5520 static void 5521 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5522 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5523 SelectionDAG &DAG, 5524 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5525 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5526 const PPCSubtarget &Subtarget) { 5527 const bool IsPPC64 = Subtarget.isPPC64(); 5528 // MVT for a general purpose register. 5529 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5530 5531 // First operand is always the chain. 5532 Ops.push_back(Chain); 5533 5534 // If it's a direct call pass the callee as the second operand. 5535 if (!CFlags.IsIndirect) 5536 Ops.push_back(Callee); 5537 else { 5538 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5539 5540 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5541 // on the stack (this would have been done in `LowerCall_64SVR4` or 5542 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5543 // represents both the indirect branch and a load that restores the TOC 5544 // pointer from the linkage area. The operand for the TOC restore is an add 5545 // of the TOC save offset to the stack pointer. This must be the second 5546 // operand: after the chain input but before any other variadic arguments. 5547 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5548 // saved or used. 5549 if (isTOCSaveRestoreRequired(Subtarget)) { 5550 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5551 5552 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5553 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5554 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5555 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5556 Ops.push_back(AddTOC); 5557 } 5558 5559 // Add the register used for the environment pointer. 5560 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5561 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5562 RegVT)); 5563 5564 5565 // Add CTR register as callee so a bctr can be emitted later. 5566 if (CFlags.IsTailCall) 5567 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5568 } 5569 5570 // If this is a tail call add stack pointer delta. 5571 if (CFlags.IsTailCall) 5572 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5573 5574 // Add argument registers to the end of the list so that they are known live 5575 // into the call. 5576 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5577 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5578 RegsToPass[i].second.getValueType())); 5579 5580 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5581 // no way to mark dependencies as implicit here. 5582 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5583 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5584 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5585 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5586 5587 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5588 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5589 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5590 5591 // Add a register mask operand representing the call-preserved registers. 5592 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5593 const uint32_t *Mask = 5594 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5595 assert(Mask && "Missing call preserved mask for calling convention"); 5596 Ops.push_back(DAG.getRegisterMask(Mask)); 5597 5598 // If the glue is valid, it is the last operand. 5599 if (Glue.getNode()) 5600 Ops.push_back(Glue); 5601 } 5602 5603 SDValue PPCTargetLowering::FinishCall( 5604 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5605 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5606 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5607 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5608 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5609 5610 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5611 Subtarget.isAIXABI()) 5612 setUsesTOCBasePtr(DAG); 5613 5614 unsigned CallOpc = 5615 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5616 Subtarget, DAG.getTarget()); 5617 5618 if (!CFlags.IsIndirect) 5619 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5620 else if (Subtarget.usesFunctionDescriptors()) 5621 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5622 dl, CFlags.HasNest, Subtarget); 5623 else 5624 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5625 5626 // Build the operand list for the call instruction. 5627 SmallVector<SDValue, 8> Ops; 5628 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5629 SPDiff, Subtarget); 5630 5631 // Emit tail call. 5632 if (CFlags.IsTailCall) { 5633 // Indirect tail call when using PC Relative calls do not have the same 5634 // constraints. 5635 assert(((Callee.getOpcode() == ISD::Register && 5636 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5637 Callee.getOpcode() == ISD::TargetExternalSymbol || 5638 Callee.getOpcode() == ISD::TargetGlobalAddress || 5639 isa<ConstantSDNode>(Callee) || 5640 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5641 "Expecting a global address, external symbol, absolute value, " 5642 "register or an indirect tail call when PC Relative calls are " 5643 "used."); 5644 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5645 assert(CallOpc == PPCISD::TC_RETURN && 5646 "Unexpected call opcode for a tail call."); 5647 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5648 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5649 } 5650 5651 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5652 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5653 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5654 Glue = Chain.getValue(1); 5655 5656 // When performing tail call optimization the callee pops its arguments off 5657 // the stack. Account for this here so these bytes can be pushed back on in 5658 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5659 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5660 getTargetMachine().Options.GuaranteedTailCallOpt) 5661 ? NumBytes 5662 : 0; 5663 5664 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5665 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5666 Glue, dl); 5667 Glue = Chain.getValue(1); 5668 5669 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5670 DAG, InVals); 5671 } 5672 5673 SDValue 5674 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5675 SmallVectorImpl<SDValue> &InVals) const { 5676 SelectionDAG &DAG = CLI.DAG; 5677 SDLoc &dl = CLI.DL; 5678 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5679 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5680 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5681 SDValue Chain = CLI.Chain; 5682 SDValue Callee = CLI.Callee; 5683 bool &isTailCall = CLI.IsTailCall; 5684 CallingConv::ID CallConv = CLI.CallConv; 5685 bool isVarArg = CLI.IsVarArg; 5686 bool isPatchPoint = CLI.IsPatchPoint; 5687 const CallBase *CB = CLI.CB; 5688 5689 if (isTailCall) { 5690 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5691 isTailCall = false; 5692 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5693 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5694 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5695 else 5696 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5697 Ins, DAG); 5698 if (isTailCall) { 5699 ++NumTailCalls; 5700 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5701 ++NumSiblingCalls; 5702 5703 // PC Relative calls no longer guarantee that the callee is a Global 5704 // Address Node. The callee could be an indirect tail call in which 5705 // case the SDValue for the callee could be a load (to load the address 5706 // of a function pointer) or it may be a register copy (to move the 5707 // address of the callee from a function parameter into a virtual 5708 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5709 assert((Subtarget.isUsingPCRelativeCalls() || 5710 isa<GlobalAddressSDNode>(Callee)) && 5711 "Callee should be an llvm::Function object."); 5712 5713 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5714 << "\nTCO callee: "); 5715 LLVM_DEBUG(Callee.dump()); 5716 } 5717 } 5718 5719 if (!isTailCall && CB && CB->isMustTailCall()) 5720 report_fatal_error("failed to perform tail call elimination on a call " 5721 "site marked musttail"); 5722 5723 // When long calls (i.e. indirect calls) are always used, calls are always 5724 // made via function pointer. If we have a function name, first translate it 5725 // into a pointer. 5726 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5727 !isTailCall) 5728 Callee = LowerGlobalAddress(Callee, DAG); 5729 5730 CallFlags CFlags( 5731 CallConv, isTailCall, isVarArg, isPatchPoint, 5732 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5733 // hasNest 5734 Subtarget.is64BitELFABI() && 5735 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5736 CLI.NoMerge); 5737 5738 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5739 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5740 InVals, CB); 5741 5742 if (Subtarget.isSVR4ABI()) 5743 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5744 InVals, CB); 5745 5746 if (Subtarget.isAIXABI()) 5747 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5748 InVals, CB); 5749 5750 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5751 InVals, CB); 5752 } 5753 5754 SDValue PPCTargetLowering::LowerCall_32SVR4( 5755 SDValue Chain, SDValue Callee, CallFlags CFlags, 5756 const SmallVectorImpl<ISD::OutputArg> &Outs, 5757 const SmallVectorImpl<SDValue> &OutVals, 5758 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5759 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5760 const CallBase *CB) const { 5761 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5762 // of the 32-bit SVR4 ABI stack frame layout. 5763 5764 const CallingConv::ID CallConv = CFlags.CallConv; 5765 const bool IsVarArg = CFlags.IsVarArg; 5766 const bool IsTailCall = CFlags.IsTailCall; 5767 5768 assert((CallConv == CallingConv::C || 5769 CallConv == CallingConv::Cold || 5770 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5771 5772 const Align PtrAlign(4); 5773 5774 MachineFunction &MF = DAG.getMachineFunction(); 5775 5776 // Mark this function as potentially containing a function that contains a 5777 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5778 // and restoring the callers stack pointer in this functions epilog. This is 5779 // done because by tail calling the called function might overwrite the value 5780 // in this function's (MF) stack pointer stack slot 0(SP). 5781 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5782 CallConv == CallingConv::Fast) 5783 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5784 5785 // Count how many bytes are to be pushed on the stack, including the linkage 5786 // area, parameter list area and the part of the local variable space which 5787 // contains copies of aggregates which are passed by value. 5788 5789 // Assign locations to all of the outgoing arguments. 5790 SmallVector<CCValAssign, 16> ArgLocs; 5791 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5792 5793 // Reserve space for the linkage area on the stack. 5794 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5795 PtrAlign); 5796 if (useSoftFloat()) 5797 CCInfo.PreAnalyzeCallOperands(Outs); 5798 5799 if (IsVarArg) { 5800 // Handle fixed and variable vector arguments differently. 5801 // Fixed vector arguments go into registers as long as registers are 5802 // available. Variable vector arguments always go into memory. 5803 unsigned NumArgs = Outs.size(); 5804 5805 for (unsigned i = 0; i != NumArgs; ++i) { 5806 MVT ArgVT = Outs[i].VT; 5807 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5808 bool Result; 5809 5810 if (Outs[i].IsFixed) { 5811 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5812 CCInfo); 5813 } else { 5814 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5815 ArgFlags, CCInfo); 5816 } 5817 5818 if (Result) { 5819 #ifndef NDEBUG 5820 errs() << "Call operand #" << i << " has unhandled type " 5821 << EVT(ArgVT).getEVTString() << "\n"; 5822 #endif 5823 llvm_unreachable(nullptr); 5824 } 5825 } 5826 } else { 5827 // All arguments are treated the same. 5828 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5829 } 5830 CCInfo.clearWasPPCF128(); 5831 5832 // Assign locations to all of the outgoing aggregate by value arguments. 5833 SmallVector<CCValAssign, 16> ByValArgLocs; 5834 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5835 5836 // Reserve stack space for the allocations in CCInfo. 5837 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5838 5839 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5840 5841 // Size of the linkage area, parameter list area and the part of the local 5842 // space variable where copies of aggregates which are passed by value are 5843 // stored. 5844 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5845 5846 // Calculate by how many bytes the stack has to be adjusted in case of tail 5847 // call optimization. 5848 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5849 5850 // Adjust the stack pointer for the new arguments... 5851 // These operations are automatically eliminated by the prolog/epilog pass 5852 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5853 SDValue CallSeqStart = Chain; 5854 5855 // Load the return address and frame pointer so it can be moved somewhere else 5856 // later. 5857 SDValue LROp, FPOp; 5858 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5859 5860 // Set up a copy of the stack pointer for use loading and storing any 5861 // arguments that may not fit in the registers available for argument 5862 // passing. 5863 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5864 5865 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5866 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5867 SmallVector<SDValue, 8> MemOpChains; 5868 5869 bool seenFloatArg = false; 5870 // Walk the register/memloc assignments, inserting copies/loads. 5871 // i - Tracks the index into the list of registers allocated for the call 5872 // RealArgIdx - Tracks the index into the list of actual function arguments 5873 // j - Tracks the index into the list of byval arguments 5874 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5875 i != e; 5876 ++i, ++RealArgIdx) { 5877 CCValAssign &VA = ArgLocs[i]; 5878 SDValue Arg = OutVals[RealArgIdx]; 5879 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5880 5881 if (Flags.isByVal()) { 5882 // Argument is an aggregate which is passed by value, thus we need to 5883 // create a copy of it in the local variable space of the current stack 5884 // frame (which is the stack frame of the caller) and pass the address of 5885 // this copy to the callee. 5886 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5887 CCValAssign &ByValVA = ByValArgLocs[j++]; 5888 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5889 5890 // Memory reserved in the local variable space of the callers stack frame. 5891 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5892 5893 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5894 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5895 StackPtr, PtrOff); 5896 5897 // Create a copy of the argument in the local area of the current 5898 // stack frame. 5899 SDValue MemcpyCall = 5900 CreateCopyOfByValArgument(Arg, PtrOff, 5901 CallSeqStart.getNode()->getOperand(0), 5902 Flags, DAG, dl); 5903 5904 // This must go outside the CALLSEQ_START..END. 5905 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5906 SDLoc(MemcpyCall)); 5907 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5908 NewCallSeqStart.getNode()); 5909 Chain = CallSeqStart = NewCallSeqStart; 5910 5911 // Pass the address of the aggregate copy on the stack either in a 5912 // physical register or in the parameter list area of the current stack 5913 // frame to the callee. 5914 Arg = PtrOff; 5915 } 5916 5917 // When useCRBits() is true, there can be i1 arguments. 5918 // It is because getRegisterType(MVT::i1) => MVT::i1, 5919 // and for other integer types getRegisterType() => MVT::i32. 5920 // Extend i1 and ensure callee will get i32. 5921 if (Arg.getValueType() == MVT::i1) 5922 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5923 dl, MVT::i32, Arg); 5924 5925 if (VA.isRegLoc()) { 5926 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5927 // Put argument in a physical register. 5928 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5929 bool IsLE = Subtarget.isLittleEndian(); 5930 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5931 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5932 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5933 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5934 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5935 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5936 SVal.getValue(0))); 5937 } else 5938 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5939 } else { 5940 // Put argument in the parameter list area of the current stack frame. 5941 assert(VA.isMemLoc()); 5942 unsigned LocMemOffset = VA.getLocMemOffset(); 5943 5944 if (!IsTailCall) { 5945 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5946 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5947 StackPtr, PtrOff); 5948 5949 MemOpChains.push_back( 5950 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5951 } else { 5952 // Calculate and remember argument location. 5953 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5954 TailCallArguments); 5955 } 5956 } 5957 } 5958 5959 if (!MemOpChains.empty()) 5960 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5961 5962 // Build a sequence of copy-to-reg nodes chained together with token chain 5963 // and flag operands which copy the outgoing args into the appropriate regs. 5964 SDValue InFlag; 5965 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5966 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5967 RegsToPass[i].second, InFlag); 5968 InFlag = Chain.getValue(1); 5969 } 5970 5971 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5972 // registers. 5973 if (IsVarArg) { 5974 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5975 SDValue Ops[] = { Chain, InFlag }; 5976 5977 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5978 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5979 5980 InFlag = Chain.getValue(1); 5981 } 5982 5983 if (IsTailCall) 5984 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5985 TailCallArguments); 5986 5987 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5988 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5989 } 5990 5991 // Copy an argument into memory, being careful to do this outside the 5992 // call sequence for the call to which the argument belongs. 5993 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5994 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5995 SelectionDAG &DAG, const SDLoc &dl) const { 5996 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5997 CallSeqStart.getNode()->getOperand(0), 5998 Flags, DAG, dl); 5999 // The MEMCPY must go outside the CALLSEQ_START..END. 6000 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 6001 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 6002 SDLoc(MemcpyCall)); 6003 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6004 NewCallSeqStart.getNode()); 6005 return NewCallSeqStart; 6006 } 6007 6008 SDValue PPCTargetLowering::LowerCall_64SVR4( 6009 SDValue Chain, SDValue Callee, CallFlags CFlags, 6010 const SmallVectorImpl<ISD::OutputArg> &Outs, 6011 const SmallVectorImpl<SDValue> &OutVals, 6012 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6013 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6014 const CallBase *CB) const { 6015 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6016 bool isLittleEndian = Subtarget.isLittleEndian(); 6017 unsigned NumOps = Outs.size(); 6018 bool IsSibCall = false; 6019 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6020 6021 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6022 unsigned PtrByteSize = 8; 6023 6024 MachineFunction &MF = DAG.getMachineFunction(); 6025 6026 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6027 IsSibCall = true; 6028 6029 // Mark this function as potentially containing a function that contains a 6030 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6031 // and restoring the callers stack pointer in this functions epilog. This is 6032 // done because by tail calling the called function might overwrite the value 6033 // in this function's (MF) stack pointer stack slot 0(SP). 6034 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6035 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6036 6037 assert(!(IsFastCall && CFlags.IsVarArg) && 6038 "fastcc not supported on varargs functions"); 6039 6040 // Count how many bytes are to be pushed on the stack, including the linkage 6041 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6042 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6043 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6044 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6045 unsigned NumBytes = LinkageSize; 6046 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6047 unsigned &QFPR_idx = FPR_idx; 6048 6049 static const MCPhysReg GPR[] = { 6050 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6051 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6052 }; 6053 static const MCPhysReg VR[] = { 6054 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6055 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6056 }; 6057 6058 const unsigned NumGPRs = array_lengthof(GPR); 6059 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6060 const unsigned NumVRs = array_lengthof(VR); 6061 const unsigned NumQFPRs = NumFPRs; 6062 6063 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6064 // can be passed to the callee in registers. 6065 // For the fast calling convention, there is another check below. 6066 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6067 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6068 if (!HasParameterArea) { 6069 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6070 unsigned AvailableFPRs = NumFPRs; 6071 unsigned AvailableVRs = NumVRs; 6072 unsigned NumBytesTmp = NumBytes; 6073 for (unsigned i = 0; i != NumOps; ++i) { 6074 if (Outs[i].Flags.isNest()) continue; 6075 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6076 PtrByteSize, LinkageSize, ParamAreaSize, 6077 NumBytesTmp, AvailableFPRs, AvailableVRs, 6078 Subtarget.hasQPX())) 6079 HasParameterArea = true; 6080 } 6081 } 6082 6083 // When using the fast calling convention, we don't provide backing for 6084 // arguments that will be in registers. 6085 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6086 6087 // Avoid allocating parameter area for fastcc functions if all the arguments 6088 // can be passed in the registers. 6089 if (IsFastCall) 6090 HasParameterArea = false; 6091 6092 // Add up all the space actually used. 6093 for (unsigned i = 0; i != NumOps; ++i) { 6094 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6095 EVT ArgVT = Outs[i].VT; 6096 EVT OrigVT = Outs[i].ArgVT; 6097 6098 if (Flags.isNest()) 6099 continue; 6100 6101 if (IsFastCall) { 6102 if (Flags.isByVal()) { 6103 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6104 if (NumGPRsUsed > NumGPRs) 6105 HasParameterArea = true; 6106 } else { 6107 switch (ArgVT.getSimpleVT().SimpleTy) { 6108 default: llvm_unreachable("Unexpected ValueType for argument!"); 6109 case MVT::i1: 6110 case MVT::i32: 6111 case MVT::i64: 6112 if (++NumGPRsUsed <= NumGPRs) 6113 continue; 6114 break; 6115 case MVT::v4i32: 6116 case MVT::v8i16: 6117 case MVT::v16i8: 6118 case MVT::v2f64: 6119 case MVT::v2i64: 6120 case MVT::v1i128: 6121 case MVT::f128: 6122 if (++NumVRsUsed <= NumVRs) 6123 continue; 6124 break; 6125 case MVT::v4f32: 6126 // When using QPX, this is handled like a FP register, otherwise, it 6127 // is an Altivec register. 6128 if (Subtarget.hasQPX()) { 6129 if (++NumFPRsUsed <= NumFPRs) 6130 continue; 6131 } else { 6132 if (++NumVRsUsed <= NumVRs) 6133 continue; 6134 } 6135 break; 6136 case MVT::f32: 6137 case MVT::f64: 6138 case MVT::v4f64: // QPX 6139 case MVT::v4i1: // QPX 6140 if (++NumFPRsUsed <= NumFPRs) 6141 continue; 6142 break; 6143 } 6144 HasParameterArea = true; 6145 } 6146 } 6147 6148 /* Respect alignment of argument on the stack. */ 6149 auto Alignement = 6150 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6151 NumBytes = alignTo(NumBytes, Alignement); 6152 6153 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6154 if (Flags.isInConsecutiveRegsLast()) 6155 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6156 } 6157 6158 unsigned NumBytesActuallyUsed = NumBytes; 6159 6160 // In the old ELFv1 ABI, 6161 // the prolog code of the callee may store up to 8 GPR argument registers to 6162 // the stack, allowing va_start to index over them in memory if its varargs. 6163 // Because we cannot tell if this is needed on the caller side, we have to 6164 // conservatively assume that it is needed. As such, make sure we have at 6165 // least enough stack space for the caller to store the 8 GPRs. 6166 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6167 // really requires memory operands, e.g. a vararg function. 6168 if (HasParameterArea) 6169 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6170 else 6171 NumBytes = LinkageSize; 6172 6173 // Tail call needs the stack to be aligned. 6174 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6175 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6176 6177 int SPDiff = 0; 6178 6179 // Calculate by how many bytes the stack has to be adjusted in case of tail 6180 // call optimization. 6181 if (!IsSibCall) 6182 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6183 6184 // To protect arguments on the stack from being clobbered in a tail call, 6185 // force all the loads to happen before doing any other lowering. 6186 if (CFlags.IsTailCall) 6187 Chain = DAG.getStackArgumentTokenFactor(Chain); 6188 6189 // Adjust the stack pointer for the new arguments... 6190 // These operations are automatically eliminated by the prolog/epilog pass 6191 if (!IsSibCall) 6192 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6193 SDValue CallSeqStart = Chain; 6194 6195 // Load the return address and frame pointer so it can be move somewhere else 6196 // later. 6197 SDValue LROp, FPOp; 6198 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6199 6200 // Set up a copy of the stack pointer for use loading and storing any 6201 // arguments that may not fit in the registers available for argument 6202 // passing. 6203 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6204 6205 // Figure out which arguments are going to go in registers, and which in 6206 // memory. Also, if this is a vararg function, floating point operations 6207 // must be stored to our stack, and loaded into integer regs as well, if 6208 // any integer regs are available for argument passing. 6209 unsigned ArgOffset = LinkageSize; 6210 6211 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6212 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6213 6214 SmallVector<SDValue, 8> MemOpChains; 6215 for (unsigned i = 0; i != NumOps; ++i) { 6216 SDValue Arg = OutVals[i]; 6217 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6218 EVT ArgVT = Outs[i].VT; 6219 EVT OrigVT = Outs[i].ArgVT; 6220 6221 // PtrOff will be used to store the current argument to the stack if a 6222 // register cannot be found for it. 6223 SDValue PtrOff; 6224 6225 // We re-align the argument offset for each argument, except when using the 6226 // fast calling convention, when we need to make sure we do that only when 6227 // we'll actually use a stack slot. 6228 auto ComputePtrOff = [&]() { 6229 /* Respect alignment of argument on the stack. */ 6230 auto Alignment = 6231 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6232 ArgOffset = alignTo(ArgOffset, Alignment); 6233 6234 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6235 6236 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6237 }; 6238 6239 if (!IsFastCall) { 6240 ComputePtrOff(); 6241 6242 /* Compute GPR index associated with argument offset. */ 6243 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6244 GPR_idx = std::min(GPR_idx, NumGPRs); 6245 } 6246 6247 // Promote integers to 64-bit values. 6248 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6249 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6250 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6251 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6252 } 6253 6254 // FIXME memcpy is used way more than necessary. Correctness first. 6255 // Note: "by value" is code for passing a structure by value, not 6256 // basic types. 6257 if (Flags.isByVal()) { 6258 // Note: Size includes alignment padding, so 6259 // struct x { short a; char b; } 6260 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6261 // These are the proper values we need for right-justifying the 6262 // aggregate in a parameter register. 6263 unsigned Size = Flags.getByValSize(); 6264 6265 // An empty aggregate parameter takes up no storage and no 6266 // registers. 6267 if (Size == 0) 6268 continue; 6269 6270 if (IsFastCall) 6271 ComputePtrOff(); 6272 6273 // All aggregates smaller than 8 bytes must be passed right-justified. 6274 if (Size==1 || Size==2 || Size==4) { 6275 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6276 if (GPR_idx != NumGPRs) { 6277 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6278 MachinePointerInfo(), VT); 6279 MemOpChains.push_back(Load.getValue(1)); 6280 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6281 6282 ArgOffset += PtrByteSize; 6283 continue; 6284 } 6285 } 6286 6287 if (GPR_idx == NumGPRs && Size < 8) { 6288 SDValue AddPtr = PtrOff; 6289 if (!isLittleEndian) { 6290 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6291 PtrOff.getValueType()); 6292 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6293 } 6294 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6295 CallSeqStart, 6296 Flags, DAG, dl); 6297 ArgOffset += PtrByteSize; 6298 continue; 6299 } 6300 // Copy entire object into memory. There are cases where gcc-generated 6301 // code assumes it is there, even if it could be put entirely into 6302 // registers. (This is not what the doc says.) 6303 6304 // FIXME: The above statement is likely due to a misunderstanding of the 6305 // documents. All arguments must be copied into the parameter area BY 6306 // THE CALLEE in the event that the callee takes the address of any 6307 // formal argument. That has not yet been implemented. However, it is 6308 // reasonable to use the stack area as a staging area for the register 6309 // load. 6310 6311 // Skip this for small aggregates, as we will use the same slot for a 6312 // right-justified copy, below. 6313 if (Size >= 8) 6314 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6315 CallSeqStart, 6316 Flags, DAG, dl); 6317 6318 // When a register is available, pass a small aggregate right-justified. 6319 if (Size < 8 && GPR_idx != NumGPRs) { 6320 // The easiest way to get this right-justified in a register 6321 // is to copy the structure into the rightmost portion of a 6322 // local variable slot, then load the whole slot into the 6323 // register. 6324 // FIXME: The memcpy seems to produce pretty awful code for 6325 // small aggregates, particularly for packed ones. 6326 // FIXME: It would be preferable to use the slot in the 6327 // parameter save area instead of a new local variable. 6328 SDValue AddPtr = PtrOff; 6329 if (!isLittleEndian) { 6330 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6331 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6332 } 6333 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6334 CallSeqStart, 6335 Flags, DAG, dl); 6336 6337 // Load the slot into the register. 6338 SDValue Load = 6339 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6340 MemOpChains.push_back(Load.getValue(1)); 6341 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6342 6343 // Done with this argument. 6344 ArgOffset += PtrByteSize; 6345 continue; 6346 } 6347 6348 // For aggregates larger than PtrByteSize, copy the pieces of the 6349 // object that fit into registers from the parameter save area. 6350 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6351 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6352 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6353 if (GPR_idx != NumGPRs) { 6354 SDValue Load = 6355 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6356 MemOpChains.push_back(Load.getValue(1)); 6357 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6358 ArgOffset += PtrByteSize; 6359 } else { 6360 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6361 break; 6362 } 6363 } 6364 continue; 6365 } 6366 6367 switch (Arg.getSimpleValueType().SimpleTy) { 6368 default: llvm_unreachable("Unexpected ValueType for argument!"); 6369 case MVT::i1: 6370 case MVT::i32: 6371 case MVT::i64: 6372 if (Flags.isNest()) { 6373 // The 'nest' parameter, if any, is passed in R11. 6374 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6375 break; 6376 } 6377 6378 // These can be scalar arguments or elements of an integer array type 6379 // passed directly. Clang may use those instead of "byval" aggregate 6380 // types to avoid forcing arguments to memory unnecessarily. 6381 if (GPR_idx != NumGPRs) { 6382 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6383 } else { 6384 if (IsFastCall) 6385 ComputePtrOff(); 6386 6387 assert(HasParameterArea && 6388 "Parameter area must exist to pass an argument in memory."); 6389 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6390 true, CFlags.IsTailCall, false, MemOpChains, 6391 TailCallArguments, dl); 6392 if (IsFastCall) 6393 ArgOffset += PtrByteSize; 6394 } 6395 if (!IsFastCall) 6396 ArgOffset += PtrByteSize; 6397 break; 6398 case MVT::f32: 6399 case MVT::f64: { 6400 // These can be scalar arguments or elements of a float array type 6401 // passed directly. The latter are used to implement ELFv2 homogenous 6402 // float aggregates. 6403 6404 // Named arguments go into FPRs first, and once they overflow, the 6405 // remaining arguments go into GPRs and then the parameter save area. 6406 // Unnamed arguments for vararg functions always go to GPRs and 6407 // then the parameter save area. For now, put all arguments to vararg 6408 // routines always in both locations (FPR *and* GPR or stack slot). 6409 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6410 bool NeededLoad = false; 6411 6412 // First load the argument into the next available FPR. 6413 if (FPR_idx != NumFPRs) 6414 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6415 6416 // Next, load the argument into GPR or stack slot if needed. 6417 if (!NeedGPROrStack) 6418 ; 6419 else if (GPR_idx != NumGPRs && !IsFastCall) { 6420 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6421 // once we support fp <-> gpr moves. 6422 6423 // In the non-vararg case, this can only ever happen in the 6424 // presence of f32 array types, since otherwise we never run 6425 // out of FPRs before running out of GPRs. 6426 SDValue ArgVal; 6427 6428 // Double values are always passed in a single GPR. 6429 if (Arg.getValueType() != MVT::f32) { 6430 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6431 6432 // Non-array float values are extended and passed in a GPR. 6433 } else if (!Flags.isInConsecutiveRegs()) { 6434 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6435 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6436 6437 // If we have an array of floats, we collect every odd element 6438 // together with its predecessor into one GPR. 6439 } else if (ArgOffset % PtrByteSize != 0) { 6440 SDValue Lo, Hi; 6441 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6442 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6443 if (!isLittleEndian) 6444 std::swap(Lo, Hi); 6445 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6446 6447 // The final element, if even, goes into the first half of a GPR. 6448 } else if (Flags.isInConsecutiveRegsLast()) { 6449 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6450 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6451 if (!isLittleEndian) 6452 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6453 DAG.getConstant(32, dl, MVT::i32)); 6454 6455 // Non-final even elements are skipped; they will be handled 6456 // together the with subsequent argument on the next go-around. 6457 } else 6458 ArgVal = SDValue(); 6459 6460 if (ArgVal.getNode()) 6461 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6462 } else { 6463 if (IsFastCall) 6464 ComputePtrOff(); 6465 6466 // Single-precision floating-point values are mapped to the 6467 // second (rightmost) word of the stack doubleword. 6468 if (Arg.getValueType() == MVT::f32 && 6469 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6470 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6471 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6472 } 6473 6474 assert(HasParameterArea && 6475 "Parameter area must exist to pass an argument in memory."); 6476 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6477 true, CFlags.IsTailCall, false, MemOpChains, 6478 TailCallArguments, dl); 6479 6480 NeededLoad = true; 6481 } 6482 // When passing an array of floats, the array occupies consecutive 6483 // space in the argument area; only round up to the next doubleword 6484 // at the end of the array. Otherwise, each float takes 8 bytes. 6485 if (!IsFastCall || NeededLoad) { 6486 ArgOffset += (Arg.getValueType() == MVT::f32 && 6487 Flags.isInConsecutiveRegs()) ? 4 : 8; 6488 if (Flags.isInConsecutiveRegsLast()) 6489 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6490 } 6491 break; 6492 } 6493 case MVT::v4f32: 6494 case MVT::v4i32: 6495 case MVT::v8i16: 6496 case MVT::v16i8: 6497 case MVT::v2f64: 6498 case MVT::v2i64: 6499 case MVT::v1i128: 6500 case MVT::f128: 6501 if (!Subtarget.hasQPX()) { 6502 // These can be scalar arguments or elements of a vector array type 6503 // passed directly. The latter are used to implement ELFv2 homogenous 6504 // vector aggregates. 6505 6506 // For a varargs call, named arguments go into VRs or on the stack as 6507 // usual; unnamed arguments always go to the stack or the corresponding 6508 // GPRs when within range. For now, we always put the value in both 6509 // locations (or even all three). 6510 if (CFlags.IsVarArg) { 6511 assert(HasParameterArea && 6512 "Parameter area must exist if we have a varargs call."); 6513 // We could elide this store in the case where the object fits 6514 // entirely in R registers. Maybe later. 6515 SDValue Store = 6516 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6517 MemOpChains.push_back(Store); 6518 if (VR_idx != NumVRs) { 6519 SDValue Load = 6520 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6521 MemOpChains.push_back(Load.getValue(1)); 6522 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6523 } 6524 ArgOffset += 16; 6525 for (unsigned i=0; i<16; i+=PtrByteSize) { 6526 if (GPR_idx == NumGPRs) 6527 break; 6528 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6529 DAG.getConstant(i, dl, PtrVT)); 6530 SDValue Load = 6531 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6532 MemOpChains.push_back(Load.getValue(1)); 6533 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6534 } 6535 break; 6536 } 6537 6538 // Non-varargs Altivec params go into VRs or on the stack. 6539 if (VR_idx != NumVRs) { 6540 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6541 } else { 6542 if (IsFastCall) 6543 ComputePtrOff(); 6544 6545 assert(HasParameterArea && 6546 "Parameter area must exist to pass an argument in memory."); 6547 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6548 true, CFlags.IsTailCall, true, MemOpChains, 6549 TailCallArguments, dl); 6550 if (IsFastCall) 6551 ArgOffset += 16; 6552 } 6553 6554 if (!IsFastCall) 6555 ArgOffset += 16; 6556 break; 6557 } // not QPX 6558 6559 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6560 "Invalid QPX parameter type"); 6561 6562 LLVM_FALLTHROUGH; 6563 case MVT::v4f64: 6564 case MVT::v4i1: { 6565 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6566 if (CFlags.IsVarArg) { 6567 assert(HasParameterArea && 6568 "Parameter area must exist if we have a varargs call."); 6569 // We could elide this store in the case where the object fits 6570 // entirely in R registers. Maybe later. 6571 SDValue Store = 6572 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6573 MemOpChains.push_back(Store); 6574 if (QFPR_idx != NumQFPRs) { 6575 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6576 PtrOff, MachinePointerInfo()); 6577 MemOpChains.push_back(Load.getValue(1)); 6578 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6579 } 6580 ArgOffset += (IsF32 ? 16 : 32); 6581 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6582 if (GPR_idx == NumGPRs) 6583 break; 6584 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6585 DAG.getConstant(i, dl, PtrVT)); 6586 SDValue Load = 6587 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6588 MemOpChains.push_back(Load.getValue(1)); 6589 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6590 } 6591 break; 6592 } 6593 6594 // Non-varargs QPX params go into registers or on the stack. 6595 if (QFPR_idx != NumQFPRs) { 6596 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6597 } else { 6598 if (IsFastCall) 6599 ComputePtrOff(); 6600 6601 assert(HasParameterArea && 6602 "Parameter area must exist to pass an argument in memory."); 6603 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6604 true, CFlags.IsTailCall, true, MemOpChains, 6605 TailCallArguments, dl); 6606 if (IsFastCall) 6607 ArgOffset += (IsF32 ? 16 : 32); 6608 } 6609 6610 if (!IsFastCall) 6611 ArgOffset += (IsF32 ? 16 : 32); 6612 break; 6613 } 6614 } 6615 } 6616 6617 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6618 "mismatch in size of parameter area"); 6619 (void)NumBytesActuallyUsed; 6620 6621 if (!MemOpChains.empty()) 6622 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6623 6624 // Check if this is an indirect call (MTCTR/BCTRL). 6625 // See prepareDescriptorIndirectCall and buildCallOperands for more 6626 // information about calls through function pointers in the 64-bit SVR4 ABI. 6627 if (CFlags.IsIndirect) { 6628 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6629 // caller in the TOC save area. 6630 if (isTOCSaveRestoreRequired(Subtarget)) { 6631 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6632 // Load r2 into a virtual register and store it to the TOC save area. 6633 setUsesTOCBasePtr(DAG); 6634 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6635 // TOC save area offset. 6636 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6637 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6638 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6639 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6640 MachinePointerInfo::getStack( 6641 DAG.getMachineFunction(), TOCSaveOffset)); 6642 } 6643 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6644 // This does not mean the MTCTR instruction must use R12; it's easier 6645 // to model this as an extra parameter, so do that. 6646 if (isELFv2ABI && !CFlags.IsPatchPoint) 6647 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6648 } 6649 6650 // Build a sequence of copy-to-reg nodes chained together with token chain 6651 // and flag operands which copy the outgoing args into the appropriate regs. 6652 SDValue InFlag; 6653 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6654 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6655 RegsToPass[i].second, InFlag); 6656 InFlag = Chain.getValue(1); 6657 } 6658 6659 if (CFlags.IsTailCall && !IsSibCall) 6660 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6661 TailCallArguments); 6662 6663 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6664 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6665 } 6666 6667 SDValue PPCTargetLowering::LowerCall_Darwin( 6668 SDValue Chain, SDValue Callee, CallFlags CFlags, 6669 const SmallVectorImpl<ISD::OutputArg> &Outs, 6670 const SmallVectorImpl<SDValue> &OutVals, 6671 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6672 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6673 const CallBase *CB) const { 6674 unsigned NumOps = Outs.size(); 6675 6676 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6677 bool isPPC64 = PtrVT == MVT::i64; 6678 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6679 6680 MachineFunction &MF = DAG.getMachineFunction(); 6681 6682 // Mark this function as potentially containing a function that contains a 6683 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6684 // and restoring the callers stack pointer in this functions epilog. This is 6685 // done because by tail calling the called function might overwrite the value 6686 // in this function's (MF) stack pointer stack slot 0(SP). 6687 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6688 CFlags.CallConv == CallingConv::Fast) 6689 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6690 6691 // Count how many bytes are to be pushed on the stack, including the linkage 6692 // area, and parameter passing area. We start with 24/48 bytes, which is 6693 // prereserved space for [SP][CR][LR][3 x unused]. 6694 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6695 unsigned NumBytes = LinkageSize; 6696 6697 // Add up all the space actually used. 6698 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6699 // they all go in registers, but we must reserve stack space for them for 6700 // possible use by the caller. In varargs or 64-bit calls, parameters are 6701 // assigned stack space in order, with padding so Altivec parameters are 6702 // 16-byte aligned. 6703 unsigned nAltivecParamsAtEnd = 0; 6704 for (unsigned i = 0; i != NumOps; ++i) { 6705 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6706 EVT ArgVT = Outs[i].VT; 6707 // Varargs Altivec parameters are padded to a 16 byte boundary. 6708 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6709 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6710 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6711 if (!CFlags.IsVarArg && !isPPC64) { 6712 // Non-varargs Altivec parameters go after all the non-Altivec 6713 // parameters; handle those later so we know how much padding we need. 6714 nAltivecParamsAtEnd++; 6715 continue; 6716 } 6717 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6718 NumBytes = ((NumBytes+15)/16)*16; 6719 } 6720 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6721 } 6722 6723 // Allow for Altivec parameters at the end, if needed. 6724 if (nAltivecParamsAtEnd) { 6725 NumBytes = ((NumBytes+15)/16)*16; 6726 NumBytes += 16*nAltivecParamsAtEnd; 6727 } 6728 6729 // The prolog code of the callee may store up to 8 GPR argument registers to 6730 // the stack, allowing va_start to index over them in memory if its varargs. 6731 // Because we cannot tell if this is needed on the caller side, we have to 6732 // conservatively assume that it is needed. As such, make sure we have at 6733 // least enough stack space for the caller to store the 8 GPRs. 6734 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6735 6736 // Tail call needs the stack to be aligned. 6737 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6738 CFlags.CallConv == CallingConv::Fast) 6739 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6740 6741 // Calculate by how many bytes the stack has to be adjusted in case of tail 6742 // call optimization. 6743 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6744 6745 // To protect arguments on the stack from being clobbered in a tail call, 6746 // force all the loads to happen before doing any other lowering. 6747 if (CFlags.IsTailCall) 6748 Chain = DAG.getStackArgumentTokenFactor(Chain); 6749 6750 // Adjust the stack pointer for the new arguments... 6751 // These operations are automatically eliminated by the prolog/epilog pass 6752 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6753 SDValue CallSeqStart = Chain; 6754 6755 // Load the return address and frame pointer so it can be move somewhere else 6756 // later. 6757 SDValue LROp, FPOp; 6758 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6759 6760 // Set up a copy of the stack pointer for use loading and storing any 6761 // arguments that may not fit in the registers available for argument 6762 // passing. 6763 SDValue StackPtr; 6764 if (isPPC64) 6765 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6766 else 6767 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6768 6769 // Figure out which arguments are going to go in registers, and which in 6770 // memory. Also, if this is a vararg function, floating point operations 6771 // must be stored to our stack, and loaded into integer regs as well, if 6772 // any integer regs are available for argument passing. 6773 unsigned ArgOffset = LinkageSize; 6774 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6775 6776 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6777 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6778 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6779 }; 6780 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6781 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6782 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6783 }; 6784 static const MCPhysReg VR[] = { 6785 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6786 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6787 }; 6788 const unsigned NumGPRs = array_lengthof(GPR_32); 6789 const unsigned NumFPRs = 13; 6790 const unsigned NumVRs = array_lengthof(VR); 6791 6792 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6793 6794 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6795 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6796 6797 SmallVector<SDValue, 8> MemOpChains; 6798 for (unsigned i = 0; i != NumOps; ++i) { 6799 SDValue Arg = OutVals[i]; 6800 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6801 6802 // PtrOff will be used to store the current argument to the stack if a 6803 // register cannot be found for it. 6804 SDValue PtrOff; 6805 6806 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6807 6808 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6809 6810 // On PPC64, promote integers to 64-bit values. 6811 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6812 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6813 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6814 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6815 } 6816 6817 // FIXME memcpy is used way more than necessary. Correctness first. 6818 // Note: "by value" is code for passing a structure by value, not 6819 // basic types. 6820 if (Flags.isByVal()) { 6821 unsigned Size = Flags.getByValSize(); 6822 // Very small objects are passed right-justified. Everything else is 6823 // passed left-justified. 6824 if (Size==1 || Size==2) { 6825 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6826 if (GPR_idx != NumGPRs) { 6827 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6828 MachinePointerInfo(), VT); 6829 MemOpChains.push_back(Load.getValue(1)); 6830 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6831 6832 ArgOffset += PtrByteSize; 6833 } else { 6834 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6835 PtrOff.getValueType()); 6836 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6837 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6838 CallSeqStart, 6839 Flags, DAG, dl); 6840 ArgOffset += PtrByteSize; 6841 } 6842 continue; 6843 } 6844 // Copy entire object into memory. There are cases where gcc-generated 6845 // code assumes it is there, even if it could be put entirely into 6846 // registers. (This is not what the doc says.) 6847 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6848 CallSeqStart, 6849 Flags, DAG, dl); 6850 6851 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6852 // copy the pieces of the object that fit into registers from the 6853 // parameter save area. 6854 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6855 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6856 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6857 if (GPR_idx != NumGPRs) { 6858 SDValue Load = 6859 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6860 MemOpChains.push_back(Load.getValue(1)); 6861 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6862 ArgOffset += PtrByteSize; 6863 } else { 6864 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6865 break; 6866 } 6867 } 6868 continue; 6869 } 6870 6871 switch (Arg.getSimpleValueType().SimpleTy) { 6872 default: llvm_unreachable("Unexpected ValueType for argument!"); 6873 case MVT::i1: 6874 case MVT::i32: 6875 case MVT::i64: 6876 if (GPR_idx != NumGPRs) { 6877 if (Arg.getValueType() == MVT::i1) 6878 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6879 6880 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6881 } else { 6882 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6883 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6884 TailCallArguments, dl); 6885 } 6886 ArgOffset += PtrByteSize; 6887 break; 6888 case MVT::f32: 6889 case MVT::f64: 6890 if (FPR_idx != NumFPRs) { 6891 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6892 6893 if (CFlags.IsVarArg) { 6894 SDValue Store = 6895 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6896 MemOpChains.push_back(Store); 6897 6898 // Float varargs are always shadowed in available integer registers 6899 if (GPR_idx != NumGPRs) { 6900 SDValue Load = 6901 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6902 MemOpChains.push_back(Load.getValue(1)); 6903 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6904 } 6905 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6906 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6907 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6908 SDValue Load = 6909 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6910 MemOpChains.push_back(Load.getValue(1)); 6911 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6912 } 6913 } else { 6914 // If we have any FPRs remaining, we may also have GPRs remaining. 6915 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6916 // GPRs. 6917 if (GPR_idx != NumGPRs) 6918 ++GPR_idx; 6919 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6920 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6921 ++GPR_idx; 6922 } 6923 } else 6924 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6925 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6926 TailCallArguments, dl); 6927 if (isPPC64) 6928 ArgOffset += 8; 6929 else 6930 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6931 break; 6932 case MVT::v4f32: 6933 case MVT::v4i32: 6934 case MVT::v8i16: 6935 case MVT::v16i8: 6936 if (CFlags.IsVarArg) { 6937 // These go aligned on the stack, or in the corresponding R registers 6938 // when within range. The Darwin PPC ABI doc claims they also go in 6939 // V registers; in fact gcc does this only for arguments that are 6940 // prototyped, not for those that match the ... We do it for all 6941 // arguments, seems to work. 6942 while (ArgOffset % 16 !=0) { 6943 ArgOffset += PtrByteSize; 6944 if (GPR_idx != NumGPRs) 6945 GPR_idx++; 6946 } 6947 // We could elide this store in the case where the object fits 6948 // entirely in R registers. Maybe later. 6949 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6950 DAG.getConstant(ArgOffset, dl, PtrVT)); 6951 SDValue Store = 6952 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6953 MemOpChains.push_back(Store); 6954 if (VR_idx != NumVRs) { 6955 SDValue Load = 6956 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6957 MemOpChains.push_back(Load.getValue(1)); 6958 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6959 } 6960 ArgOffset += 16; 6961 for (unsigned i=0; i<16; i+=PtrByteSize) { 6962 if (GPR_idx == NumGPRs) 6963 break; 6964 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6965 DAG.getConstant(i, dl, PtrVT)); 6966 SDValue Load = 6967 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6968 MemOpChains.push_back(Load.getValue(1)); 6969 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6970 } 6971 break; 6972 } 6973 6974 // Non-varargs Altivec params generally go in registers, but have 6975 // stack space allocated at the end. 6976 if (VR_idx != NumVRs) { 6977 // Doesn't have GPR space allocated. 6978 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6979 } else if (nAltivecParamsAtEnd==0) { 6980 // We are emitting Altivec params in order. 6981 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6982 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6983 TailCallArguments, dl); 6984 ArgOffset += 16; 6985 } 6986 break; 6987 } 6988 } 6989 // If all Altivec parameters fit in registers, as they usually do, 6990 // they get stack space following the non-Altivec parameters. We 6991 // don't track this here because nobody below needs it. 6992 // If there are more Altivec parameters than fit in registers emit 6993 // the stores here. 6994 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6995 unsigned j = 0; 6996 // Offset is aligned; skip 1st 12 params which go in V registers. 6997 ArgOffset = ((ArgOffset+15)/16)*16; 6998 ArgOffset += 12*16; 6999 for (unsigned i = 0; i != NumOps; ++i) { 7000 SDValue Arg = OutVals[i]; 7001 EVT ArgType = Outs[i].VT; 7002 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 7003 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 7004 if (++j > NumVRs) { 7005 SDValue PtrOff; 7006 // We are emitting Altivec params in order. 7007 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 7008 isPPC64, CFlags.IsTailCall, true, MemOpChains, 7009 TailCallArguments, dl); 7010 ArgOffset += 16; 7011 } 7012 } 7013 } 7014 } 7015 7016 if (!MemOpChains.empty()) 7017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7018 7019 // On Darwin, R12 must contain the address of an indirect callee. This does 7020 // not mean the MTCTR instruction must use R12; it's easier to model this as 7021 // an extra parameter, so do that. 7022 if (CFlags.IsIndirect) { 7023 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7024 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 7025 PPC::R12), Callee)); 7026 } 7027 7028 // Build a sequence of copy-to-reg nodes chained together with token chain 7029 // and flag operands which copy the outgoing args into the appropriate regs. 7030 SDValue InFlag; 7031 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 7032 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 7033 RegsToPass[i].second, InFlag); 7034 InFlag = Chain.getValue(1); 7035 } 7036 7037 if (CFlags.IsTailCall) 7038 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 7039 TailCallArguments); 7040 7041 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7042 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7043 } 7044 7045 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 7046 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 7047 CCState &State) { 7048 7049 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 7050 State.getMachineFunction().getSubtarget()); 7051 const bool IsPPC64 = Subtarget.isPPC64(); 7052 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 7053 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 7054 7055 assert((!ValVT.isInteger() || 7056 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 7057 "Integer argument exceeds register size: should have been legalized"); 7058 7059 if (ValVT == MVT::f128) 7060 report_fatal_error("f128 is unimplemented on AIX."); 7061 7062 if (ArgFlags.isNest()) 7063 report_fatal_error("Nest arguments are unimplemented."); 7064 7065 if (ValVT.isVector() || LocVT.isVector()) 7066 report_fatal_error("Vector arguments are unimplemented on AIX."); 7067 7068 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7069 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7070 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7071 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7072 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7073 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7074 7075 if (ArgFlags.isByVal()) { 7076 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7077 report_fatal_error("Pass-by-value arguments with alignment greater than " 7078 "register width are not supported."); 7079 7080 const unsigned ByValSize = ArgFlags.getByValSize(); 7081 7082 // An empty aggregate parameter takes up no storage and no registers, 7083 // but needs a MemLoc for a stack slot for the formal arguments side. 7084 if (ByValSize == 0) { 7085 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7086 State.getNextStackOffset(), RegVT, 7087 LocInfo)); 7088 return false; 7089 } 7090 7091 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7092 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7093 for (const unsigned E = Offset + StackSize; Offset < E; 7094 Offset += PtrAlign.value()) { 7095 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7096 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7097 else { 7098 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7099 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7100 LocInfo)); 7101 break; 7102 } 7103 } 7104 return false; 7105 } 7106 7107 // Arguments always reserve parameter save area. 7108 switch (ValVT.SimpleTy) { 7109 default: 7110 report_fatal_error("Unhandled value type for argument."); 7111 case MVT::i64: 7112 // i64 arguments should have been split to i32 for PPC32. 7113 assert(IsPPC64 && "PPC32 should have split i64 values."); 7114 LLVM_FALLTHROUGH; 7115 case MVT::i1: 7116 case MVT::i32: { 7117 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7118 // AIX integer arguments are always passed in register width. 7119 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 7120 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7121 : CCValAssign::LocInfo::ZExt; 7122 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7123 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7124 else 7125 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7126 7127 return false; 7128 } 7129 case MVT::f32: 7130 case MVT::f64: { 7131 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7132 const unsigned StoreSize = LocVT.getStoreSize(); 7133 // Floats are always 4-byte aligned in the PSA on AIX. 7134 // This includes f64 in 64-bit mode for ABI compatibility. 7135 const unsigned Offset = 7136 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7137 unsigned FReg = State.AllocateReg(FPR); 7138 if (FReg) 7139 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7140 7141 // Reserve and initialize GPRs or initialize the PSA as required. 7142 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7143 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7144 assert(FReg && "An FPR should be available when a GPR is reserved."); 7145 if (State.isVarArg()) { 7146 // Successfully reserved GPRs are only initialized for vararg calls. 7147 // Custom handling is required for: 7148 // f64 in PPC32 needs to be split into 2 GPRs. 7149 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7150 State.addLoc( 7151 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7152 } 7153 } else { 7154 // If there are insufficient GPRs, the PSA needs to be initialized. 7155 // Initialization occurs even if an FPR was initialized for 7156 // compatibility with the AIX XL compiler. The full memory for the 7157 // argument will be initialized even if a prior word is saved in GPR. 7158 // A custom memLoc is used when the argument also passes in FPR so 7159 // that the callee handling can skip over it easily. 7160 State.addLoc( 7161 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7162 LocInfo) 7163 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7164 break; 7165 } 7166 } 7167 7168 return false; 7169 } 7170 } 7171 return true; 7172 } 7173 7174 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7175 bool IsPPC64) { 7176 assert((IsPPC64 || SVT != MVT::i64) && 7177 "i64 should have been split for 32-bit codegen."); 7178 7179 switch (SVT) { 7180 default: 7181 report_fatal_error("Unexpected value type for formal argument"); 7182 case MVT::i1: 7183 case MVT::i32: 7184 case MVT::i64: 7185 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7186 case MVT::f32: 7187 return &PPC::F4RCRegClass; 7188 case MVT::f64: 7189 return &PPC::F8RCRegClass; 7190 } 7191 } 7192 7193 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7194 SelectionDAG &DAG, SDValue ArgValue, 7195 MVT LocVT, const SDLoc &dl) { 7196 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7197 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7198 7199 if (Flags.isSExt()) 7200 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7201 DAG.getValueType(ValVT)); 7202 else if (Flags.isZExt()) 7203 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7204 DAG.getValueType(ValVT)); 7205 7206 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7207 } 7208 7209 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7210 const unsigned LASize = FL->getLinkageSize(); 7211 7212 if (PPC::GPRCRegClass.contains(Reg)) { 7213 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7214 "Reg must be a valid argument register!"); 7215 return LASize + 4 * (Reg - PPC::R3); 7216 } 7217 7218 if (PPC::G8RCRegClass.contains(Reg)) { 7219 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7220 "Reg must be a valid argument register!"); 7221 return LASize + 8 * (Reg - PPC::X3); 7222 } 7223 7224 llvm_unreachable("Only general purpose registers expected."); 7225 } 7226 7227 // AIX ABI Stack Frame Layout: 7228 // 7229 // Low Memory +--------------------------------------------+ 7230 // SP +---> | Back chain | ---+ 7231 // | +--------------------------------------------+ | 7232 // | | Saved Condition Register | | 7233 // | +--------------------------------------------+ | 7234 // | | Saved Linkage Register | | 7235 // | +--------------------------------------------+ | Linkage Area 7236 // | | Reserved for compilers | | 7237 // | +--------------------------------------------+ | 7238 // | | Reserved for binders | | 7239 // | +--------------------------------------------+ | 7240 // | | Saved TOC pointer | ---+ 7241 // | +--------------------------------------------+ 7242 // | | Parameter save area | 7243 // | +--------------------------------------------+ 7244 // | | Alloca space | 7245 // | +--------------------------------------------+ 7246 // | | Local variable space | 7247 // | +--------------------------------------------+ 7248 // | | Float/int conversion temporary | 7249 // | +--------------------------------------------+ 7250 // | | Save area for AltiVec registers | 7251 // | +--------------------------------------------+ 7252 // | | AltiVec alignment padding | 7253 // | +--------------------------------------------+ 7254 // | | Save area for VRSAVE register | 7255 // | +--------------------------------------------+ 7256 // | | Save area for General Purpose registers | 7257 // | +--------------------------------------------+ 7258 // | | Save area for Floating Point registers | 7259 // | +--------------------------------------------+ 7260 // +---- | Back chain | 7261 // High Memory +--------------------------------------------+ 7262 // 7263 // Specifications: 7264 // AIX 7.2 Assembler Language Reference 7265 // Subroutine linkage convention 7266 7267 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7268 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7269 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7270 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7271 7272 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7273 CallConv == CallingConv::Fast) && 7274 "Unexpected calling convention!"); 7275 7276 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7277 report_fatal_error("Tail call support is unimplemented on AIX."); 7278 7279 if (useSoftFloat()) 7280 report_fatal_error("Soft float support is unimplemented on AIX."); 7281 7282 const PPCSubtarget &Subtarget = 7283 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7284 if (Subtarget.hasQPX()) 7285 report_fatal_error("QPX support is not supported on AIX."); 7286 7287 const bool IsPPC64 = Subtarget.isPPC64(); 7288 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7289 7290 // Assign locations to all of the incoming arguments. 7291 SmallVector<CCValAssign, 16> ArgLocs; 7292 MachineFunction &MF = DAG.getMachineFunction(); 7293 MachineFrameInfo &MFI = MF.getFrameInfo(); 7294 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7295 7296 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7297 // Reserve space for the linkage area on the stack. 7298 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7299 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7300 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7301 7302 SmallVector<SDValue, 8> MemOps; 7303 7304 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7305 CCValAssign &VA = ArgLocs[I++]; 7306 MVT LocVT = VA.getLocVT(); 7307 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7308 7309 // For compatibility with the AIX XL compiler, the float args in the 7310 // parameter save area are initialized even if the argument is available 7311 // in register. The caller is required to initialize both the register 7312 // and memory, however, the callee can choose to expect it in either. 7313 // The memloc is dismissed here because the argument is retrieved from 7314 // the register. 7315 if (VA.isMemLoc() && VA.needsCustom()) 7316 continue; 7317 7318 if (Flags.isByVal() && VA.isMemLoc()) { 7319 const unsigned Size = 7320 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7321 PtrByteSize); 7322 const int FI = MF.getFrameInfo().CreateFixedObject( 7323 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7324 /* IsAliased */ true); 7325 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7326 InVals.push_back(FIN); 7327 7328 continue; 7329 } 7330 7331 if (Flags.isByVal()) { 7332 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7333 7334 const MCPhysReg ArgReg = VA.getLocReg(); 7335 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7336 7337 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7338 report_fatal_error("Over aligned byvals not supported yet."); 7339 7340 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7341 const int FI = MF.getFrameInfo().CreateFixedObject( 7342 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7343 /* IsAliased */ true); 7344 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7345 InVals.push_back(FIN); 7346 7347 // Add live ins for all the RegLocs for the same ByVal. 7348 const TargetRegisterClass *RegClass = 7349 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7350 7351 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7352 unsigned Offset) { 7353 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7354 // Since the callers side has left justified the aggregate in the 7355 // register, we can simply store the entire register into the stack 7356 // slot. 7357 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7358 // The store to the fixedstack object is needed becuase accessing a 7359 // field of the ByVal will use a gep and load. Ideally we will optimize 7360 // to extracting the value from the register directly, and elide the 7361 // stores when the arguments address is not taken, but that will need to 7362 // be future work. 7363 SDValue Store = 7364 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7365 DAG.getObjectPtrOffset(dl, FIN, Offset), 7366 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7367 7368 MemOps.push_back(Store); 7369 }; 7370 7371 unsigned Offset = 0; 7372 HandleRegLoc(VA.getLocReg(), Offset); 7373 Offset += PtrByteSize; 7374 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7375 Offset += PtrByteSize) { 7376 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7377 "RegLocs should be for ByVal argument."); 7378 7379 const CCValAssign RL = ArgLocs[I++]; 7380 HandleRegLoc(RL.getLocReg(), Offset); 7381 } 7382 7383 if (Offset != StackSize) { 7384 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7385 "Expected MemLoc for remaining bytes."); 7386 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7387 // Consume the MemLoc.The InVal has already been emitted, so nothing 7388 // more needs to be done. 7389 ++I; 7390 } 7391 7392 continue; 7393 } 7394 7395 EVT ValVT = VA.getValVT(); 7396 if (VA.isRegLoc() && !VA.needsCustom()) { 7397 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7398 unsigned VReg = 7399 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7400 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7401 if (ValVT.isScalarInteger() && 7402 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7403 ArgValue = 7404 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7405 } 7406 InVals.push_back(ArgValue); 7407 continue; 7408 } 7409 if (VA.isMemLoc()) { 7410 const unsigned LocSize = LocVT.getStoreSize(); 7411 const unsigned ValSize = ValVT.getStoreSize(); 7412 assert((ValSize <= LocSize) && 7413 "Object size is larger than size of MemLoc"); 7414 int CurArgOffset = VA.getLocMemOffset(); 7415 // Objects are right-justified because AIX is big-endian. 7416 if (LocSize > ValSize) 7417 CurArgOffset += LocSize - ValSize; 7418 // Potential tail calls could cause overwriting of argument stack slots. 7419 const bool IsImmutable = 7420 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7421 (CallConv == CallingConv::Fast)); 7422 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7423 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7424 SDValue ArgValue = 7425 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7426 InVals.push_back(ArgValue); 7427 continue; 7428 } 7429 } 7430 7431 // On AIX a minimum of 8 words is saved to the parameter save area. 7432 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7433 // Area that is at least reserved in the caller of this function. 7434 unsigned CallerReservedArea = 7435 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7436 7437 // Set the size that is at least reserved in caller of this function. Tail 7438 // call optimized function's reserved stack space needs to be aligned so 7439 // that taking the difference between two stack areas will result in an 7440 // aligned stack. 7441 CallerReservedArea = 7442 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7443 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7444 FuncInfo->setMinReservedArea(CallerReservedArea); 7445 7446 if (isVarArg) { 7447 FuncInfo->setVarArgsFrameIndex( 7448 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7449 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7450 7451 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7452 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7453 7454 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7455 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7456 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7457 7458 // The fixed integer arguments of a variadic function are stored to the 7459 // VarArgsFrameIndex on the stack so that they may be loaded by 7460 // dereferencing the result of va_next. 7461 for (unsigned GPRIndex = 7462 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7463 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7464 7465 const unsigned VReg = 7466 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7467 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7468 7469 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7470 SDValue Store = 7471 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7472 MemOps.push_back(Store); 7473 // Increment the address for the next argument to store. 7474 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7475 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7476 } 7477 } 7478 7479 if (!MemOps.empty()) 7480 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7481 7482 return Chain; 7483 } 7484 7485 SDValue PPCTargetLowering::LowerCall_AIX( 7486 SDValue Chain, SDValue Callee, CallFlags CFlags, 7487 const SmallVectorImpl<ISD::OutputArg> &Outs, 7488 const SmallVectorImpl<SDValue> &OutVals, 7489 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7490 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7491 const CallBase *CB) const { 7492 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7493 // AIX ABI stack frame layout. 7494 7495 assert((CFlags.CallConv == CallingConv::C || 7496 CFlags.CallConv == CallingConv::Cold || 7497 CFlags.CallConv == CallingConv::Fast) && 7498 "Unexpected calling convention!"); 7499 7500 if (CFlags.IsPatchPoint) 7501 report_fatal_error("This call type is unimplemented on AIX."); 7502 7503 const PPCSubtarget& Subtarget = 7504 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7505 if (Subtarget.hasQPX()) 7506 report_fatal_error("QPX is not supported on AIX."); 7507 if (Subtarget.hasAltivec()) 7508 report_fatal_error("Altivec support is unimplemented on AIX."); 7509 7510 MachineFunction &MF = DAG.getMachineFunction(); 7511 SmallVector<CCValAssign, 16> ArgLocs; 7512 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7513 *DAG.getContext()); 7514 7515 // Reserve space for the linkage save area (LSA) on the stack. 7516 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7517 // [SP][CR][LR][2 x reserved][TOC]. 7518 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7519 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7520 const bool IsPPC64 = Subtarget.isPPC64(); 7521 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7522 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7523 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7524 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7525 7526 // The prolog code of the callee may store up to 8 GPR argument registers to 7527 // the stack, allowing va_start to index over them in memory if the callee 7528 // is variadic. 7529 // Because we cannot tell if this is needed on the caller side, we have to 7530 // conservatively assume that it is needed. As such, make sure we have at 7531 // least enough stack space for the caller to store the 8 GPRs. 7532 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7533 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7534 CCInfo.getNextStackOffset()); 7535 7536 // Adjust the stack pointer for the new arguments... 7537 // These operations are automatically eliminated by the prolog/epilog pass. 7538 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7539 SDValue CallSeqStart = Chain; 7540 7541 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7542 SmallVector<SDValue, 8> MemOpChains; 7543 7544 // Set up a copy of the stack pointer for loading and storing any 7545 // arguments that may not fit in the registers available for argument 7546 // passing. 7547 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7548 : DAG.getRegister(PPC::R1, MVT::i32); 7549 7550 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7551 const unsigned ValNo = ArgLocs[I].getValNo(); 7552 SDValue Arg = OutVals[ValNo]; 7553 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7554 7555 if (Flags.isByVal()) { 7556 const unsigned ByValSize = Flags.getByValSize(); 7557 7558 // Nothing to do for zero-sized ByVals on the caller side. 7559 if (!ByValSize) { 7560 ++I; 7561 continue; 7562 } 7563 7564 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7565 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7566 (LoadOffset != 0) 7567 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7568 : Arg, 7569 MachinePointerInfo(), VT); 7570 }; 7571 7572 unsigned LoadOffset = 0; 7573 7574 // Initialize registers, which are fully occupied by the by-val argument. 7575 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7576 SDValue Load = GetLoad(PtrVT, LoadOffset); 7577 MemOpChains.push_back(Load.getValue(1)); 7578 LoadOffset += PtrByteSize; 7579 const CCValAssign &ByValVA = ArgLocs[I++]; 7580 assert(ByValVA.getValNo() == ValNo && 7581 "Unexpected location for pass-by-value argument."); 7582 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7583 } 7584 7585 if (LoadOffset == ByValSize) 7586 continue; 7587 7588 // There must be one more loc to handle the remainder. 7589 assert(ArgLocs[I].getValNo() == ValNo && 7590 "Expected additional location for by-value argument."); 7591 7592 if (ArgLocs[I].isMemLoc()) { 7593 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7594 const CCValAssign &ByValVA = ArgLocs[I++]; 7595 ISD::ArgFlagsTy MemcpyFlags = Flags; 7596 // Only memcpy the bytes that don't pass in register. 7597 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7598 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7599 (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7600 : Arg, 7601 DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()), 7602 CallSeqStart, MemcpyFlags, DAG, dl); 7603 continue; 7604 } 7605 7606 // Initialize the final register residue. 7607 // Any residue that occupies the final by-val arg register must be 7608 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7609 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7610 // 2 and 1 byte loads. 7611 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7612 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7613 "Unexpected register residue for by-value argument."); 7614 SDValue ResidueVal; 7615 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7616 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7617 const MVT VT = 7618 N == 1 ? MVT::i8 7619 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7620 SDValue Load = GetLoad(VT, LoadOffset); 7621 MemOpChains.push_back(Load.getValue(1)); 7622 LoadOffset += N; 7623 Bytes += N; 7624 7625 // By-val arguments are passed left-justfied in register. 7626 // Every load here needs to be shifted, otherwise a full register load 7627 // should have been used. 7628 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7629 "Unexpected load emitted during handling of pass-by-value " 7630 "argument."); 7631 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7632 EVT ShiftAmountTy = 7633 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7634 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7635 SDValue ShiftedLoad = 7636 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7637 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7638 ShiftedLoad) 7639 : ShiftedLoad; 7640 } 7641 7642 const CCValAssign &ByValVA = ArgLocs[I++]; 7643 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7644 continue; 7645 } 7646 7647 CCValAssign &VA = ArgLocs[I++]; 7648 const MVT LocVT = VA.getLocVT(); 7649 const MVT ValVT = VA.getValVT(); 7650 7651 switch (VA.getLocInfo()) { 7652 default: 7653 report_fatal_error("Unexpected argument extension type."); 7654 case CCValAssign::Full: 7655 break; 7656 case CCValAssign::ZExt: 7657 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7658 break; 7659 case CCValAssign::SExt: 7660 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7661 break; 7662 } 7663 7664 if (VA.isRegLoc() && !VA.needsCustom()) { 7665 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7666 continue; 7667 } 7668 7669 if (VA.isMemLoc()) { 7670 SDValue PtrOff = 7671 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7672 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7673 MemOpChains.push_back( 7674 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7675 7676 continue; 7677 } 7678 7679 // Custom handling is used for GPR initializations for vararg float 7680 // arguments. 7681 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7682 ValVT.isFloatingPoint() && LocVT.isInteger() && 7683 "Unexpected register handling for calling convention."); 7684 7685 SDValue ArgAsInt = 7686 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7687 7688 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7689 // f32 in 32-bit GPR 7690 // f64 in 64-bit GPR 7691 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7692 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7693 // f32 in 64-bit GPR. 7694 RegsToPass.push_back(std::make_pair( 7695 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7696 else { 7697 // f64 in two 32-bit GPRs 7698 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7699 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7700 "Unexpected custom register for argument!"); 7701 CCValAssign &GPR1 = VA; 7702 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7703 DAG.getConstant(32, dl, MVT::i8)); 7704 RegsToPass.push_back(std::make_pair( 7705 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7706 7707 if (I != E) { 7708 // If only 1 GPR was available, there will only be one custom GPR and 7709 // the argument will also pass in memory. 7710 CCValAssign &PeekArg = ArgLocs[I]; 7711 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7712 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7713 CCValAssign &GPR2 = ArgLocs[I++]; 7714 RegsToPass.push_back(std::make_pair( 7715 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7716 } 7717 } 7718 } 7719 } 7720 7721 if (!MemOpChains.empty()) 7722 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7723 7724 // For indirect calls, we need to save the TOC base to the stack for 7725 // restoration after the call. 7726 if (CFlags.IsIndirect) { 7727 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7728 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7729 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7730 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7731 const unsigned TOCSaveOffset = 7732 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7733 7734 setUsesTOCBasePtr(DAG); 7735 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7736 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7737 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7738 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7739 Chain = DAG.getStore( 7740 Val.getValue(1), dl, Val, AddPtr, 7741 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7742 } 7743 7744 // Build a sequence of copy-to-reg nodes chained together with token chain 7745 // and flag operands which copy the outgoing args into the appropriate regs. 7746 SDValue InFlag; 7747 for (auto Reg : RegsToPass) { 7748 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7749 InFlag = Chain.getValue(1); 7750 } 7751 7752 const int SPDiff = 0; 7753 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7754 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7755 } 7756 7757 bool 7758 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7759 MachineFunction &MF, bool isVarArg, 7760 const SmallVectorImpl<ISD::OutputArg> &Outs, 7761 LLVMContext &Context) const { 7762 SmallVector<CCValAssign, 16> RVLocs; 7763 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7764 return CCInfo.CheckReturn( 7765 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7766 ? RetCC_PPC_Cold 7767 : RetCC_PPC); 7768 } 7769 7770 SDValue 7771 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7772 bool isVarArg, 7773 const SmallVectorImpl<ISD::OutputArg> &Outs, 7774 const SmallVectorImpl<SDValue> &OutVals, 7775 const SDLoc &dl, SelectionDAG &DAG) const { 7776 SmallVector<CCValAssign, 16> RVLocs; 7777 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7778 *DAG.getContext()); 7779 CCInfo.AnalyzeReturn(Outs, 7780 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7781 ? RetCC_PPC_Cold 7782 : RetCC_PPC); 7783 7784 SDValue Flag; 7785 SmallVector<SDValue, 4> RetOps(1, Chain); 7786 7787 // Copy the result values into the output registers. 7788 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7789 CCValAssign &VA = RVLocs[i]; 7790 assert(VA.isRegLoc() && "Can only return in registers!"); 7791 7792 SDValue Arg = OutVals[RealResIdx]; 7793 7794 switch (VA.getLocInfo()) { 7795 default: llvm_unreachable("Unknown loc info!"); 7796 case CCValAssign::Full: break; 7797 case CCValAssign::AExt: 7798 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7799 break; 7800 case CCValAssign::ZExt: 7801 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7802 break; 7803 case CCValAssign::SExt: 7804 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7805 break; 7806 } 7807 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7808 bool isLittleEndian = Subtarget.isLittleEndian(); 7809 // Legalize ret f64 -> ret 2 x i32. 7810 SDValue SVal = 7811 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7812 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7813 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7814 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7815 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7816 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7817 Flag = Chain.getValue(1); 7818 VA = RVLocs[++i]; // skip ahead to next loc 7819 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7820 } else 7821 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7822 Flag = Chain.getValue(1); 7823 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7824 } 7825 7826 RetOps[0] = Chain; // Update chain. 7827 7828 // Add the flag if we have it. 7829 if (Flag.getNode()) 7830 RetOps.push_back(Flag); 7831 7832 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7833 } 7834 7835 SDValue 7836 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7837 SelectionDAG &DAG) const { 7838 SDLoc dl(Op); 7839 7840 // Get the correct type for integers. 7841 EVT IntVT = Op.getValueType(); 7842 7843 // Get the inputs. 7844 SDValue Chain = Op.getOperand(0); 7845 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7846 // Build a DYNAREAOFFSET node. 7847 SDValue Ops[2] = {Chain, FPSIdx}; 7848 SDVTList VTs = DAG.getVTList(IntVT); 7849 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7850 } 7851 7852 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7853 SelectionDAG &DAG) const { 7854 // When we pop the dynamic allocation we need to restore the SP link. 7855 SDLoc dl(Op); 7856 7857 // Get the correct type for pointers. 7858 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7859 7860 // Construct the stack pointer operand. 7861 bool isPPC64 = Subtarget.isPPC64(); 7862 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7863 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7864 7865 // Get the operands for the STACKRESTORE. 7866 SDValue Chain = Op.getOperand(0); 7867 SDValue SaveSP = Op.getOperand(1); 7868 7869 // Load the old link SP. 7870 SDValue LoadLinkSP = 7871 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7872 7873 // Restore the stack pointer. 7874 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7875 7876 // Store the old link SP. 7877 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7878 } 7879 7880 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7881 MachineFunction &MF = DAG.getMachineFunction(); 7882 bool isPPC64 = Subtarget.isPPC64(); 7883 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7884 7885 // Get current frame pointer save index. The users of this index will be 7886 // primarily DYNALLOC instructions. 7887 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7888 int RASI = FI->getReturnAddrSaveIndex(); 7889 7890 // If the frame pointer save index hasn't been defined yet. 7891 if (!RASI) { 7892 // Find out what the fix offset of the frame pointer save area. 7893 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7894 // Allocate the frame index for frame pointer save area. 7895 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7896 // Save the result. 7897 FI->setReturnAddrSaveIndex(RASI); 7898 } 7899 return DAG.getFrameIndex(RASI, PtrVT); 7900 } 7901 7902 SDValue 7903 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7904 MachineFunction &MF = DAG.getMachineFunction(); 7905 bool isPPC64 = Subtarget.isPPC64(); 7906 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7907 7908 // Get current frame pointer save index. The users of this index will be 7909 // primarily DYNALLOC instructions. 7910 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7911 int FPSI = FI->getFramePointerSaveIndex(); 7912 7913 // If the frame pointer save index hasn't been defined yet. 7914 if (!FPSI) { 7915 // Find out what the fix offset of the frame pointer save area. 7916 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7917 // Allocate the frame index for frame pointer save area. 7918 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7919 // Save the result. 7920 FI->setFramePointerSaveIndex(FPSI); 7921 } 7922 return DAG.getFrameIndex(FPSI, PtrVT); 7923 } 7924 7925 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7926 SelectionDAG &DAG) const { 7927 MachineFunction &MF = DAG.getMachineFunction(); 7928 // Get the inputs. 7929 SDValue Chain = Op.getOperand(0); 7930 SDValue Size = Op.getOperand(1); 7931 SDLoc dl(Op); 7932 7933 // Get the correct type for pointers. 7934 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7935 // Negate the size. 7936 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7937 DAG.getConstant(0, dl, PtrVT), Size); 7938 // Construct a node for the frame pointer save index. 7939 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7940 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7941 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7942 if (hasInlineStackProbe(MF)) 7943 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7944 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7945 } 7946 7947 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7948 SelectionDAG &DAG) const { 7949 MachineFunction &MF = DAG.getMachineFunction(); 7950 7951 bool isPPC64 = Subtarget.isPPC64(); 7952 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7953 7954 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7955 return DAG.getFrameIndex(FI, PtrVT); 7956 } 7957 7958 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7959 SelectionDAG &DAG) const { 7960 SDLoc DL(Op); 7961 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7962 DAG.getVTList(MVT::i32, MVT::Other), 7963 Op.getOperand(0), Op.getOperand(1)); 7964 } 7965 7966 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7967 SelectionDAG &DAG) const { 7968 SDLoc DL(Op); 7969 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7970 Op.getOperand(0), Op.getOperand(1)); 7971 } 7972 7973 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7974 if (Op.getValueType().isVector()) 7975 return LowerVectorLoad(Op, DAG); 7976 7977 assert(Op.getValueType() == MVT::i1 && 7978 "Custom lowering only for i1 loads"); 7979 7980 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7981 7982 SDLoc dl(Op); 7983 LoadSDNode *LD = cast<LoadSDNode>(Op); 7984 7985 SDValue Chain = LD->getChain(); 7986 SDValue BasePtr = LD->getBasePtr(); 7987 MachineMemOperand *MMO = LD->getMemOperand(); 7988 7989 SDValue NewLD = 7990 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7991 BasePtr, MVT::i8, MMO); 7992 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7993 7994 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7995 return DAG.getMergeValues(Ops, dl); 7996 } 7997 7998 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7999 if (Op.getOperand(1).getValueType().isVector()) 8000 return LowerVectorStore(Op, DAG); 8001 8002 assert(Op.getOperand(1).getValueType() == MVT::i1 && 8003 "Custom lowering only for i1 stores"); 8004 8005 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 8006 8007 SDLoc dl(Op); 8008 StoreSDNode *ST = cast<StoreSDNode>(Op); 8009 8010 SDValue Chain = ST->getChain(); 8011 SDValue BasePtr = ST->getBasePtr(); 8012 SDValue Value = ST->getValue(); 8013 MachineMemOperand *MMO = ST->getMemOperand(); 8014 8015 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 8016 Value); 8017 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 8018 } 8019 8020 // FIXME: Remove this once the ANDI glue bug is fixed: 8021 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 8022 assert(Op.getValueType() == MVT::i1 && 8023 "Custom lowering only for i1 results"); 8024 8025 SDLoc DL(Op); 8026 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 8027 } 8028 8029 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 8030 SelectionDAG &DAG) const { 8031 8032 // Implements a vector truncate that fits in a vector register as a shuffle. 8033 // We want to legalize vector truncates down to where the source fits in 8034 // a vector register (and target is therefore smaller than vector register 8035 // size). At that point legalization will try to custom lower the sub-legal 8036 // result and get here - where we can contain the truncate as a single target 8037 // operation. 8038 8039 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 8040 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 8041 // 8042 // We will implement it for big-endian ordering as this (where x denotes 8043 // undefined): 8044 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 8045 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 8046 // 8047 // The same operation in little-endian ordering will be: 8048 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 8049 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 8050 8051 assert(Op.getValueType().isVector() && "Vector type expected."); 8052 8053 SDLoc DL(Op); 8054 SDValue N1 = Op.getOperand(0); 8055 unsigned SrcSize = N1.getValueType().getSizeInBits(); 8056 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 8057 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 8058 8059 EVT TrgVT = Op.getValueType(); 8060 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 8061 EVT EltVT = TrgVT.getVectorElementType(); 8062 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8063 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8064 8065 // First list the elements we want to keep. 8066 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 8067 SmallVector<int, 16> ShuffV; 8068 if (Subtarget.isLittleEndian()) 8069 for (unsigned i = 0; i < TrgNumElts; ++i) 8070 ShuffV.push_back(i * SizeMult); 8071 else 8072 for (unsigned i = 1; i <= TrgNumElts; ++i) 8073 ShuffV.push_back(i * SizeMult - 1); 8074 8075 // Populate the remaining elements with undefs. 8076 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8077 // ShuffV.push_back(i + WideNumElts); 8078 ShuffV.push_back(WideNumElts + 1); 8079 8080 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 8081 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 8082 } 8083 8084 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8085 /// possible. 8086 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8087 // Not FP? Not a fsel. 8088 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 8089 !Op.getOperand(2).getValueType().isFloatingPoint()) 8090 return Op; 8091 8092 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8093 8094 EVT ResVT = Op.getValueType(); 8095 EVT CmpVT = Op.getOperand(0).getValueType(); 8096 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8097 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8098 SDLoc dl(Op); 8099 SDNodeFlags Flags = Op.getNode()->getFlags(); 8100 8101 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8102 // presence of infinities. 8103 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8104 switch (CC) { 8105 default: 8106 break; 8107 case ISD::SETOGT: 8108 case ISD::SETGT: 8109 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8110 case ISD::SETOLT: 8111 case ISD::SETLT: 8112 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8113 } 8114 } 8115 8116 // We might be able to do better than this under some circumstances, but in 8117 // general, fsel-based lowering of select is a finite-math-only optimization. 8118 // For more information, see section F.3 of the 2.06 ISA specification. 8119 // With ISA 3.0 8120 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8121 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8122 return Op; 8123 8124 // If the RHS of the comparison is a 0.0, we don't need to do the 8125 // subtraction at all. 8126 SDValue Sel1; 8127 if (isFloatingPointZero(RHS)) 8128 switch (CC) { 8129 default: break; // SETUO etc aren't handled by fsel. 8130 case ISD::SETNE: 8131 std::swap(TV, FV); 8132 LLVM_FALLTHROUGH; 8133 case ISD::SETEQ: 8134 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8135 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8136 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8137 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8138 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8139 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8140 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8141 case ISD::SETULT: 8142 case ISD::SETLT: 8143 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8144 LLVM_FALLTHROUGH; 8145 case ISD::SETOGE: 8146 case ISD::SETGE: 8147 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8148 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8149 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8150 case ISD::SETUGT: 8151 case ISD::SETGT: 8152 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8153 LLVM_FALLTHROUGH; 8154 case ISD::SETOLE: 8155 case ISD::SETLE: 8156 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8157 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8158 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8159 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8160 } 8161 8162 SDValue Cmp; 8163 switch (CC) { 8164 default: break; // SETUO etc aren't handled by fsel. 8165 case ISD::SETNE: 8166 std::swap(TV, FV); 8167 LLVM_FALLTHROUGH; 8168 case ISD::SETEQ: 8169 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8170 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8171 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8172 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8173 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8174 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8175 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8176 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8177 case ISD::SETULT: 8178 case ISD::SETLT: 8179 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8180 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8181 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8182 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8183 case ISD::SETOGE: 8184 case ISD::SETGE: 8185 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8186 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8187 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8188 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8189 case ISD::SETUGT: 8190 case ISD::SETGT: 8191 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8192 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8193 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8194 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8195 case ISD::SETOLE: 8196 case ISD::SETLE: 8197 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8198 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8199 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8200 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8201 } 8202 return Op; 8203 } 8204 8205 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8206 SelectionDAG &DAG, 8207 const SDLoc &dl) const { 8208 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8209 SDValue Src = Op.getOperand(0); 8210 if (Src.getValueType() == MVT::f32) 8211 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8212 8213 SDValue Tmp; 8214 switch (Op.getSimpleValueType().SimpleTy) { 8215 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8216 case MVT::i32: 8217 Tmp = DAG.getNode( 8218 Op.getOpcode() == ISD::FP_TO_SINT 8219 ? PPCISD::FCTIWZ 8220 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8221 dl, MVT::f64, Src); 8222 break; 8223 case MVT::i64: 8224 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8225 "i64 FP_TO_UINT is supported only with FPCVT"); 8226 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8227 PPCISD::FCTIDUZ, 8228 dl, MVT::f64, Src); 8229 break; 8230 } 8231 8232 // Convert the FP value to an int value through memory. 8233 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8234 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 8235 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8236 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8237 MachinePointerInfo MPI = 8238 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8239 8240 // Emit a store to the stack slot. 8241 SDValue Chain; 8242 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8243 if (i32Stack) { 8244 MachineFunction &MF = DAG.getMachineFunction(); 8245 Alignment = Align(4); 8246 MachineMemOperand *MMO = 8247 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8248 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 8249 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8250 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8251 } else 8252 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 8253 8254 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8255 // add in a bias on big endian. 8256 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8257 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8258 DAG.getConstant(4, dl, FIPtr.getValueType())); 8259 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8260 } 8261 8262 RLI.Chain = Chain; 8263 RLI.Ptr = FIPtr; 8264 RLI.MPI = MPI; 8265 RLI.Alignment = Alignment; 8266 } 8267 8268 /// Custom lowers floating point to integer conversions to use 8269 /// the direct move instructions available in ISA 2.07 to avoid the 8270 /// need for load/store combinations. 8271 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8272 SelectionDAG &DAG, 8273 const SDLoc &dl) const { 8274 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8275 SDValue Src = Op.getOperand(0); 8276 8277 if (Src.getValueType() == MVT::f32) 8278 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8279 8280 SDValue Tmp; 8281 switch (Op.getSimpleValueType().SimpleTy) { 8282 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8283 case MVT::i32: 8284 Tmp = DAG.getNode( 8285 Op.getOpcode() == ISD::FP_TO_SINT 8286 ? PPCISD::FCTIWZ 8287 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8288 dl, MVT::f64, Src); 8289 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 8290 break; 8291 case MVT::i64: 8292 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8293 "i64 FP_TO_UINT is supported only with FPCVT"); 8294 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8295 PPCISD::FCTIDUZ, 8296 dl, MVT::f64, Src); 8297 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 8298 break; 8299 } 8300 return Tmp; 8301 } 8302 8303 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8304 const SDLoc &dl) const { 8305 8306 // FP to INT conversions are legal for f128. 8307 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 8308 return Op; 8309 8310 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8311 // PPC (the libcall is not available). 8312 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 8313 if (Op.getValueType() == MVT::i32) { 8314 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8315 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8316 MVT::f64, Op.getOperand(0), 8317 DAG.getIntPtrConstant(0, dl)); 8318 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8319 MVT::f64, Op.getOperand(0), 8320 DAG.getIntPtrConstant(1, dl)); 8321 8322 // Add the two halves of the long double in round-to-zero mode. 8323 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8324 8325 // Now use a smaller FP_TO_SINT. 8326 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8327 } 8328 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8329 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8330 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8331 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8332 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8333 // FIXME: generated code sucks. 8334 // TODO: Are there fast-math-flags to propagate to this FSUB? 8335 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 8336 Op.getOperand(0), Tmp); 8337 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8338 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8339 DAG.getConstant(0x80000000, dl, MVT::i32)); 8340 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 8341 Op.getOperand(0)); 8342 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8343 ISD::SETGE); 8344 } 8345 } 8346 8347 return SDValue(); 8348 } 8349 8350 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8351 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8352 8353 ReuseLoadInfo RLI; 8354 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8355 8356 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8357 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8358 } 8359 8360 // We're trying to insert a regular store, S, and then a load, L. If the 8361 // incoming value, O, is a load, we might just be able to have our load use the 8362 // address used by O. However, we don't know if anything else will store to 8363 // that address before we can load from it. To prevent this situation, we need 8364 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8365 // the same chain operand as O, we create a token factor from the chain results 8366 // of O and L, and we replace all uses of O's chain result with that token 8367 // factor (see spliceIntoChain below for this last part). 8368 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8369 ReuseLoadInfo &RLI, 8370 SelectionDAG &DAG, 8371 ISD::LoadExtType ET) const { 8372 SDLoc dl(Op); 8373 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8374 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8375 if (ET == ISD::NON_EXTLOAD && 8376 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8377 isOperationLegalOrCustom(Op.getOpcode(), 8378 Op.getOperand(0).getValueType())) { 8379 8380 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8381 return true; 8382 } 8383 8384 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8385 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8386 LD->isNonTemporal()) 8387 return false; 8388 if (LD->getMemoryVT() != MemVT) 8389 return false; 8390 8391 RLI.Ptr = LD->getBasePtr(); 8392 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8393 assert(LD->getAddressingMode() == ISD::PRE_INC && 8394 "Non-pre-inc AM on PPC?"); 8395 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8396 LD->getOffset()); 8397 } 8398 8399 RLI.Chain = LD->getChain(); 8400 RLI.MPI = LD->getPointerInfo(); 8401 RLI.IsDereferenceable = LD->isDereferenceable(); 8402 RLI.IsInvariant = LD->isInvariant(); 8403 RLI.Alignment = LD->getAlign(); 8404 RLI.AAInfo = LD->getAAInfo(); 8405 RLI.Ranges = LD->getRanges(); 8406 8407 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8408 return true; 8409 } 8410 8411 // Given the head of the old chain, ResChain, insert a token factor containing 8412 // it and NewResChain, and make users of ResChain now be users of that token 8413 // factor. 8414 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8415 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8416 SDValue NewResChain, 8417 SelectionDAG &DAG) const { 8418 if (!ResChain) 8419 return; 8420 8421 SDLoc dl(NewResChain); 8422 8423 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8424 NewResChain, DAG.getUNDEF(MVT::Other)); 8425 assert(TF.getNode() != NewResChain.getNode() && 8426 "A new TF really is required here"); 8427 8428 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8429 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8430 } 8431 8432 /// Analyze profitability of direct move 8433 /// prefer float load to int load plus direct move 8434 /// when there is no integer use of int load 8435 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8436 SDNode *Origin = Op.getOperand(0).getNode(); 8437 if (Origin->getOpcode() != ISD::LOAD) 8438 return true; 8439 8440 // If there is no LXSIBZX/LXSIHZX, like Power8, 8441 // prefer direct move if the memory size is 1 or 2 bytes. 8442 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8443 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8444 return true; 8445 8446 for (SDNode::use_iterator UI = Origin->use_begin(), 8447 UE = Origin->use_end(); 8448 UI != UE; ++UI) { 8449 8450 // Only look at the users of the loaded value. 8451 if (UI.getUse().get().getResNo() != 0) 8452 continue; 8453 8454 if (UI->getOpcode() != ISD::SINT_TO_FP && 8455 UI->getOpcode() != ISD::UINT_TO_FP) 8456 return true; 8457 } 8458 8459 return false; 8460 } 8461 8462 /// Custom lowers integer to floating point conversions to use 8463 /// the direct move instructions available in ISA 2.07 to avoid the 8464 /// need for load/store combinations. 8465 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8466 SelectionDAG &DAG, 8467 const SDLoc &dl) const { 8468 assert((Op.getValueType() == MVT::f32 || 8469 Op.getValueType() == MVT::f64) && 8470 "Invalid floating point type as target of conversion"); 8471 assert(Subtarget.hasFPCVT() && 8472 "Int to FP conversions with direct moves require FPCVT"); 8473 SDValue FP; 8474 SDValue Src = Op.getOperand(0); 8475 bool SinglePrec = Op.getValueType() == MVT::f32; 8476 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8477 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8478 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8479 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8480 8481 if (WordInt) { 8482 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8483 dl, MVT::f64, Src); 8484 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8485 } 8486 else { 8487 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8488 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8489 } 8490 8491 return FP; 8492 } 8493 8494 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8495 8496 EVT VecVT = Vec.getValueType(); 8497 assert(VecVT.isVector() && "Expected a vector type."); 8498 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8499 8500 EVT EltVT = VecVT.getVectorElementType(); 8501 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8502 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8503 8504 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8505 SmallVector<SDValue, 16> Ops(NumConcat); 8506 Ops[0] = Vec; 8507 SDValue UndefVec = DAG.getUNDEF(VecVT); 8508 for (unsigned i = 1; i < NumConcat; ++i) 8509 Ops[i] = UndefVec; 8510 8511 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8512 } 8513 8514 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8515 const SDLoc &dl) const { 8516 8517 unsigned Opc = Op.getOpcode(); 8518 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8519 "Unexpected conversion type"); 8520 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8521 "Supports conversions to v2f64/v4f32 only."); 8522 8523 bool SignedConv = Opc == ISD::SINT_TO_FP; 8524 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8525 8526 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8527 EVT WideVT = Wide.getValueType(); 8528 unsigned WideNumElts = WideVT.getVectorNumElements(); 8529 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8530 8531 SmallVector<int, 16> ShuffV; 8532 for (unsigned i = 0; i < WideNumElts; ++i) 8533 ShuffV.push_back(i + WideNumElts); 8534 8535 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8536 int SaveElts = FourEltRes ? 4 : 2; 8537 if (Subtarget.isLittleEndian()) 8538 for (int i = 0; i < SaveElts; i++) 8539 ShuffV[i * Stride] = i; 8540 else 8541 for (int i = 1; i <= SaveElts; i++) 8542 ShuffV[i * Stride - 1] = i - 1; 8543 8544 SDValue ShuffleSrc2 = 8545 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8546 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8547 8548 SDValue Extend; 8549 if (SignedConv) { 8550 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8551 EVT ExtVT = Op.getOperand(0).getValueType(); 8552 if (Subtarget.hasP9Altivec()) 8553 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8554 IntermediateVT.getVectorNumElements()); 8555 8556 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8557 DAG.getValueType(ExtVT)); 8558 } else 8559 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8560 8561 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8562 } 8563 8564 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8565 SelectionDAG &DAG) const { 8566 SDLoc dl(Op); 8567 8568 EVT InVT = Op.getOperand(0).getValueType(); 8569 EVT OutVT = Op.getValueType(); 8570 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8571 isOperationCustom(Op.getOpcode(), InVT)) 8572 return LowerINT_TO_FPVector(Op, DAG, dl); 8573 8574 // Conversions to f128 are legal. 8575 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8576 return Op; 8577 8578 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8579 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8580 return SDValue(); 8581 8582 SDValue Value = Op.getOperand(0); 8583 // The values are now known to be -1 (false) or 1 (true). To convert this 8584 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8585 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8586 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8587 8588 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8589 8590 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8591 8592 if (Op.getValueType() != MVT::v4f64) 8593 Value = DAG.getNode(ISD::FP_ROUND, dl, 8594 Op.getValueType(), Value, 8595 DAG.getIntPtrConstant(1, dl)); 8596 return Value; 8597 } 8598 8599 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8600 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8601 return SDValue(); 8602 8603 if (Op.getOperand(0).getValueType() == MVT::i1) 8604 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8605 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8606 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8607 8608 // If we have direct moves, we can do all the conversion, skip the store/load 8609 // however, without FPCVT we can't do most conversions. 8610 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8611 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8612 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8613 8614 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8615 "UINT_TO_FP is supported only with FPCVT"); 8616 8617 // If we have FCFIDS, then use it when converting to single-precision. 8618 // Otherwise, convert to double-precision and then round. 8619 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8620 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8621 : PPCISD::FCFIDS) 8622 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8623 : PPCISD::FCFID); 8624 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8625 ? MVT::f32 8626 : MVT::f64; 8627 8628 if (Op.getOperand(0).getValueType() == MVT::i64) { 8629 SDValue SINT = Op.getOperand(0); 8630 // When converting to single-precision, we actually need to convert 8631 // to double-precision first and then round to single-precision. 8632 // To avoid double-rounding effects during that operation, we have 8633 // to prepare the input operand. Bits that might be truncated when 8634 // converting to double-precision are replaced by a bit that won't 8635 // be lost at this stage, but is below the single-precision rounding 8636 // position. 8637 // 8638 // However, if -enable-unsafe-fp-math is in effect, accept double 8639 // rounding to avoid the extra overhead. 8640 if (Op.getValueType() == MVT::f32 && 8641 !Subtarget.hasFPCVT() && 8642 !DAG.getTarget().Options.UnsafeFPMath) { 8643 8644 // Twiddle input to make sure the low 11 bits are zero. (If this 8645 // is the case, we are guaranteed the value will fit into the 53 bit 8646 // mantissa of an IEEE double-precision value without rounding.) 8647 // If any of those low 11 bits were not zero originally, make sure 8648 // bit 12 (value 2048) is set instead, so that the final rounding 8649 // to single-precision gets the correct result. 8650 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8651 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8652 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8653 Round, DAG.getConstant(2047, dl, MVT::i64)); 8654 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8655 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8656 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8657 8658 // However, we cannot use that value unconditionally: if the magnitude 8659 // of the input value is small, the bit-twiddling we did above might 8660 // end up visibly changing the output. Fortunately, in that case, we 8661 // don't need to twiddle bits since the original input will convert 8662 // exactly to double-precision floating-point already. Therefore, 8663 // construct a conditional to use the original value if the top 11 8664 // bits are all sign-bit copies, and use the rounded value computed 8665 // above otherwise. 8666 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8667 SINT, DAG.getConstant(53, dl, MVT::i32)); 8668 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8669 Cond, DAG.getConstant(1, dl, MVT::i64)); 8670 Cond = DAG.getSetCC( 8671 dl, 8672 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8673 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8674 8675 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8676 } 8677 8678 ReuseLoadInfo RLI; 8679 SDValue Bits; 8680 8681 MachineFunction &MF = DAG.getMachineFunction(); 8682 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8683 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8684 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8685 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8686 } else if (Subtarget.hasLFIWAX() && 8687 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8688 MachineMemOperand *MMO = 8689 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8690 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8691 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8692 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8693 DAG.getVTList(MVT::f64, MVT::Other), 8694 Ops, MVT::i32, MMO); 8695 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8696 } else if (Subtarget.hasFPCVT() && 8697 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8698 MachineMemOperand *MMO = 8699 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8700 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8701 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8702 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8703 DAG.getVTList(MVT::f64, MVT::Other), 8704 Ops, MVT::i32, MMO); 8705 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8706 } else if (((Subtarget.hasLFIWAX() && 8707 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8708 (Subtarget.hasFPCVT() && 8709 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8710 SINT.getOperand(0).getValueType() == MVT::i32) { 8711 MachineFrameInfo &MFI = MF.getFrameInfo(); 8712 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8713 8714 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8715 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8716 8717 SDValue Store = 8718 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8719 MachinePointerInfo::getFixedStack( 8720 DAG.getMachineFunction(), FrameIdx)); 8721 8722 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8723 "Expected an i32 store"); 8724 8725 RLI.Ptr = FIdx; 8726 RLI.Chain = Store; 8727 RLI.MPI = 8728 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8729 RLI.Alignment = Align(4); 8730 8731 MachineMemOperand *MMO = 8732 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8733 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8734 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8735 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8736 PPCISD::LFIWZX : PPCISD::LFIWAX, 8737 dl, DAG.getVTList(MVT::f64, MVT::Other), 8738 Ops, MVT::i32, MMO); 8739 } else 8740 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8741 8742 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8743 8744 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8745 FP = DAG.getNode(ISD::FP_ROUND, dl, 8746 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8747 return FP; 8748 } 8749 8750 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8751 "Unhandled INT_TO_FP type in custom expander!"); 8752 // Since we only generate this in 64-bit mode, we can take advantage of 8753 // 64-bit registers. In particular, sign extend the input value into the 8754 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8755 // then lfd it and fcfid it. 8756 MachineFunction &MF = DAG.getMachineFunction(); 8757 MachineFrameInfo &MFI = MF.getFrameInfo(); 8758 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8759 8760 SDValue Ld; 8761 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8762 ReuseLoadInfo RLI; 8763 bool ReusingLoad; 8764 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8765 DAG))) { 8766 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8767 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8768 8769 SDValue Store = 8770 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8771 MachinePointerInfo::getFixedStack( 8772 DAG.getMachineFunction(), FrameIdx)); 8773 8774 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8775 "Expected an i32 store"); 8776 8777 RLI.Ptr = FIdx; 8778 RLI.Chain = Store; 8779 RLI.MPI = 8780 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8781 RLI.Alignment = Align(4); 8782 } 8783 8784 MachineMemOperand *MMO = 8785 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8786 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8787 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8788 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8789 PPCISD::LFIWZX : PPCISD::LFIWAX, 8790 dl, DAG.getVTList(MVT::f64, MVT::Other), 8791 Ops, MVT::i32, MMO); 8792 if (ReusingLoad) 8793 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8794 } else { 8795 assert(Subtarget.isPPC64() && 8796 "i32->FP without LFIWAX supported only on PPC64"); 8797 8798 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8799 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8800 8801 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8802 Op.getOperand(0)); 8803 8804 // STD the extended value into the stack slot. 8805 SDValue Store = DAG.getStore( 8806 DAG.getEntryNode(), dl, Ext64, FIdx, 8807 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8808 8809 // Load the value as a double. 8810 Ld = DAG.getLoad( 8811 MVT::f64, dl, Store, FIdx, 8812 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8813 } 8814 8815 // FCFID it and return it. 8816 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8817 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8818 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8819 DAG.getIntPtrConstant(0, dl)); 8820 return FP; 8821 } 8822 8823 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8824 SelectionDAG &DAG) const { 8825 SDLoc dl(Op); 8826 /* 8827 The rounding mode is in bits 30:31 of FPSR, and has the following 8828 settings: 8829 00 Round to nearest 8830 01 Round to 0 8831 10 Round to +inf 8832 11 Round to -inf 8833 8834 FLT_ROUNDS, on the other hand, expects the following: 8835 -1 Undefined 8836 0 Round to 0 8837 1 Round to nearest 8838 2 Round to +inf 8839 3 Round to -inf 8840 8841 To perform the conversion, we do: 8842 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8843 */ 8844 8845 MachineFunction &MF = DAG.getMachineFunction(); 8846 EVT VT = Op.getValueType(); 8847 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8848 8849 // Save FP Control Word to register 8850 SDValue Chain = Op.getOperand(0); 8851 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8852 Chain = MFFS.getValue(1); 8853 8854 // Save FP register to stack slot 8855 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8856 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8857 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8858 8859 // Load FP Control Word from low 32 bits of stack slot. 8860 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8861 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8862 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8863 Chain = CWD.getValue(1); 8864 8865 // Transform as necessary 8866 SDValue CWD1 = 8867 DAG.getNode(ISD::AND, dl, MVT::i32, 8868 CWD, DAG.getConstant(3, dl, MVT::i32)); 8869 SDValue CWD2 = 8870 DAG.getNode(ISD::SRL, dl, MVT::i32, 8871 DAG.getNode(ISD::AND, dl, MVT::i32, 8872 DAG.getNode(ISD::XOR, dl, MVT::i32, 8873 CWD, DAG.getConstant(3, dl, MVT::i32)), 8874 DAG.getConstant(3, dl, MVT::i32)), 8875 DAG.getConstant(1, dl, MVT::i32)); 8876 8877 SDValue RetVal = 8878 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8879 8880 RetVal = 8881 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8882 dl, VT, RetVal); 8883 8884 return DAG.getMergeValues({RetVal, Chain}, dl); 8885 } 8886 8887 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8888 EVT VT = Op.getValueType(); 8889 unsigned BitWidth = VT.getSizeInBits(); 8890 SDLoc dl(Op); 8891 assert(Op.getNumOperands() == 3 && 8892 VT == Op.getOperand(1).getValueType() && 8893 "Unexpected SHL!"); 8894 8895 // Expand into a bunch of logical ops. Note that these ops 8896 // depend on the PPC behavior for oversized shift amounts. 8897 SDValue Lo = Op.getOperand(0); 8898 SDValue Hi = Op.getOperand(1); 8899 SDValue Amt = Op.getOperand(2); 8900 EVT AmtVT = Amt.getValueType(); 8901 8902 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8903 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8904 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8905 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8906 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8907 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8908 DAG.getConstant(-BitWidth, dl, AmtVT)); 8909 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8910 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8911 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8912 SDValue OutOps[] = { OutLo, OutHi }; 8913 return DAG.getMergeValues(OutOps, dl); 8914 } 8915 8916 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8917 EVT VT = Op.getValueType(); 8918 SDLoc dl(Op); 8919 unsigned BitWidth = VT.getSizeInBits(); 8920 assert(Op.getNumOperands() == 3 && 8921 VT == Op.getOperand(1).getValueType() && 8922 "Unexpected SRL!"); 8923 8924 // Expand into a bunch of logical ops. Note that these ops 8925 // depend on the PPC behavior for oversized shift amounts. 8926 SDValue Lo = Op.getOperand(0); 8927 SDValue Hi = Op.getOperand(1); 8928 SDValue Amt = Op.getOperand(2); 8929 EVT AmtVT = Amt.getValueType(); 8930 8931 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8932 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8933 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8934 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8935 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8936 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8937 DAG.getConstant(-BitWidth, dl, AmtVT)); 8938 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8939 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8940 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8941 SDValue OutOps[] = { OutLo, OutHi }; 8942 return DAG.getMergeValues(OutOps, dl); 8943 } 8944 8945 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8946 SDLoc dl(Op); 8947 EVT VT = Op.getValueType(); 8948 unsigned BitWidth = VT.getSizeInBits(); 8949 assert(Op.getNumOperands() == 3 && 8950 VT == Op.getOperand(1).getValueType() && 8951 "Unexpected SRA!"); 8952 8953 // Expand into a bunch of logical ops, followed by a select_cc. 8954 SDValue Lo = Op.getOperand(0); 8955 SDValue Hi = Op.getOperand(1); 8956 SDValue Amt = Op.getOperand(2); 8957 EVT AmtVT = Amt.getValueType(); 8958 8959 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8960 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8961 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8962 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8963 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8964 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8965 DAG.getConstant(-BitWidth, dl, AmtVT)); 8966 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8967 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8968 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8969 Tmp4, Tmp6, ISD::SETLE); 8970 SDValue OutOps[] = { OutLo, OutHi }; 8971 return DAG.getMergeValues(OutOps, dl); 8972 } 8973 8974 //===----------------------------------------------------------------------===// 8975 // Vector related lowering. 8976 // 8977 8978 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8979 /// element size of SplatSize. Cast the result to VT. 8980 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8981 SelectionDAG &DAG, const SDLoc &dl) { 8982 static const MVT VTys[] = { // canonical VT to use for each size. 8983 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8984 }; 8985 8986 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8987 8988 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8989 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 8990 SplatSize = 1; 8991 Val = 0xFF; 8992 } 8993 8994 EVT CanonicalVT = VTys[SplatSize-1]; 8995 8996 // Build a canonical splat for this value. 8997 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8998 } 8999 9000 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9001 /// specified intrinsic ID. 9002 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9003 const SDLoc &dl, EVT DestVT = MVT::Other) { 9004 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9005 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9006 DAG.getConstant(IID, dl, MVT::i32), Op); 9007 } 9008 9009 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9010 /// specified intrinsic ID. 9011 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9012 SelectionDAG &DAG, const SDLoc &dl, 9013 EVT DestVT = MVT::Other) { 9014 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9015 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9016 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9017 } 9018 9019 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9020 /// specified intrinsic ID. 9021 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9022 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9023 EVT DestVT = MVT::Other) { 9024 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9025 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9026 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9027 } 9028 9029 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9030 /// amount. The result has the specified value type. 9031 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9032 SelectionDAG &DAG, const SDLoc &dl) { 9033 // Force LHS/RHS to be the right type. 9034 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9035 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9036 9037 int Ops[16]; 9038 for (unsigned i = 0; i != 16; ++i) 9039 Ops[i] = i + Amt; 9040 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9041 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9042 } 9043 9044 /// Do we have an efficient pattern in a .td file for this node? 9045 /// 9046 /// \param V - pointer to the BuildVectorSDNode being matched 9047 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9048 /// 9049 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9050 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9051 /// the opposite is true (expansion is beneficial) are: 9052 /// - The node builds a vector out of integers that are not 32 or 64-bits 9053 /// - The node builds a vector out of constants 9054 /// - The node is a "load-and-splat" 9055 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9056 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9057 bool HasDirectMove, 9058 bool HasP8Vector) { 9059 EVT VecVT = V->getValueType(0); 9060 bool RightType = VecVT == MVT::v2f64 || 9061 (HasP8Vector && VecVT == MVT::v4f32) || 9062 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9063 if (!RightType) 9064 return false; 9065 9066 bool IsSplat = true; 9067 bool IsLoad = false; 9068 SDValue Op0 = V->getOperand(0); 9069 9070 // This function is called in a block that confirms the node is not a constant 9071 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9072 // different constants. 9073 if (V->isConstant()) 9074 return false; 9075 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9076 if (V->getOperand(i).isUndef()) 9077 return false; 9078 // We want to expand nodes that represent load-and-splat even if the 9079 // loaded value is a floating point truncation or conversion to int. 9080 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9081 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9082 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9083 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9084 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9085 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9086 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9087 IsLoad = true; 9088 // If the operands are different or the input is not a load and has more 9089 // uses than just this BV node, then it isn't a splat. 9090 if (V->getOperand(i) != Op0 || 9091 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9092 IsSplat = false; 9093 } 9094 return !(IsSplat && IsLoad); 9095 } 9096 9097 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9098 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9099 9100 SDLoc dl(Op); 9101 SDValue Op0 = Op->getOperand(0); 9102 9103 if (!EnableQuadPrecision || 9104 (Op.getValueType() != MVT::f128 ) || 9105 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9106 (Op0.getOperand(0).getValueType() != MVT::i64) || 9107 (Op0.getOperand(1).getValueType() != MVT::i64)) 9108 return SDValue(); 9109 9110 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9111 Op0.getOperand(1)); 9112 } 9113 9114 static const SDValue *getNormalLoadInput(const SDValue &Op) { 9115 const SDValue *InputLoad = &Op; 9116 if (InputLoad->getOpcode() == ISD::BITCAST) 9117 InputLoad = &InputLoad->getOperand(0); 9118 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9119 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) 9120 InputLoad = &InputLoad->getOperand(0); 9121 if (InputLoad->getOpcode() != ISD::LOAD) 9122 return nullptr; 9123 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9124 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9125 } 9126 9127 // Convert the argument APFloat to a single precision APFloat if there is no 9128 // loss in information during the conversion to single precision APFloat and the 9129 // resulting number is not a denormal number. Return true if successful. 9130 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9131 APFloat APFloatToConvert = ArgAPFloat; 9132 bool LosesInfo = true; 9133 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9134 &LosesInfo); 9135 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9136 if (Success) 9137 ArgAPFloat = APFloatToConvert; 9138 return Success; 9139 } 9140 9141 // Bitcast the argument APInt to a double and convert it to a single precision 9142 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9143 // argument if there is no loss in information during the conversion from 9144 // double to single precision APFloat and the resulting number is not a denormal 9145 // number. Return true if successful. 9146 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9147 double DpValue = ArgAPInt.bitsToDouble(); 9148 APFloat APFloatDp(DpValue); 9149 bool Success = convertToNonDenormSingle(APFloatDp); 9150 if (Success) 9151 ArgAPInt = APFloatDp.bitcastToAPInt(); 9152 return Success; 9153 } 9154 9155 // If this is a case we can't handle, return null and let the default 9156 // expansion code take care of it. If we CAN select this case, and if it 9157 // selects to a single instruction, return Op. Otherwise, if we can codegen 9158 // this case more efficiently than a constant pool load, lower it to the 9159 // sequence of ops that should be used. 9160 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9161 SelectionDAG &DAG) const { 9162 SDLoc dl(Op); 9163 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9164 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9165 9166 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 9167 // We first build an i32 vector, load it into a QPX register, 9168 // then convert it to a floating-point vector and compare it 9169 // to a zero vector to get the boolean result. 9170 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9171 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 9172 MachinePointerInfo PtrInfo = 9173 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9174 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9175 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9176 9177 assert(BVN->getNumOperands() == 4 && 9178 "BUILD_VECTOR for v4i1 does not have 4 operands"); 9179 9180 bool IsConst = true; 9181 for (unsigned i = 0; i < 4; ++i) { 9182 if (BVN->getOperand(i).isUndef()) continue; 9183 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 9184 IsConst = false; 9185 break; 9186 } 9187 } 9188 9189 if (IsConst) { 9190 Constant *One = 9191 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 9192 Constant *NegOne = 9193 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 9194 9195 Constant *CV[4]; 9196 for (unsigned i = 0; i < 4; ++i) { 9197 if (BVN->getOperand(i).isUndef()) 9198 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 9199 else if (isNullConstant(BVN->getOperand(i))) 9200 CV[i] = NegOne; 9201 else 9202 CV[i] = One; 9203 } 9204 9205 Constant *CP = ConstantVector::get(CV); 9206 SDValue CPIdx = 9207 DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16)); 9208 9209 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 9210 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 9211 return DAG.getMemIntrinsicNode( 9212 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 9213 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 9214 } 9215 9216 SmallVector<SDValue, 4> Stores; 9217 for (unsigned i = 0; i < 4; ++i) { 9218 if (BVN->getOperand(i).isUndef()) continue; 9219 9220 unsigned Offset = 4*i; 9221 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9222 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9223 9224 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 9225 if (StoreSize > 4) { 9226 Stores.push_back( 9227 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 9228 PtrInfo.getWithOffset(Offset), MVT::i32)); 9229 } else { 9230 SDValue StoreValue = BVN->getOperand(i); 9231 if (StoreSize < 4) 9232 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 9233 9234 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 9235 PtrInfo.getWithOffset(Offset))); 9236 } 9237 } 9238 9239 SDValue StoreChain; 9240 if (!Stores.empty()) 9241 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9242 else 9243 StoreChain = DAG.getEntryNode(); 9244 9245 // Now load from v4i32 into the QPX register; this will extend it to 9246 // v4i64 but not yet convert it to a floating point. Nevertheless, this 9247 // is typed as v4f64 because the QPX register integer states are not 9248 // explicitly represented. 9249 9250 SDValue Ops[] = {StoreChain, 9251 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 9252 FIdx}; 9253 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 9254 9255 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 9256 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9257 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9258 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 9259 LoadedVect); 9260 9261 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 9262 9263 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 9264 } 9265 9266 // All other QPX vectors are handled by generic code. 9267 if (Subtarget.hasQPX()) 9268 return SDValue(); 9269 9270 // Check if this is a splat of a constant value. 9271 APInt APSplatBits, APSplatUndef; 9272 unsigned SplatBitSize; 9273 bool HasAnyUndefs; 9274 bool BVNIsConstantSplat = 9275 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9276 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9277 9278 // If it is a splat of a double, check if we can shrink it to a 32 bit 9279 // non-denormal float which when converted back to double gives us the same 9280 // double. This is to exploit the XXSPLTIDP instruction. 9281 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9282 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9283 convertToNonDenormSingle(APSplatBits)) { 9284 SDValue SplatNode = DAG.getNode( 9285 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9286 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9287 return DAG.getBitcast(Op.getValueType(), SplatNode); 9288 } 9289 9290 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9291 9292 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 9293 // Handle load-and-splat patterns as we have instructions that will do this 9294 // in one go. 9295 if (InputLoad && DAG.isSplatValue(Op, true)) { 9296 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9297 9298 // We have handling for 4 and 8 byte elements. 9299 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9300 9301 // Checking for a single use of this load, we have to check for vector 9302 // width (128 bits) / ElementSize uses (since each operand of the 9303 // BUILD_VECTOR is a separate use of the value. 9304 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9305 ((Subtarget.hasVSX() && ElementSize == 64) || 9306 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9307 SDValue Ops[] = { 9308 LD->getChain(), // Chain 9309 LD->getBasePtr(), // Ptr 9310 DAG.getValueType(Op.getValueType()) // VT 9311 }; 9312 return 9313 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9314 DAG.getVTList(Op.getValueType(), MVT::Other), 9315 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9316 } 9317 } 9318 9319 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9320 // lowered to VSX instructions under certain conditions. 9321 // Without VSX, there is no pattern more efficient than expanding the node. 9322 if (Subtarget.hasVSX() && 9323 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9324 Subtarget.hasP8Vector())) 9325 return Op; 9326 return SDValue(); 9327 } 9328 9329 uint64_t SplatBits = APSplatBits.getZExtValue(); 9330 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9331 unsigned SplatSize = SplatBitSize / 8; 9332 9333 // First, handle single instruction cases. 9334 9335 // All zeros? 9336 if (SplatBits == 0) { 9337 // Canonicalize all zero vectors to be v4i32. 9338 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9339 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9340 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9341 } 9342 return Op; 9343 } 9344 9345 // We have XXSPLTIW for constant splats four bytes wide. 9346 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9347 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9348 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9349 // turned into a 4-byte splat of 0xABABABAB. 9350 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9351 return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2, 9352 Op.getValueType(), DAG, dl); 9353 9354 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9355 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9356 dl); 9357 9358 // We have XXSPLTIB for constant splats one byte wide. 9359 if (Subtarget.hasP9Vector() && SplatSize == 1) 9360 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9361 dl); 9362 9363 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9364 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9365 (32-SplatBitSize)); 9366 if (SextVal >= -16 && SextVal <= 15) 9367 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9368 dl); 9369 9370 // Two instruction sequences. 9371 9372 // If this value is in the range [-32,30] and is even, use: 9373 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9374 // If this value is in the range [17,31] and is odd, use: 9375 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9376 // If this value is in the range [-31,-17] and is odd, use: 9377 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9378 // Note the last two are three-instruction sequences. 9379 if (SextVal >= -32 && SextVal <= 31) { 9380 // To avoid having these optimizations undone by constant folding, 9381 // we convert to a pseudo that will be expanded later into one of 9382 // the above forms. 9383 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9384 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9385 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9386 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9387 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9388 if (VT == Op.getValueType()) 9389 return RetVal; 9390 else 9391 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9392 } 9393 9394 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9395 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9396 // for fneg/fabs. 9397 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9398 // Make -1 and vspltisw -1: 9399 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9400 9401 // Make the VSLW intrinsic, computing 0x8000_0000. 9402 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9403 OnesV, DAG, dl); 9404 9405 // xor by OnesV to invert it. 9406 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9407 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9408 } 9409 9410 // Check to see if this is a wide variety of vsplti*, binop self cases. 9411 static const signed char SplatCsts[] = { 9412 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9413 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9414 }; 9415 9416 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9417 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9418 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9419 int i = SplatCsts[idx]; 9420 9421 // Figure out what shift amount will be used by altivec if shifted by i in 9422 // this splat size. 9423 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9424 9425 // vsplti + shl self. 9426 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9427 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9428 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9429 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9430 Intrinsic::ppc_altivec_vslw 9431 }; 9432 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9433 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9434 } 9435 9436 // vsplti + srl self. 9437 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9438 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9439 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9440 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9441 Intrinsic::ppc_altivec_vsrw 9442 }; 9443 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9444 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9445 } 9446 9447 // vsplti + sra self. 9448 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9449 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9450 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9451 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9452 Intrinsic::ppc_altivec_vsraw 9453 }; 9454 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9455 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9456 } 9457 9458 // vsplti + rol self. 9459 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9460 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9461 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9462 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9463 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9464 Intrinsic::ppc_altivec_vrlw 9465 }; 9466 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9467 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9468 } 9469 9470 // t = vsplti c, result = vsldoi t, t, 1 9471 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9472 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9473 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9474 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9475 } 9476 // t = vsplti c, result = vsldoi t, t, 2 9477 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9478 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9479 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9480 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9481 } 9482 // t = vsplti c, result = vsldoi t, t, 3 9483 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9484 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9485 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9486 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9487 } 9488 } 9489 9490 return SDValue(); 9491 } 9492 9493 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9494 /// the specified operations to build the shuffle. 9495 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9496 SDValue RHS, SelectionDAG &DAG, 9497 const SDLoc &dl) { 9498 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9499 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9500 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9501 9502 enum { 9503 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9504 OP_VMRGHW, 9505 OP_VMRGLW, 9506 OP_VSPLTISW0, 9507 OP_VSPLTISW1, 9508 OP_VSPLTISW2, 9509 OP_VSPLTISW3, 9510 OP_VSLDOI4, 9511 OP_VSLDOI8, 9512 OP_VSLDOI12 9513 }; 9514 9515 if (OpNum == OP_COPY) { 9516 if (LHSID == (1*9+2)*9+3) return LHS; 9517 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9518 return RHS; 9519 } 9520 9521 SDValue OpLHS, OpRHS; 9522 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9523 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9524 9525 int ShufIdxs[16]; 9526 switch (OpNum) { 9527 default: llvm_unreachable("Unknown i32 permute!"); 9528 case OP_VMRGHW: 9529 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9530 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9531 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9532 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9533 break; 9534 case OP_VMRGLW: 9535 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9536 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9537 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9538 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9539 break; 9540 case OP_VSPLTISW0: 9541 for (unsigned i = 0; i != 16; ++i) 9542 ShufIdxs[i] = (i&3)+0; 9543 break; 9544 case OP_VSPLTISW1: 9545 for (unsigned i = 0; i != 16; ++i) 9546 ShufIdxs[i] = (i&3)+4; 9547 break; 9548 case OP_VSPLTISW2: 9549 for (unsigned i = 0; i != 16; ++i) 9550 ShufIdxs[i] = (i&3)+8; 9551 break; 9552 case OP_VSPLTISW3: 9553 for (unsigned i = 0; i != 16; ++i) 9554 ShufIdxs[i] = (i&3)+12; 9555 break; 9556 case OP_VSLDOI4: 9557 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9558 case OP_VSLDOI8: 9559 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9560 case OP_VSLDOI12: 9561 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9562 } 9563 EVT VT = OpLHS.getValueType(); 9564 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9565 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9566 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9567 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9568 } 9569 9570 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9571 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9572 /// SDValue. 9573 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9574 SelectionDAG &DAG) const { 9575 const unsigned BytesInVector = 16; 9576 bool IsLE = Subtarget.isLittleEndian(); 9577 SDLoc dl(N); 9578 SDValue V1 = N->getOperand(0); 9579 SDValue V2 = N->getOperand(1); 9580 unsigned ShiftElts = 0, InsertAtByte = 0; 9581 bool Swap = false; 9582 9583 // Shifts required to get the byte we want at element 7. 9584 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9585 0, 15, 14, 13, 12, 11, 10, 9}; 9586 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9587 1, 2, 3, 4, 5, 6, 7, 8}; 9588 9589 ArrayRef<int> Mask = N->getMask(); 9590 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9591 9592 // For each mask element, find out if we're just inserting something 9593 // from V2 into V1 or vice versa. 9594 // Possible permutations inserting an element from V2 into V1: 9595 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9596 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9597 // ... 9598 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9599 // Inserting from V1 into V2 will be similar, except mask range will be 9600 // [16,31]. 9601 9602 bool FoundCandidate = false; 9603 // If both vector operands for the shuffle are the same vector, the mask 9604 // will contain only elements from the first one and the second one will be 9605 // undef. 9606 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9607 // Go through the mask of half-words to find an element that's being moved 9608 // from one vector to the other. 9609 for (unsigned i = 0; i < BytesInVector; ++i) { 9610 unsigned CurrentElement = Mask[i]; 9611 // If 2nd operand is undefined, we should only look for element 7 in the 9612 // Mask. 9613 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9614 continue; 9615 9616 bool OtherElementsInOrder = true; 9617 // Examine the other elements in the Mask to see if they're in original 9618 // order. 9619 for (unsigned j = 0; j < BytesInVector; ++j) { 9620 if (j == i) 9621 continue; 9622 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9623 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9624 // in which we always assume we're always picking from the 1st operand. 9625 int MaskOffset = 9626 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9627 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9628 OtherElementsInOrder = false; 9629 break; 9630 } 9631 } 9632 // If other elements are in original order, we record the number of shifts 9633 // we need to get the element we want into element 7. Also record which byte 9634 // in the vector we should insert into. 9635 if (OtherElementsInOrder) { 9636 // If 2nd operand is undefined, we assume no shifts and no swapping. 9637 if (V2.isUndef()) { 9638 ShiftElts = 0; 9639 Swap = false; 9640 } else { 9641 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9642 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9643 : BigEndianShifts[CurrentElement & 0xF]; 9644 Swap = CurrentElement < BytesInVector; 9645 } 9646 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9647 FoundCandidate = true; 9648 break; 9649 } 9650 } 9651 9652 if (!FoundCandidate) 9653 return SDValue(); 9654 9655 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9656 // optionally with VECSHL if shift is required. 9657 if (Swap) 9658 std::swap(V1, V2); 9659 if (V2.isUndef()) 9660 V2 = V1; 9661 if (ShiftElts) { 9662 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9663 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9664 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9665 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9666 } 9667 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9668 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9669 } 9670 9671 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9672 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9673 /// SDValue. 9674 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9675 SelectionDAG &DAG) const { 9676 const unsigned NumHalfWords = 8; 9677 const unsigned BytesInVector = NumHalfWords * 2; 9678 // Check that the shuffle is on half-words. 9679 if (!isNByteElemShuffleMask(N, 2, 1)) 9680 return SDValue(); 9681 9682 bool IsLE = Subtarget.isLittleEndian(); 9683 SDLoc dl(N); 9684 SDValue V1 = N->getOperand(0); 9685 SDValue V2 = N->getOperand(1); 9686 unsigned ShiftElts = 0, InsertAtByte = 0; 9687 bool Swap = false; 9688 9689 // Shifts required to get the half-word we want at element 3. 9690 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9691 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9692 9693 uint32_t Mask = 0; 9694 uint32_t OriginalOrderLow = 0x1234567; 9695 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9696 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9697 // 32-bit space, only need 4-bit nibbles per element. 9698 for (unsigned i = 0; i < NumHalfWords; ++i) { 9699 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9700 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9701 } 9702 9703 // For each mask element, find out if we're just inserting something 9704 // from V2 into V1 or vice versa. Possible permutations inserting an element 9705 // from V2 into V1: 9706 // X, 1, 2, 3, 4, 5, 6, 7 9707 // 0, X, 2, 3, 4, 5, 6, 7 9708 // 0, 1, X, 3, 4, 5, 6, 7 9709 // 0, 1, 2, X, 4, 5, 6, 7 9710 // 0, 1, 2, 3, X, 5, 6, 7 9711 // 0, 1, 2, 3, 4, X, 6, 7 9712 // 0, 1, 2, 3, 4, 5, X, 7 9713 // 0, 1, 2, 3, 4, 5, 6, X 9714 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9715 9716 bool FoundCandidate = false; 9717 // Go through the mask of half-words to find an element that's being moved 9718 // from one vector to the other. 9719 for (unsigned i = 0; i < NumHalfWords; ++i) { 9720 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9721 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9722 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9723 uint32_t TargetOrder = 0x0; 9724 9725 // If both vector operands for the shuffle are the same vector, the mask 9726 // will contain only elements from the first one and the second one will be 9727 // undef. 9728 if (V2.isUndef()) { 9729 ShiftElts = 0; 9730 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9731 TargetOrder = OriginalOrderLow; 9732 Swap = false; 9733 // Skip if not the correct element or mask of other elements don't equal 9734 // to our expected order. 9735 if (MaskOneElt == VINSERTHSrcElem && 9736 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9737 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9738 FoundCandidate = true; 9739 break; 9740 } 9741 } else { // If both operands are defined. 9742 // Target order is [8,15] if the current mask is between [0,7]. 9743 TargetOrder = 9744 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9745 // Skip if mask of other elements don't equal our expected order. 9746 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9747 // We only need the last 3 bits for the number of shifts. 9748 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9749 : BigEndianShifts[MaskOneElt & 0x7]; 9750 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9751 Swap = MaskOneElt < NumHalfWords; 9752 FoundCandidate = true; 9753 break; 9754 } 9755 } 9756 } 9757 9758 if (!FoundCandidate) 9759 return SDValue(); 9760 9761 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9762 // optionally with VECSHL if shift is required. 9763 if (Swap) 9764 std::swap(V1, V2); 9765 if (V2.isUndef()) 9766 V2 = V1; 9767 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9768 if (ShiftElts) { 9769 // Double ShiftElts because we're left shifting on v16i8 type. 9770 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9771 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9772 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9773 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9774 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9775 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9776 } 9777 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9778 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9779 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9780 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9781 } 9782 9783 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9784 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9785 /// return the default SDValue. 9786 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9787 SelectionDAG &DAG) const { 9788 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9789 // to v16i8. Peek through the bitcasts to get the actual operands. 9790 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9791 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9792 9793 auto ShuffleMask = SVN->getMask(); 9794 SDValue VecShuffle(SVN, 0); 9795 SDLoc DL(SVN); 9796 9797 // Check that we have a four byte shuffle. 9798 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9799 return SDValue(); 9800 9801 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9802 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9803 std::swap(LHS, RHS); 9804 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9805 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9806 } 9807 9808 // Ensure that the RHS is a vector of constants. 9809 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9810 if (!BVN) 9811 return SDValue(); 9812 9813 // Check if RHS is a splat of 4-bytes (or smaller). 9814 APInt APSplatValue, APSplatUndef; 9815 unsigned SplatBitSize; 9816 bool HasAnyUndefs; 9817 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9818 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9819 SplatBitSize > 32) 9820 return SDValue(); 9821 9822 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9823 // The instruction splats a constant C into two words of the source vector 9824 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9825 // Thus we check that the shuffle mask is the equivalent of 9826 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9827 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9828 // within each word are consecutive, so we only need to check the first byte. 9829 SDValue Index; 9830 bool IsLE = Subtarget.isLittleEndian(); 9831 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9832 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9833 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9834 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9835 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9836 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9837 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9838 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9839 else 9840 return SDValue(); 9841 9842 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9843 // for XXSPLTI32DX. 9844 unsigned SplatVal = APSplatValue.getZExtValue(); 9845 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9846 SplatVal |= (SplatVal << SplatBitSize); 9847 9848 SDValue SplatNode = DAG.getNode( 9849 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9850 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9851 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9852 } 9853 9854 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9855 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9856 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9857 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9858 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9859 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9860 assert(Op.getValueType() == MVT::v1i128 && 9861 "Only set v1i128 as custom, other type shouldn't reach here!"); 9862 SDLoc dl(Op); 9863 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9864 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9865 unsigned SHLAmt = N1.getConstantOperandVal(0); 9866 if (SHLAmt % 8 == 0) { 9867 SmallVector<int, 16> Mask(16, 0); 9868 std::iota(Mask.begin(), Mask.end(), 0); 9869 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9870 if (SDValue Shuffle = 9871 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9872 DAG.getUNDEF(MVT::v16i8), Mask)) 9873 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9874 } 9875 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9876 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9877 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9878 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9879 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9880 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9881 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9882 } 9883 9884 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9885 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9886 /// return the code it can be lowered into. Worst case, it can always be 9887 /// lowered into a vperm. 9888 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9889 SelectionDAG &DAG) const { 9890 SDLoc dl(Op); 9891 SDValue V1 = Op.getOperand(0); 9892 SDValue V2 = Op.getOperand(1); 9893 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9894 9895 // Any nodes that were combined in the target-independent combiner prior 9896 // to vector legalization will not be sent to the target combine. Try to 9897 // combine it here. 9898 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9899 Op = NewShuffle; 9900 SVOp = cast<ShuffleVectorSDNode>(Op); 9901 V1 = Op.getOperand(0); 9902 V2 = Op.getOperand(1); 9903 } 9904 EVT VT = Op.getValueType(); 9905 bool isLittleEndian = Subtarget.isLittleEndian(); 9906 9907 unsigned ShiftElts, InsertAtByte; 9908 bool Swap = false; 9909 9910 // If this is a load-and-splat, we can do that with a single instruction 9911 // in some cases. However if the load has multiple uses, we don't want to 9912 // combine it because that will just produce multiple loads. 9913 const SDValue *InputLoad = getNormalLoadInput(V1); 9914 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9915 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9916 InputLoad->hasOneUse()) { 9917 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9918 int SplatIdx = 9919 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9920 9921 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9922 // For 4-byte load-and-splat, we need Power9. 9923 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9924 uint64_t Offset = 0; 9925 if (IsFourByte) 9926 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9927 else 9928 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9929 9930 // If we are loading a partial vector, it does not make sense to adjust 9931 // the base pointer. This happens with (splat (s_to_v_permuted (ld))). 9932 if (LD->getMemoryVT().getSizeInBits() == (IsFourByte ? 32 : 64)) 9933 Offset = 0; 9934 SDValue BasePtr = LD->getBasePtr(); 9935 if (Offset != 0) 9936 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9937 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9938 SDValue Ops[] = { 9939 LD->getChain(), // Chain 9940 BasePtr, // BasePtr 9941 DAG.getValueType(Op.getValueType()) // VT 9942 }; 9943 SDVTList VTL = 9944 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9945 SDValue LdSplt = 9946 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9947 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9948 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9949 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9950 return LdSplt; 9951 } 9952 } 9953 if (Subtarget.hasP9Vector() && 9954 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9955 isLittleEndian)) { 9956 if (Swap) 9957 std::swap(V1, V2); 9958 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9959 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9960 if (ShiftElts) { 9961 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9962 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9963 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9964 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9965 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9966 } 9967 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9968 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9969 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9970 } 9971 9972 if (Subtarget.hasPrefixInstrs()) { 9973 SDValue SplatInsertNode; 9974 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9975 return SplatInsertNode; 9976 } 9977 9978 if (Subtarget.hasP9Altivec()) { 9979 SDValue NewISDNode; 9980 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9981 return NewISDNode; 9982 9983 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9984 return NewISDNode; 9985 } 9986 9987 if (Subtarget.hasVSX() && 9988 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9989 if (Swap) 9990 std::swap(V1, V2); 9991 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9992 SDValue Conv2 = 9993 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9994 9995 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9996 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9997 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9998 } 9999 10000 if (Subtarget.hasVSX() && 10001 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10002 if (Swap) 10003 std::swap(V1, V2); 10004 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10005 SDValue Conv2 = 10006 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 10007 10008 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10009 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10010 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10011 } 10012 10013 if (Subtarget.hasP9Vector()) { 10014 if (PPC::isXXBRHShuffleMask(SVOp)) { 10015 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10016 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10017 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10018 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10019 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10020 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10021 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10022 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10023 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10024 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10025 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10026 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10027 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10028 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10029 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10030 } 10031 } 10032 10033 if (Subtarget.hasVSX()) { 10034 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10035 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10036 10037 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10038 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10039 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10040 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10041 } 10042 10043 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10044 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10045 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10046 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10047 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10048 } 10049 } 10050 10051 if (Subtarget.hasQPX()) { 10052 if (VT.getVectorNumElements() != 4) 10053 return SDValue(); 10054 10055 if (V2.isUndef()) V2 = V1; 10056 10057 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 10058 if (AlignIdx != -1) { 10059 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 10060 DAG.getConstant(AlignIdx, dl, MVT::i32)); 10061 } else if (SVOp->isSplat()) { 10062 int SplatIdx = SVOp->getSplatIndex(); 10063 if (SplatIdx >= 4) { 10064 std::swap(V1, V2); 10065 SplatIdx -= 4; 10066 } 10067 10068 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 10069 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10070 } 10071 10072 // Lower this into a qvgpci/qvfperm pair. 10073 10074 // Compute the qvgpci literal 10075 unsigned idx = 0; 10076 for (unsigned i = 0; i < 4; ++i) { 10077 int m = SVOp->getMaskElt(i); 10078 unsigned mm = m >= 0 ? (unsigned) m : i; 10079 idx |= mm << (3-i)*3; 10080 } 10081 10082 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 10083 DAG.getConstant(idx, dl, MVT::i32)); 10084 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 10085 } 10086 10087 // Cases that are handled by instructions that take permute immediates 10088 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10089 // selected by the instruction selector. 10090 if (V2.isUndef()) { 10091 if (PPC::isSplatShuffleMask(SVOp, 1) || 10092 PPC::isSplatShuffleMask(SVOp, 2) || 10093 PPC::isSplatShuffleMask(SVOp, 4) || 10094 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10095 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10096 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10097 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10098 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10099 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10100 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10101 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10102 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10103 (Subtarget.hasP8Altivec() && ( 10104 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10105 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10106 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10107 return Op; 10108 } 10109 } 10110 10111 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10112 // and produce a fixed permutation. If any of these match, do not lower to 10113 // VPERM. 10114 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10115 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10116 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10117 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10118 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10119 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10120 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10121 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10122 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10123 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10124 (Subtarget.hasP8Altivec() && ( 10125 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10126 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10127 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10128 return Op; 10129 10130 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10131 // perfect shuffle table to emit an optimal matching sequence. 10132 ArrayRef<int> PermMask = SVOp->getMask(); 10133 10134 unsigned PFIndexes[4]; 10135 bool isFourElementShuffle = true; 10136 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10137 unsigned EltNo = 8; // Start out undef. 10138 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10139 if (PermMask[i*4+j] < 0) 10140 continue; // Undef, ignore it. 10141 10142 unsigned ByteSource = PermMask[i*4+j]; 10143 if ((ByteSource & 3) != j) { 10144 isFourElementShuffle = false; 10145 break; 10146 } 10147 10148 if (EltNo == 8) { 10149 EltNo = ByteSource/4; 10150 } else if (EltNo != ByteSource/4) { 10151 isFourElementShuffle = false; 10152 break; 10153 } 10154 } 10155 PFIndexes[i] = EltNo; 10156 } 10157 10158 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10159 // perfect shuffle vector to determine if it is cost effective to do this as 10160 // discrete instructions, or whether we should use a vperm. 10161 // For now, we skip this for little endian until such time as we have a 10162 // little-endian perfect shuffle table. 10163 if (isFourElementShuffle && !isLittleEndian) { 10164 // Compute the index in the perfect shuffle table. 10165 unsigned PFTableIndex = 10166 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10167 10168 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10169 unsigned Cost = (PFEntry >> 30); 10170 10171 // Determining when to avoid vperm is tricky. Many things affect the cost 10172 // of vperm, particularly how many times the perm mask needs to be computed. 10173 // For example, if the perm mask can be hoisted out of a loop or is already 10174 // used (perhaps because there are multiple permutes with the same shuffle 10175 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10176 // the loop requires an extra register. 10177 // 10178 // As a compromise, we only emit discrete instructions if the shuffle can be 10179 // generated in 3 or fewer operations. When we have loop information 10180 // available, if this block is within a loop, we should avoid using vperm 10181 // for 3-operation perms and use a constant pool load instead. 10182 if (Cost < 3) 10183 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10184 } 10185 10186 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10187 // vector that will get spilled to the constant pool. 10188 if (V2.isUndef()) V2 = V1; 10189 10190 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10191 // that it is in input element units, not in bytes. Convert now. 10192 10193 // For little endian, the order of the input vectors is reversed, and 10194 // the permutation mask is complemented with respect to 31. This is 10195 // necessary to produce proper semantics with the big-endian-biased vperm 10196 // instruction. 10197 EVT EltVT = V1.getValueType().getVectorElementType(); 10198 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10199 10200 SmallVector<SDValue, 16> ResultMask; 10201 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10202 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10203 10204 for (unsigned j = 0; j != BytesPerElement; ++j) 10205 if (isLittleEndian) 10206 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10207 dl, MVT::i32)); 10208 else 10209 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10210 MVT::i32)); 10211 } 10212 10213 ShufflesHandledWithVPERM++; 10214 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10215 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10216 LLVM_DEBUG(SVOp->dump()); 10217 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10218 LLVM_DEBUG(VPermMask.dump()); 10219 10220 if (isLittleEndian) 10221 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10222 V2, V1, VPermMask); 10223 else 10224 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10225 V1, V2, VPermMask); 10226 } 10227 10228 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10229 /// vector comparison. If it is, return true and fill in Opc/isDot with 10230 /// information about the intrinsic. 10231 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10232 bool &isDot, const PPCSubtarget &Subtarget) { 10233 unsigned IntrinsicID = 10234 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10235 CompareOpc = -1; 10236 isDot = false; 10237 switch (IntrinsicID) { 10238 default: 10239 return false; 10240 // Comparison predicates. 10241 case Intrinsic::ppc_altivec_vcmpbfp_p: 10242 CompareOpc = 966; 10243 isDot = true; 10244 break; 10245 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10246 CompareOpc = 198; 10247 isDot = true; 10248 break; 10249 case Intrinsic::ppc_altivec_vcmpequb_p: 10250 CompareOpc = 6; 10251 isDot = true; 10252 break; 10253 case Intrinsic::ppc_altivec_vcmpequh_p: 10254 CompareOpc = 70; 10255 isDot = true; 10256 break; 10257 case Intrinsic::ppc_altivec_vcmpequw_p: 10258 CompareOpc = 134; 10259 isDot = true; 10260 break; 10261 case Intrinsic::ppc_altivec_vcmpequd_p: 10262 if (Subtarget.hasP8Altivec()) { 10263 CompareOpc = 199; 10264 isDot = true; 10265 } else 10266 return false; 10267 break; 10268 case Intrinsic::ppc_altivec_vcmpneb_p: 10269 case Intrinsic::ppc_altivec_vcmpneh_p: 10270 case Intrinsic::ppc_altivec_vcmpnew_p: 10271 case Intrinsic::ppc_altivec_vcmpnezb_p: 10272 case Intrinsic::ppc_altivec_vcmpnezh_p: 10273 case Intrinsic::ppc_altivec_vcmpnezw_p: 10274 if (Subtarget.hasP9Altivec()) { 10275 switch (IntrinsicID) { 10276 default: 10277 llvm_unreachable("Unknown comparison intrinsic."); 10278 case Intrinsic::ppc_altivec_vcmpneb_p: 10279 CompareOpc = 7; 10280 break; 10281 case Intrinsic::ppc_altivec_vcmpneh_p: 10282 CompareOpc = 71; 10283 break; 10284 case Intrinsic::ppc_altivec_vcmpnew_p: 10285 CompareOpc = 135; 10286 break; 10287 case Intrinsic::ppc_altivec_vcmpnezb_p: 10288 CompareOpc = 263; 10289 break; 10290 case Intrinsic::ppc_altivec_vcmpnezh_p: 10291 CompareOpc = 327; 10292 break; 10293 case Intrinsic::ppc_altivec_vcmpnezw_p: 10294 CompareOpc = 391; 10295 break; 10296 } 10297 isDot = true; 10298 } else 10299 return false; 10300 break; 10301 case Intrinsic::ppc_altivec_vcmpgefp_p: 10302 CompareOpc = 454; 10303 isDot = true; 10304 break; 10305 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10306 CompareOpc = 710; 10307 isDot = true; 10308 break; 10309 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10310 CompareOpc = 774; 10311 isDot = true; 10312 break; 10313 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10314 CompareOpc = 838; 10315 isDot = true; 10316 break; 10317 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10318 CompareOpc = 902; 10319 isDot = true; 10320 break; 10321 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10322 if (Subtarget.hasP8Altivec()) { 10323 CompareOpc = 967; 10324 isDot = true; 10325 } else 10326 return false; 10327 break; 10328 case Intrinsic::ppc_altivec_vcmpgtub_p: 10329 CompareOpc = 518; 10330 isDot = true; 10331 break; 10332 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10333 CompareOpc = 582; 10334 isDot = true; 10335 break; 10336 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10337 CompareOpc = 646; 10338 isDot = true; 10339 break; 10340 case Intrinsic::ppc_altivec_vcmpgtud_p: 10341 if (Subtarget.hasP8Altivec()) { 10342 CompareOpc = 711; 10343 isDot = true; 10344 } else 10345 return false; 10346 break; 10347 10348 // VSX predicate comparisons use the same infrastructure 10349 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10350 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10351 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10352 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10353 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10354 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10355 if (Subtarget.hasVSX()) { 10356 switch (IntrinsicID) { 10357 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10358 CompareOpc = 99; 10359 break; 10360 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10361 CompareOpc = 115; 10362 break; 10363 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10364 CompareOpc = 107; 10365 break; 10366 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10367 CompareOpc = 67; 10368 break; 10369 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10370 CompareOpc = 83; 10371 break; 10372 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10373 CompareOpc = 75; 10374 break; 10375 } 10376 isDot = true; 10377 } else 10378 return false; 10379 break; 10380 10381 // Normal Comparisons. 10382 case Intrinsic::ppc_altivec_vcmpbfp: 10383 CompareOpc = 966; 10384 break; 10385 case Intrinsic::ppc_altivec_vcmpeqfp: 10386 CompareOpc = 198; 10387 break; 10388 case Intrinsic::ppc_altivec_vcmpequb: 10389 CompareOpc = 6; 10390 break; 10391 case Intrinsic::ppc_altivec_vcmpequh: 10392 CompareOpc = 70; 10393 break; 10394 case Intrinsic::ppc_altivec_vcmpequw: 10395 CompareOpc = 134; 10396 break; 10397 case Intrinsic::ppc_altivec_vcmpequd: 10398 if (Subtarget.hasP8Altivec()) 10399 CompareOpc = 199; 10400 else 10401 return false; 10402 break; 10403 case Intrinsic::ppc_altivec_vcmpneb: 10404 case Intrinsic::ppc_altivec_vcmpneh: 10405 case Intrinsic::ppc_altivec_vcmpnew: 10406 case Intrinsic::ppc_altivec_vcmpnezb: 10407 case Intrinsic::ppc_altivec_vcmpnezh: 10408 case Intrinsic::ppc_altivec_vcmpnezw: 10409 if (Subtarget.hasP9Altivec()) 10410 switch (IntrinsicID) { 10411 default: 10412 llvm_unreachable("Unknown comparison intrinsic."); 10413 case Intrinsic::ppc_altivec_vcmpneb: 10414 CompareOpc = 7; 10415 break; 10416 case Intrinsic::ppc_altivec_vcmpneh: 10417 CompareOpc = 71; 10418 break; 10419 case Intrinsic::ppc_altivec_vcmpnew: 10420 CompareOpc = 135; 10421 break; 10422 case Intrinsic::ppc_altivec_vcmpnezb: 10423 CompareOpc = 263; 10424 break; 10425 case Intrinsic::ppc_altivec_vcmpnezh: 10426 CompareOpc = 327; 10427 break; 10428 case Intrinsic::ppc_altivec_vcmpnezw: 10429 CompareOpc = 391; 10430 break; 10431 } 10432 else 10433 return false; 10434 break; 10435 case Intrinsic::ppc_altivec_vcmpgefp: 10436 CompareOpc = 454; 10437 break; 10438 case Intrinsic::ppc_altivec_vcmpgtfp: 10439 CompareOpc = 710; 10440 break; 10441 case Intrinsic::ppc_altivec_vcmpgtsb: 10442 CompareOpc = 774; 10443 break; 10444 case Intrinsic::ppc_altivec_vcmpgtsh: 10445 CompareOpc = 838; 10446 break; 10447 case Intrinsic::ppc_altivec_vcmpgtsw: 10448 CompareOpc = 902; 10449 break; 10450 case Intrinsic::ppc_altivec_vcmpgtsd: 10451 if (Subtarget.hasP8Altivec()) 10452 CompareOpc = 967; 10453 else 10454 return false; 10455 break; 10456 case Intrinsic::ppc_altivec_vcmpgtub: 10457 CompareOpc = 518; 10458 break; 10459 case Intrinsic::ppc_altivec_vcmpgtuh: 10460 CompareOpc = 582; 10461 break; 10462 case Intrinsic::ppc_altivec_vcmpgtuw: 10463 CompareOpc = 646; 10464 break; 10465 case Intrinsic::ppc_altivec_vcmpgtud: 10466 if (Subtarget.hasP8Altivec()) 10467 CompareOpc = 711; 10468 else 10469 return false; 10470 break; 10471 } 10472 return true; 10473 } 10474 10475 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10476 /// lower, do it, otherwise return null. 10477 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10478 SelectionDAG &DAG) const { 10479 unsigned IntrinsicID = 10480 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10481 10482 SDLoc dl(Op); 10483 10484 if (IntrinsicID == Intrinsic::thread_pointer) { 10485 // Reads the thread pointer register, used for __builtin_thread_pointer. 10486 if (Subtarget.isPPC64()) 10487 return DAG.getRegister(PPC::X13, MVT::i64); 10488 return DAG.getRegister(PPC::R2, MVT::i32); 10489 } 10490 10491 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10492 // opcode number of the comparison. 10493 int CompareOpc; 10494 bool isDot; 10495 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10496 return SDValue(); // Don't custom lower most intrinsics. 10497 10498 // If this is a non-dot comparison, make the VCMP node and we are done. 10499 if (!isDot) { 10500 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10501 Op.getOperand(1), Op.getOperand(2), 10502 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10503 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10504 } 10505 10506 // Create the PPCISD altivec 'dot' comparison node. 10507 SDValue Ops[] = { 10508 Op.getOperand(2), // LHS 10509 Op.getOperand(3), // RHS 10510 DAG.getConstant(CompareOpc, dl, MVT::i32) 10511 }; 10512 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10513 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10514 10515 // Now that we have the comparison, emit a copy from the CR to a GPR. 10516 // This is flagged to the above dot comparison. 10517 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10518 DAG.getRegister(PPC::CR6, MVT::i32), 10519 CompNode.getValue(1)); 10520 10521 // Unpack the result based on how the target uses it. 10522 unsigned BitNo; // Bit # of CR6. 10523 bool InvertBit; // Invert result? 10524 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10525 default: // Can't happen, don't crash on invalid number though. 10526 case 0: // Return the value of the EQ bit of CR6. 10527 BitNo = 0; InvertBit = false; 10528 break; 10529 case 1: // Return the inverted value of the EQ bit of CR6. 10530 BitNo = 0; InvertBit = true; 10531 break; 10532 case 2: // Return the value of the LT bit of CR6. 10533 BitNo = 2; InvertBit = false; 10534 break; 10535 case 3: // Return the inverted value of the LT bit of CR6. 10536 BitNo = 2; InvertBit = true; 10537 break; 10538 } 10539 10540 // Shift the bit into the low position. 10541 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10542 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10543 // Isolate the bit. 10544 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10545 DAG.getConstant(1, dl, MVT::i32)); 10546 10547 // If we are supposed to, toggle the bit. 10548 if (InvertBit) 10549 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10550 DAG.getConstant(1, dl, MVT::i32)); 10551 return Flags; 10552 } 10553 10554 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10555 SelectionDAG &DAG) const { 10556 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10557 // the beginning of the argument list. 10558 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10559 SDLoc DL(Op); 10560 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10561 case Intrinsic::ppc_cfence: { 10562 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10563 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10564 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10565 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10566 Op.getOperand(ArgStart + 1)), 10567 Op.getOperand(0)), 10568 0); 10569 } 10570 default: 10571 break; 10572 } 10573 return SDValue(); 10574 } 10575 10576 // Lower scalar BSWAP64 to xxbrd. 10577 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10578 SDLoc dl(Op); 10579 // MTVSRDD 10580 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10581 Op.getOperand(0)); 10582 // XXBRD 10583 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10584 // MFVSRD 10585 int VectorIndex = 0; 10586 if (Subtarget.isLittleEndian()) 10587 VectorIndex = 1; 10588 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10589 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10590 return Op; 10591 } 10592 10593 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10594 // compared to a value that is atomically loaded (atomic loads zero-extend). 10595 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10596 SelectionDAG &DAG) const { 10597 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10598 "Expecting an atomic compare-and-swap here."); 10599 SDLoc dl(Op); 10600 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10601 EVT MemVT = AtomicNode->getMemoryVT(); 10602 if (MemVT.getSizeInBits() >= 32) 10603 return Op; 10604 10605 SDValue CmpOp = Op.getOperand(2); 10606 // If this is already correctly zero-extended, leave it alone. 10607 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10608 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10609 return Op; 10610 10611 // Clear the high bits of the compare operand. 10612 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10613 SDValue NewCmpOp = 10614 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10615 DAG.getConstant(MaskVal, dl, MVT::i32)); 10616 10617 // Replace the existing compare operand with the properly zero-extended one. 10618 SmallVector<SDValue, 4> Ops; 10619 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10620 Ops.push_back(AtomicNode->getOperand(i)); 10621 Ops[2] = NewCmpOp; 10622 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10623 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10624 auto NodeTy = 10625 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10626 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10627 } 10628 10629 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10630 SelectionDAG &DAG) const { 10631 SDLoc dl(Op); 10632 // Create a stack slot that is 16-byte aligned. 10633 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10634 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10635 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10636 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10637 10638 // Store the input value into Value#0 of the stack slot. 10639 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10640 MachinePointerInfo()); 10641 // Load it out. 10642 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10643 } 10644 10645 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10646 SelectionDAG &DAG) const { 10647 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10648 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10649 10650 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10651 // We have legal lowering for constant indices but not for variable ones. 10652 if (!C) 10653 return SDValue(); 10654 10655 EVT VT = Op.getValueType(); 10656 SDLoc dl(Op); 10657 SDValue V1 = Op.getOperand(0); 10658 SDValue V2 = Op.getOperand(1); 10659 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10660 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10661 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10662 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10663 unsigned InsertAtElement = C->getZExtValue(); 10664 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10665 if (Subtarget.isLittleEndian()) { 10666 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10667 } 10668 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10669 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10670 } 10671 return Op; 10672 } 10673 10674 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10675 SelectionDAG &DAG) const { 10676 SDLoc dl(Op); 10677 SDNode *N = Op.getNode(); 10678 10679 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10680 "Unknown extract_vector_elt type"); 10681 10682 SDValue Value = N->getOperand(0); 10683 10684 // The first part of this is like the store lowering except that we don't 10685 // need to track the chain. 10686 10687 // The values are now known to be -1 (false) or 1 (true). To convert this 10688 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10689 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10690 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10691 10692 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10693 // understand how to form the extending load. 10694 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10695 10696 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10697 10698 // Now convert to an integer and store. 10699 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10700 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10701 Value); 10702 10703 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10704 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10705 MachinePointerInfo PtrInfo = 10706 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10707 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10708 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10709 10710 SDValue StoreChain = DAG.getEntryNode(); 10711 SDValue Ops[] = {StoreChain, 10712 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10713 Value, FIdx}; 10714 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10715 10716 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10717 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10718 10719 // Extract the value requested. 10720 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10721 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10722 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10723 10724 SDValue IntVal = 10725 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10726 10727 if (!Subtarget.useCRBits()) 10728 return IntVal; 10729 10730 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10731 } 10732 10733 /// Lowering for QPX v4i1 loads 10734 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10735 SelectionDAG &DAG) const { 10736 SDLoc dl(Op); 10737 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10738 SDValue LoadChain = LN->getChain(); 10739 SDValue BasePtr = LN->getBasePtr(); 10740 10741 if (Op.getValueType() == MVT::v4f64 || 10742 Op.getValueType() == MVT::v4f32) { 10743 EVT MemVT = LN->getMemoryVT(); 10744 unsigned Alignment = LN->getAlignment(); 10745 10746 // If this load is properly aligned, then it is legal. 10747 if (Alignment >= MemVT.getStoreSize()) 10748 return Op; 10749 10750 EVT ScalarVT = Op.getValueType().getScalarType(), 10751 ScalarMemVT = MemVT.getScalarType(); 10752 unsigned Stride = ScalarMemVT.getStoreSize(); 10753 10754 SDValue Vals[4], LoadChains[4]; 10755 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10756 SDValue Load; 10757 if (ScalarVT != ScalarMemVT) 10758 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10759 BasePtr, 10760 LN->getPointerInfo().getWithOffset(Idx * Stride), 10761 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10762 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10763 else 10764 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10765 LN->getPointerInfo().getWithOffset(Idx * Stride), 10766 MinAlign(Alignment, Idx * Stride), 10767 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10768 10769 if (Idx == 0 && LN->isIndexed()) { 10770 assert(LN->getAddressingMode() == ISD::PRE_INC && 10771 "Unknown addressing mode on vector load"); 10772 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10773 LN->getAddressingMode()); 10774 } 10775 10776 Vals[Idx] = Load; 10777 LoadChains[Idx] = Load.getValue(1); 10778 10779 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10780 DAG.getConstant(Stride, dl, 10781 BasePtr.getValueType())); 10782 } 10783 10784 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10785 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10786 10787 if (LN->isIndexed()) { 10788 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10789 return DAG.getMergeValues(RetOps, dl); 10790 } 10791 10792 SDValue RetOps[] = { Value, TF }; 10793 return DAG.getMergeValues(RetOps, dl); 10794 } 10795 10796 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10797 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10798 10799 // To lower v4i1 from a byte array, we load the byte elements of the 10800 // vector and then reuse the BUILD_VECTOR logic. 10801 10802 SDValue VectElmts[4], VectElmtChains[4]; 10803 for (unsigned i = 0; i < 4; ++i) { 10804 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10805 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10806 10807 VectElmts[i] = DAG.getExtLoad( 10808 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10809 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10810 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10811 VectElmtChains[i] = VectElmts[i].getValue(1); 10812 } 10813 10814 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10815 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10816 10817 SDValue RVals[] = { Value, LoadChain }; 10818 return DAG.getMergeValues(RVals, dl); 10819 } 10820 10821 /// Lowering for QPX v4i1 stores 10822 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10823 SelectionDAG &DAG) const { 10824 SDLoc dl(Op); 10825 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10826 SDValue StoreChain = SN->getChain(); 10827 SDValue BasePtr = SN->getBasePtr(); 10828 SDValue Value = SN->getValue(); 10829 10830 if (Value.getValueType() == MVT::v4f64 || 10831 Value.getValueType() == MVT::v4f32) { 10832 EVT MemVT = SN->getMemoryVT(); 10833 unsigned Alignment = SN->getAlignment(); 10834 10835 // If this store is properly aligned, then it is legal. 10836 if (Alignment >= MemVT.getStoreSize()) 10837 return Op; 10838 10839 EVT ScalarVT = Value.getValueType().getScalarType(), 10840 ScalarMemVT = MemVT.getScalarType(); 10841 unsigned Stride = ScalarMemVT.getStoreSize(); 10842 10843 SDValue Stores[4]; 10844 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10845 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10846 DAG.getVectorIdxConstant(Idx, dl)); 10847 SDValue Store; 10848 if (ScalarVT != ScalarMemVT) 10849 Store = 10850 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10851 SN->getPointerInfo().getWithOffset(Idx * Stride), 10852 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10853 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10854 else 10855 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10856 SN->getPointerInfo().getWithOffset(Idx * Stride), 10857 MinAlign(Alignment, Idx * Stride), 10858 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10859 10860 if (Idx == 0 && SN->isIndexed()) { 10861 assert(SN->getAddressingMode() == ISD::PRE_INC && 10862 "Unknown addressing mode on vector store"); 10863 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10864 SN->getAddressingMode()); 10865 } 10866 10867 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10868 DAG.getConstant(Stride, dl, 10869 BasePtr.getValueType())); 10870 Stores[Idx] = Store; 10871 } 10872 10873 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10874 10875 if (SN->isIndexed()) { 10876 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10877 return DAG.getMergeValues(RetOps, dl); 10878 } 10879 10880 return TF; 10881 } 10882 10883 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10884 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10885 10886 // The values are now known to be -1 (false) or 1 (true). To convert this 10887 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10888 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10889 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10890 10891 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10892 // understand how to form the extending load. 10893 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10894 10895 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10896 10897 // Now convert to an integer and store. 10898 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10899 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10900 Value); 10901 10902 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10903 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10904 MachinePointerInfo PtrInfo = 10905 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10906 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10907 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10908 10909 SDValue Ops[] = {StoreChain, 10910 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10911 Value, FIdx}; 10912 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10913 10914 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10915 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10916 10917 // Move data into the byte array. 10918 SDValue Loads[4], LoadChains[4]; 10919 for (unsigned i = 0; i < 4; ++i) { 10920 unsigned Offset = 4*i; 10921 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10922 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10923 10924 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10925 PtrInfo.getWithOffset(Offset)); 10926 LoadChains[i] = Loads[i].getValue(1); 10927 } 10928 10929 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10930 10931 SDValue Stores[4]; 10932 for (unsigned i = 0; i < 4; ++i) { 10933 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10934 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10935 10936 Stores[i] = DAG.getTruncStore( 10937 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10938 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10939 SN->getAAInfo()); 10940 } 10941 10942 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10943 10944 return StoreChain; 10945 } 10946 10947 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10948 SDLoc dl(Op); 10949 if (Op.getValueType() == MVT::v4i32) { 10950 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10951 10952 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10953 // +16 as shift amt. 10954 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10955 SDValue RHSSwap = // = vrlw RHS, 16 10956 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10957 10958 // Shrinkify inputs to v8i16. 10959 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10960 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10961 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10962 10963 // Low parts multiplied together, generating 32-bit results (we ignore the 10964 // top parts). 10965 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10966 LHS, RHS, DAG, dl, MVT::v4i32); 10967 10968 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10969 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10970 // Shift the high parts up 16 bits. 10971 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10972 Neg16, DAG, dl); 10973 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10974 } else if (Op.getValueType() == MVT::v16i8) { 10975 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10976 bool isLittleEndian = Subtarget.isLittleEndian(); 10977 10978 // Multiply the even 8-bit parts, producing 16-bit sums. 10979 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10980 LHS, RHS, DAG, dl, MVT::v8i16); 10981 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10982 10983 // Multiply the odd 8-bit parts, producing 16-bit sums. 10984 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10985 LHS, RHS, DAG, dl, MVT::v8i16); 10986 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10987 10988 // Merge the results together. Because vmuleub and vmuloub are 10989 // instructions with a big-endian bias, we must reverse the 10990 // element numbering and reverse the meaning of "odd" and "even" 10991 // when generating little endian code. 10992 int Ops[16]; 10993 for (unsigned i = 0; i != 8; ++i) { 10994 if (isLittleEndian) { 10995 Ops[i*2 ] = 2*i; 10996 Ops[i*2+1] = 2*i+16; 10997 } else { 10998 Ops[i*2 ] = 2*i+1; 10999 Ops[i*2+1] = 2*i+1+16; 11000 } 11001 } 11002 if (isLittleEndian) 11003 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11004 else 11005 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11006 } else { 11007 llvm_unreachable("Unknown mul to lower!"); 11008 } 11009 } 11010 11011 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 11012 11013 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 11014 11015 EVT VT = Op.getValueType(); 11016 assert(VT.isVector() && 11017 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 11018 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 11019 VT == MVT::v16i8) && 11020 "Unexpected vector element type!"); 11021 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 11022 "Current subtarget doesn't support smax v2i64!"); 11023 11024 // For vector abs, it can be lowered to: 11025 // abs x 11026 // ==> 11027 // y = -x 11028 // smax(x, y) 11029 11030 SDLoc dl(Op); 11031 SDValue X = Op.getOperand(0); 11032 SDValue Zero = DAG.getConstant(0, dl, VT); 11033 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 11034 11035 // SMAX patch https://reviews.llvm.org/D47332 11036 // hasn't landed yet, so use intrinsic first here. 11037 // TODO: Should use SMAX directly once SMAX patch landed 11038 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 11039 if (VT == MVT::v2i64) 11040 BifID = Intrinsic::ppc_altivec_vmaxsd; 11041 else if (VT == MVT::v8i16) 11042 BifID = Intrinsic::ppc_altivec_vmaxsh; 11043 else if (VT == MVT::v16i8) 11044 BifID = Intrinsic::ppc_altivec_vmaxsb; 11045 11046 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 11047 } 11048 11049 // Custom lowering for fpext vf32 to v2f64 11050 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11051 11052 assert(Op.getOpcode() == ISD::FP_EXTEND && 11053 "Should only be called for ISD::FP_EXTEND"); 11054 11055 // FIXME: handle extends from half precision float vectors on P9. 11056 // We only want to custom lower an extend from v2f32 to v2f64. 11057 if (Op.getValueType() != MVT::v2f64 || 11058 Op.getOperand(0).getValueType() != MVT::v2f32) 11059 return SDValue(); 11060 11061 SDLoc dl(Op); 11062 SDValue Op0 = Op.getOperand(0); 11063 11064 switch (Op0.getOpcode()) { 11065 default: 11066 return SDValue(); 11067 case ISD::EXTRACT_SUBVECTOR: { 11068 assert(Op0.getNumOperands() == 2 && 11069 isa<ConstantSDNode>(Op0->getOperand(1)) && 11070 "Node should have 2 operands with second one being a constant!"); 11071 11072 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11073 return SDValue(); 11074 11075 // Custom lower is only done for high or low doubleword. 11076 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11077 if (Idx % 2 != 0) 11078 return SDValue(); 11079 11080 // Since input is v4f32, at this point Idx is either 0 or 2. 11081 // Shift to get the doubleword position we want. 11082 int DWord = Idx >> 1; 11083 11084 // High and low word positions are different on little endian. 11085 if (Subtarget.isLittleEndian()) 11086 DWord ^= 0x1; 11087 11088 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11089 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11090 } 11091 case ISD::FADD: 11092 case ISD::FMUL: 11093 case ISD::FSUB: { 11094 SDValue NewLoad[2]; 11095 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11096 // Ensure both input are loads. 11097 SDValue LdOp = Op0.getOperand(i); 11098 if (LdOp.getOpcode() != ISD::LOAD) 11099 return SDValue(); 11100 // Generate new load node. 11101 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11102 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11103 NewLoad[i] = DAG.getMemIntrinsicNode( 11104 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11105 LD->getMemoryVT(), LD->getMemOperand()); 11106 } 11107 SDValue NewOp = 11108 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11109 NewLoad[1], Op0.getNode()->getFlags()); 11110 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11111 DAG.getConstant(0, dl, MVT::i32)); 11112 } 11113 case ISD::LOAD: { 11114 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11115 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11116 SDValue NewLd = DAG.getMemIntrinsicNode( 11117 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11118 LD->getMemoryVT(), LD->getMemOperand()); 11119 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11120 DAG.getConstant(0, dl, MVT::i32)); 11121 } 11122 } 11123 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11124 } 11125 11126 /// LowerOperation - Provide custom lowering hooks for some operations. 11127 /// 11128 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11129 switch (Op.getOpcode()) { 11130 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11131 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11132 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11133 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11134 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11135 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11136 case ISD::SETCC: return LowerSETCC(Op, DAG); 11137 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11138 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11139 11140 // Variable argument lowering. 11141 case ISD::VASTART: return LowerVASTART(Op, DAG); 11142 case ISD::VAARG: return LowerVAARG(Op, DAG); 11143 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11144 11145 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11146 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11147 case ISD::GET_DYNAMIC_AREA_OFFSET: 11148 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11149 11150 // Exception handling lowering. 11151 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11152 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11153 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11154 11155 case ISD::LOAD: return LowerLOAD(Op, DAG); 11156 case ISD::STORE: return LowerSTORE(Op, DAG); 11157 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11158 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11159 case ISD::FP_TO_UINT: 11160 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11161 case ISD::UINT_TO_FP: 11162 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11163 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11164 11165 // Lower 64-bit shifts. 11166 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11167 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11168 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11169 11170 // Vector-related lowering. 11171 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11172 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11173 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11174 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11175 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 11176 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11177 case ISD::MUL: return LowerMUL(Op, DAG); 11178 case ISD::ABS: return LowerABS(Op, DAG); 11179 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11180 case ISD::ROTL: return LowerROTL(Op, DAG); 11181 11182 // For counter-based loop handling. 11183 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11184 11185 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11186 11187 // Frame & Return address. 11188 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11189 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11190 11191 case ISD::INTRINSIC_VOID: 11192 return LowerINTRINSIC_VOID(Op, DAG); 11193 case ISD::BSWAP: 11194 return LowerBSWAP(Op, DAG); 11195 case ISD::ATOMIC_CMP_SWAP: 11196 return LowerATOMIC_CMP_SWAP(Op, DAG); 11197 } 11198 } 11199 11200 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11201 SmallVectorImpl<SDValue>&Results, 11202 SelectionDAG &DAG) const { 11203 SDLoc dl(N); 11204 switch (N->getOpcode()) { 11205 default: 11206 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11207 case ISD::READCYCLECOUNTER: { 11208 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11209 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11210 11211 Results.push_back( 11212 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11213 Results.push_back(RTB.getValue(2)); 11214 break; 11215 } 11216 case ISD::INTRINSIC_W_CHAIN: { 11217 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11218 Intrinsic::loop_decrement) 11219 break; 11220 11221 assert(N->getValueType(0) == MVT::i1 && 11222 "Unexpected result type for CTR decrement intrinsic"); 11223 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11224 N->getValueType(0)); 11225 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11226 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11227 N->getOperand(1)); 11228 11229 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11230 Results.push_back(NewInt.getValue(1)); 11231 break; 11232 } 11233 case ISD::VAARG: { 11234 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11235 return; 11236 11237 EVT VT = N->getValueType(0); 11238 11239 if (VT == MVT::i64) { 11240 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11241 11242 Results.push_back(NewNode); 11243 Results.push_back(NewNode.getValue(1)); 11244 } 11245 return; 11246 } 11247 case ISD::FP_TO_SINT: 11248 case ISD::FP_TO_UINT: 11249 // LowerFP_TO_INT() can only handle f32 and f64. 11250 if (N->getOperand(0).getValueType() == MVT::ppcf128) 11251 return; 11252 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11253 return; 11254 case ISD::TRUNCATE: { 11255 EVT TrgVT = N->getValueType(0); 11256 EVT OpVT = N->getOperand(0).getValueType(); 11257 if (TrgVT.isVector() && 11258 isOperationCustom(N->getOpcode(), TrgVT) && 11259 OpVT.getSizeInBits() <= 128 && 11260 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 11261 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 11262 return; 11263 } 11264 case ISD::BITCAST: 11265 // Don't handle bitcast here. 11266 return; 11267 case ISD::FP_EXTEND: 11268 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11269 if (Lowered) 11270 Results.push_back(Lowered); 11271 return; 11272 } 11273 } 11274 11275 //===----------------------------------------------------------------------===// 11276 // Other Lowering Code 11277 //===----------------------------------------------------------------------===// 11278 11279 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11280 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11281 Function *Func = Intrinsic::getDeclaration(M, Id); 11282 return Builder.CreateCall(Func, {}); 11283 } 11284 11285 // The mappings for emitLeading/TrailingFence is taken from 11286 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11287 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11288 Instruction *Inst, 11289 AtomicOrdering Ord) const { 11290 if (Ord == AtomicOrdering::SequentiallyConsistent) 11291 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11292 if (isReleaseOrStronger(Ord)) 11293 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11294 return nullptr; 11295 } 11296 11297 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11298 Instruction *Inst, 11299 AtomicOrdering Ord) const { 11300 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11301 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11302 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11303 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11304 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11305 return Builder.CreateCall( 11306 Intrinsic::getDeclaration( 11307 Builder.GetInsertBlock()->getParent()->getParent(), 11308 Intrinsic::ppc_cfence, {Inst->getType()}), 11309 {Inst}); 11310 // FIXME: Can use isync for rmw operation. 11311 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11312 } 11313 return nullptr; 11314 } 11315 11316 MachineBasicBlock * 11317 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11318 unsigned AtomicSize, 11319 unsigned BinOpcode, 11320 unsigned CmpOpcode, 11321 unsigned CmpPred) const { 11322 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11323 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11324 11325 auto LoadMnemonic = PPC::LDARX; 11326 auto StoreMnemonic = PPC::STDCX; 11327 switch (AtomicSize) { 11328 default: 11329 llvm_unreachable("Unexpected size of atomic entity"); 11330 case 1: 11331 LoadMnemonic = PPC::LBARX; 11332 StoreMnemonic = PPC::STBCX; 11333 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11334 break; 11335 case 2: 11336 LoadMnemonic = PPC::LHARX; 11337 StoreMnemonic = PPC::STHCX; 11338 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11339 break; 11340 case 4: 11341 LoadMnemonic = PPC::LWARX; 11342 StoreMnemonic = PPC::STWCX; 11343 break; 11344 case 8: 11345 LoadMnemonic = PPC::LDARX; 11346 StoreMnemonic = PPC::STDCX; 11347 break; 11348 } 11349 11350 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11351 MachineFunction *F = BB->getParent(); 11352 MachineFunction::iterator It = ++BB->getIterator(); 11353 11354 Register dest = MI.getOperand(0).getReg(); 11355 Register ptrA = MI.getOperand(1).getReg(); 11356 Register ptrB = MI.getOperand(2).getReg(); 11357 Register incr = MI.getOperand(3).getReg(); 11358 DebugLoc dl = MI.getDebugLoc(); 11359 11360 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11361 MachineBasicBlock *loop2MBB = 11362 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11363 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11364 F->insert(It, loopMBB); 11365 if (CmpOpcode) 11366 F->insert(It, loop2MBB); 11367 F->insert(It, exitMBB); 11368 exitMBB->splice(exitMBB->begin(), BB, 11369 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11370 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11371 11372 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11373 Register TmpReg = (!BinOpcode) ? incr : 11374 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11375 : &PPC::GPRCRegClass); 11376 11377 // thisMBB: 11378 // ... 11379 // fallthrough --> loopMBB 11380 BB->addSuccessor(loopMBB); 11381 11382 // loopMBB: 11383 // l[wd]arx dest, ptr 11384 // add r0, dest, incr 11385 // st[wd]cx. r0, ptr 11386 // bne- loopMBB 11387 // fallthrough --> exitMBB 11388 11389 // For max/min... 11390 // loopMBB: 11391 // l[wd]arx dest, ptr 11392 // cmpl?[wd] incr, dest 11393 // bgt exitMBB 11394 // loop2MBB: 11395 // st[wd]cx. dest, ptr 11396 // bne- loopMBB 11397 // fallthrough --> exitMBB 11398 11399 BB = loopMBB; 11400 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11401 .addReg(ptrA).addReg(ptrB); 11402 if (BinOpcode) 11403 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11404 if (CmpOpcode) { 11405 // Signed comparisons of byte or halfword values must be sign-extended. 11406 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11407 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11408 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11409 ExtReg).addReg(dest); 11410 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11411 .addReg(incr).addReg(ExtReg); 11412 } else 11413 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11414 .addReg(incr).addReg(dest); 11415 11416 BuildMI(BB, dl, TII->get(PPC::BCC)) 11417 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11418 BB->addSuccessor(loop2MBB); 11419 BB->addSuccessor(exitMBB); 11420 BB = loop2MBB; 11421 } 11422 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11423 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11424 BuildMI(BB, dl, TII->get(PPC::BCC)) 11425 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11426 BB->addSuccessor(loopMBB); 11427 BB->addSuccessor(exitMBB); 11428 11429 // exitMBB: 11430 // ... 11431 BB = exitMBB; 11432 return BB; 11433 } 11434 11435 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11436 MachineInstr &MI, MachineBasicBlock *BB, 11437 bool is8bit, // operation 11438 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11439 // If we support part-word atomic mnemonics, just use them 11440 if (Subtarget.hasPartwordAtomics()) 11441 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11442 CmpPred); 11443 11444 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11445 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11446 // In 64 bit mode we have to use 64 bits for addresses, even though the 11447 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11448 // registers without caring whether they're 32 or 64, but here we're 11449 // doing actual arithmetic on the addresses. 11450 bool is64bit = Subtarget.isPPC64(); 11451 bool isLittleEndian = Subtarget.isLittleEndian(); 11452 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11453 11454 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11455 MachineFunction *F = BB->getParent(); 11456 MachineFunction::iterator It = ++BB->getIterator(); 11457 11458 Register dest = MI.getOperand(0).getReg(); 11459 Register ptrA = MI.getOperand(1).getReg(); 11460 Register ptrB = MI.getOperand(2).getReg(); 11461 Register incr = MI.getOperand(3).getReg(); 11462 DebugLoc dl = MI.getDebugLoc(); 11463 11464 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11465 MachineBasicBlock *loop2MBB = 11466 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11467 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11468 F->insert(It, loopMBB); 11469 if (CmpOpcode) 11470 F->insert(It, loop2MBB); 11471 F->insert(It, exitMBB); 11472 exitMBB->splice(exitMBB->begin(), BB, 11473 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11474 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11475 11476 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11477 const TargetRegisterClass *RC = 11478 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11479 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11480 11481 Register PtrReg = RegInfo.createVirtualRegister(RC); 11482 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11483 Register ShiftReg = 11484 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11485 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11486 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11487 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11488 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11489 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11490 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11491 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11492 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11493 Register Ptr1Reg; 11494 Register TmpReg = 11495 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11496 11497 // thisMBB: 11498 // ... 11499 // fallthrough --> loopMBB 11500 BB->addSuccessor(loopMBB); 11501 11502 // The 4-byte load must be aligned, while a char or short may be 11503 // anywhere in the word. Hence all this nasty bookkeeping code. 11504 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11505 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11506 // xori shift, shift1, 24 [16] 11507 // rlwinm ptr, ptr1, 0, 0, 29 11508 // slw incr2, incr, shift 11509 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11510 // slw mask, mask2, shift 11511 // loopMBB: 11512 // lwarx tmpDest, ptr 11513 // add tmp, tmpDest, incr2 11514 // andc tmp2, tmpDest, mask 11515 // and tmp3, tmp, mask 11516 // or tmp4, tmp3, tmp2 11517 // stwcx. tmp4, ptr 11518 // bne- loopMBB 11519 // fallthrough --> exitMBB 11520 // srw dest, tmpDest, shift 11521 if (ptrA != ZeroReg) { 11522 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11523 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11524 .addReg(ptrA) 11525 .addReg(ptrB); 11526 } else { 11527 Ptr1Reg = ptrB; 11528 } 11529 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11530 // mode. 11531 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11532 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11533 .addImm(3) 11534 .addImm(27) 11535 .addImm(is8bit ? 28 : 27); 11536 if (!isLittleEndian) 11537 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11538 .addReg(Shift1Reg) 11539 .addImm(is8bit ? 24 : 16); 11540 if (is64bit) 11541 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11542 .addReg(Ptr1Reg) 11543 .addImm(0) 11544 .addImm(61); 11545 else 11546 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11547 .addReg(Ptr1Reg) 11548 .addImm(0) 11549 .addImm(0) 11550 .addImm(29); 11551 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11552 if (is8bit) 11553 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11554 else { 11555 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11556 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11557 .addReg(Mask3Reg) 11558 .addImm(65535); 11559 } 11560 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11561 .addReg(Mask2Reg) 11562 .addReg(ShiftReg); 11563 11564 BB = loopMBB; 11565 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11566 .addReg(ZeroReg) 11567 .addReg(PtrReg); 11568 if (BinOpcode) 11569 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11570 .addReg(Incr2Reg) 11571 .addReg(TmpDestReg); 11572 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11573 .addReg(TmpDestReg) 11574 .addReg(MaskReg); 11575 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11576 if (CmpOpcode) { 11577 // For unsigned comparisons, we can directly compare the shifted values. 11578 // For signed comparisons we shift and sign extend. 11579 Register SReg = RegInfo.createVirtualRegister(GPRC); 11580 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11581 .addReg(TmpDestReg) 11582 .addReg(MaskReg); 11583 unsigned ValueReg = SReg; 11584 unsigned CmpReg = Incr2Reg; 11585 if (CmpOpcode == PPC::CMPW) { 11586 ValueReg = RegInfo.createVirtualRegister(GPRC); 11587 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11588 .addReg(SReg) 11589 .addReg(ShiftReg); 11590 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11591 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11592 .addReg(ValueReg); 11593 ValueReg = ValueSReg; 11594 CmpReg = incr; 11595 } 11596 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11597 .addReg(CmpReg) 11598 .addReg(ValueReg); 11599 BuildMI(BB, dl, TII->get(PPC::BCC)) 11600 .addImm(CmpPred) 11601 .addReg(PPC::CR0) 11602 .addMBB(exitMBB); 11603 BB->addSuccessor(loop2MBB); 11604 BB->addSuccessor(exitMBB); 11605 BB = loop2MBB; 11606 } 11607 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11608 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11609 .addReg(Tmp4Reg) 11610 .addReg(ZeroReg) 11611 .addReg(PtrReg); 11612 BuildMI(BB, dl, TII->get(PPC::BCC)) 11613 .addImm(PPC::PRED_NE) 11614 .addReg(PPC::CR0) 11615 .addMBB(loopMBB); 11616 BB->addSuccessor(loopMBB); 11617 BB->addSuccessor(exitMBB); 11618 11619 // exitMBB: 11620 // ... 11621 BB = exitMBB; 11622 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11623 .addReg(TmpDestReg) 11624 .addReg(ShiftReg); 11625 return BB; 11626 } 11627 11628 llvm::MachineBasicBlock * 11629 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11630 MachineBasicBlock *MBB) const { 11631 DebugLoc DL = MI.getDebugLoc(); 11632 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11633 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11634 11635 MachineFunction *MF = MBB->getParent(); 11636 MachineRegisterInfo &MRI = MF->getRegInfo(); 11637 11638 const BasicBlock *BB = MBB->getBasicBlock(); 11639 MachineFunction::iterator I = ++MBB->getIterator(); 11640 11641 Register DstReg = MI.getOperand(0).getReg(); 11642 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11643 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11644 Register mainDstReg = MRI.createVirtualRegister(RC); 11645 Register restoreDstReg = MRI.createVirtualRegister(RC); 11646 11647 MVT PVT = getPointerTy(MF->getDataLayout()); 11648 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11649 "Invalid Pointer Size!"); 11650 // For v = setjmp(buf), we generate 11651 // 11652 // thisMBB: 11653 // SjLjSetup mainMBB 11654 // bl mainMBB 11655 // v_restore = 1 11656 // b sinkMBB 11657 // 11658 // mainMBB: 11659 // buf[LabelOffset] = LR 11660 // v_main = 0 11661 // 11662 // sinkMBB: 11663 // v = phi(main, restore) 11664 // 11665 11666 MachineBasicBlock *thisMBB = MBB; 11667 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11668 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11669 MF->insert(I, mainMBB); 11670 MF->insert(I, sinkMBB); 11671 11672 MachineInstrBuilder MIB; 11673 11674 // Transfer the remainder of BB and its successor edges to sinkMBB. 11675 sinkMBB->splice(sinkMBB->begin(), MBB, 11676 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11677 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11678 11679 // Note that the structure of the jmp_buf used here is not compatible 11680 // with that used by libc, and is not designed to be. Specifically, it 11681 // stores only those 'reserved' registers that LLVM does not otherwise 11682 // understand how to spill. Also, by convention, by the time this 11683 // intrinsic is called, Clang has already stored the frame address in the 11684 // first slot of the buffer and stack address in the third. Following the 11685 // X86 target code, we'll store the jump address in the second slot. We also 11686 // need to save the TOC pointer (R2) to handle jumps between shared 11687 // libraries, and that will be stored in the fourth slot. The thread 11688 // identifier (R13) is not affected. 11689 11690 // thisMBB: 11691 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11692 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11693 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11694 11695 // Prepare IP either in reg. 11696 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11697 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11698 Register BufReg = MI.getOperand(1).getReg(); 11699 11700 if (Subtarget.is64BitELFABI()) { 11701 setUsesTOCBasePtr(*MBB->getParent()); 11702 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11703 .addReg(PPC::X2) 11704 .addImm(TOCOffset) 11705 .addReg(BufReg) 11706 .cloneMemRefs(MI); 11707 } 11708 11709 // Naked functions never have a base pointer, and so we use r1. For all 11710 // other functions, this decision must be delayed until during PEI. 11711 unsigned BaseReg; 11712 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11713 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11714 else 11715 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11716 11717 MIB = BuildMI(*thisMBB, MI, DL, 11718 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11719 .addReg(BaseReg) 11720 .addImm(BPOffset) 11721 .addReg(BufReg) 11722 .cloneMemRefs(MI); 11723 11724 // Setup 11725 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11726 MIB.addRegMask(TRI->getNoPreservedMask()); 11727 11728 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11729 11730 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11731 .addMBB(mainMBB); 11732 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11733 11734 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11735 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11736 11737 // mainMBB: 11738 // mainDstReg = 0 11739 MIB = 11740 BuildMI(mainMBB, DL, 11741 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11742 11743 // Store IP 11744 if (Subtarget.isPPC64()) { 11745 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11746 .addReg(LabelReg) 11747 .addImm(LabelOffset) 11748 .addReg(BufReg); 11749 } else { 11750 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11751 .addReg(LabelReg) 11752 .addImm(LabelOffset) 11753 .addReg(BufReg); 11754 } 11755 MIB.cloneMemRefs(MI); 11756 11757 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11758 mainMBB->addSuccessor(sinkMBB); 11759 11760 // sinkMBB: 11761 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11762 TII->get(PPC::PHI), DstReg) 11763 .addReg(mainDstReg).addMBB(mainMBB) 11764 .addReg(restoreDstReg).addMBB(thisMBB); 11765 11766 MI.eraseFromParent(); 11767 return sinkMBB; 11768 } 11769 11770 MachineBasicBlock * 11771 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11772 MachineBasicBlock *MBB) const { 11773 DebugLoc DL = MI.getDebugLoc(); 11774 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11775 11776 MachineFunction *MF = MBB->getParent(); 11777 MachineRegisterInfo &MRI = MF->getRegInfo(); 11778 11779 MVT PVT = getPointerTy(MF->getDataLayout()); 11780 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11781 "Invalid Pointer Size!"); 11782 11783 const TargetRegisterClass *RC = 11784 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11785 Register Tmp = MRI.createVirtualRegister(RC); 11786 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11787 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11788 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11789 unsigned BP = 11790 (PVT == MVT::i64) 11791 ? PPC::X30 11792 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11793 : PPC::R30); 11794 11795 MachineInstrBuilder MIB; 11796 11797 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11798 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11799 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11800 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11801 11802 Register BufReg = MI.getOperand(0).getReg(); 11803 11804 // Reload FP (the jumped-to function may not have had a 11805 // frame pointer, and if so, then its r31 will be restored 11806 // as necessary). 11807 if (PVT == MVT::i64) { 11808 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11809 .addImm(0) 11810 .addReg(BufReg); 11811 } else { 11812 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11813 .addImm(0) 11814 .addReg(BufReg); 11815 } 11816 MIB.cloneMemRefs(MI); 11817 11818 // Reload IP 11819 if (PVT == MVT::i64) { 11820 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11821 .addImm(LabelOffset) 11822 .addReg(BufReg); 11823 } else { 11824 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11825 .addImm(LabelOffset) 11826 .addReg(BufReg); 11827 } 11828 MIB.cloneMemRefs(MI); 11829 11830 // Reload SP 11831 if (PVT == MVT::i64) { 11832 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11833 .addImm(SPOffset) 11834 .addReg(BufReg); 11835 } else { 11836 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11837 .addImm(SPOffset) 11838 .addReg(BufReg); 11839 } 11840 MIB.cloneMemRefs(MI); 11841 11842 // Reload BP 11843 if (PVT == MVT::i64) { 11844 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11845 .addImm(BPOffset) 11846 .addReg(BufReg); 11847 } else { 11848 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11849 .addImm(BPOffset) 11850 .addReg(BufReg); 11851 } 11852 MIB.cloneMemRefs(MI); 11853 11854 // Reload TOC 11855 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11856 setUsesTOCBasePtr(*MBB->getParent()); 11857 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11858 .addImm(TOCOffset) 11859 .addReg(BufReg) 11860 .cloneMemRefs(MI); 11861 } 11862 11863 // Jump 11864 BuildMI(*MBB, MI, DL, 11865 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11866 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11867 11868 MI.eraseFromParent(); 11869 return MBB; 11870 } 11871 11872 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11873 // If the function specifically requests inline stack probes, emit them. 11874 if (MF.getFunction().hasFnAttribute("probe-stack")) 11875 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11876 "inline-asm"; 11877 return false; 11878 } 11879 11880 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11881 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11882 unsigned StackAlign = TFI->getStackAlignment(); 11883 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11884 "Unexpected stack alignment"); 11885 // The default stack probe size is 4096 if the function has no 11886 // stack-probe-size attribute. 11887 unsigned StackProbeSize = 4096; 11888 const Function &Fn = MF.getFunction(); 11889 if (Fn.hasFnAttribute("stack-probe-size")) 11890 Fn.getFnAttribute("stack-probe-size") 11891 .getValueAsString() 11892 .getAsInteger(0, StackProbeSize); 11893 // Round down to the stack alignment. 11894 StackProbeSize &= ~(StackAlign - 1); 11895 return StackProbeSize ? StackProbeSize : StackAlign; 11896 } 11897 11898 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11899 // into three phases. In the first phase, it uses pseudo instruction 11900 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11901 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11902 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11903 // MaxCallFrameSize so that it can calculate correct data area pointer. 11904 MachineBasicBlock * 11905 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11906 MachineBasicBlock *MBB) const { 11907 const bool isPPC64 = Subtarget.isPPC64(); 11908 MachineFunction *MF = MBB->getParent(); 11909 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11910 DebugLoc DL = MI.getDebugLoc(); 11911 const unsigned ProbeSize = getStackProbeSize(*MF); 11912 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11913 MachineRegisterInfo &MRI = MF->getRegInfo(); 11914 // The CFG of probing stack looks as 11915 // +-----+ 11916 // | MBB | 11917 // +--+--+ 11918 // | 11919 // +----v----+ 11920 // +--->+ TestMBB +---+ 11921 // | +----+----+ | 11922 // | | | 11923 // | +-----v----+ | 11924 // +---+ BlockMBB | | 11925 // +----------+ | 11926 // | 11927 // +---------+ | 11928 // | TailMBB +<--+ 11929 // +---------+ 11930 // In MBB, calculate previous frame pointer and final stack pointer. 11931 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11932 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11933 // TailMBB is spliced via \p MI. 11934 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11935 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11936 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11937 11938 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11939 MF->insert(MBBIter, TestMBB); 11940 MF->insert(MBBIter, BlockMBB); 11941 MF->insert(MBBIter, TailMBB); 11942 11943 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11944 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11945 11946 Register DstReg = MI.getOperand(0).getReg(); 11947 Register NegSizeReg = MI.getOperand(1).getReg(); 11948 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11949 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11950 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11951 11952 // Get the canonical FinalStackPtr like what 11953 // PPCRegisterInfo::lowerDynamicAlloc does. 11954 BuildMI(*MBB, {MI}, DL, 11955 TII->get(isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 11956 : PPC::PREPARE_PROBED_ALLOCA_32), 11957 FramePointer) 11958 .addDef(FinalStackPtr) 11959 .addReg(NegSizeReg) 11960 .add(MI.getOperand(2)) 11961 .add(MI.getOperand(3)); 11962 11963 // Materialize a scratch register for update. 11964 int64_t NegProbeSize = -(int64_t)ProbeSize; 11965 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11966 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11967 if (!isInt<16>(NegProbeSize)) { 11968 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11969 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11970 .addImm(NegProbeSize >> 16); 11971 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11972 ScratchReg) 11973 .addReg(TempReg) 11974 .addImm(NegProbeSize & 0xFFFF); 11975 } else 11976 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11977 .addImm(NegProbeSize); 11978 11979 { 11980 // Probing leading residual part. 11981 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11982 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11983 .addReg(NegSizeReg) 11984 .addReg(ScratchReg); 11985 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11986 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11987 .addReg(Div) 11988 .addReg(ScratchReg); 11989 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11990 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11991 .addReg(Mul) 11992 .addReg(NegSizeReg); 11993 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11994 .addReg(FramePointer) 11995 .addReg(SPReg) 11996 .addReg(NegMod); 11997 } 11998 11999 { 12000 // Remaining part should be multiple of ProbeSize. 12001 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12002 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12003 .addReg(SPReg) 12004 .addReg(FinalStackPtr); 12005 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12006 .addImm(PPC::PRED_EQ) 12007 .addReg(CmpResult) 12008 .addMBB(TailMBB); 12009 TestMBB->addSuccessor(BlockMBB); 12010 TestMBB->addSuccessor(TailMBB); 12011 } 12012 12013 { 12014 // Touch the block. 12015 // |P...|P...|P... 12016 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12017 .addReg(FramePointer) 12018 .addReg(SPReg) 12019 .addReg(ScratchReg); 12020 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12021 BlockMBB->addSuccessor(TestMBB); 12022 } 12023 12024 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12025 // DYNAREAOFFSET pseudo instruction to get the future result. 12026 Register MaxCallFrameSizeReg = 12027 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12028 BuildMI(TailMBB, DL, 12029 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12030 MaxCallFrameSizeReg) 12031 .add(MI.getOperand(2)) 12032 .add(MI.getOperand(3)); 12033 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12034 .addReg(SPReg) 12035 .addReg(MaxCallFrameSizeReg); 12036 12037 // Splice instructions after MI to TailMBB. 12038 TailMBB->splice(TailMBB->end(), MBB, 12039 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12040 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12041 MBB->addSuccessor(TestMBB); 12042 12043 // Delete the pseudo instruction. 12044 MI.eraseFromParent(); 12045 12046 ++NumDynamicAllocaProbed; 12047 return TailMBB; 12048 } 12049 12050 MachineBasicBlock * 12051 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12052 MachineBasicBlock *BB) const { 12053 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12054 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12055 if (Subtarget.is64BitELFABI() && 12056 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12057 !Subtarget.isUsingPCRelativeCalls()) { 12058 // Call lowering should have added an r2 operand to indicate a dependence 12059 // on the TOC base pointer value. It can't however, because there is no 12060 // way to mark the dependence as implicit there, and so the stackmap code 12061 // will confuse it with a regular operand. Instead, add the dependence 12062 // here. 12063 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12064 } 12065 12066 return emitPatchPoint(MI, BB); 12067 } 12068 12069 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12070 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12071 return emitEHSjLjSetJmp(MI, BB); 12072 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12073 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12074 return emitEHSjLjLongJmp(MI, BB); 12075 } 12076 12077 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12078 12079 // To "insert" these instructions we actually have to insert their 12080 // control-flow patterns. 12081 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12082 MachineFunction::iterator It = ++BB->getIterator(); 12083 12084 MachineFunction *F = BB->getParent(); 12085 12086 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12087 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12088 MI.getOpcode() == PPC::SELECT_I8) { 12089 SmallVector<MachineOperand, 2> Cond; 12090 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12091 MI.getOpcode() == PPC::SELECT_CC_I8) 12092 Cond.push_back(MI.getOperand(4)); 12093 else 12094 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12095 Cond.push_back(MI.getOperand(1)); 12096 12097 DebugLoc dl = MI.getDebugLoc(); 12098 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12099 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12100 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12101 MI.getOpcode() == PPC::SELECT_CC_F8 || 12102 MI.getOpcode() == PPC::SELECT_CC_F16 || 12103 MI.getOpcode() == PPC::SELECT_CC_QFRC || 12104 MI.getOpcode() == PPC::SELECT_CC_QSRC || 12105 MI.getOpcode() == PPC::SELECT_CC_QBRC || 12106 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12107 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12108 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12109 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12110 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12111 MI.getOpcode() == PPC::SELECT_CC_SPE || 12112 MI.getOpcode() == PPC::SELECT_F4 || 12113 MI.getOpcode() == PPC::SELECT_F8 || 12114 MI.getOpcode() == PPC::SELECT_F16 || 12115 MI.getOpcode() == PPC::SELECT_QFRC || 12116 MI.getOpcode() == PPC::SELECT_QSRC || 12117 MI.getOpcode() == PPC::SELECT_QBRC || 12118 MI.getOpcode() == PPC::SELECT_SPE || 12119 MI.getOpcode() == PPC::SELECT_SPE4 || 12120 MI.getOpcode() == PPC::SELECT_VRRC || 12121 MI.getOpcode() == PPC::SELECT_VSFRC || 12122 MI.getOpcode() == PPC::SELECT_VSSRC || 12123 MI.getOpcode() == PPC::SELECT_VSRC) { 12124 // The incoming instruction knows the destination vreg to set, the 12125 // condition code register to branch on, the true/false values to 12126 // select between, and a branch opcode to use. 12127 12128 // thisMBB: 12129 // ... 12130 // TrueVal = ... 12131 // cmpTY ccX, r1, r2 12132 // bCC copy1MBB 12133 // fallthrough --> copy0MBB 12134 MachineBasicBlock *thisMBB = BB; 12135 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12136 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12137 DebugLoc dl = MI.getDebugLoc(); 12138 F->insert(It, copy0MBB); 12139 F->insert(It, sinkMBB); 12140 12141 // Transfer the remainder of BB and its successor edges to sinkMBB. 12142 sinkMBB->splice(sinkMBB->begin(), BB, 12143 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12144 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12145 12146 // Next, add the true and fallthrough blocks as its successors. 12147 BB->addSuccessor(copy0MBB); 12148 BB->addSuccessor(sinkMBB); 12149 12150 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12151 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12152 MI.getOpcode() == PPC::SELECT_F16 || 12153 MI.getOpcode() == PPC::SELECT_SPE4 || 12154 MI.getOpcode() == PPC::SELECT_SPE || 12155 MI.getOpcode() == PPC::SELECT_QFRC || 12156 MI.getOpcode() == PPC::SELECT_QSRC || 12157 MI.getOpcode() == PPC::SELECT_QBRC || 12158 MI.getOpcode() == PPC::SELECT_VRRC || 12159 MI.getOpcode() == PPC::SELECT_VSFRC || 12160 MI.getOpcode() == PPC::SELECT_VSSRC || 12161 MI.getOpcode() == PPC::SELECT_VSRC) { 12162 BuildMI(BB, dl, TII->get(PPC::BC)) 12163 .addReg(MI.getOperand(1).getReg()) 12164 .addMBB(sinkMBB); 12165 } else { 12166 unsigned SelectPred = MI.getOperand(4).getImm(); 12167 BuildMI(BB, dl, TII->get(PPC::BCC)) 12168 .addImm(SelectPred) 12169 .addReg(MI.getOperand(1).getReg()) 12170 .addMBB(sinkMBB); 12171 } 12172 12173 // copy0MBB: 12174 // %FalseValue = ... 12175 // # fallthrough to sinkMBB 12176 BB = copy0MBB; 12177 12178 // Update machine-CFG edges 12179 BB->addSuccessor(sinkMBB); 12180 12181 // sinkMBB: 12182 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12183 // ... 12184 BB = sinkMBB; 12185 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12186 .addReg(MI.getOperand(3).getReg()) 12187 .addMBB(copy0MBB) 12188 .addReg(MI.getOperand(2).getReg()) 12189 .addMBB(thisMBB); 12190 } else if (MI.getOpcode() == PPC::ReadTB) { 12191 // To read the 64-bit time-base register on a 32-bit target, we read the 12192 // two halves. Should the counter have wrapped while it was being read, we 12193 // need to try again. 12194 // ... 12195 // readLoop: 12196 // mfspr Rx,TBU # load from TBU 12197 // mfspr Ry,TB # load from TB 12198 // mfspr Rz,TBU # load from TBU 12199 // cmpw crX,Rx,Rz # check if 'old'='new' 12200 // bne readLoop # branch if they're not equal 12201 // ... 12202 12203 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12204 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12205 DebugLoc dl = MI.getDebugLoc(); 12206 F->insert(It, readMBB); 12207 F->insert(It, sinkMBB); 12208 12209 // Transfer the remainder of BB and its successor edges to sinkMBB. 12210 sinkMBB->splice(sinkMBB->begin(), BB, 12211 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12212 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12213 12214 BB->addSuccessor(readMBB); 12215 BB = readMBB; 12216 12217 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12218 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12219 Register LoReg = MI.getOperand(0).getReg(); 12220 Register HiReg = MI.getOperand(1).getReg(); 12221 12222 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12223 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12224 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12225 12226 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12227 12228 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12229 .addReg(HiReg) 12230 .addReg(ReadAgainReg); 12231 BuildMI(BB, dl, TII->get(PPC::BCC)) 12232 .addImm(PPC::PRED_NE) 12233 .addReg(CmpReg) 12234 .addMBB(readMBB); 12235 12236 BB->addSuccessor(readMBB); 12237 BB->addSuccessor(sinkMBB); 12238 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12239 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12240 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12241 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12242 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12243 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12244 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12245 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12246 12247 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12248 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12249 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12250 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12251 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12252 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12253 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12254 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12255 12256 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12257 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12258 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12259 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12260 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12261 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12262 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12263 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12264 12265 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12266 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12267 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12268 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12269 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12270 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12271 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12272 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12273 12274 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12275 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12276 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12277 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12278 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12279 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12281 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12282 12283 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12284 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12285 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12286 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12287 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12288 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12290 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12291 12292 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12293 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12294 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12295 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12296 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12297 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12299 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12300 12301 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12302 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12303 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12304 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12305 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12306 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12307 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12308 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12309 12310 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12311 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12312 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12313 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12314 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12315 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12316 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12317 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12318 12319 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12320 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12321 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12322 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12323 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12324 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12325 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12326 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12327 12328 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12329 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12330 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12331 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12332 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12333 BB = EmitAtomicBinary(MI, BB, 4, 0); 12334 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12335 BB = EmitAtomicBinary(MI, BB, 8, 0); 12336 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12337 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12338 (Subtarget.hasPartwordAtomics() && 12339 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12340 (Subtarget.hasPartwordAtomics() && 12341 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12342 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12343 12344 auto LoadMnemonic = PPC::LDARX; 12345 auto StoreMnemonic = PPC::STDCX; 12346 switch (MI.getOpcode()) { 12347 default: 12348 llvm_unreachable("Compare and swap of unknown size"); 12349 case PPC::ATOMIC_CMP_SWAP_I8: 12350 LoadMnemonic = PPC::LBARX; 12351 StoreMnemonic = PPC::STBCX; 12352 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12353 break; 12354 case PPC::ATOMIC_CMP_SWAP_I16: 12355 LoadMnemonic = PPC::LHARX; 12356 StoreMnemonic = PPC::STHCX; 12357 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12358 break; 12359 case PPC::ATOMIC_CMP_SWAP_I32: 12360 LoadMnemonic = PPC::LWARX; 12361 StoreMnemonic = PPC::STWCX; 12362 break; 12363 case PPC::ATOMIC_CMP_SWAP_I64: 12364 LoadMnemonic = PPC::LDARX; 12365 StoreMnemonic = PPC::STDCX; 12366 break; 12367 } 12368 Register dest = MI.getOperand(0).getReg(); 12369 Register ptrA = MI.getOperand(1).getReg(); 12370 Register ptrB = MI.getOperand(2).getReg(); 12371 Register oldval = MI.getOperand(3).getReg(); 12372 Register newval = MI.getOperand(4).getReg(); 12373 DebugLoc dl = MI.getDebugLoc(); 12374 12375 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12376 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12377 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12378 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12379 F->insert(It, loop1MBB); 12380 F->insert(It, loop2MBB); 12381 F->insert(It, midMBB); 12382 F->insert(It, exitMBB); 12383 exitMBB->splice(exitMBB->begin(), BB, 12384 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12385 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12386 12387 // thisMBB: 12388 // ... 12389 // fallthrough --> loopMBB 12390 BB->addSuccessor(loop1MBB); 12391 12392 // loop1MBB: 12393 // l[bhwd]arx dest, ptr 12394 // cmp[wd] dest, oldval 12395 // bne- midMBB 12396 // loop2MBB: 12397 // st[bhwd]cx. newval, ptr 12398 // bne- loopMBB 12399 // b exitBB 12400 // midMBB: 12401 // st[bhwd]cx. dest, ptr 12402 // exitBB: 12403 BB = loop1MBB; 12404 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12405 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12406 .addReg(oldval) 12407 .addReg(dest); 12408 BuildMI(BB, dl, TII->get(PPC::BCC)) 12409 .addImm(PPC::PRED_NE) 12410 .addReg(PPC::CR0) 12411 .addMBB(midMBB); 12412 BB->addSuccessor(loop2MBB); 12413 BB->addSuccessor(midMBB); 12414 12415 BB = loop2MBB; 12416 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12417 .addReg(newval) 12418 .addReg(ptrA) 12419 .addReg(ptrB); 12420 BuildMI(BB, dl, TII->get(PPC::BCC)) 12421 .addImm(PPC::PRED_NE) 12422 .addReg(PPC::CR0) 12423 .addMBB(loop1MBB); 12424 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12425 BB->addSuccessor(loop1MBB); 12426 BB->addSuccessor(exitMBB); 12427 12428 BB = midMBB; 12429 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12430 .addReg(dest) 12431 .addReg(ptrA) 12432 .addReg(ptrB); 12433 BB->addSuccessor(exitMBB); 12434 12435 // exitMBB: 12436 // ... 12437 BB = exitMBB; 12438 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12439 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12440 // We must use 64-bit registers for addresses when targeting 64-bit, 12441 // since we're actually doing arithmetic on them. Other registers 12442 // can be 32-bit. 12443 bool is64bit = Subtarget.isPPC64(); 12444 bool isLittleEndian = Subtarget.isLittleEndian(); 12445 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12446 12447 Register dest = MI.getOperand(0).getReg(); 12448 Register ptrA = MI.getOperand(1).getReg(); 12449 Register ptrB = MI.getOperand(2).getReg(); 12450 Register oldval = MI.getOperand(3).getReg(); 12451 Register newval = MI.getOperand(4).getReg(); 12452 DebugLoc dl = MI.getDebugLoc(); 12453 12454 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12455 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12456 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12457 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12458 F->insert(It, loop1MBB); 12459 F->insert(It, loop2MBB); 12460 F->insert(It, midMBB); 12461 F->insert(It, exitMBB); 12462 exitMBB->splice(exitMBB->begin(), BB, 12463 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12464 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12465 12466 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12467 const TargetRegisterClass *RC = 12468 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12469 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12470 12471 Register PtrReg = RegInfo.createVirtualRegister(RC); 12472 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12473 Register ShiftReg = 12474 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12475 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12476 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12477 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12478 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12479 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12480 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12481 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12482 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12483 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12484 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12485 Register Ptr1Reg; 12486 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12487 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12488 // thisMBB: 12489 // ... 12490 // fallthrough --> loopMBB 12491 BB->addSuccessor(loop1MBB); 12492 12493 // The 4-byte load must be aligned, while a char or short may be 12494 // anywhere in the word. Hence all this nasty bookkeeping code. 12495 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12496 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12497 // xori shift, shift1, 24 [16] 12498 // rlwinm ptr, ptr1, 0, 0, 29 12499 // slw newval2, newval, shift 12500 // slw oldval2, oldval,shift 12501 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12502 // slw mask, mask2, shift 12503 // and newval3, newval2, mask 12504 // and oldval3, oldval2, mask 12505 // loop1MBB: 12506 // lwarx tmpDest, ptr 12507 // and tmp, tmpDest, mask 12508 // cmpw tmp, oldval3 12509 // bne- midMBB 12510 // loop2MBB: 12511 // andc tmp2, tmpDest, mask 12512 // or tmp4, tmp2, newval3 12513 // stwcx. tmp4, ptr 12514 // bne- loop1MBB 12515 // b exitBB 12516 // midMBB: 12517 // stwcx. tmpDest, ptr 12518 // exitBB: 12519 // srw dest, tmpDest, shift 12520 if (ptrA != ZeroReg) { 12521 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12522 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12523 .addReg(ptrA) 12524 .addReg(ptrB); 12525 } else { 12526 Ptr1Reg = ptrB; 12527 } 12528 12529 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12530 // mode. 12531 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12532 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12533 .addImm(3) 12534 .addImm(27) 12535 .addImm(is8bit ? 28 : 27); 12536 if (!isLittleEndian) 12537 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12538 .addReg(Shift1Reg) 12539 .addImm(is8bit ? 24 : 16); 12540 if (is64bit) 12541 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12542 .addReg(Ptr1Reg) 12543 .addImm(0) 12544 .addImm(61); 12545 else 12546 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12547 .addReg(Ptr1Reg) 12548 .addImm(0) 12549 .addImm(0) 12550 .addImm(29); 12551 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12552 .addReg(newval) 12553 .addReg(ShiftReg); 12554 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12555 .addReg(oldval) 12556 .addReg(ShiftReg); 12557 if (is8bit) 12558 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12559 else { 12560 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12561 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12562 .addReg(Mask3Reg) 12563 .addImm(65535); 12564 } 12565 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12566 .addReg(Mask2Reg) 12567 .addReg(ShiftReg); 12568 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12569 .addReg(NewVal2Reg) 12570 .addReg(MaskReg); 12571 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12572 .addReg(OldVal2Reg) 12573 .addReg(MaskReg); 12574 12575 BB = loop1MBB; 12576 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12577 .addReg(ZeroReg) 12578 .addReg(PtrReg); 12579 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12580 .addReg(TmpDestReg) 12581 .addReg(MaskReg); 12582 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12583 .addReg(TmpReg) 12584 .addReg(OldVal3Reg); 12585 BuildMI(BB, dl, TII->get(PPC::BCC)) 12586 .addImm(PPC::PRED_NE) 12587 .addReg(PPC::CR0) 12588 .addMBB(midMBB); 12589 BB->addSuccessor(loop2MBB); 12590 BB->addSuccessor(midMBB); 12591 12592 BB = loop2MBB; 12593 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12594 .addReg(TmpDestReg) 12595 .addReg(MaskReg); 12596 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12597 .addReg(Tmp2Reg) 12598 .addReg(NewVal3Reg); 12599 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12600 .addReg(Tmp4Reg) 12601 .addReg(ZeroReg) 12602 .addReg(PtrReg); 12603 BuildMI(BB, dl, TII->get(PPC::BCC)) 12604 .addImm(PPC::PRED_NE) 12605 .addReg(PPC::CR0) 12606 .addMBB(loop1MBB); 12607 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12608 BB->addSuccessor(loop1MBB); 12609 BB->addSuccessor(exitMBB); 12610 12611 BB = midMBB; 12612 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12613 .addReg(TmpDestReg) 12614 .addReg(ZeroReg) 12615 .addReg(PtrReg); 12616 BB->addSuccessor(exitMBB); 12617 12618 // exitMBB: 12619 // ... 12620 BB = exitMBB; 12621 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12622 .addReg(TmpReg) 12623 .addReg(ShiftReg); 12624 } else if (MI.getOpcode() == PPC::FADDrtz) { 12625 // This pseudo performs an FADD with rounding mode temporarily forced 12626 // to round-to-zero. We emit this via custom inserter since the FPSCR 12627 // is not modeled at the SelectionDAG level. 12628 Register Dest = MI.getOperand(0).getReg(); 12629 Register Src1 = MI.getOperand(1).getReg(); 12630 Register Src2 = MI.getOperand(2).getReg(); 12631 DebugLoc dl = MI.getDebugLoc(); 12632 12633 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12634 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12635 12636 // Save FPSCR value. 12637 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12638 12639 // Set rounding mode to round-to-zero. 12640 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 12641 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 12642 12643 // Perform addition. 12644 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12645 12646 // Restore FPSCR value. 12647 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12648 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12649 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12650 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12651 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12652 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12653 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12654 ? PPC::ANDI8_rec 12655 : PPC::ANDI_rec; 12656 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12657 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12658 12659 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12660 Register Dest = RegInfo.createVirtualRegister( 12661 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12662 12663 DebugLoc Dl = MI.getDebugLoc(); 12664 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12665 .addReg(MI.getOperand(1).getReg()) 12666 .addImm(1); 12667 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12668 MI.getOperand(0).getReg()) 12669 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12670 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12671 DebugLoc Dl = MI.getDebugLoc(); 12672 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12673 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12674 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12675 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12676 MI.getOperand(0).getReg()) 12677 .addReg(CRReg); 12678 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12679 DebugLoc Dl = MI.getDebugLoc(); 12680 unsigned Imm = MI.getOperand(1).getImm(); 12681 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12682 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12683 MI.getOperand(0).getReg()) 12684 .addReg(PPC::CR0EQ); 12685 } else if (MI.getOpcode() == PPC::SETRNDi) { 12686 DebugLoc dl = MI.getDebugLoc(); 12687 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12688 12689 // Save FPSCR value. 12690 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12691 12692 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12693 // the following settings: 12694 // 00 Round to nearest 12695 // 01 Round to 0 12696 // 10 Round to +inf 12697 // 11 Round to -inf 12698 12699 // When the operand is immediate, using the two least significant bits of 12700 // the immediate to set the bits 62:63 of FPSCR. 12701 unsigned Mode = MI.getOperand(1).getImm(); 12702 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12703 .addImm(31); 12704 12705 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12706 .addImm(30); 12707 } else if (MI.getOpcode() == PPC::SETRND) { 12708 DebugLoc dl = MI.getDebugLoc(); 12709 12710 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12711 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12712 // If the target doesn't have DirectMove, we should use stack to do the 12713 // conversion, because the target doesn't have the instructions like mtvsrd 12714 // or mfvsrd to do this conversion directly. 12715 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12716 if (Subtarget.hasDirectMove()) { 12717 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12718 .addReg(SrcReg); 12719 } else { 12720 // Use stack to do the register copy. 12721 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12722 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12723 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12724 if (RC == &PPC::F8RCRegClass) { 12725 // Copy register from F8RCRegClass to G8RCRegclass. 12726 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12727 "Unsupported RegClass."); 12728 12729 StoreOp = PPC::STFD; 12730 LoadOp = PPC::LD; 12731 } else { 12732 // Copy register from G8RCRegClass to F8RCRegclass. 12733 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12734 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12735 "Unsupported RegClass."); 12736 } 12737 12738 MachineFrameInfo &MFI = F->getFrameInfo(); 12739 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12740 12741 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12742 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12743 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12744 MFI.getObjectAlign(FrameIdx)); 12745 12746 // Store the SrcReg into the stack. 12747 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12748 .addReg(SrcReg) 12749 .addImm(0) 12750 .addFrameIndex(FrameIdx) 12751 .addMemOperand(MMOStore); 12752 12753 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12754 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12755 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12756 MFI.getObjectAlign(FrameIdx)); 12757 12758 // Load from the stack where SrcReg is stored, and save to DestReg, 12759 // so we have done the RegClass conversion from RegClass::SrcReg to 12760 // RegClass::DestReg. 12761 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12762 .addImm(0) 12763 .addFrameIndex(FrameIdx) 12764 .addMemOperand(MMOLoad); 12765 } 12766 }; 12767 12768 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12769 12770 // Save FPSCR value. 12771 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12772 12773 // When the operand is gprc register, use two least significant bits of the 12774 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12775 // 12776 // copy OldFPSCRTmpReg, OldFPSCRReg 12777 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12778 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12779 // copy NewFPSCRReg, NewFPSCRTmpReg 12780 // mtfsf 255, NewFPSCRReg 12781 MachineOperand SrcOp = MI.getOperand(1); 12782 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12783 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12784 12785 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12786 12787 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12788 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12789 12790 // The first operand of INSERT_SUBREG should be a register which has 12791 // subregisters, we only care about its RegClass, so we should use an 12792 // IMPLICIT_DEF register. 12793 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12794 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12795 .addReg(ImDefReg) 12796 .add(SrcOp) 12797 .addImm(1); 12798 12799 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12800 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12801 .addReg(OldFPSCRTmpReg) 12802 .addReg(ExtSrcReg) 12803 .addImm(0) 12804 .addImm(62); 12805 12806 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12807 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12808 12809 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12810 // bits of FPSCR. 12811 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12812 .addImm(255) 12813 .addReg(NewFPSCRReg) 12814 .addImm(0) 12815 .addImm(0); 12816 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12817 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12818 return emitProbedAlloca(MI, BB); 12819 } else { 12820 llvm_unreachable("Unexpected instr type to insert"); 12821 } 12822 12823 MI.eraseFromParent(); // The pseudo instruction is gone now. 12824 return BB; 12825 } 12826 12827 //===----------------------------------------------------------------------===// 12828 // Target Optimization Hooks 12829 //===----------------------------------------------------------------------===// 12830 12831 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12832 // For the estimates, convergence is quadratic, so we essentially double the 12833 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12834 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12835 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12836 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12837 if (VT.getScalarType() == MVT::f64) 12838 RefinementSteps++; 12839 return RefinementSteps; 12840 } 12841 12842 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12843 int Enabled, int &RefinementSteps, 12844 bool &UseOneConstNR, 12845 bool Reciprocal) const { 12846 EVT VT = Operand.getValueType(); 12847 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12848 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12849 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12850 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12851 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12852 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12853 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12854 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12855 12856 // The Newton-Raphson computation with a single constant does not provide 12857 // enough accuracy on some CPUs. 12858 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12859 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12860 } 12861 return SDValue(); 12862 } 12863 12864 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12865 int Enabled, 12866 int &RefinementSteps) const { 12867 EVT VT = Operand.getValueType(); 12868 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12869 (VT == MVT::f64 && Subtarget.hasFRE()) || 12870 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12871 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12872 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12873 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12874 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12875 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12876 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12877 } 12878 return SDValue(); 12879 } 12880 12881 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12882 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12883 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12884 // enabled for division), this functionality is redundant with the default 12885 // combiner logic (once the division -> reciprocal/multiply transformation 12886 // has taken place). As a result, this matters more for older cores than for 12887 // newer ones. 12888 12889 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12890 // reciprocal if there are two or more FDIVs (for embedded cores with only 12891 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12892 switch (Subtarget.getCPUDirective()) { 12893 default: 12894 return 3; 12895 case PPC::DIR_440: 12896 case PPC::DIR_A2: 12897 case PPC::DIR_E500: 12898 case PPC::DIR_E500mc: 12899 case PPC::DIR_E5500: 12900 return 2; 12901 } 12902 } 12903 12904 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12905 // collapsed, and so we need to look through chains of them. 12906 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12907 int64_t& Offset, SelectionDAG &DAG) { 12908 if (DAG.isBaseWithConstantOffset(Loc)) { 12909 Base = Loc.getOperand(0); 12910 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12911 12912 // The base might itself be a base plus an offset, and if so, accumulate 12913 // that as well. 12914 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12915 } 12916 } 12917 12918 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12919 unsigned Bytes, int Dist, 12920 SelectionDAG &DAG) { 12921 if (VT.getSizeInBits() / 8 != Bytes) 12922 return false; 12923 12924 SDValue BaseLoc = Base->getBasePtr(); 12925 if (Loc.getOpcode() == ISD::FrameIndex) { 12926 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12927 return false; 12928 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12929 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12930 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12931 int FS = MFI.getObjectSize(FI); 12932 int BFS = MFI.getObjectSize(BFI); 12933 if (FS != BFS || FS != (int)Bytes) return false; 12934 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12935 } 12936 12937 SDValue Base1 = Loc, Base2 = BaseLoc; 12938 int64_t Offset1 = 0, Offset2 = 0; 12939 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12940 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12941 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12942 return true; 12943 12944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12945 const GlobalValue *GV1 = nullptr; 12946 const GlobalValue *GV2 = nullptr; 12947 Offset1 = 0; 12948 Offset2 = 0; 12949 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12950 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12951 if (isGA1 && isGA2 && GV1 == GV2) 12952 return Offset1 == (Offset2 + Dist*Bytes); 12953 return false; 12954 } 12955 12956 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12957 // not enforce equality of the chain operands. 12958 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12959 unsigned Bytes, int Dist, 12960 SelectionDAG &DAG) { 12961 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12962 EVT VT = LS->getMemoryVT(); 12963 SDValue Loc = LS->getBasePtr(); 12964 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12965 } 12966 12967 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12968 EVT VT; 12969 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12970 default: return false; 12971 case Intrinsic::ppc_qpx_qvlfd: 12972 case Intrinsic::ppc_qpx_qvlfda: 12973 VT = MVT::v4f64; 12974 break; 12975 case Intrinsic::ppc_qpx_qvlfs: 12976 case Intrinsic::ppc_qpx_qvlfsa: 12977 VT = MVT::v4f32; 12978 break; 12979 case Intrinsic::ppc_qpx_qvlfcd: 12980 case Intrinsic::ppc_qpx_qvlfcda: 12981 VT = MVT::v2f64; 12982 break; 12983 case Intrinsic::ppc_qpx_qvlfcs: 12984 case Intrinsic::ppc_qpx_qvlfcsa: 12985 VT = MVT::v2f32; 12986 break; 12987 case Intrinsic::ppc_qpx_qvlfiwa: 12988 case Intrinsic::ppc_qpx_qvlfiwz: 12989 case Intrinsic::ppc_altivec_lvx: 12990 case Intrinsic::ppc_altivec_lvxl: 12991 case Intrinsic::ppc_vsx_lxvw4x: 12992 case Intrinsic::ppc_vsx_lxvw4x_be: 12993 VT = MVT::v4i32; 12994 break; 12995 case Intrinsic::ppc_vsx_lxvd2x: 12996 case Intrinsic::ppc_vsx_lxvd2x_be: 12997 VT = MVT::v2f64; 12998 break; 12999 case Intrinsic::ppc_altivec_lvebx: 13000 VT = MVT::i8; 13001 break; 13002 case Intrinsic::ppc_altivec_lvehx: 13003 VT = MVT::i16; 13004 break; 13005 case Intrinsic::ppc_altivec_lvewx: 13006 VT = MVT::i32; 13007 break; 13008 } 13009 13010 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13011 } 13012 13013 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13014 EVT VT; 13015 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13016 default: return false; 13017 case Intrinsic::ppc_qpx_qvstfd: 13018 case Intrinsic::ppc_qpx_qvstfda: 13019 VT = MVT::v4f64; 13020 break; 13021 case Intrinsic::ppc_qpx_qvstfs: 13022 case Intrinsic::ppc_qpx_qvstfsa: 13023 VT = MVT::v4f32; 13024 break; 13025 case Intrinsic::ppc_qpx_qvstfcd: 13026 case Intrinsic::ppc_qpx_qvstfcda: 13027 VT = MVT::v2f64; 13028 break; 13029 case Intrinsic::ppc_qpx_qvstfcs: 13030 case Intrinsic::ppc_qpx_qvstfcsa: 13031 VT = MVT::v2f32; 13032 break; 13033 case Intrinsic::ppc_qpx_qvstfiw: 13034 case Intrinsic::ppc_qpx_qvstfiwa: 13035 case Intrinsic::ppc_altivec_stvx: 13036 case Intrinsic::ppc_altivec_stvxl: 13037 case Intrinsic::ppc_vsx_stxvw4x: 13038 VT = MVT::v4i32; 13039 break; 13040 case Intrinsic::ppc_vsx_stxvd2x: 13041 VT = MVT::v2f64; 13042 break; 13043 case Intrinsic::ppc_vsx_stxvw4x_be: 13044 VT = MVT::v4i32; 13045 break; 13046 case Intrinsic::ppc_vsx_stxvd2x_be: 13047 VT = MVT::v2f64; 13048 break; 13049 case Intrinsic::ppc_altivec_stvebx: 13050 VT = MVT::i8; 13051 break; 13052 case Intrinsic::ppc_altivec_stvehx: 13053 VT = MVT::i16; 13054 break; 13055 case Intrinsic::ppc_altivec_stvewx: 13056 VT = MVT::i32; 13057 break; 13058 } 13059 13060 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13061 } 13062 13063 return false; 13064 } 13065 13066 // Return true is there is a nearyby consecutive load to the one provided 13067 // (regardless of alignment). We search up and down the chain, looking though 13068 // token factors and other loads (but nothing else). As a result, a true result 13069 // indicates that it is safe to create a new consecutive load adjacent to the 13070 // load provided. 13071 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13072 SDValue Chain = LD->getChain(); 13073 EVT VT = LD->getMemoryVT(); 13074 13075 SmallSet<SDNode *, 16> LoadRoots; 13076 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13077 SmallSet<SDNode *, 16> Visited; 13078 13079 // First, search up the chain, branching to follow all token-factor operands. 13080 // If we find a consecutive load, then we're done, otherwise, record all 13081 // nodes just above the top-level loads and token factors. 13082 while (!Queue.empty()) { 13083 SDNode *ChainNext = Queue.pop_back_val(); 13084 if (!Visited.insert(ChainNext).second) 13085 continue; 13086 13087 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13088 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13089 return true; 13090 13091 if (!Visited.count(ChainLD->getChain().getNode())) 13092 Queue.push_back(ChainLD->getChain().getNode()); 13093 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13094 for (const SDUse &O : ChainNext->ops()) 13095 if (!Visited.count(O.getNode())) 13096 Queue.push_back(O.getNode()); 13097 } else 13098 LoadRoots.insert(ChainNext); 13099 } 13100 13101 // Second, search down the chain, starting from the top-level nodes recorded 13102 // in the first phase. These top-level nodes are the nodes just above all 13103 // loads and token factors. Starting with their uses, recursively look though 13104 // all loads (just the chain uses) and token factors to find a consecutive 13105 // load. 13106 Visited.clear(); 13107 Queue.clear(); 13108 13109 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13110 IE = LoadRoots.end(); I != IE; ++I) { 13111 Queue.push_back(*I); 13112 13113 while (!Queue.empty()) { 13114 SDNode *LoadRoot = Queue.pop_back_val(); 13115 if (!Visited.insert(LoadRoot).second) 13116 continue; 13117 13118 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13119 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13120 return true; 13121 13122 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 13123 UE = LoadRoot->use_end(); UI != UE; ++UI) 13124 if (((isa<MemSDNode>(*UI) && 13125 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 13126 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 13127 Queue.push_back(*UI); 13128 } 13129 } 13130 13131 return false; 13132 } 13133 13134 /// This function is called when we have proved that a SETCC node can be replaced 13135 /// by subtraction (and other supporting instructions) so that the result of 13136 /// comparison is kept in a GPR instead of CR. This function is purely for 13137 /// codegen purposes and has some flags to guide the codegen process. 13138 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13139 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13140 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13141 13142 // Zero extend the operands to the largest legal integer. Originally, they 13143 // must be of a strictly smaller size. 13144 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13145 DAG.getConstant(Size, DL, MVT::i32)); 13146 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13147 DAG.getConstant(Size, DL, MVT::i32)); 13148 13149 // Swap if needed. Depends on the condition code. 13150 if (Swap) 13151 std::swap(Op0, Op1); 13152 13153 // Subtract extended integers. 13154 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13155 13156 // Move the sign bit to the least significant position and zero out the rest. 13157 // Now the least significant bit carries the result of original comparison. 13158 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13159 DAG.getConstant(Size - 1, DL, MVT::i32)); 13160 auto Final = Shifted; 13161 13162 // Complement the result if needed. Based on the condition code. 13163 if (Complement) 13164 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13165 DAG.getConstant(1, DL, MVT::i64)); 13166 13167 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13168 } 13169 13170 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13171 DAGCombinerInfo &DCI) const { 13172 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13173 13174 SelectionDAG &DAG = DCI.DAG; 13175 SDLoc DL(N); 13176 13177 // Size of integers being compared has a critical role in the following 13178 // analysis, so we prefer to do this when all types are legal. 13179 if (!DCI.isAfterLegalizeDAG()) 13180 return SDValue(); 13181 13182 // If all users of SETCC extend its value to a legal integer type 13183 // then we replace SETCC with a subtraction 13184 for (SDNode::use_iterator UI = N->use_begin(), 13185 UE = N->use_end(); UI != UE; ++UI) { 13186 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13187 return SDValue(); 13188 } 13189 13190 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13191 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13192 13193 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13194 13195 if (OpSize < Size) { 13196 switch (CC) { 13197 default: break; 13198 case ISD::SETULT: 13199 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13200 case ISD::SETULE: 13201 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13202 case ISD::SETUGT: 13203 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13204 case ISD::SETUGE: 13205 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13206 } 13207 } 13208 13209 return SDValue(); 13210 } 13211 13212 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13213 DAGCombinerInfo &DCI) const { 13214 SelectionDAG &DAG = DCI.DAG; 13215 SDLoc dl(N); 13216 13217 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13218 // If we're tracking CR bits, we need to be careful that we don't have: 13219 // trunc(binary-ops(zext(x), zext(y))) 13220 // or 13221 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13222 // such that we're unnecessarily moving things into GPRs when it would be 13223 // better to keep them in CR bits. 13224 13225 // Note that trunc here can be an actual i1 trunc, or can be the effective 13226 // truncation that comes from a setcc or select_cc. 13227 if (N->getOpcode() == ISD::TRUNCATE && 13228 N->getValueType(0) != MVT::i1) 13229 return SDValue(); 13230 13231 if (N->getOperand(0).getValueType() != MVT::i32 && 13232 N->getOperand(0).getValueType() != MVT::i64) 13233 return SDValue(); 13234 13235 if (N->getOpcode() == ISD::SETCC || 13236 N->getOpcode() == ISD::SELECT_CC) { 13237 // If we're looking at a comparison, then we need to make sure that the 13238 // high bits (all except for the first) don't matter the result. 13239 ISD::CondCode CC = 13240 cast<CondCodeSDNode>(N->getOperand( 13241 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13242 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13243 13244 if (ISD::isSignedIntSetCC(CC)) { 13245 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13246 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13247 return SDValue(); 13248 } else if (ISD::isUnsignedIntSetCC(CC)) { 13249 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13250 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13251 !DAG.MaskedValueIsZero(N->getOperand(1), 13252 APInt::getHighBitsSet(OpBits, OpBits-1))) 13253 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13254 : SDValue()); 13255 } else { 13256 // This is neither a signed nor an unsigned comparison, just make sure 13257 // that the high bits are equal. 13258 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13259 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13260 13261 // We don't really care about what is known about the first bit (if 13262 // anything), so clear it in all masks prior to comparing them. 13263 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 13264 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 13265 13266 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 13267 return SDValue(); 13268 } 13269 } 13270 13271 // We now know that the higher-order bits are irrelevant, we just need to 13272 // make sure that all of the intermediate operations are bit operations, and 13273 // all inputs are extensions. 13274 if (N->getOperand(0).getOpcode() != ISD::AND && 13275 N->getOperand(0).getOpcode() != ISD::OR && 13276 N->getOperand(0).getOpcode() != ISD::XOR && 13277 N->getOperand(0).getOpcode() != ISD::SELECT && 13278 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13279 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13280 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13281 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13282 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13283 return SDValue(); 13284 13285 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13286 N->getOperand(1).getOpcode() != ISD::AND && 13287 N->getOperand(1).getOpcode() != ISD::OR && 13288 N->getOperand(1).getOpcode() != ISD::XOR && 13289 N->getOperand(1).getOpcode() != ISD::SELECT && 13290 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13291 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13292 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13293 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13294 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13295 return SDValue(); 13296 13297 SmallVector<SDValue, 4> Inputs; 13298 SmallVector<SDValue, 8> BinOps, PromOps; 13299 SmallPtrSet<SDNode *, 16> Visited; 13300 13301 for (unsigned i = 0; i < 2; ++i) { 13302 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13303 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13304 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13305 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13306 isa<ConstantSDNode>(N->getOperand(i))) 13307 Inputs.push_back(N->getOperand(i)); 13308 else 13309 BinOps.push_back(N->getOperand(i)); 13310 13311 if (N->getOpcode() == ISD::TRUNCATE) 13312 break; 13313 } 13314 13315 // Visit all inputs, collect all binary operations (and, or, xor and 13316 // select) that are all fed by extensions. 13317 while (!BinOps.empty()) { 13318 SDValue BinOp = BinOps.back(); 13319 BinOps.pop_back(); 13320 13321 if (!Visited.insert(BinOp.getNode()).second) 13322 continue; 13323 13324 PromOps.push_back(BinOp); 13325 13326 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13327 // The condition of the select is not promoted. 13328 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13329 continue; 13330 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13331 continue; 13332 13333 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13334 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13335 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13336 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13337 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13338 Inputs.push_back(BinOp.getOperand(i)); 13339 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13340 BinOp.getOperand(i).getOpcode() == ISD::OR || 13341 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13342 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13343 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13344 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13345 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13346 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13347 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13348 BinOps.push_back(BinOp.getOperand(i)); 13349 } else { 13350 // We have an input that is not an extension or another binary 13351 // operation; we'll abort this transformation. 13352 return SDValue(); 13353 } 13354 } 13355 } 13356 13357 // Make sure that this is a self-contained cluster of operations (which 13358 // is not quite the same thing as saying that everything has only one 13359 // use). 13360 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13361 if (isa<ConstantSDNode>(Inputs[i])) 13362 continue; 13363 13364 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13365 UE = Inputs[i].getNode()->use_end(); 13366 UI != UE; ++UI) { 13367 SDNode *User = *UI; 13368 if (User != N && !Visited.count(User)) 13369 return SDValue(); 13370 13371 // Make sure that we're not going to promote the non-output-value 13372 // operand(s) or SELECT or SELECT_CC. 13373 // FIXME: Although we could sometimes handle this, and it does occur in 13374 // practice that one of the condition inputs to the select is also one of 13375 // the outputs, we currently can't deal with this. 13376 if (User->getOpcode() == ISD::SELECT) { 13377 if (User->getOperand(0) == Inputs[i]) 13378 return SDValue(); 13379 } else if (User->getOpcode() == ISD::SELECT_CC) { 13380 if (User->getOperand(0) == Inputs[i] || 13381 User->getOperand(1) == Inputs[i]) 13382 return SDValue(); 13383 } 13384 } 13385 } 13386 13387 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13388 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13389 UE = PromOps[i].getNode()->use_end(); 13390 UI != UE; ++UI) { 13391 SDNode *User = *UI; 13392 if (User != N && !Visited.count(User)) 13393 return SDValue(); 13394 13395 // Make sure that we're not going to promote the non-output-value 13396 // operand(s) or SELECT or SELECT_CC. 13397 // FIXME: Although we could sometimes handle this, and it does occur in 13398 // practice that one of the condition inputs to the select is also one of 13399 // the outputs, we currently can't deal with this. 13400 if (User->getOpcode() == ISD::SELECT) { 13401 if (User->getOperand(0) == PromOps[i]) 13402 return SDValue(); 13403 } else if (User->getOpcode() == ISD::SELECT_CC) { 13404 if (User->getOperand(0) == PromOps[i] || 13405 User->getOperand(1) == PromOps[i]) 13406 return SDValue(); 13407 } 13408 } 13409 } 13410 13411 // Replace all inputs with the extension operand. 13412 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13413 // Constants may have users outside the cluster of to-be-promoted nodes, 13414 // and so we need to replace those as we do the promotions. 13415 if (isa<ConstantSDNode>(Inputs[i])) 13416 continue; 13417 else 13418 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13419 } 13420 13421 std::list<HandleSDNode> PromOpHandles; 13422 for (auto &PromOp : PromOps) 13423 PromOpHandles.emplace_back(PromOp); 13424 13425 // Replace all operations (these are all the same, but have a different 13426 // (i1) return type). DAG.getNode will validate that the types of 13427 // a binary operator match, so go through the list in reverse so that 13428 // we've likely promoted both operands first. Any intermediate truncations or 13429 // extensions disappear. 13430 while (!PromOpHandles.empty()) { 13431 SDValue PromOp = PromOpHandles.back().getValue(); 13432 PromOpHandles.pop_back(); 13433 13434 if (PromOp.getOpcode() == ISD::TRUNCATE || 13435 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13436 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13437 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13438 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13439 PromOp.getOperand(0).getValueType() != MVT::i1) { 13440 // The operand is not yet ready (see comment below). 13441 PromOpHandles.emplace_front(PromOp); 13442 continue; 13443 } 13444 13445 SDValue RepValue = PromOp.getOperand(0); 13446 if (isa<ConstantSDNode>(RepValue)) 13447 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13448 13449 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13450 continue; 13451 } 13452 13453 unsigned C; 13454 switch (PromOp.getOpcode()) { 13455 default: C = 0; break; 13456 case ISD::SELECT: C = 1; break; 13457 case ISD::SELECT_CC: C = 2; break; 13458 } 13459 13460 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13461 PromOp.getOperand(C).getValueType() != MVT::i1) || 13462 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13463 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13464 // The to-be-promoted operands of this node have not yet been 13465 // promoted (this should be rare because we're going through the 13466 // list backward, but if one of the operands has several users in 13467 // this cluster of to-be-promoted nodes, it is possible). 13468 PromOpHandles.emplace_front(PromOp); 13469 continue; 13470 } 13471 13472 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13473 PromOp.getNode()->op_end()); 13474 13475 // If there are any constant inputs, make sure they're replaced now. 13476 for (unsigned i = 0; i < 2; ++i) 13477 if (isa<ConstantSDNode>(Ops[C+i])) 13478 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13479 13480 DAG.ReplaceAllUsesOfValueWith(PromOp, 13481 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13482 } 13483 13484 // Now we're left with the initial truncation itself. 13485 if (N->getOpcode() == ISD::TRUNCATE) 13486 return N->getOperand(0); 13487 13488 // Otherwise, this is a comparison. The operands to be compared have just 13489 // changed type (to i1), but everything else is the same. 13490 return SDValue(N, 0); 13491 } 13492 13493 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13494 DAGCombinerInfo &DCI) const { 13495 SelectionDAG &DAG = DCI.DAG; 13496 SDLoc dl(N); 13497 13498 // If we're tracking CR bits, we need to be careful that we don't have: 13499 // zext(binary-ops(trunc(x), trunc(y))) 13500 // or 13501 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13502 // such that we're unnecessarily moving things into CR bits that can more 13503 // efficiently stay in GPRs. Note that if we're not certain that the high 13504 // bits are set as required by the final extension, we still may need to do 13505 // some masking to get the proper behavior. 13506 13507 // This same functionality is important on PPC64 when dealing with 13508 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13509 // the return values of functions. Because it is so similar, it is handled 13510 // here as well. 13511 13512 if (N->getValueType(0) != MVT::i32 && 13513 N->getValueType(0) != MVT::i64) 13514 return SDValue(); 13515 13516 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13517 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13518 return SDValue(); 13519 13520 if (N->getOperand(0).getOpcode() != ISD::AND && 13521 N->getOperand(0).getOpcode() != ISD::OR && 13522 N->getOperand(0).getOpcode() != ISD::XOR && 13523 N->getOperand(0).getOpcode() != ISD::SELECT && 13524 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13525 return SDValue(); 13526 13527 SmallVector<SDValue, 4> Inputs; 13528 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13529 SmallPtrSet<SDNode *, 16> Visited; 13530 13531 // Visit all inputs, collect all binary operations (and, or, xor and 13532 // select) that are all fed by truncations. 13533 while (!BinOps.empty()) { 13534 SDValue BinOp = BinOps.back(); 13535 BinOps.pop_back(); 13536 13537 if (!Visited.insert(BinOp.getNode()).second) 13538 continue; 13539 13540 PromOps.push_back(BinOp); 13541 13542 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13543 // The condition of the select is not promoted. 13544 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13545 continue; 13546 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13547 continue; 13548 13549 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13550 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13551 Inputs.push_back(BinOp.getOperand(i)); 13552 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13553 BinOp.getOperand(i).getOpcode() == ISD::OR || 13554 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13555 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13556 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13557 BinOps.push_back(BinOp.getOperand(i)); 13558 } else { 13559 // We have an input that is not a truncation or another binary 13560 // operation; we'll abort this transformation. 13561 return SDValue(); 13562 } 13563 } 13564 } 13565 13566 // The operands of a select that must be truncated when the select is 13567 // promoted because the operand is actually part of the to-be-promoted set. 13568 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13569 13570 // Make sure that this is a self-contained cluster of operations (which 13571 // is not quite the same thing as saying that everything has only one 13572 // use). 13573 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13574 if (isa<ConstantSDNode>(Inputs[i])) 13575 continue; 13576 13577 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13578 UE = Inputs[i].getNode()->use_end(); 13579 UI != UE; ++UI) { 13580 SDNode *User = *UI; 13581 if (User != N && !Visited.count(User)) 13582 return SDValue(); 13583 13584 // If we're going to promote the non-output-value operand(s) or SELECT or 13585 // SELECT_CC, record them for truncation. 13586 if (User->getOpcode() == ISD::SELECT) { 13587 if (User->getOperand(0) == Inputs[i]) 13588 SelectTruncOp[0].insert(std::make_pair(User, 13589 User->getOperand(0).getValueType())); 13590 } else if (User->getOpcode() == ISD::SELECT_CC) { 13591 if (User->getOperand(0) == Inputs[i]) 13592 SelectTruncOp[0].insert(std::make_pair(User, 13593 User->getOperand(0).getValueType())); 13594 if (User->getOperand(1) == Inputs[i]) 13595 SelectTruncOp[1].insert(std::make_pair(User, 13596 User->getOperand(1).getValueType())); 13597 } 13598 } 13599 } 13600 13601 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13602 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13603 UE = PromOps[i].getNode()->use_end(); 13604 UI != UE; ++UI) { 13605 SDNode *User = *UI; 13606 if (User != N && !Visited.count(User)) 13607 return SDValue(); 13608 13609 // If we're going to promote the non-output-value operand(s) or SELECT or 13610 // SELECT_CC, record them for truncation. 13611 if (User->getOpcode() == ISD::SELECT) { 13612 if (User->getOperand(0) == PromOps[i]) 13613 SelectTruncOp[0].insert(std::make_pair(User, 13614 User->getOperand(0).getValueType())); 13615 } else if (User->getOpcode() == ISD::SELECT_CC) { 13616 if (User->getOperand(0) == PromOps[i]) 13617 SelectTruncOp[0].insert(std::make_pair(User, 13618 User->getOperand(0).getValueType())); 13619 if (User->getOperand(1) == PromOps[i]) 13620 SelectTruncOp[1].insert(std::make_pair(User, 13621 User->getOperand(1).getValueType())); 13622 } 13623 } 13624 } 13625 13626 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13627 bool ReallyNeedsExt = false; 13628 if (N->getOpcode() != ISD::ANY_EXTEND) { 13629 // If all of the inputs are not already sign/zero extended, then 13630 // we'll still need to do that at the end. 13631 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13632 if (isa<ConstantSDNode>(Inputs[i])) 13633 continue; 13634 13635 unsigned OpBits = 13636 Inputs[i].getOperand(0).getValueSizeInBits(); 13637 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13638 13639 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13640 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13641 APInt::getHighBitsSet(OpBits, 13642 OpBits-PromBits))) || 13643 (N->getOpcode() == ISD::SIGN_EXTEND && 13644 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13645 (OpBits-(PromBits-1)))) { 13646 ReallyNeedsExt = true; 13647 break; 13648 } 13649 } 13650 } 13651 13652 // Replace all inputs, either with the truncation operand, or a 13653 // truncation or extension to the final output type. 13654 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13655 // Constant inputs need to be replaced with the to-be-promoted nodes that 13656 // use them because they might have users outside of the cluster of 13657 // promoted nodes. 13658 if (isa<ConstantSDNode>(Inputs[i])) 13659 continue; 13660 13661 SDValue InSrc = Inputs[i].getOperand(0); 13662 if (Inputs[i].getValueType() == N->getValueType(0)) 13663 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13664 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13665 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13666 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13667 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13668 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13669 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13670 else 13671 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13672 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13673 } 13674 13675 std::list<HandleSDNode> PromOpHandles; 13676 for (auto &PromOp : PromOps) 13677 PromOpHandles.emplace_back(PromOp); 13678 13679 // Replace all operations (these are all the same, but have a different 13680 // (promoted) return type). DAG.getNode will validate that the types of 13681 // a binary operator match, so go through the list in reverse so that 13682 // we've likely promoted both operands first. 13683 while (!PromOpHandles.empty()) { 13684 SDValue PromOp = PromOpHandles.back().getValue(); 13685 PromOpHandles.pop_back(); 13686 13687 unsigned C; 13688 switch (PromOp.getOpcode()) { 13689 default: C = 0; break; 13690 case ISD::SELECT: C = 1; break; 13691 case ISD::SELECT_CC: C = 2; break; 13692 } 13693 13694 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13695 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13696 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13697 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13698 // The to-be-promoted operands of this node have not yet been 13699 // promoted (this should be rare because we're going through the 13700 // list backward, but if one of the operands has several users in 13701 // this cluster of to-be-promoted nodes, it is possible). 13702 PromOpHandles.emplace_front(PromOp); 13703 continue; 13704 } 13705 13706 // For SELECT and SELECT_CC nodes, we do a similar check for any 13707 // to-be-promoted comparison inputs. 13708 if (PromOp.getOpcode() == ISD::SELECT || 13709 PromOp.getOpcode() == ISD::SELECT_CC) { 13710 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13711 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13712 (SelectTruncOp[1].count(PromOp.getNode()) && 13713 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13714 PromOpHandles.emplace_front(PromOp); 13715 continue; 13716 } 13717 } 13718 13719 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13720 PromOp.getNode()->op_end()); 13721 13722 // If this node has constant inputs, then they'll need to be promoted here. 13723 for (unsigned i = 0; i < 2; ++i) { 13724 if (!isa<ConstantSDNode>(Ops[C+i])) 13725 continue; 13726 if (Ops[C+i].getValueType() == N->getValueType(0)) 13727 continue; 13728 13729 if (N->getOpcode() == ISD::SIGN_EXTEND) 13730 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13731 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13732 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13733 else 13734 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13735 } 13736 13737 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13738 // truncate them again to the original value type. 13739 if (PromOp.getOpcode() == ISD::SELECT || 13740 PromOp.getOpcode() == ISD::SELECT_CC) { 13741 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13742 if (SI0 != SelectTruncOp[0].end()) 13743 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13744 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13745 if (SI1 != SelectTruncOp[1].end()) 13746 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13747 } 13748 13749 DAG.ReplaceAllUsesOfValueWith(PromOp, 13750 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13751 } 13752 13753 // Now we're left with the initial extension itself. 13754 if (!ReallyNeedsExt) 13755 return N->getOperand(0); 13756 13757 // To zero extend, just mask off everything except for the first bit (in the 13758 // i1 case). 13759 if (N->getOpcode() == ISD::ZERO_EXTEND) 13760 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13761 DAG.getConstant(APInt::getLowBitsSet( 13762 N->getValueSizeInBits(0), PromBits), 13763 dl, N->getValueType(0))); 13764 13765 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13766 "Invalid extension type"); 13767 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13768 SDValue ShiftCst = 13769 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13770 return DAG.getNode( 13771 ISD::SRA, dl, N->getValueType(0), 13772 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13773 ShiftCst); 13774 } 13775 13776 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13777 DAGCombinerInfo &DCI) const { 13778 assert(N->getOpcode() == ISD::SETCC && 13779 "Should be called with a SETCC node"); 13780 13781 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13782 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13783 SDValue LHS = N->getOperand(0); 13784 SDValue RHS = N->getOperand(1); 13785 13786 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13787 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13788 LHS.hasOneUse()) 13789 std::swap(LHS, RHS); 13790 13791 // x == 0-y --> x+y == 0 13792 // x != 0-y --> x+y != 0 13793 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13794 RHS.hasOneUse()) { 13795 SDLoc DL(N); 13796 SelectionDAG &DAG = DCI.DAG; 13797 EVT VT = N->getValueType(0); 13798 EVT OpVT = LHS.getValueType(); 13799 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13800 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13801 } 13802 } 13803 13804 return DAGCombineTruncBoolExt(N, DCI); 13805 } 13806 13807 // Is this an extending load from an f32 to an f64? 13808 static bool isFPExtLoad(SDValue Op) { 13809 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13810 return LD->getExtensionType() == ISD::EXTLOAD && 13811 Op.getValueType() == MVT::f64; 13812 return false; 13813 } 13814 13815 /// Reduces the number of fp-to-int conversion when building a vector. 13816 /// 13817 /// If this vector is built out of floating to integer conversions, 13818 /// transform it to a vector built out of floating point values followed by a 13819 /// single floating to integer conversion of the vector. 13820 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13821 /// becomes (fptosi (build_vector ($A, $B, ...))) 13822 SDValue PPCTargetLowering:: 13823 combineElementTruncationToVectorTruncation(SDNode *N, 13824 DAGCombinerInfo &DCI) const { 13825 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13826 "Should be called with a BUILD_VECTOR node"); 13827 13828 SelectionDAG &DAG = DCI.DAG; 13829 SDLoc dl(N); 13830 13831 SDValue FirstInput = N->getOperand(0); 13832 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13833 "The input operand must be an fp-to-int conversion."); 13834 13835 // This combine happens after legalization so the fp_to_[su]i nodes are 13836 // already converted to PPCSISD nodes. 13837 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13838 if (FirstConversion == PPCISD::FCTIDZ || 13839 FirstConversion == PPCISD::FCTIDUZ || 13840 FirstConversion == PPCISD::FCTIWZ || 13841 FirstConversion == PPCISD::FCTIWUZ) { 13842 bool IsSplat = true; 13843 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13844 FirstConversion == PPCISD::FCTIWUZ; 13845 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13846 SmallVector<SDValue, 4> Ops; 13847 EVT TargetVT = N->getValueType(0); 13848 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13849 SDValue NextOp = N->getOperand(i); 13850 if (NextOp.getOpcode() != PPCISD::MFVSR) 13851 return SDValue(); 13852 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13853 if (NextConversion != FirstConversion) 13854 return SDValue(); 13855 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13856 // This is not valid if the input was originally double precision. It is 13857 // also not profitable to do unless this is an extending load in which 13858 // case doing this combine will allow us to combine consecutive loads. 13859 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13860 return SDValue(); 13861 if (N->getOperand(i) != FirstInput) 13862 IsSplat = false; 13863 } 13864 13865 // If this is a splat, we leave it as-is since there will be only a single 13866 // fp-to-int conversion followed by a splat of the integer. This is better 13867 // for 32-bit and smaller ints and neutral for 64-bit ints. 13868 if (IsSplat) 13869 return SDValue(); 13870 13871 // Now that we know we have the right type of node, get its operands 13872 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13873 SDValue In = N->getOperand(i).getOperand(0); 13874 if (Is32Bit) { 13875 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13876 // here, we know that all inputs are extending loads so this is safe). 13877 if (In.isUndef()) 13878 Ops.push_back(DAG.getUNDEF(SrcVT)); 13879 else { 13880 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13881 MVT::f32, In.getOperand(0), 13882 DAG.getIntPtrConstant(1, dl)); 13883 Ops.push_back(Trunc); 13884 } 13885 } else 13886 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13887 } 13888 13889 unsigned Opcode; 13890 if (FirstConversion == PPCISD::FCTIDZ || 13891 FirstConversion == PPCISD::FCTIWZ) 13892 Opcode = ISD::FP_TO_SINT; 13893 else 13894 Opcode = ISD::FP_TO_UINT; 13895 13896 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13897 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13898 return DAG.getNode(Opcode, dl, TargetVT, BV); 13899 } 13900 return SDValue(); 13901 } 13902 13903 /// Reduce the number of loads when building a vector. 13904 /// 13905 /// Building a vector out of multiple loads can be converted to a load 13906 /// of the vector type if the loads are consecutive. If the loads are 13907 /// consecutive but in descending order, a shuffle is added at the end 13908 /// to reorder the vector. 13909 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13910 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13911 "Should be called with a BUILD_VECTOR node"); 13912 13913 SDLoc dl(N); 13914 13915 // Return early for non byte-sized type, as they can't be consecutive. 13916 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13917 return SDValue(); 13918 13919 bool InputsAreConsecutiveLoads = true; 13920 bool InputsAreReverseConsecutive = true; 13921 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13922 SDValue FirstInput = N->getOperand(0); 13923 bool IsRoundOfExtLoad = false; 13924 13925 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13926 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13927 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13928 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13929 } 13930 // Not a build vector of (possibly fp_rounded) loads. 13931 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13932 N->getNumOperands() == 1) 13933 return SDValue(); 13934 13935 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13936 // If any inputs are fp_round(extload), they all must be. 13937 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13938 return SDValue(); 13939 13940 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13941 N->getOperand(i); 13942 if (NextInput.getOpcode() != ISD::LOAD) 13943 return SDValue(); 13944 13945 SDValue PreviousInput = 13946 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13947 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13948 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13949 13950 // If any inputs are fp_round(extload), they all must be. 13951 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13952 return SDValue(); 13953 13954 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13955 InputsAreConsecutiveLoads = false; 13956 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13957 InputsAreReverseConsecutive = false; 13958 13959 // Exit early if the loads are neither consecutive nor reverse consecutive. 13960 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13961 return SDValue(); 13962 } 13963 13964 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13965 "The loads cannot be both consecutive and reverse consecutive."); 13966 13967 SDValue FirstLoadOp = 13968 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13969 SDValue LastLoadOp = 13970 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13971 N->getOperand(N->getNumOperands()-1); 13972 13973 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13974 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13975 if (InputsAreConsecutiveLoads) { 13976 assert(LD1 && "Input needs to be a LoadSDNode."); 13977 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13978 LD1->getBasePtr(), LD1->getPointerInfo(), 13979 LD1->getAlignment()); 13980 } 13981 if (InputsAreReverseConsecutive) { 13982 assert(LDL && "Input needs to be a LoadSDNode."); 13983 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13984 LDL->getBasePtr(), LDL->getPointerInfo(), 13985 LDL->getAlignment()); 13986 SmallVector<int, 16> Ops; 13987 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13988 Ops.push_back(i); 13989 13990 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13991 DAG.getUNDEF(N->getValueType(0)), Ops); 13992 } 13993 return SDValue(); 13994 } 13995 13996 // This function adds the required vector_shuffle needed to get 13997 // the elements of the vector extract in the correct position 13998 // as specified by the CorrectElems encoding. 13999 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14000 SDValue Input, uint64_t Elems, 14001 uint64_t CorrectElems) { 14002 SDLoc dl(N); 14003 14004 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14005 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14006 14007 // Knowing the element indices being extracted from the original 14008 // vector and the order in which they're being inserted, just put 14009 // them at element indices required for the instruction. 14010 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14011 if (DAG.getDataLayout().isLittleEndian()) 14012 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14013 else 14014 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14015 CorrectElems = CorrectElems >> 8; 14016 Elems = Elems >> 8; 14017 } 14018 14019 SDValue Shuffle = 14020 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14021 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14022 14023 EVT VT = N->getValueType(0); 14024 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14025 14026 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14027 Input.getValueType().getVectorElementType(), 14028 VT.getVectorNumElements()); 14029 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14030 DAG.getValueType(ExtVT)); 14031 } 14032 14033 // Look for build vector patterns where input operands come from sign 14034 // extended vector_extract elements of specific indices. If the correct indices 14035 // aren't used, add a vector shuffle to fix up the indices and create 14036 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14037 // during instruction selection. 14038 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14039 // This array encodes the indices that the vector sign extend instructions 14040 // extract from when extending from one type to another for both BE and LE. 14041 // The right nibble of each byte corresponds to the LE incides. 14042 // and the left nibble of each byte corresponds to the BE incides. 14043 // For example: 0x3074B8FC byte->word 14044 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14045 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14046 // For example: 0x000070F8 byte->double word 14047 // For LE: the allowed indices are: 0x0,0x8 14048 // For BE: the allowed indices are: 0x7,0xF 14049 uint64_t TargetElems[] = { 14050 0x3074B8FC, // b->w 14051 0x000070F8, // b->d 14052 0x10325476, // h->w 14053 0x00003074, // h->d 14054 0x00001032, // w->d 14055 }; 14056 14057 uint64_t Elems = 0; 14058 int Index; 14059 SDValue Input; 14060 14061 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14062 if (!Op) 14063 return false; 14064 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14065 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14066 return false; 14067 14068 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14069 // of the right width. 14070 SDValue Extract = Op.getOperand(0); 14071 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14072 Extract = Extract.getOperand(0); 14073 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14074 return false; 14075 14076 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14077 if (!ExtOp) 14078 return false; 14079 14080 Index = ExtOp->getZExtValue(); 14081 if (Input && Input != Extract.getOperand(0)) 14082 return false; 14083 14084 if (!Input) 14085 Input = Extract.getOperand(0); 14086 14087 Elems = Elems << 8; 14088 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14089 Elems |= Index; 14090 14091 return true; 14092 }; 14093 14094 // If the build vector operands aren't sign extended vector extracts, 14095 // of the same input vector, then return. 14096 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14097 if (!isSExtOfVecExtract(N->getOperand(i))) { 14098 return SDValue(); 14099 } 14100 } 14101 14102 // If the vector extract indicies are not correct, add the appropriate 14103 // vector_shuffle. 14104 int TgtElemArrayIdx; 14105 int InputSize = Input.getValueType().getScalarSizeInBits(); 14106 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14107 if (InputSize + OutputSize == 40) 14108 TgtElemArrayIdx = 0; 14109 else if (InputSize + OutputSize == 72) 14110 TgtElemArrayIdx = 1; 14111 else if (InputSize + OutputSize == 48) 14112 TgtElemArrayIdx = 2; 14113 else if (InputSize + OutputSize == 80) 14114 TgtElemArrayIdx = 3; 14115 else if (InputSize + OutputSize == 96) 14116 TgtElemArrayIdx = 4; 14117 else 14118 return SDValue(); 14119 14120 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14121 CorrectElems = DAG.getDataLayout().isLittleEndian() 14122 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14123 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14124 if (Elems != CorrectElems) { 14125 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14126 } 14127 14128 // Regular lowering will catch cases where a shuffle is not needed. 14129 return SDValue(); 14130 } 14131 14132 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14133 DAGCombinerInfo &DCI) const { 14134 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14135 "Should be called with a BUILD_VECTOR node"); 14136 14137 SelectionDAG &DAG = DCI.DAG; 14138 SDLoc dl(N); 14139 14140 if (!Subtarget.hasVSX()) 14141 return SDValue(); 14142 14143 // The target independent DAG combiner will leave a build_vector of 14144 // float-to-int conversions intact. We can generate MUCH better code for 14145 // a float-to-int conversion of a vector of floats. 14146 SDValue FirstInput = N->getOperand(0); 14147 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14148 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14149 if (Reduced) 14150 return Reduced; 14151 } 14152 14153 // If we're building a vector out of consecutive loads, just load that 14154 // vector type. 14155 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14156 if (Reduced) 14157 return Reduced; 14158 14159 // If we're building a vector out of extended elements from another vector 14160 // we have P9 vector integer extend instructions. The code assumes legal 14161 // input types (i.e. it can't handle things like v4i16) so do not run before 14162 // legalization. 14163 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14164 Reduced = combineBVOfVecSExt(N, DAG); 14165 if (Reduced) 14166 return Reduced; 14167 } 14168 14169 14170 if (N->getValueType(0) != MVT::v2f64) 14171 return SDValue(); 14172 14173 // Looking for: 14174 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14175 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14176 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14177 return SDValue(); 14178 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14179 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14180 return SDValue(); 14181 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14182 return SDValue(); 14183 14184 SDValue Ext1 = FirstInput.getOperand(0); 14185 SDValue Ext2 = N->getOperand(1).getOperand(0); 14186 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14187 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14188 return SDValue(); 14189 14190 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14191 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14192 if (!Ext1Op || !Ext2Op) 14193 return SDValue(); 14194 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14195 Ext1.getOperand(0) != Ext2.getOperand(0)) 14196 return SDValue(); 14197 14198 int FirstElem = Ext1Op->getZExtValue(); 14199 int SecondElem = Ext2Op->getZExtValue(); 14200 int SubvecIdx; 14201 if (FirstElem == 0 && SecondElem == 1) 14202 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14203 else if (FirstElem == 2 && SecondElem == 3) 14204 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14205 else 14206 return SDValue(); 14207 14208 SDValue SrcVec = Ext1.getOperand(0); 14209 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14210 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14211 return DAG.getNode(NodeType, dl, MVT::v2f64, 14212 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14213 } 14214 14215 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14216 DAGCombinerInfo &DCI) const { 14217 assert((N->getOpcode() == ISD::SINT_TO_FP || 14218 N->getOpcode() == ISD::UINT_TO_FP) && 14219 "Need an int -> FP conversion node here"); 14220 14221 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14222 return SDValue(); 14223 14224 SelectionDAG &DAG = DCI.DAG; 14225 SDLoc dl(N); 14226 SDValue Op(N, 0); 14227 14228 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14229 // from the hardware. 14230 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14231 return SDValue(); 14232 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14233 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14234 return SDValue(); 14235 14236 SDValue FirstOperand(Op.getOperand(0)); 14237 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14238 (FirstOperand.getValueType() == MVT::i8 || 14239 FirstOperand.getValueType() == MVT::i16); 14240 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14241 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14242 bool DstDouble = Op.getValueType() == MVT::f64; 14243 unsigned ConvOp = Signed ? 14244 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14245 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14246 SDValue WidthConst = 14247 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14248 dl, false); 14249 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14250 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14251 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14252 DAG.getVTList(MVT::f64, MVT::Other), 14253 Ops, MVT::i8, LDN->getMemOperand()); 14254 14255 // For signed conversion, we need to sign-extend the value in the VSR 14256 if (Signed) { 14257 SDValue ExtOps[] = { Ld, WidthConst }; 14258 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14259 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14260 } else 14261 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14262 } 14263 14264 14265 // For i32 intermediate values, unfortunately, the conversion functions 14266 // leave the upper 32 bits of the value are undefined. Within the set of 14267 // scalar instructions, we have no method for zero- or sign-extending the 14268 // value. Thus, we cannot handle i32 intermediate values here. 14269 if (Op.getOperand(0).getValueType() == MVT::i32) 14270 return SDValue(); 14271 14272 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14273 "UINT_TO_FP is supported only with FPCVT"); 14274 14275 // If we have FCFIDS, then use it when converting to single-precision. 14276 // Otherwise, convert to double-precision and then round. 14277 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14278 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14279 : PPCISD::FCFIDS) 14280 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14281 : PPCISD::FCFID); 14282 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14283 ? MVT::f32 14284 : MVT::f64; 14285 14286 // If we're converting from a float, to an int, and back to a float again, 14287 // then we don't need the store/load pair at all. 14288 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14289 Subtarget.hasFPCVT()) || 14290 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14291 SDValue Src = Op.getOperand(0).getOperand(0); 14292 if (Src.getValueType() == MVT::f32) { 14293 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14294 DCI.AddToWorklist(Src.getNode()); 14295 } else if (Src.getValueType() != MVT::f64) { 14296 // Make sure that we don't pick up a ppc_fp128 source value. 14297 return SDValue(); 14298 } 14299 14300 unsigned FCTOp = 14301 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14302 PPCISD::FCTIDUZ; 14303 14304 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14305 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14306 14307 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14308 FP = DAG.getNode(ISD::FP_ROUND, dl, 14309 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14310 DCI.AddToWorklist(FP.getNode()); 14311 } 14312 14313 return FP; 14314 } 14315 14316 return SDValue(); 14317 } 14318 14319 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14320 // builtins) into loads with swaps. 14321 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14322 DAGCombinerInfo &DCI) const { 14323 SelectionDAG &DAG = DCI.DAG; 14324 SDLoc dl(N); 14325 SDValue Chain; 14326 SDValue Base; 14327 MachineMemOperand *MMO; 14328 14329 switch (N->getOpcode()) { 14330 default: 14331 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14332 case ISD::LOAD: { 14333 LoadSDNode *LD = cast<LoadSDNode>(N); 14334 Chain = LD->getChain(); 14335 Base = LD->getBasePtr(); 14336 MMO = LD->getMemOperand(); 14337 // If the MMO suggests this isn't a load of a full vector, leave 14338 // things alone. For a built-in, we have to make the change for 14339 // correctness, so if there is a size problem that will be a bug. 14340 if (MMO->getSize() < 16) 14341 return SDValue(); 14342 break; 14343 } 14344 case ISD::INTRINSIC_W_CHAIN: { 14345 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14346 Chain = Intrin->getChain(); 14347 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14348 // us what we want. Get operand 2 instead. 14349 Base = Intrin->getOperand(2); 14350 MMO = Intrin->getMemOperand(); 14351 break; 14352 } 14353 } 14354 14355 MVT VecTy = N->getValueType(0).getSimpleVT(); 14356 14357 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14358 // aligned and the type is a vector with elements up to 4 bytes 14359 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14360 VecTy.getScalarSizeInBits() <= 32) { 14361 return SDValue(); 14362 } 14363 14364 SDValue LoadOps[] = { Chain, Base }; 14365 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14366 DAG.getVTList(MVT::v2f64, MVT::Other), 14367 LoadOps, MVT::v2f64, MMO); 14368 14369 DCI.AddToWorklist(Load.getNode()); 14370 Chain = Load.getValue(1); 14371 SDValue Swap = DAG.getNode( 14372 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14373 DCI.AddToWorklist(Swap.getNode()); 14374 14375 // Add a bitcast if the resulting load type doesn't match v2f64. 14376 if (VecTy != MVT::v2f64) { 14377 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14378 DCI.AddToWorklist(N.getNode()); 14379 // Package {bitcast value, swap's chain} to match Load's shape. 14380 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14381 N, Swap.getValue(1)); 14382 } 14383 14384 return Swap; 14385 } 14386 14387 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14388 // builtins) into stores with swaps. 14389 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14390 DAGCombinerInfo &DCI) const { 14391 SelectionDAG &DAG = DCI.DAG; 14392 SDLoc dl(N); 14393 SDValue Chain; 14394 SDValue Base; 14395 unsigned SrcOpnd; 14396 MachineMemOperand *MMO; 14397 14398 switch (N->getOpcode()) { 14399 default: 14400 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14401 case ISD::STORE: { 14402 StoreSDNode *ST = cast<StoreSDNode>(N); 14403 Chain = ST->getChain(); 14404 Base = ST->getBasePtr(); 14405 MMO = ST->getMemOperand(); 14406 SrcOpnd = 1; 14407 // If the MMO suggests this isn't a store of a full vector, leave 14408 // things alone. For a built-in, we have to make the change for 14409 // correctness, so if there is a size problem that will be a bug. 14410 if (MMO->getSize() < 16) 14411 return SDValue(); 14412 break; 14413 } 14414 case ISD::INTRINSIC_VOID: { 14415 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14416 Chain = Intrin->getChain(); 14417 // Intrin->getBasePtr() oddly does not get what we want. 14418 Base = Intrin->getOperand(3); 14419 MMO = Intrin->getMemOperand(); 14420 SrcOpnd = 2; 14421 break; 14422 } 14423 } 14424 14425 SDValue Src = N->getOperand(SrcOpnd); 14426 MVT VecTy = Src.getValueType().getSimpleVT(); 14427 14428 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14429 // aligned and the type is a vector with elements up to 4 bytes 14430 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14431 VecTy.getScalarSizeInBits() <= 32) { 14432 return SDValue(); 14433 } 14434 14435 // All stores are done as v2f64 and possible bit cast. 14436 if (VecTy != MVT::v2f64) { 14437 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14438 DCI.AddToWorklist(Src.getNode()); 14439 } 14440 14441 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14442 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14443 DCI.AddToWorklist(Swap.getNode()); 14444 Chain = Swap.getValue(1); 14445 SDValue StoreOps[] = { Chain, Swap, Base }; 14446 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14447 DAG.getVTList(MVT::Other), 14448 StoreOps, VecTy, MMO); 14449 DCI.AddToWorklist(Store.getNode()); 14450 return Store; 14451 } 14452 14453 // Handle DAG combine for STORE (FP_TO_INT F). 14454 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14455 DAGCombinerInfo &DCI) const { 14456 14457 SelectionDAG &DAG = DCI.DAG; 14458 SDLoc dl(N); 14459 unsigned Opcode = N->getOperand(1).getOpcode(); 14460 14461 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14462 && "Not a FP_TO_INT Instruction!"); 14463 14464 SDValue Val = N->getOperand(1).getOperand(0); 14465 EVT Op1VT = N->getOperand(1).getValueType(); 14466 EVT ResVT = Val.getValueType(); 14467 14468 // Floating point types smaller than 32 bits are not legal on Power. 14469 if (ResVT.getScalarSizeInBits() < 32) 14470 return SDValue(); 14471 14472 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14473 bool ValidTypeForStoreFltAsInt = 14474 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14475 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14476 14477 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14478 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14479 return SDValue(); 14480 14481 // Extend f32 values to f64 14482 if (ResVT.getScalarSizeInBits() == 32) { 14483 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14484 DCI.AddToWorklist(Val.getNode()); 14485 } 14486 14487 // Set signed or unsigned conversion opcode. 14488 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14489 PPCISD::FP_TO_SINT_IN_VSR : 14490 PPCISD::FP_TO_UINT_IN_VSR; 14491 14492 Val = DAG.getNode(ConvOpcode, 14493 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14494 DCI.AddToWorklist(Val.getNode()); 14495 14496 // Set number of bytes being converted. 14497 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14498 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14499 DAG.getIntPtrConstant(ByteSize, dl, false), 14500 DAG.getValueType(Op1VT) }; 14501 14502 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14503 DAG.getVTList(MVT::Other), Ops, 14504 cast<StoreSDNode>(N)->getMemoryVT(), 14505 cast<StoreSDNode>(N)->getMemOperand()); 14506 14507 DCI.AddToWorklist(Val.getNode()); 14508 return Val; 14509 } 14510 14511 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14512 // Check that the source of the element keeps flipping 14513 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14514 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14515 for (int i = 1, e = Mask.size(); i < e; i++) { 14516 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14517 return false; 14518 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14519 return false; 14520 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14521 } 14522 return true; 14523 } 14524 14525 static bool isSplatBV(SDValue Op) { 14526 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14527 return false; 14528 SDValue FirstOp; 14529 14530 // Find first non-undef input. 14531 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14532 FirstOp = Op.getOperand(i); 14533 if (!FirstOp.isUndef()) 14534 break; 14535 } 14536 14537 // All inputs are undef or the same as the first non-undef input. 14538 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14539 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14540 return false; 14541 return true; 14542 } 14543 14544 static SDValue isScalarToVec(SDValue Op) { 14545 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14546 return Op; 14547 if (Op.getOpcode() != ISD::BITCAST) 14548 return SDValue(); 14549 Op = Op.getOperand(0); 14550 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14551 return Op; 14552 return SDValue(); 14553 } 14554 14555 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14556 int LHSMaxIdx, int RHSMinIdx, 14557 int RHSMaxIdx, int HalfVec) { 14558 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14559 int Idx = ShuffV[i]; 14560 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14561 ShuffV[i] += HalfVec; 14562 } 14563 return; 14564 } 14565 14566 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14567 // the original is: 14568 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14569 // In such a case, just change the shuffle mask to extract the element 14570 // from the permuted index. 14571 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14572 SDLoc dl(OrigSToV); 14573 EVT VT = OrigSToV.getValueType(); 14574 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14575 "Expecting a SCALAR_TO_VECTOR here"); 14576 SDValue Input = OrigSToV.getOperand(0); 14577 14578 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14579 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14580 SDValue OrigVector = Input.getOperand(0); 14581 14582 // Can't handle non-const element indices or different vector types 14583 // for the input to the extract and the output of the scalar_to_vector. 14584 if (Idx && VT == OrigVector.getValueType()) { 14585 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14586 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14587 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14588 } 14589 } 14590 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14591 OrigSToV.getOperand(0)); 14592 } 14593 14594 // On little endian subtargets, combine shuffles such as: 14595 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14596 // into: 14597 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14598 // because the latter can be matched to a single instruction merge. 14599 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14600 // to put the value into element zero. Adjust the shuffle mask so that the 14601 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14602 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14603 SelectionDAG &DAG) const { 14604 SDValue LHS = SVN->getOperand(0); 14605 SDValue RHS = SVN->getOperand(1); 14606 auto Mask = SVN->getMask(); 14607 int NumElts = LHS.getValueType().getVectorNumElements(); 14608 SDValue Res(SVN, 0); 14609 SDLoc dl(SVN); 14610 14611 // None of these combines are useful on big endian systems since the ISA 14612 // already has a big endian bias. 14613 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14614 return Res; 14615 14616 // If this is not a shuffle of a shuffle and the first element comes from 14617 // the second vector, canonicalize to the commuted form. This will make it 14618 // more likely to match one of the single instruction patterns. 14619 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14620 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14621 std::swap(LHS, RHS); 14622 Res = DAG.getCommutedVectorShuffle(*SVN); 14623 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14624 } 14625 14626 // Adjust the shuffle mask if either input vector comes from a 14627 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14628 // form (to prevent the need for a swap). 14629 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14630 SDValue SToVLHS = isScalarToVec(LHS); 14631 SDValue SToVRHS = isScalarToVec(RHS); 14632 if (SToVLHS || SToVRHS) { 14633 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14634 : SToVRHS.getValueType().getVectorNumElements(); 14635 int NumEltsOut = ShuffV.size(); 14636 14637 // Initially assume that neither input is permuted. These will be adjusted 14638 // accordingly if either input is. 14639 int LHSMaxIdx = -1; 14640 int RHSMinIdx = -1; 14641 int RHSMaxIdx = -1; 14642 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14643 14644 // Get the permuted scalar to vector nodes for the source(s) that come from 14645 // ISD::SCALAR_TO_VECTOR. 14646 if (SToVLHS) { 14647 // Set up the values for the shuffle vector fixup. 14648 LHSMaxIdx = NumEltsOut / NumEltsIn; 14649 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14650 if (SToVLHS.getValueType() != LHS.getValueType()) 14651 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14652 LHS = SToVLHS; 14653 } 14654 if (SToVRHS) { 14655 RHSMinIdx = NumEltsOut; 14656 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14657 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14658 if (SToVRHS.getValueType() != RHS.getValueType()) 14659 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14660 RHS = SToVRHS; 14661 } 14662 14663 // Fix up the shuffle mask to reflect where the desired element actually is. 14664 // The minimum and maximum indices that correspond to element zero for both 14665 // the LHS and RHS are computed and will control which shuffle mask entries 14666 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14667 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14668 // HalfVec to refer to the corresponding element in the permuted vector. 14669 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14670 HalfVec); 14671 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14672 14673 // We may have simplified away the shuffle. We won't be able to do anything 14674 // further with it here. 14675 if (!isa<ShuffleVectorSDNode>(Res)) 14676 return Res; 14677 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14678 } 14679 14680 // The common case after we commuted the shuffle is that the RHS is a splat 14681 // and we have elements coming in from the splat at indices that are not 14682 // conducive to using a merge. 14683 // Example: 14684 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14685 if (!isSplatBV(RHS)) 14686 return Res; 14687 14688 // We are looking for a mask such that all even elements are from 14689 // one vector and all odd elements from the other. 14690 if (!isAlternatingShuffMask(Mask, NumElts)) 14691 return Res; 14692 14693 // Adjust the mask so we are pulling in the same index from the splat 14694 // as the index from the interesting vector in consecutive elements. 14695 // Example (even elements from first vector): 14696 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14697 if (Mask[0] < NumElts) 14698 for (int i = 1, e = Mask.size(); i < e; i += 2) 14699 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14700 // Example (odd elements from first vector): 14701 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14702 else 14703 for (int i = 0, e = Mask.size(); i < e; i += 2) 14704 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14705 14706 // If the RHS has undefs, we need to remove them since we may have created 14707 // a shuffle that adds those instead of the splat value. 14708 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14709 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14710 14711 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14712 return Res; 14713 } 14714 14715 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14716 LSBaseSDNode *LSBase, 14717 DAGCombinerInfo &DCI) const { 14718 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14719 "Not a reverse memop pattern!"); 14720 14721 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14722 auto Mask = SVN->getMask(); 14723 int i = 0; 14724 auto I = Mask.rbegin(); 14725 auto E = Mask.rend(); 14726 14727 for (; I != E; ++I) { 14728 if (*I != i) 14729 return false; 14730 i++; 14731 } 14732 return true; 14733 }; 14734 14735 SelectionDAG &DAG = DCI.DAG; 14736 EVT VT = SVN->getValueType(0); 14737 14738 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14739 return SDValue(); 14740 14741 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14742 // See comment in PPCVSXSwapRemoval.cpp. 14743 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14744 if (!Subtarget.hasP9Vector()) 14745 return SDValue(); 14746 14747 if(!IsElementReverse(SVN)) 14748 return SDValue(); 14749 14750 if (LSBase->getOpcode() == ISD::LOAD) { 14751 SDLoc dl(SVN); 14752 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14753 return DAG.getMemIntrinsicNode( 14754 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14755 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14756 } 14757 14758 if (LSBase->getOpcode() == ISD::STORE) { 14759 SDLoc dl(LSBase); 14760 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14761 LSBase->getBasePtr()}; 14762 return DAG.getMemIntrinsicNode( 14763 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14764 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14765 } 14766 14767 llvm_unreachable("Expected a load or store node here"); 14768 } 14769 14770 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14771 DAGCombinerInfo &DCI) const { 14772 SelectionDAG &DAG = DCI.DAG; 14773 SDLoc dl(N); 14774 switch (N->getOpcode()) { 14775 default: break; 14776 case ISD::ADD: 14777 return combineADD(N, DCI); 14778 case ISD::SHL: 14779 return combineSHL(N, DCI); 14780 case ISD::SRA: 14781 return combineSRA(N, DCI); 14782 case ISD::SRL: 14783 return combineSRL(N, DCI); 14784 case ISD::MUL: 14785 return combineMUL(N, DCI); 14786 case ISD::FMA: 14787 case PPCISD::FNMSUB: 14788 return combineFMALike(N, DCI); 14789 case PPCISD::SHL: 14790 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14791 return N->getOperand(0); 14792 break; 14793 case PPCISD::SRL: 14794 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14795 return N->getOperand(0); 14796 break; 14797 case PPCISD::SRA: 14798 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14799 if (C->isNullValue() || // 0 >>s V -> 0. 14800 C->isAllOnesValue()) // -1 >>s V -> -1. 14801 return N->getOperand(0); 14802 } 14803 break; 14804 case ISD::SIGN_EXTEND: 14805 case ISD::ZERO_EXTEND: 14806 case ISD::ANY_EXTEND: 14807 return DAGCombineExtBoolTrunc(N, DCI); 14808 case ISD::TRUNCATE: 14809 return combineTRUNCATE(N, DCI); 14810 case ISD::SETCC: 14811 if (SDValue CSCC = combineSetCC(N, DCI)) 14812 return CSCC; 14813 LLVM_FALLTHROUGH; 14814 case ISD::SELECT_CC: 14815 return DAGCombineTruncBoolExt(N, DCI); 14816 case ISD::SINT_TO_FP: 14817 case ISD::UINT_TO_FP: 14818 return combineFPToIntToFP(N, DCI); 14819 case ISD::VECTOR_SHUFFLE: 14820 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14821 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14822 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14823 } 14824 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14825 case ISD::STORE: { 14826 14827 EVT Op1VT = N->getOperand(1).getValueType(); 14828 unsigned Opcode = N->getOperand(1).getOpcode(); 14829 14830 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14831 SDValue Val= combineStoreFPToInt(N, DCI); 14832 if (Val) 14833 return Val; 14834 } 14835 14836 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14837 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14838 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14839 if (Val) 14840 return Val; 14841 } 14842 14843 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14844 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14845 N->getOperand(1).getNode()->hasOneUse() && 14846 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14847 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14848 14849 // STBRX can only handle simple types and it makes no sense to store less 14850 // two bytes in byte-reversed order. 14851 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14852 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14853 break; 14854 14855 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14856 // Do an any-extend to 32-bits if this is a half-word input. 14857 if (BSwapOp.getValueType() == MVT::i16) 14858 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14859 14860 // If the type of BSWAP operand is wider than stored memory width 14861 // it need to be shifted to the right side before STBRX. 14862 if (Op1VT.bitsGT(mVT)) { 14863 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14864 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14865 DAG.getConstant(Shift, dl, MVT::i32)); 14866 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14867 if (Op1VT == MVT::i64) 14868 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14869 } 14870 14871 SDValue Ops[] = { 14872 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14873 }; 14874 return 14875 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14876 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14877 cast<StoreSDNode>(N)->getMemOperand()); 14878 } 14879 14880 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14881 // So it can increase the chance of CSE constant construction. 14882 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14883 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14884 // Need to sign-extended to 64-bits to handle negative values. 14885 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14886 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14887 MemVT.getSizeInBits()); 14888 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14889 14890 // DAG.getTruncStore() can't be used here because it doesn't accept 14891 // the general (base + offset) addressing mode. 14892 // So we use UpdateNodeOperands and setTruncatingStore instead. 14893 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14894 N->getOperand(3)); 14895 cast<StoreSDNode>(N)->setTruncatingStore(true); 14896 return SDValue(N, 0); 14897 } 14898 14899 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14900 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14901 if (Op1VT.isSimple()) { 14902 MVT StoreVT = Op1VT.getSimpleVT(); 14903 if (Subtarget.needsSwapsForVSXMemOps() && 14904 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14905 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14906 return expandVSXStoreForLE(N, DCI); 14907 } 14908 break; 14909 } 14910 case ISD::LOAD: { 14911 LoadSDNode *LD = cast<LoadSDNode>(N); 14912 EVT VT = LD->getValueType(0); 14913 14914 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14915 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14916 if (VT.isSimple()) { 14917 MVT LoadVT = VT.getSimpleVT(); 14918 if (Subtarget.needsSwapsForVSXMemOps() && 14919 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14920 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14921 return expandVSXLoadForLE(N, DCI); 14922 } 14923 14924 // We sometimes end up with a 64-bit integer load, from which we extract 14925 // two single-precision floating-point numbers. This happens with 14926 // std::complex<float>, and other similar structures, because of the way we 14927 // canonicalize structure copies. However, if we lack direct moves, 14928 // then the final bitcasts from the extracted integer values to the 14929 // floating-point numbers turn into store/load pairs. Even with direct moves, 14930 // just loading the two floating-point numbers is likely better. 14931 auto ReplaceTwoFloatLoad = [&]() { 14932 if (VT != MVT::i64) 14933 return false; 14934 14935 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14936 LD->isVolatile()) 14937 return false; 14938 14939 // We're looking for a sequence like this: 14940 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14941 // t16: i64 = srl t13, Constant:i32<32> 14942 // t17: i32 = truncate t16 14943 // t18: f32 = bitcast t17 14944 // t19: i32 = truncate t13 14945 // t20: f32 = bitcast t19 14946 14947 if (!LD->hasNUsesOfValue(2, 0)) 14948 return false; 14949 14950 auto UI = LD->use_begin(); 14951 while (UI.getUse().getResNo() != 0) ++UI; 14952 SDNode *Trunc = *UI++; 14953 while (UI.getUse().getResNo() != 0) ++UI; 14954 SDNode *RightShift = *UI; 14955 if (Trunc->getOpcode() != ISD::TRUNCATE) 14956 std::swap(Trunc, RightShift); 14957 14958 if (Trunc->getOpcode() != ISD::TRUNCATE || 14959 Trunc->getValueType(0) != MVT::i32 || 14960 !Trunc->hasOneUse()) 14961 return false; 14962 if (RightShift->getOpcode() != ISD::SRL || 14963 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14964 RightShift->getConstantOperandVal(1) != 32 || 14965 !RightShift->hasOneUse()) 14966 return false; 14967 14968 SDNode *Trunc2 = *RightShift->use_begin(); 14969 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14970 Trunc2->getValueType(0) != MVT::i32 || 14971 !Trunc2->hasOneUse()) 14972 return false; 14973 14974 SDNode *Bitcast = *Trunc->use_begin(); 14975 SDNode *Bitcast2 = *Trunc2->use_begin(); 14976 14977 if (Bitcast->getOpcode() != ISD::BITCAST || 14978 Bitcast->getValueType(0) != MVT::f32) 14979 return false; 14980 if (Bitcast2->getOpcode() != ISD::BITCAST || 14981 Bitcast2->getValueType(0) != MVT::f32) 14982 return false; 14983 14984 if (Subtarget.isLittleEndian()) 14985 std::swap(Bitcast, Bitcast2); 14986 14987 // Bitcast has the second float (in memory-layout order) and Bitcast2 14988 // has the first one. 14989 14990 SDValue BasePtr = LD->getBasePtr(); 14991 if (LD->isIndexed()) { 14992 assert(LD->getAddressingMode() == ISD::PRE_INC && 14993 "Non-pre-inc AM on PPC?"); 14994 BasePtr = 14995 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14996 LD->getOffset()); 14997 } 14998 14999 auto MMOFlags = 15000 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15001 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15002 LD->getPointerInfo(), LD->getAlignment(), 15003 MMOFlags, LD->getAAInfo()); 15004 SDValue AddPtr = 15005 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15006 BasePtr, DAG.getIntPtrConstant(4, dl)); 15007 SDValue FloatLoad2 = DAG.getLoad( 15008 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15009 LD->getPointerInfo().getWithOffset(4), 15010 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15011 15012 if (LD->isIndexed()) { 15013 // Note that DAGCombine should re-form any pre-increment load(s) from 15014 // what is produced here if that makes sense. 15015 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15016 } 15017 15018 DCI.CombineTo(Bitcast2, FloatLoad); 15019 DCI.CombineTo(Bitcast, FloatLoad2); 15020 15021 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15022 SDValue(FloatLoad2.getNode(), 1)); 15023 return true; 15024 }; 15025 15026 if (ReplaceTwoFloatLoad()) 15027 return SDValue(N, 0); 15028 15029 EVT MemVT = LD->getMemoryVT(); 15030 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15031 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15032 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 15033 Align ScalarABIAlignment = DAG.getDataLayout().getABITypeAlign(STy); 15034 if (LD->isUnindexed() && VT.isVector() && 15035 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15036 // P8 and later hardware should just use LOAD. 15037 !Subtarget.hasP8Vector() && 15038 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15039 VT == MVT::v4f32)) || 15040 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 15041 LD->getAlign() >= ScalarABIAlignment)) && 15042 LD->getAlign() < ABIAlignment) { 15043 // This is a type-legal unaligned Altivec or QPX load. 15044 SDValue Chain = LD->getChain(); 15045 SDValue Ptr = LD->getBasePtr(); 15046 bool isLittleEndian = Subtarget.isLittleEndian(); 15047 15048 // This implements the loading of unaligned vectors as described in 15049 // the venerable Apple Velocity Engine overview. Specifically: 15050 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15051 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15052 // 15053 // The general idea is to expand a sequence of one or more unaligned 15054 // loads into an alignment-based permutation-control instruction (lvsl 15055 // or lvsr), a series of regular vector loads (which always truncate 15056 // their input address to an aligned address), and a series of 15057 // permutations. The results of these permutations are the requested 15058 // loaded values. The trick is that the last "extra" load is not taken 15059 // from the address you might suspect (sizeof(vector) bytes after the 15060 // last requested load), but rather sizeof(vector) - 1 bytes after the 15061 // last requested vector. The point of this is to avoid a page fault if 15062 // the base address happened to be aligned. This works because if the 15063 // base address is aligned, then adding less than a full vector length 15064 // will cause the last vector in the sequence to be (re)loaded. 15065 // Otherwise, the next vector will be fetched as you might suspect was 15066 // necessary. 15067 15068 // We might be able to reuse the permutation generation from 15069 // a different base address offset from this one by an aligned amount. 15070 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15071 // optimization later. 15072 Intrinsic::ID Intr, IntrLD, IntrPerm; 15073 MVT PermCntlTy, PermTy, LDTy; 15074 if (Subtarget.hasAltivec()) { 15075 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 15076 Intrinsic::ppc_altivec_lvsl; 15077 IntrLD = Intrinsic::ppc_altivec_lvx; 15078 IntrPerm = Intrinsic::ppc_altivec_vperm; 15079 PermCntlTy = MVT::v16i8; 15080 PermTy = MVT::v4i32; 15081 LDTy = MVT::v4i32; 15082 } else { 15083 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 15084 Intrinsic::ppc_qpx_qvlpcls; 15085 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 15086 Intrinsic::ppc_qpx_qvlfs; 15087 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 15088 PermCntlTy = MVT::v4f64; 15089 PermTy = MVT::v4f64; 15090 LDTy = MemVT.getSimpleVT(); 15091 } 15092 15093 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15094 15095 // Create the new MMO for the new base load. It is like the original MMO, 15096 // but represents an area in memory almost twice the vector size centered 15097 // on the original address. If the address is unaligned, we might start 15098 // reading up to (sizeof(vector)-1) bytes below the address of the 15099 // original unaligned load. 15100 MachineFunction &MF = DAG.getMachineFunction(); 15101 MachineMemOperand *BaseMMO = 15102 MF.getMachineMemOperand(LD->getMemOperand(), 15103 -(long)MemVT.getStoreSize()+1, 15104 2*MemVT.getStoreSize()-1); 15105 15106 // Create the new base load. 15107 SDValue LDXIntID = 15108 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15109 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15110 SDValue BaseLoad = 15111 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15112 DAG.getVTList(PermTy, MVT::Other), 15113 BaseLoadOps, LDTy, BaseMMO); 15114 15115 // Note that the value of IncOffset (which is provided to the next 15116 // load's pointer info offset value, and thus used to calculate the 15117 // alignment), and the value of IncValue (which is actually used to 15118 // increment the pointer value) are different! This is because we 15119 // require the next load to appear to be aligned, even though it 15120 // is actually offset from the base pointer by a lesser amount. 15121 int IncOffset = VT.getSizeInBits() / 8; 15122 int IncValue = IncOffset; 15123 15124 // Walk (both up and down) the chain looking for another load at the real 15125 // (aligned) offset (the alignment of the other load does not matter in 15126 // this case). If found, then do not use the offset reduction trick, as 15127 // that will prevent the loads from being later combined (as they would 15128 // otherwise be duplicates). 15129 if (!findConsecutiveLoad(LD, DAG)) 15130 --IncValue; 15131 15132 SDValue Increment = 15133 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15134 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15135 15136 MachineMemOperand *ExtraMMO = 15137 MF.getMachineMemOperand(LD->getMemOperand(), 15138 1, 2*MemVT.getStoreSize()-1); 15139 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15140 SDValue ExtraLoad = 15141 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15142 DAG.getVTList(PermTy, MVT::Other), 15143 ExtraLoadOps, LDTy, ExtraMMO); 15144 15145 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15146 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15147 15148 // Because vperm has a big-endian bias, we must reverse the order 15149 // of the input vectors and complement the permute control vector 15150 // when generating little endian code. We have already handled the 15151 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15152 // and ExtraLoad here. 15153 SDValue Perm; 15154 if (isLittleEndian) 15155 Perm = BuildIntrinsicOp(IntrPerm, 15156 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15157 else 15158 Perm = BuildIntrinsicOp(IntrPerm, 15159 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15160 15161 if (VT != PermTy) 15162 Perm = Subtarget.hasAltivec() ? 15163 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 15164 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 15165 DAG.getTargetConstant(1, dl, MVT::i64)); 15166 // second argument is 1 because this rounding 15167 // is always exact. 15168 15169 // The output of the permutation is our loaded result, the TokenFactor is 15170 // our new chain. 15171 DCI.CombineTo(N, Perm, TF); 15172 return SDValue(N, 0); 15173 } 15174 } 15175 break; 15176 case ISD::INTRINSIC_WO_CHAIN: { 15177 bool isLittleEndian = Subtarget.isLittleEndian(); 15178 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15179 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15180 : Intrinsic::ppc_altivec_lvsl); 15181 if ((IID == Intr || 15182 IID == Intrinsic::ppc_qpx_qvlpcld || 15183 IID == Intrinsic::ppc_qpx_qvlpcls) && 15184 N->getOperand(1)->getOpcode() == ISD::ADD) { 15185 SDValue Add = N->getOperand(1); 15186 15187 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 15188 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 15189 15190 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15191 APInt::getAllOnesValue(Bits /* alignment */) 15192 .zext(Add.getScalarValueSizeInBits()))) { 15193 SDNode *BasePtr = Add->getOperand(0).getNode(); 15194 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15195 UE = BasePtr->use_end(); 15196 UI != UE; ++UI) { 15197 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15198 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 15199 // We've found another LVSL/LVSR, and this address is an aligned 15200 // multiple of that one. The results will be the same, so use the 15201 // one we've just found instead. 15202 15203 return SDValue(*UI, 0); 15204 } 15205 } 15206 } 15207 15208 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15209 SDNode *BasePtr = Add->getOperand(0).getNode(); 15210 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15211 UE = BasePtr->use_end(); UI != UE; ++UI) { 15212 if (UI->getOpcode() == ISD::ADD && 15213 isa<ConstantSDNode>(UI->getOperand(1)) && 15214 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15215 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15216 (1ULL << Bits) == 0) { 15217 SDNode *OtherAdd = *UI; 15218 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15219 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15220 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15221 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15222 return SDValue(*VI, 0); 15223 } 15224 } 15225 } 15226 } 15227 } 15228 } 15229 15230 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15231 // Expose the vabsduw/h/b opportunity for down stream 15232 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15233 (IID == Intrinsic::ppc_altivec_vmaxsw || 15234 IID == Intrinsic::ppc_altivec_vmaxsh || 15235 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15236 SDValue V1 = N->getOperand(1); 15237 SDValue V2 = N->getOperand(2); 15238 if ((V1.getSimpleValueType() == MVT::v4i32 || 15239 V1.getSimpleValueType() == MVT::v8i16 || 15240 V1.getSimpleValueType() == MVT::v16i8) && 15241 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15242 // (0-a, a) 15243 if (V1.getOpcode() == ISD::SUB && 15244 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15245 V1.getOperand(1) == V2) { 15246 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15247 } 15248 // (a, 0-a) 15249 if (V2.getOpcode() == ISD::SUB && 15250 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15251 V2.getOperand(1) == V1) { 15252 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15253 } 15254 // (x-y, y-x) 15255 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15256 V1.getOperand(0) == V2.getOperand(1) && 15257 V1.getOperand(1) == V2.getOperand(0)) { 15258 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15259 } 15260 } 15261 } 15262 } 15263 15264 break; 15265 case ISD::INTRINSIC_W_CHAIN: 15266 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15267 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15268 if (Subtarget.needsSwapsForVSXMemOps()) { 15269 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15270 default: 15271 break; 15272 case Intrinsic::ppc_vsx_lxvw4x: 15273 case Intrinsic::ppc_vsx_lxvd2x: 15274 return expandVSXLoadForLE(N, DCI); 15275 } 15276 } 15277 break; 15278 case ISD::INTRINSIC_VOID: 15279 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15280 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15281 if (Subtarget.needsSwapsForVSXMemOps()) { 15282 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15283 default: 15284 break; 15285 case Intrinsic::ppc_vsx_stxvw4x: 15286 case Intrinsic::ppc_vsx_stxvd2x: 15287 return expandVSXStoreForLE(N, DCI); 15288 } 15289 } 15290 break; 15291 case ISD::BSWAP: 15292 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15293 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15294 N->getOperand(0).hasOneUse() && 15295 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15296 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15297 N->getValueType(0) == MVT::i64))) { 15298 SDValue Load = N->getOperand(0); 15299 LoadSDNode *LD = cast<LoadSDNode>(Load); 15300 // Create the byte-swapping load. 15301 SDValue Ops[] = { 15302 LD->getChain(), // Chain 15303 LD->getBasePtr(), // Ptr 15304 DAG.getValueType(N->getValueType(0)) // VT 15305 }; 15306 SDValue BSLoad = 15307 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15308 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15309 MVT::i64 : MVT::i32, MVT::Other), 15310 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15311 15312 // If this is an i16 load, insert the truncate. 15313 SDValue ResVal = BSLoad; 15314 if (N->getValueType(0) == MVT::i16) 15315 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15316 15317 // First, combine the bswap away. This makes the value produced by the 15318 // load dead. 15319 DCI.CombineTo(N, ResVal); 15320 15321 // Next, combine the load away, we give it a bogus result value but a real 15322 // chain result. The result value is dead because the bswap is dead. 15323 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15324 15325 // Return N so it doesn't get rechecked! 15326 return SDValue(N, 0); 15327 } 15328 break; 15329 case PPCISD::VCMP: 15330 // If a VCMPo node already exists with exactly the same operands as this 15331 // node, use its result instead of this node (VCMPo computes both a CR6 and 15332 // a normal output). 15333 // 15334 if (!N->getOperand(0).hasOneUse() && 15335 !N->getOperand(1).hasOneUse() && 15336 !N->getOperand(2).hasOneUse()) { 15337 15338 // Scan all of the users of the LHS, looking for VCMPo's that match. 15339 SDNode *VCMPoNode = nullptr; 15340 15341 SDNode *LHSN = N->getOperand(0).getNode(); 15342 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15343 UI != E; ++UI) 15344 if (UI->getOpcode() == PPCISD::VCMPo && 15345 UI->getOperand(1) == N->getOperand(1) && 15346 UI->getOperand(2) == N->getOperand(2) && 15347 UI->getOperand(0) == N->getOperand(0)) { 15348 VCMPoNode = *UI; 15349 break; 15350 } 15351 15352 // If there is no VCMPo node, or if the flag value has a single use, don't 15353 // transform this. 15354 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 15355 break; 15356 15357 // Look at the (necessarily single) use of the flag value. If it has a 15358 // chain, this transformation is more complex. Note that multiple things 15359 // could use the value result, which we should ignore. 15360 SDNode *FlagUser = nullptr; 15361 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 15362 FlagUser == nullptr; ++UI) { 15363 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 15364 SDNode *User = *UI; 15365 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15366 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 15367 FlagUser = User; 15368 break; 15369 } 15370 } 15371 } 15372 15373 // If the user is a MFOCRF instruction, we know this is safe. 15374 // Otherwise we give up for right now. 15375 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15376 return SDValue(VCMPoNode, 0); 15377 } 15378 break; 15379 case ISD::BRCOND: { 15380 SDValue Cond = N->getOperand(1); 15381 SDValue Target = N->getOperand(2); 15382 15383 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15384 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15385 Intrinsic::loop_decrement) { 15386 15387 // We now need to make the intrinsic dead (it cannot be instruction 15388 // selected). 15389 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15390 assert(Cond.getNode()->hasOneUse() && 15391 "Counter decrement has more than one use"); 15392 15393 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15394 N->getOperand(0), Target); 15395 } 15396 } 15397 break; 15398 case ISD::BR_CC: { 15399 // If this is a branch on an altivec predicate comparison, lower this so 15400 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15401 // lowering is done pre-legalize, because the legalizer lowers the predicate 15402 // compare down to code that is difficult to reassemble. 15403 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15404 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15405 15406 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15407 // value. If so, pass-through the AND to get to the intrinsic. 15408 if (LHS.getOpcode() == ISD::AND && 15409 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15410 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15411 Intrinsic::loop_decrement && 15412 isa<ConstantSDNode>(LHS.getOperand(1)) && 15413 !isNullConstant(LHS.getOperand(1))) 15414 LHS = LHS.getOperand(0); 15415 15416 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15417 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15418 Intrinsic::loop_decrement && 15419 isa<ConstantSDNode>(RHS)) { 15420 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15421 "Counter decrement comparison is not EQ or NE"); 15422 15423 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15424 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15425 (CC == ISD::SETNE && !Val); 15426 15427 // We now need to make the intrinsic dead (it cannot be instruction 15428 // selected). 15429 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15430 assert(LHS.getNode()->hasOneUse() && 15431 "Counter decrement has more than one use"); 15432 15433 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15434 N->getOperand(0), N->getOperand(4)); 15435 } 15436 15437 int CompareOpc; 15438 bool isDot; 15439 15440 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15441 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15442 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15443 assert(isDot && "Can't compare against a vector result!"); 15444 15445 // If this is a comparison against something other than 0/1, then we know 15446 // that the condition is never/always true. 15447 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15448 if (Val != 0 && Val != 1) { 15449 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15450 return N->getOperand(0); 15451 // Always !=, turn it into an unconditional branch. 15452 return DAG.getNode(ISD::BR, dl, MVT::Other, 15453 N->getOperand(0), N->getOperand(4)); 15454 } 15455 15456 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15457 15458 // Create the PPCISD altivec 'dot' comparison node. 15459 SDValue Ops[] = { 15460 LHS.getOperand(2), // LHS of compare 15461 LHS.getOperand(3), // RHS of compare 15462 DAG.getConstant(CompareOpc, dl, MVT::i32) 15463 }; 15464 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15465 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 15466 15467 // Unpack the result based on how the target uses it. 15468 PPC::Predicate CompOpc; 15469 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15470 default: // Can't happen, don't crash on invalid number though. 15471 case 0: // Branch on the value of the EQ bit of CR6. 15472 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15473 break; 15474 case 1: // Branch on the inverted value of the EQ bit of CR6. 15475 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15476 break; 15477 case 2: // Branch on the value of the LT bit of CR6. 15478 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15479 break; 15480 case 3: // Branch on the inverted value of the LT bit of CR6. 15481 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15482 break; 15483 } 15484 15485 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15486 DAG.getConstant(CompOpc, dl, MVT::i32), 15487 DAG.getRegister(PPC::CR6, MVT::i32), 15488 N->getOperand(4), CompNode.getValue(1)); 15489 } 15490 break; 15491 } 15492 case ISD::BUILD_VECTOR: 15493 return DAGCombineBuildVector(N, DCI); 15494 case ISD::ABS: 15495 return combineABS(N, DCI); 15496 case ISD::VSELECT: 15497 return combineVSelect(N, DCI); 15498 } 15499 15500 return SDValue(); 15501 } 15502 15503 SDValue 15504 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15505 SelectionDAG &DAG, 15506 SmallVectorImpl<SDNode *> &Created) const { 15507 // fold (sdiv X, pow2) 15508 EVT VT = N->getValueType(0); 15509 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15510 return SDValue(); 15511 if ((VT != MVT::i32 && VT != MVT::i64) || 15512 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15513 return SDValue(); 15514 15515 SDLoc DL(N); 15516 SDValue N0 = N->getOperand(0); 15517 15518 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15519 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15520 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15521 15522 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15523 Created.push_back(Op.getNode()); 15524 15525 if (IsNegPow2) { 15526 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15527 Created.push_back(Op.getNode()); 15528 } 15529 15530 return Op; 15531 } 15532 15533 //===----------------------------------------------------------------------===// 15534 // Inline Assembly Support 15535 //===----------------------------------------------------------------------===// 15536 15537 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15538 KnownBits &Known, 15539 const APInt &DemandedElts, 15540 const SelectionDAG &DAG, 15541 unsigned Depth) const { 15542 Known.resetAll(); 15543 switch (Op.getOpcode()) { 15544 default: break; 15545 case PPCISD::LBRX: { 15546 // lhbrx is known to have the top bits cleared out. 15547 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15548 Known.Zero = 0xFFFF0000; 15549 break; 15550 } 15551 case ISD::INTRINSIC_WO_CHAIN: { 15552 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15553 default: break; 15554 case Intrinsic::ppc_altivec_vcmpbfp_p: 15555 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15556 case Intrinsic::ppc_altivec_vcmpequb_p: 15557 case Intrinsic::ppc_altivec_vcmpequh_p: 15558 case Intrinsic::ppc_altivec_vcmpequw_p: 15559 case Intrinsic::ppc_altivec_vcmpequd_p: 15560 case Intrinsic::ppc_altivec_vcmpgefp_p: 15561 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15562 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15563 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15564 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15565 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15566 case Intrinsic::ppc_altivec_vcmpgtub_p: 15567 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15568 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15569 case Intrinsic::ppc_altivec_vcmpgtud_p: 15570 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15571 break; 15572 } 15573 } 15574 } 15575 } 15576 15577 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15578 switch (Subtarget.getCPUDirective()) { 15579 default: break; 15580 case PPC::DIR_970: 15581 case PPC::DIR_PWR4: 15582 case PPC::DIR_PWR5: 15583 case PPC::DIR_PWR5X: 15584 case PPC::DIR_PWR6: 15585 case PPC::DIR_PWR6X: 15586 case PPC::DIR_PWR7: 15587 case PPC::DIR_PWR8: 15588 case PPC::DIR_PWR9: 15589 case PPC::DIR_PWR10: 15590 case PPC::DIR_PWR_FUTURE: { 15591 if (!ML) 15592 break; 15593 15594 if (!DisableInnermostLoopAlign32) { 15595 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15596 // so that we can decrease cache misses and branch-prediction misses. 15597 // Actual alignment of the loop will depend on the hotness check and other 15598 // logic in alignBlocks. 15599 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15600 return Align(32); 15601 } 15602 15603 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15604 15605 // For small loops (between 5 and 8 instructions), align to a 32-byte 15606 // boundary so that the entire loop fits in one instruction-cache line. 15607 uint64_t LoopSize = 0; 15608 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15609 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15610 LoopSize += TII->getInstSizeInBytes(*J); 15611 if (LoopSize > 32) 15612 break; 15613 } 15614 15615 if (LoopSize > 16 && LoopSize <= 32) 15616 return Align(32); 15617 15618 break; 15619 } 15620 } 15621 15622 return TargetLowering::getPrefLoopAlignment(ML); 15623 } 15624 15625 /// getConstraintType - Given a constraint, return the type of 15626 /// constraint it is for this target. 15627 PPCTargetLowering::ConstraintType 15628 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15629 if (Constraint.size() == 1) { 15630 switch (Constraint[0]) { 15631 default: break; 15632 case 'b': 15633 case 'r': 15634 case 'f': 15635 case 'd': 15636 case 'v': 15637 case 'y': 15638 return C_RegisterClass; 15639 case 'Z': 15640 // FIXME: While Z does indicate a memory constraint, it specifically 15641 // indicates an r+r address (used in conjunction with the 'y' modifier 15642 // in the replacement string). Currently, we're forcing the base 15643 // register to be r0 in the asm printer (which is interpreted as zero) 15644 // and forming the complete address in the second register. This is 15645 // suboptimal. 15646 return C_Memory; 15647 } 15648 } else if (Constraint == "wc") { // individual CR bits. 15649 return C_RegisterClass; 15650 } else if (Constraint == "wa" || Constraint == "wd" || 15651 Constraint == "wf" || Constraint == "ws" || 15652 Constraint == "wi" || Constraint == "ww") { 15653 return C_RegisterClass; // VSX registers. 15654 } 15655 return TargetLowering::getConstraintType(Constraint); 15656 } 15657 15658 /// Examine constraint type and operand type and determine a weight value. 15659 /// This object must already have been set up with the operand type 15660 /// and the current alternative constraint selected. 15661 TargetLowering::ConstraintWeight 15662 PPCTargetLowering::getSingleConstraintMatchWeight( 15663 AsmOperandInfo &info, const char *constraint) const { 15664 ConstraintWeight weight = CW_Invalid; 15665 Value *CallOperandVal = info.CallOperandVal; 15666 // If we don't have a value, we can't do a match, 15667 // but allow it at the lowest weight. 15668 if (!CallOperandVal) 15669 return CW_Default; 15670 Type *type = CallOperandVal->getType(); 15671 15672 // Look at the constraint type. 15673 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15674 return CW_Register; // an individual CR bit. 15675 else if ((StringRef(constraint) == "wa" || 15676 StringRef(constraint) == "wd" || 15677 StringRef(constraint) == "wf") && 15678 type->isVectorTy()) 15679 return CW_Register; 15680 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15681 return CW_Register; // just hold 64-bit integers data. 15682 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15683 return CW_Register; 15684 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15685 return CW_Register; 15686 15687 switch (*constraint) { 15688 default: 15689 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15690 break; 15691 case 'b': 15692 if (type->isIntegerTy()) 15693 weight = CW_Register; 15694 break; 15695 case 'f': 15696 if (type->isFloatTy()) 15697 weight = CW_Register; 15698 break; 15699 case 'd': 15700 if (type->isDoubleTy()) 15701 weight = CW_Register; 15702 break; 15703 case 'v': 15704 if (type->isVectorTy()) 15705 weight = CW_Register; 15706 break; 15707 case 'y': 15708 weight = CW_Register; 15709 break; 15710 case 'Z': 15711 weight = CW_Memory; 15712 break; 15713 } 15714 return weight; 15715 } 15716 15717 std::pair<unsigned, const TargetRegisterClass *> 15718 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15719 StringRef Constraint, 15720 MVT VT) const { 15721 if (Constraint.size() == 1) { 15722 // GCC RS6000 Constraint Letters 15723 switch (Constraint[0]) { 15724 case 'b': // R1-R31 15725 if (VT == MVT::i64 && Subtarget.isPPC64()) 15726 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15727 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15728 case 'r': // R0-R31 15729 if (VT == MVT::i64 && Subtarget.isPPC64()) 15730 return std::make_pair(0U, &PPC::G8RCRegClass); 15731 return std::make_pair(0U, &PPC::GPRCRegClass); 15732 // 'd' and 'f' constraints are both defined to be "the floating point 15733 // registers", where one is for 32-bit and the other for 64-bit. We don't 15734 // really care overly much here so just give them all the same reg classes. 15735 case 'd': 15736 case 'f': 15737 if (Subtarget.hasSPE()) { 15738 if (VT == MVT::f32 || VT == MVT::i32) 15739 return std::make_pair(0U, &PPC::GPRCRegClass); 15740 if (VT == MVT::f64 || VT == MVT::i64) 15741 return std::make_pair(0U, &PPC::SPERCRegClass); 15742 } else { 15743 if (VT == MVT::f32 || VT == MVT::i32) 15744 return std::make_pair(0U, &PPC::F4RCRegClass); 15745 if (VT == MVT::f64 || VT == MVT::i64) 15746 return std::make_pair(0U, &PPC::F8RCRegClass); 15747 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15748 return std::make_pair(0U, &PPC::QFRCRegClass); 15749 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15750 return std::make_pair(0U, &PPC::QSRCRegClass); 15751 } 15752 break; 15753 case 'v': 15754 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15755 return std::make_pair(0U, &PPC::QFRCRegClass); 15756 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15757 return std::make_pair(0U, &PPC::QSRCRegClass); 15758 if (Subtarget.hasAltivec()) 15759 return std::make_pair(0U, &PPC::VRRCRegClass); 15760 break; 15761 case 'y': // crrc 15762 return std::make_pair(0U, &PPC::CRRCRegClass); 15763 } 15764 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15765 // An individual CR bit. 15766 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15767 } else if ((Constraint == "wa" || Constraint == "wd" || 15768 Constraint == "wf" || Constraint == "wi") && 15769 Subtarget.hasVSX()) { 15770 return std::make_pair(0U, &PPC::VSRCRegClass); 15771 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15772 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15773 return std::make_pair(0U, &PPC::VSSRCRegClass); 15774 else 15775 return std::make_pair(0U, &PPC::VSFRCRegClass); 15776 } 15777 15778 // If we name a VSX register, we can't defer to the base class because it 15779 // will not recognize the correct register (their names will be VSL{0-31} 15780 // and V{0-31} so they won't match). So we match them here. 15781 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15782 int VSNum = atoi(Constraint.data() + 3); 15783 assert(VSNum >= 0 && VSNum <= 63 && 15784 "Attempted to access a vsr out of range"); 15785 if (VSNum < 32) 15786 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15787 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15788 } 15789 std::pair<unsigned, const TargetRegisterClass *> R = 15790 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15791 15792 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15793 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15794 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15795 // register. 15796 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15797 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15798 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15799 PPC::GPRCRegClass.contains(R.first)) 15800 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15801 PPC::sub_32, &PPC::G8RCRegClass), 15802 &PPC::G8RCRegClass); 15803 15804 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15805 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15806 R.first = PPC::CR0; 15807 R.second = &PPC::CRRCRegClass; 15808 } 15809 15810 return R; 15811 } 15812 15813 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15814 /// vector. If it is invalid, don't add anything to Ops. 15815 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15816 std::string &Constraint, 15817 std::vector<SDValue>&Ops, 15818 SelectionDAG &DAG) const { 15819 SDValue Result; 15820 15821 // Only support length 1 constraints. 15822 if (Constraint.length() > 1) return; 15823 15824 char Letter = Constraint[0]; 15825 switch (Letter) { 15826 default: break; 15827 case 'I': 15828 case 'J': 15829 case 'K': 15830 case 'L': 15831 case 'M': 15832 case 'N': 15833 case 'O': 15834 case 'P': { 15835 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15836 if (!CST) return; // Must be an immediate to match. 15837 SDLoc dl(Op); 15838 int64_t Value = CST->getSExtValue(); 15839 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15840 // numbers are printed as such. 15841 switch (Letter) { 15842 default: llvm_unreachable("Unknown constraint letter!"); 15843 case 'I': // "I" is a signed 16-bit constant. 15844 if (isInt<16>(Value)) 15845 Result = DAG.getTargetConstant(Value, dl, TCVT); 15846 break; 15847 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15848 if (isShiftedUInt<16, 16>(Value)) 15849 Result = DAG.getTargetConstant(Value, dl, TCVT); 15850 break; 15851 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15852 if (isShiftedInt<16, 16>(Value)) 15853 Result = DAG.getTargetConstant(Value, dl, TCVT); 15854 break; 15855 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15856 if (isUInt<16>(Value)) 15857 Result = DAG.getTargetConstant(Value, dl, TCVT); 15858 break; 15859 case 'M': // "M" is a constant that is greater than 31. 15860 if (Value > 31) 15861 Result = DAG.getTargetConstant(Value, dl, TCVT); 15862 break; 15863 case 'N': // "N" is a positive constant that is an exact power of two. 15864 if (Value > 0 && isPowerOf2_64(Value)) 15865 Result = DAG.getTargetConstant(Value, dl, TCVT); 15866 break; 15867 case 'O': // "O" is the constant zero. 15868 if (Value == 0) 15869 Result = DAG.getTargetConstant(Value, dl, TCVT); 15870 break; 15871 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15872 if (isInt<16>(-Value)) 15873 Result = DAG.getTargetConstant(Value, dl, TCVT); 15874 break; 15875 } 15876 break; 15877 } 15878 } 15879 15880 if (Result.getNode()) { 15881 Ops.push_back(Result); 15882 return; 15883 } 15884 15885 // Handle standard constraint letters. 15886 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15887 } 15888 15889 // isLegalAddressingMode - Return true if the addressing mode represented 15890 // by AM is legal for this target, for a load/store of the specified type. 15891 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15892 const AddrMode &AM, Type *Ty, 15893 unsigned AS, Instruction *I) const { 15894 // PPC does not allow r+i addressing modes for vectors! 15895 if (Ty->isVectorTy() && AM.BaseOffs != 0) 15896 return false; 15897 15898 // PPC allows a sign-extended 16-bit immediate field. 15899 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15900 return false; 15901 15902 // No global is ever allowed as a base. 15903 if (AM.BaseGV) 15904 return false; 15905 15906 // PPC only support r+r, 15907 switch (AM.Scale) { 15908 case 0: // "r+i" or just "i", depending on HasBaseReg. 15909 break; 15910 case 1: 15911 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15912 return false; 15913 // Otherwise we have r+r or r+i. 15914 break; 15915 case 2: 15916 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15917 return false; 15918 // Allow 2*r as r+r. 15919 break; 15920 default: 15921 // No other scales are supported. 15922 return false; 15923 } 15924 15925 return true; 15926 } 15927 15928 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15929 SelectionDAG &DAG) const { 15930 MachineFunction &MF = DAG.getMachineFunction(); 15931 MachineFrameInfo &MFI = MF.getFrameInfo(); 15932 MFI.setReturnAddressIsTaken(true); 15933 15934 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15935 return SDValue(); 15936 15937 SDLoc dl(Op); 15938 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15939 15940 // Make sure the function does not optimize away the store of the RA to 15941 // the stack. 15942 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15943 FuncInfo->setLRStoreRequired(); 15944 bool isPPC64 = Subtarget.isPPC64(); 15945 auto PtrVT = getPointerTy(MF.getDataLayout()); 15946 15947 if (Depth > 0) { 15948 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15949 SDValue Offset = 15950 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15951 isPPC64 ? MVT::i64 : MVT::i32); 15952 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15953 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15954 MachinePointerInfo()); 15955 } 15956 15957 // Just load the return address off the stack. 15958 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15959 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15960 MachinePointerInfo()); 15961 } 15962 15963 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15964 SelectionDAG &DAG) const { 15965 SDLoc dl(Op); 15966 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15967 15968 MachineFunction &MF = DAG.getMachineFunction(); 15969 MachineFrameInfo &MFI = MF.getFrameInfo(); 15970 MFI.setFrameAddressIsTaken(true); 15971 15972 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15973 bool isPPC64 = PtrVT == MVT::i64; 15974 15975 // Naked functions never have a frame pointer, and so we use r1. For all 15976 // other functions, this decision must be delayed until during PEI. 15977 unsigned FrameReg; 15978 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15979 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15980 else 15981 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15982 15983 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15984 PtrVT); 15985 while (Depth--) 15986 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15987 FrameAddr, MachinePointerInfo()); 15988 return FrameAddr; 15989 } 15990 15991 // FIXME? Maybe this could be a TableGen attribute on some registers and 15992 // this table could be generated automatically from RegInfo. 15993 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15994 const MachineFunction &MF) const { 15995 bool isPPC64 = Subtarget.isPPC64(); 15996 15997 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15998 if (!is64Bit && VT != LLT::scalar(32)) 15999 report_fatal_error("Invalid register global variable type"); 16000 16001 Register Reg = StringSwitch<Register>(RegName) 16002 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16003 .Case("r2", isPPC64 ? Register() : PPC::R2) 16004 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16005 .Default(Register()); 16006 16007 if (Reg) 16008 return Reg; 16009 report_fatal_error("Invalid register name global variable"); 16010 } 16011 16012 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16013 // 32-bit SVR4 ABI access everything as got-indirect. 16014 if (Subtarget.is32BitELFABI()) 16015 return true; 16016 16017 // AIX accesses everything indirectly through the TOC, which is similar to 16018 // the GOT. 16019 if (Subtarget.isAIXABI()) 16020 return true; 16021 16022 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16023 // If it is small or large code model, module locals are accessed 16024 // indirectly by loading their address from .toc/.got. 16025 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16026 return true; 16027 16028 // JumpTable and BlockAddress are accessed as got-indirect. 16029 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16030 return true; 16031 16032 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16033 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16034 16035 return false; 16036 } 16037 16038 bool 16039 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16040 // The PowerPC target isn't yet aware of offsets. 16041 return false; 16042 } 16043 16044 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16045 const CallInst &I, 16046 MachineFunction &MF, 16047 unsigned Intrinsic) const { 16048 switch (Intrinsic) { 16049 case Intrinsic::ppc_qpx_qvlfd: 16050 case Intrinsic::ppc_qpx_qvlfs: 16051 case Intrinsic::ppc_qpx_qvlfcd: 16052 case Intrinsic::ppc_qpx_qvlfcs: 16053 case Intrinsic::ppc_qpx_qvlfiwa: 16054 case Intrinsic::ppc_qpx_qvlfiwz: 16055 case Intrinsic::ppc_altivec_lvx: 16056 case Intrinsic::ppc_altivec_lvxl: 16057 case Intrinsic::ppc_altivec_lvebx: 16058 case Intrinsic::ppc_altivec_lvehx: 16059 case Intrinsic::ppc_altivec_lvewx: 16060 case Intrinsic::ppc_vsx_lxvd2x: 16061 case Intrinsic::ppc_vsx_lxvw4x: { 16062 EVT VT; 16063 switch (Intrinsic) { 16064 case Intrinsic::ppc_altivec_lvebx: 16065 VT = MVT::i8; 16066 break; 16067 case Intrinsic::ppc_altivec_lvehx: 16068 VT = MVT::i16; 16069 break; 16070 case Intrinsic::ppc_altivec_lvewx: 16071 VT = MVT::i32; 16072 break; 16073 case Intrinsic::ppc_vsx_lxvd2x: 16074 VT = MVT::v2f64; 16075 break; 16076 case Intrinsic::ppc_qpx_qvlfd: 16077 VT = MVT::v4f64; 16078 break; 16079 case Intrinsic::ppc_qpx_qvlfs: 16080 VT = MVT::v4f32; 16081 break; 16082 case Intrinsic::ppc_qpx_qvlfcd: 16083 VT = MVT::v2f64; 16084 break; 16085 case Intrinsic::ppc_qpx_qvlfcs: 16086 VT = MVT::v2f32; 16087 break; 16088 default: 16089 VT = MVT::v4i32; 16090 break; 16091 } 16092 16093 Info.opc = ISD::INTRINSIC_W_CHAIN; 16094 Info.memVT = VT; 16095 Info.ptrVal = I.getArgOperand(0); 16096 Info.offset = -VT.getStoreSize()+1; 16097 Info.size = 2*VT.getStoreSize()-1; 16098 Info.align = Align(1); 16099 Info.flags = MachineMemOperand::MOLoad; 16100 return true; 16101 } 16102 case Intrinsic::ppc_qpx_qvlfda: 16103 case Intrinsic::ppc_qpx_qvlfsa: 16104 case Intrinsic::ppc_qpx_qvlfcda: 16105 case Intrinsic::ppc_qpx_qvlfcsa: 16106 case Intrinsic::ppc_qpx_qvlfiwaa: 16107 case Intrinsic::ppc_qpx_qvlfiwza: { 16108 EVT VT; 16109 switch (Intrinsic) { 16110 case Intrinsic::ppc_qpx_qvlfda: 16111 VT = MVT::v4f64; 16112 break; 16113 case Intrinsic::ppc_qpx_qvlfsa: 16114 VT = MVT::v4f32; 16115 break; 16116 case Intrinsic::ppc_qpx_qvlfcda: 16117 VT = MVT::v2f64; 16118 break; 16119 case Intrinsic::ppc_qpx_qvlfcsa: 16120 VT = MVT::v2f32; 16121 break; 16122 default: 16123 VT = MVT::v4i32; 16124 break; 16125 } 16126 16127 Info.opc = ISD::INTRINSIC_W_CHAIN; 16128 Info.memVT = VT; 16129 Info.ptrVal = I.getArgOperand(0); 16130 Info.offset = 0; 16131 Info.size = VT.getStoreSize(); 16132 Info.align = Align(1); 16133 Info.flags = MachineMemOperand::MOLoad; 16134 return true; 16135 } 16136 case Intrinsic::ppc_qpx_qvstfd: 16137 case Intrinsic::ppc_qpx_qvstfs: 16138 case Intrinsic::ppc_qpx_qvstfcd: 16139 case Intrinsic::ppc_qpx_qvstfcs: 16140 case Intrinsic::ppc_qpx_qvstfiw: 16141 case Intrinsic::ppc_altivec_stvx: 16142 case Intrinsic::ppc_altivec_stvxl: 16143 case Intrinsic::ppc_altivec_stvebx: 16144 case Intrinsic::ppc_altivec_stvehx: 16145 case Intrinsic::ppc_altivec_stvewx: 16146 case Intrinsic::ppc_vsx_stxvd2x: 16147 case Intrinsic::ppc_vsx_stxvw4x: { 16148 EVT VT; 16149 switch (Intrinsic) { 16150 case Intrinsic::ppc_altivec_stvebx: 16151 VT = MVT::i8; 16152 break; 16153 case Intrinsic::ppc_altivec_stvehx: 16154 VT = MVT::i16; 16155 break; 16156 case Intrinsic::ppc_altivec_stvewx: 16157 VT = MVT::i32; 16158 break; 16159 case Intrinsic::ppc_vsx_stxvd2x: 16160 VT = MVT::v2f64; 16161 break; 16162 case Intrinsic::ppc_qpx_qvstfd: 16163 VT = MVT::v4f64; 16164 break; 16165 case Intrinsic::ppc_qpx_qvstfs: 16166 VT = MVT::v4f32; 16167 break; 16168 case Intrinsic::ppc_qpx_qvstfcd: 16169 VT = MVT::v2f64; 16170 break; 16171 case Intrinsic::ppc_qpx_qvstfcs: 16172 VT = MVT::v2f32; 16173 break; 16174 default: 16175 VT = MVT::v4i32; 16176 break; 16177 } 16178 16179 Info.opc = ISD::INTRINSIC_VOID; 16180 Info.memVT = VT; 16181 Info.ptrVal = I.getArgOperand(1); 16182 Info.offset = -VT.getStoreSize()+1; 16183 Info.size = 2*VT.getStoreSize()-1; 16184 Info.align = Align(1); 16185 Info.flags = MachineMemOperand::MOStore; 16186 return true; 16187 } 16188 case Intrinsic::ppc_qpx_qvstfda: 16189 case Intrinsic::ppc_qpx_qvstfsa: 16190 case Intrinsic::ppc_qpx_qvstfcda: 16191 case Intrinsic::ppc_qpx_qvstfcsa: 16192 case Intrinsic::ppc_qpx_qvstfiwa: { 16193 EVT VT; 16194 switch (Intrinsic) { 16195 case Intrinsic::ppc_qpx_qvstfda: 16196 VT = MVT::v4f64; 16197 break; 16198 case Intrinsic::ppc_qpx_qvstfsa: 16199 VT = MVT::v4f32; 16200 break; 16201 case Intrinsic::ppc_qpx_qvstfcda: 16202 VT = MVT::v2f64; 16203 break; 16204 case Intrinsic::ppc_qpx_qvstfcsa: 16205 VT = MVT::v2f32; 16206 break; 16207 default: 16208 VT = MVT::v4i32; 16209 break; 16210 } 16211 16212 Info.opc = ISD::INTRINSIC_VOID; 16213 Info.memVT = VT; 16214 Info.ptrVal = I.getArgOperand(1); 16215 Info.offset = 0; 16216 Info.size = VT.getStoreSize(); 16217 Info.align = Align(1); 16218 Info.flags = MachineMemOperand::MOStore; 16219 return true; 16220 } 16221 default: 16222 break; 16223 } 16224 16225 return false; 16226 } 16227 16228 /// It returns EVT::Other if the type should be determined using generic 16229 /// target-independent logic. 16230 EVT PPCTargetLowering::getOptimalMemOpType( 16231 const MemOp &Op, const AttributeList &FuncAttributes) const { 16232 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16233 // When expanding a memset, require at least two QPX instructions to cover 16234 // the cost of loading the value to be stored from the constant pool. 16235 if (Subtarget.hasQPX() && Op.size() >= 32 && 16236 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 16237 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 16238 return MVT::v4f64; 16239 } 16240 16241 // We should use Altivec/VSX loads and stores when available. For unaligned 16242 // addresses, unaligned VSX loads are only fast starting with the P8. 16243 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16244 (Op.isAligned(Align(16)) || 16245 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16246 return MVT::v4i32; 16247 } 16248 16249 if (Subtarget.isPPC64()) { 16250 return MVT::i64; 16251 } 16252 16253 return MVT::i32; 16254 } 16255 16256 /// Returns true if it is beneficial to convert a load of a constant 16257 /// to just the constant itself. 16258 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16259 Type *Ty) const { 16260 assert(Ty->isIntegerTy()); 16261 16262 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16263 return !(BitSize == 0 || BitSize > 64); 16264 } 16265 16266 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16267 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16268 return false; 16269 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16270 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16271 return NumBits1 == 64 && NumBits2 == 32; 16272 } 16273 16274 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16275 if (!VT1.isInteger() || !VT2.isInteger()) 16276 return false; 16277 unsigned NumBits1 = VT1.getSizeInBits(); 16278 unsigned NumBits2 = VT2.getSizeInBits(); 16279 return NumBits1 == 64 && NumBits2 == 32; 16280 } 16281 16282 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16283 // Generally speaking, zexts are not free, but they are free when they can be 16284 // folded with other operations. 16285 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16286 EVT MemVT = LD->getMemoryVT(); 16287 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16288 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16289 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16290 LD->getExtensionType() == ISD::ZEXTLOAD)) 16291 return true; 16292 } 16293 16294 // FIXME: Add other cases... 16295 // - 32-bit shifts with a zext to i64 16296 // - zext after ctlz, bswap, etc. 16297 // - zext after and by a constant mask 16298 16299 return TargetLowering::isZExtFree(Val, VT2); 16300 } 16301 16302 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16303 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16304 "invalid fpext types"); 16305 // Extending to float128 is not free. 16306 if (DestVT == MVT::f128) 16307 return false; 16308 return true; 16309 } 16310 16311 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16312 return isInt<16>(Imm) || isUInt<16>(Imm); 16313 } 16314 16315 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16316 return isInt<16>(Imm) || isUInt<16>(Imm); 16317 } 16318 16319 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16320 unsigned, 16321 unsigned, 16322 MachineMemOperand::Flags, 16323 bool *Fast) const { 16324 if (DisablePPCUnaligned) 16325 return false; 16326 16327 // PowerPC supports unaligned memory access for simple non-vector types. 16328 // Although accessing unaligned addresses is not as efficient as accessing 16329 // aligned addresses, it is generally more efficient than manual expansion, 16330 // and generally only traps for software emulation when crossing page 16331 // boundaries. 16332 16333 if (!VT.isSimple()) 16334 return false; 16335 16336 if (VT.isFloatingPoint() && !VT.isVector() && 16337 !Subtarget.allowsUnalignedFPAccess()) 16338 return false; 16339 16340 if (VT.getSimpleVT().isVector()) { 16341 if (Subtarget.hasVSX()) { 16342 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16343 VT != MVT::v4f32 && VT != MVT::v4i32) 16344 return false; 16345 } else { 16346 return false; 16347 } 16348 } 16349 16350 if (VT == MVT::ppcf128) 16351 return false; 16352 16353 if (Fast) 16354 *Fast = true; 16355 16356 return true; 16357 } 16358 16359 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16360 EVT VT) const { 16361 return isFMAFasterThanFMulAndFAdd( 16362 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16363 } 16364 16365 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16366 Type *Ty) const { 16367 switch (Ty->getScalarType()->getTypeID()) { 16368 case Type::FloatTyID: 16369 case Type::DoubleTyID: 16370 return true; 16371 case Type::FP128TyID: 16372 return EnableQuadPrecision && Subtarget.hasP9Vector(); 16373 default: 16374 return false; 16375 } 16376 } 16377 16378 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 16379 // FIXME: add more patterns which are profitable to hoist. 16380 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16381 if (I->getOpcode() != Instruction::FMul) 16382 return true; 16383 16384 if (!I->hasOneUse()) 16385 return true; 16386 16387 Instruction *User = I->user_back(); 16388 assert(User && "A single use instruction with no uses."); 16389 16390 if (User->getOpcode() != Instruction::FSub && 16391 User->getOpcode() != Instruction::FAdd) 16392 return true; 16393 16394 const TargetOptions &Options = getTargetMachine().Options; 16395 const Function *F = I->getFunction(); 16396 const DataLayout &DL = F->getParent()->getDataLayout(); 16397 Type *Ty = User->getOperand(0)->getType(); 16398 16399 return !( 16400 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16401 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16402 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16403 } 16404 16405 const MCPhysReg * 16406 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16407 // LR is a callee-save register, but we must treat it as clobbered by any call 16408 // site. Hence we include LR in the scratch registers, which are in turn added 16409 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16410 // to CTR, which is used by any indirect call. 16411 static const MCPhysReg ScratchRegs[] = { 16412 PPC::X12, PPC::LR8, PPC::CTR8, 0 16413 }; 16414 16415 return ScratchRegs; 16416 } 16417 16418 Register PPCTargetLowering::getExceptionPointerRegister( 16419 const Constant *PersonalityFn) const { 16420 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16421 } 16422 16423 Register PPCTargetLowering::getExceptionSelectorRegister( 16424 const Constant *PersonalityFn) const { 16425 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16426 } 16427 16428 bool 16429 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16430 EVT VT , unsigned DefinedValues) const { 16431 if (VT == MVT::v2i64) 16432 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16433 16434 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 16435 return true; 16436 16437 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16438 } 16439 16440 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16441 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16442 return TargetLowering::getSchedulingPreference(N); 16443 16444 return Sched::ILP; 16445 } 16446 16447 // Create a fast isel object. 16448 FastISel * 16449 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16450 const TargetLibraryInfo *LibInfo) const { 16451 return PPC::createFastISel(FuncInfo, LibInfo); 16452 } 16453 16454 // 'Inverted' means the FMA opcode after negating one multiplicand. 16455 // For example, (fma -a b c) = (fnmsub a b c) 16456 static unsigned invertFMAOpcode(unsigned Opc) { 16457 switch (Opc) { 16458 default: 16459 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16460 case ISD::FMA: 16461 return PPCISD::FNMSUB; 16462 case PPCISD::FNMSUB: 16463 return ISD::FMA; 16464 } 16465 } 16466 16467 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16468 bool LegalOps, bool OptForSize, 16469 NegatibleCost &Cost, 16470 unsigned Depth) const { 16471 if (Depth > SelectionDAG::MaxRecursionDepth) 16472 return SDValue(); 16473 16474 unsigned Opc = Op.getOpcode(); 16475 EVT VT = Op.getValueType(); 16476 SDNodeFlags Flags = Op.getNode()->getFlags(); 16477 16478 switch (Opc) { 16479 case PPCISD::FNMSUB: 16480 // TODO: QPX subtarget is deprecated. No transformation here. 16481 if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX()) 16482 break; 16483 16484 const TargetOptions &Options = getTargetMachine().Options; 16485 SDValue N0 = Op.getOperand(0); 16486 SDValue N1 = Op.getOperand(1); 16487 SDValue N2 = Op.getOperand(2); 16488 SDLoc Loc(Op); 16489 16490 NegatibleCost N2Cost = NegatibleCost::Expensive; 16491 SDValue NegN2 = 16492 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16493 16494 if (!NegN2) 16495 return SDValue(); 16496 16497 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16498 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16499 // These transformations may change sign of zeroes. For example, 16500 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16501 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16502 // Try and choose the cheaper one to negate. 16503 NegatibleCost N0Cost = NegatibleCost::Expensive; 16504 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16505 N0Cost, Depth + 1); 16506 16507 NegatibleCost N1Cost = NegatibleCost::Expensive; 16508 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16509 N1Cost, Depth + 1); 16510 16511 if (NegN0 && N0Cost <= N1Cost) { 16512 Cost = std::min(N0Cost, N2Cost); 16513 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16514 } else if (NegN1) { 16515 Cost = std::min(N1Cost, N2Cost); 16516 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16517 } 16518 } 16519 16520 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16521 if (isOperationLegal(ISD::FMA, VT)) { 16522 Cost = N2Cost; 16523 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16524 } 16525 16526 break; 16527 } 16528 16529 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16530 Cost, Depth); 16531 } 16532 16533 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16534 bool PPCTargetLowering::useLoadStackGuardNode() const { 16535 if (!Subtarget.isTargetLinux()) 16536 return TargetLowering::useLoadStackGuardNode(); 16537 return true; 16538 } 16539 16540 // Override to disable global variable loading on Linux. 16541 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16542 if (!Subtarget.isTargetLinux()) 16543 return TargetLowering::insertSSPDeclarations(M); 16544 } 16545 16546 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16547 bool ForCodeSize) const { 16548 if (!VT.isSimple() || !Subtarget.hasVSX()) 16549 return false; 16550 16551 switch(VT.getSimpleVT().SimpleTy) { 16552 default: 16553 // For FP types that are currently not supported by PPC backend, return 16554 // false. Examples: f16, f80. 16555 return false; 16556 case MVT::f32: 16557 case MVT::f64: 16558 if (Subtarget.hasPrefixInstrs()) { 16559 // With prefixed instructions, we can materialize anything that can be 16560 // represented with a 32-bit immediate, not just positive zero. 16561 APFloat APFloatOfImm = Imm; 16562 return convertToNonDenormSingle(APFloatOfImm); 16563 } 16564 LLVM_FALLTHROUGH; 16565 case MVT::ppcf128: 16566 return Imm.isPosZero(); 16567 } 16568 } 16569 16570 // For vector shift operation op, fold 16571 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16572 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16573 SelectionDAG &DAG) { 16574 SDValue N0 = N->getOperand(0); 16575 SDValue N1 = N->getOperand(1); 16576 EVT VT = N0.getValueType(); 16577 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16578 unsigned Opcode = N->getOpcode(); 16579 unsigned TargetOpcode; 16580 16581 switch (Opcode) { 16582 default: 16583 llvm_unreachable("Unexpected shift operation"); 16584 case ISD::SHL: 16585 TargetOpcode = PPCISD::SHL; 16586 break; 16587 case ISD::SRL: 16588 TargetOpcode = PPCISD::SRL; 16589 break; 16590 case ISD::SRA: 16591 TargetOpcode = PPCISD::SRA; 16592 break; 16593 } 16594 16595 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16596 N1->getOpcode() == ISD::AND) 16597 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16598 if (Mask->getZExtValue() == OpSizeInBits - 1) 16599 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16600 16601 return SDValue(); 16602 } 16603 16604 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16605 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16606 return Value; 16607 16608 SDValue N0 = N->getOperand(0); 16609 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16610 if (!Subtarget.isISA3_0() || 16611 N0.getOpcode() != ISD::SIGN_EXTEND || 16612 N0.getOperand(0).getValueType() != MVT::i32 || 16613 CN1 == nullptr || N->getValueType(0) != MVT::i64) 16614 return SDValue(); 16615 16616 // We can't save an operation here if the value is already extended, and 16617 // the existing shift is easier to combine. 16618 SDValue ExtsSrc = N0.getOperand(0); 16619 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16620 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16621 return SDValue(); 16622 16623 SDLoc DL(N0); 16624 SDValue ShiftBy = SDValue(CN1, 0); 16625 // We want the shift amount to be i32 on the extswli, but the shift could 16626 // have an i64. 16627 if (ShiftBy.getValueType() == MVT::i64) 16628 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16629 16630 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16631 ShiftBy); 16632 } 16633 16634 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16635 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16636 return Value; 16637 16638 return SDValue(); 16639 } 16640 16641 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16642 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16643 return Value; 16644 16645 return SDValue(); 16646 } 16647 16648 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16649 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16650 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16651 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16652 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16653 const PPCSubtarget &Subtarget) { 16654 if (!Subtarget.isPPC64()) 16655 return SDValue(); 16656 16657 SDValue LHS = N->getOperand(0); 16658 SDValue RHS = N->getOperand(1); 16659 16660 auto isZextOfCompareWithConstant = [](SDValue Op) { 16661 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16662 Op.getValueType() != MVT::i64) 16663 return false; 16664 16665 SDValue Cmp = Op.getOperand(0); 16666 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16667 Cmp.getOperand(0).getValueType() != MVT::i64) 16668 return false; 16669 16670 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16671 int64_t NegConstant = 0 - Constant->getSExtValue(); 16672 // Due to the limitations of the addi instruction, 16673 // -C is required to be [-32768, 32767]. 16674 return isInt<16>(NegConstant); 16675 } 16676 16677 return false; 16678 }; 16679 16680 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16681 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16682 16683 // If there is a pattern, canonicalize a zext operand to the RHS. 16684 if (LHSHasPattern && !RHSHasPattern) 16685 std::swap(LHS, RHS); 16686 else if (!LHSHasPattern && !RHSHasPattern) 16687 return SDValue(); 16688 16689 SDLoc DL(N); 16690 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16691 SDValue Cmp = RHS.getOperand(0); 16692 SDValue Z = Cmp.getOperand(0); 16693 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16694 16695 assert(Constant && "Constant Should not be a null pointer."); 16696 int64_t NegConstant = 0 - Constant->getSExtValue(); 16697 16698 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16699 default: break; 16700 case ISD::SETNE: { 16701 // when C == 0 16702 // --> addze X, (addic Z, -1).carry 16703 // / 16704 // add X, (zext(setne Z, C))-- 16705 // \ when -32768 <= -C <= 32767 && C != 0 16706 // --> addze X, (addic (addi Z, -C), -1).carry 16707 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16708 DAG.getConstant(NegConstant, DL, MVT::i64)); 16709 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16710 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16711 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16712 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16713 SDValue(Addc.getNode(), 1)); 16714 } 16715 case ISD::SETEQ: { 16716 // when C == 0 16717 // --> addze X, (subfic Z, 0).carry 16718 // / 16719 // add X, (zext(sete Z, C))-- 16720 // \ when -32768 <= -C <= 32767 && C != 0 16721 // --> addze X, (subfic (addi Z, -C), 0).carry 16722 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16723 DAG.getConstant(NegConstant, DL, MVT::i64)); 16724 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16725 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16726 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16727 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16728 SDValue(Subc.getNode(), 1)); 16729 } 16730 } 16731 16732 return SDValue(); 16733 } 16734 16735 // Transform 16736 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16737 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16738 // In this case both C1 and C2 must be known constants. 16739 // C1+C2 must fit into a 34 bit signed integer. 16740 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16741 const PPCSubtarget &Subtarget) { 16742 if (!Subtarget.isUsingPCRelativeCalls()) 16743 return SDValue(); 16744 16745 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16746 // If we find that node try to cast the Global Address and the Constant. 16747 SDValue LHS = N->getOperand(0); 16748 SDValue RHS = N->getOperand(1); 16749 16750 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16751 std::swap(LHS, RHS); 16752 16753 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16754 return SDValue(); 16755 16756 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16757 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16758 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16759 16760 // Check that both casts succeeded. 16761 if (!GSDN || !ConstNode) 16762 return SDValue(); 16763 16764 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16765 SDLoc DL(GSDN); 16766 16767 // The signed int offset needs to fit in 34 bits. 16768 if (!isInt<34>(NewOffset)) 16769 return SDValue(); 16770 16771 // The new global address is a copy of the old global address except 16772 // that it has the updated Offset. 16773 SDValue GA = 16774 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16775 NewOffset, GSDN->getTargetFlags()); 16776 SDValue MatPCRel = 16777 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16778 return MatPCRel; 16779 } 16780 16781 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16782 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16783 return Value; 16784 16785 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16786 return Value; 16787 16788 return SDValue(); 16789 } 16790 16791 // Detect TRUNCATE operations on bitcasts of float128 values. 16792 // What we are looking for here is the situtation where we extract a subset 16793 // of bits from a 128 bit float. 16794 // This can be of two forms: 16795 // 1) BITCAST of f128 feeding TRUNCATE 16796 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16797 // The reason this is required is because we do not have a legal i128 type 16798 // and so we want to prevent having to store the f128 and then reload part 16799 // of it. 16800 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16801 DAGCombinerInfo &DCI) const { 16802 // If we are using CRBits then try that first. 16803 if (Subtarget.useCRBits()) { 16804 // Check if CRBits did anything and return that if it did. 16805 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16806 return CRTruncValue; 16807 } 16808 16809 SDLoc dl(N); 16810 SDValue Op0 = N->getOperand(0); 16811 16812 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16813 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16814 EVT VT = N->getValueType(0); 16815 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16816 return SDValue(); 16817 SDValue Sub = Op0.getOperand(0); 16818 if (Sub.getOpcode() == ISD::SUB) { 16819 SDValue SubOp0 = Sub.getOperand(0); 16820 SDValue SubOp1 = Sub.getOperand(1); 16821 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16822 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16823 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16824 SubOp1.getOperand(0), 16825 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16826 } 16827 } 16828 } 16829 16830 // Looking for a truncate of i128 to i64. 16831 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16832 return SDValue(); 16833 16834 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16835 16836 // SRL feeding TRUNCATE. 16837 if (Op0.getOpcode() == ISD::SRL) { 16838 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16839 // The right shift has to be by 64 bits. 16840 if (!ConstNode || ConstNode->getZExtValue() != 64) 16841 return SDValue(); 16842 16843 // Switch the element number to extract. 16844 EltToExtract = EltToExtract ? 0 : 1; 16845 // Update Op0 past the SRL. 16846 Op0 = Op0.getOperand(0); 16847 } 16848 16849 // BITCAST feeding a TRUNCATE possibly via SRL. 16850 if (Op0.getOpcode() == ISD::BITCAST && 16851 Op0.getValueType() == MVT::i128 && 16852 Op0.getOperand(0).getValueType() == MVT::f128) { 16853 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16854 return DCI.DAG.getNode( 16855 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16856 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16857 } 16858 return SDValue(); 16859 } 16860 16861 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16862 SelectionDAG &DAG = DCI.DAG; 16863 16864 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16865 if (!ConstOpOrElement) 16866 return SDValue(); 16867 16868 // An imul is usually smaller than the alternative sequence for legal type. 16869 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16870 isOperationLegal(ISD::MUL, N->getValueType(0))) 16871 return SDValue(); 16872 16873 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16874 switch (this->Subtarget.getCPUDirective()) { 16875 default: 16876 // TODO: enhance the condition for subtarget before pwr8 16877 return false; 16878 case PPC::DIR_PWR8: 16879 // type mul add shl 16880 // scalar 4 1 1 16881 // vector 7 2 2 16882 return true; 16883 case PPC::DIR_PWR9: 16884 case PPC::DIR_PWR10: 16885 case PPC::DIR_PWR_FUTURE: 16886 // type mul add shl 16887 // scalar 5 2 2 16888 // vector 7 2 2 16889 16890 // The cycle RATIO of related operations are showed as a table above. 16891 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16892 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16893 // are 4, it is always profitable; but for 3 instrs patterns 16894 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16895 // So we should only do it for vector type. 16896 return IsAddOne && IsNeg ? VT.isVector() : true; 16897 } 16898 }; 16899 16900 EVT VT = N->getValueType(0); 16901 SDLoc DL(N); 16902 16903 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16904 bool IsNeg = MulAmt.isNegative(); 16905 APInt MulAmtAbs = MulAmt.abs(); 16906 16907 if ((MulAmtAbs - 1).isPowerOf2()) { 16908 // (mul x, 2^N + 1) => (add (shl x, N), x) 16909 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16910 16911 if (!IsProfitable(IsNeg, true, VT)) 16912 return SDValue(); 16913 16914 SDValue Op0 = N->getOperand(0); 16915 SDValue Op1 = 16916 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16917 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16918 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16919 16920 if (!IsNeg) 16921 return Res; 16922 16923 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16924 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16925 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16926 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16927 16928 if (!IsProfitable(IsNeg, false, VT)) 16929 return SDValue(); 16930 16931 SDValue Op0 = N->getOperand(0); 16932 SDValue Op1 = 16933 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16934 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16935 16936 if (!IsNeg) 16937 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16938 else 16939 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16940 16941 } else { 16942 return SDValue(); 16943 } 16944 } 16945 16946 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16947 // in combiner since we need to check SD flags and other subtarget features. 16948 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16949 DAGCombinerInfo &DCI) const { 16950 SDValue N0 = N->getOperand(0); 16951 SDValue N1 = N->getOperand(1); 16952 SDValue N2 = N->getOperand(2); 16953 SDNodeFlags Flags = N->getFlags(); 16954 EVT VT = N->getValueType(0); 16955 SelectionDAG &DAG = DCI.DAG; 16956 const TargetOptions &Options = getTargetMachine().Options; 16957 unsigned Opc = N->getOpcode(); 16958 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16959 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16960 SDLoc Loc(N); 16961 16962 // TODO: QPX subtarget is deprecated. No transformation here. 16963 if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT)) 16964 return SDValue(); 16965 16966 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16967 // since (fnmsub a b c)=-0 while c-ab=+0. 16968 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16969 return SDValue(); 16970 16971 // (fma (fneg a) b c) => (fnmsub a b c) 16972 // (fnmsub (fneg a) b c) => (fma a b c) 16973 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16974 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16975 16976 // (fma a (fneg b) c) => (fnmsub a b c) 16977 // (fnmsub a (fneg b) c) => (fma a b c) 16978 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16979 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16980 16981 return SDValue(); 16982 } 16983 16984 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16985 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16986 if (!Subtarget.is64BitELFABI()) 16987 return false; 16988 16989 // If not a tail call then no need to proceed. 16990 if (!CI->isTailCall()) 16991 return false; 16992 16993 // If sibling calls have been disabled and tail-calls aren't guaranteed 16994 // there is no reason to duplicate. 16995 auto &TM = getTargetMachine(); 16996 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16997 return false; 16998 16999 // Can't tail call a function called indirectly, or if it has variadic args. 17000 const Function *Callee = CI->getCalledFunction(); 17001 if (!Callee || Callee->isVarArg()) 17002 return false; 17003 17004 // Make sure the callee and caller calling conventions are eligible for tco. 17005 const Function *Caller = CI->getParent()->getParent(); 17006 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17007 CI->getCallingConv())) 17008 return false; 17009 17010 // If the function is local then we have a good chance at tail-calling it 17011 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17012 } 17013 17014 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17015 if (!Subtarget.hasVSX()) 17016 return false; 17017 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17018 return true; 17019 return VT == MVT::f32 || VT == MVT::f64 || 17020 VT == MVT::v4f32 || VT == MVT::v2f64; 17021 } 17022 17023 bool PPCTargetLowering:: 17024 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17025 const Value *Mask = AndI.getOperand(1); 17026 // If the mask is suitable for andi. or andis. we should sink the and. 17027 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17028 // Can't handle constants wider than 64-bits. 17029 if (CI->getBitWidth() > 64) 17030 return false; 17031 int64_t ConstVal = CI->getZExtValue(); 17032 return isUInt<16>(ConstVal) || 17033 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17034 } 17035 17036 // For non-constant masks, we can always use the record-form and. 17037 return true; 17038 } 17039 17040 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17041 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17042 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17043 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17044 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17045 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17046 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17047 assert(Subtarget.hasP9Altivec() && 17048 "Only combine this when P9 altivec supported!"); 17049 EVT VT = N->getValueType(0); 17050 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17051 return SDValue(); 17052 17053 SelectionDAG &DAG = DCI.DAG; 17054 SDLoc dl(N); 17055 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17056 // Even for signed integers, if it's known to be positive (as signed 17057 // integer) due to zero-extended inputs. 17058 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17059 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17060 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17061 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17062 (SubOpcd1 == ISD::ZERO_EXTEND || 17063 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17064 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17065 N->getOperand(0)->getOperand(0), 17066 N->getOperand(0)->getOperand(1), 17067 DAG.getTargetConstant(0, dl, MVT::i32)); 17068 } 17069 17070 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17071 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17072 N->getOperand(0).hasOneUse()) { 17073 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17074 N->getOperand(0)->getOperand(0), 17075 N->getOperand(0)->getOperand(1), 17076 DAG.getTargetConstant(1, dl, MVT::i32)); 17077 } 17078 } 17079 17080 return SDValue(); 17081 } 17082 17083 // For type v4i32/v8ii16/v16i8, transform 17084 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17085 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17086 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17087 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17088 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17089 DAGCombinerInfo &DCI) const { 17090 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17091 assert(Subtarget.hasP9Altivec() && 17092 "Only combine this when P9 altivec supported!"); 17093 17094 SelectionDAG &DAG = DCI.DAG; 17095 SDLoc dl(N); 17096 SDValue Cond = N->getOperand(0); 17097 SDValue TrueOpnd = N->getOperand(1); 17098 SDValue FalseOpnd = N->getOperand(2); 17099 EVT VT = N->getOperand(1).getValueType(); 17100 17101 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17102 FalseOpnd.getOpcode() != ISD::SUB) 17103 return SDValue(); 17104 17105 // ABSD only available for type v4i32/v8i16/v16i8 17106 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17107 return SDValue(); 17108 17109 // At least to save one more dependent computation 17110 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17111 return SDValue(); 17112 17113 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17114 17115 // Can only handle unsigned comparison here 17116 switch (CC) { 17117 default: 17118 return SDValue(); 17119 case ISD::SETUGT: 17120 case ISD::SETUGE: 17121 break; 17122 case ISD::SETULT: 17123 case ISD::SETULE: 17124 std::swap(TrueOpnd, FalseOpnd); 17125 break; 17126 } 17127 17128 SDValue CmpOpnd1 = Cond.getOperand(0); 17129 SDValue CmpOpnd2 = Cond.getOperand(1); 17130 17131 // SETCC CmpOpnd1 CmpOpnd2 cond 17132 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17133 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17134 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17135 TrueOpnd.getOperand(1) == CmpOpnd2 && 17136 FalseOpnd.getOperand(0) == CmpOpnd2 && 17137 FalseOpnd.getOperand(1) == CmpOpnd1) { 17138 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17139 CmpOpnd1, CmpOpnd2, 17140 DAG.getTargetConstant(0, dl, MVT::i32)); 17141 } 17142 17143 return SDValue(); 17144 } 17145